

A transcendental approach to non-Archimedean metrics

Mingchen Xia

IMJ-PRG

04/05/2023; KASS

Table of Contents

1 Background

2 The transcendental approach

Setup

- X : irreducible normal projective variety of dimension n .
- L : big line bundle on X .

- X : irreducible normal projective variety of dimension n .
- L : big line bundle on X .

There are two different analytic spaces associated with X :

- the complex analytification $X(\mathbb{C})$ (or X for simplicity);
- the Berkovich analytification X^{an} .

- X : irreducible normal projective variety of dimension n .
- L : big line bundle on X .

There are two different analytic spaces associated with X :

- the complex analytification $X(\mathbb{C})$ (or X for simplicity);
- the Berkovich analytification X^{an} .

The line bundle L induces analytic line bundles $L(\mathbb{C})$ (or L for simplicity) and L^{an} on both $X(\mathbb{C})$ and X^{an} .

Goal

There are notions of plurisubharmonic metrics on both $L(\mathbb{C})$ and L^{an} , giving rise to the Archimedean and non-Archimedean pluripotential theory respectively.

Goal

There are notions of **plurisubharmonic metrics** on both $L(\mathbb{C})$ and L^{an} , giving rise to the **Archimedean** and **non-Archimedean pluripotential theory** respectively.

Goal

Understand the precise relation between these two theories.

Intuitions of X^{an}

We need some intuitions of X^{an} before proceeding.
As a set, X^{an} is a disjoint union:

$$X^{\text{an}} = \coprod_Y Y^{\text{val}},$$

where

- Y runs over all irreducible reduced subvarieties of X ;
- Y^{val} is the set of valuations of real valuations $\mathbb{C}(Y)^\times \rightarrow \mathbb{R}$ which are trivial on \mathbb{C} .

Intuitions of X^{an}

We need some intuitions of X^{an} before proceeding.
As a set, X^{an} is a disjoint union:

$$X^{\text{an}} = \coprod_Y Y^{\text{val}},$$

where

- Y runs over all irreducible reduced subvarieties of X ;
- Y^{val} is the set of valuations of real valuations $\mathbb{C}(Y)^\times \rightarrow \mathbb{R}$ which are trivial on \mathbb{C} .

Y^{val} contains valuations of the form cord_E (divisorial valuations) for any prime divisor E over Y and any $c \in \mathbb{Q}_{>0}$.

Intuitions of X^{an}

We need some intuitions of X^{an} before proceeding.
As a set, X^{an} is a disjoint union:

$$X^{\text{an}} = \coprod_Y Y^{\text{val}},$$

where

- Y runs over all irreducible reduced subvarieties of X ;
- Y^{val} is the set of valuations of real valuations $\mathbb{C}(Y)^\times \rightarrow \mathbb{R}$ which are trivial on \mathbb{C} .

Y^{val} contains valuations of the form cord_E (divisorial valuations) for any prime divisor E over Y and any $c \in \mathbb{Q}_{>0}$.

Information

X^{an} is a set of valuations.

Intuitions of X^{an}

As a simple example:

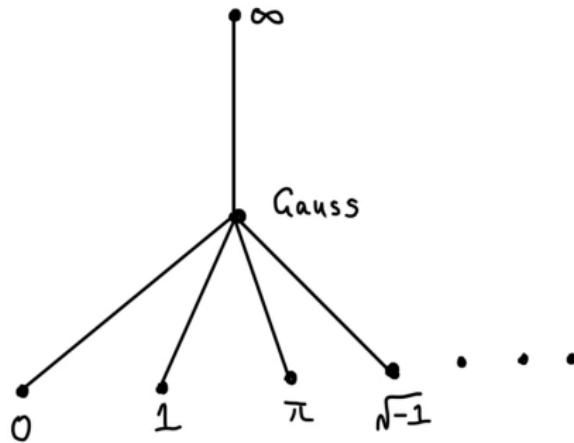


Figure: $\mathbb{P}^{1,\text{an}}$

Here Gauss denotes the trivial valuation.

Pluripotential theory

There are pluripotential theories on $(X^{\text{an}}, L^{\text{an}})$ exactly as on $(X(\mathbb{C}), L(\mathbb{C}))$.

Pluripotential theory

There are pluripotential theories on $(X^{\text{an}}, L^{\text{an}})$ exactly as on $(X(\mathbb{C}), L(\mathbb{C}))$. There are at least two approaches to the non-Archimedean pluripotential theory:

- ① The approach of Chambert-Loir–Ducros, Gubler, Jell, This approach is based on **local** tropicalizations;
- ② The approach of Boucksom–Jonsson. This approach is **global**.

There are pluripotential theories on $(X^{\text{an}}, L^{\text{an}})$ exactly as on $(X(\mathbb{C}), L(\mathbb{C}))$. There are at least two approaches to the non-Archimedean pluripotential theory:

- ① The approach of Chambert-Loir–Ducros, Gubler, Jell, This approach is based on **local** tropicalizations;
- ② The approach of Boucksom–Jonsson. This approach is **global**.

Drawbacks

The first approach fails for singular metrics. The second method does not yield a sheaf of psh functions.

There are pluripotential theories on $(X^{\text{an}}, L^{\text{an}})$ exactly as on $(X(\mathbb{C}), L(\mathbb{C}))$. There are at least two approaches to the non-Archimedean pluripotential theory:

- ① The approach of Chambert-Loir–Ducros, Gubler, Jell, This approach is based on **local** tropicalizations;
- ② The approach of Boucksom–Jonsson. This approach is **global**.

Drawbacks

The first approach fails for singular metrics. The second method does not yield a sheaf of psh functions.

The two approaches agree for nice enough global psh functions.

Goal

Goal

Our goal is to understand the relation between Boucksom–Jonsson's non-Archimedean pluripotential theory and the Archimedean pluripotential theory.

Goal

Goal

Our goal is to understand the relation between Boucksom–Jonsson's non-Archimedean pluripotential theory and the Archimedean pluripotential theory.

Theorem

Boucksom–Jonsson's non-Archimedean psh metrics can be realized as curves of singular Archimedean psh metrics.

Table of Contents

1 Background

2 The transcendental approach

How to relate Archimedean to non-Archimedean

Assume that L is **ample** for the time being.

On the Archimedean side, we have a notion of finite energy metrics:

Finite energy

Fix a smooth strictly psh metric h_0 on $L = L(\mathbb{C})$, a psh metric h has finite energy if

$$\int_X |h/h_0|(\mathrm{d}d^c h)^n < \infty.$$

The space of such metrics is denoted by $\mathcal{E}^1(X, L)$.

Intuitively, **finite energy=almost regular**.

How to relate Archimedean to non-Archimedean

Assume that L is **ample** for the time being.

On the Archimedean side, we have a notion of finite energy metrics:

Finite energy

Fix a smooth strictly psh metric h_0 on $L = L(\mathbb{C})$, a psh metric h has finite energy if

$$\int_X |h/h_0|(\mathrm{d}d^c h)^n < \infty.$$

The space of such metrics is denoted by $\mathcal{E}^1(X, L)$.

Intuitively, **finite energy=almost regular**.

The space $\mathcal{E}^1(X, L)$ has an intrinsic geometry. We have a notion of **geodesics**.

The space of geodesic rays $(\ell_t)_{t \geq 0}$ with $\ell_0 = 0$ is denoted by $\mathcal{R}^1(X, L)$.

How to relate Archimedean to non-Archimedean

Goal

Get non-Archimedean information from $\ell \in \mathcal{R}^1(X, L)$.

After reparametrization $t = -\log |\tau|$, $\tau \in \Delta = \{z \in \mathbb{C} : |z| < 1\}$, we get a **plurisubharmonic** metric Φ on p_1^*L on $X \times (\Delta - \{0\})$.

Assume that $\ell_t \leq 0$ for all $t \geq 0$, then $\Phi \leq 0$. By the Grauert–Remmert extension theorem, Φ admits a unique psh extension over the central fiber.

How to relate Archimedean to non-Archimedean

Goal

Get non-Archimedean information from $\ell \in \mathcal{R}^1(X, L)$.

After reparametrization $t = -\log |\tau|$, $\tau \in \Delta = \{z \in \mathbb{C} : |z| < 1\}$, we get a **plurisubharmonic** metric Φ on p_1^*L on $X \times (\Delta - \{0\})$.

Assume that $\ell_t \leq 0$ for all $t \geq 0$, then $\Phi \leq 0$. By the Grauert–Remmert extension theorem, Φ admits a unique psh extension over the central fiber.

Goal, reformulated

Get non-Archimedean information from $\Phi \in \text{PSH}(X \times \Delta, p_1^*L)$.

How to relate Archimedean to non-Archimedean

Goal

Get non-Archimedean information from $\Phi \in \text{PSH}(X \times \Delta, p_1^* L)$.

Given any divisorial valuation $c \text{ord}_E \in X^{\text{an}}$, there is a natural extension of $c \text{ord}_E$ to a divisorial valuation $\sigma(c \text{ord}_E)$ on $X \times \mathbb{C}$, known as the **Gauss extension** characterized by

- $\sigma(c \text{ord}_E)(t) = 1$;
- $\sigma(c \text{ord}_E)$ is \mathbb{C}^* -invariant;
- The center of $\sigma(c \text{ord}_E)$ is on the central fiber.

How to relate Archimedean to non-Archimedean

Goal

Get non-Archimedean information from $\Phi \in \text{PSH}(X \times \Delta, p_1^* L)$.

Given any divisorial valuation $c \text{ord}_E \in X^{\text{an}}$, there is a natural extension of $c \text{ord}_E$ to a divisorial valuation $\sigma(c \text{ord}_E)$ on $X \times \mathbb{C}$, known as the **Gauss extension** characterized by

- $\sigma(c \text{ord}_E)(t) = 1$;
- $\sigma(c \text{ord}_E)$ is \mathbb{C}^* -invariant;
- The center of $\sigma(c \text{ord}_E)$ is on the central fiber.

The non-Archimedean information associated with Φ is given by

$$\Phi^{\text{an}}(c \text{ord}_E) := -\sigma(c \text{ord}_E)(\Phi).$$

How to relate Archimedean to non-Archimedean

Goal

Get non-Archimedean information from $\Phi \in \text{PSH}(X \times \Delta, p_1^* L)$.

It is not hard to verify that Φ^{an} admits a unique extension to $\Phi^{\text{an}} \in \text{PSH}(X^{\text{an}}, L^{\text{an}})$.

How to relate Archimedean to non-Archimedean

Goal

Get non-Archimedean information from $\Phi \in \text{PSH}(X \times \Delta, p_1^* L)$.

It is not hard to verify that Φ^{an} admits a unique extension to $\Phi^{\text{an}} \in \text{PSH}(X^{\text{an}}, L^{\text{an}})$.

To summarize, we get

$$\ell \mapsto \Phi \mapsto \Phi^{\text{an}}; \quad \mathcal{R}^1(X, L) \rightarrow \text{PSH}(X^{\text{an}}, L^{\text{an}}).$$

This gives a map from **Archimedean** objects to **non-Archimedean** objects.

How to relate Archimedean to non-Archimedean

Theorem (Berman–Boucksom–Jonsson)

*The map induces a bijection from a **subclass** of $\mathcal{R}^1(X, L)$ to finite energy metrics in $\text{PSH}(X^{\text{an}}, L^{\text{an}})$.*

These special geodesics are called **maximal** geodesic rays. Next we consider the Legendre transform of these maximal rays:

$$\psi_\tau := \inf_{t \geq 0} (\ell_t - t\tau).$$

Of course, here we regard ℓ_t as the associated potential after fixing a smooth reference metric.

How to relate Archimedean to non-Archimedean

Theorem (Berman–Boucksom–Jonsson)

*The map induces a bijection from a **subclass** of $\mathcal{R}^1(X, L)$ to finite energy metrics in $\text{PSH}(X^{\text{an}}, L^{\text{an}})$.*

These special geodesics are called **maximal** geodesic rays. Next we consider the Legendre transform of these maximal rays:

$$\psi_\tau := \inf_{t \geq 0} (\ell_t - t\tau).$$

Of course, here we regard ℓ_t as the associated potential after fixing a smooth reference metric.

Theorem (Ross–Witt Nyström, Darvas–Di Nezza–Lu, Darvas–Xia)

*The Legendre transform is a bijection from maximal geodesic rays to concave curves with **finite energy** of **\mathcal{I} -model** potentials .*

How to relate Archimedean to non-Archimedean

Recall that $\varphi \in \text{PSH}(X, \omega)$ is **\mathcal{I} -model** if $\varphi \leq 0$ and

$$\psi \in \text{PSH}(X, \omega)_{\leq 0} + \mathcal{I}(t\varphi) = \mathcal{I}(t\psi) \quad \forall t \implies \psi \leq \varphi.$$

How to relate Archimedean to non-Archimedean

Recall that $\varphi \in \text{PSH}(X, \omega)$ is **\mathcal{I} -model** if $\varphi \leq 0$ and

$$\psi \in \text{PSH}(X, \omega)_{\leq 0} + \mathcal{I}(t\varphi) = \mathcal{I}(t\psi) \quad \forall t \implies \psi \leq \varphi.$$

Corollary

When L is ample, there is a bijection between

- the non-Archimedean potentials in $\text{PSH}(X^{\text{an}}, L^{\text{an}})$ with **finite energy** and
- concave curves with **finite energy** of \mathcal{I} -model potentials.

How to relate Archimedean to non-Archimedean

Recall that $\varphi \in \text{PSH}(X, \omega)$ is **\mathcal{I} -model** if $\varphi \leq 0$ and

$$\psi \in \text{PSH}(X, \omega)_{\leq 0} + \mathcal{I}(t\varphi) = \mathcal{I}(t\psi) \quad \forall t \implies \psi \leq \varphi.$$

Corollary

When L is ample, there is a bijection between

- the non-Archimedean potentials in $\text{PSH}(X^{\text{an}}, L^{\text{an}})$ with **finite energy** and
- concave curves with **finite energy** of \mathcal{I} -model potentials.

We reduce the non-Archimedean problems to Archimedean problems.

Archimedean approach to non-Archimedean metrics

We have shown how to relate the Boucksom–Jonsson theory to the Archimedean theory. Conversely, we could give a new definition of Boucksom–Jonsson theory using the Archimedean theory.

We have shown how to relate the Boucksom–Jonsson theory to the Archimedean theory. Conversely, we could give a new definition of Boucksom–Jonsson theory using the Archimedean theory.

Why bother?

- ① The Archimedean theory works for transcendental classes as well and makes sense even if X is not projective;
- ② The envelope conjecture (i.e. Hartogs' lemma) is trivial in the Archimedean theory.

How?

Corollary

When L is ample, there is a bijection between

- the non-Archimedean potentials in $\text{PSH}(X^{\text{an}}, L^{\text{an}})$ with **finite energy** and
- concave curves with finite energy of \mathcal{I} -model potentials.

The naive idea is to remove the word **finite energy**.

Archimedean approach to non-Archimedean metrics

Let ξ be a pseudo-effective class. Then we define

$$\text{PSH}^{\text{an}}(\xi) := \varprojlim_{\omega} \text{Test curves}(X, \xi + \omega),$$

where ω runs over all Kähler forms on X and $\text{Test curves}(X, \xi + \omega)$ is the set of concave curves of \mathcal{I} -model potentials **not necessarily of finite energy** (satisfying some mild assumptions).

Here the projective limit avoids the pathologies at 0-mass.

Theorem

$\text{PSH}^{\text{an}}(\xi)$ behaves exactly as the Archimedean potential theory. In particular, it satisfies Hartogs' lemma (=Envelope conjecture à la Boucksom–Jonsson).

Dictionary

Pluripotential theoretic constructions can be realized using the corresponding constructions in convex geometry. Here is a brief dictionary:

- ① Maximum \Leftrightarrow Concave envelope of pointwise maximum;
- ② Sum \Leftrightarrow infimal involution;
- ③ Inf along decreasing nets \Leftrightarrow pointwise inf;
- ④ Regularized sup along increasing nets \Leftrightarrow pointwise regularized sup;
- ⑤ Regularized sup \Leftrightarrow Slightly more complicated to describe.
- ⑥ ...

The envelope conjecture

Theorem (Darvas–X.–Zhang)

When X is smooth and $\xi = c_1(L)$ for a pseudo-effective \mathbb{R} -line bundle L , $\text{PSH}^{\text{an}}(\xi)$ is canonically isomorphic to $\text{PSH}(X^{\text{an}}, L^{\text{an}})$ in the sense of Boucksom–Jonsson.

The envelope conjecture

Theorem (Darvas–X.–Zhang)

When X is smooth and $\xi = c_1(L)$ for a pseudo-effective \mathbb{R} -line bundle L , $\text{PSH}^{\text{an}}(\xi)$ is canonically isomorphic to $\text{PSH}(X^{\text{an}}, L^{\text{an}})$ in the sense of Boucksom–Jonsson.

Corollary

When X is smooth, Boucksom–Jonsson's envelope conjecture holds.

This result is proved independently by Boucksom–Jonsson using algebraic methods.

Theorem (Unpublished)

When X is unibranch and $\xi = c_1(L)$ for a pseudo-effective \mathbb{R} -line bundle L , then the following are equivalent:

- ① Boucksom–Jonsson's envelope conjecture holds;
- ② $\text{PSH}^{\text{an}}(\xi)$ is canonically isomorphic to $\text{PSH}(X^{\text{an}}, L^{\text{an}})$.

Theorem (Unpublished)

When X is unibranch and $\xi = c_1(L)$ for a pseudo-effective \mathbb{R} -line bundle L , then the following are equivalent:

- ① Boucksom–Jonsson's envelope conjecture holds;
- ② $\text{PSH}^{\text{an}}(\xi)$ is canonically isomorphic to $\text{PSH}(X^{\text{an}}, L^{\text{an}})$.

In any case, the envelope conjecture always holds in the Archimedean theory, so it seems to be a better alternative than Boucksom–Jonsson's theory if the envelope conjecture remains open.

Further problems

Although we have a well-developed basic theory of $\text{PSH}^{\text{an}}(\xi)$, a lot of important information is missing.

Further problems

Although we have a well-developed basic theory of $\text{PSH}^{\text{an}}(\xi)$, a lot of important information is missing.

Conjecture

The energy functional E is differentiable on the subspace of finite energy potentials in $\text{PSH}^{\text{an}}(\xi)$.

Further problems

Although we have a well-developed basic theory of $\text{PSH}^{\text{an}}(\xi)$, a lot of important information is missing.

Conjecture

The energy functional E is differentiable on the subspace of finite energy potentials in $\text{PSH}^{\text{an}}(\xi)$.

Conjecture/Problem

The non-Archimedean Monge–Ampère equation can be formulated and solved.

Further problems

Although we have a well-developed basic theory of $\text{PSH}^{\text{an}}(\xi)$, a lot of important information is missing.

Conjecture

The energy functional E is differentiable on the subspace of finite energy potentials in $\text{PSH}^{\text{an}}(\xi)$.

Conjecture/Problem

The non-Archimedean Monge–Ampère equation can be formulated and solved.

Conjecture/Ongoing work of Boucksom and Piccione

There is a Berkovich like compactification of the space of divisorial valuations of a general unibranch Kähler space and $\text{PSH}^{\text{an}}(\xi)$ can be interpreted using this space.

Thank you for your attention!