
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pluripotential-theoretic approach to radial energy
functionals

Mingchen, Xia

Chalmers Tekniska Högskola

Beijing University, 11/20/2020



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Setup

Notations:
𝑋: compact Kähler manifold of dimension 𝑛.

𝐿: an ample line bundle on 𝑋.
𝜔: a Kähler form in 𝑐1(𝐿).
𝑉 = ∫𝑋 𝜔𝑛.
ℎ: a Hermitian metric on 𝐿, such that 𝜔 = 𝑐1(𝐿, ℎ).
ℰ1(𝑋, 𝜔): the set of 𝜔-psh functions with finite energy:

ℰ1(𝑋, 𝜔) = {𝜑 ∈ PSH(𝑋, 𝜔) ∶ ∫
𝑋

|𝜑| 𝜔𝑛
𝜑 < ∞ , ∫

𝑋
𝜔𝑛

𝜑 = ∫
𝑋

𝜔𝑛} .
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Energy functionals

Various energy functionals have been shown to be important in the
study of the geometry of (𝑋, 𝐿, 𝜔):

Monge–Ampère energy 𝐸(𝜑) = 1
𝑉 ∑𝑛

𝑗=0 ∫𝑋 𝜑 𝜔𝑗
𝜑 ∧ 𝜔𝑛−𝑗.

Ricci energy 𝐸𝑅(𝜑) ∶= − 1
𝑉 ∑𝑛−1

𝑗=0 ∫𝑋 𝜑 Ric 𝜔 ∧ 𝜔𝑗
𝜑 ∧ 𝜔𝑛−1−𝑗.

Entropy Ent(𝜑) ∶= 1
𝑉 ∫𝑋 log (𝜔𝑛

𝜑
𝜔𝑛 ) 𝜔𝑛

𝜑 if 𝜔𝜑𝑛 ≪ 𝜔𝑛, ∞
otherwise.
Mabuchi K-energy 𝑀(𝜑) = ̄𝑆𝐸(𝜑) + 𝐸𝑅(𝜑) + Ent(𝜑).

These functionals are defined on ℰ1.
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Weak geodesic in ℋ

Weak geodesics in ℋ. Let 𝜑0, 𝜑1 ∈ ℋ.

Definition
A weak geodesic from 𝜑0 to 𝜑1 is a curve (𝜑𝑡)𝑡∈[0,1] of bounded
psh functions such that the corresponding 𝑆1-invariant potential Φ
on 𝑋 × {𝑧 ∈ ℂ ∶ 𝑒−1 ≤ |𝑧| ≤ 1} is qpsh and solves the
homogeneous Monge–Ampère equation

MA(Φ) = 0 .

Theorem (Chen, Chu–Tosatti–Weinkove)
There is always a unique 𝐶1,1 weak geodesic from 𝜑0 to 𝜑1.
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Geodesic in ℰ1

The notation of geodesics can be generalized to the case where
𝜑0, 𝜑1 ∈ ℰ1.

Theorem (Darvas)
There is always a unique finite energy geodesic from 𝜑0 to 𝜑1.

Finite energy coincides with the weak geodesic if 𝜑0, 𝜑1 ∈ ℋ.
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Geodesic rays

Definition
A geodesic ray is a map ℓ ∶ [0, ∞) → ℰ1 such that ℓ|[0,𝑡] is a finite
energy geodesic for any 𝑡 ≥ 0.

The set of finite energy geodesic rays ℓ with ℓ0 = 0 is denoted by
ℛ1.
Theorem (Chen–Cheng, Darvas–Lu)
ℛ1 has a complete metric:

𝑑1(ℓ, ℓ′) ∶= lim
𝑡→∞

1
𝑡 𝑑1(ℓ𝑡, ℓ′

𝑡) .
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Radial functionals
For 𝐹 = 𝐸, 𝐸𝑅, Ent, 𝑀 , we define

F(ℓ) = lim
𝑡→∞

1
𝑡 𝐹(ℓ𝑡) , ℓ ∈ ℛ1 .

These radial functionals are important to the study of K-stability.

Theorem (Chen–Cheng)
Assume that Aut(𝑋, 𝐿)/𝔾𝑚 is discrete. Then there exists a cscK
metric on 𝐿 iff there exists 𝛿 > 0, such that M(ℓ) ≥ 𝛿 for any
ℓ ∈ ℛ1, 𝑑1(0, ℓ1) = 1.

Theorem (Hisamoto, Xia)
Assume that (𝑋, 𝐿) is (geodesically) unstable, there is a unique
minimizer of

inf
ℓ∈ℛ2,𝑑2(0,ℓ1)=1

M(ℓ) .
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Different approaches

So far, the following approaches to these radial functionals have
been developed.

Through test configurations: Odaka, Wang, Boucksom,
Hisamoto, Jonsson, Li, Xu, ….

Through filtrations: Witt Nyström, Székelyhidi, ….
Through non-Archimedean geometry: Boucksom, Favre,
Jonsson, Berman, ….
Through test curves: Ross, Witt Nyström, Darvas, Di Nezza,
Lu, ….

The first two approaches can only handle some cases. They have
the disadvantage that they do not map injectively to geodesic rays.
Also they could not handle general geodesic rays.
We adopt a mixture of the third and the fourth approaches.
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been developed.

Through test configurations: Odaka, Wang, Boucksom,
Hisamoto, Jonsson, Li, Xu, ….
Through filtrations: Witt Nyström, Székelyhidi, ….
Through non-Archimedean geometry: Boucksom, Favre,
Jonsson, Berman, ….
Through test curves: Ross, Witt Nyström, Darvas, Di Nezza,
Lu, ….

The first two approaches can only handle some cases. They have
the disadvantage that they do not map injectively to geodesic rays.
Also they could not handle general geodesic rays.
We adopt a mixture of the third and the fourth approaches.
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Test curves
A test curve is the Legendre transform of some geodesic ray:

̂ℓ𝜏 ∶= inf
𝑡≥0

ℓ𝑡 − 𝑡𝜏 , 𝜏 ∈ ℝ .

How does the a test curve looks like?
The curve ̂ℓ𝜏 is concave in 𝜏 .

The curve becomes −∞ when 𝜏 > 𝜏+ for some 𝜏+, it
approaches 0 when 𝜏 → −∞.
The curve is usc as a function in (𝜏, 𝑥).
Each ̂ℓ𝜏 is 𝜔-psh and model.

E(𝜓•) ∶= 1
𝑉 𝜏+ + 1

𝑉 ∫
𝜏+

−∞
(∫

𝑋
𝜔𝑛

𝜓𝜏
− ∫

𝑋
𝜔𝑛) d𝜏 > −∞ .
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Test curves

These conditions completely characterize the test curves.

Theorem (Ross–Witt Nyström, Darvas–Di Nezza–Lu, Darvas–Xia)
The Legendre is a bijection from ℛ1 to the set of curves satisfying
the five conditions above.

This theorem is the bridge between pluripotential theory of singular
potentials and the theory of geodesic rays.
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Image of a test curve
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Deformation to the normal cone, an example

Let 𝜓 be a potential with hyperplane singularities along some snc
divisor 𝐷 on 𝑋, such that 𝐿 − 𝐷 is semi-ample.
Let 𝒳 = Bl𝐷×{0} 𝑋 × ℂ with a natural map Π ∶ 𝒳 → 𝑋 × ℂ. Then
ℒ ∶= Π∗𝑝∗

1𝐿 − 𝐸 is semi-ample and (𝒳, ℒ) is a test configuration.
The corresponding test curve is given by 𝑃 [(1 + 𝜏)𝜓] when
𝜓 ∈ [−1, 0], −∞ if 𝜏 > 0, 0 if 𝜏 < −1.

Lelong numbers are piecewise linear!
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Relation to other approaches
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Relation to other approaches

The map from filtrations to test curves is as follows: Let ℱ• be a
filtration of 𝑅(𝑋, 𝐿), then

𝜓𝜏 ∶= sup*
𝑘∈ℤ>0

𝑘−1 sup* { log |𝑠|2ℎ𝑘 ∶ 𝑠 ∈ F 𝑘𝜏𝐻0(𝑋, 𝐿𝑘), sup
𝑋

|𝑠|ℎ𝑘 ≤ 1 } .
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Goal

We want to express radial functionals in terms of functionals of the
corresponding test curves.
Why?

The corresponding functional of test curves are much easier to
understand.
This will enable us to apply techniques developed in Kähler
geometry to the study of singular potentials, and vice versa.
This is the correct setup to extend what have been studied for
test configurations and filtrations.
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Monge–Ampère energy — First example

Theorem (Ross–Witt Nyström, Darvas–Xia)
Let ℓ ∈ ℛ1. Then

E(ℓ) = 1
𝑉 𝜏+ + 1

𝑉 ∫
𝜏+

−∞
(∫

𝑋
𝜔𝑛

𝜓𝜏
− ∫

𝑋
𝜔𝑛) d𝜏 .

This implies that we should define

𝐸(𝜓) ∶= 1
𝑉 ∫

𝑋
𝜔𝑛

𝜓 − 1 .
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Maximal geodesic rays

Given a test configuration (𝒳, ℒ) of (𝑋, 𝐿). One can always solve
the homogeneous Monge–Ampère equation on 𝒳 with boundary
value 0 on 𝑋 × 𝑆1. This geodesic ray is known as the
Phong–Sturm geodesic ray. This is a 𝐶1,1-geodesic ray
(Chu–Tosatti–Weinkove).

Definition (Berman–Boucksom–Jonsson)
A geodesic ray ℛ1 is maximal if is can be approximated by
Phong–Sturm geodesic rays of test configurations.
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Maximal geodesic rays

The most important geodesic rays in the study of K-stability are all
maximal.
Theorem (Li)
A geodesic ray ℓ ∈ ℛ1 with Ent(ℓ) < ∞ is maximal.

A maximal geodesic ray is algebraic in a very strong sense.
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Maximal geodesic rays under the Legendre transform

Theorem (Darvas–Xia)
Under the Legendre transform, maximal geodesic rays correspond
to test curves 𝜓•, such that each 𝜓𝜏 (𝜏 < 𝜏+) is ℐ-model.

Definition
A potential 0 ≥ 𝜓 ∈ PSH(𝑋, 𝜔) is model if there are no other
potentials 𝜑 ≤ 0 less singular than 𝜓 while having the same mass.

Definition
A model potential 0 ≥ 𝜓 ∈ PSH(𝑋, 𝜔) is ℐ-model if there are no
other potentials 𝜑 ≤ 0 having the same multiplier ideal sheaves (in
the sense that ℐ(𝑘𝜑) = ℐ(𝑘𝜓)).

Roughly speaking, ℐ-model potentials are algebraic singularities.
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ℐ-model potentials

Each of the following properties are characterizations of ℐ-model
singularities among model singularities:

1

∫
𝑋

𝜔𝑛
𝜓 = lim

𝑘→∞
𝑛!
𝑘𝑛 ℎ0(𝑋, 𝐿𝑘 ⊗ ℐ(𝑘𝜓)) .

2 There are no other potentials 𝜑 ≤ 0 with the same generic
Lelong numbers as 𝜓.

3 Along the quasi-equisingular approximations of 𝜓, the mass
converges.

ℐ-model potentials are extremely natural from the
non-Archimedean point of view!
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Ricci energy

Theorem (Xia)
Let ℓ ∈ ℛ1 be a maximal geodesic ray, sup-normalized, then

E𝑅(ℓ) = − 𝑛
𝑉 ∫

0

−∞
(∫

𝑋
Ric 𝜔 ∧ 𝜔𝑛−1

𝜓𝜏
− ∫

𝑋
Ric 𝜔 ∧ 𝜔𝑛−1) d𝜏 .

Hence, one should define

𝐸𝑅(𝜓) ∶= − 𝑛
𝑉 (∫

𝑋
Ric 𝜔 ∧ 𝜔𝑛−1

𝜓 − ∫
𝑋

Ric 𝜔 ∧ 𝜔𝑛−1) .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Entropy

This is much more difficult!
By Li’s theorem, Ent(ℓ) < ∞ implies that ℓ is maximal. So we
only need to consider maximal geodesic rays and ℐ-model test
curves.
Our approach depends essentially on the Berkovich space picture.
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Berkovich analytification

We consider the Berkovich analytification 𝑋an of 𝑋 with respect
to the trivial valuation on ℂ.
As a set, 𝑋an is the disjoint union of valuations on the function
fields of irreducible closed subschemes of 𝑋, extending the trivial
valuation on ℂ.
As a topological space, 𝑋an (with the Berkovich topology) is the
inverse limit of a net of polytopes.
As a locally ringed site, 𝑋an carries the Berkovich G-topology and
a sheaf of rings.
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Berkovich affine line over ℂ with trivial valuation

This picture comes from the lecture notes of Mattias Jonsson.
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How does the non-Archimedean picture show up?

A geodesic ray induces a non-Archimedean potential: when ℓ is
sup-normalized,

ℓNA(𝑣) = −𝐺(𝑣)(Φ) ,
where Φ is the 𝑆1-invariant potential defined by ℓ. This establishes
a bijection from the set of maximal geodesic rays to ℰ1,NA.

Theorem (Berman–Boucksom–Jonsson)
There is a bijection between maximal geodesic rays and ℰ1

potentials on the Berkovich analytification of (𝑋, 𝐿) (with respect
to the trivial valuation on ℂ).

Hence every functional of maximal geodesic rays can be expressed
in terms of the corresponding non-Archimedean potentials.
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How does the non-Archimedean picture show up?

Another way to construct non-Archimedean potentials is as follows:
let 𝜓 ∈ PSH(𝑋, 𝜔), then 𝜓an ∶ 𝑋an → [−∞, 0] is defined as

𝜓an(𝑣) = − lim
𝑘→∞

1
𝑘𝑣 (ℐ(𝑘𝜓)) .

Theorem (Berman–Boucksom–Jonsson)
Let 𝜓• be a test curve corresponding to a maximal geodesic ray ℓ,
then

ℓNA = sup
𝜏<𝜏+

(𝜓an
𝜏 + 𝜏) .
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How does the non-Archimedean picture show up?

Another way to construct non-Archimedean potentials is as follows:
let 𝜓 ∈ PSH(𝑋, 𝜔), then 𝜓an ∶ 𝑋an → [−∞, 0] is defined as

𝜓an(𝑣) = − lim
𝑘→∞

1
𝑘𝑣 (ℐ(𝑘𝜓)) .
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then
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Analysis on Berkovich spaces

Monge–Ampère operator on Berkovich spaces was first introduced
by Chambert-Loir. The theory of differential forms on Berkovich
spaces was studied in the celebrated les Antoines paper by Antoine
Chambert-Loir and Antoine Ducros and in a series of papers by
Gubler, Künnemann, etc.
Due to the lack of Demailly approximation in general, the theory is
only well-behaved when the base field is either trivially valued or
discretely valued, in which case, the theory was further studied by
Boucksom, Favre and Jonsson.
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Non-Archimedean Monge–Ampère energy

For 𝜙 ∈ ℰ1,NA, define

𝐸NA(𝜙) ∶= 1
𝑉

𝑛
∑
𝑗=0

∫
𝑋

𝜙 MA(𝜙(𝑗), 𝜙(𝑛−𝑗)
triv ) .

Theorem
Let ℓ ∈ ℛ1 be a maximal geodesic ray. Then

E(ℓ) = 𝐸NA(ℓNA) .
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Log discrepancy
Log discrepancy functional: 𝐴𝑋 ∶ 𝑋an → [0, ∞]
(Jonsson–Mustaţă).

1 𝑣 = 𝑐 ord𝐸, 𝐸 being a prime divisor over 𝑋. Then
𝐴𝑋(𝑣) ∶= 𝑐𝐴𝑋(ord𝐸). Take a resolution of 𝑋, say
𝜋 ∶ 𝑌 → 𝑋, such that 𝐸 lies on 𝑌 , then 𝐴𝑋(ord𝐸) − 1 is the
coefficient of 𝐸 in 𝐾𝑌 /𝑋.

2 𝑣 = 𝑣� is a quasi-monomial valuation defined on a log smooth
model (𝑌 , 𝐷 = ∑𝑖 𝐷𝑖) of 𝑋. Then

𝐴𝑋(𝑣) = ∑
𝑖

𝛼𝑖𝐴𝑋(𝐷𝑖)

3 There is a retraction 𝑟𝒳 ∶ 𝑋an → Δ𝒳 from 𝑋an to the dual
complex of a model of 𝑋, 𝑋an is the inverse limit, define

𝐴𝑋 ∶= sup
𝒳

𝐴𝑋 ∘ 𝑟𝒳 .
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Log discrepancy

Important facts to remember:
𝐴𝑋(𝑣) = ∞ if 𝑣 is not a valuation (but just a semi-valuation).

𝐴𝑋(𝑡𝑣) = 𝑡𝐴𝑋(𝑣).
𝐴𝑋 is lsc.
𝐴𝑋 ∘ 𝑟𝒳 is continuous.
𝐴𝑋 can be viewed as a metric on the canonical sheaf on 𝑋an

(Temkin).
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Non-Archimedean entropy

The non-Archimedean entropy EntNA ∶ ℰ1,NA → [0, ∞] is defined
as

EntNA(𝜙) = 1
𝑉 ∫

𝑋an
𝐴𝑋 MA(𝜙) .

Conjecture
Let ℓ ∈ ℛ1 be a maximal geodesic ray. Then

EntNA(ℓNA) = Ent(ℓ) .

The proof of the direction ≤ was due to Li. The converse is highly
non-trivial. It is known when ℓ is the Phong–Sturm ray.
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Relation between NA energy and NA entropy

In the Archimedean case, at a smooth point 𝜑 ∈ ℋ,

𝛿𝐸|𝜑 = 1
𝑉 𝜔𝑛

𝜑 .

At a non-smooth point,

Theorem (Berman–Boucksom)
Let 𝜑 ∈ ℰ1, 𝑓 ∈ 𝐶0(𝑋). Then

𝜕𝑡|𝑡=0𝐸(𝑃 [𝜑 + 𝑡𝑓]) = 1
𝑉 ∫

𝑋
𝑓 𝜔𝑛

𝜑 .
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Relation between NA energy and NA entropy

A formal computation when 𝜙 ∈ ℰ1,NA, sup 𝜙 = 0,

1
𝑉 ∫

𝑋
𝐴𝑋 MA(𝜙) =𝜕𝑡|𝑡=0𝐸NA(𝑃 [𝜙 + 𝑡𝐴𝑋])

= 1
𝑉 𝜕𝑡|𝑡=0 ∫

𝜏+

−∞
(∫

𝑋
𝜔𝑛

𝜓𝑡𝜏
− ∫

𝑋
𝜔𝑛) d𝜏

= 1
𝑉 ∫

𝜏+

−∞
𝜕𝑡|𝑡=0 ∫

𝑋
𝜔𝑛

𝜓𝑡𝜏
d𝜏 .
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Algebraic reformulation of non-pluripolar mass

Let 𝜓 ∈ PSH(𝑋, 𝜔). Then 𝜓 defines a Weil b-divisor (in the sense
of Shokurov) on the Riemann–Zariski space associated to 𝑋:

(div𝔛 𝜓)𝑌 = [div𝑌 𝜓] .

Here [•] denotes the numerical class, 𝜋 ∶ 𝑌 → 𝑋 runs over
birational models of 𝑋. Note that div𝔛 𝜓 ∈ lim𝑌 𝑁1

ℝ(𝑌 ).

Theorem (Xia)
Assume that 𝜓 is ℐ-model, then

∫
𝑋

𝜔𝑛
𝜓 = vol(𝐿 − div𝔛 𝜓) .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Formal computation, second part

1
𝑉 ∫

𝑋
𝐴𝑋 MA(𝜙) = 1

𝑉 ∫
𝜏+

−∞
𝜕𝑡|𝑡=0 ∫

𝑋
𝜔𝑛

𝜓𝑡𝜏
d𝜏

= − 1
𝑉 ∫

𝜏+

−∞
⟨(𝐿 − div𝔛 𝜓)𝑛−1⟩ ⋅ 𝜕𝑡|𝑡=0 div𝔛 𝜓

= 1
𝑉 ∫

𝜏+

−∞
⟨(𝐿 − div𝔛 𝜓)𝑛−1⟩ ⋅ (𝐾𝔛/𝑋 + red div𝔛 𝜓) .

Definition

EntNA(𝜓) ∶= 𝑛
𝑉 lim

𝑌
(⟨𝜋∗𝐿 − div𝑌 𝜓⟩𝑛−1 ⋅ (𝐾𝑌 /𝑋 + red div𝑌 𝜓)) .
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Entropy theorem

Theorem (Xia)
Let ℓ ∈ ℛ1 be a maximal geodesic ray. Then

EntNA(ℓNA) ≤ ∫
𝜏+

−∞
EntNA(𝜓𝜏) d𝜏 .

Equality holds if ℓ is the Phong–Sturm ray of some test
configuration.
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What do we know?
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Applications

Trivially valued generalization of Vilsmeier’s result.

A new approach to the Yau–Tian–Donaldson conjecture.
New approach to study non-Archimedean ℒ-functionals.
New stability thresholds.
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