

The volume of pseudo-effective line bundles and partial Okounkov bodies

Mingchen Xia

Chalmers Tekniska Högskola

12/20/2021; Tsinghua university

Table of Contents

1 Background

2 The volume of Hermitian pseudo-effective line bundles

3 Partial Okounkov bodies

4 Applications

Singular Hermitian metrics on line bundles

- X : complex projective manifold of dimension n .
- L : a holomorphic line bundle on X .

Singular Hermitian metrics on line bundles

- X : complex projective manifold of dimension n .
- L : a holomorphic line bundle on X .

Singular Hermitian metric on L

Locally on $U \subseteq X$, we can identify L with the trivial bundle $U \times \mathbb{C}$, a singular Hermitian metric is given by $e^{-\varphi}$, where φ is a locally integrable function on U : given any local section s of L over U , the square norm of s at $x \in U$ is given by

$$|s|_{\phi}^2(x) = |s(x)|^2 e^{-\varphi(x)}.$$

This definition can be globalized in the obvious manner, which gives the notion of a (singular) Hermitian metric ϕ on L .

Curvature form

Let $dd^c\phi$ denote the curvature form/current of the metric ϕ : locally represent the metric ϕ by weights $e^{-\varphi}$, then

$$dd^c\phi := \frac{i}{2\pi} \partial \bar{\partial} \varphi$$

as currents.

Curvature form

Let $dd^c\phi$ denote the curvature form/current of the metric ϕ : locally represent the metric ϕ by weights $e^{-\varphi}$, then

$$dd^c\phi := \frac{i}{2\pi} \partial \bar{\partial} \varphi$$

as currents.

Proposition

$dd^c\phi$ is in the first Chern class $c_1(L)$ of L .

This explains our normalization of dd^c .

Big line bundles

Definition

We say L is *big* if there exists $c > 0$ so that

$$h^0(X, L^k) > ck^n$$

for any $k \gg 1$.

Big line bundles

Definition

We say L is *big* if there exists $c > 0$ so that

$$h^0(X, L^k) > ck^n$$

for any $k \gg 1$.

Example

All ample line bundles are big. In fact, by Riemann–Roch theorem

$$h^0(X, L^k) = \frac{(L^n)}{n!} k^n + \mathcal{O}(k^{n-1}).$$

Pseudo-effective line bundles

Fix a Kähler form ω on X .

Theorem (Demailly)

The line bundle L is big if and only if L admits a singular upper semi-continuous Hermitian metric ϕ so that $\mathrm{dd}^c\phi$ is a Kähler current, namely,

$$\mathrm{dd}^c\phi \geq \epsilon\omega$$

for some $\epsilon > 0$.

Pseudo-effective line bundles

Fix a Kähler form ω on X .

Theorem (Demainly)

The line bundle L is big if and only if L admits a singular upper semi-continuous Hermitian metric ϕ so that $dd^c\phi$ is a Kähler current, namely,

$$dd^c\phi \geq \epsilon\omega$$

for some $\epsilon > 0$.

Definition

L is said to be **pseudo-effective** (psef) if there is an upper semi-continuous singular Hermitian metric ϕ on L with $dd^c\phi \geq 0$ (a **positive/psh metric**). A pair (L, ϕ) consisting of a psef line bundle L and a positive metric ϕ on L is called a **Hermitian pseudo-effective line bundle**.

Goal of this talk

There are well-developed theories of psef line bundles: we have (among others)

- An intersection theory (movable intersection).
- A theory of volume.
- A theory of Okounkov bodies.

Goal of this talk

There are well-developed theories of psef line bundles: we have (among others)

- An intersection theory (movable intersection).
- A theory of volume.
- A theory of Okounkov bodies.

Each theory has a generalization in the Hermitian psef line bundle setting:

- The theory of non-pluripolar products
(Boucksom–Eyssidieux–Guedj–Zeriahi, ...).
- A theory of volume (Darvas–X.).
- The theory of partial Okounkov bodies (X.).

We will explain the last two theories in this talk.

Table of Contents

1 Background

2 The volume of Hermitian pseudo-effective line bundles

3 Partial Okounkov bodies

4 Applications

Let L be a psef line bundle on X .

Definition

The **volume** of L is defined as

$$\text{vol}(L) := \lim_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k).$$

Let L be a psef line bundle on X .

Definition

The **volume** of L is defined as

$$\text{vol}(L) := \lim_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k).$$

The existence of the limit is a non-trivial fact.

Example

When L is ample/nef, $\text{vol } L = \frac{1}{n!} (L^n)$. More generally, if L is only pseudo-effective, $\text{vol } L = \frac{1}{n!} \langle L^n \rangle$ (movable intersection).

Proposition

1. The volume of a line bundle depends only on its numerical class: if $c_1(L) = c_1(L')$, then $\text{vol } L = \text{vol } L'$.
2. The volume is homogeneous: $\text{vol } L^k = k^n \text{vol } L$.
3. A psef line bundle L is big iff $\text{vol } L > 0$.

How to generalize to singular setting?

We want to generalize

$$\text{vol } L = \lim_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k).$$

How to generalize to singular setting?

We want to generalize

$$\text{vol } L = \lim_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k).$$

Suppose that ϕ is a singular psh metric on L .

Definition

The **multiplier ideal sheaf** of ϕ is the (coherent) subsheaf of \mathcal{O}_X , locally consisting of holomorphic functions f such that $|f|_\phi^2$ is locally integrable.

How to generalize to singular setting?

We want to generalize

$$\text{vol } L = \lim_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k).$$

Suppose that ϕ is a singular psh metric on L .

Definition

The **multiplier ideal sheaf** of ϕ is the (coherent) subsheaf of \mathcal{O}_X , locally consisting of holomorphic functions f such that $|f|_\phi^2$ is locally integrable.

We can thus define

$$\text{vol}(L, \phi) = \lim_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\phi)).$$

Existence of the limit is non-trivial!

Why and how do we study volumes?

Why?

From the perspective of algebraic geometry, we have the following vanishing theorem:

Theorem (Nadel–Cao+Darvas–X)

Suppose $\text{vol}(L, \phi) > 0$, then

$$h^i(X, K_X \otimes L^k \otimes \mathcal{I}(k\phi)) = 0$$

for all $i > 0, k > 0$.

Why and how do we study volumes?

Why?

From the perspective of algebraic geometry, we have the following vanishing theorem:

Theorem (Nadel–Cao+Darvas–X)

Suppose $\text{vol}(L, \phi) > 0$, then

$$h^i(X, K_X \otimes L^k \otimes \mathcal{I}(k\phi)) = 0$$

for all $i > 0$, $k > 0$.

How?

- ① Treat the case of analytic singularities (Bonavero)
- ② Treat the general case by Demailly approximation.

Bonavero's theorem

Assume that ϕ has **analytic singularities**: locally ϕ is of the form $c \log \sum_i |f_i|^2$ (up to a smooth term), where f_1, \dots, f_M are holomorphic functions.

Bonavero's theorem

Assume that ϕ has **analytic singularities**: locally ϕ is of the form $c \log \sum_i |f_i|^2$ (up to a smooth term), where f_1, \dots, f_M are holomorphic functions.

Theorem (Bonavero)

$$\lim_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\phi)) = \frac{1}{n!} \int_X (\mathrm{dd}^c \phi)^n.$$

Here $(\mathrm{dd}^c \phi)^n$ is the non-pluripolar product.

Non-pluripolar products

When ϕ is smooth, $(dd^c\phi)^n$ is the usual wedge product of forms.

When ϕ is bounded, $(dd^c\phi)^n$ coincides with the Bedford–Taylor product.

For general ϕ , $(dd^c\phi)^n$ is a measure on X that puts no mass on pluripolar sets.

Non-pluripolar products

When ϕ is smooth, $(dd^c\phi)^n$ is the usual wedge product of forms.

When ϕ is bounded, $(dd^c\phi)^n$ coincides with the Bedford–Taylor product.

For general ϕ , $(dd^c\phi)^n$ is a measure on X that puts no mass on pluripolar sets.

The theory of non-pluripolar products is not the only extension of Bedford–Taylor theory (Dinh–Sibony products, residue currents, etc.). But non-pluripolar products have two advantages: $(dd^c\phi)^n$ can be defined for all ϕ and

Non-pluripolar products

Non-pluripolar products

When ϕ is smooth, $(dd^c\phi)^n$ is the usual wedge product of forms.

When ϕ is bounded, $(dd^c\phi)^n$ coincides with the Bedford–Taylor product.

For general ϕ , $(dd^c\phi)^n$ is a measure on X that puts no mass on pluripolar sets.

The theory of non-pluripolar products is not the only extension of Bedford–Taylor theory (Dinh–Sibony products, residue currents, etc.). But non-pluripolar products have two advantages: $(dd^c\phi)^n$ can be defined for all ϕ and

Theorem (Witt Nyström)

If $\varphi \leq \psi$, then

$$\int_X (dd^c\varphi)^n \leq \int_X (dd^c\psi)^n.$$

Quasi-equisingular approximations

Assume that $dd^c\phi$ is a Kähler current. We can find a **decreasing** sequence (ϕ^j) of psh metrics on L of **analytic singularities** converging to ϕ such that for any $\delta > 0$, $k > 0$, there is $j_0 > 0$ so that for $j \geq j_0$,

$$\mathcal{I}((1 + \delta)k\phi^j) \subseteq \mathcal{I}(k\phi) \subseteq \mathcal{I}(k\phi^j).$$

Such a sequence (ϕ^j) is called a **quasi-equisingular approximation** of ϕ .

Quasi-equisingular approximations

Assume that $dd^c\phi$ is a Kähler current. We can find a **decreasing** sequence (ϕ^j) of psh metrics on L of **analytic singularities** converging to ϕ such that for any $\delta > 0$, $k > 0$, there is $j_0 > 0$ so that for $j \geq j_0$,

$$\mathcal{I}((1 + \delta)k\phi^j) \subseteq \mathcal{I}(k\phi) \subseteq \mathcal{I}(k\phi^j).$$

Such a sequence (ϕ^j) is called a **quasi-equisingular approximation** of ϕ .

To remember

Quasi-equisingular approximations are optimal analytic approximations of psh metrics in the sense of multiplier ideal sheaves.

From Bonavero to general potentials

By approximation,

$$\begin{aligned} \overline{\lim}_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\phi)) &\leq \lim_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\phi^j)) \quad \text{as } \phi \leq \phi^j \\ &= \frac{1}{n!} \int_X (\mathrm{d}\mathrm{d}^c \phi^j)^n \end{aligned} \quad \text{Bonavero .}$$

From Bonavero to general potentials

By approximation,

$$\begin{aligned} \overline{\lim}_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\phi)) &\leq \lim_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\phi^j)) \quad \text{as } \phi \leq \phi^j \\ &= \frac{1}{n!} \int_X (\mathrm{d}\mathrm{d}^c \phi^j)^n \end{aligned} \quad \text{Bonavero .}$$

By Witt Nyström, $\int_X (\mathrm{d}\mathrm{d}^c \phi^j)^n$ is decreasing in j .

$$\overline{\lim}_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\phi)) \leq \frac{1}{n!} \lim_{j \rightarrow \infty} \int_X (\mathrm{d}\mathrm{d}^c \phi^j)^n .$$

From Bonavero to general potentials

By approximation,

$$\begin{aligned} \overline{\lim}_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\phi)) &\leq \lim_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\phi^j)) \quad \text{as } \phi \leq \phi^j \\ &= \frac{1}{n!} \int_X (\mathrm{d}d^c \phi^j)^n \end{aligned} \quad \text{Bonavero.}$$

By Witt Nyström, $\int_X (\mathrm{d}d^c \phi^j)^n$ is decreasing in j .

$$\overline{\lim}_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\phi)) \leq \frac{1}{n!} \lim_{j \rightarrow \infty} \int_X (\mathrm{d}d^c \phi^j)^n.$$

In general,

$$\lim_{j \rightarrow \infty} \int_X (\mathrm{d}d^c \phi^j)^n \neq \int_X (\mathrm{d}d^c \phi)^n.$$

What is the limit? To answer this question, we need to introduce **\mathcal{I} -model potentials**.

I-model potentials

Given a smooth form $\theta \in c_1(L)$, then ϕ can be identified with $\varphi \in \text{PSH}(X, \theta)$.

Definition

Define

$$P[\varphi]_{\mathcal{I}} := \sup \{ \psi \leq 0 : \mathcal{I}(k\varphi) = \mathcal{I}(k\psi) \} .$$

Equivalently,

$$P[\varphi]_{\mathcal{I}} := \sup \{ \psi \leq 0 : \nu(\pi^*\varphi, y) = \nu(\pi^*\psi, y) \} .$$

for any birational model $\pi : Y \rightarrow X$ and any $y \in Y$.

A potential φ with $\varphi = P[\varphi]_{\mathcal{I}}$ is called an **\mathcal{I} -model potential**.

Theorem (Darvas–X)

$$\lim_{j \rightarrow \infty} \int_X (\mathrm{dd}^c \phi^j)^n = \int_X (\theta + \mathrm{dd}^c P[\varphi]_{\mathcal{I}})^n.$$

Theorem (Darvas–X)

$$\lim_{j \rightarrow \infty} \int_X (\mathrm{dd}^c \phi^j)^n = \int_X (\theta + \mathrm{dd}^c P[\varphi]_{\mathcal{I}})^n.$$

As a consequence,

$$\overline{\lim}_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\phi)) \leq \frac{1}{n!} \int_X (\theta + \mathrm{dd}^c P[\varphi]_{\mathcal{I}})^n.$$

Theorem (Darvas–X)

$$\lim_{j \rightarrow \infty} \int_X (\mathrm{dd}^c \phi^j)^n = \int_X (\theta + \mathrm{dd}^c P[\varphi]_{\mathcal{I}})^n.$$

As a consequence,

$$\overline{\lim}_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\phi)) \leq \frac{1}{n!} \int_X (\theta + \mathrm{dd}^c P[\varphi]_{\mathcal{I}})^n.$$

The reverse inequality is much harder. But the main idea is the same.

Theorem

When $\mathrm{dd}^c \phi$ is a Kähler current, we have

$$\mathrm{vol}(L, \phi) = \lim_{k \rightarrow \infty} \frac{1}{k^n} h^0(X, L^k \otimes \mathcal{I}(k\phi)) = \frac{1}{n!} \int_X (\theta + \mathrm{dd}^c P[\varphi]_{\mathcal{I}})^n.$$

Main theorem

When $dd^c\phi$ is not a Kähler current, a trick allows us to reduce to the special case: there is always a potential $\psi \leq \phi$ such that $dd^c\psi$ is a Kähler current. We use $(1 - \epsilon)\phi + \epsilon\psi$ to approximate ϕ .

Theorem

Let (L, ϕ) be a Hermitian psef line bundle on X , under the identification ϕ with $\varphi \in \text{PSH}(X, \theta)$, $\text{vol}(L, \phi)$ is well-defined and

$$\text{vol}(L, \phi) = \frac{1}{n!} \int_X (\theta + dd^c P[\varphi]_{\mathcal{I}})^n.$$

Proof recap

The main steps in the proof can be sketched as follow:

- Treat the case of analytic singularities.
- Treat the case of Kähler currents by approximation.
- Reduce the general case to the case of Kähler currents.

Proof recap

The main steps in the proof can be sketched as follow:

- Treat the case of analytic singularities.
- Treat the case of Kähler currents by approximation.
- Reduce the general case to the case of Kähler currents.

This general reduction scheme will be applied in other contexts as well.

Table of Contents

1 Background

2 The volume of Hermitian pseudo-effective line bundles

3 Partial Okounkov bodies

4 Applications

Okounkov bodies

Fix a big line bundle L on X .

Okounkov body is a machinery that allows one to study **numerical properties** of L using **convex geometry**.

Definition

An **admissible flag** is a sequence

$$X = Y_0 \supseteq Y_1 \supseteq \cdots \supseteq Y_n$$

of subvarieties of X , Y_i of codimension i such that Y_i is smooth at the point Y_n .

Example

When X is a Riemann surface, an admissible flag is $X \supseteq \{\text{point}\}$.

Okounkov bodies

Fix an admissible flag (Y_\bullet) . Given any $s \in \mathbb{C}(X)^\times$, we can define the valuation of s along (Y_\bullet) :

$$\nu(s) = (\nu_1(s), \dots, \nu_n(s)) \in \mathbb{Z}^n.$$

Roughly speaking, $\nu_1(s)$ is the order of vanishing of s along Y_1 . If $\nu_1(s) = 0$, $\nu_2(s)$ is the order of vanishing of $s|_{Y_1}$, etc..

Okounkov bodies

Fix an admissible flag (Y_\bullet) . Given any $s \in \mathbb{C}(X)^\times$, we can define the valuation of s along (Y_\bullet) :

$$\nu(s) = (\nu_1(s), \dots, \nu_n(s)) \in \mathbb{Z}^n.$$

Roughly speaking, $\nu_1(s)$ is the order of vanishing of s along Y_1 . If $\nu_1(s) = 0$, $\nu_2(s)$ is the order of vanishing of $s|_{Y_1}$, etc..

Set

$$\Gamma(L) := \{(\nu(s), k) \in \mathbb{Z}^{n+1} : s \in H^0(X, L^k)\}.$$

Then $\Gamma(L)$ is a semi-group in \mathbb{Z}^{n+1} and generates a closed convex cone C in \mathbb{R}^{n+1} . We define the **Okounkov body** of L as

$$\Delta(L) := C \cap \{(x, 1) : x \in \mathbb{R}^n\}.$$

Example

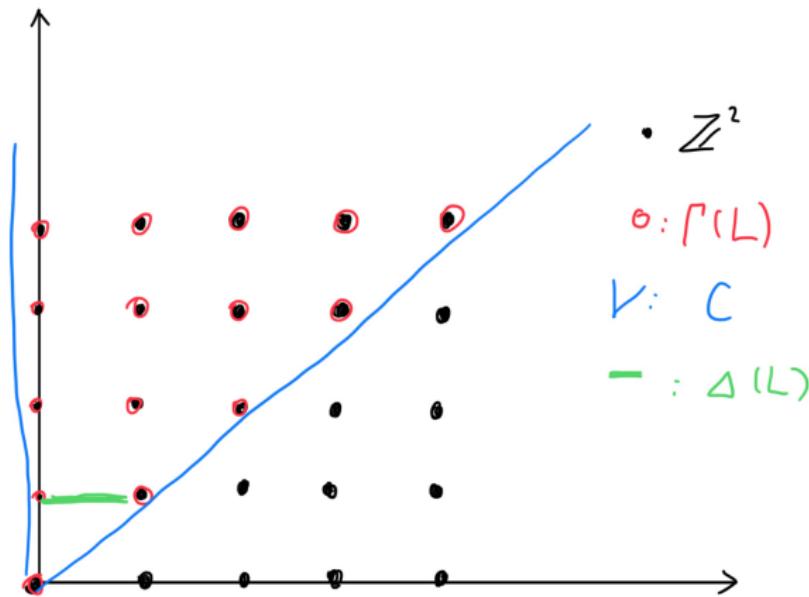
To understand the abstract definition, take $X = \mathbb{P}^1$. The flag is $X \supseteq \{0\}$. Given any rational function f , $\nu(f)$ is the order of vanishing of f at 0.

Example

To understand the abstract definition, take $X = \mathbb{P}^1$. The flag is $X \supseteq \{0\}$. Given any rational function f , $\nu(f)$ is the order of vanishing of f at 0. Set $L = \mathcal{O}(1)$, $H^0(X, L^k)$ is the set of homogeneous polynomials of degree k . Thus

$$\Gamma(L) = \{(a, b) \in \mathbb{Z}^2 : 0 \leq a \leq b\} .$$

Example



How to understand Okounkov bodies?

Example

When $n = 1$, flag is just a point and $\Delta(L) = [0, \deg L]$.

How to understand Okounkov bodies?

Example

When $n = 1$, flag is just a point and $\Delta(L) = [0, \deg L]$.

Example

In the toric setting, $\Delta(L)$ is the Newton polytope of L .

How to understand Okounkov bodies?

Example

When $n = 1$, flag is just a point and $\Delta(L) = [0, \deg L]$.

Example

In the toric setting, $\Delta(L)$ is the Newton polytope of L .

Convex body

A **convex body** is a non-empty compact convex subset of \mathbb{R}^n .

In general, $\Delta(L)$ is a **convex body**, but not a polytope!

How to understand Okounkov bodies?

Example

When $n = 1$, flag is just a point and $\Delta(L) = [0, \deg L]$.

Example

In the toric setting, $\Delta(L)$ is the Newton polytope of L .

Convex body

A **convex body** is a non-empty compact convex subset of \mathbb{R}^n .

In general, $\Delta(L)$ is a **convex body**, but not a polytope!

Okounkov bodies is a way to apply techniques in toric geometry to non-toric varieties.

Why are Okounkov bodies important?

Theorem (Lazarsfeld–Mustaţă, Kaveh–Khovanskii)

$$\frac{1}{n!} \operatorname{vol}(L) = \operatorname{vol} \Delta(L).$$

Why are Okounkov bodies important?

Theorem (Lazarsfeld–Mustaţă, Kaveh–Khovanskii)

$$\frac{1}{n!} \operatorname{vol}(L) = \operatorname{vol} \Delta(L).$$

Theorem (Lazarsfeld–Mustaţă, Jow)

$\Delta(L)$ depends only on the numerical class of L . Moreover, the information of $\Delta(L)$ for all admissible flags determines the numerical class of L uniquely.

In particular, we can (in principle) deduce all numerical information of L from $\Delta(L)$.

Partial Okounkov bodies

Based on the same ideas, we want to define Okounkov bodies $\Delta(L, \phi)$ of Hermitian psef line bundles (L, ϕ) with similar properties.

Partial Okounkov bodies

Based on the same ideas, we want to define Okounkov bodies $\Delta(L, \phi)$ of Hermitian psef line bundles (L, ϕ) with similar properties.

In contrast to concluding **numerical information** of L , we want to get information about the **singularities** of ϕ .

Partial Okounkov bodies

Based on the same ideas, we want to define Okounkov bodies $\Delta(L, \phi)$ of Hermitian psef line bundles (L, ϕ) with similar properties.

In contrast to concluding **numerical information** of L , we want to get information about the **singularities** of ϕ .

Theorem (X.)

There is a canonical convex body $\Delta(L, \phi) \subseteq \Delta(L)$ associated to each Hermitian psef line bundle with $\int_X (\dd^c \phi)^n > 0$. The assignment is continuous in ϕ .

Two psh metrics (of positive masses) ϕ and ϕ' have the same partial Okounkov bodies iff ϕ and ϕ' are \mathcal{I} -equivalent: $\mathcal{I}(k\phi) = \mathcal{I}(k\phi')$ for all k .

How to construct partial Okounkov bodies?

Recall our general construction scheme:

- Treat the case of analytic singularities.
- Treat the case of Kähler currents by approximation.
- Reduce the general case to the case of Kähler currents.

Partial Okounkov bodies—Analytic singularities

When ϕ has analytic singularities.

Assume for simplicity that ϕ has **logarithmic singularities** along some normal crossing divisor D : ϕ is locally $\log |s|^2$, where s is the defining equation of D .

Partial Okounkov bodies—Analytic singularities

When ϕ has analytic singularities.

Assume for simplicity that ϕ has **logarithmic singularities** along some normal crossing divisor D : ϕ is locally $\log |s|^2$, where s is the defining equation of D . In this case,

$$H^0(X, L^k \otimes \mathcal{I}(k\phi)) = H^0(X, L^k \otimes \mathcal{O}(-kD)).$$

So

$$\bigoplus_k H^0(X, L^k \otimes \mathcal{I}(k\phi)) = \bigoplus_k H^0(X, L^k \otimes \mathcal{O}(-kD)).$$

Partial Okounkov bodies—Analytic singularities

Define

$$\Delta(L, \phi) := \Delta(L - D) + a,$$

where $a = \nu(D) \in \mathbb{R}^n$ is a fixed vector.

Partial Okounkov bodies—Analytic singularities

Define

$$\Delta(L, \phi) := \Delta(L - D) + a,$$

where $a = \nu(D) \in \mathbb{R}^n$ is a fixed vector.

The general case of analytic singularities can be handled in a similar fashion. This finishes Step 1 in our scheme.

Partial Okounkov bodies—Kähler currents

Step 2 in our scheme is the quasi-equisingular approximation (ϕ^j) of ϕ .

We want to define

$$\Delta(L, \phi) := \lim_{j \rightarrow \infty} \Delta(L, \phi^j).$$

But what is the topology on convex bodies $\Delta(\bullet)$?

Step 2 in our scheme is the quasi-equisingular approximation (ϕ^j) of ϕ .

We want to define

$$\Delta(L, \phi) := \lim_{j \rightarrow \infty} \Delta(L, \phi^j).$$

But what is the topology on convex bodies $\Delta(\bullet)$?

The solution is given by the **Hausdorff topology**.

Definition

Given two convex bodies $K_1, K_2 \subseteq \mathbb{R}^n$, define their Hausdorff metric as

$$d_n(K_1, K_2) := \max \left\{ \sup_{x_1 \in K_1} \inf_{x_2 \in K_2} |x_1 - x_2|, \sup_{x_2 \in K_2} \inf_{x_1 \in K_1} |x_1 - x_2| \right\}.$$

Partial Okounkov bodies—General case

Step 3 in our scheme is carried out in a similar way as Step 2. We can reduce general potentials to those whose curvature currents are Kähler currents easily.

Step 3 in our scheme is carried out in a similar way as Step 2. We can reduce general potentials to those whose curvature currents are Kähler currents easily.

The construction seems to depend on a lot of choices. But we can prove

Theorem

The convex body $\Delta(L, \phi)$ is independent of all choices we made! It depends on (L, ϕ) only through the current $dd^c\phi$.

In other words, $\Delta(L, \phi)$ is a **numerical invariant** of (L, ϕ) .

Why do we care about partial Okounkov bodies?

As we mentioned,

Theorem

Let ϕ, ϕ' be two psh metrics on L with positive masses. Then $\Delta(L, \phi) = \Delta(L, \phi')$ for all admissible flags (on all birational models of X) iff $\phi \sim_{\mathcal{I}} \phi'$.

Why do we care about partial Okounkov bodies?

As we mentioned,

Theorem

Let ϕ, ϕ' be two psh metrics on L with positive masses. Then $\Delta(L, \phi) = \Delta(L, \phi')$ for all admissible flags (on all birational models of X) iff $\phi \sim_{\mathcal{I}} \phi'$.

In other words,

Principle

Partial Okounkov bodies are universal invariants of the singularities of a psh metric.

Dictionary

We have the following dictionary between psef line bundles and Hermitian psef line bundles.

- Psef line bundles Hermitian psef line bundles

Dictionary

We have the following dictionary between psef line bundles and Hermitian psef line bundles.

- Psef line bundles Hermitian psef line bundles
- $H^0(X, L^k)$ $H^0(X, L^k \otimes \mathcal{I}(k\phi))$

Dictionary

We have the following dictionary between psef line bundles and Hermitian psef line bundles.

- Psef line bundles Hermitian psef line bundles
- $H^0(X, L^k)$ $H^0(X, L^k \otimes \mathcal{I}(k\phi))$
- Movable intersections Non-pluripolar products

Dictionary

We have the following dictionary between psef line bundles and Hermitian psef line bundles.

- Psef line bundles Hermitian psef line bundles
- $H^0(X, L^k)$ $H^0(X, L^k \otimes \mathcal{I}(k\phi))$
- Movable intersections Non-pluripolar products
- Okounkov bodies Partial Okounkov bodies

Dictionary

We have the following dictionary between psef line bundles and Hermitian psef line bundles.

- Psef line bundles Hermitian psef line bundles
- $H^0(X, L^k)$ $H^0(X, L^k \otimes \mathcal{I}(k\phi))$
- Movable intersections Non-pluripolar products
- Okounkov bodies Partial Okounkov bodies
- Many others

How do we study/classify general psh singularities?

We discuss a general classification of the singularities of psh metrics of positive volumes.

- Classification according to \mathcal{I} -singularity types. Each class admits an \mathcal{I} -model representative, which can be studied using partial Okounkov bodies, namely by **convex geometry**.

How do we study/classify general psh singularities?

We discuss a general classification of the singularities of psh metrics of positive volumes.

- Classification according to \mathcal{I} -singularity types. Each class admits an \mathcal{I} -model representative, which can be studied using partial Okounkov bodies, namely by **convex geometry**.
- In each \mathcal{I} -class, we can subdivide according to the model types, namely, according to the behaviors of their Monge–Ampère type masses. In each model class, the Monge–Ampère equation is uniquely solvable, hence we can study each class using **Monge–Ampère measures**.

How do we study/classify general psh singularities?

We discuss a general classification of the singularities of psh metrics of positive volumes.

- Classification according to \mathcal{I} -singularity types. Each class admits an \mathcal{I} -model representative, which can be studied using partial Okounkov bodies, namely by **convex geometry**.
- In each \mathcal{I} -class, we can subdivide according to the model types, namely, according to the behaviors of their Monge–Ampère type masses. In each model class, the Monge–Ampère equation is uniquely solvable, hence we can study each class using **Monge–Ampère measures**.
- In each model class, we can subdivide according to singularities types.

Table of Contents

1 Background

2 The volume of Hermitian pseudo-effective line bundles

3 Partial Okounkov bodies

4 Applications

A few applications

In pluripotential theory, our result yields a very general Bergman kernel convergence result: given a singularity type $[\varphi]$, a continuous metric ψ on L , it is possible to define partial Bergman measures $\beta_{[\varphi]}^k(\psi)$, generalizing the usual Bergman measure construction.

A few applications

In pluripotential theory, our result yields a very general Bergman kernel convergence result: given a singularity type $[\varphi]$, a continuous metric ψ on L , it is possible to define partial Bergman measures $\beta_{[\varphi]}^k(\psi)$, generalizing the usual Bergman measure construction.

We proved that these partial Bergman measures converge weakly and the limit can be described explicitly. This result can be regarded as a local version of our volume theorem.

A few applications

When L is ample, our theory allows us to understand the non-Archimedean space $\mathcal{E}^1(L^{\text{an}})$ defined by Boucksom–Jonsson in terms of the space of geodesic rays in the Archimedean (usual) setting. In particular, we have a complete description of *maximal geodesic rays*. One can also construct Duistermaat–Heckman measures of elements in $\mathcal{E}^1(L^{\text{an}})$, which opens the gate to the study of non-Archimedean space $\mathcal{E}^p(L^{\text{an}})$.

A few applications

Very recently, Botero–Burgos Gil–Holmes–De Jong made use of our results to study the canonical metric on the line bundle of Siegel–Jacobi forms: Let $A_{g,N}$ be the fine moduli space of PPAV of dimension g and level N . Consider the universal Abelian variety $U_{g,N}$ on $A_{g,N}$ and the line bundle $\mathcal{L}_{k,m}$ of Siegel–Jacobi forms on $U_{g,N}$ of weight k and index m . The latter is endowed with a natural metric h . They applied our results to study the behaviour of h on the compactification of $U_{g,N}$.

Thank you for your attention!