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Setup

Notations:
@ X: compact Kahler manifold of dimension n.
@ L: an ample line bundle on X.
e w: a Kahler form in ¢;(L).
oV = wa".
@ h: a Hermitian metric on L, such that w = ¢, (L, h).

o &1(X,w): the set of w-psh functions with finite energy:

El(X,w):{cpEPSH(X,w):/|<p\wg<oo,/wg:/w"}.
p'e p'e p's
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Energy functionals

Various energy functionals have been shown to be important in the
study of the geometry of (X, L,w):
@ Monge-Ampere energy E(y) = % Z?:o fX gowf; AW,
@ Ricci energy Ex(p) := —¢ Z;:()l Ji ¢ Ricw A wh, A w1
e Entropy Ent(y) := ¢ Ji log <:—i> wiy if wyn K W™, 00
otherwise.

o Mabuchi K-energy M(p) = SE(¢) + Eg(p) + Ent(yp).
These functionals are defined on &*.
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Weak geodesics in . Let ¢, € J.

Definition

A weak geodesic from , to ¢, is a curve (¢;);¢(0,1) of bounded
psh functions such that the corresponding S!-invariant potential ®
on X x {z€C:e ! <|z| <1} is qpsh and solves the
homogeneous Monge—Ampere equation

MA(®) = 0.

Theorem (Chen, Chu—Tosatti-Weinkove)

There is always a unique C*' weak geodesic from ¢, to ;.




Geodesic in &1

The notation of geodesics can be generalized to the case where
0,1 € EL.

Theorem (Darvas)

There is always a unique finite energy geodesic from ¢ to ;.

Finite energy coincides with the weak geodesic if ¢, p; € .



Geodesic rays

Definition
A geodesic ray is a map £ : [0,00) — &' such that /] is a finite
energy geodesic for any t > 0.

The set of finite energy geodesic rays ¢ with £, = 0 is denoted by
R
Theorem (Chen—Cheng, Darvas—Lu)

R has a complete metric:

/ ° 1 /
dy(4,0) = lim —dy (4, 6).
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Radial functionals

For F' = E, Ep,Ent, M, we define
1
F(¢) = tlim ~F(t,), f(eR'.
—00

These radial functionals are important to the study of K-stability.

Theorem (Chen—Cheng)

Assume that Aut(X, L)/G,, is discrete. Then there exists a cscK
metric on L iff there exists 0 > 0, such that M(¢) > ¢ for any
e E .%1, d1(07£1) = 1

Theorem (Hisamoto, Xia)

Assume that (X, L) is (geodesically) unstable, there is a unique
minimizer of

inf M(?) .
0ER?,d,(0,6,)=1
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Different approaches

So far, the following approaches to these radial functionals have
been developed.

@ Through test configurations: Odaka, Wang, Boucksom,
Hisamoto, Jonsson, Li, Xu, ...

@ Through filtrations: Witt Nystrom, Székelyhidi, ...

@ Through non-Archimedean geometry: Boucksom, Favre,
Jonsson, Berman, ...

@ Through test curves: Ross, Witt Nystrom, Darvas, Di Nezza,
Lu, ...

The first two approaches can only handle some cases. They have
the disadvantage that they do not map injectively to geodesic rays.
Also they could not handle general geodesic rays.

We adopt a mixture of the third and the fourth approaches.
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Test curves

A test curve is the Legendre transform of some geodesic ray:

ZT :=infl, —tr, T€ER.
>0

How does the a test curve looks like?

The curve £_ is concave in 7.

The curve becomes —oco when 7 > 77 for some 77, it
approaches 0 when 7 — —oo.

The curve is usc as a function in (7,x).

Each ZT is w-psh and model.

E(@D.)::‘l/ﬁﬂt‘l//: (/XMZT_/XWTL> dr > —oo0.



Test curves

These conditions completely characterize the test curves.

Theorem (Ross—Witt Nystrom, Darvas—Di Nezza—-Lu, Darvas—Xia)

The Legendre is a bijection from R! to the set of curves satisfying
the five conditions above.

This theorem is the bridge between pluripotential theory of singular
potentials and the theory of geodesic rays.



Image of a test curve

\/




Deformation to the normal cone, an example

Let 1) be a potential with hyperplane singularities along some snc
divisor D on X, such that L — D is semi-ample.

Let X' = Blp, oy X x C with a natural map IT: ¥ — X x C. Then
L :=1I"p; L — E is semi-ample and (X', £) is a test configuration.
The corresponding test curve is given by P[(1 + 7)u] when

P e[—1,0], —cc if 7>0,0if 7 < —1.



Deformation to the normal cone, an example

Let 1) be a potential with hyperplane singularities along some snc
divisor D on X, such that L — D is semi-ample.

Let X' = Blp, oy X x C with a natural map IT: ¥ — X x C. Then
L :=1I"p; L — E is semi-ample and (X', £) is a test configuration.
The corresponding test curve is given by P[(1 + 7)u] when

P e[—1,0], —cc if 7>0,0if 7 < —1.

Lelong numbers are piecewise linear!



Relation to other approaches
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Relation to other approaches

The map from filtrations to test curves is as follows: Let F° be a
filtration of R(X, L), then

= sup* k! sup*{log\sﬁlk 15 € FFMHO(X,LF),sup|s|,r < 1} :
keZ., X
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We want to express radial functionals in terms of functionals of the
corresponding test curves.
Why?
@ The corresponding functional of test curves are much easier to
understand.

@ This will enable us to apply techniques developed in Kahler
geometry to the study of singular potentials, and vice versa.

@ This is the correct setup to extend what have been studied for
test configurations and filtrations.



Monge—Ampere energy — First example

Theorem (Ross-Witt Nystréom, Darvas—Xia)
Let ¢ € R'. Then

1 1
E(f):v7'++v/ (/wgr—/w”> dr.
—00 X X

This implies that we should define

Bw) = [wh-1.

X



Maximal geodesic rays

Given a test configuration (X', £) of (X, L). One can always solve
the homogeneous Monge—Ampeére equation on X' with boundary
value 0 on X x S!. This geodesic ray is known as the
Phong-Sturm geodesic ray. This is a C':!-geodesic ray
(Chu—Tosatti—-Weinkove).

Definition (Berman—Boucksom—Jonsson)

A geodesic ray R' is maximal if is can be approximated by
Phong—Sturm geodesic rays of test configurations.




Maximal geodesic rays

The most important geodesic rays in the study of K-stability are all
maximal.

A geodesic ray { € R' with Ent({) < oo is maximal.

A maximal geodesic ray is algebraic in a very strong sense.



Maximal geodesic rays under the Legendre transform

Theorem (Darvas—Xia)

Under the Legendre transform, maximal geodesic rays correspond
to test curves 1,, such that each ¢ (T < 1) is J-model.

Definition
A potential 0 > ¢ € PSH(X,w) is model if there are no other
potentials ¢ < 0 less singular than 1) while having the same mass.

| A

Definition

A model potential 0 > ¢ € PSH(X,w) is J-model if there are no
other potentials ¢ < 0 having the same multiplier ideal sheaves (in
the sense that J(ky) = J(kv)).

Roughly speaking, J-model potentials are algebraic singularities.



J-model potentials

Each of the following properties are characterizations of J-model
singularities among model singularities:

(1]
/wzz = lim —hO(X Lk®7(kzp))
X

k—oo k™
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non-Archimedean point of view!



J-model potentials

Each of the following properties are characterizations of J-model
singularities among model singularities:

o

k—oo k™

|
/wg = lim —hO(X,L* ® I (k).
X

@ There are no other potentials ¢ < 0 with the same generic
Lelong numbers as 1.

J-model potentials are extremely natural from the
non-Archimedean point of view!



J-model potentials

Each of the following properties are characterizations of J-model
singularities among model singularities:

o

k—oo k™

|
/wg = lim —hO(X,L* ® I (k).
X

@ There are no other potentials ¢ < 0 with the same generic
Lelong numbers as 1.

© Along the quasi-equisingular approximations of ¢, the mass
converges.

J-model potentials are extremely natural from the
non-Archimedean point of view!



Ricci energy

Theorem (Xia)

Let ¢ € R' be a maximal geodesic ray, sup-normalized, then

0
Er(0) :3/ </ Ricw/\ngl/Ricw/\w”1> dr.
—00 X X

Hence, one should define

n

Er(y) = v (/ ]E{iccu/\wz_1 —/Ricw/\w”_1> )
X X



This is much more difficult!

By Li's theorem, Ent(¢) < oo implies that ¢ is maximal. So we
only need to consider maximal geodesic rays and J-model test
curves.

Our approach depends essentially on the Berkovich space picture.



Berkovich analytification

We consider the Berkovich analytification X?" of X with respect
to the trivial valuation on C.

As a set, X*" is the disjoint union of valuations on the function
fields of irreducible closed subschemes of X, extending the trivial
valuation on C.

As a topological space, X®" (with the Berkovich topology) is the
inverse limit of a net of polytopes.

As a locally ringed site, X?" carries the Berkovich G-topology and
a sheaf of rings.



Berkovich affine line over C with trivial valuation

oo (not in A,li‘a‘n)
P Case 2

/ Case 1

Figure 1.20: A picture of A}ﬂ’a".

This picture comes from the lecture notes of Mattias Jonsson.



How does the non-Archimedean picture show up?

A geodesic ray induces a non-Archimedean potential: when /£ is
sup-normalized,
N (v) = —=G(v)(2),

where @ is the S'-invariant potential defined by ¢. This establishes
a bijection from the set of maximal geodesic rays to EMNA,

Theorem (Berman—Boucksom—Jonsson)

There is a bijection between maximal geodesic rays and &*
potentials on the Berkovich analytification of (X, L) (with respect
to the trivial valuation on C).

Hence every functional of maximal geodesic rays can be expressed
in terms of the corresponding non-Archimedean potentials.



How does the non-Archimedean picture show up?

Another way to construct non-Archimedean potentials is as follows:
let ¢ € PSH(X,w), then ¢ : X" — [—o00,0] is defined as

an — 3 1
Y (v) = = lim o (T (ky)) .



How does the non-Archimedean picture show up?

Another way to construct non-Archimedean potentials is as follows:
let ¢ € PSH(X,w), then ¢ : X" — [—o00,0] is defined as

an — 3 1
Y (v) = = lim o (T (ky)) .

Theorem (Berman—Boucksom—Jonsson)

Let 1, be a test curve corresponding to a maximal geodesic ray ¢,
then
INA = sup (PP +7) .

77t




Analysis on Berkovich spaces

Monge—Ampere operator on Berkovich spaces was first introduced
by Chambert-Loir. The theory of differential forms on Berkovich
spaces was studied in the celebrated les Antoines paper by Antoine
Chambert-Loir and Antoine Ducros and in a series of papers by
Gubler, Kiinnemann, etc.

Due to the lack of Demailly approximation in general, the theory is
only well-behaved when the base field is either trivially valued or
discretely valued, in which case, the theory was further studied by
Boucksom, Favre and Jonsson.



Non-Archimedean Monge—Ampere energy

For ¢ € EVNA| define

E™(9) = 17 /¢MA(¢“)7 )
=0 X

Let { € R* be a maximal geodesic ray. Then

E(0) = ENA(LNA)




Log discrepancy

Log discrepancy functional: Ay : X*" — [0, o0]
(Jonsson—Mustat3).
@ v =cordg, F being a prime divisor over X. Then
Ax(v) := cAx(ordg). Take a resolution of X, say
m:Y — X, such that E lieson Y, then Ay (ordy) — 1 is the
coefficient of £ in Ky .
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Log discrepancy

Log discrepancy functional: Ay : X*" — [0, o0]
(Jonsson—Mustat3).
@ v =cordg, F being a prime divisor over X. Then
Ax(v) := cAx(ordg). Take a resolution of X, say
m:Y — X, such that E lieson Y, then Ay (ordy) — 1 is the
coefficient of £ in Ky .

@ v = v is a quasi-monomial valuation defined on a log smooth
model (Y, D =} D;) of X. Then

Ax(v) = Z ; Ax(D;)

© There is a retraction 74 : X — A, from X" to the dual
complex of a model of X, X?" is the inverse limit, define

Ay i=supAxory.
X
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Log discrepancy

Important facts to remember:
@ Ay(v) = o0 if vis not a valuation (but just a semi-valuation).

o Ay islsc.
@ Ay ory is continuous.
°

Ay can be viewed as a metric on the canonical sheaf on X®"
(Temkin).
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Non-Archimedean entropy

The non-Archimedean entropy Ent™" : ELNA 5 [0, o0] is defined

as
Ent™(0) = = [ Ay MA(9).
V Xan

Let £ € R' be a maximal geodesic ray. Then

Ent™* ((NA) = Ent(¢) .

The proof of the direction < was due to Li. The converse is highly
non-trivial. It is known when £ is the Phong—Sturm ray.
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Relation between NA energy and NA entropy

In the Archimedean case, at a smooth point ¢ € H,

At a non-smooth point,

Theorem (Berman—-Boucksom)

Let p € &, f € C°(X). Then

laE(Plo+tf) = ; [ fu.




Relation between NA energy and NA entropy

A formal computation when ¢ € EVNA sup ¢ = 0,

1
Vv /XAX MA(¢) =8;|,—oEN* (Pl + tAx])



Algebraic reformulation of non-pluripolar mass

Let ¢y € PSH(X,w). Then 1 defines a Weil b-divisor (in the sense
of Shokurov) on the Riemann—Zariski space associated to X:

(divg ¥)y = [divy ¥].

Here [o] denotes the numerical class, 7 : Y — X runs over
birational models of X. Note that divy ¥ € limy N2 (Y).

Theorem (Xia)

Assume that 1 is J-model, then

/ wy, = vol(L —divgy ).
p'e




Formal computation, second part

1"
V/AX MA(¢) _/ 8t‘t0/w17,t dr
X

:—/ (L — dive )" 1) - By]y_o dive

/ (L= dive )" ) - (Ky)x +reddivy ).



Formal computation, second part

1 1
V/AX MA(¢) _/ at\to/%t dr
X

:—/ (L — dive )" 1) - By]y_o dive

/ (L= dive )" ) - (Ky)x +reddivy ).

Definition

Ent™* () i= < lim ((n*L — divy )" - (Ky,x + reddivy 1)) .

n
Viy




Entropy theorem

Theorem (Xia)

Let { € R* be a maximal geodesic ray. Then

e

Ent™* (&N4) < / Ent™*(¢,)dr.

—0Q

Equality holds if £ is the Phong—Sturm ray of some test
configuration.




What do we know?

Table 1. Comparison of functionals

| Maximal geodesic rays | NA potentials | Test curves | Known facts
E ENA E All equal
Er ERA Er All equal
cyn ? cn First=Third
Ent EptVA EntNA First=< Second

First=< Third
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Applications

o Trivially valued generalization of Vilsmeier's result.
@ A new approach to the Yau—Tian—-Donaldson conjecture.
@ New approach to study non-Archimedean £-functionals.

@ New stability thresholds.
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Thank you for your attention!



