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Preface

This book is an expanded version of my lecture notes at the Institute for Advanced
Study in Mathematics (IASM) at Zhejiang university. My initial goal was to write a
self-contained reference for the participants of the lectures. But I soon realized that
many results have never been rigorously proved in any literature. When attempting to
resolve these loose ends, the notes grew increasingly lengthy, ultimately resulting in
the current book.

In this book, I would like to present my point of view towards the global
pluripotential theories. There are three different but interrelated theories which
deserve this name. They are

(1) the pluripotential theory on compact Kéhler manifolds,

(2) the pluripotential theory on the Berkovich analytification of projective varieties,
and

(3) the toric pluripotential theory on toric varieties.

We will begin by explaining the picture in the first case. Let us fix a compact
Kihler manifold X. The central objects are the quasi-plurisubharmonic functions on
X.

We are mostly interested in the singularities of such functions, that is, the places
where a quasi-plurisubharmonic function ¢ tends to —co and how it tends to —co.

Singularities occur naturally in mathematics. In geometric applications, X should
be regarded as the compactified moduli space of certain geometric objects. A Zariski
open subset U C X would parametrize smooth objects. The natural metric on
the associated polarizing line bundle is usually smooth only on U, not on X. In
case we have suitable positivities, the classical Grauert—Remmert extension theorem
(Theorem B.2.2) allows us to extend the metric outside U, but at the cost of introducing
singularities.

The classification of singularities is a huge project. Locally near the singularities
we know that quasi-plurisubharmonic functions present very complicated behaviours.
There are many local invariants associated with the singularities. The most notable
ones are the Lelong numbers and the multiplier ideal sheaves. These invariants only
reflect the rough behaviour of a quasi-plurisubharmonic function. As an example,
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a quasi-plurisubharmonic function with log-log singularities have the same local
invariants as a bounded one.

The situation changes drastically in the global setting, namely on compact
manifolds. In the global setting, there are three different ways to classify quasi-
plurisubharmonic functions according to their singularities:

(1) The singularity type characterizing the singularities up to a bounded term.
(2) The P-singularity type associated with global masses.
(3) The I -singularity type associated with all non-Archimedean data.

The classification becomes rougher and rougher as we go downward. In the first case,
we say two quasi-plurisubharmonic functions have the same singularity type if their
difference lies in L®. The corresponding equivalence class gives us essentially the
finest information of the singularities we can expect. The other two relations are more
delicate, we will study them in detail in Chapter 6.

A natural idea to study the singularities would consist of the following steps:

(1) Classify the 7 -singularity types.
(2) Classify the P-singularity types within a given 7 -singularity class.
(3) Classify the singularity types within a given P-equivalence class.

The Step 3 is well-studied in the literature in the last decade under the name of
pluripotential theory with prescribed singularities. There are numerous excellent
results in this direction. In some sense, this step is already well-understood.

We will give a complete answer to Step 1 in Chapter 7, where we show that
7 -singularity types can be described very explicitly.

It remains to consider Step 2. This is not an easy task. It is easy to construct examples
where a given 7 -equivalence class consists of a huge amount of P-equivalence classes.

On the other hand, by contrast, in the toric pluripotential theory and non-
Archimedean pluripotential theory, Step 2 is essentially trivial: An 7 -equivalence class
consists of a single P-equivalence class. In the toric situation, an J or P-equivalence
class is simply a sub-convex body of the Newton body, while in the non-Archimedean
situation, an J or P-equivalence class is a homogeneous plurisubharmonic metric.

This apparent anomaly and numerous examples show that in the pluripotential
theory on compact Kéhler manifolds, certain singularities are pathological. Within
each 7 -equivalence class, we could pick up a canonical P-equivalence class, the
quasi-plurisubharmonic functions in which are said to be 7 -good. We will study the
theory of 7 -good singularities in Chapter 7. As we will see later on, almost all (if not
all) singularities occurring naturally are 7 -good.

My personal impression is that we are in a situation quite similar to the familiar one
in real analysis. There are many non-measurable functions, but in real life, unless you
construct a pathological function by force, you only encounter measurable functions.
Similarly, although there exist many non-7-good singularities, you would never
encounter them in reality!

Having established this general principle, we could content ourselves in the
framework of 7 -good singularities. Then Step 2 is essentially solved, and we have a
pretty good understanding of the classification of singularities.
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Of course, this classification is a bit abstract. To put it into use, we will introduce
two general techniques allowing us to make induction on dim X. For a prime divisor
Y in general position, we have the so-called analytic Bertini theorems relating
quasi-plurisubharmonic functions on X and on Y. For a non-generic Y, we have the
technique of trace operators. These techniques will be explained in Chapter 8.

In the toric situation, these constructions and methods are quite straightforward
and are likely known to experts before I entered this field, see Chapter 5 for the toric
pluripotential theory on ample line bundles.

The corresponding toric pluripotential theory on big line bundles has never been
written down in the literature. We will develop the theory of partial Okounkov bodies
in Chapter 10 and the general toric pluripotential theory will be developed as an
application in Chapter 12.

Finally, we give applications to non-Archimedean pluripotential theory in Chap-
ter 13 based on the theory of test curves developed in Chapter 9. We also prove the
convergence of the partial Bergman kernels in Chapter 14.

The readers are only supposed to be familiar with the basic pluripotential theory.
The excellent book [ ] is more than enough.

Mingchen Xia
in Hangzhou, March 2024

Contact information:
Mingchen Xia, assistant professor at INSTITUTE OF GEOMETRY AND
Puysics, USTC

Email address, xiamingchen2008@gmail . com
Homepage, https://mingchenxia.github.io/home/.
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Conventions

In the whole book, we adopt the following conventions:

* A complex space is always assumed to be reduced, paracompact and Hausdorff.

* A modification of a complex space X is proper bimeromorphic morphism
m: Y — X that is locally obtained from a finite composition of blow-ups with
smooth centers.

* A subnet of a net refers to a Kelley subnet.

* A domain in C" refers to a connected open subset.

* A complex manifold is assumed to be paracompact.

* A submanifold of a complex manifold means a complex submanifold.

* A neighborhood is not necessarily open.

* The set N of natural numbers includes 0.

e Increasing functions and decreasing functions are not necessarily strictly mono-
tone.

We will use the following notations throughout the book:

e If I is a non-empty set, then Fin(/) denote the net of finite non-empty subsets of
1, ordered by inclusign.
* dd® means (27)"1i040.
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Part I
Preliminaries



In the first two chapters Chapter 1 and Chapter 2 of this part, we recall a few
preliminaries about the notion of plurisubharmonic functions and the non-pluripolar
products of plurisubharmonic functions.

Most materials in these chapters are standard and are well-documented in other
textbooks, so we will be rather sketchy. The readers are encouraged to consult the
excellent textbook [ ].

In Chapter 3, we develop the techniques of envelope operators. All results in this
section are known and are written in various articles.

In Chapter 4, we develop the theory of geodesics in the space of quasi-
plurisubharmonic functions. Most results in this chapter are known to different
degrees, but not in the fully general form as we present. Most proofs are similar to
the known proofs in the literature, but the presence of singularities requires a very
careful treatment.

In Chapter 5, we recall the basic results about the toric pluripotential theory on
ample line bundles, which will be generalized to big line bundles in Chapter 12.

Experienced readers may safely skip the whole part.



Chapter 1
Plurisubharmonic functions

Once Frigyes Riesz" gave a brilliant explanation of why scientific
work is easy. ”Everyone has ideas, both right ideas and wrong
ideas,” he said. ”Scientific work consists merely of separating
them.”

— Istvan Vincze

“ Frigyes Riesz (1880-1956), known as Frédéric Riesz in French
and Frederic Riesz in English was the first mathematician to define
the general notion of subharmonic functions, who also gave these
functions a Frenglish name from the very beginning — fonctions
subharmoniques.

In this chapter, we recall the notion of plurisubharmonic functions and a few basic
properties of these functions. The main purpose is to fix the notation for later chapters,
so we refer to the literature for most of the proofs.

We give some details about the plurifine topology in Section 1.3, since the related
proofs are scattered in a number of articles.

In the literature related to multiplier ideal sheaves and Lelong numbers, there are
several different conventions about their normalizations. The readers can find more
about the conventions that we adopt throughout the book in Section 1.4.

1.1 The definition of plurisubharmonic functions

In this section, we recall the notion of plurisubharmonic functions. We will also take
care of the 0-dimensional case, which makes a number of induction arguments easier
to carry out. None of our references treats the 0-dimensional case, but the readers
can easily verify that the results in this section hold in this exceptional case.

1.1.1 The 1-dimensional case

Let Q be a domain (a connected open subset) in C.

Definition 1.1.1 A subharmonic function on Q is a function ¢: Q — [—0c0, )
satisfying the following three conditions:

(1) ¢ # —co;

(2) ¢ is upper semi-continuous;

(3) ¢ satisfies the sub-mean value inequality: For any a € Q and r > 0 such that
Bi(a,r) € Q, we have
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1 2r )
p(a) < E/o o(a +re'?) do.

We will denote the set of subharmonic functions on Q as SH(Q).

Here, B (a, r) denotes the open ball with center a and radius r. See (1.1).
In fact, for each a € Q, in (3), it suffices to require the sub-mean value inequality
for all small enough r > 0.

Intuitively, at a specific point a € Q, the Condition (2) gives a lower bound of the
value of ¢(a) using the nearby values of ¢, while the Condition (3) gives an upper
bound. This intuition leads to the following rigidity theorem:

Theorem 1.1.1 Let ¢: Q — [—o00, o) be a measurable function. Then the following
are equivalent:

(1) @ is locally integrable and Agp > 0.
(2) ¢ coincides almost everywhere with a subharmonic function ¥ on Q.

Moreover, the subharmonic function ¥ in (2) is unique.

Here in Condition (1), Ag is the Laplacian in the sense of currents. This is a special
case of Theorem 1.1.2 below.

This theorem gives a very useful way of constructing subharmonic functions.

1.1.2 The higher dimensional case

We will fix n € N and a domain € (a connected open subset) in C".

Definition 1.1.2 When n > 1, a plurisubharmonic function on Q is a function
¢: Q — [—o0, 00) satisfying the following three conditions:

(1) ¢ # —oo;

(2) ¢ is upper semi-continuous;

(3) for any complex line L € C" and any connected component U of L N Q, the
restriction ¢|y is either subharmonic or constantly —co.!

When n = 0, the only domain Q is the singleton. In this case, a plurisubharmonic
function on Q is a real-valued function on Q.
The set of plurisubharmonic functions on Q is denoted by PSH(Q).

A plurisubharmonic function is also called a psh function for short. The relevant
notations are indicated in Fig. 1.1.2

I An extremely common mistake in the literature is to replace (3) by the condition that ¢ is locally
integrable and dd®¢ > 0 in the sense of current. For a concrete counterexample, consider a function
¢ that takes a constant value O at all but one single point, at which the value of ¢ is 1.

2 We remind the readers that all figures in this book are sometimes misleading: We usually draw a
complex dimension as a real dimension. The figures should not be read literally!
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0N

Fig. 1.1 A domain cut by a line

Example 1.1.1 When n = 0, we have a canonical bijection PSH(Q) = R.
Example 1.1.2 When n = 1, we have PSH(Q) = SH(LQ).

Similar to Theorem 1.1.1, we have a rigidity theorem for plurisubharmonic
functions as well.

Theorem 1.1.2 Let ¢: Q — [—o0, 00) be a measurable function. Then the following
are equivalent:

(1) ¢ is locally integrable and dd®¢ > 0;
(2) ¢ coincides almost everywhere with a plurisubharmonic function  on Q.

Moreover, the plurisubharmonic function s is unique.

Here, the operator dd° is normalized so that

i -
dd® = —44.
2
For the proof, we refer to [ , Proposition 1.43].

Plurisubharmonic functions have nice functorialities:

Proposition 1.1.1 Let n’ € N and Q' C C" be a domain. Given any holomorphic
map f: Q — Q and any ¢ € PSH(Q') exactly one of the following cases occurs:

(1) ffp = —oo;
) f*¢ € PSH(Q).

We refer to [ , Proposition 1.44] for the proof3.
Foreachn € N, a € C" and r > 0, we write

B,(a,r)={z€C":|z—a| <r}. (1.1)

3 We remind the readers that the statement of [ , Proposition 1.44] is flawed.
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Proposition 1.1.2 Let ¢ € PSH(B,,(a, rg)) for some ro > 0. Then the function

(—oo,logrg) » R, logri— sup ¢
B, (a,r)

is convex and increasing.

See [ , Corollary 2.4].

Proposition 1.1.3 Let a < b be two real numbers. Let f: (a,b) — [—o0, ) be a
function. Define

g {zeC:e? <zl <e @} - [~0,00), <z f(—loglzl).

Suppose that g is subharmonic, then f is convex. In particular, f takes real values
only.

See [ , Theorem 2.12] for a more general result.

1.1.3 The manifold case

Let X be a complex manifold. In the whole book, complex manifolds are assumed to
be paracompact, namely, all connected components have countable bases.

Definition 1.1.3 A plurisubharmonic function on X is a function ¢: X — [—00, c0)
such that for any x € X, there exists an open neighborhood U of x in X, an
integer n € N, a domain Q C C" and a biholomorphic map F: Q — U such that
F*(¢ly) € PSH(Q).

The set of plurisubharmonic functions on X is denoted by PSH(X).

Example 1.1.3 When X is a domain in C", the notions of plurisubharmonic functions
in Definition 1.1.3 and in Definition 1.1.2 coincide.

Example 1.1.4 Write {X;};cy for the set of connected components of X. Then we
have a natural bijection
PSH(X) = 1_[ PSH(X;).
iel

Here the product is in the category of sets. In particular, if X = @, then PSH(X) = 2.

This example allows us to reduce to the case of connected manifolds when studying
general plurisubharmonic functions.

Proposition 1.1.4 Let Y be another complex manifold and f: Y — X be a holomor-
phic map. Then for any ¢ € PSH(X), exactly one of the following cases occurs:

(1) f* is identically —co on some connected component of Y ;
(2) f*p € PSH(Y).
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This proposition follows easily from Proposition 1.1.1. We leave the details to the
readers.
Theorem 1.1.2 implies immediately the general form of the rigidity theorem:

Theorem 1.1.3 Let ¢: X — [—o0, ) be a measurable function. Then the following
are equivalent:

(1) ¢ is locally integrable and dd®¢ > 0;
(2) ¢ coincides almost everywhere with a plurisubharmonic function  on X.

Moreover, the plurisubharmonic function  in (2) is unique.

Definition 1.1.4 A subset £ C X is pluripolar if for any x € X, there is an open
neighborhood U of x in X and a function ¢ € PSH(U) such that

YlEnU = —o.

A subset E C X is non-pluripolar if E is not pluripolar.
A subset F C X is co-pluripolar if X \ F is pluripolar.

When X has dimension 1, a pluripolar set is called a polar set.

Theorem 1.1.4 (Josefson’s theorem) Let E C C" be a pluripolar set. Then there is
¢ € PSH(C") such that ¢|g = —co.

See [ , Corollary 4.41] for the proof of a more general result.
There is also a global version of Josefson’s theorem:

Theorem 1.1.5 Assume that X is a compact complex manifold and E C X is

a pluripolar set. Then there is a quasi-plurisubharmonic function ¢ on X with
¢lg = —co.

For a proof, see [ ].

1.2 Properties of plurisubharmonic functions

In this section, we explore the basic properties of plurisubharmonic functions.
Let X be a complex manifold.

Proposition 1.2.1

(1) Assume that (¢;)icy is a non-empty family in PSH(X) that is locally uniformly
bounded from above. Then sup;.;*¢; € PSH(X).

(2) Assume that (@;);eq is a decreasing net in PSH(X) such that lim;¢j ¢; is not
identically —oo on each connected component of X, then lim;c; ¢; € PSH(X).
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Here sup* denotes the upper semicontinuous regularization of the supremum. When
I is a finite family, observe that

sup”g; = sup ;.

iel iel
When I ={1,...,m}, we write

®1Vr Vo = Sup g;.

iel
We refer to [ , Proposition 1.28, Proposition 1.40]4.

Proposition 1.2.2 (Choquet’s lemma) Assume that X has countably many connected
components. Assume that (¢;)iey is a non-empty family in PSH(X) that is locally
uniformly bounded from above. There exists a countable subset J C I such that

* k
sup“g; = sup”y;.
iel JjeJ

Proof We may assume that X is connected. Since by our convention, the complex
manifold X is paracompact, it can be covered by countably many open balls, so we
can easily reduce to the case where X is an open ball. In this case, the result is proved
in [ , Lemma 4.31]. ]

Proposition 1.2.3 Let ¢ € PSH(X), then forany p > 1, ¢ € Ll’;c (X).

See [ , Theorem 1.46, Theorem 1.48].

Proposition 1.2.4 A pluripolar set E C X is a Lebesgue null set.

Proof This is a trivial consequence of Proposition 1.2.3. O
Proposition 1.2.5 Let (¢;);c; be a non-empty family in PSH(X) that is locally

uniformly bounded from above. Then the set

{x € X :supy; < sup*t,ol-}
iel iel
is pluripolar and hence Lebesgue null.

See [ , Corollary 4.28].

Proposition 1.2.6 Suppose that ¢, € PSH(X). Assume that there is a dense subset
E C X such that ¢|E < Y|, then ¢ < .

4In[ , Proposition 1.28], the second part is only stated for sequences, the net version is obvious
using the sub-mean value inequality.
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Proof The problem is local, so we may assume that X is a domain in C".
We may assume that ¢|g = Y| g after replacing ¢ by ¢ V . Then we need to show
that ¢ = .

It follows from [ , Theorem 4.20] that this holds outside a pluripolar set
Y ¢ X. In particular, ¢ = ¢ almost everywhere. It follows from the uniqueness
statement in Theorem 1.1.3 that ¢ = . O

Proposition 1.2.7 Let (E;);cz., be a sequence of pluripolar sets in X. Then

E = Ei

1l
—_

o

is also pluripolar.

Proof The problem is local, so we may assume that X € C" is a domain. In this case,
by Theorem 1.1.4 for each i € Z.y we can choose ¢; € PSH(C") such that

Vilg, = -0, Yilx <0

for all i > 0. After shrinking X, we may guarantee that ;|x € L'(X) forall i > 0.
After rescaling, we may also assume that ||y 11 (x) < 1 for alli > 0.

We then define
Y= Z 27yix.
i=1
Then ¢ € PSH(X) according to Proposition 1.2.1 and ¢ |g = —co. O

Ll
Corollary 1.2.1 Let (@) jez., be a sequence in PSH(X) such that ¢; = p €
PSH(X). Then the set

{x € X:¢(x)# lim goj(x)}
Jj—oo
is pluripolar.

Proof We first observe that (¢;); is locally uniformly bounded from above. This
follows from [ , Exercise 1.20].
Foreach j > 1, let

W =suppk.
k>j
Then y; € PSH(X) by Proposition 1.2.1. Moreover, (¢); is a decreasing sequence
and ; > ¢; for all j. In particular, ¢ < ¢ := inf; almost everywhere. By
Proposition 1.2.1 again, y € PSH(X).
On the other hand, by Proposition 1.2.5, there exist pluripolar sets Z; € X such
that

Y = sup @i
k>j

onX\Z;. Let
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Z:Ozj.

j=1
Then Z is a pluripolar set by Proposition 1.2.7, and for any x € X \ Z, we have
1

J— L.
Y (x) =lim; ¢;(x). Since ¢; SELN ¢, we can find a set Y C X with zero Lebesgue
measure such that ¢ (x) — ¢(x) forallx € X \ Y.
In particular, for any x € X \ (Y U Z), we have

¥ (x) = ¢(x).

But thanks to Proposition 1.2.6, the equality holds everywhere. Therefore, for all
xeX\Z, o
p(x) = lim ¢;(x).

Theorem 1.2.1 (Brelot, Grauert-Remmert) Let Z be an analytic subset in X and
¢ € PSH(X\ Z). Then the function ¢ admits an extension to PSH(X) in the following
two cases:

(1) The set Z has codimension at least 2 everywhere.
(2) The set Z has codimension at least 1 everywhere and is locally bounded from
above on an open neighborhood of Z.

In both cases, the extension is unique and is given by

= lim Z. 1.2
@(x) X\ler;lﬁﬁp(y), x € (1.2)

Fig. 1.2 The proof of Grauert—-Remmert extension theorem

Proof The extension is unique thanks to Proposition 1.2.6.
(2) Thanks to the uniqueness of the extension, the problem is local, so we may
assume that X is a domain in C" with n > 0 and there is a non-zero holomorphic
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function f vanishing identically on Z. For each € > 0, we claim that the function ¢,
defined by

o(x) +elog|f(0)>, xeX\Z;
Pelx) =
—00, X€Z

is plurisubharmonic on X. By Definition 1.1.2, it suffices to verify the case n = 1. In
this case, we may assume that Z = {0}, It is clear that ¢ € SH(X \ Z). It suffices to
verify the sub-mean value inequality at 0, which is immediate.

Next observe that the sequence ¢, is increasing as € \, 0 and ¢, is lo-
cally uniformly bounded from above. It follows from Proposition 1.2.1 that
@ = sup..o“pe € PSH(X). Moreover, ¢ clearly extends ¢. Note that (1.2) fol-
lows from the construction.

(1) We invite the readers to have a look at Fig. 1.2 for our notations in the proof.

It suffices to verify that ¢ is locally bounded from above near each point of Z. The
problem is local, so we may assume that X is a domain in C" with n > 2.

Assume that our assertion fails. Take z € Z so that there exists a sequence (x;); in
X \ Z such that

lim ¢(x,) = co.
j—)OO

Since Z has codimension at least 25, we could take a complex line L passing through
z and intersects Z only on a discrete set. After shrinking X, we may assume that

LNZ={z}.

Take an open ball B, (z,r) € X. After adding a constant to ¢, we may guarantee that
¢ <0on LNJB,(z,r). Since ¢ is upper semi-continuous, we could find an open
neighborhood U of L N dB,(z, r) such that

(,D|U < 0.

For each j > 1, take a complex line L; passing through x; and avoiding Z such that
L; — L as j — oo. Here we rely on the fact that Z has codimension at least 2. Here
the convergence is in the obvious sense. Then for large enough j, we know have

Lj ﬂ@Bn(z,r) cUu.

It follows from the sub-mean value inequality that ¢(x;) < O for large enough j,
which is a contradiction. O

Lemma 1.2.1 Let ¢ € PSH((A")") be an (S")"-invariant plurisubharmonic function.
Then ¢ is finite everywhere.

Here
AN"={zeC:0<|z] <1}

5 In fact, codimension at least 1 suffices for this step.
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Proof 1t clearly suffices to handle the case n = 1. In this case, by [ , Theo-
rem 2.12], the map

1
logr +— / o(rexp(27if)) dd = ¢(r)
0

is a convex function of logr. So, the set {r € (0, 1) : ¢(r) = —oco} is convex. But ¢
is almost everywhere finite by Proposition 1.2.3. Since ¢ is S!-invariant, ¢| (0,1) 18
almost everywhere finite. It follows from the convexity that it is everywhere finite.O

Proposition 1.2.8 (Kiselman’s principle) Ler Q C C™ x C" be a pseudoconvex
domain. Assume that for each z € C™, the set

Q,={weC":(z,w) € Q}

has the form E +iR", where E C R" is a subset. Let ¢ € PSH(Q), assume that ¢ is
independent of the imaginary part of the variable in C". Let Q' be the projection of
Q to C™. Define : Q' — [—o0, ) as follows:

v(z) = wlggfz e(z,w).

Then either ¢y = —oco or y € PSH(Q').
See [ , Theorem 7.5].

Lemma 1.2.2 Let Q C C" be a domain and Q' C Q be a subdomain. Consider
¢ € PSH(Q) and € PSH(Q'). Assume that

lim (¢(y)-¢ () =0
Q'sy—ux,
Y (y)#—co

for any x € QN 0. Define

(2) = e(2) V(2), ifze,
T e(2), ifzeQ\Q.

Then nn € PSH(Q).

Morally, this is just [ , Proposition 1.30]. But the statement in the reference is
slightly misleading, so I reproduced the proof just for clarification.

Proof See Fig. 1.3 for the notations used in the proof.
Take € > 0. We first define

(2) = 0V (Y(z) -2e), ifzeq,
e = 0(z), ifzeQ\Q.

We claim that
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Fig. 1.3 Gluing procedure

ne € PSH(Q).

By our assumption, for each x € QN dQ’, we can find an open neighborhood U, C Q
such that for any y € U, N Q’, we have ¢(y) > ¢ (y) — €. Therefore, there is an open
neighborhood U of Q N 9Q’ such that

e(y) 2¢y(y)—€, VyeUnQ.

Therefore, on the open set (Q \ Q) U U, we have n¢ = ¢ and hence 7, is plurisub-
harmonic there. It is plurisubharmonic on Q' by Proposition 1.2.1. So our claim
follows.

Next we observe that as € decreases to 0, the functions ¢ increases to 7. Therefore,
n* € PSH(Q) by Proposition 1.2.1. But observe that ; is upper semicontinuous. This
is only non-trivial on the boundary of Q’: Take x € Q N Q" and let (y;);>0 be a
sequence in Q" with limit x. Then we need to show that

Tim g (y) < (). (1.3)

We may assume that i (y;) # —oo for all i > 0 and the left-hand side of (1.3) is not
—oo. Then we can compute

Tim g (yr) < Tim g (ye) + lim (@ (y1) = () < lim @(y:) < ¢(x).

i—o0

Therefore, n = n* € PSH(Q). O
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1.3 Plurifine topology
1.3.1 Plurifine topology on domains

Let Q C C" (n € N) be a domain.

Definition 1.3.1 The plurifine topology on  is the weakest topology making all
R-valued plurisubharmonic functions on € continuous.

We want to distinguish the Euclidean topology from the plurifine topology. In the
whole book, topological notions without adjectives refer to those with respect to the
Euclidean topology. We include the symbol # in order to denote those with respect
to the plurifine topology. For example, we will say 7 -open subset, ¥ -neighborhood,
¥ -closure, etc. The F -closure of a set E C Q will be denoted by ET.

We remind the readers that in the whole book, we follow Bourbaki’s convention, a
neighborhood is not necessarily open. Similarly, an ¥ -neighborhood is not necessarily
¥ -open.

A priori, we should include Q into the notations as well, but as we will see shortly
in Corollary 1.3.1, this is usually unnecessary.

Proposition 1.3.1 The plurifine topology on Q is finer than the Euclidean topology.

Proof 1t suffices to show that the unit ball {z € C" : |z| < 1} is ¥ -open. This follows
from the observation that this set can be written as

{¥ <0} with ¢y (z) == (loglz|) vV (-1).

Example 1.3.1 Let ¢ € PSH(Q) and C € R. Then the sets {¢ > C} and {¢ < C} are
both ¥ -open.
In fact, the later case follows from Proposition 1.3.1. While the former follows

from the observation
{¢>C}={pVv(C-1)>C}.

Definition 1.3.2 A subset E C Q is thin® at x € Q if one of the following conditions
holds:

(Hx¢E;
(2) x € E and there is an open neighborhood U C Q of x and ¢ € PSH(U) such that

lim < ¢(x).
yﬂ’yeE\{x}so(y) @(x)

We say E is thin if it is thin at all x € Q.

¢ A more proper name would be plurithin. But since we will never need the classical notion of thin
sets a la Cartan in this book, we prefer omitting the prefix pluri-.



1.3. PLURIFINE TOPOLOGY 15

Remark 1.3.1 In the second case, we can always arrange that

@B\ (x})nU

is a constant. In fact, we may assume that ¢ < 0 and C < 0 is such that

lim < C < p(x).
sy lm {x}tp(y) @(x)

We let
y==0O"uvC)+1.

Then y satisfies our requirements for a smaller U.

In the second case, the function ¢ can be very much improved.

Proposition 1.3.2 (Bedford-Taylor) Consider a set E C Q and x € E. Assume that
E is thin at x, then there is ¢ € PSH(C"):

(1) ¢ is locally bounded outside a neighborhood of x;
(2) p(x) > —o0;
3) limy—wc,yEE\{x} 90()7) = —.
Proof 7By Remark 1.3.1, there is an open neighborhood U C Q of x andyy € PSH(U)
such that
Ylunevxy = -1 <y ((x) =0.
Without loss of generality, we may assume that x = 0, U is the unit ball in C".

As y is upper semicontinuous, we may choose a decreasing sequence ¢; € (0, 1)
such that ¢ (y) < 27772 when y € C" satisfies |y| < 0j. Set

Yj = exp (2~7+l log(Sj) € (0,1).

Observe that y; is also decreasing.
We let

2-J-1 . .
(|10g6_|10g|z|)v(w(z)—2 7y, ifz] <65,
0(2) = ! i

m10g|Z|, 1f|Z| 261

Observe that when |z| is sufficiently close to ¢; from below (depending on j), we
have .
_j-

mlog IZI > 2_j_2 - 2_j > W(Z) — 2_j.
J

7 The original argument in [ , Proposition 10.2] was quite intriguing: Neither the auxiliary
functions ¢;’s nor the simple computations were correct. However, I believe that Bedford—Taylor
had a correct proof in mind. Something more than a typo, but not yet a mistake, could be properly
called a thinkpo, a terminology invented by R. Berman.
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In particular, ¢; € PSH(C") and ¢ |y < 0. Moreover, we have
@;(0) =-277.

Observe that for z € U N (E \ {0}) with |z| <y}, we have ¢;(z) < -1.
We then define

Since

p(0) == > 27 > —o,

J=1 J=1

we have ¢ € PSH(C"). Moreover, fix j, for any z € E \ {0} with |z| < y;, we have

i
¢(z) < Z‘Pk(Z) <-J.

k=1

Therefore,

lim = —co.
y—x,yeE\{0} 90()7)

Lemma 1.3.1 Let E1, E; C Q. Assume that E1, E, are both thin at x € Q, then so is
Ei U E,.

Proof We may clearly assume that x € E; N E,. Take an open neighborhood U C Q
of x and ¢, ¢, € PSH(U) such that

lim (y) < @i(x), i=1,2.
y_)x’yeEi\{x}cpl(y) pi(x), i

Then ¢; + ¢, € PSH(U) and

lim + < + )
y_)x,yG(E]UEZ)\{x}(wl ©2)(¥) < 1(x) + @a(x)

In particular, E; U E; is thin at x. O

Theorem 1.3.1 (H. Cartan) Consider x € Q and a set E C Q. Assume that x € E.
Then the following are equivalent:

(1) E is an F -neighborhood of x;
(2) Q\ E is thin at x.

Proof (2) = (1). We may assume that x € m Otherwise, our assertion follows
from Proposition 1.3.1.

By Proposition 1.3.2, there is an open neighborhood U of x in  and ¢ € PSH(C")
such that

p(x) >  sup  @(y) = A
yeUN(Q\E)
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Let F = {y € Q: ¢(y) > A}. Then x € F and F is ¥ -open by Example 1.3.1.
Moreover, U N F' C E. By Proposition 1.3.1, we conclude (1).

(1) = (2). We may always replace E by smaller ¥ -neighborhoods of x. In
particular, we may assume that E has the following form

YeU:oi(y)> A, ....0m(y) > A},

where U C Q is an open neighborhood of x, and ¢, ..., ¢, are R-valued psh
functions on Q, and Ay, ..., 4,, € R. Since a finite union of thin sets is still thin by
Lemma 1.3.1, we may assume that m = 1. In this case, Q \ E is clearly thin at x. O

Theorem 1.3.2 A base of the plurifine topology on Q is given by sets of the following
form:
{x eU:¢(x) >0}, (1.4)

where U C Q is an open subset and ¢ € PSH(U).

Proof Observe that sets of the form (1.4) are ¥ -open.® By Theorem 1.3.1, it suffices
to show its complement in €2 is thin at each point of (1.4), which is obvious.

Now consider x € Q and an ¥ -open neighborhood V' C Q of x. We want to find a
set of the form (1.4) contained in V and containing x.

Write E = Q\V.Incase x € IntV, there is nothing to prove. So we may assume that
x € E. By Theorem 1.3.1, E is thin at x. By definition, there is an open neighborhood
U C Qof x and ¢ € PSH(U) such that

lim < o(x).
y_weUm(E\{x})so(y) ¢ (x)
We may assume that ¢|gny < 0 < ¢(x), Then the set {y € U : ¢(y) > 0} suffices
for our purpose. O

Remark 1.3.2 We remind the readers that in general, an #-open set is not a countable
union of sets of the form (1.4). In fact, an #-open set is not a Borel set in general.
See [ ] for a concrete example.

Corollary 1.3.1 Let Q; € Qp € C" be two non-empty open subsets. Then the
plurifine topology on Q is the same as the subspace topology induced from the
plurifine topology on €.

In particular, when we talk about an ¥ -open set U in C", we no longer have to specify
the domain Q 2 U.

Corollary 1.3.2 Let L be an affine subspace of C", then the plurifine topology on L
is the same as the subspace topology induced from the plurifine topology on C".

Proof We may assume that L = C* x {0} for some k < n. We write the coordinate z
on C" as (z/,7”") with z € CK and 7”7 € C"k,

8 This is not entirely obvious by definition, as ¢ is not defined on the whole Q.
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Consider an F-open set U C C" and x = (x’,0) € U N L. We want to show
that U N L (identified with a subset of CX) is an ¥ -neighborhood of x in L. By
Theorem 1.3.2, we may assume that there are connected open subsets U’ C C*
containing x’ and U” C C"~¥ containing 0 together with a psh function ¢ on U’ x U"’
such that

xe{(,7)eU xU":y(,7") >0} CQ.

It follows that
X e{ el :4(,00>0 cUNL.

Thanks to Proposition 1.1.1,¥/(z’, 0) is plurisubharmonic in 7’ because i (x’, 0) # —oo.
In particular, U N L is an ¥ -neighborhood of x’.

Conversely, if U € CK is an F-open subset, we claim that U x C"~¥ is F-open
in C". In fact, suppose that (x’,x”") € U x C"~*. By Theorem 1.3.1, we can find an
open neighborhood V C C¥ of x” and a psh function ¢ on V such that

x'e{yeV:p(y)>0}CU.
We define ¥/ (z’,z”) = ¢(z’). Then ¢ € PSH(V x C"~k) by Proposition 1.1.1 and
(x",x") e{y e VxC":y(y) >0} CUxC"*k,
Corollary 1.3.3 Let Q € C" be an F -open subset and x € Q. Then x has a compact
F-neighborhood contained in Q.

Proof By Theorem 1.3.2, we may assume that there is an open set U C C" and a
plurisubharmonic function ¢ on U such that Q = {y € U : ¢(y) > 0}.

Take a compact neighborhood K of x in U. Now {y € K : ¢(y) = ¢(x)/2}isa
compact  -neighborhood of x contained in Q. O

Corollary 1.3.4 Let Q € C", Q' C C" be two domains and F: Q' — Q be a
surjective holomorphic map. Then F is F -continuous.

Proof 1t suffices to show that the inverse image F~!(U) of each ¥ -open subset
U c Qis F-open. By Theorem 1.3.2, after possibly shrinking Q and Q’, we may
assume that U has the form {x € Q : ¥(x) > 0}, where ¢y € PSH(Q). Since
F*y € PSH(Q') by Proposition 1.1.4, we find that

FYU)={yeQ : Fy(y) >0}

is F -open. O

1.3.2 Plurifine topology on manifolds

Let X be a complex manifold.
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Definition 1.3.3 The plurifine topology on X is the topology with a base consisting
of sets of the form F~'(V), where U C X is an open subset and F: U — Qs a
biholomorphic morphism with Q € C" is a domain for some n € Nand V C Q is
¥ -open.

Note that these sets form a topological base thanks to Corollary 1.3.4. Moreover, it
also follows from Corollary 1.3.4 that the plurifine topologies on domains defined in
Definition 1.3.3 and in Definition 1.3.1 coincide.

We refer to Definition 1.5.1 for the notion of quasi-plurisubharmonic functions.

Proposition 1.3.3 Let ¢ € QPSH(X), then ¢|{p1-w) is F -continuous.

Proof The problem is local, so we may assume that X C C" is a domain and
¢ =¥ + g, where y € PSH(X) and g € C*(X) and |g| < C for some C > 0. Take
an open interval (a, b) C R, it suffices to show that

U={xeX:a<px)<bl={xeX:a-gkx) <vx)<b-gx)}
is F-open. Take x € U, we can find an open neighborhood V of x in U such that

sup (a —g(y)) <¥(x) < ynelg (b-2g().

yev
Therefore,
{z ev: ;lelg (a-g(y) <¥(z) < ;25 (b - g(y))}
is an 7 -open neighborhood of z in U. We conclude that U is ¥ -open. O

Corollary 1.3.5 Let ¢, € QPSH(X). Then the set

freX:pl)>yx)}
is F-open.

Proof 1t suffices to show that for any x € X such that ¢(x) > ¥ (x), the same holds
on an ¥ -neighborhood U of x. Observe that ¢(x) # —oo. If ¥(x) # —oo, then it
suffices to apply Proposition 1.3.3. Otherwise, take

U={yeX:p(y)>px)-1}n{ye X :y(y <e) -1}

Lemma 1.3.2 Let Z C X be a pluripolar subset. Then

Proof The problem is local, so we may assume that X is a domain in C" and
Z = {¢ = —oo} for some ¢ € PSH(X). We need to show that {¢ > —oco} is ¥ -dense.

Let x € X be a point with ¢(x) = —oco and U C X be an ¥ -open neighborhood of
x in X. We need to show that U N {¢ > —o0} # @.
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Thanks to Theorem 1.3.2, after shrinking U, we may assume that there is y €
PSH(X) suchthat U = {y > 0}. Observe that U is not a pluripolar set: Otherwise, ¥y <
0 almost everywhere by Proposition 1.2.4, and hence everywhere by Proposition 1.2.6.
So ¢|y £ —c0. We conclude. i

Corollary 1.3.6 Let ¢,y € QPSH(X). Set
W={xeX:px)=-co} orW={xe€X:y(x)=-oc0}.
Then for any pluripolar set Z C X, we have

;l\lvr;(so —¥) = X\Svlégz(so -¥), )}I\lva(so —y) = X\ivr;fuz(w ).

In particular, taking = 0, we find that

Sup ¢ = sup .
X\Z b'¢

Proof This is an immediate consequence of Lemma 1.3.2 and Proposition 1.3.3. O

In the literature about pluripotential theory, one often finds the careless expressions
like supy (¢ — ¢). The issue is that ¢ — i is not defined everywhere, and hence this
expression does not make sense if you read it literally. Corollary 1.3.6 tells you that
you do not have to worry too much about the details on a pluripolar set. In other
words, sup and inf could always be understood as a kind of essential supremum and
essential infimum modulo pluripolar sets.

1.4 Lelong numbers and multiplier ideal sheaves

Let X be a complex manifold.

Definition 1.4.1 Let ¢ € PSH(X) and x € X. The Lelong number v(¢, x) of ¢ at x
is defined as follows: Take an open neighborhood U of x in X and a biholomorphic
map F: U — Q, where Q is a domain in C". Then we define

v(p,x) = sup{y € Ruo: plu(F7' () < ylogly - F(x)[* +O(1) asy — F(x)}.
(1.5)

Observe that v(¢, x) does not depend on the choices of U and F. Furthermore, it
follows from Proposition 1.4.1 below that the supremum in (1.5) is a maximum.

Remark 1.4.1 Our definition of the Lelong number is not standard. It differs from the
standard definition by a factor of 2. As a mnemonic, just remember

v (log |z|2,0) =1 (instead of 2).
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Proposition 1.4.1 Let ¢ € PSH(B,(0, 1)). Then

su )
v(p,0) = lim —pB"'(O’r)

lim — s € [0, 00). (1.6)

Proof 1t follows from Proposition 1.1.2 that the limit in (1.6) exists and is finite. We
shall denote the limit by v’ (¢, 0) for the time being.
We first observe that by Proposition 1.1.2,

e(x) < v (¢,0) log x| + sup ¢ (1.7)
B, (0,1)

when x € B, (0, 1). In particular, v(¢,x) > v/ (¢, 0).

In order to argue the reverse inequality, we may assume that v(¢, x) > 0.

Next observe that by (1.5), for each small enough € > 0, we can find r¢ € (0, 1)
and C > 0 so that for all x € B,,(0, rg), we have

@(x) < (v(,0) —€) log |x|*> + C.
It follows that v/ (¢, 0) > v(¢p,0) — €. Letting € — 0+, we conclude. O

We recall Siu’s semicontinuity theorem.

Theorem 1.4.1 Let ¢ € PSH(X), then the map X > x — v(g,Xx) is upper semi-
continuous with respect to the Zariski topology.

For an elegant proof we refer to [ , Theorem 2.10].

Proposition 1.4.2 Let ¢,y € PSH(X), 1 € Rog and x € X, then

v(e Vi, x) =min{v(¢,x), (¥, x)},
V(e +y,x) =v(e,x) +v(¥,x),
v(dp,x) =Av(p, x).

Proof All properties are local, so we may assume that X = B, (0, 1) for some n € N.
All properties follow directly from Proposition 1.4.1. O

Corollary 1.4.1 Let (¢;)ic; be a non-empty family in PSH(X) locally uniformly
bounded from above and x € X, then

v (sup*goi,x) =inf v(¢;, x).
iel iel
Proof We may assume that X is connected. Write ¢ = sup;.;*¢;. Then ¢ € PSH(X)
by Proposition 1.2.1.

We observe that the < inequality is trivial. It remains to argue the reverse inequality.

It follows from Proposition 1.2.2 that we may assume that 7 is countable. When [ is
finite, this is already proved in Proposition 1.4.2. Otherwise, we may further assume
that / = Z.. Thanks to Proposition 1.4.2, we may further assume that (¢;);ez_, is
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an increasing sequence. Furthermore, since the problem is local, we may assume that
X = B,(0,1) for some n € N and (¢;); is uniformly bounded from above. In this
case, by (1.7), we have

¢i(x) < v(pi,0) log|x|* +C

forall x € B,(0,1) and all i > 1 and C is a constant independent of i. In particular,
thanks to Proposition 1.2.5, for almost all x € B, (0, 1), we have

@(x) < lim v(g;,0) log |x|* + C.
1—00
Thanks of Proposition 1.2.6, the same holds for all x and hence

v(p,x) 2 lim v(g;, x).
1—00

Definition 1.4.2 Let ' C X be a non-empty analytic subset. Then we define the
generic Lelong number of ¢ along F as

v(p, F) == min v(¢p, x).
xeF
Note that the minimum is obtained by Theorem 1.4.1.

Definition 1.4.3 Let ¢ € PSH(X). Let E be a prime divisor over X (see Defini-
tion B.1.1). Take a proper bimeromorphic morphism n: ¥ — X from a complex
manifold Y such that E is a prime divisor on Y, then we define the generic Lelong
number of ¢ along E as

v(p,E) = v(x*g,E).

It follows from Theorem 1.4.1 that v(¢, E) does not depend on the choice of 7.

Definition 1.4.4 Let ¢ € PSH(X), the multiplier ideal sheaf I (¢) of ¢ is by
definition the ideal sheaf given by

LU, Z(p) = {f € Ox(U) : |f* exp(~p) € Ly, ()}
for any open subset U C X.

Remark 1.4.2 This definition is different from a few standard references, where
instead of exp(—¢), they use exp(—2¢). The conventions adopted in the current book
is the most convenient one as far as I know. It simplifies a number of formulae. As a
mnemonic, for any real 1 > 0, we have

I (Alog|z|*) = Oc(=|]{0}),

where z is a variable in C and {0} is the divisor defined by 0 € C.
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Proposition 1.4.3 (Nadel) Let ¢ € PSH(X). Then I () is coherent.
See [ , Proposition 5.7].

Theorem 1.4.2 Let ¢,y € PSH(X), then

I(e+y) S I(p)-I(Y).

See [ , Theorem 14.2].
The two invariants are related by the following simple result:

Proposition 1.4.4 Let ¢ € PSH(X) and E be a prime divisor over X. Then
1
v(p,E) = klim e ordg I (ko). (1.8)

See [ , Proposition 2.14].

We remind the readers that this particular form of the formula is compatible with
our conventions of v and 7. As a consistency check, consider ¢ = log |z|> with z € C
and E is the divisor defined by O € C. Then both sides of (1.8) are equal to 1. See
Remark 1.4.1 and Remark 1.4.2.

Also observe the following simple lemma:

Lemma 1.4.1 Let x € X and ¢ € PSH(X). Let n: Y — X be the blow-up of X at x
with exceptional divisor E. Then

v(g,x) =v(g, E),

See [ , Corollaire 1.1.8].
Conversely, the information of the generic Lelong numbers determines the multi-
plier ideal sheaves:

Theorem 1.4.3 Let ¢ € PSH(X). Let x € X and f € Ox . Then the following are
equivalent:

(D) f e I(p)x
(2) there exists € > 0 such that for any prime divisor E over X such that x is
contained in the center of E on X, we have

ordg(f) = (1 +€)v(p, E) — %AX(E). (1.9)

In case ¢ has analytic singularities and ©: Y — X is a log resolution with finitely
many exceptional divisors {E;} whose centers on X contain x, one may replace (1.9)
by

OI'dEl. (f) > V((,D, Ei) - %Ax(Ei) Vi. (1.10)

Here Ax denotes the log discrepancy. We refer to [ , Corollary 10.18, Proposi-
tion 10.12] for the proof and the precise definition of Ax. The formula (1.9) differs



24 CHAPTER 1. PLURISUBHARMONIC FUNCTIONS

from that in Boucksom’s notes: The coefficient % in front of Ax(E) arises from our
convention for v and 7.
The notion of analytic singularities is recalled in Section 1.6.

Theorem 1.4.4 (Guan-Zhou) Let ¢,y; € PSH(X) (j € Zso) such that ; is an
increasing sequence converging to ¢ almost everywhere. Then for any x € X, the
germs satisfy

I(‘l’j)x =TI (p)x
when j is large enough.

See [ s ] for the proof.

Proposition 1.4.5 Let n: Y — X be a smooth morphism between complex manifolds.
Assume that ¢ € PSH(X), then

I(n*¢)=n"1I(yp).

Proof 1t follows from [ , Théoreme 3.10] that locally 7 can be written as the
composition of an étale morphism and a projection. It suffices to handle the two cases
separately.

Recall that in the complex analytic setting, an étale morphism is locally biholo-
morphic, so there is nothing to prove in this case.

Next, assume that ¥ = X X U, where U C C" is a domain and 7 is the natural
projection. It follows from Fubini’s theorem that

I(r"¢) Cn'I(p).

The reverse inequality is proved in [ , Proposition 14.3]°. O

Definition 1.4.5 Given a coherent ideal sheaf 7 on X, the restriction Resy I is the
inverse image ideal sheaf given by

Resy I = I /(I N Iy), (1.11)

where Jy is the ideal sheaf defining Y.

In the literature, it is common to denote this sheaf by the misleading notation 7 |y.
There is a natural morphism

it =T/(I Iy) - Resy I, (1.12)

where iy : Y — X is the inclusion.
Theorem 1.4.5 (Ohsawa-Takegoshi) Let Y be a connected submanifold of X and
¢ € PSH(X). Assume that ¢|y # —co, then

I(ply) < Resy I (¢).

9In[ , Proposition 14.3], Demailly used the highly non-standard notation f*7 (¢) to denote
the image of f*7 (¢) — Ox, even when f is not flat.
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See [ , Theorem 14.1].

1.5 Quasi-plurisubharmonic functions

In practice, it is important to consider a variant of plurisubharmonic functions. We
will fix a complex manifold X.

Definition 1.5.1 Let 0 be a closed real smooth (1, 1)-form on X.

A O-plurisubharmonic function on X is a function ¢: X — [—o0, ) such that for
each x € X and each open neighborhood U of x in X satisfying the condition that
0 = dd°g for some smooth function g on U, we have g + ¢|y € PSH(U). The set of
6-psh functions on X is denoted by PSH(X, 6).

A quasi-plurisubharmonic function on X is a function ¢: X — [—0c0, c0) such
that there exists a smooth closed real (1, 1)-form 6’ on X such that ¢ € PSH(X, 8”).
The set of quasi-plurisubharmonic functions on X is denoted by QPSH(X).

There is a natural non-strict partial order on QPSH(X) defined as follows:

Definition 1.5.2 Assume that X is compact. Given ¢, € QPSH(X), we say that ¢
is more singular than  and write ¢ < '° if there is C € R such that ¢ < ¢ + C. We
also say ¥ is less singular than ¢ and write ¢ < .

Incase ¢ < ¢ and ¥ < ¢, we say ¢ and ¢ have the same singularity type. We
write ¢ ~ ¥ in this case.

When X is not compact, one can still define similar notions, but the generalization is
not unique, and we shall not consider them in this book.

Remark 1.5.1 The proceeding results concerning plurisubharmonic functions can be
extended mutatis mutandis to quasi-plurisubharmonic functions. We will apply these
extensions without further explanations.

Proposition 1.5.1 Assume that X is compact. Let 0 be a closed real smooth (1, 1)-form
on X. Then for any a,b € R, a < b, the set
{90 € PSH(X,0) : supy € [a, b]}
X
is compact with respect to the L'-topology. Moreover, ¢ supy ¢ is L!-continuous
for ¢ € PSH(X, 6).
This is an immediate consequence of [ , Proposition 8.5, Exercise 1.20].

Remark 1.5.2 More generally, if K C X is a closed non-polar subset. Then

{(p € PSH(X,0) : supy € [a, b]}
K

10 Some people write ¥ < .
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is relatively compact with respect to the L'-topology. See [ , Corollary 4.3].

Proposition 1.5.2 Assume that X is compact. Let 0 be a closed real smooth (1, 1)-form
on X and E be a prime divisor over E. Then

sup{v(p,E) : ¢ € PSH(X, 6)} < 0.

Proof 1t follows from the proof of Corollary 1.4.1 that v(e, E) is upper semi-
continuous with respect to the L'-topology on PSH(X, 6). Thus, the desired upper
bound follows from Proposition 1.5.1. O

Proposition 1.5.3 Let n: Y — X be a proper bimeromorphic morphism from a
compact Kahler manifold Y. Let 6 be a closed real smooth (1, 1)-form on X. Then
the pull-back gives a bijection

7" PSH(X, 6) — PSH(Y, 7°6).

This follows from a more general result Theorem B.1.1.

1.6 Analytic singularities

The simplest type of plurisubharmonic singularities is given by the so-called analytic
singularities. The notion is fairly subtle and there are several mutually incompatible
definitions in the literature.

Let X be a complex manifold.

Definition 1.6.1 We say ¢ € QPSH(X) has analytic singularities if for each x € X,
we can find an open neighborhood U of x such that ¢|y has the form:

clog(|fil*+--+|fnl?) +R, (1.13)

where fi, ..., f; are holomorphic functions on U, ¢ € Q¢ and R is a bounded
function on U.
When R can be taken to be smooth!', we say ¢ has neat analytic singularities.
Suppose that there is a coherent ideal 7 C Ox on X such that we can choose U so
that the f1, ..., fy can be chosen as the generators of I'(U, ') and c is independent
of the choice of U, we say ¢ has analytic singularities of type (¢, I).

Each potential with analytic singularities has a type. The type is not uniquely
determined. We refer to [ ] and [ ] for the details.

Proposition 1.6.1 Let ¢, € QPSH(X) be potentials with analytic singularities,
then so are A (A € Qsq), ¢+ and ¢ V .

' The decomposition (1.13) is highly non-unique. Here we mean for any x, there is an open
neighborhood U and a decomposition of the form (1.13) with R smooth. In the non-trivial cases, R
cannot be smooth for all decompositions (1.13).
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Proof The Ay assertion is trivial. The Vv assertion is proved in [ , Proposi-
tion 4.1.8]. The addition assertion is easy and is left to the readers. O

Definition 1.6.2 Let D be an effective Q-divisor'? on X. We say ¢ € QPSH(X) has
log singularities (along D) on X if for each x € X, there is an open neighborhood U
of x such that

(1) D|y has finitely many irreducible components and can be written as

N

Dly = ZaiDi

i=1

with D; being prime divisors on U, a; € Q~¢ and there is a holomorphic function
s; on U defining D;, and
(2) we have

N
¢lu=a; ) loglsil® +R, (1.14)
i=1

where R is a bounded function on U.
By Proposition 1.6.1, ¢ has analytic singularities.

Lemma 1.6.1 Suppose that 0 is a closed smooth real (1, 1)-form on X, a compact
Kdhler manifold and ¢ € PSH(X, 0). Suppose that ¢ has log singularities along an
effective Q-divisor D on X. Then the cohomology class [0] — [D] is nef.

Moreover, if in addition 0, is a Kdihler current’3, then the cohomology class
[6] — [D] is ample.

Proof The first assertion follows immediately from the fact that R in (1.14) has
bounded coefficients.
The second assertion follows immediately from the first. O

The following proposition follows immediate from the definitions:

Proposition 1.6.2 Let n: Y — X be a proper bimeromorphic morphism from a
complex manifold Y. Suppose that ¢ € QPSH(X) has analytic singularities (resp. has
log singularities along an effective Q-divisor D). Then nt* ¢ has analytic singularities
(resp. has log singularities along n*D).

Definition 1.6.3 Let ¢ € QPSH(X) be a potential with analytic singularities. A log
resolution of ¢ is a modification 7: ¥ — X such that 7% has log singularities.

Theorem 1.6.1 Assume that X is compact. Suppose that ¢ € QPSH(X) has analytic
singularities. Then there is a log resolution of .

For a proof, we refer to the arguments on [ , Page 104].

12 Divisors and Q-divisors are implicitly assumed to have locally finite coefficients as usual.
13 That is, there is a Kéhler form w on X such that 6, > w in the sense of currents.
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Definition 1.6.4 Let X be a compact Kihler manifold and 6 be a closed real smooth
(1,1)-form on X. Consider ¢ € PSH(X, 0). A sequence (¢;) jez., in QPSH(X) is
quasi-equisingular approximation of ¢ if

(1) ¢; has analytic singularities for each j;

(2) ¢; is decreasing with limit ¢;

(3) there is a decreasing sequence €; > 0 with limit 0 and a Kéhler form w on X
such that ¢; € PSH(X, 0 + €;w);

(4) for each A’ > A > 0, there is j > 0 such that

I (X)) CI(Agp).
We also say 6, is a quasi-equisingular approximation of €.

Definition 1.6.5 Let 7 C Ox be a coherent ideal sheaf and ¢ € Q.. A function
¢ € QPSH(X) is said to have gentle analytic singularities (of type (c, 1)) if

(1) ¢ has analytic singularities of type (c, 7 );

(2) e®/¢: X — Ry is a smooth function;

(3) there is a proper bimeromorphic morphism 7: X — X from a Kihler manifold
X and an effective Z-divisor D on X such that one can write 7*¢ locally as

' = clog|g|* + h,
where g is a local equation of the divisor D and / is smooth.

Theorem 1.6.2 Let X be a compact Kdhler manifold and 0 be a closed real smooth
(1, 1)-form on X. Then any ¢ € PSH(X, 0) admits a quasi-equisingular approxima-
tion (@;) jez.-

Moreover, we can guarantee that for all j > 0, ¢; has gentle analytic singularities
of type (277,1(2/¢)).

We refer to [ ] for the proof.
Quasi-equisingular approximations are essentially unique in the following sense:

Proposition 1.6.3 Let X be a compact Kdhler manifold and 0 be a closed real
smooth (1, 1)-form on X. Consider ¢ € PSH(X, 6). Let (¢;); and (;); be two
quasi-equisingular approximations of ¢. Then for any € > 0 and any j > 0, we can
find ko > 0 such that for any k > ko, we have

Y 2 (1-€)p;.
See [ , Corollary 4.1.7].

Definition 1.6.6 Assume that X is compact. Let ¢ € QPSH(X) be a potential with
analytic singularities. Then we define Z.,(¢) as the ideal sheaf consisting of germs f
of holomorphic functions such that | f|?> exp(—¢) is locally bounded.

Lemma 1.6.2 Assume that X is compact. Let ¢ € QPSH(X) be a potential with
analytic singularities. The sheaf I.,(¢) is a coherent sheaf.
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Proof By Theorem 1.6.1, we may find a modification 7: ¥ — X such that 7*¢ has
log singularities. Observe that

Io(p) = I (n"p),

so we may replace X and ¢ by Y and 7" ¢ and assume that ¢ has log singularities
along an effective Q-divisor D. We decompose D into its irreducible components:

N
D = ZaiDi.

i=1

In this case, observe that

N
Io(g) = Ox (—Z (fa:1Dy)
i=1

is clearly coherent. O

Lemma 1.6.3 Assume that X is compact. Let ¢ € QPSH(X) be a potential with
analytic singularities. Then for any € > 0, we can find ko > 0 such that for each
k > ko, we have

T (k(1+e€)p) C Iu(ky).

See [ , Proposition 4.1.6].

Theorem 1.6.3 Let X be a connected compact Kihler manifold and Y C X be a
connected submanifold. Take a Kdhler form w on X and ¢ € PSH(Y, w|y) such that
wly +dd®y is a Kahler current and that e¥ is a Holder continuous function on V.
Then there exists ¢ € PSH(X, w) satisfying

M @ly =¢;
(2) wg is a Kdihler current.

In addition, if ¢ has analytic singularities, then so does §.

See [ , Theorem 6.1].

1.7 The space of currents

Let X be a connected compact Kihler manifold of dimension n and a € H"! (X, R).

Definition 1.7.1 Let Y be a complex manifold and m € N. We say an (m, m)-current
T onY is positive** if either m > n or for any smooth (1, 0)-forms S8, ..., Bn—m On
X, the measure

14 This notion is sometimes known as weak positivity.
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T/\iﬁ] /\E/\"'Aiﬁnfm/\ﬁnfm

is positive.

The basic properties of positive currents can be found in [ , Section III.1].
We remind the readers that a positive current is necessarily real.

Definition 1.7.2 We say « is pseudo-effective if there is a closed positive (1, 1)-current
in a.

We say « is big if there is a closed positive (1, 1)-current 7' in @ dominating a
Kaihler form. Such currents are called Kdhler currents.

Definition 1.7.3 We introduce the following notations:

(1) Z+(X) denotes the space of closed positive (1, 1)-currents on X;
(2) given a pseudo-effective (1, 1)-class @ on X, we write Z.(X, ) for the set of
T € Z,(X) such that [T] = a.

Here [T'] denotes the cohomology class represented by 7.
Definition 1.5.2 has a natural analogue for currents.

Definition 1.7.4 Given 7,7’ € Z,(X), we write T < T’ and say T is more singular
than 77 if when we write T = 0 + dd°p, T” = 6’ + dd“¢’, we have ¢ < ¢’. We write
T~T ifT <T and T’ < T. In this case, we say T and T’ have the same singularity
type.

Remark 1.7.1 Observe that
Z+(X)/~= QPSH(X)/~

canonically. The correspondence sends the class of a closed positive current 6, =
0 + dd®yp to the class of ¢.

We will adopt the following convention: Whenever we have a notion for quasi-
plurisubharmonic functions which depends only on the singularity type, we use the
same notation and the same definition for closed positive (1, 1)-currents.

Example 1.7.1 An an important example of Remark 1.7.1, given T = 6 + dd¢ €
Z+(X) and x € X, we define

v(T,x) =v(g,x). (1.15)

Again, as Remark 1.4.1, this differs from the definitions in some literature by a factor
of 2. But given our normalization
ad = 93
Y
(1.15) seems to be the most natural choice.
The key example to keep in mind is the following:



1.8. PLURISUBHARMONIC METRICS ON LINE BUNDLES 31

where [0] is the current of integration at 0 € P'. In fact, as a simple application of
the Green’s second identity, one can verify that

L6510g 2| = 6o,
2r

where the right-hand side is the Dirac delta distribution at 0 € C.

Definition 1.7.5 Given T € Z,(X). We represent T as 6 + dd°p for some closed
smooth real (1, 1)-form 6 on X and ¢ € PSH(X, 0), then the polar locus of T is
defined as the set {¢ = —oco}.

It is clear that the polar locus of T is independent of the choices of 6 and ¢.

Lemma 1.7.1 (Siu’s decomposition) Let E be a prime divisor on X. Then for any
closed positive (1,1)-current T on X, the difference T — v(T,E)[E] is a closed
positive (1, 1)-current.

Here [E] is the current of integration associated with E."5 See [ , Page 386,
Example 1] for the precise definition. See [ , Lemma 2.17] for the proof.

It is helpful to check that our conventions are always consistent: There is no extra
factor of 2 or 1/2 anywhere. One could verify this using our favorite example as in
Example 1.7.1.

1.8 Plurisubharmonic metrics on line bundles

A natural source of quasi-plurisubharmonic functions is the metrics on line bundles.
Let X be a connected Kihler manifold and L be a holomorphic line bundle on X.
Usually, we do not distinguish L from the associated invertible sheaf Ox (L).

Definition 1.8.1 Let V be a 1-dimensional complex linear space. A Hermitian form
honVisamap h: VXV — C such that

(1) h is C-linear in the second variable and conjugate linear in the first, and
(2)

[v[? = h(v,v) € Rsg
for each v € V' \ {0}.
We usually identify /& with the quadratic form V — R sending v to |v|i. We write
vl = |v|%1 forany v € V.

The singular Hermitian form on V is the map V — {0, oo} sending 0 to 0 and
other elements to oo.

15 We have also used [ E] to denote the cohomology class of [ E]. This should not lead to any
confusion.
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Definition 1.8.2 Let V| and V, be 1-dimensional complex linear spaces. Given two
maps h;: V; — [0, 00] (i = 1, 2) each of which is either a Hermitian form or a singular
Hermitian form. Then we define the fensor product hy ® hy: V| ® V, — [0, oo] as
follows:

(1) If either h; or hy is singular, we define i1 ® h; as the singular Hermitian form;
(2) otherwise, define 71 ® hy as the usual tensor product: For any v € Vi, v, € Vs,
set
hi ® ha(vi ® v2) = hy(vi)ha(v2).

Definition 1.8.3 A Hermitian metric h on L is a family of Hermitian forms (/y)xcx,
such that

(1) for each x € X, hy is a Hermitian form on L,, and
(2) for each local section s of Ox(L), the map x +— [s(x)|p, is smooth.

The pair (L, k) is called a Hermitian line bundle. We shall write dd°h = ¢1 (L, h)®
for the first Chern form of 27, normalized so that

[e1(L, W] = c1(L).

The map x — |s(x)|,, will be denoted by [s|,.
To be more precise, if U € X is an open subset on which L admits a nowhere
vanishing holomorphic section s, then we define

(dd°h)|y = dde (—log |s|i) .

Proposition 1.8.1 (Lelong-Poincaré) Let s € HY(X, L) be non-zero and h be a
Hermitian metric on L. Then

c1(L, h) +dd log |s|? = [Z(s)], (1.16)

where Z(s) is the zero divisor defined by s and [e] denote the associated current of
integration.

See [ , (3.11)]. Again, we want to check that our conventions are compatible
by investigating the following simple example.

Example 1.8.1 Let X = P! and L = Opi(1). The homogeneous coordinates on P!
will be denoted by [Xp : X;]. Ata point x = [Xp : X;] € P', the fiber L, is identified
with the dual of [x], where [x] C C? is the line represented by x.

In order to introduce the Hermitian metric 4 on L, we fix the standard Hermitian
norm || e || on C2. Then given A € L, = [x]", we introduce

16 The unusual notation dd°/ is sometimes referred to as the Goteborg notation because it is widely
used by the complex geometriers in Goteborg (usually spelled as Gothenburg in English, the second
largest (yet very poorly known) city in Sweden). As I identify myself as Goteborgare, 1 do not feel
guilty about this notation.

17 In the literature, people sometimes define the curvature form of (L, h) as ©®), = —2xidd®h.
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[A(%)]
[An, = ==,
lI%1]

where ¥ is an arbitrary non-zero element in [x]. The readers can easily verify that A is
indeed a Hermitian metric on L. The Hermitian metric % is known as the Fubini—Study
metric.

A holomorphic section s € HO(X, L) can be formally identified with a linear form
aoXo + a1 X1: At x € X, the corresponding linear form on [x] is given by sending
(Xo, X1) to apXp + a1 X;.

Next we compute dd°/ = ¢ (L, k). For this purpose, we cover P! by C = P!\ {c0}
and P' \ {0}. Both are holomorphic coordinate charts with coordinate function
7= Xo/X; and z~! = X| /X, respectively.

We claim that on C,

dd®h = dd® log(1 +|z]%). (1.17)

In fact, let ¢ be the nowhere vanishing section of L on C corresponding to X;. Then
for z € C, we have an obvious lift (z,1) € [z], so

2
t =—.
| |h(Z) |Z|2+1

So (1.17) follows.

In order to obtain a non-trivial case of the Lelong—Poincaré formula, we need to
consider a section which vanishes at some points in C. Let s be the holomorphic
section of L corresponding to Xp. Then

|z|?

|z] +1

log |s[7,(2) = log

for any z € C using the same argument as above. Therefore, we find that restricted to
C, we have
c1(L, h) +dd°log |s[;, = dd° f = [0],

where f(z) = log|z|*. So the Lelong—Poincaré formula (1.16) is verified in this case.
The Kihler form dd°4 on P! is also known as the Fubini-Study metric.

Definition 1.8.4 A (singular) plurisubharmonic metric (or psh metric for short)'® h
on L is a family (4, ),ex such that

(1) for each x € X, hy is either a Hermitian form on L, or the singular Hermitian
form on L,, and

(2) there is a Hermitian metric sy on L and ¢ € PSH(X, c;(L, hg)) such that for
each x € X and each v € L,, we have

18 Tn the literature, people usually refer to such metrics as positively curved singular Hermitian
metrics. 1 dislike this terminology, as having positive curvature only determines a plurisubharmonic
metric almost everywhere, not everywhere.
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0, ifv=0;

2
v|? = 1.18
IVl {|v|i0xe_‘p("), ifv#0. (1.18)

The (first) Chern current of h is by definition
dd®h = Cl(L, /’l) = CI(L, /’lo) + ddcgo.

We shall write the plurisubharmonic metric defined by (1.18) as hgexp(—¢)®. As
the readers can easily verify, our conventions guarantee that ¢ (L, /) does not depend
on the choice of hyg.

Remark 1.8.1 In the literature, some people prefer the convention that in (1.18),
neither side has the square. Our choice seems to be the most natural one given our
normalization of dd°.

Observe that once a Hermitian metric Ao on L is given, the construction in (2)
gives a bijection between PSH(X, ¢ (L, hy)) and the set of plurisubharmonic metrics
on L.

Definition 1.8.5 Given two holomorphic line bundles L, L, on X and plurisubhar-
monic functions /1 on L and &, on L;, we define the tensor product plurisubharmonic
metric h; ® hp on L ® L, as follows: for each x € X, define

(hl ® hZ)x = hl,x ® h2,x
in the sense of Definition 1.8.2.

We can easily verify that 7| ® h; is indeed a plurisubharmonic metric on L ® L.

Example 1.8.2 We continue with our example Example 1.8.1. Let X = P' and
L = Oz1(1). Let h° denote the Fubini-Study metric on L as defined in Example 1.8.1.
Note that we have changed the notation from & to h°. Let w = dd°A°.

We construct ¢ € PSH(X, w) as follows: On C, define

|z|?
1+ |22

¢(z) = log (1.19)
Then ¢ € PSH(C, w|c) by (1.17). Setting ¢(c0) = 0, we can easily verify that
¢ € PSH(P!, w).2°

We then get a plurisubharmonic metric h° exp(—¢). To be more explicit, kg is
singular, A, = h%, while for z € C\ {0} and 1 € [z]", we have

Az, 1)
|A|p, =
|z

In the remaining of this section, we assume that X is compact.

19 Be careful, this is not h(z) exp(—), as I prefer to think of & as a quadratic form.
20 This can also be verified using the Grauert—-Remmert extension theorem Theorem 1.2.1.
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Definition 1.8.6 Assume that L is a pseudoeftective line bundle on X. A Fubini—Study
metric on L is a psh metric 4 on L of the following form: There exists m € Z-,
finitely many sections sy, ..., Sy € HO(X, L™)and Ay, ...,Ax € Q such that for any
local nowhere vanishing holomorphic section s of L, we have

|s|%l = min
i=1

We write FS(L) for the set of Fubini—Study metrics on L.

If we fix a reference smooth Hermitian metric hg on L with 8 = dd®hg, we can write
h = hg exp(—¢) with

1 2
p= max (log |sl-|h6,, +/l,-) .

.....

Similarly, we write FS(X, 8) for the set of such functions.

Definition 1.8.7 Assume that L is a pseudoeffective line bundle on X. The set IEE(L)
of generalized Fubini metrics is the smallest subset of PSH(L) containing FS(L)
which is closed under the following two operations:

(1) Q-convex combinations: if i, hy € I?§(L) and t € (0, 1), then
ht ® hi™" € FS(L);
(2) minima: if A1, ha € FS(L), then
min{hy, ho} € FS(L).

We shall need the following Ohsawa—Takegoshi type extension theorem.

Theorem 1.8.1 Assume that L is big and T is a holomorphic line bundle on X.
Fix a Hermitian metric hr on T. Take a Kdhler form w on X. Let Y C X be a
connected submanifold of dimension m. Suppose that ¢ € PSH(X, 6 — dw) for some
6 > 0and ¢|y # —co. Then there exists ko(5, ht) > 0 such that for all k > ko and
s € H(y, T®L|;§®I(kg0|y)) 21 there exists an extension § € HO(X, T® L*®1 (ky))
such that

/X(hk ® hy)(5,5)e ¢ w" < ny(hk ® hr)ly (s, s)e kel o,

where C > 0 is an absolute constant, independent of the data (¢, s, k).

This is a special case of [ , Theorem 1.4].

Proposition 1.8.2 Let (L, h) be a Hermitian line bundle on X and set 0 = ¢1(L, h).
Let (T, ht) be a Hermitian line bundle on X. Assume that ¢ € PSH(X,0) is a

2 Here and in the sequel, we usually abbreviate ®k in the super-index as k to save spaces.
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potential with analytic singularities such that 0, is a Kdihler current. Fix a Kihler
form w on X. For each k > 1, we let

1
o = —log sup h* ® hr (s, s). (1.20)
k seHO(X,LFQT)
/X h*@hr(s,s)e ke wn<1
Then for any k > 0,
Y = i 2 aky,

where ay € (0, 1) is an increasing sequence with limit 1.

Note that when £ is large enough, ¢; € PSH(X, 8). We refer to [ , Remark 2.9]
for the proof.



Chapter 2
Non-pluripolar products

Pour exprimer d’une manieére frappante que le monument que

J éleve sera placé sous 'invocation de la Science, j’ai décidé
d’inscrire en lettres d’or sur la grande frise du premier étage et a
la place d’honneur, les noms des plus grands savants® qui ont
honoré la France depuis 1789 jusqu’a nos jours.

— Gustave Eiffel, 1889

¢ Gaspard Monge, Comte de Péluse (1746—1818), known oddly
by his real family name instead of de Péluse, is one of the 72
names scribed on the Eiffel tower. He was both a mathematician
and a politician, active mainly after the French Revolution.

Let X be a complex manifold and ¢1, . .., ¢, € PSH(X) (p € N). When the functions
®1,...,¢p are all smooth, there is an obvious definition of a differential form

ddei A -+ AddCe, (2.1)

by the usual differential calculus. The product is usually known as the Monge—Ampére
product. It is of interest to extend this construction to the case where the ¢;’s have
worse regularities.

There are a number of different approaches to this problem. In this book, we
will choose the so-called non-pluripolar theory due to Bedford, Taylor, Gued;,
Zeriahi, Boucksom and Eyssidieux. The reason is that the non-pluripolar theory is
the only known theory satisfying the following two features: It is defined for all psh
singularities (at least in the global setting) and it satisfies a monotonicity theorem.

We will recall the Bedford—Taylor theory in Section 2.1 and the non-pluripolar
theory in Section 2.2.

Some key properties of the non-pluripolar products are recalled in Section 2.3.

The readers who are not familiar with this notion are encouraged to read the
original article [ ].

2.1 Bedford-Taylor theory

Let X be a complex manifold and ¢1, . .., ¢, € PSH(X) (p € N) be locally bounded
plurisubharmonic functions on X!. In this case, there is a canonical definition of the
Monge—Ampere type product (2.1).

! In the literature, some people use PSH(X) N L;° (X) to denote the set of such functions, which is

loc
an abuse of notation. However, this is legitimate thanks to the rigidity Theorem 1.1.3.

37
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Definition 2.1.1 We define the closed positive (p, p)-current (2.1) on X as follows:
We make an induction on p > 0. When p = 0, we define (2.1) as the (0, 0)-current
[X]. When p > 0, we let

dd¢i A -+ AddCgp = dd® (1 dd°@a A -+ Add°g)) .
We call this product the Bedford—Taylor product .

Remark 2.1.1 There is also a slightly more general version of this construction. Given
a closed positive current 7', one can also define the product

dd°pi A+ AddCpp, AT
in a very similar way.

Proposition 2.1.1 The product dd°¢; A - - - Add®g,, is a closed positive (p, p)-current
on X. Moreover, the product is symmetric in the ¢;’s.

See [ , Proposition 3.3, Corollary 3.12]. The proof relies crucially on an
important estimate, known as the Chern—Levine—Nirenberg inequality. See [ ,
Theorem 3.9].

The Bedford—Taylor theory has many satisfactory properties.

Theorem 2.1.1 Let (cp{ )jez., be decreasing sequences (resp. increasing sequences)
of locally bounded psh functions on X converging (resp. converging a.e.) to locally
bounded psh function ¢;, wherei =1, ..., p. Then

<pé ddcgo{ Ao+ A ddccpf7 — @odd®p1 A - Addg),
as j — oo. In particular, if go‘é is the constant sequence 1, we have
dd°] A+ Addg), — ddpp A -+ AddSg,.

Here the notation — denotes the weak-* convergence of currents.

We refer to [ , Theorem 3.18, Theorem 3.23] for the proofs.

By contrast, we emphasize that the Bedford—Taylor product is not continuous with
respect to the Llloc—convergence in general. A simple example can be found in [ ,
Example 3.25].

2.2 The non-pluripolar products

The proof of all results in this section can be found in [ ].
Let X be a complex manifold.

Definition 2.2.1 Let ¢, ..., ¢, € PSH(X). We set
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p
O = lgs > -k}, keZu.
j=1

We say that dd“¢; A - -+ A dd®¢,, is well-defined if for each connected open subset
U C X, any smooth Hermitian form w on U, for each compact subset K C U, we
have

)4
sup/ dd°(¢; V (k) || A wimUP < oo, (2.2)
k>0 J KNOy j=1 U

In this case, we define the non-pluripolar product dd°¢; A --- A dd°p,, by
p
o, dd°g) A -~ AddSp, = 10, A dd® (¢; v (=k)) 2.3)

J=1
on {J;»o Ok and make a zero-extension to X.

As recalled in Section 1.3, an F-open subset means an open subset with respect
to the plurifine topology.

Proposition 2.2.1 Let ¢1, ..., ¢, € PSH(X).

(1) The product dd°@; A - -- Add®p, is local with respect to the plurifine topology in
the following sense: Let O C X be an F -open subset and 1, . . ., ¥, € PSH(X).
Assume that

vilo=vjilo, j=1,...,p,
and that

p p
/\ dd°p; and /\ dd°y;
Jj=1 j=1

are both well-defined, then

p
/\ dd°g;
j=1

If furthermore O is open in the usual topology, then the product

p
N\ ddejlo
J=1

p
= /\ddclﬁj . (2.4)
J=1 o

o

on O is well-defined and

p
/\ ddc(pj
Jj=1

p
= /\ddc<pj|o. (2.5)
o /7
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Let U be an open covering of X. Then dd¢y A - - - Add° g, is well-defined if and
only if each of the following product is well-defined

p
/\dd°goj|U, Ued.

J=1

(2) The current dd°p; A - - - A dd°p), and the fact that it is well-defined depend only
on the currents dd°p;, not on the choice of the ¢;’s nor on the ordering of the
Qj’s.

(3) When @1, ..., ¢p € Lis (X), the product dd“¢1 A - -+ A dd“¢), is well-defined
and is equal to the Bedford-Taylor product.

(4) Assume that dd°@1 A - - - A ddCg), is well-defined, then dd°p A - - - A ddp), puts
no mass on pluripolar sets.

(5) Assume that dd°@y A --- A dd°g,, is well-defined, then /\;.7:1 dd®y; is a closed
positive (p, p)-current on X.

(6) The product is multilinear: Let y; € PSH(X), a,b > 0 then

P )4 p
dd®(ag; +by) A Add%- = add®g, /\/\ddcgoj+bdd°lﬁ1 /\/\ddc(pj 2.6)
j=2 j=2 j=2

in the sense that left-hand side is well-defined if and only if both terms on
right-hand side are well-defined, and the equality holds in that case.

In view of (3), we do not need to specify whether our product dd°¢; A --- A dd°¢),
is the Bedford—Taylor product or the non-pluripolar product when the ¢;’s are all
locally bounded.

Definition 2.2.2 Let Ty, ..., T, be closed positive (1, 1)-currents on X. We say that
Ti A -+ AT, is well-defined if there exists an open covering U of X, such that on
each U € U, we can find ¢p§.j € PSH(U) (j =1,..., p) such that

dde? =15, j=1,....p

and ddccp? A A ddcgog is well-defined. In this case, we define the non-pluripolar
product Ty A --- AT, as the closed positive (p, p)-current on X defined by

(Ti A~ ATp) lu =dde] A--- AddY, Ued. 2.7)

The product T7 A - -+ A T}, is independent of the choices we made thanks to Proposi-
tion 2.2.1 (1) and (2).
Proposition 2.2.1 can be formulated in terms of currents without any difficulty.

Remark 2.2.1 Similar to Remark 2.1.1, there is also an extension of the non-pluripolar
theory allowing us to define

TVA--- AT, NT
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for any closed positive current 7. This is the relative non-pluripolar product introduced
by Vu [ ]. Unlike the relative Bedford—Taylor products, the relative non-pluripolar
products present some pathological behaviors. For example, they are not linear in
general.

Remark 2.2.2 Another possible generalization of the non-pluripolar products is
motivated by Proposition 2.2.1. One could begin by defining of generalized notion of
plurisubharmonic functions on ¥ -open sets, called F -plurisubharmonic functions
and define their non-pluripolar products. See [ , ].

Proposition 2.2.2 Let X be a compact Kdahler manifold and Ty, . .., T, are closed
positive (1, 1)-currents on X. Then Ty A - -- AT, is well-defined.

This proposition explains why we usually work in the setting of compact Kéhler
manifolds.

2.3 Properties of non-pluripolar products

Let X be a connected compact Kédhler manifold of dimension n and 0, 6y, ..., 8, be
closed real smooth (1, 1)-forms on X.
We write
PSH(X, 0)~¢ = {(p € PSH(X,0) : / 9’; > 0} . (2.8)
X

The non-pluripolar product 67, is well-defined thanks to Proposition 2.2.2.

Remark 2.3.1 Suppose that X is a connected complex manifold of dimension 0, namely,
X is a single point. In this case, by definition, the non-pluripolar product 6, is given
by the current of integration at the unique point. So PSH(X, )~ = PSH(X,6) = R
in this case and fx 0, = 1forall ¢ € PSH(X, 6).

Proposition 2.3.1 Let n: Y — X be a proper bimeromorphic morphism from a
Kdhler manifold Y and ¢; € PSH(X, 0;) fori =1,...,n. Then

/ﬂ*@l,n*w A AT Op e, =/91,Lpl A A Oy g,
Y X

Proof This follows immediately from Proposition 2.2.1 (1) and (4). O

We shall write
Vg =sup{¢ € PSH(X,0) : ¢ < 0}. (2.9)

It follows from Proposition 1.2.1 that Vy € PSH(X, 0) if PSH(X, 6) # @.
Theorem 2.3.1 (Semicontinuity theorem) Let ¢ j,tp;? € PSH(X,0;) (k € Zso,

j=1,...,n). Let y > 0be abounded function such that there are 1,1, € QPSH(X)
withny + x =1n2.



42 CHAPTER 2. NON-PLURIPOLAR PRODUCTS

Assume that for any j = 1,...,n, as k — oo, either 90;? decreases to ¢; €
PSH(X, 6) or increases to ¢; € PSH(X, 0) almost everywhere. Then for any open
set U C X, we have

lim Xeltpk/\m/\en‘pk2/)(61,%/\--4\0,,,%. (2.10)
koo JU e o U

See [ , Theorem 2.3].

Theorem 2.3.2 (Monotonicity theorem) Let ¢;,; € PSH(X,6;) forj=1,...,n.
Assume that ¢ > ;2 for every j, then

/01,% /\"'gndpn 2/01,% /\"'gn,'ﬁn'
X X

In particular, if ¢, € PSH(X, 0) with ¢ > i, then

9"2/9”.
fomz [

See [ , Theorem 1.1]. We will prove a vast extension of this theorem in
Proposition 6.1.4.

Thanks to this theorem, the non-pluripolar mass fx 6, could be used as a rough
measure of the singularities of ¢ € PSH(X, 6). In Section 3.1, we shall refine this
measure by defining the notion of P-envelope.

As a corollary, we obtain that

Corollary 2.3.1 Fix a directed set I. For each j = 1,...,n, take an increasing net
(90;)1-61 in PSH(X, 0;), uniformly bounded from above. Set
¢j = sup*go;.
iel
Then

liienll‘/xgl"o{ VANRERIA 9n,<p£, = LQLw AN+ A Qn,‘pn. 2.11)
Proof We may assume that / is infinite as there is nothing to prove otherwise.
Thanks to Theorem 2.3.2, we already know the < inequality in (2.11). We prove
the reverse inequality. When I = Z. as directed sets, the reverse inequality follows
from Theorem 2.3.1. In general, by Choquet’s lemma Proposition 1.2.2, we can find
a countable infinite subset R C [ such that

sup” g’ = sup” g’

reR il
forall j =1,...,n. We fix a bijection R = Z.¢. Forany j = 1,...,n, we will then
denote elements ¢, (r € R) by <pjl., (p?, .... We shall write

2 See Definition 1.5.2 for the notation.
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l//]“:(pj\/\/(p;l

for each a € Z-.
It follows from the fact that / is a directed set and Theorem 2.3.2 that

Iim [ 6, iA---A6, i > lim 0 A---ANB .
iel Jy Lo} P = aseo Jy Lyt nyg

From the special case mentioned above, we know that the right-hand side is exactly
the right-hand side of (2.11), so we conclude. ]

The following lemma is striking in that we begin only with an upper bound of ¢,
but at the end of the day, we get a lower bound almost for free. This powerful method
will be employed again and again in the whole book.

Lemma 2.3.1 Let ¢, € PSH(X, 0), ¢ < ¥ and fX 6y, > 0. Then for any

/}'{ on I/n
fx o) |

2.12)

‘c 1(/X

there is n € PSH(X, 0)~¢ such that
a‘p+(1-a Ny <.

The fraction in (2.12) is understood as oo if fx 9; = fX GZ. Thanks to Theorem 2.3.2,
the interval (2.12) is non-empty.
We write

Pg(ap + (1 —a)y) =sup” {n ePSH(X,0) :a 'n+(1-a My < <p}

€PSH(X, 6).

(2.13)

Remark 2.3.2 The notation Pg(ap+(1—a)y) might lead to some potential confusions
since ag + (1 — a)y is not defined everywhere. But the author cannot come up with a
better notation.

Observe that

a 'Polap+ (1 —a))+ (1 —a My < o. (2.14)

In fact, this equation holds outside a pluripolar set by Proposition 1.2.5, hence it
holds everywhere by Proposition 1.2.6.

Proof Without loss of generality, we may assume that ¢ < ¢ < 0.

We refer to [ , Lemma 4.3] for the proof of the existence of € PSH(X, )
satisfying the given inequality. Next we argue that Py (agp+ (1 —a)y) € PSH(X, 0)o.
Choose

Jx

el ) )
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It follows from (2.13) that

Polap+ (1 =) 2 Py + (1 -a)+ "2

Therefore, by Theorem 2.3.2, we have

(@' —a)"
'/);Or;’g(aga+(lfa)tﬁ) 2 a XHZ’ > 0.

Corollary 2.3.2 Let ¢,y € PSH(X, 0)-0, ¢ < ¢ Assume that [, 07, = [, 7.

forany € € (0, 1), there is n € PSH(X, 0) such that

(M) [ 0= [ 0
Qen+(1-ey <o

Note that by (2), we trivially have n < .
Proof Fix € € (0, 1), we define

n="Py (6’1s0+ (1 —6’])l!/)~

This is well-defined due to Theorem 2.3.2.
Thanks to (2.16), for each a’ > €', we have

Jo () S
% n a’ X ("

Letting a’ — oo, we conclude that

/9’,;2/9’;,.
X X

On the other hand, since < ¢, using Theorem 2.3.2 we find that

/923/9;:/9’;.

X X X
M:/M.

fo= Jee

Hence,

(2.15)

(2.16)

Then

Proposition 2.3.2 Assume that PSH(X, 0)~ is non-empty, then the cohomology class

[6] is big.
See [ , Proposition 1.22].

Lemma 2.3.2 For any ¢ € PSH(X, 0)~, there is y € PSH(X, 0) such that
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(1) 8y is a Kdhler current, and
@y <o

In particular, there is an increasing sequence (¢;); in PSH(X, 0) converging almost
everywhere to ¢ such that 6 ,, is a Kdhler current for all i > 1.

Proof Using Lemma 2.3.1, we can find € > 0 and y € PSH(X, 6) such that

€

1
Vo+ ——y < o.

l+e °7 1+ 67 =¥

We observe that the cohomology class [#] is big as a consequence of Proposition 2.3.2.

Therefore, we can take 7 € PSH(X, #) such that ,, is a Kéhler current and 7 < 0.

Then we may take
€ 1

+
1+en 1+€

1)0:

Then ¢ clearly satisfies (1) and (2).
For the latter claim, it suffices to take

Y.

ei=1-(+D) e+ +1)7y.
Lemma 2.3.3 Let L be a holomorphic line bundle on X with 0 € ¢1(L). Assume that
¢ € PSH(X, 0)s0, then there exists ko > 0 such that for each k > ko, we have
HY(X, L* ® T (kg)) #0.

Proof By Lemma2.3.2, we may further assume that 6, is a Kihler current. In this case,
the result follows from Hormander’s L?-estimate, see [ , Theorem 13.21]. O

Theorem 2.3.3 Let ¢g, ¢ € PSH(X, 0). Then the map

[0,1] 3¢+ log/ 9:"p1+(1_1)¢0
X

is concave.

See [ ] for the proof.

Remark 2.3.3 Here and in the sequel, when we write expressions like r¢ + (1 — t)yr
for ¢, € QPSH(X), we will follow the convention that when ¢ = 0, the value is ¢
and when 7 = 1, the value is ¢.






Chapter 3
The envelope operators

Politiques et scientifiques ont le sens des réalités, mais ce ne sont
pas les mémes. 1l en résulte — et ce sera la un principe que le
général de Gaulle fera sien que I’activité de recherche ne peut
étre évaluée, quant a sa qualité propre, que par des hommes qui
la pratiquent eux-mémes.

— Pierre Lelong®, 1999

¢ Pierre Lelong (1912-2011) was the husband of another famous
mathematician Jacqueline Ferrand. During their marriage (1947—
1977), the latter published under the name of Jacqueline Lelong-
Ferrand.

In this chapter, we study two envelope operators lying at the heart of the whole theory.
The first envelope, called the P-envelope, is defined using the non-pluripolar masses,
while the second, called the 7 -envelope, is defined using the multiplier ideal sheaves.
The corresponding theories are developed in Section 3.1 and Section 3.2 respectively.
Later on in Chapter 6, we will develop the corresponding P and 7 -partial orders
associated with these envelopes, allowing us to compare the singularities.

3.1 The P-envelope

In this section, X will denote a connected compact Kéhler manifold of dimension 7.

3.1.1 Rooftop operator and the definition of the P-envelope

We will fix a smooth closed real (1, 1)-form 6 on X.
Definition 3.1.1 Given ¢, ¢ € PSH(X, ), we define their rooftop operator as follows:
@Ay =sup{n € PSH(X,0) :n < p,n < y}. (3.1)

For the simplicity of notations, we extend the definition to the case where ¢ or ¢ is
constantly —oo, in this case, we simply set

P AY = —oo.

When we want to be more specific, we could also write ¢ Ag ¢.

47
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Proposition 3.1.1 The operator A is a well-defined commutative, associative binary
operator

PSH(X, 6) U {00} x PSH(X, 6) U {—o0} — PSH(X, §) U {—oo}.

Proof We first show that the map is well-defined. For this purpose, take ¢, €
PSH(X, 6). When the set in (3.1) is empty, there is nothing to prove. So let us assume
that the set is not empty.

Define

y=sup*{n € PSH(X,0) :n < ¢,n < ¢}.

Then by Proposition 1.2.1, we find that y € PSH(X, 6) and hence v is a candidate for
the supremum in (3.1). Therefore, y < ¢ A . The reverse inequality is trivial, so

o ANy =v € PSH(X, 0).
The commutativity and the associativity of A are both trivial. O

Lemma 3.1.1 Let ¢,y € PSH(X, 0). Assume that ¢ A € PSH(X, 0). Then

Oony < Lionp=¢) 0 + Lipny=y}0y-

See [ , Lemma 3.7] for the proof.
We recall that the relations < and ~ are introduced in Definition 1.5.2.

Definition 3.1.2 Given ¢ € PSH(X, 0), we define its P-envelope as follows:

Pglp] :==sup™{y €e PSH(X,0) : ¢y <0,y < ¢}. (3.2)

Observe that by Proposition 1.2.1, we have Py[¢] € PSH(X, 6) and Pg[¢] < 0.
Moreover, the definition can be equivalently described as

Pyle] = sup "(¢+C) AVy. 3.3)
CeZs

Recall that Vg is introduced in (2.9). Observe that forany C € R, we have (¢+C)AVy €
PSH(X, 6) and
((p +C)AVg ~ Q.

In other words, in (3.2), we may replace the condition ¥ < ¢ by ¥ ~ ¢.

Morally, the idea lying behind the definition of Pg[¢] is that we choose the least
singular element out of all potentials with the same singularity type as ¢. As we shall
see in Example 3.1.1 below, Pgy[¢] does not necessarily have the same singularity
type as . This forces us to define a rougher equivalence relation in Definition 6.1.1.

Proposition 3.1.2 Let 8 = 0 + dd°g for some g € C®(X). Then for any ¢ €
PSH(X, 0), we have ¢ — g € PSH(X, 6’) and
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Polel ~ Por[¢'].
Proof By symmetry, it suffices to show that
Pole] < Pol¢'].
We may assume that g > 0. Then for any ¢ € PSH(X, 6) with ¢y < g and ¢ < 0, we

sety’ ==y —g € PSH(X,0’). Theny’ < ¢’ and y’ < 0,s0y’ < Py [¢’]. Since y
is arbitrary, it follows that

Pyle] - supg < Pgle]l —g < Py [¢].

The P-envelope preserves the non-pluripolar masses:

Proposition 3.1.3 Suppose that 01, . . ., 0, be smooth closed real (1, 1)-forms on X.
Let ¢; € PSH(X, 0;) foreachi=1,...,n. Then

/ Hl,Pel [oi] Ao A gﬂspsn[%] = / 91#’1 ARRERA envsﬁn' (3.4
X X

Proof Foreach C € Z.gandeachi =1,...,n, we have
(i +C) A Vg, ~ ¢;.

It follows from Theorem 2.3.2 that

/ 91»(¢1+C)/\V61 ARRRNA 9n,(<pn+C)/\Ven = / Olgy N ANOn g,
X X

So (3.4) follows from (3.3) and Corollary 2.3.1. O

Conversely, Proposition 3.1.3 characterizes the P-envelope:

Theorem 3.1.1 Assume that ¢ € PSH(X, 0)~, then

Pyl¢] = sup {zﬁ € PSH(X,0) : 4 <0,¢ < lﬁ,/ 0, = / 9:’0} (3.5)
X X
In particular, in this case,

Py [Polel] = Polg]. (3.6)

We refer to [ , Theorem 3.14] for the proof.

Note that in (3.5) and (3.2), the test function ¢ lies on different sides of ¢.

In general, we do not know if (3.6) holds when /x 0, = 0. We expect it to be wrong.
According to our general philosophy, the P-envelope operator is the correct object
only when the non-pluripolar mass is positive. We will avoid using the degenerate
case in the whole book.

Definition 3.1.3 If ¢ = Py[¢] and /x 0y > 0, we say ¢ is a model potential.
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We remind the readers that the notion of model potentials depends heavily on the
choice of 8. When there is a risk of confusion, we also say ¢ is a model potential in
PSH(X, 0).

Remark 3.1.1 Definition 3.1.3 is different from the common definition in the literature:
We impose the extra condition fx 0, > 0. The author believes that this is the only
case where this notion is natural. We sometimes emphasize this point by saying
¢ € PSH(X, 6)-~¢ is a model potential.

There are plenty of model potentials:

Corollary 3.1.1 Let ¢ € PSH(X, )+, then Pg|[¢] is a model potential in PSH(X, 0).

Moreover,
n = gn .
L Pol¢] L ¥

Proof This follows immediately from Theorem 3.1.1 and Proposition 3.1.3. O

Example 3.1.1 We continue our favorite example Example 1.8.1. Let X = P! and w
be the Fubini-Study metric. We define ¢ € PSH(X, w) as follows: for z € C, we let

“log(Jz2 +1) + (— log (—log |z|2)) v (2+1og |z|2), if |z < 1/V2,

¢(z) = | |2
2+1
°8 |z +1

. Otherwise,

while ¢(c0) = 2. The singularity of ¢ only occurs at z = 0, close to which,
¢ ~ —log (- log |z|2). This type of singularity is therefore called the log-log type
singularity.
We claim that
Pule] =0. (3.7

In particular, we find that ¢ and P, [¢] have different singularity types.
Due to Theorem 3.1.1, in order to verify (3.7), it suffices to verify that

/ w = 1. (3.8)
X

Here w,, is taken in the non-pluripolar sense. Since {0, co} C P! is pluripolar, this
reduces to show that

[Lawco=o [ @orau-t.
C* 4 C*

where /(z) = ¢(z) + log(|z)* + 1) and  is the standard Lebesgue measure on C.
Note that the Laplacian vanishes outside B(0, 0.7) since (z) = 2 + log |z|* there,
which is harmonic. Therefore,

1
/ aty = - / (A)(2) du.
* T Jiz|<1/V2
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It is an elementary exercise to see that the right-hand side is exactly equal to 1. If you
are familiar with toric geometry, this is more or less trivial since

V, ((—log(-r)) V(2+7r)) (-0, —10g2) = [-1,0).

Otherwise, just try to evaluate the integral using Green’s identities. Therefore, (3.8)
is proved and our assertion (3.7) follows.

Next we give a criterion on when the rooftop operator is not identically —co.

Proposition 3.1.4 Assume that ¢, € PSH(X, 0) and
0" + / 0!, > / 0", ,-
/X ¢ | w7 [ Teve

Proof Without loss of generality, we may assume that ¢,y < 0. Take

Then ¢ Ay € PSH(X, 6).

n=Po[(1-€)(pVy)+eVy]

for some small enough € > 0, we may guarantee that

9”+/0">/0", eV <.
/X‘p x VT x T

This is a consequence of Corollary 3.1.1.
Take C > 0 large enough, so that

0"+/ 0" >/6". (3.9
[w>n—C} ¢ {y>n-C} v x

This is possible thanks to Proposition 2.2.1(4). Fix C’ > C. Write

yor = (Vi -CNAWVH-C)).

Then observe that

inf =0 AY.
oL ve pAY

Assume by contradiction that ¢ A ¥ = —co, then we have

lim supycr = —oo.
C’—>o00 X

Observe that for each C’ > C,

supycr = sup (yc —mn)
X {n#—co}
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since 717 is a model potential.! It follows that

lim sup (yc —n) = —oo. (3.10)
C'—e0 {7]#—00}

For each C’ > C, we compute

9",3/ 0 +/ 0
-/{ch<n—C} 7 = Jiovin-enzn-cy # Jvig-cnsn—cy PV

=2 [ 6" —/ o —/ 9"
x 7 {e>n-C} ¢ {y>n-C} v
<[ 6",
i

where the first line follows from Lemma 3.1.1, the third line follows from (3.9). Using
(3.10), we can take C’ large enough so that y¢» < — C. Then we find

9",</9”,
/Xyc 7

which contradicts Theorem 2.3.2. |

3.1.2 Properties of the P-envelope

Let 6, 61, 8, be smooth closed real (1, 1)-forms on X.

Proposition 3.1.5 Let n: Y — X be a proper bimeromorphic morphism from a
Kdhler manifold Y to X. Then for any ¢ € PSH(X, 0), we have

Prg[n*pl =n"Pgle].

In particular, a potential ¢ € PSH(X,0)s is model if and only if n*¢p €
PSH(Y, 7*0)~¢ is model.

Proof This follows immediately from Proposition 1.5.3. O
We have the following concavity property of the P-envelope.

Proposition 3.1.6
(1) Suppose that ¢ € PSH(X, 0) and A € Ry, then

Prg[Ap] = APg[¢].

! In fact, the < direction is trivial, in view of Corollary 1.3.6. As for the reverse inequality, we may
assume that the left-hand side is 0, but as 77 is model and ycr < 17, we have y¢cr < 1.
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(2) Suppose that ¢ € PSH(X, 6) and ¢, € PSH(X, 0;), then

Poro, (01 + @2] = Py [@1] + Po,[¢2].

Proof (1) This is obvious by definition.
(2) Suppose that y; € PSH(X, 6;) and ¥, € PSH(X, 6,) satisfy

Ui <0, Y 2

fori =1,2. Then
Y1 +U2 <0, Y1+ < o1+

It follows from (3.2) that
Y1 +¥2 < Poro, [@1 + 2]
Since y1 and ¥, are arbitrary, we conclude. O

Proposition 3.1.7 Let ¢,y € PSH(X, 0). Assume that

¢ =Polel, ¥ =Pole]l, @AY Z —c0.

Then
Polo Ayl =@ Ay (3.11)

Proof Observe that we obviously have
Polo AY] < Polel = ¢, PoloAy] < Poly] =y.
So the < direction in (3.11) holds. The reverse direction is trivial. O

Theorem 3.1.2 Let ¢ € PSH(X, 6). Then

Opylo) < Lipolp1=010"
See [ , Theorem 3.8] for the proof.
Theorem 3.1.3 Assume that ¢,y € PSH(X, 0) and ¢ Ay € PSH(X, 0). Then

9”+/9"5/0” +/9". (3.12)
/Xsﬂ v = e T ] ey

We refer to [ , Theorem 5.4] for the proof.

Proposition 3.1.8 Let (¢;) jer be a decreasing net of potentials in PSH(X, 6) satis-
fying Polo;] = @j foreach j € 1. Set ¢ = inf;c; ;. Then Pg[p] = ¢.

Proof Since supy ¢; = 0 for all j € I, we know that ¢ # —oo. It follows from
Proposition 1.2.1 that ¢ € PSH(X, 6). Therefore, for each j € I,

¢ < Pole] < Pole;] = oj.
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Therefore, ¢ = Pg[¢]. O

Proposition 3.1.9 Let (¢;) je; be a decreasing net in Rso with limit 0. Take a Kéhler
form w on X. Consider a decreasing net ¢; € PSH(X, 6 + €;w) (j € I) satisfying

Porew [97] = ¢ (3.13)

with pointwise limit ¢. Then

E;g/)((me,w)% =/Xe¢,. (3.14)

Moreover, lffX 0, > 0, then for any prime divisor E over X, we have

limv(g;, E) = v(p, E). (3.15)
jel
Proof Observe that ¢ € PSH(X, 0). By Theorem 2.3.2, we have

lim [ (6 +€;w) > lim (9+e~w)":/6".
jel Jx T jer Jx e x f

We now argue the reverse inequality.
Fix jo € I, we have

lim )" =lim W)
];érll‘/x(9+eja))¢j jlg[l {¢j=o}(6+ejw)‘pj
<lim (0 +€;,w)t.
Jel J{ =0} e

< / (0 + €j,w) >
{¢=0}

where in the first line we used (3.13) and Theorem 3.1.2, and in the last line we have
used the fact that ¢; N, ¢ and [ , Proposition 4.6] (see also [ ,
Lemma 2.11]). Taking limit with respect to jo, we arrive at the desired conclusion:

ﬁ/(me.w)n. < lim (6+e~a))":/ o" g/a".
i T g ey T Sy T U Y

This finishes the proof of (3.14).

It remains to argue (3.15). By Lemma 2.3.1 and (3.14), for any € € (0, 1) and j
big enough there exists ; € PSH(X, 6 + €;w) such that (1 — €)@, + ey; < . This
implies that for j big enough we have

(A=-e)v(ej, E)+ev(y;,E) 2 v(p,E) 2 v(p;, E).

On the other hand, the Lelong numbers v(i ;, E) admit an upper bound for various j
by Proposition 1.5.2. So taking limit with respect to j, we conclude (3.15). O
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Corollary 3.1.2 Let ¢ € PSH(X, 0)~ be a model potential. Let w be a Kéiihler form
on X. Then

¢ = inf P9+ew[90]'
e>0

Proof Clearly, we have the < direction and the right-hand side is non-positive. So by
Theorem 3.1.1, it suffices to show that they have the same mass, which follows from
Proposition 3.1.9. O

Proposition 3.1.10 Let (¢;);c; be an increasing net of potentials in PSH(X, 6)~¢
uniformly bounded from above. Let ¢ = sup; ;" ¢;. Then

sup“Pg[ei] = Pol¢].

iel
In particular, if ; is model for all i € I, then so is .

Proof We may assume that / is infinite since otherwise, there is nothing to prove.
We write

n = sup*Pgle;].

iel
Then it is clear that n < Py[¢].
By Corollary 2.3.1, we have

E@x%:L%>Q

So by Lemma 2.3.1, we can find a decreasing net ¢; \, 0 (i € I) with ¢; € (0, 1) and
W; € PSH(X,0) (i € I) such that for alli € I,

(I-€e)e+ey; < g
By Proposition 3.1.6, we have

Polo]l +€Polyi] < (1 —€)Pole]l +€Polyi] <.

Taking limit with respect to i, we conclude that Py[¢] < 7. O

3.1.3 Relative full mass classes

Let 0 be a smooth closed real (1, 1)-form on X representing a big cohomology class.
Fix a model potential ¢ € PSH(X, 0)~o.

Definition 3.1.4 We define
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PSH(X, 0; ¢) := {n € PSH(X,0) : n < ¢},
E7(X,0;¢) ={n € PSH(X,0) : n ~ ¢},

E(X,0;9) = {17 € PSH(X, 0;¢) : / 0y, = / 6;’,},
b'¢ X
&' (X,0,¢) = {n € &(X,0;9) : / lp —nl 6} < 00}.
b'¢
Potentials in the last three classes are said to have relatively minimal singularities,

full mass and finite energy relative to ¢ respectively.

We have the following inclusions:
E%(X.0:¢) € 8'(X,0:¢) € E(X.0:¢) < PSH(X, 0; ¢). (3.16)

The only non-trivial part is the first inclusion, which follows from Theorem 2.3.2.

Remark 3.1.2 Note that this integral

— 9"
/X|¢ nlén

is defined: The locus where ¢ — 7 is undefined is a pluripolar set, while the product
67, puts no mass on pluripolar sets (Proposition 2.2.1).
Similar remarks apply when we talk about similar integrals in the sequel.

When ¢ = Vy, we usually write

E7(X,6;Vy) =E7(X,0),
E(X,0,Vg) =E(X,0),
E'(X,0;Vy) =E' (X, 0).

Potentials in the three classes are said to have minimal singularities, full mass and
finite energy respectively. The relation (3.16) can be written as

E°(X,0) Cc E'(X,0) Cc E(X,0)
in this case.
The P-envelope can be used to characterize the full mass classes:
Proposition 3.1.11 Ler ¢ € PSH(X, 6). Then the following are equivalent:

(1) ¢ € &(X,0:¢);
(2) Pole] = ¢.
Proof (2) = (1). This follows from Proposition 3.1.3.
(1) = (2). Note that ¢ is a candidate of Py[¢] asin (3.5). So Pg[p] =¢. O

In order to handle the finite energy classes, it is convenient to introduce the
following quantity:
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Definition 3.1.5 We define the Monge—Ampére energy E‘g: E%(X,0;¢) — R as
follows

1 < ; _;
EJ(p) = mz;)/x(gp—@e;,/\e; j 3.17)
=
More generally, we extend E(f to a functional Eg’ : PSH(X, 6; ¢) — [0, 00) as
follows
Eg(g) =inf {ES(W) 1w € E°(X.0:0), 0 < u}. (3.18)
We write Eg instead of E g when ¢ = V.
Note that
E§(¢+C)=E3(¢)+C/X9';, (3.19)

for any ¢ € PSH(X, 6; ¢) and C € R.
Proposition 3.1.12 Let ¢ € PSH(X, 6; ¢). The following are equivalent:

(1) ¢ € EX(X,0:9);
2) EJ (¢) > —co.

When the conditions are satisfied, (3.17) holds.
Given ¢,y € E'(X, 0; ¢), we have the following cocycle equality

EJ () - Ey =Ln/ — @) 0, N0 3.20
§W) - Ej (@) nH;OX(w ©) 8, A6, (3.20)

See [ , Proposition 2.11] and [ , Proposition 2.5] for the proofs.?

Proposition 3.1.13 Assume that ¢, € E(X, 0; ¢) (resp. E' (X, 0; ¢), EX(X, 0; 9)),
then sois @ A .

Proof The case of (X, 6; ¢) is trivial.
We consider the case E(X, 0; ¢). It follows from Proposition 3.1.4 that ¢ A Y €
PSH(X, 0). By Theorem 3.1.3, we have

o 2/9".
‘/wa X¢

By Theorem 2.3.2, equality holds. By Theorem 3.1.1, we conclude that

Polo Ayl =¢.

Finally, the case &l (X, 6;¢) is proved in [ , Theorem 4.13] (the arXiv
version). O

Proposition 3.1.14 Let ¢,y € PSH(X, 0) be potentials such that < ¢ and ¢ < .
Assume that ¢ € E(X, 0; ¢) (resp. E'(X, 0; ¢), E°(X, 0; ¢)), then so is .

2 In these references, they took ¢ = Vjp, but the proof of the general case is almost identical.
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Proof The case (X, 0;¢) is trivial. The case (X, 6;¢) follows from Theo-
rem 2.3.2. The case &'(X, 0;¢) follows from [ , Proposition 4.5] (arXiv
version). ]

Proposition 3.1.15 Let (¢;);er be a uniformly bounded from above non-empty family
in (X, 0;¢) (resp. E1(X,0; ¢), E°(X, 6; ¢)), then so is sup; ;" ¢;.

Proof Thanks to Proposition 3.1.14, it suffices to show that

sup*p; < ¢.

iel
Since ¢ is model and ¢; < ¢, we know that

pi—supy; < ¢
X

for any i € I. By assumption (¢;);¢; is uniformly bounded from above, our assertion
follows. O

Proposition 3.1.16 Let ¢, € E(X, 0; ¢). Then
sup“ (9 +C) Ay =y
C20

Proof Since for each C > 0,
(pAY+CO) AP < (p+C) Ay <,

we may replace ¢ by ¢ Ay (c.f. Proposition 3.1.13) and assume that ¢ < . In this
case, the result is proved in [ , Theorem 3.8, Corollary 3.11]. O

Proposition 3.1.17 Let ¢, € E'(X, 0; ¢). Assume that ¢ < . Then

/(!//—90) 0, <EJ(W) - Ej(¢) S/(l!/—cp) 0. (3.21)
X X

Proof Thanks to (3.19), we may assume that ¢ < . Then this result is proved in
[ , Proposition 4.18]. O

3.2 The 7-envelope

From the algebraic point of view, a more natural envelope operator is given by the
7 -envelope.

In this section, X will denote a connected compact Kihler manifold of dimension
n.
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3.2.1 7-equivalence

Proposition 3.2.1 Given ¢, € QPSH(X), the following are equivalent:

(1) For any k € Z-, we have
I (k) =1 (ky);

(2) for any A € Rsq, we have
I(Ap) = I (A);

(3) for any modification n: Y — X and any y € Y, we have
v(r'e,y) = v(m'y,y);

(4) for any proper bimeromorphic morphism . Y — X from a Kihler manifold
and any y € Y, we have

v(r'e,y) = v(m'y,y);
(5) for any prime divisor E over X, we have
v(e,E) =v(y, E).

See Definition B.1.1 for the definition of prime divisors over X. We remind the
readers that in the whole book, a modification of a compact complex space means
a finite composition of blow-ups with smooth centers. This terminology is highly
non-standard.

Proof (4) < (5). This follows from Lemma 1.4.1.
(3) & (5). This follows from Corollary B.1.1.
(1) = (5). This follows from Proposition 1.4.4.
(5) = (2). This follows from Theorem 1.4.3.
(2) = (1). This is trivial. O

Definition 3.2.1 Given ¢,y € QPSH(X), we say they are 1 -equivalent and write
¢ ~1 Y if the equivalent conditions in Proposition 3.2.1 are satisfied.

Clearly, ~ 7 is an equivalence relation on QPSH(X).

Proposition 3.2.2 Let n: Y — X be a proper bimeromorphic morphism from a
Kdhler manifold Y to X. Then for ¢, € QPSH(X), we the following are equivalent:

M e~ry;
@) ' ~r Y.

Proof (1) = (2). This follows from Proposition 3.2.1(4).
(2) = (1). This follows from the simple fact that

I (k) =m. (wy)x ® I (kn*p)), I(ky)=n.(wy/x ®I(kn"y))

for any k € Z~. |
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Proposition 3.2.3 Let ¢, ¢’, ¥, ¢’ € QPSH(X) and A > 0. Assume that ¢ ~1 ¥ and
@ ~7 Y, then

oV ~r VY, o+ ~r Yy, Ap ~1 Y.

Similarly, if (¢;)icr, (Wi)ier are two non-empty uniformly bounded from above
families in PSH(X, 0) for some closed smooth real (1,1)-form 6 on X such that
wi ~7 Y foralli € I, then

sup“@; ~1 sup’y;.

iel iel

Proof This follows from Proposition 1.4.2 and Corollary 1.4.1. O

3.2.2 The definition of the 7-envelope

We will fix a smooth closed real (1, 1)-form 6 on X.

Definition 3.2.2 Given ¢ € PSH(X, 0), we define its 7 -envelope as follows:
Pololr =sup™{y € PSH(X,0) : ¢y <0, ~1 ¢}. (3.22)

If ¢ = Pg[] 1, we say ¢ is an I -model potential (in PSH(X, 6)).

Note that by Proposition 1.2.1, Py[¢] 7 € PSH(X, 0).

Proposition 3.2.4 Let 8’ = 0 + dd°g for some g € C®(X). Then for any ¢ €
PSH(X, 0), we have ¢ — g € PSH(X, 0’) and

Polelr ~ Porl¢]1.
The proof is similar to that of Proposition 3.1.2, so we omit it.

Proposition 3.2.5 Let n: Y — X be a proper bimeromorphic morphism from a
Kdhler manifold Y to X. Then for ¢ € PSH(X, 6), we have

Prgln"olr =n"Polelr.
Proof The proof is similar to that of Proposition 3.1.5 in view of Proposition 3.2.2.00
Proposition 3.2.6 Let ¢ € PSH(X, 0), then
¢ ~r1 Polelr.

In particular,
Po [Polelr]lr = Polelr

and the upper semicontinuous regularization in (3.22) is not necessary.
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Proof In view of Proposition 3.2.1, it suffices to show that for k € Z(, we have
I(kp) =1 (kPglelr). (3.23)

By Proposition 1.2.2, we can find y; € PSH(X, 6) (i € Z+¢) such that y; < 0,
Wi ~r ¢ foralli > 1and

sup*y; = Polelr.

i>0
By Proposition 3.2.3, we may replace ; by ¥ V --- V f; and assume that the

sequence i; is increasing. In this case, it follows from the strong openness theorem
Theorem 1.4.4 that for each k € Z-(, we have

I(kg)=T1(kyj)=TI(kPglelr)
for j large enough. O

Definition 3.2.3 Let ¢ € PSH(X, 0), we define the volume? vol(6, ¢) as

vol(6, ) = /X (6+dd°Pylp] )" .

Proposition 3.2.7 Let 8’ = 0 + dd°g for some g € C®(X). Then for any ¢ €
PSH(X, 0), we have ¢’ = ¢ — g € PSH(X, 0") and

vol(8, ¢) = vol(&’, ¢’).
Proof This follows immediately from Proposition 3.2.4 and Theorem 2.3.2. O

In view of Proposition 3.2.7, the volume vol(6, ¢) depends only on the current
0, and we could write
vol @, = vol(8, ¢). (3.24)

The 7 -envelope and the P-envelope are related in a simple manner.

Proposition 3.2.8 Let ¢ € PSH(X, 0), then

Pole]l < Polelr, ¢ ~1 Polel.
Proof 1t suffices to show that ¢ ~;r Pgy[¢]. Namely, for each k € Z., we have
I (ke) =1 (kPgle]). (3.25)

Fix k for now. It follows from (3.3) and the strong openness theorem Theorem 1.4.4
that

3 We choose to call this quantity the volume instead of the 7 -volume so that the terminology is
consistent with the line bundle case.
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I (kPol¢]) = I ((kg+C) A kVg)
when C is large enough. Since (k¢ + C) A kVy ~ k¢, we have
T ((k¢+C) ANkVy) =1 (ko)
and (3.25) follows. O

Corollary 3.2.1 Let ¢ € PSH(X, 0), then

9" <volf,.
Jy o< vare,

Proof This follows from Proposition 3.2.8, Theorem 2.3.2 and Proposition 3.1.3.0

The reverse inequality fails in general, see Example 6.1.3.
We note the following special case:

Proposition 3.2.9 Let ¢ € PSH(X, 0). Assume that ¢ has analytic singularities, then

o~ Pole] ~ Polelr. (3.26)

In particular,
l{@; =volf,,. (3.27)

Proof First observe that (3.27) follows from (3.26) and Theorem 2.3.2. It remains to
establish (3.26).
In view of Proposition 3.2.8, it suffices to show that

Polelr < ¢. (3.28)

By Proposition 3.2.5, Proposition 3.1.5 and Theorem 1.6.1, we may assume that ¢ has
log singularities along an effective Q-divisor D. By rescaling using Proposition 3.2.10,
we may assume that D is a divisor. Take quasi-equisingular approximations (7;);
and (¢;); of Pg[¢] 7 and of ¢ respectively. Recall that by Theorem 1.6.2, we can
guarantee that 77; and ¢; both have the singularity type (27/,7(2/¢)) and hence
nj ~ ; for all large enough j. On the other hand, it is clear that ¢; ~ ¢ forall j > 1.
So (3.28) follows. O

3.2.3 Properties of the 7-envelope

Let 6, 61, 8, be smooth closed real (1, 1)-forms on X.
We have the following concavity property of the 7 -envelope.

Proposition 3.2.10
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(1) Suppose that ¢ € PSH(X, 0) and A € R, then
Pagl[de)r = APgleo] 1.

(2) Suppose that ¢ € PSH(X, 01) and ¢, € PSH(X, 6;), then

Poro, o1 +02lr = Po,l@1]r + Po,[¢2] 1.
(3) Suppose that ¢, € PSH(X, 0) and ¢, € PSH(X, 0;), then

Poro, o1 + @211 ~1 Pol@1lr + Po[e2] 1.
(4) Suppose that ¢, 2 € PSH(X, 6), then

Polo1V @alr ~1r Pole1lr V Pole2]r.

Proof (1) This is obvious by definition.
(2) Suppose that y; € PSH(X, 6;) and ¥, € PSH(X, 6,) satisfy

Ui <0, Yi~7 @

fori = 1, 2. Then thanks to Proposition 3.2.3,

Yi1+y2 <0, Y+ ~1 o1+,

It follows that
Y1 +2 < Pgrg o1 + @27

Since | and i, are arbitrary, we conclude.
(3) and (4) These follow easily from Proposition 3.2.6 and Proposition 3.2.3. O

Lemma 3.2.1 Let ¢, € PSH(X, 0). Assume that ¢ < i, then

Polelr < Poly]s.

Proof 1t suffices to observe that Pg[@]r V ¢ ~1 ¢ as a consequence of Proposi-
tion 1.4.2 and Proposition 3.2.6. O

Proposition 3.2.11 Consider a decreasing net (¢;)ier of model potentials in
PSH(X, 0)~¢. Suppose that ¢ = inf;c; ¢; £ —0c0 and fX 0y > 0. Then

inf Polpilr = Polels.
iel
Proof Letn = inf;c; Po[p;]r. We clearly have n > Py[¢]r as a consequence of

Lemma 3.2.1.
By Proposition 3.1.9, we have

li o= n .
ilenll‘/xe‘pi ‘/}(9¢>0
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So by Lemma 2.3.1, we can find a decreasing net ¢; \, 0 (i € I) with ¢; € (0, 1) and
W; € PSH(X, 6) such that for all i € I,

(I-e)pi+ey: < o
By Proposition 3.2.10 and Lemma 3.2.1, we have
n+ePolyilr < (1-e)n+ePolyilr < (1-€)Polpilr+ePolvilr < Polelr.
Taking limit with respect to i, we conclude thatn < Pgy[¢]s. O

Proposition 3.2.12 Let (¢;);c; be a decreasing net of I-model potentials in
PSH(X, 0). Set ¢ := inf;c; @;, then ¢ is also I -model in PSH(X, 6).

Proof Observe that ¢ < 0. Let n € PSH(X, 8) withn ~7 ¢ and < 0. Then for
each i € I, using Proposition 3.2.3, we have  V ¢; ~1 ¢;. Therefore,

n=nVvVei=sg.
It follows that n < ¢. Hence ¢ = Pg[¢] 7. O

Proposition 3.2.13 Let (¢;)ic; be an increasing net in PSH(X, 6)so uniformly
bounded from above. Let ¢ = sup;.;"¢;. Then

sup“Poleilr = Polelr.

iel
In particular, if the ¢;’s are all T -model, then so is ¢.

Proof Letn =sup,;;*"Polei]lr- Thenn < Pg[¢] r as aconsequence of Lemma 3.2.1.
By Corollary 2.3.1, we have

. n __ n
liler?‘/)(0¢[—/)(0¢>0.

So by Lemma 2.3.1, we can find a decreasing net ¢; \, 0 (i € I) with ¢; € (0, 1) and
W; € PSH(X, 0) such that for all i € I,

(1-€e)p+eyi < ¢
By Proposition 3.2.10 and Lemma 3.2.1, we have
Polelr +€Polyilr < (1 -€)Polelr +€Polyilr < Poleilr <n.
Taking limit with respect to i, we conclude thatn > Pgy[¢]s. O

Remark 3.2.1 One could also define the following interpolation between the 7 -
envelope and the P-envelope: Suppose ¢ € PSH(X, 6)~¢, j € {0,...,n}. Then we
let
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I

PH,j [4,0] = Sllp* {w € PSH(X, 0) : U <0,0 2, /};a(]p A 9’;);{%]

— J n—j

=) O HPe[w]I} '
Based on the techniques developed in Chapter 6, one could show that Py _;[e] is a
projection operator. When j = n, this operator reduces to the P-envelope, while when
J =0, this operator reduces to the 7 -envelope.






Chapter 4
Geodesic rays in the space of potentials

In den Dreifliger Jahren besuchte ich regelmdfig die Schweiz,
teils um mich auch auf den Viertausendern zu tummeln, zum
grofen Teil aber auch, um Emigrantenblitter zu lesen und mich
mit Kollegen iiber Naziverbrechen zu unterhalten. Aber auch die
Schweizer schauten sich, wenn sie offen reden wollten, ebenso
angstlich um wie das bei uns iiblich war.”

— Oskar Perron”

“ The recent policy of ETH against Chinese students makes me
feel that nothing has changed in Switzerland after the collapsing
of Nazi for almost 80 years.

b Oskar Perron (1880—1975), after earning himself an Eisernes
Kreuz during WWI, obtained a position in Miinchen in 1922,
initiating the glorious period of Miinchen. Among his colleagues
were Carathéodory, Tietze and Sommerfield.

In this chapter, we study subgeodesics and geodesics in the space of quasi-
plurisubharmonic functions. Unlike what one usually finds in the literature, here we
are carrying out the constructions in the space of Kihler potentials with prescribed
singularities. The usual regularization techniques break down in this setup.

The results in Section 4.2 seem to be new, although they have been applied without
proofs in the literature.

4.1 Subgeodesics

Let X be a connected compact Kihler manifold of dimension n and 6 be a smooth
closed real (1, 1)-form on X representing a big cohomology class.

Definition 4.1.1 Let us fix ¢, ¢; € PSH(X, 8). A subgeodesic from ¢ to ¢ is a
family (¢;):e(0,1) in PSH(X, 6) such that

(1) if we define
D: Xx{zeC:e ' <z <1} > [-00,00), (x,2) > @ log|z| (¥),

then @ is pj6-psh, where p;: X X {z € C: e”! <|z| < 1} — X is the natural
projection;

(2) when t — 0+ (resp. to 1-), ¢, converges to ¢ (resp. ¢1) with respect to the
L!'-topology.

We also say (¢;)sc[0,1] iS a subgeodesic.
We call @ the complexification of the subgeodesic (¢;);.

67


https://www.universityworldnews.com/post.php?story=20241107142108558

68 CHAPTER 4. GEODESIC RAYS IN THE SPACE OF POTENTIALS

When we do not want to specify o and ¢1, we shall say (¢;);e(0,1) is a subgeodesic.
In general, there are no subgeodesics from ¢q to ¢;. In fact, the existence of a
subgeodesic implies that ¢ A ¢ # —oo by Proposition 4.1.2, which does not always
hold as we show in Example 5.2.3.
We first note that the subgeodesics are well-behaved under the change of 6:

Proposition 4.1.1 Let g be a smooth real function on X. Let ' = 0 + dd°g. Suppose
that (¢;)eqo,1] is a subgeodesic in PSH(X, 0). Then (¢, — g)re[0,1] is a subgeodesic
in PSH(X, 0’).

Proof This follows trivially by definition. O

Example 4.1.1 Let ¢y € PSH(X, 0), C € R. Let
wr=g@o+tC, te(0,1].

Then (¢;);e0,1] is a subgeodesic.

For this purpose, it suffices to observe that log |z| is a harmonic function in z when
|z| > 0.

As a consequence, the constant (¢o);e[0,1] is a subgeodesic, called the constant
subgeodesic at .

A more general version is as follows: Suppose that (¢;);e[0,1] is a subgeodesic in
PSH(X, 6), C1,C, € R, then (¢, + Cit + C2);¢[0,1] is also a subgeodesic.

Proposition 4.1.2 Let ¢g, 1 € PSH(X, 0) and (¢:);e(0,1) be a subgeodesic from ¢q
to ¢1. Then for each x € X, [0,1] ot — ¢,(x) is a convex function. In particular,

inf € PSH(X, 0), inf < A Q].
tel(%,l)sat ( ) I‘EI(%»I)% AN

Proof For each x € X, the map
{zeC: el < |z] < 1} = [~00,0), 2z ®(x,2)

is either subharmonic or constantly —oo, as follows from Definition 4.1.1 (1) and
Proposition 1.1.4. In the latter case, the convexity of [0, 1] 3 ¢ — ¢, (x) is trivial. In
the former case, the convexity on the interval (0, 1) follows from Proposition 1.1.3.
In order to verify the convexity at the boundary, let us fix s € (0, 1). We need to

show that
@s(x) < s51(x) + (1 = 5)go(x) 4.1

for all x € X. Thanks to Proposition 1.2.6, it suffices to prove this for almost all x.
Take a set Z € X with zero Lebesgue measure such that for all x € X \ Z, we have

(1) ¢;(x) # —coforallz € [0,1] N Q;
(2) ¢:(x) = @o(x) ast — 0+ and ¢, (x) — ¢1(x) ast — 1-.

For all such x, the convexity of ¢, (x) for ¢ € (0, 1) guarantees that ¢, (x) # —co for
allt € [0,1] and ¢ — ¢, (x) is convex for ¢ € [0, 1]. In particular, (4.1) holds.
Let us prove the last assertion. Let
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= f .
¥ tel(f(l)’ b Pt
By Kiselman’s principle Proposition 1.2.8!, we know that ¢ € PSH(X, 8) U {—co}.
Take x € X so that

lim @ (x) = @o(x) # —co,  lim ¢, (x) = ¢y (x) # —oo.

Then ¢(x) # —oco. Hence we conclude that ¢ € PSH(X, 6). For any ¢ € (0, 1), using
the convexity established above, we have

¢ < (1 =11 +tgo.

It follows that ¢ < ¢o, ¢ < ¢; almost everywhere and hence everywhere by
Proposition 1.2.6. Our assertion follows. O

Proposition 4.1.3 Let (gof))ie I (go‘i)ie 1 be two non-empty uniformly bounded from
above families in PSH(X, ). Let (¢1),e(0.1) be subgeodesics from gag to ‘p‘i for each

i €l Then
(SUP*%)
iel te(0,1)

is a subgeodesic from supi*gof) to supl-*go’i.

Proof We may assume that ¢, ¢! < 0 for all i € 1. Then it follows that ¢} < 0 for
allr € (0,1) and all i € I by Proposition 4.1.2.
We define
@; = sup*¢’ € PSH(X, 6)
i€l

for all t € [0, 1]. Observe that [0, 1] > ¢t + ¢, is convex by the same argument
leading to (4.1).

Let (¥+):¢(0,1) be the subgeodesic whose complexification ®,, corresponds to
sup;" @i, where @ is the complexification of (¢}):¢(o,1)- Then clearly, ¢; < ¥,
for each ¢ € (0, 1). On the other hand, by Proposition 1.2.5,

Y =supg’ = ¢, almost everywhere
iel
for almost all ¢ € (0, 1). Therefore, using Proposition 1.2.6, we find ¢, = ¢, for

almost all ¢ € (0, 1). Since both functions are convex in ¢, we conclude that ¥, = ¢,
forall r € (0, 1).

1 1
It remains to argue that ¢, L, o as t — 0+ and ¢, L, ¢ ast — 1-. By
symmetry, it suffices to argue the former.
Thanks to Proposition 1.2.2, we may further assume that / is a countable set. We
know that for any ¢ € (0,1) and any j € I,

ol < ¢ <tor + (1= 1)¢.

! Applied the the universal cover of the annulus.
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Letting + — 0+, we find that

J Tim
¥y < lim ¢ < o
t—0+

almost everywhere. Since / is countable, we conclude that
o = lim ¢ (4.2)
t—0+

almost everywhere.
Fix iy € I. Recall that by Proposition 4.1.2, for each ¢ € (0, 1), we have

inf supg, > inf sup@? > sup ((pg’ A (pi”) > —oo,
te(0,1) X te(0,1) X X

so the set {¢;};e(0,1) is relatively compact with respect to the L'-topology by
Proposition 1.5.1. Let ¢ be a cluster point as ¢ — 0+. It suffices to show that ¢ = ¢.
By Corollary 1.2.1 and (4.2), this holds almost everywhere. Therefore, it holds
everywhere by Proposition 1.2.6. O

Proposition 4.1.4 Let (¢;);cq0,1] be a subgeodesic. Then for any 0 < a < b < 1, the
segment (Qp+(1-1)a)re[0,1] IS a subgeodesic.

Proof 1t suffices to show that

L' L'
Ptb+(1-t)a — Pas Ptb+(1-t)a — b

ast — 0+ and t — 1- respectively. In other words, we need to show that for any
c € (0,1), we have
Ll
$r — Pc

as t — c. For this purpose, observe that by Proposition 4.1.2,

sup inf ¢; < sup g, < sup g+ sup ¢
x s€(0,1) X X X

for any ¢ € (0, 1). Therefore, {¢;}:¢(0,1) is a relatively compact family with respect

to the L'-topology on PSH(X, #) by Proposition 1.5.1. It suffices to show that any

cluster point i of ¢, ast — c is equal to ¢.. By Corollary 1.2.1 and the convexity

Proposition 4.1.2, we have ¢, = i almost everywhere and hence everywhere by

Proposition 1.2.6. O

Definition 4.1.2 A ray ¢ = ({;);>0 is a subgeodesic ray in PSH(X, 0) if for any
0 < a < b, the segment (@;p+(1-1)a)re[0,1] 1S a subgeodesic in PSH(X, ). We say £
emanates from {£.

The complexification of a subgeodesic ray ¢ is defined as the potential

@: Xx{z€C:0<[z] <1} > [-00,00), (x,2) > €_jog)|(%).
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Note that @ is p6-psh, where p;: X X {z € C: 0 < |z] < 1} — X is the natural
projection.

4.2 Geodesics in the space of potentials

Let X be a connected compact Kihler manifold of dimension » and 6 be a smooth
closed real (1,1)-form on X representing a big cohomology class. Fix a model
potential ¢ € PSH(X, ). See Definition 3.1.3 for the definition.

Definition 4.2.1 Let ¢g, 91 € PSH(X, ). The geodesic (¢;);e(0,1) from ¢ to ¢; is
the family of potentials ¢, € PSH(X, 6) such that

@r = sup” {¥; : (Ys)s is a subgeodesic from g to Y1,
(4.3)

Yo,¢1 € PSH(X, 0), o < g0, Y1 < @1}
The envelopes of the form (4.3) are usually referred to as the Perron envelopes.

Example 4.2.1 Let o9 € PSH(X, 6) and C € R. Then the subgeodesic (¢o+1C)e[0,1]
studied in Example 4.1.1 is a geodesic. This follows easily from Proposition 4.1.2.
In particular, when C = 0, we find that the constant subgeodesic at ¢ is indeed a
geodesic, which we call the constant geodesic at .
More generally, suppose that (¢;);e[0,1] is a geodesic and C;,C> € R, then
(@1 +C1t+C2)1ef0,1] is also a geodesic. This follows immediately from Example 4.1.1.

Definition 4.2.2 Let (¢;)/e[a,p] (a,b €R, a < b) be a curve in E(X, 6; ¢). We say
(¢1)eela,b] is a geodesic if the curve (@;(p—a)+a)re(0,1) is a geodesic from ¢, to ¢p.
We also say (¢;)re[a,b] OF (¢1)re(a,b) 18 a geodesic in E(X, 6; ¢) from ¢, to ¢p,.

We refer to Section 3.1.3 for the definition of E(X, 6; ¢).

Proposition 4.2.1 Given ¢, ¢1 € E(X, 0; ¢), the geodesic (¢;)ie(0,1) from @ to 1
exists and is a subgeodesic from ¢ to ¢ and ¢; € E(X, 0; @) for eacht € (0, 1).
Moreover, for any 0 < a < b < 1, the restriction (¢;)iefa,p] IS a geodesic.
If furthermore @o, 1 € E'(X, 0; ¢) (resp. E°(X, 0;¢)), then ¢, € E' (X, 0; p)
(resp. E°(X, 0;¢)) forallt € (0,1).

Proof Without loss of generality, we may assume that ¢g, ¢; < ¢. It follows from
Proposition 4.1.2 that ¢, < ¢ for all # € (0, 1). In fact, we have the stronger estimate

¢r <tor+ (1 =1po, te(0,1). 4.4

We first observe that when g, 1 € E(X, 6; @), s0is oAy, see Proposition 3.1.13.
In particular, the constant subgeodesic 7 — ¢g A ¢ is a candidate in (4.3). So

r 2o A1, 1€(0,1). (4.5)
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By Proposition 4.1.3, (¢;);e(0,1) is a subgeodesic. It follows from Proposition 3.1.14
that ¢, € E(X, 0;¢) forallt € (0,1).

L! .
Next, we show that as + — 0+, we have ¢, — ¢¢. The corresponding result at
t = 1is similar.
We first argue the special case where ¢ < ¢;. Take a constant C > 0 such that

wo—C < 1.

Then (¢o — Ct);e(0,1) is clearly a candidate in (4.3), see Example 4.1.1. Therefore,
forall r € (0, 1),
o — Ct < @ <11+ (1 = 1)po. (4.6)

1
It follows that ¢, L o as t — O+.

Let us come back to the general case. By (4.4) and (4.5), we know that for all
t€(0,1),
Sup ¢o A @1 < sup @, < (sup ¢o) V (sup ¢1).
b'¢ b'¢ X be

It follows from Proposition 1.5.1 that {¢, : r € (0, 1)} is a relatively compact subset
of PSH(X, #) with respect to the L'-topology.

Let ¢ be an L'-cluster point of ¢; as ¢ \, 0, it suffices to show that iy = ¢.

For each M € N, we write

o = o A (@1 + M).

Observe that cpg” € (X, 6; ¢) by Proposition 3.1.13. Let (¢M),¢(0.1) be the geodesic
from <p3’1 to ¢1. Then it is clear that ¢ < ¢, for all t € (0, 1). Therefore,

W 2o A (@1 +M)

almost everywhere hence everywhere by Proposition 1.2.6. On the other hand, by
4.4), ¥ < po. So it suffices to show that

Ll
wo A (@1 + M) — ¢

as M — oo, which is shown in Proposition 3.1.16.

Next, take 0 < a < b < 1. We want to show that the restriction (¢;);e[q4,p] 1S the
geodesic from ¢, to ¢,. We may assume that a < b. The argument is the standard
balayage argument.

Let (¥1)re(a,b) be the (reparameterized) geodesic from ¢, to ¢y,. Since (¢;):e[a,b]
is a (reparameterized) subgeodesic by Proposition 4.1.4. we have ¢, > ¢, for all
t € (a,b).

We define

Y, ifte(a,b),
"=\ g. ifre(0.1)\ (a.b).
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We claim that (77, );¢(0,1) is a subgeodesic from g to ;. This is clear by Lemma 1.2.2

when neither a = 0 nor b = 1. Next we handle the case where a = 0. By the previous
1

part of the proof, we know that iy, L, woast — 0+ Buty, =n, =n; fort € (0,b).
1
Hence n7; L, @ as t — 0+. The case b = 1 is handled similarly.
Therefore, for all ¢ € (0, 1), we have

@r 2 1.

In particular, for ¢ € (a, b), we have

Qr 2N =Y 2 ;.

In other words, (¢;)re(a,b) = (Wt)ie(a,p) is the (reparametrized) geodesic from ¢,
to p.

Finally, assume furthermore that ¢g, ¢1 € &' (X, 0; ¢) (resp. £ (X, 0; ¢)). Thanks
to (4.5), Proposition 3.1.13 and Proposition 3.1.14, we find ¢, € E'(X, 6; ¢) (resp.
EX(X,0;¢)) forall r € (0,1). O

Proposition 4.2.2 Let ¢1,p0 € E(X,0;¢) with ¢1 2 @o. Let (¢;)re(0,1) be the
geodesic from ¢ to ¢1. Then

s sup (o1 —¢0) = sup (@s— o) 4.7
{eo#—oco} {po#—oo}

forall s € [0, 1].

Proof The notations in the proof are indicated in Fig. 4.1.2

We may assume that s € [0, 1) since there is nothing to prove when s = 1.

After replacing ¢, by ¢, — C’t for some large enough C’ > 0, we may assume that
@1 < ¢o. This procedure preserves the geodesic property by Example 4.2.1.

Since the constant geodesic at ¢ is a candidate in (4.3), it follows that ¢; < ¢,
for all t € [0, 1]. Similarly, [0, 1] 5 ¢ + ¢ is decreasing.

Let

C= sup (¢1—¢o) <0. 4.8)
{g1#-c0}

Then by Proposition 1.2.6, we have
p1<po+C.
So (@1 = C(1 = 1))re(0,1) is a candidate in (4.3) and hence

1 —C(l1—-1t)<¢;,, te(0,1). 4.9)

2 When dealing with convex functions, drawing a picture is the easiest way to keep track of the
directions of inequalities.
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i (x)

A\
A

(fs )
¢, «x)

Fig. 4.1 The typical behavior of ¢; (x)

1

By Proposition 4.2.1, we have ¢, L, ¢1 ast — 1—. Since ¢, is decreasing in
t € (0, 1). It follows that ¢ = inf;¢(0,1) ¢;. Therefore, we can find a pluripolar set
Z C X such that ¢, (x) > ¢((x) > —c0ast — 1-forallx € X \ Z.

Similarly, since o = sup,¢ 1) “¢:. after enlarging Z, we may also guarantee that
01 (x) = @o(x) > —0 ast — O+ for all x € X \ Z by Proposition 1.2.5.

For any such x € X \ Z, the function ¢t — ¢, (x) is a real-valued continuous convex
function on [0, 1]. In particular, 7 +— ¢, (x) is absolutely continuous on [0, 1]. Hence,
for any s € [0, 1), we have
a0 —erx) f’(x) < (1-5)C, (4.10)

'd
W -g = [ Sewas - tim 29

where the second inequality follows from (4.9).
Taking supremum in (4.10), we find that

sup(¢; — @) < (1 —s) sup lim w <(1-

5)C. @.11)
X\Z xEX\Z t—1— -1

When s = 0, we deduce from Corollary 1.3.6 and (4.8) that
sup (@1 —¢o) = sup lim M
{er#-co} xeX\Zt—1- 1-1¢

But this equality works equally well for the geodesic (@ (1—g)s+s)se[0,1]- It follows that
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sup (g1 —¢y) = (1=s5) sup lim LD =8 _ e

{@1#—o00} xeX\Z 11— 11

Therefore, invoking Corollary 1.3.6 again, we deduce that all inequalities in (4.11)
are in fact equalities. In other words,

sup (¢ — @) = sup lim M = sup P17 Ps 4.12)
{@1#—00} xeX\Zt—1- -1 {@1#—00} I-s
On the other hand, we have the trivial inequality
sup (o1 —go)<s sup 2P ii—g) sup HLTFs
{gr#-) {gr#-c0} S {pre-c0} 1=
Together with (4.12), we find that
s — ¥0
sup (p1—go) < sup 20
{p1#—00} {p1#—00} §
The reverse inequality follows from the convexity,
s — ¥0
sup L= sup (1 - o).
{p1#-00} § {p1#-00}
Using Corollary 1.3.6, we conclude (4.7). O

With an almost identical proof, we find

Proposition 4.2.3 Let 1, oo € E%(X, 0; ¢). Let (¢1):e(0,1) be the geodesic from ¢q
to ¢1. Then

t inf - = inf -
(oL, (#1=%0) {¢¢_w}(‘0’ o)

forallt € (0,1].

Definition 4.2.3 Let £ = ({;),;>0 be a curve in E(X, 0; ¢). We say ¢ is a geodesic ray
in E(X, 6; ¢) emanating from £ if for each 0 < a < b, the restriction (£;);e[q,p] is a
geodesic.

The set of geodesic rays in &(X, 0; ¢) emanating from ¢ is denoted by R(X, 6; ¢).

We say a geodesic ray £ € R(X, 0; ¢) has finite energy if £, € E'(X, 6; ¢) for all
t > 0. The set of geodesic rays with finite energy is denoted by R! (X, 6; ¢).

We say a geodesic ray £ € R(X, 0; ¢) is bounded if £, € (X, 0; ¢) for all t > 0.
The set of bounded geodesic rays is denoted by R (X, 6; ¢).

Given £, € R(X,0; ¢), we write £ < ¢’ if £, < {] foreach ¢ > 0.

When ¢ = Vg, we usually omit it from the notations and write R(X, 6), R! (X,0)
and R* (X, 0) respectively.

Proposition 4.2.4 Let ¢ € R(X, 6; ¢). Then there is a constant C € R such that

supt; =Ct, t=>0.
X
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Proof 1t follows from Proposition 4.2.2 that

sup (& — @) = tsup(ly — ¢)
{p—co) X

forallr > 0.
It suffices to show that for any 7 > 0,

sup (& — @) =sup;.
{p#—oco} X

The > direction follows easily from Corollary 1.3.6. In order to argue the reverse
inequality, let us observe that for any # > 0,

6 —suply <0, & —suply < ¢.
b'¢ b'¢

Since ¢ is a model potential, it follows that

ft - Supf, < ¢
X

Our assertion follows. O

Definition 4.2.4 We define the radial Monge—Ampére energy E?: R(X, 6;¢) —
R U {co} as follows:
—_ EX¢
E?(¢) = nnl-liglz.
t—o00 t
When ¢ = Vg, we write E instead of EV¢.
Thanks to Proposition 4.2.2, E?(£) < co for any £ € R (X, 6; ¢).

Definition 4.2.5 Let ¢,y € (X, 0; ¢), we define
d\(@.9) = Ey (9) + Ef (W) = 2E§ (¢ A ).
Note that by Proposition 3.1.13, ¢ € ¢ € E'(X, 0; ¢).

In particular, if ¢ <, we have

di(p, ) = ES(¥) - ES (¢). (4.13)

Theorem 4.2.1 The function d; defined in Definition 4.2.5 is a complete metric on
&1(X.0:9).
The function Eg - &l (X, 8; ¢) — R is continuous with respect to d.
Moreover, given a decreasing (resp. increasing) sequence (¢;) jez., in EL(X,0;¢)
d
converging (resp. converging almost everywhere) to ¢ € E'(X, 6; ¢), then @;j = ®.

Conversely, if a monotone sequence (@) converges in E\(X, 0 ¢), then the limit is
almost everywhere equal to the pointwise limit of the sequence.
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See [ , Theorem 1.1, Proposition 2.9, Proposition 2.7]. The readers should
have no difficulty in generalizing all arguments to the current setting.
Next we recall a few particular properties when ¢ = V.3

Proposition 4.2.5 Let (¢;);c[a,p] be a geodesic in EN(X,0), thent — Eqg(¢;) isa
linear function of t € [a, b].

See [ , Theorem 3.12].
Proposition 4.2.6 Let £, ¢’ € R'(X,0) and £ < t'. Then
di (6, ") =E(") - E(0). (4.14)
Proof This is a direct consequence of (4.13). O
Proposition 4.2.7 Let £, ' € R (X, 6). Then the map
t—di (6, )
is convex.

See [ , Proposition 2.10] for the proof. In particular, we can introduce:

Definition 4.2.6 Let £, £’ € R'(X, 0). We define
’ : 1 ’
di(¢,t") = thm ;dl(&,{’,).
Theorem 4.2.2 The function dy defined in Definition 4.2.6 is a metric and
(R (X, 0),dy) is a complete metric space.
See [ , Theorem 2.14] for the proof.

Proposition 4.2.8 Let (cpf))ie I (ga‘i)ie 1 be two uniformly bounded from above increas-
ing nets in 8% (X, 0). Let (¢!),e(0.1) be the geodesic from gpf) to go’i foreachi € I.
Then
(sup*wi)
iel t€(0,1)
is the geodesic from supi*gof) to supi*cpf).

Proof By Proposition 1.2.2 and Proposition 4.1.3, we may assume that / is count-
able. In this case, the assertion follows from [ , Proposition 3.3] and
Theorem 2.1.1. O

Next we recall that v operator at the level of geodesic rays.

Definition 4.2.7 Let ¢,{’ € R*(X,0). We define ¢ vV ¢’ as the minimal ray in
R*(X, 0) lying above both € and ¢’.

3 I expect that these assertions hold even when ¢ # V. But I am unable to prove them.
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Proposition 4.2.9 Given €,{’ € R®(X,0). Then £ v £’ € R*(X, 0) exists, and
1
E((V () = t]im ;Eg(f, v ). (4.15)

Proof Foreacht > 0, let (£;'")ef0,1] be the geodesic from Vi to ¢, V £].
Step 1. We first show that for each fixed s > 0, £;’" is increasing in ¢ € [s, o).
To see this, fix s > 0 and choose ¢’ > ¢ > 5. We need to show that

oo e (4.16)

Since (f&”’)ae[o,,] is a geodesic. It suffices to show that (£/")4¢[0,¢] is a candidate in
the Perron envelope defining the former geodesic. In other words, in verifying (4.16),
we may assume that either s = 0 or s = ¢. The case s = 0 is of course trivial. So it
remains to prove the following:

t/
&gt =4 v
By symmetry, it suffices to prove
o > 6.

Butsince (£4)ae[0,:] is a candidate in the Perron envelope defining ' this inequality
follows.
Step 2. Next, observe that for a fixed s > 0, we have

t‘ —
sup )" < g sup €' + =3 sup £’ = 2 (sup Z,) % (sup Z,’)

for all # > s. The right-hand side is bounded from above by a constant independent of
t > s by Proposition 4.2.4. Let

(Ev )5 =sup i,
t=s
Then Proposition 4.2.8 guarantees that £ V £’ € R*(X, 0).
Step 3. We need to show that £ V ¢’ defined in this way is indeed the minimal ray
lying above ¢ and ¢’.
First, by Step 1, we have
e > 0 > L

for any ¢ > s > 0. Therefore,
v, =l

for all s > 0. In other words, £ V ¢’ > ¢. Similarly, £ vV ¢’ > £’.
Next, let L € R*(X, 0) be a ray lying above both £ and ¢’. Then we have

L >4 N
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for all # > 0. In particular,
Ly >0

forall t > s > 0. It follows that
Ly> (V)

forall s > 0.
Step 4. It remains to argue (4.15):

1
E((V{)=Eg(tVv{) = tlim Eo(¢]") = tlim ?E(;(ft v L),
where we applied Proposition 4.2.5 and Theorem 4.2.1. O
Lemma 4.2.1 For any £,{’ € R*(X, 6), we have
di(6, ) <di(6, v Yy+d (L, eV L) < Cpdi (L, 1), (4.17)

where C,, = 3(n + 1)2"+2.

Proof The first inequality is trivial. As for the second, we estimate
di(6, ¢V ) =E( V) -E({)
=tlLr£10 ;E(& v ) —E(¢)
:tILTO %dl(f, v, L),

where one the first line and the third, we applied Proposition 4.2.6, on the second
line, we used (4.15). In all, we find

1
di(,ev)y+di(',evE) < tlim " (d1 (& Ve, 6)+d (6 Vv ft’,ft’)) .
By [ , Theorem 3.7],

dy (6 V6 +di (6 VL, E) <3(n+1)2"2d (4, L)).

Now (4.17) follows. |

Example 4.2.2 Let ¢ € PSH(X, 6). Foreach C > 0, let (Zf’c),elo,cj be the geodesic
from Vg to (Vg — C) V ¢. For each ¢ > 0, there is £ € E(X, 0) such that

e 2L, gp (4.18)

as C — oo. Then ¥ € R*(X, 0) and

1 <& . .
E(¢%) = 91/\0"]—/«9" . 4.19
(€%) n+1;0(/x¢ Vo ng) (4.19)
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From the proof below, we see that £ e+C = 09 for any C € R.

Proof Step 1. We first assume that ¢ < 0.
We first show that for each fixed ¢ > 0, f;p Cis increasing in C > t.
To see this, choose t < C; < C,. We need to show that

f%scl < [‘/’wc2
t = 7t N
Since both sides are geodesics for ¢ € [0, C1], it suffices to show that
(Vo—C) V< fg;CZ. (4.20)

Now ((Vo — 1) V @)e[0,c,] is a subgeodesic from Vg to (Vg — C3) V ¢ by Proposi-
tion 4.1.3.# At ¢t = 0 and ¢ = Cy, it is dominated by the geodesic [f’cz, hence we
conclude that the same holds at t = Cy, which is exactly (4.20).

From Proposition 4.1.2, we know that for any C > ¢ > 0, we have

t C—-t
7€ < Z((Vg-C) V Vg <0,
£C < S (Vo=C V) + = Ve

so by Proposition 1.2.1,

¢ = sup*t?PC € E°(X,0) 4.21)
C>t

for all + > 0. Thanks to Theorem 4.2.1, we have
£ 2L, go
as C — oo for all ¢ > 0. It follows from Proposition 4.2.8 that £¥ € R*(X, 0).

It remains to compute the energy of £¥. We first fix C > ¢ > 0 and compute using
Proposition 4.2.5:

Eo (67°) = SEo (Vo -C) v o).

Letting C — oo and applying Theorem 4.2.1, we find that
. t
Eo(f) = Jim =Eg (Vo —C) V ¢)
for any ¢ > 0. It follows that
E(¢¥) = lim lE (Vg =C) Vo)
=cm st Ve ¥) -

Using the definition of Eg, in order to obtain (4.19), it suffices to show that for each
j=0,...,n, we have

4 Here we need ¢ < 0.
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) Vo -C)Veo—-Vq ; n—j i i n
ggnmL C H(Ve—C)\/VJ A 9V9 = Xe‘lJ A GVH - XHVH’ (4.22)

For this purpose, for each C > 0, we decompose X as {¢ > Vy — C} and
{¢ < Vg —C}. We have

Vo—C) V-V, n-j
-/{<p>Ve—C} C Q(VH—C)ch A ng
¥ - Vo J n—j
= 0, N6, 7.
v/{<p>ve—c} c ¢V
On the other hand,
(Vo—C)Ve—Vy ; n—j
/{wngC} C O(VH—C)th A By,

- 0’ NG
[¢<V9—C} (Vg—C)\/qJ Vo

= [ o +/ AN
./x Vol Jigsve-cy £ Ve

Observe that for C > 0, the functions 1{¢>Vg_c}c_l((p — Vp) is defined almost
everywhere and is bounded. When C — oo, these functions converge to 0 almost
everywhere. Therefore, (4.22) follows.

Finally, let us observe that ¢; is decreasing in ¢ > 0 by the argument in the proof
of Proposition 4.2.2.

Step 2. We assume that D = supy ¢ > 0.

Then
(Vo—=C)Veo=(Veg—C-D)V (p-D)+D.
Therefore,
_ D
L = (4.23)
=t C

for all C > 0 and ¢ € [0, C], since both sides are geodesics with the same endpoints.
Next, observe that for any fixed # > 0, as C — oo, we have

e L 7P, (4.24)

In fact, we may assume that ¢ > 0, then for any § € (0, ), we have
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hm d1

Cooo C+D .t

€<p D,C+D €<p D)

C+D .t C—ooo

< fim 4, (ﬁ’ DD po=D C*’)) + Tim dy (070,077

Ap D, C+D <p D, C+D)
D D D,C+D
< lim d; (f;’id -+ ,{’;p e )

=d, (¢ P57,

where on the third line, we applied Step 1. Let & — 0+, using Theorem 4.2.1, we find
that

. D D
Jim .67 =0
Therefore, (4.24) follows.
Taking (4.23) into account, we conclude that
AN
as C — oo for any ¢ > 0. Namely,
% =970,
In particular,
E((%) = E((*P)
and (4.19) follows.



Chapter 5
Toric pluripotential theory on ample line bundles

There are two principal ways to formulate mathematical
assertions (problems, conjectures, theorems, . .. ): Russian and
French. The Russian way is to choose the most simple and specific
case (so that nobody could simplify the formulation preserving
the main point). The French way is to generalize the statement as
far as nobody could generalize it further.

— Viadimir Arnold"

4 Vladimir Igorevich Arnold (1937-2010), who became a professor
at I’Université Paris IX after the dissolution of USSR, was always
sick of France (so am I!). In the public lecture entitled ”Sur
I’éducation mathématique” in 1997, he invented the famous joke
”Combien font 2 + 3?” to question the french education system.

In this chapter, we briefly recall the toric pluripotential theory relative to an ample
line bundle. The general case of big line bundles will be handled in Chapter 12 after
developing the powerful machinery of partial Okounkov bodies in Chapter 10. The
main new result is Theorem 5.2.2 computing the L>-sections of a Hermitian big line
bundle in the toric setting.

We assume that the readers are familiar with basic toric geometry, such as the
materials in [ ]. If not, this section can be safely skipped.

Some basic facts about convex functions and convex bodies are recalled in
Appendix A.

5.1 Toric setup

Let T be a complex torus of dimension n! and 7, C T(C) denotes the corresponding
compact torus. Write M for the character lattice of 7', which is a free Abelian group
of rank n. Similarly, let N be cocharacter lattice of 7', which is the dual lattice
of M. Given m € M, the corresponding character of M is denoted by . Write
Mg = M ®z R and Ng = N ®z R. The pairing between My and Np is denoted by
(o, 0).

Let P € My be a full-dimensional smooth? lattice polytope3.

Given any (closed) facet F of P, let ur € N denote the unique ray generator
(the first non-zero integral element) of the inward normal ray of F. Then P can be

! Namely, an algebraic group defined over C, which is isomorphic to GJ.

2 Recall that smooth means that for every vertex v € P, if we take the first lattice point wg apart
from v as one transverses each edge E of P containing v from v, then {wg — v} g forms a basis of
M. See [ , Definition 2.4.2]. We also say P is a Delzant polytope in this case.

3 A lattice polytope in My, is the convex hull of finitely many points in M.

83
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represented as
P={me Mg : (m,up) > —ar for all facets F of P} (5.1)

for some uniquely determined integers ar. The presentation is called the facet
presentation of P.

Given any (closed) face Q of P, we let 0p € N be the closed convex cone
generated by the ur’s, where F runs over all facets of P containing Q. When Q = P,
op is understood as {0}.

Let X be the (inner) normal fan of P. Namely,

T ={op : Qisaface of P}.

The notation X(1) denotes the set of rays in X. Note that X(1) is in bijective
correspondence with the set of facets of P. In fact, given any facet F' of P, the cone
o is just the ray generated by ur, namely, the inward normal ray of F.

For any p € X(1), let u, € N denote the ray generator of p, namely the first
non-zero element in N N p. If p = o for some facet F of P, then u, = ur.

Now the facet presentation (5.1) can be equivalently rewritten as

pP= {m € Mg : (m,up) > —a, forallp € Z(l)}.

Let Suppp: Nr — R denote the support function of P. Recall that the support
function (Example A.1.2) of P is defined as

Suppp(n) = max {{(m,n) : m € P}.

Note that our support function differs from [ , Proposition 4.2.14], where
instead of a maximum, they took the minimum.

Recall that the characteristic function yp: Ng — {0, 0} of P is defined as in
Example A.1.1:
0, neP;

xp(n) = {oo, néA.

Let X = Xy be the smooth projective toric variety corresponding to X. See
[ , Theorem 3.1.5] for the construction of X and [ , Theorem 3.1.19] for
the smoothness of X. There is a canonical embedding 7 € X as a dense Zariski open
subset.

Let D be the Cartier divisor on X defined by P:

D= Z a,D,,
pEZ(1)

where D,, is the toric prime divisor defined by p under the orbit-cone correspondence
[ , Theorem 3.2.6].
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Let L be the toric line bundle induced by P, namely L = Ox(D). Since P has full
dimension, L¥ is very ample for each k > n — 1 by [ , Corollary 2.2.19], we
actually know that L is ample.

We will choose the base e for the logarithm map

C* >R, z+ loglzl’ (5.2)

This choice will be fixed throughout the whole book. Since we have a canonical
identification T(C) = N ®z C*, the logarithm map then induces a tropicalization map
after tensoring with N:

Trop: T(C) — Ng. (5.3)

Before proceeding, it is always helpful to understand everything in our favorite
example.

Example 5.1.1 We take n = 1 and P = [0,1] € Mg = R. In this case, the facet
representation (5.1) becomes

P={meR:(m1)20,(m~1)z-1},
withugoy =1, ug1y = -1, agoy = 0 and a1y = 1. The normal fan X is
X = {(_00’0]7{0}’ [O’OO)}

The corresponding toric variety is just X = P!. Under the orbit-cone correspondence,
we have

D{[0,00)} = [0],  D{(=c0,01} = [00].

The canonical divisor D = [oo] and therefore,

L = O0x(D) = Ou (1).

5.2 Toric plurisubharmonic functions

We continue to use the notations of Section 5.1.

Lemma 5.2.1 Let F: Ng — [—c0, 00| be a function. Then the following are equiva-
lent:

(1) F is convex and takes values in R, and
(2) Trop* F is plurisubharmonic on T (C).

Proof We may choose an identification N = Z" so that we have an identification
T(C) = C**. Then Trop is identified with the map

Trop: C" > R", (z1,...,2,) (]Og |z |2, ...,log |Zn|2) .
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(1) = (2).Let Fy € C*(R") N Conv(R") be a decreasing sequence with limit
F (see Proposition A.3.3). It follows from a straightforward computation that

dd® Trop™ Fi(z1,...,2n) = ﬁ Z 0;; F (log lz1]%, . .. ,log |z,,|2) zi_lz_j_ldzi/\dz_j.
i,j=1
’ 54
So Trop* Fy, is plurisubharmonic. It follows from Proposition 1.2.1 that Trop* F' is
plurisubharmonic.

2) = (1). It follows from Lemma 1.2.1 that F' is finite. Moreover, take a
radial mollifier, we may find a decreasing sequence ¢ of (S')"-invariant smooth
psh functions on C** with limit Trop* F. Write ¢, = Trop* Fj for some function
Fi: R* — R, it follows from (5.4) that F}, is convex for all k. Therefore, F is convex
by Lemma A.1.2. O

Next we define a canonical Kéhler form in ¢ (L).
Let Go: MR — (—00, ] be defined as

((m,up) +ap) log ((m,u,) +ay) *, it m € P,
Go(m) = {pes0) 5.5)
00, otherwise.

This is a closed proper convex function and Gy ~ yp, where ~ is the relation
defined in Definition A.1.8.
Let
Fy =G € E°(Ng, P). (5.6)

Recall that G; is the Legendre transform of Gy, as recalled in Definition A.2.1. The
set &°(Ng, P) is defined in Definition A.3.1.

By Guillemin’s theorem [ X ], dd® Trop* Fy can be extended to a
unique Kéhler form w in ¢ (L). The Kéhler form w is clearly T, -invariant.

For each p € X(1), we write

rp(m) =log ({m,u,) +a,) +1, meP.

It follows from (5.5) that
VGo(m) = Z ro(m)up. 5.7
peZ(1)
Example 5.2.1 Let us move on with our favorite example Example 5.1.1. We continue
to use the same notations. In this case,

mlogm + (1 —m)log(l —m),if m € [0, 1],

0o, otherwise.

Go(m) = {

4 We understand that 0log O = 0 in this expression.
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The Legendre transform is given® by
Fo(n) =log (1+¢e").

Composing with the tropicalization map, we find that

wlc(z) = log (1 + |z|2) )

This is exactly the Fubini—Study metric as we have seen in Example 1.8.1.

Now we could explain one subtlety: In our expression (5.5), there is no factor
1/2 before the sum, this is due to the presence of the square in our choice of the
tropicalization map (5.2).

Let PSHy (X, w) denote the set of T.-invariant w-psh functions.

Theorem 5.2.1 There are canonical bijections between the following three sets:

(1) The set of ¢ € PSHyo (X, w),

(2) the set P(Ng, P) in Definition A.3. 1, namely, the set of convex functions F : Ng —
R satisfying F' < Suppp, and

(3) the set of closed proper convex functions G € Conv(Mpg) satisfying

Glmz\p = 0.

For the notion of closeness and properness, we refer to Definition A.1.2 and Defini-
tion A.1.7.

Proof The bijection between (2) and (3) is the classical Legendre duality. Given F
as in (2), we construct G = F* and vice versa, see Proposition A.2.5.

The map from (1) to (2) is given as follows: Given ¢ € PSH, (X, w), since ¢ is
T,-invariant, we can find f: Ng — [—0c0, c0) such that

¢lr(cy = Trop™ f. (5.8)

We then define F = f + Fy. Then Trop® F € PSH(T'(C)). By Lemma 5.2.1, F(n) is
finite for any n € N and F is convex. Moreover, F' < Suppp since this holds for Fy.
Conversely, given a map F € P (Ng, P), then

Trop*(F — Fy) € PSH(T(C), wlr(c))-

It follows from Theorem 1.2.1 that this function can be extended uniquely to an w-psh
function on X. The uniqueness of the extension guarantees its 7,-invariance.
The two maps are clearly inverse to each other. O

5 While reading an advanced mathematical textbook/paper, I usually tend to trust the authors for
their elementary computations. A few years ago, I was asked to present the result of a landmark
paper written by two respected mathematicians on a conference. After spending a few days on the
elementary integrals, I found out that all non-trivial constants in that paper were wrong. So I ask the
readers to really verify this expression, if it is not obvious to you.
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Given ¢ € PSHy (X, w), we will write F, and G, for the convex functions given
by Theorem 5.2.1. From the proof, we have the following relations:

¢lrc) = Trop*(Fy — Fy), G, =F. (5.9)

Example 5.2.2 Let us take our favorite example Example 5.2.1 again. We will continue
to use the same notations.

Recall that in Example 1.8.2 and Example 3.1.1, we constructed two S'-invariant
functions in PSH(X, w).

We begin with the function ¢ in Example 1.8.2. Recall that

|z|?
|z|2+1

¢(z) = log

for z € C. The function f: R — R in (5.8) is therefore

n

e
=1 .
f(n) =log Toon
Therefore, F,: R — Ris
Fy(n) =n.
Correspondingly, G,: R — Ris
0,ifm=1,

oo, otherwise.

th(m) = {

Similarly, if y denote the function in Example 3.1.1, then the function f in (5.8) is

—log(e" + 1)+ (—log(-n)) vV (n+2),if n < —log2,
f(n) = e

2 +log oo’ otherwise.
eI’L

Therefore,
(=log(-n)) vV (n+2),ifn < —log?2,
2 + n, otherwise.

Fy(n) ={

The Legendre transform is tricky to compute. Let A be the large solution of log x = x—2.
So A = 3.146. The smaller solution is around 0.159 < log?2 ~ 0.693. It might be
helpful to have a look at the poorly drawn picture Fig. 5.1.

Itis immediate that G, (m) = —co unless m € [0, 1]. Let us assume thatm € [0, 1].
Then
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X—=2
log x
T h
)
|
|
IV
.
PN
Fig. 5.1 The graphs of log x and x — 2.
Gy (m) =sup (mn — Fy(n))
neR
= sup (mn-—(-log(-n))V (n+2))Vv sup (mn-n-2)
n<-log2 n>-log2
= sup (—-mn+ (logn) A (n—=2)) Vv ((1 —m)log2-2).
n>log2

Let us focus on the first part, which can be decomposed further into

sup (—mn+ (logn) A (n—2))
n>log2

= sup (n-2-mn)Vsup(logn—mn)
ne(log2,1] n>A1

=((1 =m)A —2) v sup(logn — mn).

n>A4
The latter part can be computed easily:

sup(logn — mn) =
n>A

—logm —1,ifm € [0,27"],
logA —maA, if m e (171, 1].
Putting everything together, we find

(=logm—1)V ((1-m)A—-2),ifm € [0,47'],

ovim= { (logd =m) v (1 =m)A=2) if m € (A7, 1].

This can be further simplified, the final result is
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—logm —1,ifm € [0,471],
Gy(m)=3(1-m)A-2,ifme (A "1],

oo, otherwise.

The graph of G on (0, 1] is sketched in Fig. 5.2.

A-3
0,146

-_—_— ———e
\\’

Fig. 5.2 The graph of G,.

We observe a few elementary facts.
Proposition 5.2.1 Given ¢, € PSHy (X, w). The following are equivalent:
e =y,

(2) Fp < Fy, and
3)Gy =Gy

The same holds if we replace all <’s by <.
In particular, ¢ € (X, w) if and only if F, € E(Nw, P).

Proof The equivalence between (1) and (2) follows from the definition (5.9). The

equivalence between (2) and (3) follows from the definition of the Legendre trans-

form. o

Similarly, we have

Proposition 5.2.2 Given ¢ € PSH (X, w) and C € R. We have

Fpsc =Fp+C, Guc=G,—-C.
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Proposition 5.2.3 Given ¢, € PSH (X, w) with ¢ Ay £ —oo, then ¢ AN Y €
PSH (X, w) and

F¢A¢=F¢AF¢, G‘pA,’p:G‘pVGl/,.
The operators A and V are defined in Definition A.1.5 and Definition A.1.6.

Proof 1t is clear that ¢ A ¥ € PSH (X, w). So ¢ A ¢ is the biggest element in
PSHy,: (X, w) which id dominated by both ¢ and . In view of Theorem 5.2.1 and
Proposition 5.2.1, Gay is the smallest closed proper convex function G on Mg
dominating both G, and G, whichis just G, V G.

The claim for F follows from Proposition A.2.3. O

Example 5.2.3 Now we can give an example of ¢, i € PSHo (X, w) with p Ay = —co.
We take P = [0, 1] so that X = P! and w is the Fubini-Study metric. Let
¢ € PSH(X, w) be such that

|z

|z]2 +1

¢(z) =log
for z € C. We have computed that G, in Example 5.2.2:

0,ifm=1,

o0, otherwise.

th(m) = {

Now we define yy € PSHo (X, w) as the unique function such that

Y (z) = log

|z]2 +1

for z € C. Then a similar computation shows that

Goy(m) 0,if m=0,
m) =
v oo, otherwise.
Now we claim that ¢ Ay = —oc0. Otherwise, we would have
Govy =Gy VGy =0,

which is not proper.

Proposition 5.2.4 Let {¢;}ic; be a non-empty family in PSHy (X, w) uniformly
bounded from above. Then sup; ;" ¢; € PSHior (X, w) and

Fuprer o = \/ Feis  Guupyprgn =l /\ G-

iel iel

Moreover, if I is finite, then
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GmaXieI ei = /\ GSDi'
iel

Similarly, if {¢;}ics is a decreasing net in PSHyy (X, w) such that inf;c; ¢; # —oo,

then inf;c; ¢; € PSHior (X, w) and
Finfie; @i = }Ig Foir Ginfiqp i = \/ Gy
iel

Recall that the closure cl is defined in Definition A.1.7.

Proof Thanks to Lemma A.1.2 and Proposition A.1.1, in both cases, the statement
for F is clear. The corresponding statement for G is obtained via Proposition A.2.3.0

The complex Monge—Ampere operator is closely related to the real one:

Proposition 5.2.5 Let ¢ € PSHo (X, w), then
Trop, (wlr(c) + dd°¢|r(c))" = MAR(F,). (5.10)

In particular,

/‘UZ; = MAg(F,) = n!vol{G, < oo}
X Ne

/ w" =n!vol P.
X

Here the real Monge—Ampere operator is defined in Definition A.4.1. The normaliza-
tion of the Lebesgue measure vol on My is such that the fundamental lattice cube as
measure 1.

and

Proof We only need to prove (5.10). By Proposition A.3.3, we can find a decreasing
sequence of smooth convex functions F; on Ng with limit F,. We write F; = F,,
for some ¢; € PSH, (X, w). By Theorem 2.1.1 and Theorem A.4.1, it suffices to
establish (5.10) for the ¢ ;’s. We may therefore reduce to the case where F, is smooth.
We write F' = F, to simplify the notations. The notations a; = log|z; |> will be used,
wherei=1,...,n.

Next we fix an identification N = Z". Fix a test function f € C?(Ng), we need to
show that

/ f(al,...,an)(ddCTrop*F(zl,...,Zn))n=/ f MAR(F).
C*n Rn

Using Proposition A.4.1 and (5.4), this reduces to

n

. n n
1 ] — —_
(E) mf(al,...,an) Zﬁi,jF(al,...,an)zilzj ldzi/\dzj =
¢ ij=1 (5.11)

n! [ fdetV2Fdvol.
Rn
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Expanding the bracket, we get

Zn:ai,,Fz;‘z_j‘ldziAdz, Z Z Oiyj F -+ Oy, F

ioj=1 ] i, in=1j1,.., Jn=1

dlogz,-1 Adlogzj A---Adlogz;, Adlogz;,,

where dlog z; = zi‘] dz; and dlogz; = z_,-_ldz_i are understood.
Using the apparent symmetry, the expression on the right-hand side becomes

n
Z 1_[ Oc(k)r(yF dlog zo(1)y Adlogzz(1) A-+- Adlogzs(ny A dlogZz(n),

o, 7€6, k=1

n
=n! Z HBkT(k)Fdlogzl AdlogZr) A+ -+ Adlogz, AdlogZrgn
T€C,

=n! Z (-1)SienT 1_[ Okr(k)F dlogzy Adlogzy A --- Adlogz, Adlogz,
76, k=1

=n!det V2Fdlogz; AdlogZ] A --- Adlogz, A dlogZz,,
where G, is the permutation group on {1,...,n} and Sign(t) is the sign of .

Next, switch to polar coordinates for each z;: Let z; = r; exp(i6;) and recall that
r; = exp(a;/2), then the left-hand side of (5.11) becomes

n!
(2m)"

/ FdetV2Fda; AdOy A--- Aday AdE,
R?x[0,27)"

=n! | fdetV>Fda; A--- Adap,
Rn

which is exactly what we have expected. O
Next we study the envelope operators developed in Chapter 3 in the toric setting.

Definition 5.2.1 Let ¢ € PSH (X, w). We define its Newton body as
Alw, ) ={G, < oo} CP.

Note that A(w, ¢) is a convex body.
By Proposition A.2.2, we have

A(w, @) = VF4(Ng).
Example 5.2.4 By (5.5), we have
A(w,0) =P

In the case of Example 5.2.2, we have
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Alw, @) ={1}, Alw,¥) =[0,1].
Observe that in the latter case,
{Gy, <00} CP.
Proposition 5.2.6 Let ¢ € PSHo (X, w). Then P, [¢] € PSHy (X, w) and

Go(x), if x € A(w, ¢);

Gpw[(p](x) - { oo, otherwise. (5-12)

Proof By (3.3), we have

Pule] = (S:UPR* ((¢+C) A 0).

It follows from Proposition 5.2.2, Proposition 5.2.3 and Proposition 5.2.4 that
P, [¢] € PSHyo (X, w). Moreover, by the same propositions, we have

Gpylp) =cl inf (GoV (Gy =),

which is clearly equal to the right-hand side of (5.12).

Recall that H*(X, L) can be identified with the vector space generated by x" for
allme PN M, see [ , Proposition 4.3.3]. In other words, a character y"* of T
can be extended to a regular function on X if and only if m € P. This gives a beautiful
characterization of the lattice points in P. The following theorem of Yi Yao gives an
analogous characterization of the lattice points in the Newton body.

Theorem 5.2.2 (Yao) Let ¢ € PSH, (X, w). Given m € M, the corresponding
character x™ can be extended to a section in H(X,L ® I (¢)) if m € A(w, ¢) N M.

Fix a norm on Ng. There is a constant Co > 0 depending only on n and the norm
such that for any m € M N (P \ A(w, ¢)), if there is ng € Ng such that

(m,no) = Suppy (e, ) (m0) > Colnol,
then y™ ¢ HO(X,L ® I (¢)).

Proof 1t is convenient to use explicit coordinates. We will identify N with Z" after
choosing a basis. In this way, we get an identification M = Z" and T(C) = C*". In
this case, we have

xX"(2) ="
with the multi-index notation.

Observe that H*(X, L ® I (¢)) is a C*"-invariant subspace of H*(X, L), it follows
that H*(X, L ® 7 (¢)) is the direct sum of suitable y™’s. Due to Proposition 3.2.8,
we may replace ¢ by P, [¢] and thanks to Proposition 5.2.6, we may assume that
G, has the following form:
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Go(x), if x € A(w, 9);
Gw(x) = { .
oo, otherwise.
In particular, Fy ~ Suppy (. ¢)-
Now given m € M N P, we need to know whether the following expression is
finite or not:

/ [x™|? exp(— Trop* Fy — ¢) ™. (5.13)
CHn

By Proposition 5.2.5, (5.13) is finite if and only if the following integral is finite:

[ exp (. = Supps ) () MAR(Fo) ).

By a change of variable, this integral is finite if and only if the following integral is:

/Pexp (<m, VGo(m')) - SuppA(w,‘p)(VGo(m'))) dm’. (5.14)

Suppose that m € A(w, ¢), then the integrand in (5.14) is bounded from above by e,
so we are done.
Next suppose that m ¢ A(w, ¢). Suppose that we can find ny € R” such that

{m, no) = Suppy (4, ) (n0) > Colnol.

In particular, there is a closed convex cones C containing 7y in their interiors such
that there exists € > 0 such that

<m7 l’l> - SuppA(w,gp) (l’l) 2 C0|n|

foralln € C.
Thus, it would suffice to prove

/ exp (Co|VGo(m”)]) dm’ = co. (5.15)
PN{VGycC}

Take a cone o in Z such that ny € —Rellnto. Let py, ..., p, be the minimal
number of rays of o~ such that ng lies in the closed convex cone they generated. Then
Up,, ..., Up, are linearly independent. We may find rays pu+1, ..., 0n € X(1) such
thatuy,, ..., u,, form a basis of R".

Taking the form (5.7) of VG into account, we find that there is a subset of
PN {VGy C C} given by those m’ € P such that for all p € X(1) different from
P1,- - Pa, the function r,(m”) is uniformly bounded, while m’ is close enough to
the faces corresponding to the rays py, ..., p, and 3.1, r,, (m")u,, € C. Replacing
the domain of integration in (5.15) by this region, we conclude that the integral (5.15)
diverges when C is large enough. O

Corollary 5.2.1 Let ¢ € PSHor(X, w) and [, w? > 0, then
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. nloy k
khm ﬁh (X,L* ® I(ky)) =n!volA(w, ¢).

Example 5.2.5 In general, in the setup of Theorem 5.2.2, there exists m € M N (P \
A(w, ¢)) such that y™ € H (X, L ® I (¢p)).

As a concrete example, let us take P = [0, 1]. Take ¢ so that A(w, ¢) = [0, 1/2].
We claim that y! is L?-integrable.

It suffices to verify the convergence of (5.14). Recall that

ml

VGo(m') = log

, m' €][0,1],

1-m'

while
a/2,ifa > 0;

SuPp[O’l/zl (a) = { 0, otherwise.

Therefore, (5.14) becomes

1/2 ’ 1 ’ 1/2
/ m ,dm’+/ ( m ,) dm’ < oo.
0 l—m 1/2 l—m

We interpret various classes of potentials studied in Section 3.1.3 in the toric
setting.

Proposition 5.2.7 Let ¢ € PSHy (X, w). Then the following are equivalent:

(1) ¢ € E¥(X, w);
(2) F, € &(Ng, P);
(3) G, ~ G

The notation &% (Ng, P) is defined in Definition A.3.1.
Proof This follows immediately from Proposition 5.2.1. O

Proposition 5.2.8 Let ¢ € PSHy (X, w). Then the following are equivalent:

(1) g € E(X,w);
(2) Fy € E(Nr, P);
(3) DomG, = P.

The notation &(Ng, P) is defined in Definition A.3.1.

Proof (1) < (3). By Proposition 5.2.5

/ Wy = / (wlr(c) +dd°¢lr(c))" = n! volDom G, /w" =n!vol P.
b 7(C) X

Therefore, (1) and (3) are equivalent.
(2) & (3). This follows from Proposition A.2.2. O
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Proposition 5.2.9 Let ¢ € PSHo (X, w), then

Em(¢):n!L(G0—G¢) dvol.

Proof 1t suffices to consider the case where ¢ is bounded. In this case, one could
apply [ , Proposition 2.9]. O

Corollary 5.2.2 Let ¢ € PSHy (X, w). Then the following are equivalent:

(1) g e & (X, w);
() F, € EY(Nz, P);
(3) G, € LY(P).

The notation &' (Ng, P) is defined in Definition A.3.1.
Definition 5.2.2 We define
Emr (X, w) =E% (X, w) N PSH (X, w),
Eor(X. w) =8 (X, w) N PSHue(X, w),
Eior (X, w) =6(X, w) N PSHr (X, w).

Corollary 5.2.3 Let ¢, € &' (X, w), then

tor

d (p.0) = —n! / (Go+ Gy =26 py) dvol.
P

Proof This follows from (5.2.9), Proposition 5.2.3 and Definition 4.2.5. O

Proposition 5.2.10 Let ¢g, ¢; € EL (X, w). The geodesic (@1)re(0,1) from @o to @

satisfies the following: For eacht € (0,1), ¢, € EL (X, w) and
Gy, =(1-1)Gy, +1Gy,.

This will be proved more generally in Corollary 12.3.4.

Definition 5.2.3 We define

Rige(X,w) = {€ € R' (X, w) : & € PSHr(X, w) forall # > 0}






Part 11
The theory of 7-good singularities



This part is the technical core of the whole book. We will develop the theory of
7 -good singularities.

We first develop some general techniques to compare the singularities in Chapter 6:
The P-partial order, the J -partial order and the dg-pseudometric.

The P-partial order seems to be new. Some basic properties of the dg-pseudometric
have never appeared in the literature either.

Then in Chapter 7, we introduce the notion of 7 -good singularities and characterize
7 -good singularities in different ways. Then we establish the asymptotic Riemann—
Roch formula for Hermitian pseudoeffective line bundles.

In Chapter 8, we develop two key techniques in the inductive study of singularities:
The trace operator and the analytic Bertini theorem. Roughly speaking, the latter tells
us the behavior of a quasi-plurisubharmonic function along a general divisor, while
the former handles the case of special divisors. We will establish a relative version of
the asymptotic Riemann—Roch formula as well.

In Chapter 9, we develop the theory of test curves. These are curves of model
potentials. The key technique is the Ross—Witt Nystrom correspondence, which
relates test curves with geodesic rays. The complete proof of the most general form
of this correspondence has never appeared in the literature, so we will give the full
details.

In Chapter 10, we develop the theory of partial Okounkov bodies, in both algebraic
and transcendental setting. The partial Okounkov bodies can be regarded as non-toric
extensions of the Newton bodies. It turns out that even in the toric setting, our
techniques give non-trivial new results.

In Chapter 11, we develop the theory of b-divisors in the algebraic setting. We
formulate the general form of the Chern—Weil formula in terms of b-divisors. We
also relate the theory of partial Okounkov bodies to b-divisors.



Chapter 6
Comparison of singularities

Algebra is the offer made by the devil to the mathematician. The
devil says: "I will give you this powerful machine, it will answer
any question you like. All you need to do is give me your soul:
give up geometry and you will have this marvelous machine.

— Michael Atiyah”

¢ Sir Michael Francis Atiyah (1929-2019) wrote the influential
Introduction to commutative algebra together with I. G. MacDon-
ald, a poor guy whose name is often omitted or misspelled.

In this chapter, we study several ways of comparing the singularities of quasi-
plurisubharmonic functions. In Section 6.1, we will introduce the P and 7 -partial
orders, closely related to the P and 7 -equivalence relations introduced in Chapter 3.

In Section 6.2, we introduce and study the ds-pseudometric characterizing the
differences between singularities. We will prove that a number of continuity results
with respect to ds.

6.1 The P and 7-partial orders

Let X be a connected compact Kéhler manifold of dimension 7.

Recall that we have defined a (non-strict) partial order on QPSH(X) in Defini-
tion 1.5.2 to compare the singularity types of quasi-plurisubharmonic functions. The
problem with this partial order is that it is too fine. In general, for our interest, it is
helpful to consider rougher relations.

6.1.1 The definitions of the partial orders

Recall that the P-envelope is defined in Definition 3.1.2.

Definition 6.1.1 Let ¢,y € QPSH(X), we say ¢ is P-more singular than  and
write ¢ <p ¢ if for some closed smooth real (1, 1)-form 6 on X such that ¢,y €
PSH(X, 6)-¢, we have

Pole] < Poly]. (6.1)

Suppose that ¢ <p ¥ and ¢ <p ¢, we shall write ¢ ~p i and say ¢ and ¢ have the
same P-singularity type.

The condition (6.1) is independent of the choice of 6:

101
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Lemma 6.1.1 Let ¢,y € PSH(X, 0)~¢. For any Kéihler form w on X, the following
are equivalent:

(1) Pole] < Poly];
(2) P9+w [90] < P9+u) [lﬁ]

In particular, <p defines a non-strict partial order on QPSH(X).

Proof (1) = (2). Observe that

© X Pgle] < Porowlel.

It follows from Theorem 3.1.1 that

Poiw [‘;0] =Porow [PH [‘/’]] (6.2)

A similar formula holds for . So we see that (2) holds.

(2) = (1). By (6.2), we may assume that ¢ and ¢ are both model potentials in
PSH(X, 6)~0.

Observe that ¢ V iy < Pgy,[¥]. Tt follows that Pgi,[¢ V ] < Pgiw[¥]. The
reverse inequality is trivial, so

P0+w[‘pVW] =P9+w[lp]~

From the direction we have proved, for any C > 1,

Poicwle VU] = Porcowly].

So by Proposition 3.1.3,

/(9+Cw+dd°((pvw))"=/(9+Cw+ddclﬁ)n.
X X

Since both sides are polynomials in C, the equality extends to C = 0, namely,

n — en.
Jots= [ 0

In particular, ¢ V ¢ < Pg[y] = ¢ by (3.5). So (1) follows. O
As a first example of P-equivalence, we have:

Example 6.1.1 Let 6 be a closed smooth real (1, 1)-form on X and ¢ € PSH(X, )0,
then

@ ~p Pole].
This follows immediately from Theorem 3.1.1.

We give a very useful criterion of the P-equivalence in terms of the non-pluripolar
masses.
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Proposition 6.1.1 Let ¢,y € PSH(X, 0) and ¢ < . Then the following are equiva-
lent:

D e~py;
(2) for each j =0,...,n, we have

J n-j _ J n-j
/}(9¢A9V9 _/X%AOVH . (6.3)

Assume furthermore that ¢, € PSH(X, 0)~¢, then these conditions are equivalent

to the following:
0" = / 0.
Jioe=fo

(3) We have
Recall that Vy is introduced in (2.9).

Proof We first prove the equivalence between (1) and (3) when ¢, € PSH(X, 0).
(1) = (3). Assume that ¢ ~p . By Lemma 6.1.1, we have

Pole] = Poly].

So (3) follows from Proposition 3.1.3.
(3) = (1). It follows from Theorem 3.1.1 that Pg[¢] = Pg[¥], so (1) follows.
Let us come back to the general case.
(1) = (2).Fix j € {0,...,n}, we argue (6.3).
Take a Kihler form w on X. By Lemma 6.1.1, for each € > 0, we have

Porewlp]l = Porewl¥].
It follows from Proposition 3.1.3 that
/X (0+ew+ddy)’ A6y = /x (0+€ew+ddPo,co[w]) Ay
_ /X (0 +€w+dd Py [@]) A
= /x (6 + ew +dd°¢)’ A Gr‘l,;j.
Since the two extremes are both polynomials in €, we conclude that the same holds

when € = 0, that is, (6.3) holds.
(2) = (1). Assume (6.3) holds for all j =0,...,n. Foreacht € (0, 1), we have

LH?¢+(1—Z)V3 Z/X@z"w(l—z)vg

by the binomial expansion. By the implication (3) = (1), we have

to+ (1 =1)Vg ~p t + (1 —1)Vy
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foreacht € (0, 1).
Fix a Kéhler form w on X. From the implication (1) = (3), we have

L(9+w)?¢+(l—t)Vg :L(9+w)?w+(l—t)V9'

Since both sides are polynomials in ¢, the same holds when ¢ = 1. From the implication
(3) = (1) again, we have ¢ ~p V. O

Proposition 6.1.2 Given ¢, € QPSH(X), the following are equivalent:

(1) For any k € Z~, we have
I (kp) € I (ky);

(2) for any A € Rsq, we have
I(dp) C I(W);

(3) for any modification n: Y — X and any y € Y, we have
v(r'e,y) 2 v(x'y,y);

(4) for any proper bimeromorphic morphism n: Y — X from a Kdhler manifold
and any y € Y, we have

V(e y) 2 v(ny, y);

(5) for any prime divisor E over X, we have

v(p,E) 2 v(y,E).

Proof The proof is almost identical to that of Proposition 3.2.1. O

Definition 6.1.2 Let ¢,y € QPSH(X), we say ¢ is I -more singular than  and write
¢ =<y y if the equivalent conditions in Proposition 6.1.2 are satisfied.

It is clear that <7 is a non-strict partial order on QPSH(X).
Note that ¢ <7 ¢ and ¥ <7 ¢ both hold if and only if ¢ ~7 i in the sense of
Definition 3.2.1.

Lemma 6.1.2 Let ¢,y € PSH(X, 0)~, then

Polo V] =Pg[Pole] VvV Poly]]. (6.4)

Proof Since ¢ Vi < Py[@] V Pg[¢], the < direction of (6.4) follows. Conversely,
it suffices to show that

Polo V] 2 Pole] V Poly],
which is obvious. ]

Lemma 6.1.3 Let ¢, € QPSH(X). Then the following are equivalent:
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(1) ¢ <p ¥ (resp. ¢ <1 ¥);
Q) oV ~py(resp. oV ~1 ).

Proof Take a closed real smooth (1, 1)-form 8 on X such that ¢,y € PSH(X, 6)~¢.
We only prove the P case, the I case is similar.

(2) = (1). By (2) and Example 6.1.1, Pg[p V ¥] = Pgly] ~p ¢. But
¢ < Pgle V], so (1) follows.

(1) = (2). We may assume that ¢,y are both model by Lemma 6.1.2. Then
¢ < ¢ and (2) follows. O

Corollary 6.1.1 Let ¢,y € QPSH(X). Assume that ¢ <p Y, then ¢ <y .
Proof This follows from Lemma 6.1.3 and Proposition 3.2.8. O
Next we give a few extra characterizations of the P-envelope.
Corollary 6.1.2 Assume that ¢ € PSH(X, 0)~, then
Pgle] =sup{y € PSH(X,0) : ¢y <0,¢ ~p ¢}
=sup {¢ € PSH(X,0) : ¢ <0,y <p ¢} .

Just for comparison, let us recall a few other characterizations of the P-envelope for
¢ € PSH(X, 0)-0:

Pyle] =sup™ {yy e PSH(X,0) : y < 0,4 < ¢}
=sup” {¢ € PSH(X,0) : ¥ <0,y ~ ¢}

= sup "(¢+C) AVy
CeZx

=sup{w€PSH(X,0):lﬁSO,g&ﬁtﬁ,/@Z=‘/6$}.
X X

Proof Note that  ~p ¢ implies that y € PSH(X, 0)-¢ by Proposition 6.1.4. We
observe that

sup {¢ € PSH(X,0) : ¢ <0,y ~p ¢}
=sup{y € PSH(X,6) : ¥ < 0,0 < ¥, ~p ¢}

by Lemma 6.1.3. So the first equality is a direct consequence of Proposition 6.1.1
and Theorem 3.1.1.

Next we prove the second equality. We only need to show that for any ¢ €
PSH(X, 0) withyy < 0and ¢ <p ¢, we have iy < Py[¢p].

By Lemma 6.1.3 and Example 6.1.1, we know that Py[¢] V ¥ ~p ¢ and
Pyle] V¢ < 0. It follows from the first equality that ¢ < Pg[¢]. O

Similarly, we have a new characterization of the 7 -envelope.
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Corollary 6.1.3 Assume that ¢ € PSH(X, 0), then

PG[QO]I =SUP{W GPSH(X’H) < O’QII =7 ‘10}

Proof Tt suffices to show that for any y € PSH(X, 0) withys < Oandy <7 ¢, we have
W < Pg[¢]r-ByLemma6.1.3 and Proposition 3.2.6, we know that Py [¢] 7 VY ~1 .
Therefore,

W < Pololr Vi < Pglelr.

Proposition 6.1.3 Suppose that ¢,y € QPSH(X) and 0 is a closed real smooth
(1, 1)-form on X such that ¢, € PSH(X, 0). Then the following are equivalent:

(ORI R'S
(2) Polelr < Polv]s.

Proof (1) = (2). This follows immediately from Corollary 6.1.3.
(2) = (1). This follows from Proposition 3.2.6. O

Example 6.1.2 Let us continue our example Example 3.1.1, where X = P!, w is the
Fubini-Study metric and ¢ € PSH(X, w) has log-log singularity at 0. We have shown
that P, [¢] =01in (3.7), so ¢ ~p 0 and hence ¢ ~ 7 0. In particular, P-equivalence
is not equivalent to the equivalence of singularity types.

On the other hand, consider a potential v € PSH(X, w) with log singularity at 0,
as in Example 1.8.2. We know that v(i, 0) = 1 from the explicit expression (1.19).
Soy +7 0 and hence  +p 0.

Moreover, ¢ <p ¢ and hence ¢ < ¢.

We give an example showing that P-equivalence is not equivalent to 7 -equivalence.

Example 6.1.3 Let X = P! and w be the Fubini-Study metric. Let K C P' be a polar
Cantor sets carrying an atom free probability measure u supported on K (see [ ,
Page 31]). Write u = w + dd°¢ for some w-subharmonic function ¢. Since u is
atom free, we know that all Lelong numbers of ¢ are 0. On the other hand, ¢ has 0
non-pluripolar mass since K is pluripolar.

Then observe that ¢ ~7 0 while ¢ »p 0.

For later use, we give the following definition.

Definition 6.1.3 Let L be a pseudoeffective line bundle on X. An elementary metric
on L is a psh metric /& on L such that there is a generalized Fubini—Study metric i’
on L such that

ddh ~p dd°h’.

The set of elementary metrics on L is denoted by Ele(L).
We also say dd°# is elementary. If we have fixed a Hermitian metric kg on L, and
if we represent h as hg exp(—¢), we also say the quasi-psh function ¢ is elementary.

Recall that the generalized Fubini—Study metrics are defined in Definition 1.8.7.



6.1. THE P AND 7-PARTIAL ORDERS 107

6.1.2 Properties of the partial orders

Now we state a more natural version of the monotonicity theorem Theorem 2.3.2.

Proposition 6.1.4 Let 0y, . .., 0, be closed real smooth (1, 1)-forms on X. Let ¢;,; €
PSH(X, 6;) fori =1,...,n. Assume that ¢; <p Y; for each i. Then

/ 1,0, A" ANOng, < / Oty N ANOny,.
X X

Proof Fix a Kahler form w on X. Foreachi =1, ...,n, since ¢; <p ¥;, we have

P9[+E(A)[90l.] < P9[+E(A)[¢,i]

for all € > 0. Therefore, by Proposition 3.1.3 and Theorem 2.3.2, we have

‘/(91+6a))‘/71 Ao AN (0, +Ew)y, < ‘/(91+Ea))¢,1 A AN (O +Ew)y, .
X X

Letting € — 0+, we find the desired inequality. O

Next we show that the P and 7 -partial orders are preserved by some natural
operations.

Proposition 6.1.5 Let ¢, ¥, ¢’, ¢’ € QPSH(X). Assume that

e=p¥, ¢ =2py.

Then
o+¢ pU+y.

The same holds with <y in place of <p.

Proof Take a Kihler form w on X such that ¢, ¥, ¢’,¢’ € PSH(X,w)s. The
statement for <y is a simple consequence of Proposition 1.4.2. We only need to
handle the case of <p.

Step 1. We first show that

Pulel +Pule’l ~p o +¢.
In fact, we clearly have
Pulel +Pule’l =9+ ¢

So by Proposition 6.1.1, it suffices to show that they have the same mass. We compute
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where we applied Proposition 3.1.3 on the third line.
Step 2. By Step 1, we may assume that ¢, i, ¢’, " are all model potentials. So
@ < and ¢’ < y’. Our assertion follows. O

Proposition 6.1.6 Let (¢;)icr, (Yi)icr be uniformly bounded from above non-empty
families in QPSH(X). Assume that there exists a closed smooth real (1, 1)-form 6
such that ¢;,; € PSH(X, 0) and ¢; <p ¥; foralli € I. Then

sup*g; <p sup“y;.

iel iel
The same holds with <y in place of <p.

Proof By increasing 6, we may assume that ¢;,; € PSH(X, 0)- for all i € 1. The
statement for <7 is a simple consequence of Corollary 1.4.1, we only have to consider
the statement for <p.

Step 1. We first handle the case where [ is a directed set and (¢;);c; and (¥;);es
are increasing nets.

In this case, our assertion follows simply from Proposition 3.1.10.

Step 2. We handle the case where I is finite. We may assume that I = {0, 1}. It
suffices to show that

Poleol Vv Pale1] ~p o V ¢1,

which follows from Lemma 6.1.2.

Step 3. The general case can be reduced to the two cases handled in Step 1 and
Step 2. More precisely, by Proposition 1.2.2, we could find a countable subset J C [
such that

sup“p; = sup“p;, sup*y; = sup“y;.

JjeJ iel iel iel
We may replace I by J and assume that  is countable. We may assume that 7 is
infinite, as otherwise, we could apply Step 2 directly. So let us assume that J = Z..
In this case, by Step 2 again, we may assume that both (¢;); and (i;); are increasing,
which is the situation of Step 1.

Proposition 6.1.7 Let o, yr, ¢’, ' € PSH(X, 0)~¢ for some closed smooth real (1, 1)-
form 6 on X. Assume that
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o~p¢', w~py', ¢ Ay €PSH(X,0)s.

Then
@AY € PSH(X,0)50, @AY ~p ¢’ Ay

Proof Without loss of generality, we may assume that ¢ = ¢’. Replacing ¢’ by
Po[¢’] + C for some constant C, we may also assume that ¢ < ¢’.
Using Corollary 2.3.2, for each € € (0, 1), we can find n € PSH(X, 6) such that

/9’},=/9’;, en+(l-e)¢ <¢, n<¢.
X X

/}(’92+[(9$/A¢>‘/)(‘0Z:‘/)(‘93/2'/);0,7\/(<p’/\¢),

by Proposition 3.1.4, we find n A € PSH(X, 6). Now observe that

Since

eMAY)+(1—e)(¢ AY) S o AY.

Hence ¢ A ¢ € PSH(X, 60). By Theorem 2.3.2, we find that

(1-6)"/)(95;M S/XHZ’A‘”'

Letting € — 0+ and applying Theorem 2.3.2, we find that

[ns= [ tons

We conclude by Proposition 6.1.1.

Theorem 6.1.1 Let ¢, ¢; € PSH(X, 0)~¢. Then the following are equivalent:

(1) There is a subgeodesic from g to ¢;;
(2) g0 ~p ¢1.

Proof (2) = (1). This follows from Proposition 4.2.1.

(1) = (2). Let (¢1)re(0,1) be a subgeodesic from ¢ to ¢;.

We first reduce to the case where ¢g > ¢;. Observe that (¢; V ¢1)/e(0,1) is @
subgeodesic from ¢q V ¢ to 1. Assume that the special case has been proved, then
we know that

woVer~p Q1.

Hence ¢ <p ¢ by Proposition 6.1.3. The converse is proved similarly. Hence (2)
follows.

Now we assume that ¢g > ¢;. Next we reduce to the case where ¢ = ¢; is
decreasing.

We replace (¢;); by the geodesic, which exists since a subgeodesic exists. Fix
to € (0, 1), it suffices to argue that
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Yo Z $r 2 P1, (6.5)

since (¢1)ref0,s0] and (¢1)re[1,1] are both geodesics (proved as in Proposition 4.2.1).

The first part of (6.5) is obvious, since (¢;);¢(0,1) is a candidate in the Perron
envelope defining the constant geodesic at ¢g. The latter is also obvious since
(¢1)ef0,1] is a subgeodesic.

Let ¢; = ¢ for all ¢ > 1. Then by the gluing lemma Lemma 1.2.2, we find that
(¢¢)r>0 1s a subgeodesic ray.

Next, we consider the Legendre transform

I'; =inf(¢, —t1), TE€ER.
>0

It follows from Kiselman’s principle that I'; € PSH(X, 8) U {—c}. Note that for
7 > 0, we clearly have I'; = —co. On the other hand, for 7 < 0,
I'y = inf (¢, —t1) € PSH(X,6).
tel0,1]

See Proposition 4.1.2.
By Legendre inversion, for r > 0,

¢ =sup(l'y +17).

TeR

Fix a Kihler form w on X. It follows from Proposition 6.1.6 that for each ¢ > 0,

$r ~p Sup*P(Jﬂu (-]
7<0
The right-hand side is independent of ¢. Here by adding w, we no longer have to
worry about the possibility where I'; has vanishing mass.
By Proposition 6.1.6 again, the same holds for t = 0 as well. Our assertion
follows. O

Let S ={z€C:0 < Rez < 1}. We write p;: X xS — X for the natural
projection.

Corollary 6.1.4 Let ® € PSH(X X S, p}6). Assume that for any ¢ € R, x € X and
z € S, we have
D(x,z7) = O(x, z +ic).

Then /X(O +dd°®,)" is independent of 7 € S, where ®, € PSH(X, 0) is given by
D, (x) = D(x, 2).

This seems to be the first non-trivial result concerning the variation of non-pluripolar
masses.
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6.2 The dgs-pseudometric

Let X be a connected compact Kéhler manifold of dimension n and 8 be a closed
real smooth (1, 1)-form on X representing a big cohomology class. The goal of this
section is to study a pseudometric on the space PSH(X, 6).

6.2.1 The definition of the dg-pseudometric

Recall that for any ¢ € PSH(X, 6), the geodesic ray ¢ € R!(X, ) is defined in
Example 4.2.2.

Definition 6.2.1 For ¢,y € PSH(X, 6), we define

dS(SD’ l,b) = dl (f‘p’ glp)

When we want to be more specific, we write ds ¢ instead of d.

The d; distance of geodesic rays is defined in Definition 4.2.6.

Proposition 6.2.1 The function ds defined in Definition 6.2.1 is a pseudometric on
PSH(X, 6).

Proof This follows immediately from Theorem 4.2.2. O

When studying a pseudometric, the first thing is to understand when the distance
between two elements vanishes.
We first prove a preparation:

Lemma 6.2.1 Let ¢, € PSH(X, 0). Then

ds(e.¥) <ds(e, o V) +ds(y, @ V) < Cuds(e.¥),
where C, = 3(n + 1)2"*2.
We shall use the notations introduced in Example 4.2.2.

Proof Observe that
IAAVEAIEN AL (6.6)

Recall that V is defined in Definition 4.2.7. Note that this assertion implies our desired
inequality by Lemma 4.2.1.
In proving this assertion, we may assume that ¢,y < 0 since

g«p+C — €<p’ {;1&+C — gl&’ {;(¢+C)v(¢+C) — g(p\/w

for any C € R.
In fact, it is clear that
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e <, e < eV,

so the < direction in (6.6) holds.
Conversely, if ¢/ € RY(X,0) and ¢’ > £¢ v £¥, then for each t > 0,

G2 ((Vo- Vo) V(Ve—1) Vi) =(Vo—-1) V(e V).

Therefore,
f' > €¢V¢,t
s = vs

for any 0 < s < . It follows from (4.21) that £} > ffvw for any s > 0. O
Proposition 6.2.2 Let ¢, € PSH(X, 0). Then the following are equivalent:

(D @ ~py;
(2) ds(e,¢) =0.

In particular, ds(, Pg[¢]) = 0 for all ¢ € PSH(X, 0)+0.

Proof By Lemma 6.1.3, we have ¢ ~p ¢ ifandonly if ¢ ~p @ Vi and ¥ ~p ¢ V .
By Lemma 6.2.1, ds (¢, ) = 0 if and only if ds (¢, ¢ Vi) = 0and ds (¥, ¢ V) = 0.
So it suffices to prove the assertion when ¢ < . Assuming this, by Proposition 4.2.6
we have that (2) holds if and only if

E(f%) =E("),

where E is introduced in Definition 4.2.4. But by (4.19), this holds if and only if

n

n
Z/eﬁ,/\e’;’ =Z/9{0A9';;J.
0 Jx 0 dx
Thanks to Theorem 2.3.2, this holds if and only if for all j =0,...,n,

ing == [ gl Agii
/Xew\aw —/x"w“’ve’

which is equivalent to (1) by Proposition 6.1.1. O

Lemma 6.2.2 Suppose that ¢, € PSH(X, 0) and ¢ <p ¥, then

1 <& . . . .
— J n-j J n-j
d5(¢’¢)_n+1zo(/x%/\gve —/X‘)M@v(, )
=

Proof This follows trivially from (4.19). O

Corollary 6.2.1 Suppose that ¢, ¥, € PSH(X, 0) and ¢ <p  <p n. Then

ds(e,m) 2 ds(e,¥), ds(e,n) 2 ds(y,n).

Proof This is an immediate consequence of Lemma 6.2.2 and Proposition 6.1.4. O
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Corollary 6.2.2 For any ¢,y € PSH(X, 0), we have

ds(@.¥) <— Z ( / ovu MOV, ! ‘/);9{/’ Ny, /Xg{” " 9;‘7) (6.7)
Scnds(%‘ﬁ)a

where C, = 3(n + 1)2"*2.

In particular, if (¢;)icy is a net in PSH(X, 0) with ds-limit ¢, then for each
j=0,...,n
N /.,

lim [ 6L A0 = [ 6L A0 =1im | ¢/
iel X Pi Vy X ¥ VH iel X (PV(P

Proof The estimates (6.7) follows from the combination of Lemma 6.2.2 and
Lemma 6.2.1.

d d
Suppose that ¢; =, @, then ¢; V ¢ = ¢ by Lemma 6.2.1. Therefore, Theo-
rem 2.3.2 and Lemma 6.2.2 imply that

. n-j _ J n—j
1i1€r51 X9¢V¢A9 /XG‘PAGVH
forany j =0, ..., n. The last assertion now follows from (6.7) and Theorem 2.3.2.0

Corollary 6.2.3 Suppose that ; € PSH(X, 0) (i € 1) be an increasing net, uniformly
bounded from above. Then
d *
i = supp;.
jel
If the ¢;’s are all model potentials in PSH(X, 6)~0, then so is sup ., “¢;, as we have
seen in Proposition 3.1.10.

Proof Write ¢ = sup;.;"¢;. Recall that by Proposition 1.2.1, ¢ € PSH(X, 6). By
Lemma 6.2.2, it suffices to show that for each £k = 0, .. ., n, we have

. k n-k _ k n—k
ljlél’ll XH%‘AQVH —'/);09,,/\0‘,9 .
The latter follows from Corollary 2.3.1. O

Corollary 6.2.4 Let ¢, € PSH(X, 6). Then

0y, -

0:;/ S DndS(‘p, lr//)a

where D,, = 3(n + 1)C,, with C,, being the same constant as in Lemma 6.2.1.

Proof We compute
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9"—/9"$2 +2‘/ —/9"
'/X«p Y evu = | Ve

<(n+ I)CndS(QD’ W) + 2(n +Dds(p, o Vi)
<(n+1)Cpds(@,¢) +2(n+1)Crds(p,¥),

6" 9”

911
O

where the first line is just the triangle inequality, the second line follows from
Corollary 6.2.2 and the third line follows from Lemma 6.2.1. O

By contrast, for decreasing nets, the situation is different:

Corollary 6.2.5 Suppose that (¢;)ies is a decreasing net in PSH(X, 6) such that
¢ = inf;ey ¢; # —0o. Then the following are equivalent:

(1) We have
ds
Qi — @,
(2) for each k =0, . ..,n, we have
: k n—k _ k n—k
lj;gll XH%. CI /X% A By, " (6.8)

If we assume furthermore that fX > 0, then the above conditions are equivalent to
the following:

lim 9" = 07.

jel Pj x (3

(3) We have
In the latter case, we also have
Pglg] = inf Pgle;]. (6.9)
jel

Proof Recall that by Proposition 1.2.1, ¢ € PSH(X, 6).
(1) & (2). This follows immediately from Lemma 6.2.2.
Assume that /x 0, > 0.
(2) = (3). This is trivial.
(3) = (2). Let (b;)jer be a net converging to oo such that

on 1/n
bje 1( Jx %, n) :
0% = [0

By Lemma 2.3.1, for each j € I, we can find n; € PSH(X, 6) such that

b]‘.lnj +(1- b;l)QDj < .

It follows from Theorem 2.3.2 that for any k£ =0, ..., n,

k
k —k -1 k —k
/X%/\%g > (1-5;") /Xa%_/\e@g .
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Taking the limit, we conclude the < direction in (6.8). The > direction follows from
Theorem 2.3.2.

Finally, we argue (6.9). We may assume that ¢; < O for all j € I. Let y; =
Pglg;] = ¢;. It follows from Corollary 3.1.1 that ; is a model potential. Let

=infy; > o.
1/ }gl%—so

It follows from Proposition 3.1.3 and Proposition 3.1.9 that

6" =lim [ 07 =1lim | 6" = [ 9.
Lw jel Jx Vi el Jx ¥ ~/);¢

By Proposition 3.1.8, ¢ is a model potential. Hence ¢y = Pg[¢] by Theorem 3.1.1.0

Having understood the increasing and decreasing cases, we shall handle more
general convergent sequences. In fact, since ds is a pseudometric, the topology is
completely determined by convergent sequences, so we do not need to consider nets
in general.

d.
Proposition 6.2.3 Let ¢,,¢ € PSH(X,6) (j > 1), ¢; —> @. Assume that there is

0 > 0 such that
n
/x% =

for all j and the ¢;’s and ¢ are all model potentials. Then up to replacing (¢;); by
a subsequence, there is a decreasing sequence (;); and an increasing sequence
(n77); in PSH(X, 6) such that

d. d.
My —> o0 — ¢
@) ¢z ¢j2njforalj.

In fact, for any j > 1, we will take

k>j

Proof We are free to replace (¢;); by a subsequence. So we may assume that

Y 2
ds(@j, ¢js1) < . ds(e, ¢;) < Do (6.10)

n

where C,, is the constant in Corollary 6.2.2, D, is the constant in Corollary 6.2.4.
In particular, by Corollary 6.2.4,

K
X X

Step 1. We handle the ¢;’s. For each j > 1 and k > 1, by Lemma 6.2.1 we have

<27/, (6.11)
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ds(@j, @V @jr1 V-V @ix) SCuds(@j, @1 V-V @jsk)

<Cunds(¢j, @jr1) + Cnds (@1, @j41 V -+ V @jii).
By iteration, we find

J+k-1
ds(@j, @; V@1 V-V @) < Z it ds(0ay past)

a=j

Jtk-1 cl-2
a+l-j ~-2a n
< Z catlic2a <
a=j

1-c;V

Using Corollary 6.2.3, we have

ds
@iV @iV Vo — Y

as k — oo. Hence
1-2j

Cn
ds(gj,¥;j) < T (6.12)

d
We conclude that i ; =, ©.
Moreover, we observe that

¢ = inf Poly,] (6.13)

by Corollary 6.2.5.
Step 2. We consider the 7;’s.
For each j > 1 and k > 0, we let

k.
Ny =@jNNPjk-

Using (6.12) and Corollary 6.2.4, we have

0"_—/9”
'/};l/lj X‘P

when j > jo for some large jj. Taking (6.11), we have

/Xe%‘ - /X 9%‘—1

for j > jo. Take j; > jo so that for j > j;, 2!/ < 6.
Step 2.1. We claim that for a fixed j > ji, for any & € N, we have 77;? € PSH(X, 0)
and

< 27!

<2l (6.14)

k

n 1-j-
/Xen}, z/Xe';j—Zz j-a, (6.15)

a=1
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We argue by induction on k > 0. The case k = 0 is trivial. When k > 0, assume
that the case k — 1 is known. Then

1 1-j-k
/0nk1+/ ¢J+k_/9n sza /9$J+k1_21
I
>LQZj_2 j+/6‘rl;/+k1 /gaﬁkl

where the first inequality follows from the inductive hypothesis and (6.14).
Observe that

k-1
NV @ik SYjsk-1,

it follows from Proposition 3.1.4 that 775? € PSH(X, 0). By Theorem 3.1.3, we deduce

that
n n n n
Lgnf Z‘/);g‘ﬁj+k +/97];( 1 ‘/ngjwc—l
k
n o _ 1-j—a
Z/XH%‘ 22 ’
a=1

where the second inequality follows from the inductive hypothesis and (6.14).
Therefore, (6.15) follows.
Step 2.2. It follows from Proposition 3.1.7 that for any j > ji, k > 0,

Py [Uf] =17
By Proposition 3.1.9, we have

. n —_ n
klglgo/,(gnf B /XG’U

for any j > jj. Letting k — oo in (6.15), we find that

n n _ nl-j
/Xa,“z/Xa%_ 217750

for j > j;. Observe that we also have

for j > j; by Theorem 2.3.2. It follows from Corollary 2.3.1 that

/Hi’lzlim —11m/0 /
X Jj—ooo Jjooo Jx v
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where 7 = sup; ; “n7;. Since n; < ¢; < ¢; < 0, we also have that n; < Pg[y;].
Therefore, by (6.13), we also have n < ¢. It follows from Proposition 6.1.1 that

d
n ~p ¢. By Corollary 6.2.3 and Proposition 6.2.2, we have n; =, ®. O

Corollary 6.2.6 Let (¢;)jer be a Cauchy net (with respect to ds) in PSH(X, 6).
Assume that there is 6 > 0 such that /x 0';}_ > 0 forall j € 1. Then (¢;)jer converges
with respect to ds.

In particular, if (¢}) jer is a decreasing net such that fX 9’;j >6>0forall j el
then (@j)jer converges with respect to ds.

Proof 1f the net (¢;) jes is decreasing, then it is convergent by Corollary 6.2.5 and
Proposition 3.1.9.

It remains to prove the first assertion. Since the space of ¢ € PSH(X, 6) with
fx , > 6 is a pseudometric space, its completeness can be characterized using
sequences instead of nets. So we may assume that (¢;) ez is a sequence and I = Z.

Replacing (¢;) ;>0 by a subsequence, we may assume that (6.10) holds. Define

Yj = sup’gk
k>j

for each j > 0. As in the proof of Proposition 6.2.3 Step 1, especially (6.12), we
know that

jli_{g ds(@j, ;) =0.

It suffices to prove our assertion for (i;); in place of (¢;);. But since (¢;); is
decreasing, this case has already been handled at the beginning of the proof. O

Lemma 6.2.3 There is a constant C > 0 depending only on X and 6 such that for
any ¢ € PSH(X, 0) satisfying that 8, is a Kdihler current, we have

ds,o((1-€)p,¢) < Ce
for € > 0 such that (1 — €)¢ € PSH(X, 0).

Proof By Lemma 6.2.2, we can compute
1 <& ; » . .
ds.o((1-€)p, @) = 6 /\9"’—/91/\9’”
s.0(( ¢.¢) n+1 JZO (/X (I-e)e Ve e ¥ Vo

& e o
([ e
=0

j=

—_

1 &L

J k_j-k ik o ok A on—J
+ ()(1—6) €l /9] AU
n+1 Se k X ¢

Both terms are of the order of O(e€). O
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6.2.2 Convergence theorems

Next we establish some important convergence theorems, allowing us to effectively
manipulate the ds-convergence.

Lemma 6.2.4 Let (¢;);c; be a net in PSH(X, 0) and ¢ € PSH(X, 6). Assume that
d
i = @. Then for any t € (0, 1],

d.
(1=1)gi +tVg = (1 = )¢ + V.

When ¢ = 1, the sum is understood as in Remark 2.3.3.

Proof Fixt € (0, 1], we write

i ==0pi+tVyg, ;=1 -0)p+1tVy

foranyi € .
By Corollary 6.2.2, it suffices to show that for each j =0, ...,n,
J n-j J n—j J n-j
Z/XGWV% A (9‘,6 —/XHW A HVH - /XG% A 9V9 — 0. (6.16)

Observe that
ieVeor=1=0)(pVe)+tVy.

So after binomial expansion, (6.16) follows from Corollary 6.2.2. O

Lemma 6.2.5 Let ¢ € PSH(X, 0). Foreacht € (0, 1), let ¢; = (1 —t)p +tVg. Then

ds
$r — ¢
ast — 0+
Proof By Lemma 6.2.2, we need to show that for each j = 1, ..., n, we have

: J n-j _ J n-j
lim Oy, /\GVG = /xg"u /\OVH .

t—0+ X

For this purpose, we compute
J n-j J n-j
/9%/\9‘,6 —/9«;/\9%
X X
J-1 j
:Z (i)(l —t)ltf—’/eip N
i=0 X

As t — 0+, the right-hand side clearly tends to 0. O

The following convergent theorem lies at the heart of the whole theory.
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Theorem 6.2.1 Let 04, . . ., 0,, be smooth closed real (1, 1)-forms on X representing
big cohomology classes. Suppose that (tp?)kd are nets in PSH(X, 6;) and ¢; €

d
PSH(X, ;) for j = 1,...,n. We assume that t,o;? =, @jforeach j=1,...,n Then

EE} Xaw,]k Ao ANO, ok = /XHWI A Nbp g, (6.17)
Proof Since ds is a pseudometric, in order to establish the continuity of mixed
masses, it suffices to consider sequences instead of nets. So we may assume that
I =7Z- as ordered sets.

Step 1. We reduce to the case where go']‘., ¢; all have positive masses and there is a
constant ¢ > 0, such that for all j and k,

ng,wf > 0.

Take ¢ € (0,1). By Lemma 6.2.4, we have

d
(1= 1)@ +1Vy, = (1= 1) +1Vy,

as k — oo for each j. Assume that we have proved the special case of the theorem,
we have

lim Xgl,(lft)safHVel A A Hn,(lft)wi‘HVen

k—oo0
=/ 01,(1—t)<p1+tV9] A A 0n,(1—t)</1n+tV9n-
X

Since both sides are polynomials in #, by Lagrange interpolation formula, the limit
exists at # = 0 as well and the same formula holds at ¢ = 0. From this, (6.17) follows.
Step 2. Next we may assume that <p§, ¢ are model potentials forall j = 1,...,n,
k > 0 by Proposition 6.2.2 and Corollary 3.1.1.
It suffices to prove that any subsequence of fx 0, gk A A 0,, o« has a converging

subsequence with limit /X91,<p1 A -+ A b4, Thus, by Proposition 6.2.3 and
Theorem 2.3.2, we may assume that for each fixed i, ((,of.‘)k is either increasing or
decreasing. We may assume that there is iy € {0,...,n} such that for i < iy, the
sequence is decreasing and for i > iy, the sequence is increasing.
Thanks to Corollary 6.2.5, Corollary 6.2.3 and Proposition 3.1.10, we have
@i = inf o, i <ip
k>0
and
0 = sup*gof, i > ig.
k>0

Therefore, for each k£ > 0, using Theorem 2.3.2, we have
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/Xel,‘p]k Ao NOy ok 2 ‘/xel’w A Ao g /\91,0+l’¢£‘0+1 ARERRACES

Using Corollary 2.3.1, we therefore conclude that

lim HW{(/\W/\H"%2/0],%/\'--/\9,,,%.
k—oo J X X

It remains to prove

H/G],‘pfc/\"‘/\en"pli 3/91,4,1/\-~~/\9,,,%. (6.18)
X X

k—oc0

By Theorem 2.3.2, for each k > 0, we have

/xel"p{( Ao ANO, ik < /xel"pf /\"‘/\9,-0,% A Oigst i N A g,

When proving (6.18), we may replace (pj‘. by ¢; whenever j > ig, k > 0. Thus, we

are reduced to the case where for all i, (gof.‘)k is decreasing.
Thanks to Lemma 2.3.1, foreachi = 1, ..., n, we may take an increasing sequence
(bf.‘)k tending to oo satisfying

/ on 1/n
X i gk

bk ell,
l ./X G?,%k - /X O

and a sequence (zp!‘)k in PSH(X, 6;) such that

GO (1= D7) ok < g

Then by Theorem 2.3.2 again,

n

l_[(1—(bf)fl)/ghﬁf\“'/\@n,w:: s/@l,‘pl Ao AN O
X X

i=1
Letting k — oo, we conclude (6.18). O

Corollary 6.2.7 Suppose that (¢;)icy is a net in PSH(X, 0) and ¢ € PSH(X, 0).
Then the following are equivalent:

ds
M) i = ¢;
de
() i Vo => ¢ and

li VRN o A VAN Lot 1
lim Xa% oy, /X AN (6.19)
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foreach j=0,...,n;
) foreach j =0,...,n, (6.19) holds and

. J n—j _ J n—j
1[1€IIII XG%V‘;,/\GVS _‘/XQSDAQVH . (6.20)

The corollary allows us to reduce a number of convergence problems related to dg
to the case ¢; > ¢. This is the most handy way of establishing ds-convergence in
practice.

Proof The equivalence between (2) and (3) follows directly from Lemma 6.2.2.

d
(1) = (2). That; V¢ =, ¢ follows from Corollary 6.2.2. While (6.19) follows
from Theorem 6.2.1.
(2) = (1). By (6.7), we need to show that for each j =0, ..., n, we have

J n-j _ J n-j _ J n-j
2/XG<in<pA9V9 /);94,/\0‘,9 /XH%. /\HVQ — 0.
This follows from Theorem 6.2.1 and (6.19). O

Corollary 6.2.8 Let (¢;)ics be a net in PSH(X, 0) and ¢ € PSH(X, 0). Let w be a
closed smooth positive (1, 1)-form on X. Then the following are equivalent:

ds.g
D) i — ¢;

dS,Hﬂu
@ pi——¢

. . . . . d
In particular, there is no risk when we simply write ¢; =, ®.

Proof (1) = (2). It suffices to show that for each j =0, ..., n, we have

Vorw

Z/X(G + W), N (6 +w)3;+]w - /X(G +w)h, ANO+w)y, !
—/X(e +w), A +w)y ! =0,

Note that this quantity is a linear combination of terms of the following form:
2/}(9;L_V¢, NN R /X 0 AT A+ w)y

_ r j-r n-j
/XH‘/,/\w /\(9+w)vgm,

d
where r =0, ..., j. By Theorem 6.2.1, it suffices to show that ¢ V ¢; = ©. But this
follows from Corollary 6.2.7.
(2) = (1). From the direction we already proved, for each C > 1, we have that

ds,o+Cw

i
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By Theorem 6.2.1, it follows that
lim /X(e +Cw)y, ANOy T = /X(e +Cw)y A by
forall j =0,...,n. It follows that

: J n-j _ J n—j

ligr} ; O NOy, * = /X@, A (6.21)
d

By Corollary 6.2.7, it remains to show that ¢; V ¢ =9 ¢. By Corollary 6.2.7 again,

d +w
we know that ¢; V ¢ S, ©. So it suffices to apply (6.21) to ¢; V ¢ instead of ¢;,
and we conclude by Lemma 6.2.2. O

We sometimes need a slightly more general form.

Corollary 6.2.9 Let (@) jer, (W) jer be nets inPSH(X, 6). Consider a closed smooth
positive (1, 1)-form w on X. Then the following are equivalent:

(1) ds,o (@i, ¥i) — 0;
(2) ds, 6+ (@i, ;) — 0.

In particular, we can write dg(¢;, ;) — 0 without ambiguity.

Proof The proof is similar to that of Corollary 6.2.8, which is therefore left to the
readers. O

Corollary 6.2.10 Let ¢y, ¢1 € PSH(X, 0). Define ¢; =ty + (1 —1t)g@q fort € (0,1).

Then
ds
Yt — ¢0

ast — 0+

Proof First note that foreach j =0, ...,n,

lim [ 6L Ao = [ 6 Ag".
-0+ Jx ¥ Vo < 0 Vo

So thanks to Corollary 6.2.7, it remains to argue that for all j =0, ..., n,

lim [ 6., A= 6l Ao".
-0+ X @tV epo Vo X %o Vo

Observe that for ¢ € (0, 1), we have

@ Vo =1(e1V o) + (1 =)o,
so the desired inequality follows. O

We have the following sandwich criterion:
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Corollary 6.2.11 Let (¢;)icr, (Wi)icr, (7:)ier be three nets in PSH(X, 0) and ¢ €
PSH(X, 0). Assume that

(1) y¥; <p @; <p n; foreachi € I;
ds ds
Qi — o ¥ — o
d
Then @; —> .

Proof By Corollary 6.2.8, we may replace 6 by 6 + w, where w is a Kihler form
on X. In particular, we may assume that ¢;,¥;,7; € PSH(X, 6)-¢ forall i € I. By
Proposition 6.2.2, we may assume that ¢;, ¥;, ; are model potentials for all i € I and
hence ¢; < ; < n; foralli € I.

It follows from Theorem 2.3.2 that for each k =0, . . ., n, we have

k n—k k n—k k n—k
/ngz' AgVa < /chp,t /\QVH < [(97lf /\HVH

for all i € I. By Theorem 6.2.1, the limits with respect to i € I of the both ends are
Jx 65 A 67K Tt follows that

lim [ 05 A6y K = / N (6.22)
X X

iel

d
By Corollary 6.2.7, it remains to prove that ¢; V ¢ = ¢. By Corollary 6.2.7 and
Proposition 6.1.6, up to replacing y; (resp. ¢;, 17;) by ¥; V ¢ (resp. ¢; V @, n; V @),

d
we may assume from the beginning that ¥;, ¢;,17; > ¢. Now ¢; =, ¢ by (6.22) and
Lemma 6.2.2. ]

d
Proposition 6.2.4 Let (¢;)ic;, (W;)ier be nets in PSH(X, 0) such that ¢; = p €

PSH(X, 0) and y; s, Y € PSH(X, 0). Assume that ¢; <p Y; for alli € I. Then
¢ <p .

Proof 1t follows from Proposition 6.2.5 that

ds
iV — oV

By Lemma 6.1.3, we have ¢; Viy; ~p y; foralli € I.In particular, by Proposition 6.2.2,
ds
eV — .
By Proposition 6.2.2 again, ¢ V ¥ ~p ¢ and hence ¢ <p ¢ by Lemma 6.1.3. O

d
Proposition 6.2.5 Let (¢;)icy (resp. (W;)icr) be a net in PSH(X, 0) such that p; =,
o € PSH(X, 0) (resp. ¢i -5 w € PSH(X, 6)). Then

ds
iV — oV
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Proof Since dg is a pseudometric, we may assume that both nets are actually
sequences and I = Z.y. By Corollary 6.2.8, we may assume that the masses
fXO’JJ > O’fx% > 0.

Using Proposition 6.2.3, we may assume that both sequences are monotone and
lie in PSH(X, 6)0.

Thanks to Proposition 6.1.6, we may assume that the ¢;’s, the i/ ;’s, ¢ and ¢ are all
model. In particular, (¢;); (resp. () ;) converges to ¢ (rest. ¢) almost everywhere.

We handle three cases separately.

Step 1. Assume that both sequences are increasing.

In this case, we have ¢; Vi /" ¢ Vi almost everywhere. Therefore, ¢ Vi ; d—s>
¢ V¢ by Corollary 6.2.3.

Step 2. Assume that one sequence, say (¢;); is increasing while the other is
decreasing. Then we have

VY SV <oV,

Thanks to Corollary 6.2.11, it suffices to show that both sides converge to ¢ V ¢ with
respect to ds. So we reduce to the case where both sequences are decreasing.

Step 3. Assume that both sequences are decreasing.

In this case, due to Corollary 6.2.5, it suffices to show that

: n — n
]h_{Eo X9¢jv¢’_/)(ng¢. (6.23)

The > direction follows from Theorem 2.3.2, it remains to argue the < direction.
Thanks to Lemma 2.3.1, we may find a sequence (¢;); in (0, 1) with limit O and a
sequences (77;); in PSH(X, 6)5¢ such that

(I-€)gpj+emni <@, n;<¢j.
It follows that for each j > 1, we have
(I—€)(pj V) +em; <oV,

Therefore by Theorem 2.3.2,

n n n
(I—Ej) LHWjV¢j SL9¢V¢j.

Letting j — oo, we find that

. n <1 n
jh_)n(}o‘/xewvl//j - jh_,nolo‘/Xesoij'

Therefore, in order to prove (6.23), we may assume that one of the sequences is
constant, let us say ¥; =  for all j. Repeating the same argument as before and
constructing (€;);, (17;); as above, we get
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(1-ej)"/xe';jv¢ S/XGZ’V‘”'

Letting j — oo, we conclude (6.23). O

Theorem 6.2.2 Let 61, 0, be smooth real closed (1, 1)-forms on X representing big
cohomology classes. Suppose that (¢;)iey (resp. (Y;)icr) be anet in PSH(X, 01) (resp.
PSH(X, 6;)) and ¢ € PSH(X, 6,) (resp. Y € PSH(X, 6,)). Consider the following
three conditions:

d
(1) ¢i = ¢;
ds
@ yi —
d
(3) @i+ = 9+
Then any two of these conditions imply the third.

Proof By Corollary 6.2.8, we may assume that 8, 6, are both Kihler forms. We
denote them by w;, w» instead. Let w = w; + w».
(D+(2) = (3). It suffices to show that foreachr =0, ...,n,

r n-r r n-r r n-r
2/Xw(<pj+¢j)v(<p+¢)/\w —‘/Xa)%,ﬂbj/\w —‘/Xa)ww/\w — 0.

Observe that for each j € 1,

(pj+¥j)V(p+y) <@ Veo+iy; V.

Thus, it suffices to show that

r r n-r r n-r
2Lw¢jv¢+wjvaw—‘/)(w¢j+¢jAw —/};www/\w — 0.

The left-hand side is a linear combination of
a r—a n—-r a r—a n—-r a r—a n—-r
Z/Xa)l,(ijgDsz,lijlp/\w Lw1,¢,Aw2,ijw /X(‘)l,tp/\wZ,w Aw

d ds
witha =0,...,r. Observe that ¢; V ¢ =, pandy; Vi =, ¥ by Corollary 6.2.2,
each term tends to O by Theorem 6.2.1.
(H+@3) = (2). For each C > 1, from the direction we already proved,
ds
Coi+yi — Co+y.
By Theorem 6.2.1, foreach j =0, ...,n,

lim [ (Cwp+w+dd*(Co; +¢:)) Al
iel X

:/X(Cwl +wy +dd°(Co + )’ /\w;’_j.
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It follows that
: J n-j _ J n—j
ll_lgl sz’wi ANw, * = ‘/sz,dl ANw, *. (6.24)
Therefore, (2) follows if y; > i for each i by Lemma 6.2.2.
Next we prove the general case. By the direction that we already proved, we know

d
that ¢; + = ¢ + . By Proposition 6.2.5, we have that

ds
ity VY — o+

d
It follows from the special case above that i; V = . It follows from (6.24) and
Corollary 6.2.7 that (2) holds.
(2)+(3) = (1). This is similar.

Theorem 6.2.3 The map
Pgle]r: PSH(X,6)-0 — PSH(X, 6)-¢

is continuous with respect to ds.

de
Proof Let (¢i)icz., be a sequence in PSH(X,0).o such that ¢; =50 €
PSH(X, 60)-9. We want to show that

Poleidr = Polyl . (6.25)

We may assume that the ¢;’s and ¢ are all model potentials by Proposition 6.2.2.
By Proposition 6.2.3 and Corollary 6.2.11, we may assume that (¢;); is ei-
ther increasing or decreasing. In the increasing case, we apply Proposition 3.2.13
and Corollary 6.2.3, while in the decreasing case, we apply Proposition 3.2.11,
Proposition 3.1.9 and Corollary 6.2.5. O

6.2.3 Continuity of invariants

d
Theorem 6.2.4 Let (¢;) jc; be anetin PSH(X, 6) and ¢; = ¢ € PSH(X, 0). Then
for any prime divisor E over X, we have

limv(g;, E) = v(p, E). (6.26)
jel

Proof First observe that since dy is a pseudometric, it suffices to prove (6.26) when
I = Z as partially ordered sets.

By Corollary 6.2.8, we may assume that the masses of ¢; and of ¢ are bounded
from below by a positive constant.
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By Theorem 6.2.3, we may assume that ¢; and ¢ are both 7-model and hence
model. When proving (6.26), we are free to pass to subsequences.

By Proposition 6.2.3, we may assume that the sequence (¢;) is either increasing
or decreasing. In the increasing case, there is nothing to prove. In the decreasing case,
(6.26) follows from Proposition 3.1.9. O

Theorem 6.2.5 Let (¢;)je; be a net in PSH(X, 0) and ¢ € PSH(X, 0)>0!. Assume

d
that ¢; =, @, then

volf,, — vol @, /XHZJ, — ‘/XH'(;. (6.27)

Recall the volume is defined in Definition 3.2.3.

Proof The latter part of (6.27) is just a special case of Theorem 6.2.1. It remains to
prove the former part.

We may therefore assume that fX 9$j > (O for all j € I. Then by Theorem 6.2.3,
we have

d
Poleilr = Polelr.
Therefore, the first part of (6.27) follows again from Theorem 6.2.1. O

d
Theorem 6.2.6 Let ¢;, ¢ € PSH(X, 0) (j € Zso). Assume that ¢; = ¢. Then for
each A’ > A > 0, there is jo > 0 so that for j > jo,

T(XVg)) € I(Ag). (6.28)

Proof Fix A’ > A > 0, we want to find jy > 0 so that for j > jo, (6.28) holds.

Step 1. We first assume that ¢ has analytic singularities.

Letm: Y — X be alog resolution of ¢ and let E1, . .., Exn be all prime divisors in
the polar locus of ¢ on Y. Recall that by Theorem 1.4.3, a local holomorphic function
f lies in the right-hand side of (6.28) if and only if

1
ordg, (f) > Av(g, E;) - EAX(Ei) (6.29)

whenever they make sense. Here Ay denotes the log discrepancy. Similarly, f lies in
the left-hand side of (6.28) implies that there is € > 0 so that

o, () 2 (1+ AV, E) - 5 Ax(Ey).

As Lelong numbers are continuous with respect to ds by Theorem 6.2.4, we can find
Jo > 0o that when j > jo, A'v(¢j, E;) = Av(e, E;) for all i. In particular, (6.29)
follows.

Step 2. We handle the general case.

! In fact, we do not have to assume the positivity of the mass of ¢. The proof of the general statement
is slightly more involved. See [ , Proposition 3.10].
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By Corollary 6.2.8, we are free to increase 6 and assume that 6, is a Kéhler
current.

Take a quasi-equisingular approximation (¥ ), of ¢ in PSH(X, ). The existence
is guaranteed by Theorem 1.6.2. Take A”" € (41, ”), then by definition, we can find
k > 0 so that

T(A"k) € I(2¢).

d
Observe that ¢; V ¢ =, Yk as j — oo by Proposition 6.2.5. By Step 1, we can find
Jo > 0 so that for j > jo,

T (A (@; Vi) € I(A"Yy).

It follows that for j > jo,
I(Xe)) € I(Ap).






Chapter 7
I-good singularities

Le but de cette thése est de munir son auteur du titre de Docteur.”
— Adrien Douady”, at the beginning of his thesis

¢ Similarly, the purpose of the current book is to make my com-
plaints about France in the acknowledgments published.
b Adrien Douady (1935-2006) was a French mathematician known
for his pioneering work in complex dynamics and fractal geometry.
Along with John H. Hubbard, he proved important results about
the Mandelbrot set and developed renormalization theory for
polynomial mappings. He discovered the Douady Rabbit, a famous
fractal Julia set.

Douady studied at Ecole Normale Supérieure (the place where
I began to hate France, thanks to Claude Viterbo) and taught at
several French universities. He was also a member of the Bourbaki
group.

Tragically, he died in a swimming accident in 2006.

In this chapter, we study the key notion in the whole theory: The 7 -good singularities.
We will give several useful characterizations of 7 -good singularities. The key result
is the asymptotic Riemann—Roch formula for Hermitian pseudoeftective line bundles
Theorem 7.3.1.

7.1 The notion of 7-good singularities

Let X be a connected compact Kéhler manifold of dimension »n.

Theorem 7.1.1 Let 0 be a closed real smooth (1, 1)-form on X representing a big
cohomology class, and ¢ € PSH(X, 0)~q. Then the following are equivalent:

(1) There exists a sequence (¢;); in PSH(X, 0) with analytic singularities such that

ds
Yj — @5
(2) we have
/Hz,zvol%; (7.1)
X
(3) we have
Pol¢] = Palels. (7.2)

In (1), we could in addition require that each 0, is a Kdhler current.
Moreover, if 0, is a Kihler current, the sequence in (1) can be taken as any
quasi-equisingular approximation of ¢ in PSH(X, ).

131
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Since (PSH(X, 0), ds) is a pseudometric space, in (1) we could also replace the word
sequence by net.
Recall that according to Corollary 3.2.1, one direction of (7.1) always holds:

6" <volf,.
Jy o s varey

Proof (1) = (2). By Theorem 6.2.1, we have

. n __ n
112130/)(9¢,—/)(9¢>0-

We may therefore assume that /X 02’,’, > 0 for all j > 1. It follows from Proposi-

tion 3.2.9 that
/Xeq,j =volf,

for any j > 1. Using Theorem 6.2.5, we conclude (7.1).

(2) & (3). This follows from Theorem 3.1.1.

(3) = (1). Note that the condition in (1) characterizes the closure of analytic
singularities in PSH(X, 6).

Step 1. We first assume that 6, is a Kéhler current. We will prove the following
more general result in this case: Without assuming (3), Pg[¢] s always lies in the
closure of analytic singularities.

Let (¢;); be a quasi-equisingular approximation of ¢ in PSH(X, #). We will show
that ¢; = Po[g] . Let

Y = inf Pelg;].
J€Zso

We know that ¢; i ¥ by Proposition 6.2.2, Proposition 3.1.9 and Corollary 6.2.5.
Moreover, observe that ¢ is 7-model by Proposition 3.2.11 and Proposition 3.2.9.
So it suffices to show that ¢ ~7 .
First observe that since for all j > 0, ¢ < ¢, we have

¢ —supy < Pgly;].
X
Therefore,
p—supp < .
X

Conversely, it remains to argue that ¥ <1 ¢. For this purpose, take 4 > 0, we need to
show that
I (Ay) C I(Ap).

By the strong openness Theorem 1.4.4, we may take A’ > A suchthat 7 () = 7 ('y),
then it follows from the definition of the quasi-equisingular approximation that

T('y) c I (X)) € I(Ap)
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for large enough j. Our assertion follows.

It follows from the proof that we may take ¢; so that 8, is a Kéhler current for
allj > 1.

Step 2. We handle the general case.

Assume (3) holds. By Lemma 2.3.2, we can find € PSH(X, 0) so that 6, is a
Kéhler current and ¢ < ¢. We let

vi=(1-j e+ y

foreach j € Z-1. Then (¢ ), is an increasing sequence converging almost everywhere
to ¢. Then

Polyjlr &, Polelr = Pole]

by Proposition 3.2.13, Corollary 6.2.3. From Step 1, we know that each Pg[y;] 1
lies in the closure of analytic singularities, hence so is Py [¢] ~p ¢. Therefore, (1)
follows. o

Definition 7.1.1 We say a potential ¢ € QPSH(X) is 7 -good if for some smooth
closed real (1, 1)-form on X such that ¢ € PSH(X, 6)~¢, we have

Pole] = Polelr. (7.3)

Remark 7.1.1 In view of Theorem 7.1.1 and Corollary 3.2.1, the failure of 7 -goodness
of a given ¢ € PSH(X, 0)- can be characterized using the difference between the
volume and the mass. We therefore introduce

Macron(6,,) := vol 6, — / 0y
X

As we mentioned in the introduction, all potentials in practice are expected to be
T -good. The evil guy Macron is bound to be eliminated!.

An immediate question is to verify that Definition 7.1.1 is in dependent of the
choice of 6.

Lemma 7.1.1 Let ¢ € PSH(X, 0)~ for some smooth closed real (1, 1)-form 6 on X.
Take a Kdihler form w on X. Then the following are equivalent:

(1) Pole] = Polelr;
(@) Posrwlel = Porwlelr.

Proof (1) = (2). By Theorem 7.1.1, we can find a sequence (¢;); in PSH(X, 6)

d
with analytic singularities such that ¢; = . By Corollary 6.2.8, we have
ds o+

¢; — . Therefore, by Theorem 7.1.1 again, (2) holds.
(2) = (1). Suppose that (1) fails, so that

! I learned the following folklore claim at the math department of Chalmers university: If you hate
someone, you should name an extremely trivial mathematical object after him/her.
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/(9 +dd®p)" < /(0 +dd°Pylel )"
X X

It follows that

n
n . .
(0 +w+ddp)" = (_)/0’ N
/X ; i|Jx ¢
n n . '
<;(i)‘/xe;’9[<ﬁh/\wn l
=l
=/X(9+a)+dch9[(p]_r)"

< /(9 + w +dch9+w [go]j)n.
X

So (2) fails as well. |

Corollary 7.1.1 Let 6 be a closed real smooth (1, 1)-form on X representing a big
cohomology class. Let (¢}) jer be a net of I-good potentials in PSH(X, 0) such that

d
@) = ¢. Then ¢ is I -good.
Note that we do not need to assume that ¢ € PSH(X, 0)-.

Proof By Corollary 6.2.8, we may assume that ¢, ¢ € PSH(X, 6)5¢ forall j € I. It
follows from Theorem 7.1.1 that

/9';1_ =volf,,
X

for all j € I. Taking limit with respect to j with the help of Theorem 6.2.5, we

conclude that
6" =volb,.
R

Therefore, by Theorem 7.1.1 again, we find that ¢ is 7-good. O

Example 7.1.1 Assume that ¢ € QPSH(X) has analytic singularities. Then ¢ is
7 -good. This is proved in Proposition 3.2.9.
In particular, the potential in Example 1.8.2 is 7-good.

Example 7.1.2 Let 6 be a closed real smooth (1, 1)-form on X representing a big
cohomology class, and ¢ € PSH(X, 0)-¢? is an 7 -model potential for some closed
real smooth (1, 1)-form 6 on X. Then ¢ is 7-good.

Example 7.1.3 Let 6 be a closed real smooth (1, 1)-form on X representing a big
cohomology class, and ¢ € &(X, 8). Then ¢ is 7 -good. In fact, since Py[p] = Vg,
we deduce that Py[¢] 7 = Vg as well.

In particular, the potential in Example 3.1.1 is 7-good.

2 I do not know whether the same holds when ¢ has vanishing mass.
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A further class of examples of 7 -good singularities will be given in Example 7.3.1
below.
On the other hand, there do exist non-7 -good potentials.

Example 7.1.4 The potential in Example 6.1.3 is not 7 -good. In fact, since ¢ has no
non-vanishing Lelong numbers, we know that ¢ ~; 0, hence

PZw [90] =0.

/X (20 +ddy) = /X w< /X (20),

where 2w + dd°¢ is understood in the non-pluripolar sense.

On the other hand,

Corollary 7.1.2 Let ¢ € PSH(X, 0)~¢ and (€;); be a decreasing sequence in Rsq
with limit 0. Fix a Kdihler form w on X. Consider a decreasing sequence ¢; €
PSH(X, 6 + €jw) of potentials with analytic singularities for each j > 1. Assume
that ¢ = inf; @;. Then the following are equivalent:

d
(1) ¢; = Polelr? and
(2) (¢;); is a quasi-equisingular approximation of ¢.

Proof By Corollary 6.2.8 and Example 7.1.2, we may replace 6 by 6 + Cw for some
large constant C > 0 and assume that ¢, ¢; € PSH(X, 0 — w) forall j > 1.

(2) = (1). This is already proved in the proof of Theorem 7.1.1.

(1) = (2). This follows from Theorem 6.2.6. O

7.2 Properties of 7-good singularities

Let X be a connected compact Kihler manifold of dimension #.
We show that 7-goodness is preserved by a number of natural operations.

Proposition 7.2.1 Let ¢, € QPSH(X) be I-good and A > 0. Then the following
potentials are all I -good:

D e+y;

@) eV

(3) .

Proof Take a closed real smooth (1, 1)-form 8 on X such that ¢, € PSH(X, 6)~.
It follows from Theorem 7.1.1 that there are sequences (¢;);, (¥;); in PSH(X, )

d d
with analytic singularities such that ¢; = ¢ and ¥ ; =, /8
By Theorem 6.2.2, Proposition 6.2.5, we have

d +ew . . .
3 Just to be sure, this means ¢; oo, Pg[ @] forany € > 0. The choice of € is irrelevant due
to Corollary 6.2.8.
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ds dS
pityi—e+Y, @iV — Vi

On the other hand, it is clear that

ds
Ap; — Ag.
Therefore, our assertions follow from Theorem 7.1.1. |

Example 7.2.1 Let L be a pseudoeffective line bundle on X. Elementary metrics on
L are defined in Definition 6.1.3. Let & be an elementary metric on L, then dd®A is
T -good.

This is a direct consequence of Proposition 7.2.1 and Example 7.1.1.

Proposition 7.2.2 Let (¢;);je1 be a non-empty family of I-good potentials in
PSH(X, 0) for some closed real smooth (1,1)-form 6 on X. Then sup;;"¢; is
I -good.

Proof After adding a Kéhler form to 6, we may assume that ¢; € PSH(X, 6) for
alljel

When 1 is finite, this result follows from Proposition 7.2.1. When [ is infinite, we
may assume that I = Z.( by Proposition 1.2.2. By Proposition 7.2.1, we may assume
that the sequence (¢;); is increasing. In this case, as shown in Corollary 6.2.3,

ds "
$j — Sup ¢;.
i€Zx0

Therefore, sup;._,“¢i is -good by Corollary 7.1.1. O

Proposition 7.2.3 Let ¢,y € PSH(X, 0)~0* Then

(1) we have
lin(} vol(8, (1 — €)¢ + ey) = vol(0, ).
e—0+

(2) Let w be a Kdhler form on X, then

volf, = lirg vol(0 + ew),,.
e—0+

(3) Consider a prime divisor E on X. Then
vol @, = vol (0, — v(g, E)[E]) .

For a vast generalization of (3), see [ , Theorem 3.13].
In the proof below, we shall freely use the ds-convergence and 7 -goodness to
currents. Should the readers have any doubt, please refer to Remark 1.7.1.

Proof (1) This follows after combining Corollary 6.2.10 with Theorem 6.2.5.
(2) For each € > 0,

4 These statements also hold when ¢ and ¢ have vanishing mass, as detailed in [ ].
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vol(6 + ew), = / (0+€ew+dd°Pyrewle] )"
X
c n
= (9+E(U+dd P9+ea) [PH[QO]I:I)
X

:./x (0 +ew+dd°Pgle],)",

where the second equality follows from Example 7.1.2. Letting € — 0+, we conclude.
(3) By (2), we may assume that 6, is a Kéhler current. Take a quasi-equisingular
approximation (S;); of 6, — v(¢, E)[E]. By Theorem 6.2.2,

d
S;i+v(p, E)[E] = 6,.

For each j > 1, the currents S; + v(¢, E)[E] and S; are 7-good as follows from
Proposition 7.2.1, we have

vol(Sj+v(<p,E)[E])=‘/X(Sj+v(<p,E)[E])"=/XS;-’=VOIS.,'.

Letting j — oo, we conclude by Theorem 6.2.6. O

7.3 The volumes of Hermitian pseudoeffective line bundles

Let X be a connected compact Kéhler manifold of dimension »n.

Definition 7.3.1 A Hermitian pseudoeffective line bundle (L, h) on a complex mani-
fold Y consists of a holomorphic line bundle L on Y together with a plurisubharmonic
metric 4 on L.

Theorem 7.3.1 Let (L, h) be a Hermitian pseudoeffective line bundle on X and T be
a holomorphic line bundle on X. We have

|
lim %ho (x, TeLre I(h")) = vol(dd°h). (7.4)

k—0c0
In particular, the limit exists>.

For the proof, let us fix a smooth Hermitian metric g on L with 6 = ¢ (L, hg).
We identify h with hgexp(—¢) for some ¢ € PSH(X, 6). See Section 1.8 for the
relevant notations.

Recall that when X admits a big line bundle, it is necessarily projective. See
[ , Theorem 2.2.26].

5 The existence of the limit was the question I asked myself in early 2019. I was motivated by some
problems in K-stability at the beginning, but the problem turned out to be much more fruitful than I
have expected, leading to the series of papers written with T. Darvas. I regard the establishment of
(7.4) as the most important mathematical work I have done so far.
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We first handle the case where ¢ has analytic singularities.

Proposition 7.3.1 Under the assumptions of Theorem 7.3.1, assume furthermore that
¢ has analytic singularities, then (7.4) holds.

Proof Step 1. Reduce to the case of log singularities.
Letm: Y — X be a log resolution of ¢. In this case, for each k € Z., we have

(X, T ® L* ® I(kh)) = h°(Y,Ky/x @ n°T ® n*L* ® I (kn*h)).
By Proposition 3.2.5, we have
vol(dd®h) = vol(dd®x*h).

Therefore, it suffices to argue (7.4) with Ky;x ® n*T, n*L and n*h in place of T', L
and h.

Step 2. Assume that ¢ has log singularities along an effective Q-divisor D, we
decompose D into irreducible components, say

In this case, we can easily compute

N
Lka;|D;

I (kp) =Ox (—
i=1

for each k € Z.. Observe that L — D is nef (see Lemma 1.6.1), so we could apply
the asymptotic Riemann—Roch theorem [ , Corollary 1.4.41]° to conclude that

N
_Zl.kaiJDi
im1

n!
lim — K
m k"

k—oo

X, T®L*®Ox = (L-D)".

Observe that by Proposition 1.8.1,

where T is a closed positive (1, 1)-current with bounded potential. Therefore,

(L—D)":/XT":/XH’;.

By Example 7.1.1, we know that the right-hand side is exactly vol 8. O

¢ Please try to complete the full details if it is not completely clear to you how to apply the
Riemann—Roch theorem of integral divisors in this setup.
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Proof (Proof of Theorem 7.3.1) Step 1. We first handle the case where 6, is a
Kihler current. Fix a Kihler form w > 6 on X such that 6, > 26w for some
6 €(0,1).

Let (¢;); be a quasi-equisingular approximation of ¢ in PSH(X, ). We may
assume that 6, > éw for all j. From Proposition 7.3.1, we know that for each j > 1,

— n! .on!
lim 4 (X,T®Lk ®I(k<p)) < lim =4 (X,T®Lk ®I(k¢j)) = vol 6.

k—oo

It follows from Theorem 7.1.1 and Theorem 6.2.5 that the right-hand side converges
to vol 6, as j — oo. Therefore,

— n!
lim ﬁhO(X,T ® LK ® I (kg)) < vold,,.

k—o00

Conversely, fix an integer N > 6~!. From Theorem 7.1.1 and Theorem 6.2.1, we

know that
: n — n
jh_r)r.}o/XG‘/’j - /XQPQ[QO]I > 0. (7.5)

Therefore, by Lemma 2.3.1, we can find jo > O such that for j > jo, there is
W € PSH(X, 0)-¢ (depending on j) with

(1-N"Ne;+ Ny < Pglo]r. (7.6)

For each k > 0, we write k = k’N —r, where K’ e Nandr € {0,1,...,N —1}. Then
we compute for j > jo and large enough & (to be specified shortly) that

(X, T® L*® I(ky))

> (X, To L7 ® LKN @ T(k'Ny))

> K0 (X, TOL" & LN @I (K (y+(N- 1)¢,)))

>h° (X, TOL " ®LYNDgr (k’Ngoj)) ,
where the third line follows from (7.6), the fourth line can be argued as follows: For
large enough k, there is a non-zero section s € H(X, L ® I (k’y)) by Lemma 2.3.3.
It follows from Lemma 1.6.3 that for large enough &,

I (k/NQDj) c Iy (k,(N— l)ng) .
It follows that multiplication by s gives an injective map
H (X.TeL” e XM Ve (kNg))) —
H (X.TeL” e L¥N oI (Ky+K (N-1g))).

Next observe that
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(N = 1)+ Ndd°p; > 0.

So Proposition 7.3.1 is applicable. We let k — oo to conclude that
. nl -
lim k—nhO(X,T ® L*® I (kg)) =N~" /X (N-1)0 +Ndd°¢p.,~)"

k—oc0
=/X (1= N0 +ddog,)"

> [ (0+dd°¢;)" - CN!,

o

where C is a constant independent of N and j. Letting j — oo and then N — oo and
using (7.5), we find that

. 0 k n
kl:_n;h (X, T®L ®I(k¢))2/X@P9[¢];~

Therefore, (7.4) follows.

Step 2. We handle the case where vol 8, > 0. We may assume that ¢ is 7-model.

Fix observe that L is big by Proposition 2.3.2. Hence X is projective. Take a very
ample line bundle A on X and a Kéhler form w in ¢ (A). Take a Hermitian metric
hy on A with ddhy = w.

Fix N € Z.¢, we decompose any k > 0 as k = k’N +r with k¥’ € N and
re{0,1,...,N —1}. Then

K0 (x, TeLlre f(k@) < h° (x, TeL oLV @ I(k’Ngo)) .

Therefore,

— n!

T —hO(X,T L¥® I(k )
gt (T e e 1)
— n!
< max lim
r=0,...,N—1k'—oco K’/ N"

W (x.TeL & LMY e 1(k'Ng))

< max lim
r=0,...,N—-1k'—oco K’/ N"

n
=/ (N_lw"'@"'ddcpewv—lw[‘ﬁ]f) ,
X

Ko (X, ToL oLFN @ AX @ I(k’N(,p))

where we have applied Step 1 to the Hermitian pseudoeffective line bundle (LY ®
A, h®N ®h ») on the fourth line. On the other hand, since ¢ is 7-good by Example 7.1.2,
we have

P9+N"w[¢]] = P9+N’]w[<p]-
It follows from Proposition 3.1.3 that

Tim Z—iho (X,T ®Lk® I(kt,o)) < /X (N‘lw +0+ ddctp)n .



7.3. THE VOLUMES OF HERMITIAN PSEUDOEFFECTIVE LINE BUNDLES 141
Letting N — oo, we conclude

lim n—!hO(X, T®LY® I (k) < / 0",

Koo Tt ¢
It remains to argue the reverse inequality.

Choose ¢ € PSH(X, 6) such that 6, is a Kéhler current and ¢ < ¢. The existence
of Y is guaranteed by Lemma 2.3.2. Then for any ¢ € (0, 1), we set

=1 -De+ty.

It follows again from Step 1 that

\%

. onl g X
lim (X,T®L ®I(k<p))

k— 00

. n!
lim ﬁho (X,T® L* ®I(k¢pt)) =volf,,.

k—o0

On the other hand, by Proposition 7.2.3,

li 16,, = volé,.
Ji, vol 6, = vol6,

So we find \
lim %ho (X,T o L* ®I(k<p)) > vol 6.
k—oo
We conclude (7.4) in this case.
Step 3. We finally handle the case where vol 6, = 0. Replacing ¢ by Pg[¢] 1, we
may assume that ¢ is 7 -model.
Assume that (7.4) fails. That is,

. nl g k — n! k
Jim (X,T®L ) > Iim = (X,T®L ®I(k<p)) >0,
then L is a big line bundle and hence X is projective.

Fix a very ample line bundle A on X and a Kéhler form w € ¢|(A). Take a
decreasing sequence (¢;); of rational numbers with limit 0 and a quasi-equisingular
approximation (¢;); of ¢ with ¢; € PSH(X, 6 + €;w)>0.

We claim that as j — oo, the sequence Pg.¢;w[¢;] is decreasing with limit ¢.

It is clear that this sequence is decreasing. Let ¢ denote its limit for the moment.
It is also clear that y > ¢. Since ¢ is 7 -model, it remains to show that ¢ <y ¢. But
the argument is exactly as in the proof of Theorem 7.1.1. So we conclude.

By our claim and Proposition 3.1.9, we find that

lim /(0+ij+ddct,oj)"=/9'; =0. (7.7
X X

J—

Fix j > 0, take an integer N > 0 so that Ne¢; is an integer. Then we compute
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Tim k—ho (X T®L* ®I(kcp))

k—o0

< lim k—ho (X T® Lk ®I(k<pj))

T koo

< lim
- 0,..?,N 1k'—o0 (k' N)"

n° (X T®L'® LN @ T(NK' ga]))

l’l
< im ——p0 (X Te L' LNK @ AKNS @ T(NK’ )
= o R S N wLeL @ @ L(NK'g))

1
= / (N0 +€;Nw + Ndd®¢;)",
e

where the third line follows by writing k = Nk’ + a as before, we applied Step 2 on
the last line. Letting N — oo, we find that

khm k—ho (X T®Lk®I(ktp) < /(9+ejw+ddc¢j)n-
—00 X

Since we know (7.7), letting j — oo, we conclude that

Tim LA (x T®L* ®I(k<p))

k—oo kT
which is a contradiction. Hence (7.4) is established in full generality. O

Corollary 7.3.1 Let L be a pseudoeffective line bundle on X, h be a Hermitian metric
on L with 0 = ¢;(L, h). Then we have

L oonlog k
Jim (X,L ): /Xe':,g. (1.8)
This common quantity is the volume of L, usually denoted by vol L.

Example 7.3.1 If X is a toric smooth projective variety and 6 is invariant under the
action of the compact torus. Then any ¢ € PSH (X, 6) is 7 -good.

Proof Thanks to Lemma 7.1.1, we may assume that 6 € c¢;(L) for some toric
invariant ample line bundle L. In this case, the result follows from Theorem 7.1.1,
Theorem 7.3.1 and Theorem 5.2.2. O



Chapter 8
The trace operator

The difference between mathematicians and physicists is that
after physicists prove a big result they think it is fantastic but after
mathematicians prove a big result they think it is trivial.

— Lucien Szpiro®

¢ Lucien Szpiro (1941-2020) was a French mathematician known
for his significant contributions to number theory and arithmetic
geometry. His work often focused on problems related to Diophan-
tine equations and the arithmetic of elliptic curves.

Szpiro is perhaps best known for Szpiro’s Conjecture, which
has deep connections to the famous abc conjecture in number
theory, an important open problem with wide-ranging implications.

In this chapter, we develop the theory of trace operators and prove the analytic

Bertini theorem. These techniques allow us to make induction on the dimension while

studying the singularities. Roughly speaking, the analytic Bertini theorem allows us

to study generic restrictions, while the trace operator handles the remaining cases.
In Section 8.3, we establish a relative version of the Theorem 7.3.1.

8.1 The definition of the trace operator

Let X be a connected compact Kihler manifold and ¥ € X be an irreducible analytic
subset.

The trace operator gives a way to restrict a quasi-plurisubharmonic function on
X to ¥, the normalization of Y. It follows from [ , Proposition 3.5] that Y is
a normal Kihler space. We refer to Appendix B for the pluripotential theory on
unibranch Kéhler spaces.

For later applications, we need this generality even if initially we are only interested
in the smooth case.

We first observe that given ¢ € QPSH(X) with analytic singularities such that
v(p,Y) =0, then p|y £ —oco. This observation will be crucial in the sequel.

Proposition 8.1.1 Let ¢ € QPSH(X) be a function such that v(¢,Y) = 0. Let (¢;);,
(Y1) be quasi-equisingular approximations of ¢. Then

ilLrgo ds (¢ily,wily) = 0. 8.1)

The meaning of (8.1) is explained in Corollary 6.2.9.

Proof Take a Kihler form w on X such that ¢;,¥; € PSH(X, w/2) foralli > 1. By
Corollary 6.2.9, we need to show that

143
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}LIEO ds, o)y (ily. wily) = 0.

Assume that this fails, then up to replacing the sequences by subsequences, we may
assume that the following limit exists and

lli)n;\ dS,a)|,~, (Spl |}77 lﬁll?) > 0
Take a Kihler form & on ¥, then
lim ds wly+a (¢ily.wily) > 0

by Corollary 6.2.9.
d
Replacing ¢ by P, [¢] 7, we may assume that ¢ is 7 -good. In particular, ¢; = ®,
ds
Y; — . Therefore,
d
VY=g

due to Proposition 6.2.5. We may replace (;); with (¢; V i;); and assume that
pi <y; foralli > 1.

Take a decreasing sequence (¢;); in R.¢ with limit O such that (1 —€;)¢p; €
PSH(X, w). We first observe that

lim ds o, (¢ily. (1= &)gily) = 0.
This is a consequence of Lemma 6.2.3. Hence, by Corollary 6.2.9, we find
ilijg ds.wlg+o(pily, (1 — &)pily) =0.
But thanks to Corollary 6.2.6, there is ¢ € PSH(Y, w|y + @) such that

d
ily —> .
Hence,
}LTO ds.wlg+o (€ (1 —&)pily) = 0.

Next by Proposition 1.6.3, we could find a subsequence (¢}, )iez., of (¥;); such
that for eachi > 1,

Qi < *ﬁj,» < (1 - Ei)‘Pi-
Hence,
eily <yily = (1 -e)eily.

Therefore, by Corollary 6.2.1,
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Iim ds oipra(@)ily:¥ily) < lim ds wipea (@) ly, (1 - €)ily)
= lll)nélo dS,w|,~,+a')(lﬁ’ (1 - 6[)‘10[|Y)
-0,

which is a contradiction. O

Definition 8.1.1 Let ¢ € QPSH(X) be a function such that v(¢,Y) = 0. We say a
potential € QPSH(Y) is a trace operator of ¢ along Y if there is a quasi-equisingular
approximation (¢;); of ¢ such that

d
@ily =yt (8.2)

By Corollary 6.2.6, the trace operator is always defined. Observe that by Proposi-
tion 8.1.1, the condition (8.2) is independent of the choice of (¢;);.

Proposition 8.1.2 Let ¢ € QPSH(X) such that v(p,Y) = 0. Suppose that  and '
are trace operators of ¢ along Y. Then  and ' are I-good and y ~p .

Proof That y and ¢ are I -good follows from Theorem 7.1.1. The fact that y ~p i’
follows from Proposition 8.1.1 and Proposition 6.2.2. O

Definition 8.1.2 Let ¢ € QPSH(X) such that v(¢,Y) = 0. We write Try (¢) for any
trace operator of ¢ along Y.

Given a closed smooth real (1, 1)-form 6 on X. When Try (¢) can be chosen to lie
in PSH(Y, 6|5)>0, we write

Tri (@) = Pgy, [Try(¢)] = Py, [Try (@)1 .

The trace operator Try (¢) is therefore well-defined only up to P-equivalence by
Proposition 8.1.2. Also observe that if ¢ € PSH(X, 6) for some smooth closed real
(1, 1)-form 6 on X, then for any Kéhler form w on X, the trace operator Trﬁ*“’ (p) is
always defined. In particular, if 6, is a Kéhler current, Trff(go) is always defined.

Remark 8.1.1 As in Remark 1.7.1, the trace operator could also be applied to closed
positive (1, 1)-currents on X. If T € Z, (X, @) for some pseudoeffective class a on
X (see Definition 1.7.3) and 8 € H'-!1(¥, R), then we write

ey (T)

for any (if exists) closed positive (1, 1)-current in S representing Try (7) when
v(T,Y)=0.

1 To be more precise, what we mean is the following: We can find a closed smooth real (1, 1)-form
on X such that ¢ € PSH(X, 6). Then there is a Kéhler form such that w + 6 + dd®¢; > 0 for all
j = 1. Take a Kihler form & on ¥ so that @ > (6 + w)|y and that ¢ € PSH(Y, @). Then our

ds,o . e . ~
condition means that ¢; |y e, . This condition is independent of the choices of 6, w and @ by
Corollary 6.2.8.
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Proposition 8.1.3 Let ¢ € QPSH(X) such that v(p,Y) = 0. Assume that ¢|y & —oo.
Then

oly =p Try ().
Proof Take a Kihler form w such that w, is a Kéhler current. Let (¢;); be a
quasi-equisingular approximation of ¢ in PSH(X, w)-o. We may assume that ¢; < 0
forall j > 1.
Then

ily < Poly [)l7] (8.3)

for all j > 1. In particular,
ely < inf Poyy [o)ly] -
Thanks to Corollary 6.2.5,

Try (¢) ~p le;fl Poy Loyl (8.4)

We conclude our assertion. 0O
Example 8.1.1 Let ¢ € QPSH(X) such that v(¢,Y) = 0. Assume that ¢ has analytic
singularities, then

Try (¢) ~p ¢ly-

Example 8.1.2 Let ¢ € QPSH(X). Take a closed real smooth (1, 1)-form 6 on X
such that ¢ € PSH(X, 6)9, then

Trx(¢) ~p Polel s, Tré’}(<p) =Pylelr.

In particular, the trace operator can be regarded as a generalization of the 7 -envelope.

Example 8.1.3 Assume that ¢ € PSH(X, ) for some closed smooth real (1, 1)-form
6 on X and

)dimy >0 (8.5)

lim / (9|y+ew|y+dd° el (p)
e\0 Jy

for any arbitrary choice of a Kdhler form w on X. Then it follows from Proposition 3.1.9
that Trff () is defined, and its mass is exact the above limit.

Remark 8.1.2 The trace operator allows us to introduce the following extension of
the moving Seshadri constant: Let 7 € Z.(X, @) and x € X, we define

1
dimV/

e(T,x) = inf

vol Tr‘(jlv T
Vax

mult, V

where vol Trglv T =0 if Trglv T is not defined. Here V runs over all positive-
dimensional closed irreducible analytic subsets of X containing x.

These moving Seshadri constants seem to be new. But since I do not have
particularly good applications in mind, I will not study these objects in this book.
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8.2 Properties of the trace operator

Let X be a connected compact Kihler manifold and ¥ € X be an irreducible analytic
subset.

Proposition 8.2.1 Let ¢,y € QPSH(X), A > 0. Assume that v(¢,Y) = v(¥,Y) = 0.
Then we have the following:

(1) Suppose that ¢ <y ¥, then Try (¢) <p Try (¥).

(2) We have
Try (¢ + ) ~p Try (¢) + Try ().
(3) We have
Try (1¢) ~p A Try ().
(4) We have

Try (¢ V) ~p Try (@) V Try (¢).

Proof Take a closed smooth real (1, 1)-form 6 on X such that 8, 6, are both Kihler
currents. Let (¢;); and (), be quasi-equisingular approximations of ¢ and ¢ in
PSH(X, 6) respectively. We may assume that ¢; < Oand y; < Oforall j > 1.

(1) By Corollary 7.1.2 and Proposition 6.2.5, we may assume that ¢; < i ; for all
J- Then our assertion follows from Proposition 6.2.4.

d
(2) It follows from Theorem 6.2.2 that ¢; + ¢ ; =Py [¢]r + Pgly]r. However,
by Proposition 3.2.10 and Proposition 7.2.1, we have

Polelr + Pol¥]lr ~p Pole+¥]r.

Therefore, by Proposition 6.2.2, Corollary 7.1.2 and Proposition 1.6.1, (¢; +;); is
a quasi-equisingular approximation of ¢ + . We conclude using Theorem 6.2.2.
(3) Let (4,); be an increasing sequence of positive rational numbers with limit
A. Then (4;¢;); is a quasi-equisingular approximation of ¢. Our assertion follows
Lemma 6.2.3.
(4) By Proposition 6.2.5, we have

0i Vi S Polelr v Polylr.

By Proposition 3.2.10 and Proposition 7.2.1, we have

Polelr vV Polylr ~p Pole Vi]rs.

Therefore, our assertion follows exactly as in the proof of (2). O

Proposition 8.2.2 Let (¢;) je1 be a decreasing net in QPSH(X). Assume that there
exists a closed real smooth (1, 1)-form 6 such that ¢; € PSH(X, 0) for each j € I.

Assume that ¢ 2, ¢ € QPSH(X) and v(¢,Y) = 0. Then

d.
Try (¢;) — Try(g).
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Proof By Corollary 6.2.8, we may assume that there is a Kahler form w on X such
that ¢, ¢; € PSH(X, 6 — w) for all j € I. Thanks to Proposition 8.2.1, for each j > 1,

Try (@j+1) <p Try(p;).

It follows from Proposition 8.2.1 and Corollary 6.2.6 that there exists € PSH(Y, 6]y)

d
such that Try (¢;) = v.
For each j > 1, we take a quasi-equisingular approximation (<p5‘.)k in PSH(X, 6)
of ¢;. Using Theorem 1.6.2, we may guarantee that

k Kk
Pjr = ¢

for each j, k > 1. In particular, (goj.) ;j 1s a quasi-equisingular approximation of ¢. By
Proposition 6.2.4, we have ¢ <p Try (¢).

Conversely, by Proposition 8.2.1, Try(¢;) >p Try(¢p). It follows again from
Proposition 6.2.4 that Try (¢) <p V. O

Example 8.2.1 The trace operator is not continuous along increasing sequences. Let
us consider the case X = P? with coordinates (z;,z2) on C? C X. Let wgs denote
the Fubini—Study metric. The subvariety ¥ = P! is defined by z, = 0. Consider an
increasing sequence (¢;); in PSH(X, wgs), whose potentials near (0, 0) are given by

log |z |2 \Y (k‘l log |z2|2) +0(1).
The pointwise restriction of these potentials to Y are given locally by
log|zi)* +O(1).
On the other hand, locally
log |z v (k‘1 log |12|2) -0

almost everywhere as k — oo. So the trace operator is not continuous along the
sequence (¢;);.

Lemma 8.2.1 Let n: Z — X be a proper bimeromorphic morphism with Z being a
connected Kdhler manifold. Assume that W (resp. Y ) be analytic subsets in Z (resp.
X) of codimension 1 such that the restriction I1: W — Y of n is defined and is
bimeromorphic, so that we have the following commutative diagram

W—asW—>7Z

b

y — sy — 3 X

Then for any ¢ € QPSH(X) with v(p,Y) = 0, we have
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" Try (@) ~p Trw (7" ¢). (8.6)

Proof We first observe that by Zariski’s main theorem, v(n*p, W) = 0. So the
right-hand side of (8.6) makes sense.

Step 1. Assume that ¢ has analytic singularities. It suffices to apply Example 8.1.1
to reformulate (8.6) as

I (ely) ~p (7" @) |y

In fact, the strict equality holds, which is nothing but the functoriality of pullbacks.

Step 2. Next we handle the general case. Choose a smooth closed real (1, 1)-form
6 such that 6, is a Kahler current. Take a quasi-equisingular approximation (¢;); of
¢ in PSH(X, ). By Corollary 7.1.2, (n*¢;); is a quasi-equisingular approximation
of m*¢. From Step 1, we know that for each j,

IT* Try (¢;) ~p Trw (7" ;).
Letting j — oo, we conclude (8.6) using Proposition 8.2.2. O

Proposition 8.2.3 Let ¢ € QPSH(X) with v(¢,Y) = 0. Assume that Y is smooth.
Then for any A > 0, we have

T (ATry(¢)) C Resy I (A¢). (8.7)

Proof Take a Kéhler form w on X such that w,, is a Kihler current.
Let (¢;); be a quasi-equisingular approximation of ¢ in PSH(X, w).
By definition, for each j > 1, we get that

Try () <p @jly.
For any 4’ > A > 0, we can find j > 0 so that
I(Xe)) € I(Ap).
By Theorem 1.4.5, we have
I(A Try(¢)) € T(Xpjly) S Resy I(A'¢j) C Resy I(1¢p).
Thanks to Theorem 1.4.4, we conclude (8.7). ]

Lastly, we turn our attention to global sections. For this we will need the following
global Ohsawa—Takegoshi extension theorem for the trace operator:

Theorem 8.2.1 Let L be a big line bundle on X and 6 is a closed real smooth
(1,1)-form on X representing c1(L). Suppose that ¢ € PSH(X,0) and 6, is a
Kdhler current. Assume that v(¢,Y) = 0. Let T be a holomorphic line bundle on X.
Then there exists ko such that for all k > ko and s € H'(Y, T|y ® L|¥ ® I (k Trj (¢))),
there exists an extension § € H*(X, T ® L* ® I (ky)).

It is of interest to know if one could control the L2-norm of § in the above result.
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Proof Fix a Kihler form w on X. We may assume that Y # X and that 6, > 30w for
some § > 0. Let (¢;); be the decreasing quasi-equisingular approximation of ¢ in
PSH(X, 6). We can assume that 6,, > 26w for all j > 1. Also, there exists € > 0
such that 6(1+¢),; > 6w forany € € (0, ). Take kg = ko(6) as in Theorem 1.8.1.

We fix k > ko and s € H'(Y,T|y ® L|¥ ® T (k Tr) (¢))). By Theorem 1.4.4, there
exists € € (0, &) such that s € HO(Y, T|y ® Lll; ® I (k(l+¢€) Trg((p))).

Since Trf,(go) < ¢;ly, we obtain that s € H(Y,T|y ® Llllj ®I(k(1+e)pjly)).
Due to Theorem 1.8.1 there exists §; € HY(X,T ® L* ® 7 (k(1 + €)¢;)) such that
§j|Y = s, for all J.

But by definition of quasi-equisingular approximation, we obtain that for high
enough j the inclusion 7 (k(1 + €)¢;) C I (kyp) holds. As aresult, §; € HY(X,T®
Lk ® I (k¢)) for high enough j, finishing the argument. O

8.3 Restricted volumes

Let X be a connected projective manifold of dimension n and ¥ C X be a connected
submanifold of dimension m. Consider a big line bundle L on X, a Hermitian metric
hoon L with 8 = ¢ (L, hg). Let A be a very ample line bundle on X. Take a Hermitian
metric h4 on A such that w = dd°h 4 is a Kihler form.

Using the trace operator, one could prove the following generalization of Theo-
rem 7.3.1.

Theorem 8.3.1 Let h be a singular plurisubharmonic metric on Lwith v(dd®h,Y) = 0.
Assume that

lim (Tr;““”““(cl(L, h)))m > 0. (8.8)

Then for any holomorphic line bundle T on X we have that
ci(Lly) m_ombg Kk k
(Try (c1(L, h))) = lim (Y, Tly ® LIX ® Resy (Z (h ))) . (89)
Y —00

Recall that Resy is defined in Definition 1.4.5. Observe that by Example 8.1.3, (8.8)
implies that TrS! “) (¢1 (L, b)) is defined. So (8.9) is defined.

We will identify i with ¢ € PSH(X, 6) as in (1.18).

We only need to consider the case Y # X, since otherwise, the result is proved in
Theorem 7.3.1. We will always assume Y # X in the sequel.

Lemma 8.3.1 There is yy € QPSH(X) with neat analytic singularities such that
{Yy = —0} =Y and in an open neighborhood of Y, we have

Yy (x) =2(n—m)logdist(x,Y) (8.10)
for some Riemannian distance function dist(+,Y).

See Definition 1.6.1 for the definition of neat analytic singularities.
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See [ , Lemma 2.3] for the proof.

Lemma 8.3.2 The multiplier ideal sheaf of Wy can be calculated as
I(Yy) =1Iy. (8.11)

Moreover, given'y € Y and € > 0, for any germ f € Iy , we have

/ If19e™" w" < oo, (8.12)
U

where U is an open neighborhood of y in X.

In other words, ¥y has log canonical singularities.

Proof Since yry is locally bounded away from Y, it suffices to prove (8.11) along Y.
Fix y € Y, and we will verify (8.11) germ-wise at y.

Take an open neighbourhood U C X of y and a biholomorphicmap F: U — VXW,
where V is an open neighbourhood of y in Y and W is a connected open subset in
C"*~™ containing 0, such that F(Y N U) =V x {0}. For any x € U, write xy, xy for
the two components of F(x) in V and W respectively. We denote the coordinates in
CrY"™aswi,...,Wn_m.

Due to (8.10), after possibly shrinking U, we may assume that

exp(—yy (v)) = law 7" + O(1)

foranyx e U \ Y.
Given f € Iy y, after shrinking U, we may assume that there exists g1, ..., gn-m €
HO(V x W, Oyxw) such that
n—-m
f= Z w;gi.
i=1

In order to verify f € T (yy)y, it suffices to show w;g; € 7 ((X1" |w,~|2)’"‘")F(y),
which follows from Fubini’s theorem. The proof of (8.12) is similar.

Conversely, take f € I (yy), the similar application of Fubini’s theorem shows
that after possible shrinking U, we have f|y = 0. By Riickert’s Nullstellensatz [ ,
Page 67], it follows that f € Jy. ]

Lemma 8.3.3 Assume that ¢ has analytic singularity type and 6, is a Kdhler current.
Suppose that |y # —oo. Then

|
/(9|Y +ddely)™ = klim Z—m dime {sly : s e HY(X, T ® L* ® T (k¢))}. (8.13)
Y —00

Recall that 7, is defined in Definition 1.6.6.

Proof Suppose that € € (0, 1) is small enough so that (1 — €)u € PSH(X, 6).
Using Theorem 7.3.1 we can start to write the following sequence of inequalities:
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1
EiéwW+d&mwm

1
= lim k—th(Y,T|Y ® LIy ® I (kely))

k—o0

N
< lim T dim {s|y s e H' (X, T ® L¥ ®I(kt,0))} by Theorem 1.8.1

k—o0

— 1
< lim — dim {sly : s e H(X,T ® L* ® T (k¢))}

k—oco k™M

— 1
< Jim - dim {sly : s e H'(X, T ® L* ® I.o((1 = €)ky))} by Lemma 1.6.3

k—o0

— 1
< lim — dimc {s € H(Y, Tly ® L|}) : log h* (5, 5) < (1 - €)kgply}

k—oo k™M

—
< Tim —#° (Y,T|Y®L|§ ® I ((1 —e)ktply))

k—oo k™

1
= / (6ly + (1 - €)dd°¢|y)™ by Theorem 7.3.1.
Uy

Letting € — 0, (8.13) follows from multi-linearity of the non-pluripolar product. O

Proposition 8.3.1 In the setting of Theorem 8.3.1, assume that dd°h is a Kdihler
current. Then (8.9) holds.

Proof Let (¢;); a quasi-equisingular approximation of ¢ in PSH(X,#). After
possibly replacing (¢;); by a subsequence, there exists €y € (0,1) N Q such that
O(1-e)2g; and 0(1-¢), are also Kahler currents for any € € (0, €).

We claim that for any j > 1 and k € N, we have

To((1 = ©)kg;) N I (Yy) € I((1 - €)*kg; +y). (8.14)

Take x € X, and it suffices to argue (8.14) along the germ of x. Since ¥y is
locally bounded outside Y, we may assume that x € Y. Recall that by Lemma 8.3.2,
I(yy)=1Iy.

Let f € 7o((1 = €)k@;)x N T (Yy)x. Then there is an open neighbourhood U of

x in X such that |f|2(1_5>e_k(1_5)2‘ﬁf < Choldson U\ {¢; = —co} for some C > 0,
hence

/ |f|267k(176)24pj7(/1y " :/ |f|2(l*€)efk(lfe)zapjlleeefwy "
U U
SC/ |17 " < oo,
U

where the last inequality follows from Lemma 8.3.2. We have proved the claim (8.14).
Next we consider the following composition morphism of coherent sheaves on Y:

T((1-e)’ke;) . I((1-e)ke;)
Io((1-eke)) NIy  I((1-€)2ke;+yy)

Resy 7o ((1 — €)kepj) — (8.15)
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Here we have identified the coherent Ox-modules supported on Y with coherent
Oy-modules. Note that the target of (8.15) is also supported on Y as ¢y is locally
bounded outside Y. We denote the coherent Oy-module whose pushforward to X

o T((1-e)’kg))
gives m by Ik,j~

In (8.15), the first map is the inclusion and the second one is the obvious projection
induced by (8.14). Although in general the second map fails to be injective, we
observe that the composition is still injective as 7 ((1 — €)%k¢ i+y) €T (Yy) =Iy.
Therefore, for any k € N, we have an injective morphism of coherent Oy-modules:

LI¥ ® Tly ® Resy Zo((1 — €)kp;) — LIS @ Tly ® I ;. (8.16)

Using Theorem 7.3.1 we can start the following inequalities:
1 cm.0 mn
— | (ol +de° T ()
m! Y
1
= lim k—th(Y, Tly ® L|Y ® T (kTrd(¢))) by Theorem 7.3.1

1
< lim k—th(Y, Tly ® L|¥ ® Resy (I (kg))) by Theorem 1.4.5

k—o0

— 1
< Jim k—th(Y, Tly ® L|¥ ® Resy (I (kg)))
— 1
< lim k—th(Y, Tly ® LIX ® T (k¢j)ly)
— 1
< lim k—th(Y, Tly ® LI¥ ® Io((1 - €)kg;)ly) by Lemma 1.6.3

— 1
< lim k—th(Y,le ® LIy ® I ;) by (8.16)

— 1 : . 0 k
Sklgrolok—mdlmc{ﬂy.seH X,T@L ®

I((1-e’ky))
T((1-e)%kp; +yy)

— 1

= lim = dimc {sly :s e HU(X, T® L*® T ((1-€)*ky;))} (see below)
1 2 34C mn

- (9|Y +(1 - e)2dd ¢,|Y) by Lemma 8.3.3,
m' Y

where in the penultimate line we used [ , Theorem 1.1(6)] for g = 0. Letting
€ — oo and then j — co the result follows. O

Proof (Proof of Theorem 8.3.1) Using Proposition 8.2.3 and Theorem 7.3.1 we
obtain that
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e )" = i M0 k 0
i (6ly +ad T (o))" = lim TR0, Tly © LI © T (K Tef ()

.oml g X
< lim k—mh (Y. Ty ® L|y ® Resy (I (ky))).

k—o0

Now we address the other direction in (8.9). Let ¢ € H°(X, A) be a section that
does not vanish identically on Y. Such ¢ exists since A is very ample.

We fix kg € N. For any k > 0, we have that k = gko + r with ¢, € N and
r €{0,...,ko— 1}. Also, we have an injective linear map

L H®d
RO, Tly ® LI ® T (kgly) —— B (¥, Tly ® LI ® Al © T(kely))
Therefore,

T—ml o, k

Tim 2 (V. Tly © LI @ I (kely)
- |

< Jim %ho (Y,le oLk oAl ®I(kt,o|y))

L gm ey Tly ® LI7® @ Al ® LI}, ® I (kely)

_k(r)n qgrolo qm ) Y Y Y Y ¢ Y

1

< fm q—mho (Y, Ty o LI @ AL o Ll ® I(koqgoly))
0

-1 m
:/(9|y+k6]w|y+ddCTr$+k° w((p))
Y

1 o)
:/(0|y+k6 wly +dd°Tif ()"
Y

where in the fourth line we have used that kgg < k and in the last line we have used
Proposition 8.3.1 for the big line bundle L ® A, the Kihler current ko6, —dd® log g =
ko6, + w, and twisting bundle T ® L". Letting kg — co, we conclude that

m

J— ! 0 K m
Tim 2, (Y,T|y®L|Y®I(kcp|y)) s/(e|y+dd°Tr§(¢)) .
Y

k—co kM

Theorem 8.3.2 Let ¢ € PSH(X, 0) such that v(¢,Y) = 0. Assume that 0 , is a Kihler
current. Then

m !
/(9|Y+ddCTr;’(¢)) = lim %dimc {sly : s e HO(X.T ® L¥ ® T (ko))} .
Y —00

Proof This is a consequence of Theorem 7.3.1, Theorem 8.2.1 and Theorem 8.3.1:
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e = 1 M0 k 0
(6ly +da ) (o))" = lim TR0, Tly ® LI © T (K Tef ()
Y —00

|
< lim % dime {sly : s € H(X, T ® L* ® T (k¢))}

A
8

m!
T dime {sly :s e HU(X, T ® L* ® T (ky))}

IA
8

m!
T Tly ® Ly © I(kg)ly)

/Y (9|Y +dde Tr§(<p))m .

Remark 8.3.1 One could also show that when (8.8) fails, the right-hand side of (8.9)
is 0. See [ ].

8.4 Analytic Bertini theorems

Let X be a connected projective manifold of dimension n > 1.
The analytic Bertini theorem handles the restriction along a generic subvariety.

Theorem 8.4.1 Let ¢ € QPSH(X). Let p: X — PN be a morphism (N > 1). Define
G ={H € |Opn(1)| : H := HN X is smooth and 7 (¢|g) = Resy (I (¢))}.

Then G C |Opn (1)] is co-pluripolar.

Recall that co-pluripolar sets are defined in Definition 1.1.4. We adopt the convention

that 7 (—o0) = 0.

Remark 8.4.1 Here and in the sequel, we slightly abuse the notation by writing H N X
for p~! H, the scheme-theoretic inverse image of H. In other words, HNX := Hxpn X.
By definition, any H € |Opn (1)| such that p~'H = 0 lies in G.

Proof Take an ample line bundle L with a smooth Hermitian metric 4 such that
c1(L,h) +ddp > 0, where ¢ (L, h) is the first Chern form of (L, k), namely the
curvature form of 4. We introduce A := |Opn~ (1)] to simplify our notations.

Step 1. We prove that the following set is co-pluripolar:

GrL = {H € A: Hn X issmooth and H® (H N X, wrnx ® Llgnx ® I (¢lanx)) =
H® (H N X, wnnx ® Llgnx ® Respnx (Z(9)} .

Here wgnx denotes the dualizing sheaf of H N X.
Let U € A X X be the closed subvariety whose C-points correspond to pairs

(H,x) € Ax X with p(x) € H. Let 71 : U — A be the natural projection. We may
assume that 71 is surjective, as otherwise there is nothing to prove.
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Observe that U is a local complete intersection scheme by Krulls Hauptidealsatz
and a fortiori a Cohen—Macaulay scheme. It follows from miracle flatness [ ,
Theorem 23.1] that the natural projection 7, : U — X is flat. As the fibers of 7, over
closed points of X are isomorphic to PN-1 it follows that 75 is smooth. Thus, U is
smooth as well. Moreover, observe that

I(n3p) =m51(p) (8.17)

by Proposition 1.4.5.

In the following, we will construct pluripolar sets X; C ¥, C X3 C ¥4 C A such
that the behaviour of 7 is improved successively on the complement of ;.

Step 1.1. The usual Bertini theorem shows that there is a proper Zariski closed set
21 C A such that 71 has smooth fibres outside X;. Enlarging X;, we could guarantee
that 71y and 7 (75¢) are both flat outside X;. See [ , Théoréme 6.9.1]. Then
after further enlarging Z; so that H avoids all associated points of Ox /7 (¢), for all
H e A\ X;. Let 1 g denote the fibre of 71y at H and write i : 7y g — U for the
inclusion morphism. We arrive at

Resz, , (L (m5¢)) =iyI (n50)

forall H e A\ Z,.2
Step 1.2. By Grauert’s coherence theorem,

F' = R'ry. (wya ® ML ® I (m5))

is coherent for all i. Here wy, 4 denotes the relative dualizing sheaf of the morphism
U — A. Thus, there is a proper Zariski closed set X, € A such that

(1 % 2%
(2) The F%’s are locally free outside X,.
We write 7 = 7°. By cohomology and base change [ , Theorem II1.12.11], for

any H € A\ X, the fibre 7| of ¥ is given by
7_-ll‘l = HO (ﬂl,H"UU/A|7r1,H ® ﬂsLITIl,H ® Resﬂ]y[-] (I(ﬂ';gﬁ))) .

Step 1.3. In order to proceed, we need to make use of the Hodge metric i¢; on

F defined in [ ]. We briefly recall its definition in our setting. By [ ,
Section 22], we can find a proper Zariski closed set X3 C A such that
(1) 23 2 X,

(2) my is smooth outside X3,
(3) both F and 7y, (wy/a ® n;L) /F are locally free outside X3, and
(4) foreachi,

Riﬂ'l* (wU/A ® ﬂ';L)

is locally free outside X3.

2 This subtle point was overlooked in the proof of [ ].
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Then forany H € A\ Z3,
HY(H N X, wnnx ® Linnx ® 7 (¢lunx)) € Flu € HY(H N X, wpnx ® Llgnx).

See [ , Lemma 22.1].
Now we can give the definition of the Hodge metric on A\ Z3. Givenany H € A\ X3,
any @ € ¥ |y, the Hodge metric is defined as

hy(a, @) ::/ |a/|fle“" € [0, o0].
XNH

Observe that s (@, @) < coifandonlyifa € H(HNX, wgnx®L|anx®7 (¢|Hnx))-
Moreover, hgq(a, @) > Oif @ # 0.Itis shownin [ J(cf. [ , Theorem 3.3.5])
that A4, is indeed a singular Hermitian metric, and it extends to a positive metric on

F.
Step 1.4. The determinant det h¢, is singular at all H € A \ X3 such that

HY(H N X, wpnx ® Llpnx ® I (¢lunx)) # Flu.

As the map  is smooth, we have 737 (¢) = I (n5¢) by Proposition 1.4.5. Under
the identification 1 gy = H N X, we have

Resq, ,, (137 (¢)) = Resunx (7 () .

Thus, we have the following inclusions:

H(H N X, wpnx ® Llanx © I (¢lnx))
CH(H N X, whnx ® Llanx ® Respnx (I (¢))),

the right-hand side being ¥ |g.
Recall that the first inclusion follows from Theorem 1.4.5. Hence, det hqy is
singular at all H € |Opn~ (1)] \ 23 such that

HY(H N X, wnnx ® Llunx ® I (¢lnx))
#H(H N X, wrnx ® Llanx ® Respnx (7 (¢))).

Let 24 be the union of X3 and the set of all such H. Since the Hodge metric hg¢
is positive ([ , Theorem 3.3.5] and [ , Theorem 21.1]), its determinant
det hqy is also positive ([ , Proposition 1.3] and [ , Proposition 25.1]), it
follows that X4 is pluripolar. As a consequence, Gy, is co-pluripolar.

Step 2.

Fix an ample invertible sheaf S on X. The same result holds with L ® S®¢ in place
of L. Thus, the set

A= ﬁ GLesea
a=0



158 CHAPTER 8. THE TRACE OPERATOR

is co-pluripolar. For each H € W such that X N H is smooth and 7 (¢|xng) #
Respnx (L (¢)), let K be the following cokernel:

0 — I (¢lxnH) — Resunx(Z (@) —» K — 0.
By Serre vanishing theorem, taking a large enough, we may guarantee that

H' (X N H, wxnm ® (L ® 5% |xnm ® I (¢lxnm)) =0

and
HY(X N H, wxnr ® (L ® 5%°)|xnm ® K) # 0.
Then
H(X N H, wxnn ® (L ® $*)|xnm © T (¢lxnm)) #
H(X N H, wxnm ® (L ® S®)|xnm ® Respnx (7 (¢))).
Thus, H ¢ A. We conclude that G is co-pluripolar. O

Remark 8.4.2 More generally, the same technique implies the following general result:
Let f: X — Y be a projective morphism between complex manifolds and (L, &) be
a Hermitian pseudoeffective line bundle on X. Then for quasi-every? y € Y, the fiber
X, is smooth and

I (Ah|x,) =Resx, (I (1h)).

In the sequel of this section, we fix a base-point free linear system A on X.
Corollary 8.4.1 Let ¢ € QPSH(X). Then for quasi-every H € A, we have |y % —co.

Proof This follows immediately from Theorem 8.4.1. O

Corollary 8.4.2 Assume that n > 2. Let ¢ € QPSH(X). Then quasi-every H € A is
connected and smooth, satisfies v(p, H) = 0 and we have

Tra(¢) ~1 ¢lu.

The assumption > 2 is only to guarantee that a general element H € A is connected,
since we developed most of our theories only in this case.

Proof First observe that the set {x € X : v(¢,x) > 0} is a countable union of proper
analytic subsets by Theorem 1.4.1. It follows that a very general element in A is not
contained in this set.

Fix an ample line bundle L so that there is a smooth psh metric A7 such that
¢1(L,hr) + dd°¢ is a Kihler current. Thanks to Theorem 8.4.1, we can find a
co-pluripolar set A” C A such that each H € A’ satisfies the following:

(1) H is smooth;
(2) v(e,H) =0;

3 That is, for all y outside a pluripolar subset of Y.
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(3) I (kyg|g) =Resy (L (ky)) forall k > 0.
It follows from Theorem 8.3.1 and Theorem 7.3.1 that

cm.c1(L,hr) n-l c n-1
(C](L,hL)|H+dd TI'Y ’ ((p)) = (C](L,]’lL)|H+dd ‘P|H) .
H H

Since ¢|g <p Try(¢) by Proposition 8.1.3, our assertion follows. O

Lemma 8.4.1 Assume that n > 2. Let T be a closed positive (1, 1)-current on X with
fX T" > 0. Then quasi-every H € A is connected and smooth, T|y is well-defined

and satisfies
/ TI% ! > 0.
H

Proof Write T = 6, for some smooth closed real (1,1)-form 6§ on X and ¢ €
PSH(X, 6)-0. Thanks to Lemma 2.3.2, we can find ¢ € PSH(X, 6) such that 6, is a
Kéhler current and ¥ < ¢. By Corollary 8.4.1, we can find a co-pluripolar set A" € A
such that each H € A’ satisfies:

(1) H is smooth and connected;
(2) the restriction ¥|g is not identically —oo.

Therefore, ¥|g < ¢|g are two potentials in PSH(H, 6|y) for any H € A’. Our
assertion follows from Theorem 2.3.2. O

Corollary 8.4.3 Assume that n > 2. Let T be a closed positive (1, 1)-current on X

with volT > Q. Then quasi-every H € A is connected and smooth, and TrE_IT] I (T) is
well-defined.

Proof This follows from Example 8.1.3, Corollary 8.4.2 and Lemma 8.4.1. O

Proposition 8.4.1 Assume that n > 2. Let ¢, € QPSH(X). Assume that ¢ <p .
Then quasi-every H € A is connected and smooth, and ¢|g <p ¥|g.

Proof Thanks to Lemma 6.1.3, we may replace ¢ by ¢ V ¢ and assume that ¢ ~p .
It suffices to show that p|g ~p Y|y for quasi-every H € A.

Take a smooth closed real (1, 1)-form 6 on X so that ¢, € PSH(X, 0)-. It
suffices to compare ¢ and ¢ with Py[¢], so without loss of generality, we may
assume that ¢ is a model potential in PSH(X, 6)~¢. Up to adding a constant to ¢,
we may then assume that ¢ < . It follows from Lemma 2.3.1 that we can find a
sequence (17;); in PSH(X, 0)~¢ such that

J7'nj+ (1 —j“) y<e
for all j > 2. By Corollary 8.4.1, Lemma 8.4.1, we can find a co-pluripolar set
A’ C A such that any H € A’ satisfies:

(1) H is smooth and connected;
2) nle € PSH(H, 0|p)>o forall j > 2 and |y € PSH(H, 0|g)>0-
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Therefore, taking Proposition 3.1.6 into account, we arrive at

J 7 Potalmslul + (1= 77") Popy [0lu] < Poyy leln]
for all j > 2. Letting j — oo, we conclude that

P [¥|H] < Py leln]
and hence |y <p ¢|n. O

Lemma 8.4.2 Assume that n > 2. Let 6 be a closed smooth (1, 1)-form on X repre-
senting a big cohomology class and (¢;) ; be a decreasing sequence in PSH(X, 0).

d
Assume that ¢ € PSH(X,0) and ¢; = @. Then quasi-every H € A is connected
and smooth, ¢ |y £ —co forall j > 1, ¢|g % —oo, and

ds
¢ilH — ¢lu.

Proof By Corollary 6.2.8, we may assume that ¢ € PSH(X, 6)~¢. Using Lemma 2.3.1,
we could find a decreasing sequence (€;); in (0, 1) with limit 0 and; € PSH(X, 6)>¢
such that77; < ¢; and

eni+(1-€)p; <o

By Corollary 8.4.1, Lemma 8.4.1, we can find a co-pluripolar set A’ C A such that
any H € A’ satisfies:

(1) H is smooth and connected;
(2) njlm € PSH(H, 0|y)>o forall j > 1 and ¢|y € PSH(H, 8])>0.

Therefore, taking Proposition 3.1.6 into account, we arrive at
€iPoly [njlul + (1 =€) Poy, [¢jlu] < Poy [@lu].
Letting j — oo, we get

jli_{{)lo Py, lejlul < Py lolul.

By Theorem 2.3.2 and Proposition 3.1.9, we conclude that
tim [ (6l + el = [ @l +ddplay
J—o Jy : H

d
Therefore, using Corollary 6.2.5, we conclude that ¢ |y =, olH. O

Corollary 8.4.4 Assume that n > 2. Let ¢ € QPSH(X) be an I -good potential. Then
quasi-every H € A satisfies:

(1) H is connected and smooth;
(2) ¢|g € PSH(X, 0|g) is T-good;
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(3) v(e.H) =0;
(4) Tra ¢ ~p ¢lH.

Furthermore, if 0 is a closed smooth real (1, 1)-form on X such that ¢ € PSH(X, 0)~,
then we could further guarantee that Try(p) has a representative Try(¢) €
PSH(H, 0|g)>o forall H € \'.

Proof This is a consequence of Lemma 8.4.2, Theorem 7.1.1, Corollary 8.4.2 and
Corollary 8.4.3. O

For later use, let us also prove a reverse Bertini theorem herem.

Lemma 8.4.3 (Reverse Bertini theorem) Let X be a complex manifold, f: X — A*
be a projective surjective morphism to the punctured unit disk A*. Let (L, h), (L, h")
be Hermitian pseudo-effective line bundles on X with the same underlying line bundle.
Assume that there is a biholomorphic S'-action on (X, L) making f equivariant and
such that h and h' are invariant under this action. Assume that for quasi-every 7 € A¥,
X is smooth and h|x, ~71 hlg(z, then h ~7 I'.

Proof We need to show that 7 (kh) = I (kh’) for all positive integer k. Clearly, it
suffices to prove the case k = 1. We will therefore prove 7 (h) = I (h’). First observe
that it suffices to prove that

fi(Kx®L®I(h)=fi(Kx®L®I(h)) (8.18)

as subsheaves of f,(Kx ® L). In fact, suppose that (8.18) holds. Let H be a f-ample
invertible sheaf on X, then (8.18) also holds with L ® H™ in place of L. It follows from
Grauert—-Remmert’s version of Serre vanishing theorem [ , Theorem 2.1(A)] that
I(h)y=1(N).

It remains to prove (8.18). Observe that both sides of (8.18) are locally free by
[ , Corollary 1.5]. We claim that it suffices to show that

f(Kx®L®I(h),=/fi(Kx®L®I(h)), (8.19)

for one z € A*. In fact, this implies that the same holds outside a countable subset of
A*. But the set where (8.19) fails has to be S'-invariant, it has to be empty.

In fact, we will prove (8.19) for quasi-every z € A*. By cohomology and base
change together with the analytic Bertini theorem Remark 8.4.2, for quasi-every
z € A*, we have

fi(Kx ® L® I(h)), =H(X,,Kx|x, ® Llx, ® I (hlx,)),
fi(Kx® L® I (), =H"(X.,Kxlx. ® LIx. ® I(I|x,)).

But we assumed that for quasi-every z, h|x. ~1 hly _, it follows that for quasi-every
z € A%, (8.19) holds. The proof is complete. ) O






Chapter 9
Test curves

Comment se fait-il que M. Gauss ait 0sé vous faire dire que la
plupart de vos théorémes lui étaient connus et qu’il en avait fait
la découverte dés 1808. Cet excés d’impudence n’est pas croyable
de la part d’un homme qui a assez de mérite personnel pour
n’avoir pas besoin de s’approprier les découvertes des autres.

— Adrien-Marie Legendre®, in a letter to Jacobi in 1827

¢ Adrien-Marie Legendre (1752—1833) was a French mathemati-
cian known for his foundational contributions to number theory,
statistics, and mathematical analysis. Apart from his mathematical
contributions, he also helped formalize the metric system during
the French Revolution.

In this chapter, we develop the theory of test curves. Roughly speaking, a test curve
is a concave curve of model potentials. In Section 9.2, we will prove the Ross—Witt
Nystrom correspondence, through which the test curves are related to geodesic rays in
the space of quasi-plurisubharmonic functions. In Section 9.4, we define operations
on test curves, anticipating applications in non-Archimedean pluripotential theory in
Chapter 13.

We shall freely apply all results in Appendix A. The results in that appendix are
all about convex functions. When we apply those results to concave functions, we
always apply to their negatives.

9.1 The notion of test curves

Let X be a connected compact Kihler manifold of dimension » and 6 be a smooth
closed real (1, 1)-form on X representing a big cohomology class.

Definition 9.1.1 A fest curve I' in PSH(X, ) consists of a real number Iy, together
with a map (—o0, I'yax) — PSH(X, 0) denoted by 7 +— I'; satisfying the following
conditions:

(1) The map 7 +— I'; is concave and decreasing;
(2) each I'; is a model potential;
(3) the potential
o= sup T, 9.1
T<I'max

satisfies

/ (0+ddT_s)" > 0.

X

163
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Let ¢ € PSH(X, 6)~¢ be a model potential. The set of test curves I with I'_, = ¢ is
denoted by TC(X, 6; ¢).

The union of all TC(X, 6; ¢)’s for various model potentials ¢ € PSH(X, 6)~¢ is
denoted by TC(X, 6)-¢!.

By (2), supy 'y = 0 for each 7 < I'max. So I'_s € PSH(X, 6) by Proposition 1.2.1.
Moreover, I'_ is a model potential by Proposition 3.1.10.

Remark 9.1.1 Sometimes it is convenient to extend I'; to 7 > I'ax as well. This can
be done as follows: For T > I'iax, we set I'; = —oo. For 7 = I'jax, wWe set

I, = inf T, € PSH(X,6).

7/ <D'max
We will always make this extension in the sequel.

Recall that according to our general principle, we only talk about model potentials
when a potential has positive mass. Fortunately, this principle is not violated in the
above definition, as shown below:

Lemma 9.1.1 Assume that ' € TC(X, 0)sq. Then for each T < I'yax, we have

/X (6 +dd°T;)" > 0. 9.2)

Proof Fix T € (=00, Tnax).
By assumption, I"_., has positive mass. By Corollary 2.3.1, we have

/ op = lim [ 6} .
X T—-—0 Jy T

In particular, for a sufficiently small 7y < 7, we have

n
/XHFTO > 0.

Now take 7" € (1,nax) and ¢ € (0, 1) so that
T=1-0)7"+17.
From the concavity of I, we find that

Iz > (1= +1tI,.

n n n n
LHFT 2 /Xg(l—t)l"T/HFTO 21 ‘/Xer,o >0

1 This is probably a poorly chosen notation. Considering the analogy with &(X, ) and E(X, 0; ¢),
we should have reserved TC(X, ) to TC(X, 0; V).

By Theorem 2.3.2,
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and (9.2) follows. O

Proposition 9.1.1 Let T" € TC(X, 0)s¢. Then the map

[0, Tmax) = R, 7 log/ 9?,
X

is concave and continuous.

Proof The concavity of this function follows from Theorem 2.3.3 and Theorem 2.3.2.
The continuity at —co is a consequence of Corollary 2.3.1. O

Definition 9.1.2 Let ¢ € PSH(X, 6)-( be a model potential.

A test curve I' € TC(X, 6; ¢) is said to be bounded if for T small enough, I'; = ¢.
The subset of bounded test curves in TC(X, 6; ¢) is denoted by TC* (X, 6; ¢). In this
case, we write

Imin == max{T e R : 'y = ¢}. 9.3)

Atestcurve I' € TC(X, 0; ¢) is said to have finite energy if

Fmax
E?(I) = Fmax‘/egy"'/ (/ o1 —/9;’5) dr > —oo. (9.4)
X —c0 x " X

When ¢ = Vg, we write E instead of E?.
The subset of test curves with finite energy is denoted by TC' (X, 6; ¢).

Example 9.1.1 Given ¢ € PSH(X, 0), there is a canonically associated test curve
'Y € TC®(X,0;Vg): SetT'?,, = 0 and

@ _ Vo, ift<-—1;
T Pe[(1+1)e—1TVe], if —1<7<0.

Note that I'# is indeed a test curve, as follows from Proposition 3.1.6.

We first observe that the notion of test curves does not really depend on the choice
of @ within its cohomology class.

Proposition 9.1.2 Let 8’ be another smooth closed real (1, 1)-form on X representing
the same cohomology class as 0. Let ¢ € PSH(X, 0)~¢ be a model potential. Let
¢’ € PSH(X, 0")~¢ be the unique model potential satisfying ¢ ~ ¢’.

Then there is a canonical bijection

TC(X, 0;¢) — TC(X,6';¢').
This bijection induces the following bijections:
TC'(X,0:¢) — TC(X,0";¢"), TC*(X,0;¢) — TC(X,6;¢").

These bijections satisfy the obvious cocycle conditions.
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Proof Choose g € C®(X) such that 8’ = 8 + ddg. Given any I" € TC(X, 6; ¢), we
observe that I'”: (—oo, I'jax) — PSH(X, 6’) defined as

T Py [T - g]

lies in TC(X, 6’; ¢”). Moreover, the choice of g is irrelevant since for any other choice
of g, say g’, we have

rr-g~T;-¢
for all 7 < I'max. All assertions follow directly from the definition. O

Proposition 9.1.3 Let n: Y — X be a proper bimeromorphic morphism from a
compact Kdihler manifold. Then the pointwise pull-back induces a bijection

7*: TC(X, 0; ¢) — TC(Y, n°0; 7% ).

Proof This follows immediately from Proposition 3.1.5. O

Proposition 9.1.4 Let T be a test curve in PSH(X, ). For each x € X, the map
R 3 7+ ' (x) is a closed concave function. Moreover, the map is proper as long as
I, () # —co.

The notion of closeness is recalled in Definition A.1.7.

Proof We argue the closeness. Fix x € X. Assume that I';(x) # —co for some
7 € R. We only need to argue the upper-semicontinuity of 7 +— I';(x). The upper
semi-continuity is clear at T > I'nax, SO we are reduced to prove the following:

I = inf 'y 9.5)

T'<T

for any T < I'pax. Take 7”7 € (1, Tnax). Outside the polar locus of ', we know that
(9.5) holds by continuity. So (9.5) holds everywhere by Proposition 1.2.6.
The final assertion is trivial. O

Definition 9.1.3 Let I' € TC(X, 6)~¢ and w be a smooth closed real positive (1, 1)-
form. Then we define Py, [I'] € TC(X, 6 + w)s( as follows:

(1) Define
Poio[Tmax = Tmaxs

(2) for each T < I'y.y, define
Pore [F]T =Py [FT]'

It follows form Proposition 3.1.6 that Py, [I'] € TC(X, 0 + w)>o.

Proposition 9.1.5 Let I' € TC(X, 0)~9 and w be a closed real smooth positive
(1, 1)-form on X. Then

Poiw [F] -0 = Porw [F—w]-

Proof This follows from Proposition 3.1.10. O
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9.2 Ross—Witt Nystrom correspondence

Let X be a connected compact Kihler manifold of dimension n and 6 be a smooth
closed real (1,1)-form on X representing a big cohomology class. Fix a model
potential ¢ € PSH(X, 0)~.

Proposition 9.1.4 allows us to talk about the Legendre transforms of test curves in
the expected way.

The general definition of the Legendre transform Definition A.2.1 can be translated
as follows:

Definition 9.2.1 Let I' € TC(X,0;¢). We define its Legendre transform as
I': (0,00) — PSH(X, ) given by?

I' =sup (1t +T;). (9.6)

TeR

Thanks to Remark 9.1.1, (9.6) can be equivalently written as

I= sup (t7+07)= sup (t7+T7;).

T<I'max T<I'max

It is sometimes handy to define
Iy=¢ 9.7)
att = 0. But it is important to remember by doing so, (9.6) is not true at t = 0.

Remark 9.2.1 Here we do not talk about the case ¢ < 0 because its behavior is pretty
trivial: Take x € X, if [z (x) = —oo for all 7 < I'may, then I} (x) = —oo; otherwise,
I} (x) = co.

The information about ¢ > 0 suffices to characterize I.

Proposition 9.2.1 Let T" € TC(X, 0; ¢). Then
;= %Eg (T; - 17) (9.8)

forall T € R.
Due to our convention (9.7), in (9.8) we could as well take ¢t > 0.

Proof Fix x € X. We want to establish (9.8) at x. We distinguish two cases. First
suppose that I'; (x) = —oo for all T < I'ax and hence all 7 € R. In this case, we have
I'; (x) = —co for all # > 0. Therefore, (9.8) follows trivially.

Otherwise, by Remark 9.2.1, we know that I'} (x) = oo for all # < 0. The relative
interior of the domain of ¢ — I'} (x) is contained in (0, c0). Therefore, (9.8) follows
from Theorem A.2.1, Proposition 9.1.4. O

2 There is no usc regularization in the following formula. This is not a typo.
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In Definition 9.2.1, we have made a non-trivial claim that I'; € PSH(X, ) for all
t > 0. Let us prove this.

Lemma 9.2.1 Let I" € TC(X, 0; ¢). Then I'; € PSH(X, 0) forallt > 0. In fact, I is
upper semicontinuous as a function of X x (0, co).

Proof We first observe that for each x € X, we have
I7(x) < tlpax < 0.
LetR={a+ib € C:a > 0,b € R}. We consider
F: XXR— [-00,00), (x,a+ib)— T} (x).

Let 7: X X R — X be the natural projection. Observe that the upper semicontinuous
envelope G of F is 7*6-psh by Proposition 1.2.1. It suffices to show that F = G. We
let

E={(x,z2) e XXR:F(x,2) <G(x,2)}.

We want to argue that E = @. Clearly, E can be written as B X iR for some set
B € X x (0, 00). Since E is a pluripolar set by Proposition 1.2.5, it has zero Lebesgue
measure. Hence, B has zero Lebesgue measure. For each x € X, write

B, ={t€(0,00): (t,x) € B}.

By Fubini’s theorem, B, has vanishing 1-dimensional Lebesgue measure for all
x € X\ Z, where Z C X is a subset of measure 0. We may assume that Z 2 {I',,, =
—co} so that forx € X \ Z, T (x) # —oco forall r > 0.

Forany x € X \ Z, both t — F(x,t) and G (x, t) are convex functions with values
in R on (0, o). They agree almost everywhere, hence everywhere by their continuity.
It follows that for x € X \ Z, we have B, = @.

By Proposition 9.2.1, for any x € X, we have

Iz (x) = }Eg(F(x, 1) —17), T <D

On the other hand, let

x<(x) = ing(G(x, t)—t1), T<Tmx x€X. 9.9
>

By Kiselman’s principle Proposition 1.2.8, y» € PSH(X, 6). Buton X \ Z, we already
know that I'; = y for all 7 < I'jax. By Proposition 1.2.6,

I't = xz, 7 <D
Now we conclude that F(x, ) = G(x,t) by Corollary A.2.1. O

Corollary 9.2.1 Let T" € TC(X, 6; ¢). Then I'; € E(X,0; ) forall t > 0.
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Proof Fix t > 0. We already know that I'; € PSH(X, 6) by Lemma 9.2.1. It suffices
to show that

[} ~p &.
From (9.6) and Proposition 6.1.6, we know that

[} ~p sup ‘T =¢.

T<Imax

Lemma 9.2.2 Let T" € TC(X, 6; ¢), then
sup Iy = T'max
b'e
forallt > Q.
In particular, t — T’} — tI'max is a decreasing function in t > 0.

Proof Choose x € X such that I'r,_ (x) = 0. Then I'; (x) = 0 for all 7 < I'yax, and
hence for all t > 0,
Fz* ()C) = tI'max

by definition. On the other hand, since I'; < 0 for all 7 < I',ax, We have

supT; < Tmax
X

forallz > 0. O
Lemma 9.2.3 Given I € TC(X, 0; ¢), we have T'* € R(X, 0; ¢).

See Definition 4.2.3 for the notation R(X, 6; ¢).

Proof 1t follows from Lemma 9.2.1, (9.6) and Proposition 1.2.1 that I'* is a sub-
geodesic ray. By Corollary 9.2.1, for any t > 0, I'; € E(X, 6; ¢).
First observe that as t — 0+, we have

Ll
= ¢. (9.10)

By Lemma 9.2.2 and Proposition 1.5.1, it suffices to show each L'-cluster point
Y € PSH(X,0) asI'} ast — 0 is equal to ¢.
To see this, first observe that by (9.6), for any fixed ¢ > 0,

I} < tTmax + .
Therefore, ¥ < ¢. On the other hand, for any fixed 7 < ['yx, by (9.6), we have
I;>T;+17

for any # > 0. So ¢ > I'; almost everywhere and hence everywhere by Proposi-
tion 1.2.6. It follows that ¢ > ¢. Therefore, = ¢.
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Assume that I'* is not a geodesic ray. Then we can find 0 < a < b such that
(I7)re(a.p) differs from the geodesic (17:)se(a,p) from I, to I';. The existence of
(n¢); is guaranteed by Proposition 4.2.1. We consider the subgeodesic (¢;);~o given
by {; = n, fort € (a,b) and ¢, = I'} otherwise. Note that ¢ is a subgeodesic due to
Lemma 1.2.2.

Consider the Legendre transform

. =inf({ —t7), TE€R.
t>0

Then I, > I'; and I, € PSH(X, 8) U {—co} by Proposition 1.2.8 for all 7 € R.
We claim that
IL<Tr+(bh-a)(Tmax—7), TER (9.11)

Observe that I, = —co when 7 > I'yax by Lemma 9.2.2. So it suffices to consider
T < I'max- In this case, we compute

inf (6 —t1) <T, —br < (b—-a)(Tmax —7)+ inf (I} —17),
tela,b] tela,b]

where we applied Lemma 9.2.2. Therefore, (9.11) follows. In particular, for any
T < I'max, we have I, ~ I'z. On the other hand, by definition of I',, we clearly have
I < 0forall 7 < I'max. It follows from the fact that Iz is a model potential that
I'; =T forall T < I'max. Therefore, by Theorem A.2.1, we have I'; = ¢/ for all # > 0,
which is a contradiction. a

Given ¢ € R(X, 0; ¢), define its Legendre transform

; =inf(4 —t1), TER. (9.12)
>0

Lemma 9.2.4 Given £ € R(X, 0; ¢), then £* = (£7)r<sup, £, € TC(X, 6).

Proof Note that it follows from Proposition 1.2.8 that £; € PSH(X, 6) U {—oo} for
all T € R. Itis clear that R 3 7 + £} is a decreasing and concave function.
By Proposition 4.2.4,

supl; =tsupt; Vit =0.
b'e b'e

Observe that (0,00) 3 t = {; — tsupx {; is a decreasing net in PSH(X, 8) with
supy (£ — tsupy £1) = 0. It follows that

f*

upy 6 = }Eg (f, - l‘Sl}l{p 51) € PSH(X, 6).
On the other hand, for 7 > supy ¢, the same argument shows that

*
f.r:—oo.

Therefore, ¢; € PSH(X, 6) if and only if 7 < ¢,

max = Supy 1.
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We claim that (£ )< is a test curve. We first observe that for v < £ ., we have
<O —T~p¢.
Therefore,
0 <p ¢, VT <Ll (9.13)
Also observe that for any 7 < £, and any ¢ > 0, we have
sup €y < suply — 1T = {pt — 1T
X X
Letting + — O+, we find that for any 7 < £};,,, we have
supls < 0. (9.14)
X
Fix T < £}, we want to argue that
Py |t;] = ¢;. (9.15)
First we claim that for any C > 0, we have
(i+C)NPp=(Lr+C)AVy. (9.16)

The < direction is trivial. We argue the reverse inequality, which reduces to
¢ = (6;+C) A V.

Since ¢ is model and (£% + C) A Vg < 0, it suffices to show that
¢ =p ({7 +C) A Vg,

which follows from (9.13). Therefore, (9.16) is established. Thanks to (9.14), we have
the obvious inequality
(CE+C)ANVyg = L:

for any C > 0. Therefore, in order to prove (9.15), it remains to argue that for any
C >0,
G+ C)np <L (9.17)

For this purpose, let us consider the following geodesics: Forany M > Oand ¢ € [0, 1],
let
OM =ty —tMt, M = (L +C)Ap-Ct.

It is clear that at + = 0, 1, we have ftz’M < f,l’M. Hence, the same holds for all
t € [0, 1]. In particular, for any fixed s € (0, 1], we have

(E+C)Np—Cs < by —sMt

for all M > 0. Taking infimum with respect to M > 0, we find
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(L:+C)A§—Cs < L.

Since s € (0, 1] is arbitrary, we conclude (9.17). O

Theorem 9.2.1 The Legendre transform in Definition 9.2.1 is a bijection
TC(X, 0; ¢) — R(X,6;¢). (9.18)
Moreover, this bijection restricts to the following bijections:
TC'(X,0;¢) > R'(X,0;¢), TC (X,0;¢) > R (X,0;¢). (9.19)
ForanyT € TC! (X, 0; ¢), we have
E?(I') = E4(I™). (9.20)

Recall that the two energy functionals in (9.20) are defined in (9.4) and Definition 4.2.4
respectively.

The correspondence (9.18) will be referred to as the Ross—Witt Nystrom corre-
spondence.

Proof Step 1. We first establish (9.18).

It follows from Lemma 9.2.3 that the forward map is well-defined. The inverse
map is given by (9.12). We show that the inverse map is also well-defined. Given
€ R(X,0; ), we know from Lemma 9.2.4 that £* € TC(X, 6). We need to show
that ¢* € TC(X, 6; ¢).

By Corollary A.2.1 and Lemma 9.2.3, we know that

= (") e R(X,0;,).

So it follows that £ = ¢. Therefore, £* € TC(X, 0; ¢) as expected.

The two operations are inverse to each other thanks to Corollary A.2.1. Hence,
(9.18) is established.

Step 2. Next we consider the bounded situation. Namely, we want to establish the
second half of (9.19).

Suppose that I' € TC® (X, 0; ¢). Take 79 € R so that I'; = ¢ for all T < 7. It
follows from (9.6) that

I} >¢+t

for all t > 0. Therefore, I'; ~ ¢ for all # > 0 and hence I'* € R (X, 6; ¢).
Conversely, suppose that £ € R* (X, 6; ¢). Thanks to Proposition 4.2.3, there is a
constant C > 0 such that
6 > ¢—Ct.

Therefore, according to (9.12), we have
G zinf(p-(C+1)t)=¢
t>0

if T < —C. Therefore, {; = ¢ forall T < —C.
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Step 3. We establish (9.20) and the first half of (9.19).
Step 3.1. We reduce to the case where ['p,x = 0.
Suppose that we define

F; = FT+]‘max, vVt <O0.
Then IV € TC(X, 0; ¢) as well and for all r > 0,

IV =sup (tr+T%) = sup (17 +T7) — tTmax = I} = Dimax.

<0 T<I'max
Therefore,
E? (r”) = E? (") = Tinax / 02"
X

by (3.19). Using (9.4), we also have

E¢(rf>=/_:(/xeg;_/xag) dr
=/_:"“ (/Xe?’_/x%) dr

=E?(I') — I'max / 0%.
X

Therefore, it suffices to establish (9.20) for I in place of I".
Step 3.2. We assume that [y, = 0 and I' € TC™ (X, 6; ¢). We prove (9.20).
For N € Z.o, M € Z, we introduce the following:

Ft*’N’M = max (Fk/zN +tk/2N) €&¥(X,0:¢), 1>0.
€
k<M

We first claim that for allt > O, N € Z.gand M € Z,

t ¢ [N, M+1 & (5, N,M !
7 /X 0 o < E (r, )—Eg (rt ) < ox /X 0, e (92D

Assuming this, let us prove (9.20).
Fixing N, let M = |2V Tyin]. Recall that Ty, is defined in (9.3). Then repeated
applications of (9.21) yield

0 -1
! n & [1~,N,0 & [+, N.M 4 n
j—%‘lﬂ oy -/XGFMN =Fo (Ft ) ~Eo (Et ) = j;:d 2V Jx erﬂzN'

Since M < 2T i, we have that

MM = g em 2N,
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Using (3.19), we can continue to write

0 -1

1 @ «,N,0 !

[ - H"SE(F")S —/9" —/9”.
2 (ot o) =i ,QZN(X D = Jy %

We now notice that we have Riemann sums on both the left and right of the above
inequality. Using Proposition 9.1.1, it is possible to let N — oo and obtain

EJ(I7) =E?(I) (9.22)

So (9.20) follows as desired.
It remains to argue (9.21). Fixt > 0, N € Z-9 and M € Z. By Proposition 3.1.17,

*,N,M+1 N ,M [ #, N ,M+1 [ #,N ,M
/X (rt T ) 0 o SEg (F, )—Ee (F, )

(9.23)
S/ (F:,N,MH _F:,N,M) 9?*,1\/,1\4-
X t

Clearly I'; NMAL Iy N-M Moreover, since R 3 7 — I’y + 7 is concave, we notice
that
e N M+ “N.M\| _ -N
U, = {FI >Ft }—{F(M+1)/2N +2 I>FM/2N},

and on U; we have
LMY = Doy + 1M+ 128, TPV M =Ty on 1M /2N (9.24)

We also note that U, is ¥ -open by Corollary 1.3.5. So from the lower bound in (9.23),
we have

¢ SN, M+1 ] N, M SN, M+1 N,M
e R () B (e v K
t

_ -N
_/('] (F(M+1)/2N _FM/ZN +12 ) 01’1(M+1)/2N

t

> / 27 Non ,
{F (M+1)/2N

(M+1)/2N =0}

where on the second line, we applied (9.24) and Proposition 2.2.1, on the third line,
we applied the fact that 67 N is supported on the set
(M+1)/2

{F(M+1)/2N = 0} c Ut N {FM/QN = 0} .

see Theorem 3.1.2. We have deduced the first inequality in (9.21). Next, we apply the
upper bound part in (9.23) and compute similarly
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#,N,M+1 *,N,M #,N,M+1 = N,M
EQ(rpN-Mety g (M) S/X(rt o ) O

M /2N

< (rM e +t2*N) o"
/{FM/zw—O}nu, b/ Tz

g/ nNep .
{Tpgon =030U; Mz

We conclude the latter half of (9.21).
Step 3.3. We assume that [',x = 0. Now I' € TC(X, 6; ¢) only.
For each € > 0, we introduce I'® € TC* (X, 0; ¢) as follows:

(1) LetT'f. =0, and
(2) we set

:‘/I; (F(M+1)/2N _FM/ZN +[2_N) 9;—1*

. -1
¢, ift < —€,

€

TPy [(1+€n)Ty —erd],if 7 € (—e—l,o) .

It follows from Corollary 6.2.10 and Corollary 6.2.5 that for each T < 0, the sequence
I'¢ is a decreasing sequence with limit I'; as € ™\, 0. Therefore, by Proposition 3.1.9,
we have

lim (9+ddCFf)":/(0+dd°FT)"
e—0+ X X

for all 7 < 0. Hence, by the monotone convergence theorem and Step 3.2, we find
E?(I) = lim E*(I'€) = lim E*(I'€") = lim E{ (I'F"), (9.25)
e—0+ e—0+ e—0+

where the last equality follows from (9.22). Furthermore, according to Proposi-
tion A.2.3, we have
I =inf [}~
e>0
for all # > 0. Note that we do not have to take the closure of the right-hand side since
it is automatically upper semicontinuous in ?.
Now suppose that I' € TC!(X, 6; ¢). Then by (9.25), as € — 0+, (I'f*)e is a
decreasing Cauchy net in &' (X, 6; ¢) and hence by Theorem 4.2.1 for each t > 0,
i« . ¢ ) —
ES(I7) = lim EJ (D) = 1B(I) > —co,
where we have applied (9.22) and (9.25). Hence, I'* € ' (X, 6; ¢). Moreover, (9.20)
follows.
Conversely, suppose that I'* € R! (X, 6; ¢). Then (9.25) implies that

E*(I) = lim EJ (1) > E§ (I) > ~co.
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Hence, I € TC' (X, 6; ¢). m]

Remark 9.2.2 One could also consider geodesic rays emanating from another potential
@ € (X, 6; ¢). In this case, one can show that these geodesic rays are in bijection
with ®-twisted test curves: In Definition 9.1.1, we replace (2) by the following
condition:

sup* (I +C) AD =T
C>0

Furthermore, we require that I'_, = ®.
The above results equally work in the twisted setting. The proofs are almost
identical to the untwisted case.

As an immediate consequence of the proof, we have
Corollary 9.2.2 Let £ € R' (X, 0; ¢), then [0,00) 5 1 > EZ' (¢;) is linear.
Proof This follows from the same argument as that of (9.25). |
Corollary 9.2.3 Let £ € R(X, 0; ¢). Then supy €; = {5t for any t > 0.
Proof This follows from Lemma 9.2.2 and Theorem 9.2.1. O

Example 9.2.1 Let us see what the test curve in Example 9.1.1 correspond to under
the Ross—Nystrom correspondence. Fix ¢ € PSH(X, 6). We claim that

(¢ =T%", (9.26)

where £¥ is as in Example 4.2.2. We may assume that ¢ < 0 since both sides are
invariant after adding a constant to ¢.

We first prove the easy direction £¢ > I'¥*, which is equivalent to £¥* > T'%.
Since £¥* is a test curve, the latter is equivalent to

> (1+1)p -1V
for all T € (-1, 0). By Legendre duality, this is equivalent to

{’f > sup ((I+n)p—-7Vg+tr)=0V (Vg —1)
7€(-1,0)

forall r > 0.
Using the notations of Example 4.2.2, we find easily that

f;p’CZQDV(Vg—I)

forany C > 0 and ¢ € [0, C], since it holds at # = 0 and 7 = C. Letting C — oo, we
find that
tf > oV (Vg—1t).

Therefore, £¢ > I'?* follows.
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In order to prove the equality in (9.26), it suffices to show that the two sides have
the same energy, as a consequence of (4.14). So we compute

E(I'*") =E (T'%)

0
:[1 (/)(l }(Ill+T)Vg—T(p_'/);6r\l/9) dT
= (n ; wei 1 .
(j)/@{,y/\QwJ/ Tj(l—T)n_de—‘/Or‘l/g
—r X 0 X

J

& (n) i (n = j)! AN on
; j] (n+ D! Jx vo Moo T x
=E(¢%),

where we used the value of the S-function? on the fourth line, and the last line is just
(4.19).

The multiplier ideal sheaves of a test curve can be characterized using the
corresponding geodesic ray in a very simple manner.

Proposition 9.2.2 (He-Testorf-Wang) Ler { € R(X, 0; ¢). Given any T < €y, and
x € X, we have

Iy = {f €O0xx: |f|2/0 exp(—{; + t7) dt is locally integrable near x ¢ .
(9.27)

Proof Fixx € X, 7 < {y,, and f € Ox . Fix a Kéhler form w on X.
Step 1. We first assume that f lies in the right-hand side of (9.27).
Given any y € X, it follows from (9.12) that there is 79 > 0 with

C(y)+1 =, (y) —tor.

Observe that t +— £, — t{:

ax 18 decreasing in ¢, it follows that for # € [#g, o + 1], we
have

Zi(y) +1- tO(fr%;lax - T) 2 Zlo(y) - tOZ:;’laX 2 ft(y) - tz:;la)('

Since T < {,,, we deduce that
)+ 1+6—T7>6(y) —t1, t€[to,to+1]. (9.28)

Take a sufficiently small open neighborhood U of x such that

/|f|2/ exp(=¢, +t7) dt " < co.
U 0

Applying (9.28), we deduce that

3 Also known as Euler integral of the first kind.
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/ |17 exp(=£5) w" < co.
U

Therefore, f € I ({7)x.
Step 2. Assume that f € 7 ({7 )x.

It follows from Theorem 1.4.4 that f € 7 ({;,.)x for some small enough € > 0

with 7 + € < {5, Take a sufficiently small open neighborhood U of x such that

/U PP exp (=€) o < oo,

We compute

/|f|2/ exp (=€ +t7) dt " S/ |f|2/ exp (=, —t€) dt "
U 0 U 0
1 . n
—2 [ 1o (-t) o
€Ju
<00

Therefore, f lies in the right-hand side of (9.27). O

9.3 7-model test curves

Let X be a connected compact Kédhler manifold of dimension n and 6 be a smooth
closed real (1,1)-form on X representing a big cohomology class. Fix a model
potential ¢ € PSH(X, 60)¢.

Definition 9.3.1 A test curve I' € TC(X, 0; ¢) is I -model if for any 7 < I'ax, the
potential I'; is 7-model.

The subset of 7-model test curves in TC(X, 6; ¢) is denoted by ENA(X, 6; ).
When ¢ = Vg, we omit ¢ and write SN (X, 0) instead.

The union of the sets of 7-model test curves in PSH(X, ) for all model potentials
¢ € PSH(X, 0)- is denoted by PSHNA (X, ).

Note that I'T__ is automatically 7 -model by Proposition 3.2.12.

Proposition 9.3.1 Ler T' € PSH™ (X, 6)~. Then I'_y, is an I -model potential.
Proof This follows from Proposition 3.2.13. O

Proposition 9.3.2 Let 8’ be another smooth closed real (1, 1)-form on X representing
the same cohomology class as 6. Then there is a canonical bijection

PSHNA (X, 6)-9 — PSHY (X, 6")0.

This bijection satisfies the obvious cocycle condition.
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Proof This is an immediate consequence of Proposition 9.1.2 and Example 7.1.2.0

Proposition 9.3.3 Let n: Y — X be a proper bimeromorphic morphism from a
Kdhler manifold. Then the pointwise pull-back induces a bijection

7 PSHYA(X, 0; ¢) — PSHNA(Y, 7170; 7 ¢).
Proof This is an immediate consequence of Proposition 9.1.3 and Proposition 3.2.5.0

Definition 9.3.2 Given I' € TC(X, 0; ¢), we define its 7 -envelope Pg[I'] ; as the
map
(_OO, max) - PSH(X’ 0)7 T Py [FT]I .

More generally, for any closed real smooth positive (1, 1)-form w on X, we define
Pg+w[I'] 7 as the map

(=00, I'max) = PSH(X,0), 7 Poio [Tl
Proposition 9.3.4 Let I" € TC(X, 0; ¢), then
Py[Tlr € PSHY(X, 0; P[] 7).
More generally, for any closed real smooth positive (1, 1)-form w on X, we have
P+ [Tl € PSH'A (X, 6 + w; Poso[#]1).
Proof The only non-trivial point is to show that

sup “Pg[I'z]l7r = Poldlr, sup "Posollc]lr = Poswld] 1.

T<I'max 7<I'max
These follow from Proposition 3.2.13. O

Definition 9.3.3 Let ¢ € PSH(X, 0)-¢ be a model potential. A geodesic ray ¢ €
R(X, 0; ¢) is maximal* if £* is T-model.

An important class of 7-model test curves is given by filtrations. We briefly recall
the corresponding terminology.

Definition 9.3.4 Let L be a big line bundle. We write

R(X,L) = é HO(X, L¥)
k=0

for the section ring> of L.

4 This was not the original definition of maximal geodesics in [ ]. One of the first major
applications of our theory was this pluripotential-theoretical characterization of maximal geodesic
rays, as proved in our very first paper [ ].

5 Personally I hate the notion of section rings: We never consider inhomogeneous elements. So it
is more natural to replace the direct sum by a disjoint union. This leads to the notion of ringoids
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A filtration on R(X, L) is a decreasing family of graded linear subspaces () 1cr
of R(X, L) with graded pieces

such that the following conditions are satisfied:

* The filtration is left-continuous: For any A € R, we have

F= ﬂ 7,

<
* the filtration is multiplicative: For any 4,4’ € R and any k, K’ € N, we have
A g .
Fi T €T
* there is an integer C > 0 such that
F" =0, Fr " =HU(X, L") (9.29)

for all m € N.

Given a filtration ¥ on R(X, L), we define
T (F) :max{/leR:Tk’l ¢0}.

By Fekete’s lemma, we can introduce

1 1
7(F) = lim —1%(F) = sup —1x(F).
k—oo k keZso k

Note that 7(¥) is bounded from above by the constant C in (9.29), hence finite.

Example 9.3.1 Let L be a big line bundle on X and ¥ be a filtration on R(X, L). Fix
a smooth Hermitian metric 4 on L and write 8 = ¢{(L, h).
We introduce a few auxiliary functions. For each k € Z.(, we introduce

Ff’k := sup” {log |s|flk IS € TkkT, |s|ik < 1}.

When k1 < 7 (F), we know that Tk’“ # 0. Moreover, Proposition 1.8.1 and
Proposition 1.2.1 imply that
7% e PSH(X,k0), 7 <k 'n(F).

Observe that for k, k’ € Z~(, we have

(annénoides in French), introduced by Ducros in [ ] in the context of Temkin’s graded reduction
of Berkovich germs.
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[7kk > pFk 7ok

In particular, by Fekete’s lemma,

1 1
lim —I'7k = —rrk 9.30
Jm T = sup gl ©:30

exists for any 7 < 7(F).
We define (Ff)rq(«,r) as follows:

1
7= Py | sup *%Ff’k 6.
k€Z~o

We claim that ' € ENA(X, 6) and is bounded.
It is clear that (—co,7(F)) > 7 + I'7 is decreasing. We prove its concavity. By
Proposition 3.1.6, it suffices to show that

1
(=o0,7(F)) 37> sup "L I7*
kEZ>0

is concave. In other words, we need to prove the following: Given 19 < 71 < 7(F)
and ¢ € (0, 1), we have

1 1
T N >t sup *—Ffl’k+(1—t) sup

lrfk
1—
k€Zxo k- tnr(1=0T0 k€Zxo k k€Z>o k

70

But thanks to Proposition 1.2.6 and Proposition 1.2.5, it suffices to show that

1 1
F.k F,k
FtT1+(1—t)T0 21 Sup EFTl + (1 - t) Sup 7

1

— 7k
k€Z>0 k kEZ>0 kEZ>0 k o
forall t € (0,1). Take s; € 7—"](]?"7" fori = 0, 1 with |s|iki < 1, where kg, k| € Zsy.
We need to prove that

EF > —log |s0|hk0 + k_l log |S1|hk1 . (9.31)

Sup tT]+(]*t)T() - kO

k€Z~o

Approximate ¢ by rational number from above, we may reduce to the case where
t € Q. Write t = p/q with p,q € Z~¢. Then

ki(q— k kok - kok
§ = Sol(q r) ®s10P e Fhokito(g-p)+ko P

kokig

and

6 Itisnotclearif Pg|[e] is necessary here. When L is ample, it is shown in [ , Proposition 7.11]
that it is not necessary. The proof in the reference relies on a Skoda division theorem [ s
Theorem 7.10], which is not known in the case of big line bundles.
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2
hkoqu

1
log |s
Kokrg ¢!

_ 1 2 2
=t (ki@ = pyloglsof + koploglsi’)

11 , )
o log [sol,«, + r log |s1 ), -

So (9.31) follows.

Note that for each k € Z.g, 7 < k™'73(F), we know that F.,T’k is 7-good by
Proposition 7.2.2. It follows from the same proposition that for each 7 < 7(F), the
potential ' is also 7-good.

It remains to show that the test curve I'” is bounded and lies in EN*(X, ). Fix
T < —C, where C is as in (9.29), we will show that

7 =v,. (9.32)

Of course, this follows from the Bergman kernel technique. But based on the theory
we have developed so far, we could give an elegant and elementary argument.
Fix k > 0. Observe that for any s € H°(X, L*), we have

s e H(X, L* ® T (kT'7)).
In fact, by definition of Ff , it suffices to show that

s e H(X, LF @ 1(T7°F)),
which is clear by definition. Therefore, by Theorem 7.3.1,

vol (0 + ddcl“f) =vol L.

But since Ff is J-model, this implies (9.32).

Remark 9.3.1 There is an important special case of Example 9.3.1: Suppose that L is
ample and ¥ is the filtration induced by a smooth test configuration (X, £) of (X, L).
Then the geodesic ray I'7* is exactly the Phong—Sturm geodesic ray associated with
(X,ZL). See [ , Section 9].

Remark 9.3.2 We deduce from Example 9.3.1 that the ray I'”* induced by a filtration
¥ is maximal.”

7 This was a folklore result. I am unaware of any written proof in the literature before our paper
[ ]. Having completely ignored our work, Finski [ ] gave a different proof.
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9.4 Operations on test curves

Let X be a connected compact Kihler manifold of dimension n and 6, 6’,60” be
smooth closed real (1, 1)-forms on X representing big cohomology classes.

In this section, we develop several general operations on test curves, anticipating
the applications in non-Archimedean geometry in Chapter 13. The readers are
encouraged to read Chapter 13 first and consult this section when necessary.

Definition 9.4.1 Given I € TC(X, 0)+¢, [" € TC(X, 6")s¢, we say I' < I"” if for all
Imax < I,y and for all 7 < Ipag, We have

I <pT7. (9.33)
Observe that (9.33) actually holds for all T € R if 8 = 8’. It is easy to verify that <
defines a partial order on TC(X, 0)~.

Lemma 9.4.1 Let I',T” € TC(X,80)s0 and w be a closed real smooth positive
(1, 1)-form on X. Then the following are equivalent:

(Hr<r’,;
(2) Po+w[I'] £ Poso[I].

Proof This follows from Example 6.1.1. O

Definition 9.4.2 LetI' € TC(X, 0)~¢ and " € TC(X, 0")~¢, then we define '+ €
TC(X, 6+ 6")-¢ as follows:

(1) We set
(F + l—‘/)max = Dpax + Fr,nax;

(2) for any 7 < (I" + I'")yax, we define®

(C+T")7 = Pyror

sup (s + F;_(s)] . (9.34)
d€eR

Lemma 9.4.2 Let T € TC(X, 0)s9 and I € TC(X, 0")~o, then for any v < (I' +
I )max, We have
sup (Ts +T_4) € PSH(X, 6).
d€eR
This potential is T-good if T’ € PSHYA(X, )~ and I" € PSHYA(X, 6')-o.
In particular, (9.34) in Definition 9.4.2 makes sense.

Proof Let

ne=sup (C5+T;_5) = sup (Cs+T7 )
SeR T =T }ax <6 <Umax

for all T € R. Set

8 There is no usc regularization in the formula. It is not a typo.
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Z={xeX:T,(x)=-coVveR}U{xeX:I(x)=-coVv eR}.
It follows from Proposition A.2.4 that for any x € X \ Z, we have
ny(x) =T7(x) +T77 (x)

for all # > 0. The same trivially holds when x € Z, so the equation holds everywhere.
In particular, by Corollary A.2.1 and Proposition 1.2.8, we have

ne = (I +I7) € PSH(X, 0 +0')

when 7 < Tmax + s

Next, assume that I' and I are 7-model. We need to argue that so is I' + T"”.
Fix 7 < I'max + I'jax- Then for each 6 € R such that 6 < I'yax and 7 =6 < I,
we know that I's € PSH(X, )9 and I"__; € PSH(X,6’)s9 by Lemma 9.1.1.
It follows from Example 7.1.2 that I'; and I",_, are both 7-good, hence so is
I't +I'._, € PSH(X, 6 + 0")-o by Proposition 7.2.1. Therefore, n, is 7-good by

Proposition 7.2.2. Therefore, I' + I is 7 -model. O

Proposition 9.4.1 Let I € TC(X,0)>g and T" € TC(X, 0 )so, then T' + I €
TC(X, 6 + 0")~o. Moreover,

(T+T") w0 = Porgr[Too + T, ]. (9.35)

When T € PSHN(X,0)-0 and I" € PSHNA(X,0')s, we have T + I’ €
PSHM (X, 0 + 6)~0.
The operation + is commutative and associative.

Proof 1t follows immediately from Lemma 9.4.2 that T+ I € TC(X, 0 + 0")s¢, and
it lies in PSHNA(X, 0 + 6)~0 if I’ € PSHYA(X, )5 and " € PSHYNA (X, 6')0.
We argue (9.35). By definition, for any small enough 7, we have

(T+T") o2 T+ ) 2p T +T7.
Letting T — —oo and applying Proposition 6.2.4 and Theorem 6.2.2, we find that
T4+T) e =p T+ T .
On the other hand, for each small enough 7, we have

T +T); ~p zulé (Ts+T_s) <pT-w+I"
€

by Proposition 6.1.5 and Proposition 6.2.4. We apply Proposition 6.2.4 again, we
conclude that
TH+T) e =p T+ T .

So (9.35) follows.
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Finally, let us show that + is commutative and associative. Commutativity is
obvious. Let I'”" € TC(X, 6”)~¢. Then we want to show that

T+T)+T" =T+ +17).
First observe that
(C+I) 4T ) gy = T+ (7 +T7)) g -
Fix 7 less than this common value. We compute that
(C+T)+T"),

=Py [sup ((F +T)s, + F'T'(;l)]
d1€R

~p sup ((1“+F'),5l +F'T'_51)
o1€R

/ 77
~p sup (ng +F6]—52 +FT_5]) R
61,02€R

where in the last line, we applied Proposition 6.2.4 and Proposition 6.1.5. Similarly,
for (' + (I'" +I'”")) ., we get the same expression. The associativity follows. m]

Lemma 9.4.3 LetT" € TC(X, 0)sgandI”" € TC(X, 8")¢, then for any closed smooth
positive (1, 1)-forms w and w’ on X, we have

P9+a)+9’+w’ [F + F,] = P9+w [F] + P9’+¢u’ [F] .
Proof Observe that

P9+w+9’+w’ [F + F’]max = (P6)+w [F] + P0’+w' [F])max
=I'max + I'max-

Take 7 € R less than this common value, we need to verify that
(C+T")r ~p (Poro T+ Pyryo [T]) ;.

By definition, this means that

sup (Ts+To_g5) ~p sup (Po+w[Ts] + Porser [Th_s1) -

T _rr,nzlx < 6<Fm‘dx T _rr,nzlx < 6<qux
This is a consequence of Proposition 6.1.5 and Proposition 6.1.6. O

Definition 9.4.3 Let I' € TC(X, 6)>¢ and C € R, we define I' + C € TC(X, 6)s¢ as
follows:

(1) We set
(I + O)max = Imax + C;
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(2) for any 7 < (I" + C)max, We set

T+C); =T_c.
It is obvious that if ' € PSHYA(X, 6)~0, then sois T + C.

Proposition 9.4.2 Let T € TC(X, 0)+¢, I' € TC(X, 6" )9 and C,C’ € R, then

HT+IM)+C=T+I"+C)=T+C)+I;
Qr+(C+Cc)=T+C)+C".

Proof (1) We first observe that
((F + F’) + C)max = (F + (F’ + C))max = ((F + C) + lﬂl)max = Fmax + Fl,nax +C.

Take any 7 € R less than this common value. We compute

(T+T)+C)p =(T+T") ¢ = Porgr |sup (Ts + T )

deR

>

(C+ (T +C)), =Pg+or zupR(Fa +(I"+C)r-s)
LoE

=Pyio [sup (Cs+T7_c_5)|>
deR

(T+C)+T"), =Pgygr [sup (T +C)crs +Tr_c_s)
LoeR

=Pyio sup (F§ + F"r—C—é)
Lo€R

(2) Observe that
TH+(C+CNmax = (T +C) + CNpax = Tinax + C+ C”.
For any 7 € R less than this value, we have

(C+(C+C))y =Trc_c = (T+0) +C),.

Definition 9.4.4 LetI',I” € TC(X, 0)~¢. We define ' VI € TC(X, 6)~¢ as follows:
(1) We set
(F 4 F’)max = Ipax V Fllnax;

(2) for any 7 < (I" V I')jax, We define
(TVT), == Py [CE (p T,V F,;)] . (9.36)

Recall that the upper concave envelope CE is defined in Definition A.1.4°. Trivially,
wehave ' VIV >Tand ' VI > T7.

° In Definition A.1.4, we define the convex analogue, the lower convex envelope. This can be
translated into concave functions in the obvious manner.
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Lemma 9.4.4 Let I, I € TC(X, 0)>0. Then for any T < I'max V '} .y, We have
CE (p T, v r;) € PSH(X, 6).

This potential is T-good if T, T” € PSHYA (X, 6)+.
In particular, (9.36) in Definition 9.4.4 makes sense.

Proof To simply the notations, we write

e =CE(p»—>rpvr;,)
-

for all 7 € R. Thanks to Proposition A.2.3, we have
gi(x) =T7 (x) VI (x) (9.37)

for all ¢+ > 0 as long as I';(x) # —oco and I'; (x) # —oo for some 7 € R. Otherwise,
assume that x € X is such that [ = —oco for all 7 € R, then by definition,
Y7 (x) =T"%(x) for all T € R. Therefore, I'; (x) = —co for all # > 0 and hence (9.37)
continues to hold. Therefore, we have shown that

Y =T! VI € PSH(X,0).

It follows from Proposition 4.1.3 that (/7 )/e[a,»] is a subgeodesic for any 0 < a < b.
Next we observe that i, is closed by definition. So it follows from Proposition A.2.3
and Proposition 1.2.8 that

Yr = (¥2)7 € PSH(X, 0) U {-oco}.

Due to Proposition 9.1.4 and Proposition A.1.2, there is a pluripolar set Z € X
such that for x € X \ Z, we have

e (x) = sup {/le(x) + (1= DT () : A€ (0,1),p,p" € R, Ap+ (1= )p’ = T}

for all 7 < Imax V I,y It follows from Proposition 1.2.6 that
e = sup’ {0, + (1= D) 1 A€ (0,1),p,0" €RAp+ (1= Dp =7} (9.38)

for all 7 < Iimax V s
It follows from (9.38) that ¢, is I -good if I',T” € PSHNA(X, 0)-0, thanks to
Proposition 7.2.1 and Proposition 7.2.2. O

Corollary 9.4.1 Let T',T” € TC(X, 0)so. ThenT"' VI’ € TC(X, 6)>¢ and
(CVI) e =Py [T VI ]. (9.39)

IfT, " € PSHY (X, 0)-0, then T VI’ € PSHYA(X, 6)~o.
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ForeachT” € TC(X,0)sq and eachT"” > T and " > T, we have I > T VI".
Moreover, the operation V is associative and commutative.

In particular, given a finite family {I;};c; in TC(X, 6)~, we can define
\/r
iel

without ambiguity.

Proof 1t follows immediately from Lemma 9.4.4 that T vV I € TC(X, 6)¢, and it
lies in PSHNA (X, 0)5 if [, TV € PSHYNA (X, 6)-.

The argument of (9.39) is very similar to that of (9.35), which we leave to the
readers.

Take I'”” as in the statement of the proposition. First observe that

i = Tinax V Tng = (0V T )iy,
Take 7 < (I' V I )max, We argue that

7 >@vr),.
By the concavity of I'”, this is equivalent to

r’>r,vr..

Therefore,
" >rvr'.

The commutativity and associativity of V are trivial. O

Lemma 9.4.5 Let T', T € TC(X, 6)~9 and w be a closed smooth positive (1, 1)-form
on X. Then
Poro "V F,] =Poso[ITV P0+w[rl]-

Proof We first observe that

(P9+w [F M l—‘/])max = (P9+w [F] \ P9+w [F/])max = Frnax v Fllnax'

Let 7 € R be less than this common value. We need to show that
(F N F,)T ~P (P(9+w [F] V Porw [F,])T .

We need the formula (9.38) proved in the proof of Lemma 9.4.4:
(TVT), = sup* {Arp + (1= DT 1 A€ (0,1),p,0" €R,Ap+ (1= )p’ = T} .

A similar result holds with Pg,,[I'] and Pg4. [I7] in place of I" and I'". So our
assertion is a direct consequence of Proposition 6.1.5 and Proposition 6.1.6. O
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Definition 9.4.5 Let (I'');<; be an increasing net in TC(X, 6)-o. Assume that

supIl . < co. (9.40)

iel
Then we define sup; ;" T € TC(X, 6)~¢ as follows:

(1) We set
(sup*Fi) =supll .
il Jmax icl

(2) for any 7 < sup;; I, we let

(sup*l“i) = sup*T .
iel T iel
Proposition 9.4.3 Let (I'));¢; be an increasing net in TC(X, 0)s¢ satisfying (9.40).
Then sup,.;*T" as defined in Definition 9.4.5 lies in TC(X, 0)=o. Moreover, if
I € PSHNA(X, 0)-¢ for all i € I, then sup;,*T" lies in PSHYA (X, 0)~¢ as well.
Moreover, we have
(sup*rf) =sup T . (9.41)
iel —oo iel
Proof The first assertion follows easily from Proposition 3.1.10, while the second
follows from Proposition 3.2.13.
It remains to argue (9.41). Without loss of generality, we may assume that /
contains a minimal element .
By Proposition 1.2.5, there is a pluripolar set Z € X such that for any x € X \ Z,

(sup*Fi) (x) = sup (sup*Fi) (x) = sup I (x) =supI™ (x).
iel -0 Qa-r<l"f,‘,1,x iel Qa-r<F:,?ax,ieI iel
So they are equal everywhere by Proposition 1.2.6. O

Lemma 9.4.6 Let (I');c; be an increasing net in TC(X,0)sq satisfying (9.40).
Assume that w is a closed smooth positive (1, 1)-form on X. Then

Poiow [sup*Fi] =sup" Py [Fi] .
iel iel
Proof Observe that
(P9+w [sup*Fi]) = (SUP*P(Hw [F"]) = sup Moy
iel max iel max iel

Fix 7 € R less than this common value.
It suffices to show that

(sup*Fi) ~p (sup*P9+w [Fi]) )

iel iel



190 CHAPTER 9. TEST CURVES

This is an immediate consequence of Proposition 6.1.6. O

Definition 9.4.6 Let (I'');<; be a non-empty family in TC(X, 6)-¢ satisfying (9.40).
Then we define

supT* == sup * \/Ff . (9.42)
iel JeFin(I) \;&s

Recall that Fin([) is the net of non-empty finite subsets of /, ordered by inclusion.
Observe that by Definition 9.4.4, we have

sup \/ r/ =sup I,y < oo.
JeFin() \jey ) i€l

So (9.42) makes sense. In particular,
(sup Fi) =supl? .. (9.43)
iel max iel
It is clear that Definition 9.4.6 extends both Definition 9.4.5 and Definition 9.4.4.
Proposition 9.4.4 Let (I');c; be a non-empty family in TC(X, )¢ satisfying (9.40).
Then supieI*Fi € TC(X, 0)>o. Moreover, if T € PSHNA(X, 0)so foralli € I, then

so is sup;¢; T,
Finally, we have

(sup*r") =sup'T .. (9.44)

iel iel

Proof The first assertion and the second follow from Proposition 9.4.3 and Corol-
lary 9.4.1.
It remains to argue (9.44). For this purpose, it suffices to show that

(sup*Fi) ~p sup'T .
iel —oo iel
For any J € Fin(I), it follows from Corollary 9.4.1 and Proposition 6.1.6 that
(v rf) S\
jeJ oo JjeJ

From this, applying Proposition 3.1.10, Proposition 6.1.6 and Proposition 9.4.3, we
conclude our assertion. O

Lemma 9.4.7 Let (T');c; be a non-empty family in TC(X, 0)sq satisfying (9.40).

Assume that w is a closed smooth positive (1, 1)-form on X. Then

Pore [sup*Fi] =sup“ Py [Fi] .

iel iel
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Proof This is a direct consequence of Lemma 9.4.6 and Lemma 9.4.5. O
We prove a version of Choquet’s lemma.

Proposition 9.4.5 Let (I');c; be a non-empty family in TC(X, 0)-q satisfying (9.40).
Then there is a countable subset I’ C I such that

sup* T = sup*T™.
iel iel’

Proof We may assume that / is infinite.
It follows from Proposition 1.2.2 that we can find a countable subset I’ C I such
that for each

TE (—00, sup*Fﬁlax) nQ,
iel

we have
sup* T = sup™T%.

iel iel’
Let I'" = sup;.;.*T". Then clearly, " < T". We claim that they are actually equal.

Thanks to Proposition 6.1.1 and Lemma 9.1.1, it suffices to show that for any
7 < sup;¢;*Ti ., we have

/(9+dd°l“’,)"=/(9+dd°l“7)”.
X X

Since we know that this holds for 7 lying in a dense subset, the same holds everywhere
by Proposition 9.1.1. O

Proposition 9.4.6 Let (I');c; be a non-empty family in TC(X, )¢ satisfying (9.40).
Let C € R. Then _ _
sup"(I'" + C) =sup T + C.

iel iel
Suppose that (I'");e; is another family in TC(X, 0")so satisfying (9.40). Suppose
that T' < T foralli € I, then

supT" < sup I,

iel iel
Proof This is immediate by definition. O

Definition 9.4.7 Let I € TC(X, 0)>o and 2 > 0, we define AI' € TC(X, 10)+( as
follows:

(1) We set
(AT) max = Al max;

(2) for any 7 < (A) ax> We set

(AT)7 = AT -1
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Proposition 9.4.7 Let I' € TC(X,0)s0 and A > 0, then A" as defined in Defi-
nition 9.4.7 lies in TC(X, A0)so. Moreover, if I € PSHYA(X, 0)>¢, then AT €
PSHNA (X, 16)~0.

We have
(AN = AT . (9.45)
Proof This is immediate by definition. O
Proposition 9.4.8 Let T € TC(X, 0)so, I” € TC(X,0" )9, C € Rand 1,2" > 0, we
have

AT +T) =AT + AT,
(V)T =A(2'T),
AT +C) =AT + AC.

Suppose that (T');cy is a non-empty family in TC(X, 6)sq satisfying (9.40), then
pl (sup*l"i) = sup*(AI").
iel iel
Proof This is immediate by definition. O

Lemma 9.4.8 Let " € TC(X, 0)~9 and A > 0. Then for any closed smooth positive
(1, 1)-form w on X, we have

Paosaw[Al] = APgyo [T].

Proof This is clear by definition. O

Definition 9.4.8 Let (I'");<; be a decreasing net in TC(X, 6)~¢. Assume that

inf L, > —oco, (9.46)
iel
and
inf / (6 +dd°TL)" >0, forsomet <infTl,. . (9.47)
iel Jx iel

Then we define inf;c; IV € TC(X, 0)s as follows:
(1) We set

i€l i€

(inf rl’) =infT?
ax !

(2) forany 7 < (inf;e; '), we let

max’

(inf rf) = inf T,
i€l i€l
Proposition 9.4.9 Let (I');c; be a decreasing net in TC(X, 0)-q satisfying (9.46)
and (9.47), then infie; T € TC(X, 0)s0.

Moreover, if T € PSHNA(X, 0)so for alli € I, then so is inf;e; T
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Proof The first assertion is an immediate consequence of Proposition 3.1.8 and
Proposition 3.1.9. The last assertion follows from Proposition 3.2.12. O

In general, it is not true that

(inf r") =infT" .
Lo L€l

iel

Lemma 9.4.9 Let (I'));c; be a decreasing net in TC(X, 0)s¢ satisfying (9.46) and
(9.47). Assume that w is a closed smooth positive (1, 1)-form on X. Then

P6’+w

cei| i
i = o [
Proof First observe that

[ro ), = v )

Let 7 € R be less than this common value. Then we need to show the following:

max

P9+w

gr;] ~p inf Py, [r%]. (9.48)

. d ;
It follows from Proposition 3.1.9 and Corollary 6.2.5 that I' =, inf jer T'4. Thanks
to Corollary 6.2.8 and Corollary 6.2.5, we have

d . d .
Poro [TH] S5 inf TL Pyry, [T S5 inf Py, [T2].
Jel Jjel

Hence, (9.48) follows from Proposition 6.2.2. O






Chapter 10
The theory of Okounkov bodies

It is very fortunate that, unlike people who dig for gold,
mathematicians can freely share their precious treasures with
everybody. Once you understand something really well, it feels
great to explain it to all.

— Andrei Okounkov”

¢ Andrei Yuryevich Okounkov (1969-) is a Russian-American
mathematician renowned for his contributions to representation
theory. He was one of the key organizers of the ICM 2022
in St. Petersburg, which was unfortunately canceled under the
indiscriminate discrimination against Russian citizens by the virtue
signalers all over the western world after the war waged by the
ruling class.

In this chapter, we apply our theory of singularities to the study of Okounkov
bodies. We establish the theory of partial Okounkov bodies, which are convex bodies
constructed from a given plurisubharmonic singularity. These objects allow us to
reduce many problems in pluripotential theory to problems in convex geometry,
which are usually simpler.

We will establish two related theories — One in the algebraic setting in Section 10.2
and one in the transcendental setting in Section 10.3.

10.1 Flags and valuations
10.1.1 The algebraic setting

Let X be an irreducible normal projective variety of dimension 7.

Definition 10.1.1 An admissible flag Y, on X is a flag of subvarieties
X=Yh2YV 2:---2Y,

such that ¥; is irreducible of codimension i and is smooth at the point ¥,,.

Given any admissible flag Y,, we can define a rank » valuation vy, : C(X)* — Z".
Here we consider Z" as a totally ordered Abelian group with the lexicographic order.
We sometimes write Z_ to emphasize this point.

If we identify the elements in Z" with a row vector, the automorphism group
Aut(Zf ) of Z{ 1is then identified with the subgroup of GL(n,Z) consisting of
matrices of the form I + U, where I is the identity matrix and U is a strictly upper
triangular matrix with elements in Z.

195
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We recall the definition of vy,: Let s € C(X)*. Let v(s); = ordy, s. After
localization around Y,,, we can take a local defining equation t! of Yy, set 57 =
(s(h)y="1(s)y ly,- Then s; € C(Y)*. We can repeat this construction with ¥; in place
of Y] to get v(s), and s;. Repeating this construction n times, we get

vy, (s) = (V($)1,v(8), ., v($)a) € Z".

It is easy to verify that vy, is indeed a rank »n valuation.
The same construction can be applied to define vy, (s) when s € H(X, L) or
vy, (D) when D is an effective divisor on X.

Remark 10.1.1 Conversely, by a theorem of Abhyankar, any valuation of C(X) with
Noetherian valuation ring of rank » is equivalent to a valuation taking value in Z",
see [ , Chapter 0, Theorem 6.5.2]. As shown in [ , Theorem 2.9], any
such valuation is equivalent! to (but not necessarily equal to) a valuation induced by
an admissible flag on a modification of X.

10.1.2 The transcendental setting

Let X be a connected compact Kihler manifold of dimension #.

Definition 10.1.2 A smooth flag Yo on X consists of a flag of connected submanifolds
of X:
X=Yy2Y12---2Y,,

where Y; has dimension n — i.
In this section, we will fix a smooth flag ¥, on X.

Definition 10.1.3 Let 7 be a closed positive (1, 1)-current on X. We define the
valuation of T along Y, as

v (T) = (vv. (D1, ..., vy, (T)n) € R,

by induction on n. When n = 0, we define vy, (T) as the unique point in R°. When
n > 1, we define
vy, (Th(T) =v(T, Y1);

Then fori =2,...,n, we define
vy (T)i = vy,2..0v, (Try, (T = v(T,Y)[11])),_, -

Proposition 10.1.1 Let T be a closed positive (1, 1)-current on X. Then vy, (T) € R
defined in Definition 10.1.3 is independent of the choices of the trace operators in the
definition. Moreover, vy,(T) depends only on the I -equivalence class of T.

1 Two valuations v, v’ with value in Z" are equivalent if one can find a matrix G of the form [ + N,
where N is strictly upper triangular with integral entries, such that v/ = vG.
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Proof We will prove both statements at the same time by induction on n > 0. The
cases n = 0, 1 are trivial.

Let us consider the case n > 1 and assume that the result is known in dimension
n — 1. We first observe that vy, (T) is independent of the choice of the trace operator:
Different choices of Try, (T — v(T,Y1)[Y1]) are T -equivalent by Proposition 8.1.2.
Therefore, by induction, its valuation is well-defined.

Next, let 7” be another closed positive (1, 1)-current such that T ~7 T’. Using
Proposition 3.2.1, we know that v(T,Y;) = v(T’,Y}). Therefore,

T-v(T.Y) 1] ~r T" = v(T", V1) [11].
It follows by induction that

V¥i2-ov, (Try (T = v(T, Y1) [Y1])) = vy 2...0v, (Try, (T7 = v(T', Y1) [11])) .

Example 10.1.1 When X is projective, we have
vy ([D]) = vr.(D),
where the right-hand side is defined in Section 10.1.1.

Proposition 10.1.2 Let T, S be closed positive (1, 1)-currents on X, A € Rsq. Then

(D) ifT <5 S, we have
vy, (T) Z1ex vy, (S). (10.1)

(2) We have the following additivity property:
VY., (T + S) =Vy, (T) + vy, (S), vy, (/1T) = /lVy. (T) (102)

Proof (1) We make an induction on n > 0. The case n = 0, 1 is trivial. Assume that
n > 2 and the case n — 1 is known. Observe that v(T, Y1) > v(S,Y)), if the inequality
is strict, we are done. So let us assume that v(7, Y1) = v(S, Y1). By Proposition 8.2.1,
we find that

Try, (T = v(T, Y1) [11]) <1 Try, (S —v(T, Y1) [11]).

By the inductive hypothesis, we conclude (10.1).
(2) We make an induction on n > 0. The cases n = 0, 1 are trivial. Assume that
n > 2 and the case n — 1 is known. By Proposition 1.4.2, we have

V(T +8,Y1) =v(T, Y1) +v(S. Y1), v(AT,Y) = Av(T,Y1).
By Proposition 8.2.1, we have

Try, (T+S - v(T+8,Y1)[11]) ~p Try, (T —v(T,Y1)[Y1])
+Try, (S =v(S,Y)[1]),
Try, (AT — v(AT, Y1) [Y1]) ~pA Try, (T —v(T,Y1)[Y1]) .
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By the inductive hypothesis, we conclude (10.2).
Assume that n > 0 for the remaining of this section.

Definition 10.1.4 Let 7: Z — X be a proper bimeromorphic morphism with Z being

a Kéhler manifold. We say that a smooth flag W, on Z is a lifting of Y, to Z if the

restriction of 7 to W; — Y; is defined and is bimeromorphic for eachi =0, ..., n.
In this case, we define cor(Y,, ) € Aut(Z! ) inductively as follows: When n = 1,

lex
we define cor(Y,, ) = [1]; when n > 1, we set

I —vwoow, (7 [Y1] = [WiD)lw,)

cor(¥e, 7) = Ocor(Y1 2 2Yy,lw,: W1 > 11)|°

(10.3)

We observe that a lifting W, of Y, on Z is unique if it exists: Foreachi =0, ...,n—1,
the component Wy, is necessarily the strict transform of Y;;; with respect to the
bimeromorphic morphism W; — Y;. We shall also say that (W,, cor(Y,, )) is the
lifting of Y, to Z.

Proposition 10.1.3 Let n: Z — X be a proper bimeromorphic morphism with Z
being a Kdhler manifold. Let W, be a lifting of Y., then for any closed positive
(1, 1)-current T on X, we have

vw. (7*T) = vy, (T) cor(Ys, 7). (10.4)

Proof We make induction on n > 0. The case n = 0 is trivial. In general, assume
that n > 1 and the result is proved in dimension n — 1.

For simplicity, we write v = vy, and v’ = vy, . Let u (resp. u’) be the valuation of
currents defined by the truncated flag¥; 2 --- 2 Y,, (resp. Wy 2 --- 2 W,)). Then we
need to show that

[V (7*T)1 w (Tew, (2T = v/ (x*T)1 [W1])) ]
= V(D1 w(Try, (T = v(T)1[11]))] cor(Ye, 7). (10>
By Zariski’s main theorem,
v (n*T), =v(T); = c.
By the inductive hypothesis, we have
W (I Try, (T = ¢[Y1])) = u(Try, (T = c[Y1])) cor(Y; 2 --- 2 Y, 1), (10.6)

where [1: W; — Y is the restriction of 7. By Lemma 8.2.1 and Proposition 8.2.1,

IT* Try, (T — c[Y1]) ~p Trw, (2" (T - c[Y1]))
~p Trw, (7*T — c[Wi]) + ¢ Trw, (2" [V1] = [W1]).

So
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p (I Try, (T = c[11])) = p' (Trw, (7°T = ¢[W1])) + e’ (Trw, (77 [Y1] = [Wh])).
Combining the above with (10.6), we see that (10.5) follows. m]

Proposition 10.1.4 Letw: Z — X, p: Z' — Z be proper bimeromorphic morphisms
with Z and Z' being Kdhler manifolds. Assume that Yo admits a lifting We (resp. W.)
to Z (resp. Z'). Then

cor(Y,, o p) = cor(Ys, 7) cor(W,, p). (10.7)

Proof Weletn’ =nmop:

—)Z

\/

We make induction on n > 1. The case n = 1 is trivial. Assume that n > 2 and
the case n — 1 has been solved. Then by (10.3), the desired formula (10.7) can be
reformulated as

1 —vwrs. aW'((ﬂ'*[Yl] - [WiDlw)
0 cor(Y1 2---2Y,, |W/ Wi — Y1)

1 —vwioeow, (7 [1] = [WiDlw) |
10 cor(Yy 2 - 2 Y, mlw, : Wi = 1)
(1 —vwizow, (P [Wi] = [W[Dlw;)
10 cor(Wy2---2 anplWl’ : W{ — W)

By the inductive hypothesis, this is equivalent to
vwgzawg (101 = W(DIw; ) = vwaawg (0" T3] = (W] Dlw; ) +
Vwia-ow, (" [Y1] = [W1])lw,) cor (W1 2 2 Wy, plw; : Wi — Wl),

which, thanks to Proposition 10.1.3, can be further rewritten as

vwgzaw; (1] = W DIw; ) = vwiaaw, (7 IW2] = IW{Dlw; ) +
rwgaw (Pl (10T = WD) ).
This follows from Proposition 10.1.2. O

Theorem 10.1.1 Let n: Z — X be a proper bimeromorphic morphism from a
reduced complex space Z. Then there is a modification W — X dominating Z — X
such that Y, admits a lifting to W.
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Proof By Hironaka’s Chow lemma Theorem B.1.2, we may assume that 7 is a
modification.

We begin by setting Wy = Z. We will construct W; inductively for each i. Assume
that for 0 < i < n a smooth partial flag Wy 2 --- 2 W; has been constructed on
a modification 7r; : Z; — Z so that 7 o 7; restricts to bimeromorphic morphisms
W; — Y;foreach j =0,...,i.

By Zariski’s main theorem, W; — ¥; is an isomorphism outside a codimension 2
subset of Y;. We let W, be the strict transform of Y;;; in W;. The problem is that
W41 is not necessarily smooth.

We will further modify Z; and lift Wy, ..., Wi, in order to make the flag smooth.
Take the embedded resolution of (W;, Wi,1), say W]’. — W; foreach j =0,...,i.

We have canonical embeddings W/ < W/_| < --- <> W/ making the following
diagram commutative:

Wl’ — Wi,—l — o W(’)

ol S

Wi—— Wiiiy — - — W)

Let Wl.’ o1 be the strict transform of W;,; in Wl.’ . It suffices to define m;,; as the
morphism W(') — Z; — Z and replace Wy 2 - - - 2 Wy by W(’) 2---2 Wl.’+1. O

Remark 10.1.2 Suppose that X is a normal projective variety. Consider a rank n
(surjective) valuation v: C(X)* — Z" and a closed positive (1, 1)-current T on X.
Then we can always define v(7T) € R" as follows: Take a resolution : ¥ — X such
that there is a smooth flag Y. on Y and g € Aut(Z{, ) such that

V=78

Then we define
v(T) = vy, (n'T)g.

This definition does not depend on the choice of m, as a consequence of Proposi-
tion 10.1.3.

10.2 Algebraic partial Okounkov bodies

Let X be a connected smooth complex projective variety of dimension n and (L, h)
be a Hermitian big line bundle on X.

Let hg be a smooth Hermitian metric on L. Let § = ¢{(L, hp). Then we can
identify A with a function ¢ € PSH(X, 8). We will use interchangeably the notations
(8, ) and (L, h).

Fix a rank n valuation v: C(X)* — Z", which without loss of generality can be
assumed to be surjective.

We will adopt the notations of Appendix C.2.
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10.2.1 The spaces of sections

Definition 10.2.1 We will write

L0, ¢) ={(v(s),k) : k e N,s e H'(X, LF ® T (kg))*},
Ay (8, ¢) =Conv {k’lv(s) :s e HO(X, L* ®I(k<p))x} CR", keZsy.

When 6 = Vy, we simply write I'(L) and Ag (L) instead.

Here Conv denotes the convex hull. For large enough k, Ay (6, ¢) is non-empty thanks
to Theorem 7.3.1.

Definition 10.2.2 Assume that ¢ has analytic singularities. We define

(0, ¢) = {(v(s), k) : k e N,s € H(X, L* ® I, (ko)) *} . (10.8)

Recall that 7, is introduced in Definition 1.6.6.
For later use, we introduce a twisted version as well.

Definition 10.2.3 If T is a holomorphic line bundle on X, we introduce

Ak7(8,¢) =Conv {k~'v(s) : s e H'(X,T ® L* ® I (kg))*} C R",
Ar,r(L) =Conv {k~'v(s) : s e H'(X, T ® L*)*} CR"

for all k € Z~.

10.2.2 Algebraic Okounkov bodies

Proposition 10.2.1 There is a convex body A € K, such that T'(L) € S’ (A).

Recall that the notations %, and S’ (A) are introduced in Appendix C.

Proof Step 1. We first show that there is A € %, such that Ax(L) C A. For this
purpose, using Remark 10.1.1, we may assume that v is induced by an admissible

flag Y, on X.
Fix s € HY(X, L*)* for some k € Z.(. Assume that s # 0. We need to show
that foreachi = 1,...,n, v(s); < Ck for some constant C > 0, independent of the

choices of k and s.
Fix an ample divisor H on X. Take a large enough integer | > 0 such that

(L-b\Y))-H" ' <0.

Then v(s); < bik. Next take a large enough integer b, such that
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((L - aYy)ly, — baYs) - H"> < 0.

It follows that v(s), < byk. Continue in this manner, we conclude that v(s);/k is
bounded for each i.

Step 2. Observe that I'(L) is clearly a semigroup. It remains to show that I'(L)
generates Z"*! as an Abelian group.

For this purpose, take two very ample divisors A and B so that L = Ox(A — B).
After choosing A and B ample enough, we may guarantee that there exist sections
so € HY(X,A),t; e H(X,B) fori = 0,...,n such that

v(so) = v(1) =0

and v(t;) is the i-th unit vector ¢; e R" fori = 1,...,n.

Since L is big, we can find my > 0 such that for any m > mgy we can find an
effective divisor F,, on X linearly equivalent to mL — B. Let f,,, = v([Fy;]). Then
we find that

(fmsm), (fm +e1,m), ... (fn +ep,m) € U(L).

Since (m + 1)L is linearly equivalent to A + F,, so
(fm.m+1) eI'(L).
It follows that I'(L) generates Z"**!. o

Thanks to Proposition 10.2.1, we can introduce the next definition.

Definition 10.2.4 We define the Okounkov body of L with respect to the valuation v
as
A, (L) == A(T(L)).

Proposition 10.2.2 The Okounkov body A, (L) depends only on the numerical class
of L.

See [ , Proposition 4.1] for the elegant proof.

Corollary 10.2.1 We have
1
vol A, (L) = ] vol L. (10.9)

Proof This follows immediately from Proposition 10.2.1 and Theorem C.2.1. O

Proposition 10.2.3 Assume that ¢ has analytic singularities and 6, is a Kdihler
current. Then we have
(0, ¢) € S'(X,0)

and |
V01F°°(9,(p):—/9".
n' X ¢
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Proof Replacing X by a modification, we may assume that ¢ has log singularities
along an effective Q-divisor D. See Theorem 1.6.1.
In this case,

(0, ¢) = {(v(s), k):keN,seH° (X, ) OX(—rkm)) }

Since L — D is ample by Lemma 1.6.1, our assertion follows from the same argument
as Proposition 10.2.1. O

We first extend Theorem C.2.1 to the twisted case.
Proposition 10.2.4 For any holomorphic line bundle T on X, as k — oo

dHaus

Ak,r(L) — Ay (L).

Proof As L is big, we can take kg € Z( so that

(1) T~' ® L% admits a non-zero global holomorphic section sq, and
(2) T ® L*0 admits a non-zero global holomorphic section s;.

Then for k € Z,, we have injective linear maps

XS XS0

HO(X, L¥ %0y =5 HO(X, T ® LK) — HO(X, L¥+ko),
It follows that
(k = ko)Ak—ky (L) +v(s1) € kAr,7(L) S (k + ko) Aksry (L) = v(s0)-

Using Theorem C.2.1, we conclude. O
Proposition 10.2.5 Let L’ be another big line bundle on X. Then

Ay(L)+A, (L") CA(LQL).
Proof Observe that for each k € N, we have

Ap(L) +Ap (L") S A (L®L).
So our assertion follows immediately from Theorem C.2.1. O
Proposition 10.2.6 For any a € Z~, we have

Ay (L*) = aA,(L).

Proof This is an immediate consequence of Theorem C.2.1. O
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10.2.3 Construction of partial Okounkov bodies

Theorem 10.2.1 We have
(6, ¢) € S"(Ay (L))o
We refer to Definition C.2.3 for the definition of S”(A, (L))-y.
This theorem allows us to give the following definition:

Definition 10.2.5 The partial Okounkov body of (L, h) is defined as

Ay(L,h) = A, (0, ¢) = A(T(0,¢)). (10.10)

When v is induced by an admissible flag Y, on X (see Definition 10.1.1), we also say
that A, (6, ¢) the partial Okounkov body of (L, h) or of (6, ¢) with respect to Y. In
this case, we also write Ay, instead of A,,.

Note that when 4 has minimal singularities, we have

Ay(L,h) = Ay(L).
So partial Okounkov bodies generalize Okounkov bodies.

Corollary 10.2.2 We have

1

vol A, (6, p) = — volb,,. (10.11)
n!

Proof This follows immediately from Theorem 10.2.1, Theorem 7.3.1 and Theo-

rem C.2.2. O

We will prove Theorem 10.2.1 and Corollary 10.2.2 at the same time. The proof
relies on the pseudometric dg, introduced in (C.2).

Proof Step 1. We first assume that ¢ has analytic singularities and 6, is a Kihler
current.
We claim that
d(T™(0, ¢),T(6,¢)) = 0. (10.12)

Observe that for each € € Q. ¢, we have
HO(X, LK ® I, (ke)) € HO(X, L¥ ® T (ky)) € HO (X L*® T (k(1 - 6)50))

for all large enough k. This is a consequence of Lemma 1.6.3. Therefore, it suffices
to show that
lim  volT'™ (8, (1 —€)¢) = vol ' (6, ¢).
+

Q3e—0:

This follows from the explicit formula in Proposition 10.2.3.
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Step 2. We next handle the case where 6, is a Kihler current.

d
Let (¢;); be a quasi-equisingular approximation of ¢ in PSH(X, 6). Then ¢; =,
Py[¢] 7 by Corollary 7.1.2.
In this case, it suffices to prove that

dy
I'(0,¢;) — (6, ¢). (10.13)
In fact, by Theorem 7.3.1, we have

dsg (F(Q, ‘Pj)’ r(e, ‘P))
= Tim k™" (ho (X Lk ®I(k¢j)) e (X L¥ ®I(k<p)))

k—o0

= lim kA" (X,Lk ®I(k<pj)) - lim k7R (x, X ®I(k¢))

1
=m vol 6’4,_,. i vol 6.

Letting j — oo, we conclude (10.13) by Theorem 6.2.5.

Step 3. Now we only assume that vol 8, > 0. We may replace ¢ with Pg[¢] r and
then assume that ¢ € PSH(X, 6)s¢.

Take a potential ¢y € PSH(X, 6) such that ¢ < ¢ and 6, is a Kdhler current. The
existence of i is proved in Lemma 2.3.2. Foreach € € (0, 1), let o = (1 — €)@ + €.
It suffices to show that

dse
as € — 0+. We compute using Theorem 7.3.1:

ds (T'(0, 06),T'(6, )
= Tim k™" (ho (X, ¥ Z'(kt,o)) 0 (x, o Z'(k(pe)))

k— o0
= lim k7" (X e I(k(p)) - lim k7 (X L@ I(ktps))

1
:a vol GSO — ; vol Hy;é
—0
by Theorem 6.2.5, as € — O+. O

Remark 10.2.1 1t follows from the proof that if ¢ has analytic singularities and 6, is
a Kéhler current, then (10.12) holds.

If we take a modification 7: ¥ — X such that 7% has log singularities along an
effective Q-divisor D on Y, then

Ay (6,9) = A, (n'L - D) +v(D). (10.14)

This is a very special case of Theorem 11.3.1.
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10.2.4 Basic properties of partial Okounkov bodies
Proposition 10.2.7 The partial Okounkov body A, (L, h) depends only on dd°h, not
on the explicit choices of L, hy, h.

Thanks to this result, given a closed positive (1, 1)-current T € ¢(L) on X with
/x T" > 0, we can write
A (T) = A, (0, 9)

if T = 6+ dd®¢ for some ¢ € PSH(X, 6).

Proof There are two different claims to prove, as detailed in the two steps below.
Step 1. Let i, be another Hermitian metric on L. Set 8" = ¢ (L, hy). Write
dd°f=6-6".Let¢’ =@+ f € PSH(X, ). Then

A (8,0) = A0, 0"). (10.15)
This is obvious since I'(0, ¢) = T'(0’, ¢’).
Step 2. Let L’ be another big line bundle on X. By Step 1, we may assume that

the reference Hermitian metric A, on L’ is such that ¢{ (L', hj) = 6.
Let i’ be a plurisubharmonic metric on L’ with ¢ (L, h) = ¢;(L’, #’). Then

AV(L, h) = AV(L,’ h,)

From our construction, we may assume that ¢ (L, i) has analytic singularities. After
taking a birational resolution, it suffices to deal with the case where ¢ (L, h) has
analytic singularities along an effective Q-divisors D. By rescaling, we may also
assume that D is a divisor. By Remark 10.2.1, we further reduce to the case where
c1(L, h) is not singular.

In this case, the assertion is proved in Proposition 10.2.2. O

Proposition 10.2.8 Let ¢,y € PSH(X, 6)~¢. Assume that ¢ <7 {, then
Ay (0,9) C A6, ¥). (10.16)
In particular, we always have

Ay (0,¢) € Ay(L).

Proof This follows from Corollary C.2.2. O
Theorem 10.2.2 The Okounkov body map
A, (6,9) : (PSH(X, 0)>0,ds) — (Ku, dHaus)

Is continuous.
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Proof Let ¢; — ¢ be a ds-convergent sequence in PSH(X, 6).. We want to show
that

dHaus

Ay (6,0;) — A0, 0). (10.17)

By Proposition 10.2.8, we may assume that all ¢;’s and ¢ are model potentials.

By Theorem C.1.1 and Proposition 6.2.3, we may assume that (¢;); is either
decreasing or increasing. By Theorem 6.2.3, we may further assume that the ¢;’s are
7 -model. In both cases, we claim that

ds
T (6, ¢;) — T(6, ¢)
as j — oo. In fact, using Theorem 7.3.1, we can compute

dsg (T(8, 7). T(6, ¢)) =k1LTr3°k—n

A0 (X, ¥ J(k¢j)) 0 (X, L I(k(p))‘
:% |V019¢j —volf,|,

which converges to O by Theorem 6.2.5. O
Proposition 10.2.9 Let n: Y — X be a modification. Then

A, (n*L,n*h) = A, (L, h).
Proof Thanks to Proposition 3.2.5, we may assume that ¢ is 7-model. By Theo-

rem 7.1.1, we can find a sequence (¢;); with analytic singularities in PSH(X, )

d d

such that ¢; =, . Itis clear that % ¢ = m*¢. By Theorem 10.2.2, we may then
reduce to the case where ¢ has analytic singularities. In this case, it suffices to apply
Remark 10.2.1. O

Proposition 10.2.10 Let (L', h") be another Hermitian big line bundle on X. Then
Ay(L,h) +A (L' W) CA(LQL ,h® k).

Proof Take a Hermitian metric /1, on L and let 8" = ¢1(L’, hj). We identify 4" with
¢’ € PSH(X, 6’). Then we need to show

A, 0) +A(0,0) CAO+0,0+¢"). (10.18)
We observe that

Polelr +Pole'ls ~r o+ ¢ .

Thus, after replacing ¢ and ¢’ by their 7 -envelopes, in view of Proposition 10.2.8,
we may assume that ¢ and ¢’ are 7 -good.

By Theorem 7.1.1, we can find sequences (¢;); and (go})j in PSH(X, 0)~¢ and
PSH(X, 6)-¢ respectively such that

(1) ¢; and go;. both have analytic singularities for all j > 1, and
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d d;
) ¢ = . ¢, = ¢

Then ¢, + ¢, € PSH(X, 0 +6')-0 and ¢; + ¢, = ¢ + ¢’ by Theorem 6.2.2. Thus,
by Theorem 10.2.2, we may assume that ¢ and ¢ both have analytic singularities.
Taking a birational resolution, we may further assume that they have log singularities.
By Remark 10.2.1, we reduce to the case without singularities, in which case the
result is just Proposition 10.2.5. O

Theorem 10.2.3 Let ¢, € PSH(X, 0)~¢. Then for any t € (0, 1),
Ay (0,19 + (1= 1)y) 21A,(0,¢) + (1 =1)A,(6,¢). (10.19)

Proof We may assume that ¢ is rational as a consequence of Theorem 10.2.2. Similarly,
as in the proof of Proposition 10.2.10, we could reduce to the case where both ¢ and
¥ have analytic singularities. In this case, let N > 0 be an integer such that Nt is an
integer. Then for any s € HY(X, L¥ ® T, (k¢)) and r € HO(X, L* ® I, (ky)), we
have

sV @ NN ¢ HO (X L*N @ I, (Ntg + (N — Nr)zp)) .

By Theorem C.2.1 and Remark 10.2.1, (10.19) follows. m]

Proposition 10.2.11 For any a € Z-,
Ay (ab,ap) = al, (0, p).

Proof As in the proof of Proposition 10.2.10, we may assume that ¢ has log
singularities. Using Remark 10.2.1, we reduce to the case without the singularities,
which is proved in Proposition 10.2.6. O

In particular, if T is a closed positive (1, 1)-current on X with fX T" > 0 and such
that
[T] € NS'(X)q,

we can define

A(T) = a 'A,(aT) (10.20)
for a sufficiently divisible positive integer a. This definition is independent of the
choice of a thanks to Proposition 10.2.11.

We also need the following perturbation. Let A be an ample line bundle on X. Fix
a Hermitian metric 44 on A such that w := ¢{(A, ha) is a Kédhler form on X.

Proposition 10.2.12 As § \, 0, the convex bodies A, (0 + 6w +dd°p) are decreasing
and

d aus
A (0 + 6w +dd° ) =5 A, (6,,).

Proof Let 0 < 6 < ¢’ be two rational numbers. Take C € N divisible enough, so
that Cé and Cd’ are both integers. Then by Proposition 10.2.10,

Ay (CO + Céw + Cdd®p) C A, (CH+ C8' w + Cdd®yp).
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It follows that
Ay (0+6w+dd°¢) CA(0+6w+dd).

On the other hand,

1
vol A, (0 + Sw + dd°p) = ol vol(6 + 6w) .

As 0 — 0+, the right-hand side converges to

1
vol A, (6, ¢) = = vol 6,
n!

thanks to Proposition 7.2.3. Our assertion therefore follows. O

10.2.5 The Hausdorff convergence property

Let T be a holomorphic line bundle on X. The goal of this section is to prove the
following:

Theorem 10.2.4 As k — oo, we have

dyaus

Ar1(0,0) — A (6, ). (10.21)

Although we are only interested in the untwisted case, the proof given below requires
twisted case.

We first observe that the sequence Ax 7(6, ¢) is uniformly bounded: This follows
easily from Proposition 10.2.4. So Blaschke’s selection theorem Theorem C.1.1 is
applicable. We will apply this observation without further comments.

Lemma 10.2.1 Assume that ¢ has analytic singularities and 6 , is a Kdihler current,
then (10.21) holds.

Proof Uptoreplacing X by a modification and twisting T accordingly, we may assume
that ¢ has log singularities along an effective Q-divisor D, see Proposition 10.2.9
and Theorem 1.6.1.

Takee € Q N (0, 1). In this case, for large enough k € Z.( we have

HO (X, TeLlre Ioo(kgo)) cH® (X, ToLle f(k@)
CH® (x, T®L*® I, (k(1 - 6)(;9)) :

Take an integer N € Z-¢ so that ND is a divisor and Ne¢ is an integer.
Let A’ be the limit of a subsequence of (Ax 7(6, ¢))k, say the sequence defined by
the indices k1, k7, . . .. Thanks to Theorem C.1.1, it suffices to show that A” = A, (8, ¢).
There exists r € {0, 1,...,N — 1} such that k; = ¢t modulo N for infinitely many i,
up to replacing (k;); by a subsequence, we may assume that k; = t modulo N for all
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i. Write k; = Ng; + t. Then for large enough i, we have
HO (x TeL N gLN&) @ I (N(g + 1)¢)) cH (x TeLk® I(k,-(,o))
CH (X, To L ® LN & I, (iN(1 - €)¢)).

So

(8i + DAg11,79L-N+(NL=ND) + N(g; + 1)v(D) € (Ng; +1)Ay,,1(6, @)
C gl Terr (NL—=N(1—-¢€)D)+ Ng;(1 - €)v(D).

Letting i — oo, by Proposition 10.2.4,
Ay,(L-D)+v(D) CA CA(L-(1-€)D)+(1-¢€)v(D).
Letting € — 0+, we find that
A = A (L= D) +v(D) = A, (0, ¢),
where we applied Remark 10.2.1 as well. Our assertion follows. O

Lemma 10.2.2 Assume that 6, is a Kihler current, then as Q 3 § — 0+, we have

d aus
Ay (1= B)0,¢) = Ay(6, 9).
Here and in the sequel, A, ((1 = 8)8, ¢) = A, ((1 — B)0 + dd°yp) is defined in (10.20).
Proof By Proposition 10.2.10, we have
Ay ((1-P)0, @) +BA, (L) € A, (6, ¢).

In particular, if A" is the Hausdorff limit of a subnet of (A((1 — 8)6, ¢))s, then
A" C A, (0, ¢). But

ol & = lim A, ((1=F)6.¢) = tim [ ((1-p0+&Papalels)"
- [ @+acrotelry.
X
where the last step follows easily from Theorem 11.2.1. Since we have not developed
the theory of nef b-divisors yet, we give a direct proof as well. Take a Kidhler form
wsothatf, > w. Lety = Pg_,[¢]7r. Then ¢ ~7 . In order to establish the last

equality, we may replace ¢ by ¢ and hence assuming that ¢ is 7-good. In this case,
the desired equality becomes

: _ C \ — n
Jim [ ((1-po+ater = [ o,
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which is obvious.
It follows that A’ = A, (8, ¢). We conclude by Theorem C.1.1. O

Proof (Proof of Theorem 10.2.4) Fix a Kdhler form w > 6 on X.

Step 1. We first handle the case where 6, is a Kéhler current, say 6, > 20w for
some ¢ € (0, 1). Take a quasi-equisingular approximation (¢;); of ¢ in PSH(X, 6).
We may assume that 6, > 6w forall j > 1.

Let A’ be a limit of a subsequence of (Ag 7(6, ¢))x. Let us say the indices of
the subsequence are k| < kp < ---. By Theorem C.1.1, it suffices to show that
A=A, (0, ).

Observe that for each j > 1, we have A” C A, (6, ¢;) by Lemma 10.2.1. Letting
J — oo, we find A’ C A, (6, ¢) as a consequence of Theorem 10.2.2. Therefore, it
suffices to prove that

vol A" > vol A, (0, ¢).

Fix aninteger N > 6~ 1. Observe that forany j > 1, we have ¢; € PSH(X, (1-N"1)@).
Similarly, ¢ € PSH(X, (1 — N~1)8). By Lemma 10.2.2, it suffices to argue that

vol A’ > vol A, ((1 — N he, go). (10.22)

Step 1.1. We first reduce to the case where N |k; for all i.

We are free to replace (k;); by a subsequence, so we may assume that k; = a
modulo N foralli > 1, wherea € {0,1,...,N—1}. We write k; = g;N +a. Observe
that for eachi > 1,

HO (X, TeLlhie I(k,-tp)) o H° (X, T® L N* g 8NN @ T ((g;N + N)<p)) .

Up to replacing T by T ® L™N*“, we may therefore assume that a = 0, so that
ki =giN.

Step 1.2. Write k; = g; N for all i. We prove (10.22).

By Lemma 2.3.1, we can find j° € Z-¢ such that for all j > j’, there is
¥ € PSH(X, 6)- satisfying

Polglr = (1-N"Dp; +N"'y;.
Fix j > j’. It suffices to show that
A, ((1 ~ N e, (,aj) VSN (10.23)
for some v/ € R”". In fact, if this is true, we have
vol A’ > vol A, ((1 N, (,01-) .
Letting j — oo and applying Theorem 10.2.2, we conclude (10.22).

It remains to prove (10.23). As in the proof of Theorem 7.3.1, there is go > 0 such
that for any g > go, we can find a non-zero section s, € HO(X, L8 ® I (gy;)) such
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that we get an injective linear map
XSo
HO (x TeLsN-Dg I(chpj)) 2%, 1o (x ToLN @ J(gN<p)) .
In particular, when g = g; for some i large enough, we then find

Agi 7 (N =1)8,Ng;) + (g:)) "' v(sk,) S NAk (6, 9).

We observe that the (g;)~!v(sg,)’s are bounded as both convex bodies appearing in
this equation are bounded when i varies. Then by Lemma 10.2.1, there is a vector
v’ € R" such that (10.23) holds.

Step 2. Next we handle the general case.

Let A’ be the Hausdorft limit of a subsequence of (Ag 1(6, ¢))k, say the sub-
sequence with indices k; < ky < ---. By Theorem C.1.1, it suffices to prove that
A=A, (8, ).

Take ¢ € PSH(X, 0) such that 6, is a Kéhler current and ¢ < ¢. The existence of
 follows from Lemma 2.3.2.

Then for any e € QN (0, 1),

Ar,r(8,9) 2 Akt (0, (1 = €)¢ + €y)
for all £ > 1. It follows from Step 1 that
AN 2A, (0, (1-€)p+ey).

Letting € — 0 and applying Theorem 10.2.2, we have A" 2 A, (0, ¢). It remains
to establish that
vol A" < vol A, (6, ). (10.24)

Fix an integer N > 0, it suffices to argue that

1 n
vol A’ < ;/(N_1w+9+dd°PN_1w+9[go]]) . (10.25)
cJX

Assuming this, letting N — oo, we conclude (10.24), thanks to Proposition 7.2.3.
Step 2.1. We first reduce to the case N|k; for all i.
For this purpose, we are free to replace k| < k < --- by a subsequence. We may
then assume that k; = @ modulo N for alli > 1 for some a € {0,1,...,N —1}. We
write k; = g;N + a. Observe that

HO (X TeLk® I(kicp)) c H (X T®L oL g I(giNga)) .

Up to replacing T by T ® L¢, we may assume that a = 0.

Step 2.2. We write k; = g; N for all i.

Take a very ample line bundle H on X and fix a Kihler form w € ¢ (H), take a
non-zero section s € H(X, H).

We have an injective linear map
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H' (X.7T® LV @ T(gNg)) =5 H (X.T @ HE & LN @ 1 (gNy))
for each g > 1. In particular, for eachi > 1,
ki, 7(0,9) +giv(s) C gilg, 7 (W+NO,Ng) .
Letting i — oo, by Step 1, we have
NA +v(s) CA,(w+ NO,Np).

So

1 n
volA” < vol A, (N—1w+9, go) = —’/ (N_1w+9+ddCPN_1w+6[tp][)
n Jx

10.2.6 Recover Lelong numbers from partial Okounkov bodies

Theorem 10.2.5 Let E be a prime divisor on X. Let Y, be an admissible flag with
E =Y. Then
,E) = i : 10.26
v(g, E) ceaMin X (10.26)
Here x; denotes the first component of x.

Proof Replacing ¢ by Pg[¢] 7, we may assume that ¢ is 7-good.
Step 1. We first reduce to the case where ¢ has analytic singularities.
By Theorem 7.1.1, we can find a sequence (¢;); in PSH(X, 6).0 with analytic

de
singularities such that ¢; =, @. It follows from Theorem 10.2.2 that

dHaus

Ay, (6,¢;) — Ay, (0, ¢).

Therefore,

lim min x| =

= min  Xxj.
Jj—00 x€Ay, (0,¢)) x€Ay, (6,¢)

In view of Theorem 6.2.4, it suffices to prove (10.26) with ¢; in place of ¢.

Step 2. Assume that ¢ has analytic singularities. In view of Proposition 10.2.9
and Theorem 1.6.1, after replacing X by a modification, we may assume that ¢ has
log singularities along an effective Q-divisor F.

Perturbing L by an ample Q-line bundle by Proposition 10.2.12, we may assume
that 6, is a Kihler current. Therefore, L — F is ample by Lemma 1.6.1. Finally, by
rescaling, we may assume that F is a divisor and L is a line bundle.

By Theorem 10.2.4, we know that

min x; = lim min Xx;.
x€Ay, (6,¢) k—oo xeAr(6,¢)
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By definition,

min  x; = k' ordg H° (X, L* ®I(kcp)) .
x€Ak(0,¢p)

In view of Proposition 1.4.4, it remains to show that

Jim k" ordg H° (X L ®I(k<,o)) = lim k™" ordg 7 (k). (10.27)
The > direction is trivial, we prove the converse. Observe that

HO (X Lo I(knp)) - H° (X, ) Ox(—kF)) . I(kg)=O(=kF).
As L — F is ample, for large enough k, we have
ordy; H° (x L*® OX(—kF)) = ordg (kF).
Thus, (10.27) follows. O
Corollary 10.2.3 Let ¢,y € PSH(X, 6)>¢. If
Aw, (70,7 ¢) C Aw, (76, 7" ¢)

for all modifications n: Y — X and all admissible flags We on 'Y, then ¢ <y .

Proof This follows immediately from Theorem 10.2.5. O

Corollary 10.2.4 Let E be a prime divisor over X. Then
1
v(Vo, E) = lim 7 orde HO(X, L%). (10.28)

Proof This follows from Theorem 10.2.5 and the fact that Ay, (6, Vy) = Ay, (L) for
any admissible flag ¥, on X. O

10.3 Transcendental partial Okounkov bodies

Let X be a connected compact Kéhler manifold of dimension n > 0. Fix a smooth
flag Y, on X. We will extend the theory of partial Okounkov bodies in the previous
section to the transcendental setting.
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10.3.1 The traditional approach to the Okounkov body problem

Definition 10.3.1 Let « be a big cohomology class on X. We define the Okounkov
body of a with respect to the flag Y, as

Ay, (@) = {Vy.(S) 1§ € Zi(X, @), S has gentle analytic singularities}. (10.29)

See Definition 1.6.5 for the definition of gentle analytic singularities.
The results of [ ]2 can be summarized as follows:

Theorem 10.3.1 For any big cohomology class a on X, the set Ay,(a¢) C R" isa
convex body satisfying the following properties:

(1) We have

1
vol Ay, () = — vol a;
n!
(2) given another big cohomology class @’ on X, we have
Ay, (@) + Ay, () C Ay, (@ +a');

B)let m: Y — X be a proper bimeromorphic morphism with Y being a Kdhler
manifold. Assume that (W, g) is the lifting of Ye to Y, then

Aw, (@) = Ay, (@)g;

(4) the map a — Ay, (@) is continuous in the big cone with respect to the Hausdorff
metric;
(5) for any small enough t > 0, we have

{yeR": (1,y) € Av.(B)} = Ayy20v, ((B—t[V1]D)y,) -

See Definition 10.1.4 for the notion of lifting. The proof requires some techniques
not covered in the current book. The readers could either read the original paper or
regard this theorem as a black box.

10.3.2 Definitions of partial Okounkov bodies

Let 6 be a closed real smooth (1, 1)-form on X representing a big cohomology class
.

2 More precisely, these are the results of the first 7 sections. I have to admit that I do not understand
the final section of our paper.
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LetT =6, € Z,(X, @). We shall define a convex body Ay, (T) € R", which is
also written as Ay, (6, ¢). This convex body is called the partial Okounkov body of T
with respect to the flag Y.

10.3.2.1 The case of analytic singularities

Definition 10.3.2 When 7 is a Kihler current with analytic singularities, we take a
modification 7: ¥ — X so that

(D
7T = [D] +R, (10.30)

where D is an effective Q-divisor on Y and R is a closed positive (1, 1)-current
with bounded potential, and
(2) the lifting (Z,, g) of Y, to Y exists.

Define
Ay, (T) = Az ([R)g™" + vz ([D)g ™"

The existence of & is guaranteed by Theorem 1.6.1 and Theorem 10.1.1.

Lemma 10.3.1 The convex body Ay, (T) defined in Definition 10.3.2 is independent
of the choice of m.

Proof Take another map 7’: Y’ — X with the same properties. We want to show
that v and 7" defines the same Ay, (7). We may assume that 7" dominates 7 through
p: Y’ — Y, so that we have a commutative diagram

y — P sy
X.
We take D and R as in (10.30). Then

a*T = [p*D] + p*R.

Write (Z,, g) and (Z,, g’) for the liftings of Y, to Y and Y’ respective. We need to
prove that

Az, ([RDg™" +vz([DDg™" = Az ([p* R +vz ([p*DDg"™ "
This follows Theorem 10.3.1, Proposition 10.1.3 and Proposition 10.1.4. O

Note that from the above proof, we could describe the bimeromorphic behaviour
of Ay, (T) as follows:
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Lemma 10.3.2 Let T € Z.(X, @) be a Kihler current with analytic singularities.
Let n: Y — X be a proper bimeromorphic morphism and (W,, g) be the lifting of Ys
toY. Then

Aw,(7'T) = Ay, (T)g.

Lemma 10.3.3 Assume that T, S € Z.(X, a) are two Kdihler currents with analytic
singularities and T < S, then

Ay, (T) C Ay, (S) € Ay, (a).

Moreover, )
vol Ay, (T) = —/T". (10.31)
n' X

Proof We first show that
Ay, (T) € Ay, (S).

Using Lemma 10.3.2, we may assume that 7 and S have log singularities along
effective Q-divisors E and F' respectively. By assumption, E > F. Replacing T and S
by T — [F] and S — [F] respectively, we may assume that F' = 0.

In this case, we need to show that

Ay, (@) 2 Ay, (o = [E]) + vy, ([E],

which is obvious.
Next we prove that
Ay, (T) € Ay, (a).

By Lemma 10.3.2 and Theorem 10.3.1 again, we may assume that 7" has log
singularities. We take D and S as in (10.30). We need to show that

Ay, (@ = [D]) + vy ([D]) € Ay, (a),

which is again obvious.
Finally, (10.31) follows immediately from Theorem 10.3.1. O

10.3.2.2 The case of Kihler currents

Definition 10.3.3 Let T € Z, (X, @) be a Kéhler current. Take a quasi-equisingular
approximation (7;); of T in Z.(X, a). Then we define

(o8]

Ay (T) = [ Ar.(T)).

J=1

Lemma 10.3.4 The convex body Ay, (T) in Definition 10.3.3 is independent of the
choices of the T} ’s.



218 CHAPTER 10. THE THEORY OF OKOUNKOV BODIES

In particular, if T also has analytic singularities, then the Ay, (7)’s defined in
Definition 10.3.3 and in Definition 10.3.2 coincide.

Proof Let (S;); be another quasi-equisingular approximation of T in Z,(X, ). By
Proposition 1.6.3, for any small rational € > 0, j > 0, we can find k > 0 so that

Sk = (1-eT;.

It is more convenient to use the language of 6-psh functions at this point. Let 4
(resp. ¢r) denote the potentials in PSH(X, 6) corresponding to Sy (resp. Tx) for each
k > 1. Note that ¢ and ¢y are unique up to additive constants.

By Lemma 10.3.3,

(A% (6.01) € A (6, (1 - )¢)).
k=1

On the other hand, observe that

AY.(G’ (1 - 6)‘pj) = AY.(H’ ‘pj)

€ €Q~( small enough

In fact, the D direction follows from Lemma 10.3.3, so it suffices to show that the
two sides have the same volume, which follows from (10.31).
It follows that

(A (0.00) <[ Ar (60, ¢).
k=1 Jj=1

The other inclusion follows by symmetry. O
The same argument shows that

Corollary 10.3.1 Suppose that T, S € Z,(X, @) are two Kéihler currents satisfying
T <7 S. Then
Ay, (T) € Ay, (S) C Ay, (a).

Proposition 10.3.1 Let T € Z. (X, ) be a Kéihler current. Then

1

vol Ay, (T) = - volT. (10.32)
n!

Proof Take a quasi-equisingular approximation (7;); of T in Z,(X, a). Note that

Ay, (T;) is decreasing in j, as follows from Lemma 10.3.3. Our assertion follows

from (10.31) and Theorem 6.2.5. O

Lemma 10.3.5 Let T € Z,(X, @) be a Kdhler current and w be a Kihler form on X.
Then
Ay, (T) C Ay, (T + w). (10.33)

Moreover,
Ay, (T) = ﬂ Ay, (T + ew). (10.34)

e>0
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Proof We first prove (10.33). Taking quasi-equisingular approximations, we reduce
immediately to the case where T has analytic singularities. By Lemma 10.3.2, we
may assume that 7" has log singularities. Take D and R as in (10.30). By definition
again, it suffices to show that

Ay, (I8]) € Av. ([B+w]),

which is clear by definition.
Next we prove (10.34). Thanks to (10.33), it remains to prove that both sides have
the same volume:
lim vol(T + ew) = volT.

e—0+

This is proved in Proposition 7.2.3. O

10.3.2.3 The general case

Definition 10.3.4 Let T € Z,(X, ). Take a Kihler form w on X, we define
Ay, (T) = ﬂAy_(nj—lw). (10.35)

J=1
The same definition makes sense when « is only pseudo-effective.

This definition is clearly independent of the choice of w by Lemma 10.3.5. Moreover,
it extends Definition 10.3.3 and Definition 10.3.2 as a result of Lemma 10.3.5.

Remark 10.3.1 When a is pseudoeffective but not big and 7" has minimal singularities,
Definition 10.3.4 differs from all known definitions of Ay, (@) in the literature. But in
view of Lemma 10.3.7, our definition seems to be the most natural one.

The main properties of Ay, (T) are summarized as follows:
Theorem 10.3.2 The convex bodies Ay, (T)’s satisfies the following properties:
(1) Suppose that T € Z,(X, @)so, We have

vol Ay, (T) = %VOIT. (10.36)
) ForT,S € Z.(X, a) satisfying T <7 S, we have
Ay, (T) € Ay, (S) € Ay, (@).
(3) For any current T € Z.(X, a) with minimal singularities, we have
Ay, (T) = Ay, (a).

(4) The map Z.(X,a)s9 — K, given by T — Ay, (T) is continuous, where we
endow the dgs-pseudometric on Z,(X, a)so and the Hausdor{f topology on %K.
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(S) Let n: Y — X be a proper bimeromorphic morphism with Y being a Kdhler
manifold. Assume that the lifting (We, g) of Ye to Y exists, then for any T €
Z+(X, @)sq, we have

Aw, (n°T) = Ay, (T)g.

(6) ForT,S € Z.(X,a), we have
Ay, (T) + Ay, (S) € Ay, (T + ). (10.37)

Proof (1) By (10.35) and (10.32), for any Kéhler form w on X,
1
vol Ay, (T) = lim Ay, (T + j™'w) = — lim vol(T + j ' w).
J—o n! jooo

The right-hand side is computed in Proposition 7.2.3. Hence, (10.36) follows.
(2) Fix a Kihler form w on X. By Corollary 10.3.1, for each j > 1,

Ay, (T+ ') C Ay (S+j7'w) C Ay, (a+ 7 w]).

It remains to show that
Av.(@) = (Ar(a+ ' [w]).
j=1

The C direction is clear. Comparing the volumes using Theorem 10.3.1, we conclude
that equality holds.

(3) This follows from (1) and (2).

(4) Let (T;); be a sequence in Z, (X, a)-o converging to T € Z,(X, @)>o with

dHaus

respect to ds. We want to show that Ay, (T;) —— Ay, (T'). By Proposition 6.2.3 and
(2), we may assume that the singularity type of 7} is either increasing or decreasing.
In both cases, the continuity follows from (1).

(5) We may assume that T is 7 -good. It follows from (4) and Theorem 7.1.1 that
we could reduce to the case where T has analytic singularities. Our assertion follows
from Lemma 10.3.2.

(6) By (10.35), in order to prove (10.37), we may assume that 7 and S are both
Kibhler currents. Take quasi-equisingular approximations (7;); and (S;); of T and S

d
respectively. By Theorem 6.2.2,T; + S = T+8. By (4), we may therefore assume
that 7 and S have analytic singularities. Replacing X by a suitable modification, we
may assume that 7 and S both have log singularities, say

T=[D]+R, S=[D'|+R,

where D and D’ are Q-divisors on X and 8 and 8’ are closed positive (1, 1)-currents
with bounded potentials. We need to show that

Ay, ([R]) + Ay, ([R']) + vy, ([D]) + v, ([D']) € Av.([R+ R']) + vy, ([D + D']).
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By Proposition 10.1.2, this is equivalent to

Ay, ([R]) + Ay, ([R']) € Ay, ([R+R']),
which is already proved in Theorem 10.3.1. O

Corollary 10.3.2 Assume that L is a big line bundle on X and h is a plurisubharmonic
metric on L with positive volume. Then

Ay, (dd°h) = Ay, (L, h). (10.38)

Similarly, the definition (10.20) is compatible with the definition in Definition 10.3.4.

Proof We may assume that dd has positive mass and is 7-good. By the ds-
continuity of both sides of (10.38) as proved in Theorem 10.3.2 and Theorem 10.2.2,
together with Theorem 7.1.1, we may assume that dd°/ has analytic singularities.
In this case, using the birational invariance of both sides of (10.38) as proved in
Proposition 10.2.9 and Theorem 10.3.2, we may assume that dd®/ has log singularities.
Finally, after all these reductions, the equality (10.38) holds by construction. O

10.3.3 The valuative characterization

In this section, we will characterize the partial Okounkov bodies using valuations of
currents.

Lemma 10.3.6 Let 8 be a nef class on X. Then

{y eR"1:(0,y) € Ay,(B)} = Ayy2--2v, (Blv)- (10.39)

Proof Step 1. We first reduce to the case where S is a Kéhler class.
Take a Kéhler class @ on X. It follows from the volume formula in Theorem 10.3.1
that

Av.(B) = [ Ar.(B+€a),  Avzov, (Blv) = [ ) Aviaov, (Bly, + ealy).

e>0 e>0

So it suffices to prove (10.39) with 8 + e« in place of 3.

Step 2. Assume that « is a Kihler class. The 2 direction in (10.39) follows from
the extension theorem Theorem 1.6.3. To prove the other direction, recall that by
Theorem 10.3.1, for t > 0 small enough, we have

{yeR": (1,y) € Av.(B)} = Avizv, ((B—t[Y1])Iy) -

As t — 0+, the right-hand side converges to Ay,>...oy, (8|y,) with respect to the
Hausdorff metric as a consequence of Theorem 10.3.1, while the left-hand side
converges to
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{yerR":(0,y) € Ar (B}

by Lemma C.1.2. We conclude our assertion. O

Lemma 10.3.7 Let T € Z. (X, a) be a Kdhler current. Assume that v(T,Y)) = 0,
then o
[y eR™ 1 (0,y) € Ay,(T)} = Ay,5..oy, (TrYI n (T)) . (10.40)

More generally, if T € Z,(X,a) and v(T,Y1) = 0, suppose in addition that
TTZIY‘ (T) is defined, then (10.40) still holds.

See Remark 8.1.1 for the definition of Tr;:1 M (T). Note that Ay,>...ov, (Tr;:1 M (T)) is

independent of the choice of the representative Tr;1 h (T).

Remark 10.3.2 More generally, the same argument shows the following result: Let

k=0,...,nand T € Z,(X, @) such that v(T,Y;) = 0. Assume that Tr;cly" (T) is
defined, then

{y eR™5:(0,...,0,y) € Ay,(T)} = Ay o, (Tr;:klyk (T)) . (10.41)
Also note that this result extends [ , Theorem 3.4] and hence gives simpler
proofs of [ , Theorem A, Theorem B].

Proof Let w be a Kéhler form on X. The last assertion follows from the first by
perturbing 6 to 6 + ew.

Step 1. We first handle the case where T has analytic singularities. Let 7: Z — X
be a modification such that

(1) Y, admits a lifting (W,, g), and
(2) T = [D] + R, where D is an effective Q-divisor on Z and R is closed positive
(1, 1)-current with bounded potential.

This is possible by Theorem 1.6.1 and Theorem 10.1.1.
By Lemma 8.2.1,
I TrY] (T) ~P TrW] (ﬂ*T)’

where IT: W, — Y is the restriction of 7. It follows from Theorem 10.3.2 that

Aw,-ow, (Trw, (7°T)) =Ay, ..oy, (Try, (T)) cor(Y 2 - -+ 2 ¥y, II),
AW. (7T*T) ZAY. (T)g

Taking (10.3) into account, we find that it suffices to show that
{y eR":(0,y) € Aw.(x°T)} = Aw,5...om, (Trw, (2°T)).
We may assume that 7 is the identity map. Then we have

T:[D]+R’ T|Y1:[D]|Y1+R|Y1~
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Note that [ D]y, is the current of integration along an effective Q-divisor on Y.
In particular,

Ay, (T) =Ay, ([R]) + vy, ([D]),
Ay,s...2v, (Tly,) =Ay, ..oy, ([R]lv,) + vy, 2.--2v, ([D]In)-

So it suffices to show that

{y eR":(0,) € Av.([RD} = Ay;2..2x, ([R]ly),

which is exactly Lemma 10.3.6.

Step 2. Next we consider the case where T is a Kihler current. Take a quasi-
equisingular approximation (7;); of T in Z,(X, ). From Step 1, we know that for
large j > 1,

{y eR":(0,y) € Av.(T)} = Ayy5..0, (Try, (T))).

Letting j — oo and applying Theorem 10.3.2 and Proposition 8.2.2, we conclude
(10.40). O

Theorem 10.3.3 Assume that T € Z,(X, @) is a Kdhler current. We have
nllin Ay, (T) = vy (T). (10.42)
X

Here the minimum is with respect to the lexicographic order.

Proof We make induction on n > 0. The case n = 0 is of course trivial. Let us
assume that n > 0 and the case n — 1 has been proved.
We first observe that by Theorem 10.3.2,

Ay, (T —v(T,Y1)[1]) + (W(T,Y1),0,...,0) C Ay, (T).

Comparing the volumes of both sides using Theorem 10.3.2 and Proposition 7.2.3,
we find that equality holds:

Ay, (T =v(T. Y1) [1]) + (v(T, 11),0,....0) = Ay, (T).

Replacing T by T — v(T,Y1)[Y1], we may therefore assume that v(7,Y;) = 0. It
suffices to apply Lemma 10.3.7 and the inductive hypothesis. O

Corollary 10.3.3 Forany T € Z,(X, a),
vy, (T) € Ay, (T) C Ay, (@).

Proof When T is a Kéhler current, this follows from Theorem 10.3.3.
In general, by definition, vy, (T) = vy, (T + w) for any Kihler form w on X. It
follows that
Vy. (T) S Ay. (T + w)
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for any Kéhler form w. It follows that vy, (T) € Ay, (T). O

Theorem 10.3.4 For any T € Z.(X, @),

Ay, (T) = {w.(S): S € Zi(X,a),S <7 T}. (10.43)

In particular, 3

Ay, (@) = {w.(S): S € Z:(X,a)}. (10.44)

Remark 10.3.3 We expect that the closure operation in (10.43) is not necessary. This
problem is closely related to the Dirichlet problem of the trace operator, see Page 314
for more details.

Proof The 2 direction in (10.43) follows from Corollary 10.3.3 and Theo-
rem 10.3.2(2).
Let us write

Dy, (T) ={w.(S): S € Zi(X,),S <7 T}

for the time being.
Step 1. Assume that 7 has analytic singularities. We have

Ay, (T) 2Dy, (T)

Q{Vy.(S) : Z+(X,a) > S has gentle analytic singularities, S < T}.

It follows easily from Theorem 10.3.1 that the volume of the right-hand side is equal
to the volume of Ay, (T'), so (10.43) holds.

Step 2. Assume that T is a Kéhler current. Take a quasi-equisingular approximation
T; € Z.(X,a) of T. Next we use the language of psh functions. Let ¢;,¢ €
PSH(X, 6) be the potentials corresponding to 7}, T for each j > 1.

Fix an integer N > 0. For large enough j > 1, we can find ¢ € PSH(X, 6)~¢ such
that

Polelr = (1-N"Ng; + N7y,
The existence of y; follows from Lemma 2.3.1. It follows that
Dy,(T) 2Dy, (0+dde (1= N, + N7y )
2(1 - N"YDy,(Tj) + N"' Dy, (6 +dd°y).

By Theorem C.1.1, up to replacing T; by a subsequence, we may guarantee that
Dy, (6 + dd“y ;) admits a Hausdorff limit contained in Ay, (@) as j — co. Let j — oo

3 According to Ya Deng, the definition (10.44) of Ay, (@) was what Demailly originally proposed
for Deng’s thesis. Due to the lack of the techniques of the trace operators, Deng had to work with
analytic singularities instead. As a consequence, the transcendental analogue of Proposition 10.2.9
is not obvious. This is one of the two main technical difficulties of Theorem 10.3.1. This problem
also led me to finally develop the theory of trace operators, a notion I had in mind for several years.
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and N — oo then it follows that

(o]

Dy, (T) 2 | Dr.(T)).

Jj=1

By Lemma C.1.3,

Dy, (T) 2 ﬂ Dy (T;) = ﬂ Dy, (T}).
j=1 J=1

Therefore, by Step 1, we conclude that

Av (1) = (A (T)) = () Dr.(T}) € Dr.(D).
j=1 j=1

The reverse direction is already known.

Step 3. Finally, consider the general case. Take a Kéhler current 77 € Z, (X, @)
more singular than 7. Foreach € € (0, 1). The existence of 7’ is proved in Lemma 2.3.2.
We know that

Ay, (1 —€)T +€T’) = Dy, ((1 — €)T +€T’) C Dy, (T).
Letting € — 0+ and using Proposition 7.2.3, we find that
Ay.(T) € Dy, (T).

As the other inclusion is already known, we conclude. O
Corollary 10.3.4 Assume that T € Z.(X, a)s. We have

rgg(n Ay, (T) = vy, (T). (10.45)
Proof By Theorem 10.3.4, it is clear that

min Ay, (T) <iex vy, (T)-

On the other hand, we clearly have

Ay, (T) € Ay (T + w)
for any Kéahler form w on X. It follows that

min Ay, (T) Zjex min Ay, (T + w).

By Theorem 10.3.3, the right-hand side is just vy, (T + w) = vy, (T). We conclude the
proof. O
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10.4 Okounkov test curves

Fix n € N. Let A, A’ C R" be convex bodies with positive volumes. The standard
Lebesgue measure on R" is denoted by vol.
We refer to Appendix C for the notations %, and dpays.

Definition 10.4.1 An Okounkov test curve relative to A consists of

(1) a number A« € R and
(2) an assignment (—o0, Apax) 3 T — Ap € K, satisfying

a. the assignment 7 — A is a decreasing and concave?;
d aus
b. we have A, L Aas T — —oo.
The set of Okounkov test curves relative to A is denoted by TC(A).
An Okounkov test curve A, relative to A is bounded if A, = A when 7 is small

enough. The subset of bounded Okounkov test curves is denoted by TC™(A).
An Okounkov test curve A, relative to A is said to have finite energy if

Amax
E(A.) = n!Apax Vol A + n!/ (volA; — vol A) dr > —oo0. (10.46)

—o00

The subset of Okounkov test curves with finite energy is denoted by TC!(A).
Given A, € TC(A) and A, € TC(A"), we say As < A7 if Amax < Al and for any
T < Amax, We have A; C AL

Sometimes it is convenient to introduce

A = ] Ar € %Ko (10.47)

T<Amax

We shall always make this extension in the sequel when we talk about Ap__ . Observe

that (—o0, Amax] 2 7 > Ay is still concave.

max *

Proposition 10.4.1 Any Okounkov test curve (A;)r<p,,, relative to A is continuous
in T. Moreover, vol A > 0 for all T < Apax.

Proof We first claim that volA;, > 0 for all 77 < Apax. By Condition (2b) in
Definition 10.4.1 and Theorem C.1.2, we know that vol A;» > 0 when 7"’ is small
enough. Fix one such 7”/. We may assume that 7"/ < 7’ since otherwise there is nothing
to prove. Next take 7”" € (7/, Amax). Take ¢ € (0, 1) such that v/ = t7"” + (1 —1)7”.
It follows that

vol Ay > vol (tApr + (1 = )Agr) = (1 = )" vol Agrr > 0.

Next we claim that vol A, is continuous for 7 < Apax. In fact, it follows from
Theorem C.1.4 that (—co, Apax) 3 7 > log vol A; is concave, but we have already
known that it is finite, hence the continuity follows.

4 Here concavity refers to the concavity with respect to the Minkowski sum.
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Ar= () Ar.

T'<T

Next we show that

The C direction is obvious. By the continuity of the volume, both sides have the same
volume and the volume is positive, we therefore obtain the equality.

Similarly, we have
A= Ar
T>T

The continuity of A; at 7 < Apax is proved. O

Definition 10.4.2 A test function on A is a function G: A — [—c0, c0) such that

(1) G is concave,
(2) G is finite on Int A, and
(3) G is upper semicontinuous.

A test function G is bounded if G is bounded from below.
A test function G has finite energy if

E(G) = n!/ch > —oo. (10.48)
A

Definition 10.4.3 Let A, € TC(A). We define its Legendre transform as

G[Ad]: A — [-00,00), at>sup{7 < Apax :a € Ar}.
Given a test function G: A — [—c0, ), we define its inverse Legendre transform
A[G]. as the Okounkov test curve relative to A defined as follows:
(1) A[G]max = sup, G, and
(2) for each T < sup, G, we set

AlGl: ={xe€eA:G = 1}.

We observe that

G[AJ](a) = max {7 < Anax : @ € A}, if G[Ad](a) > —oo. (10.49)

Lemma 10.4.1 Let Ay € TC(A). Then G[A.] defined in Definition 10.4.3 is a test
function.

Similar, if G: A — [—o0, ) is a test function, then A[G]e is an Okounkov test
curve.

Proof First suppose that A, € TC(A). We want to verify that G[A,] satisfies the
conditions in Definition 10.4.2.

We first verify the concavity. Take a,b € A. We want to prove that for any
t e (0,1),

G[AJ(ta+ (1 -1)b) > tG[AJ(a) + (1 — )G[A] (). (10.50)
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There is nothing to prove if G[A.](a) or G[A.](b) is —c0. So we assume that both
are finite. In this case, by (10.49),

a € Agla.l(a)s b € Agialb)-

Thus,
ta+(1=1)b € tAga,)(a) + (1 = DAG[A(b) € DG (A (a)+(1-1)G[A ()
We deduce that
G[Ad(ta+ (1 —1)b) = tG[As](a) + (1 —1)G[A.](D).

Therefore, (10.50) follows.

It is clear that G[A.] is finite on the interior of A. It remains to argue that G[A.]
is upper semicontinuous.

Let (a;)i>1 be a sequence in A with limit a € A. Define 7; = G[A.](a;). Let
7 = lim; 7;. We need to show that

G[AJ(a) > 7. (10.51)

There is nothing to prove if 7 = —co. We assume that it is not this case. Up to

subtracting a subsequence we may assume that 7; — 7. In particular, we can assume

that 7; # —co for all i > 1. It follows from (10.49) that a; € A, for alli > 1. Since
dHaus

A;;, — A;. By Theorem C.1.3 it follows that a € A;. Thus,(10.51) follows.
Conversely, suppose that G: A — [—o00,00) is a test function. We argue that
A[G]. is an Okounkov test curve. We verify the conditions in Definition 10.4.1.
Firstly, for each 7 < sup, G, the set A[G](7) is a convex body as G is concave
and usc. Moreover, A[G]; is clearly decreasing in 7.
Secondly, for each a € A, we can write a = lim; a; with a; € Int A. By assumption,
G is finite at a;. Thus,

a€{G> oo} = U A[G].

7<supy G

dHaus

By Theorem C.1.3, A[G]; — Aast — —oo.
Thirdly, A[G] is concave. To see, take 7, 7" < Apax, We need to prove that for any
te(0,1),
AlGlir+(1-1)r 2tA[G] - + (1 = A[G] . (10.52)

Leta € A[G];and b € A[G].. Wehave G(a) > 7 and G(b) > 7’. As G is concave,
we have G(ta + (1 —1)b) > tt+ (1 — £)7’. Thus,

ta+ (1 - t)b € A[G]tT+(1—t)‘r’

and (10.52) follows. m|
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Theorem 10.4.1 The Legendre transform and inverse Legendre transform are inverse
to each other, defining a bijection between TC(A) and the set of test functions on A.

Under this bijection, TC'(A) corresponds to test functions on A with finite energy
and TC® (A) corresponds to bounded test functions on A.

Proof Thanks to Lemma 10.4.1, in order to prove the first assertion, it only remains
to see that the Legendre transform and the inverse Legendre transform are inverse to
each other, which is immediate by definition.

It is obvious that TC* (A) corresponds to bounded test curves. Moreover, a direct
computation shows that if A, € TC(A), then

E(A.) = E(G[A.]),
concluding the TC'(A) case. O

Proposition 10.4.2 Let (A);c; be a decreasing net in K,. Consider a decreasing net
(AL);c; with AL € TC(AY) for all i € I such that there is A, € TC(A) satisfying the
following properties:

(1) Amax = lim;eg Al

max’
dHaus

(2) for any T < Amax, we have AiT — AL

Then for any a € A, we have
limG[A](a) = G[Ad] (a). (10.53)
[AS]

Note that in general,

Ac( Al

iel

Proof Fix a € A. It follows immediately from the definition of G that the net
(G[AL](a));e; is decreasing and the > direction in (10.53) holds. Let us prove the
reverse inequality. Let 7 denote the left-hand side of (10.53) for the moment. By
definition, for any € > 0 and any i € I, we have a € A% __. It follows that

(o]
acA7_..

Therefore,
T < G[Ad](a).

Similarly, for increasing nets, we have:

Proposition 10.4.3 Let (AY);c; be an increasing net in K, with Hausdor{Flimit A such
that vol A > 0 for all i € I. Consider an increasing net (AL);c; with AL € TC(AY)
foralli € I. Let Amax = lim;ey Al .. For any T < Amax, let Ay be the Hausdor{f limit
of AL. Then A, € TC(A) and

lim G[AL](a) = G[Ad](a) (10.54)
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for any a € IntA.

Proof 1t is obvious that A, € TC(A).

Fix a € Int A. Then up to replacing I by a subnet, we may assume that a € A’ for
all i € 1. By definition, the net (G[A}](a));es is increasing and the < direction in
(10.54) holds. Let us write 7 = G[A.](a) for the time being. By definition of G, for
any € > 0, we have

a€l_¢p.

The concavity of A, guarantees that
acntA_c.
It follows that there is a subnet J in [ such that for all j € J,
ae A]T-_E.

Therefore, ]
T-€ < G[A](a).

Taking the limit with respect to j and then with respect to €, we conclude the desired
inequality. O

Definition 10.4.4 Let A, be an Okounkov test curve relative to A. We define the
Duistermaat—Heckman measure DH(A,) as

DH(A,) := G[A.].(vol).
It is a Radon measure on R.
In other words, DH(A,) is the distribution of the random variable G[A,].
Proposition 10.4.4 Let A, € TC(A). Let m € Z~. Then the m-th moment of the
DH(A.,) is given by

Amax
/xm DH(A.)(x) = AL},  VOLA+m / ™ (volA; —volA)dr  (10.55)
R —

00

and
/DH(A.) = vol A. (10.56)
R

Proof In fact, (10.56) follows immediately from the definition, while (10.55) follows
form a straightforward computation:
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/xm DH(A,)(x)
R
=/G[A.](a)mdvol(a)

A

Amax
:‘/(Aﬁax—/ me_ldT) dvol(a)
A Gl[Ad](a)

=A$axvolA—M//MG(A.J(a»AmXJ(T)T”“"dvol(a) dr
R JA

Amax
=Alx VOLA —m / / " Ldvol(a) dr
—00 A\A-
Amax

=An VOLA —m / "1 (vol A = vol A;) dr.

—00

Lemma 10.4.2 Let (AY);c; be a decreasing net in K, with limit A. Suppose that
(AL);cq is a decreasing net with AL € TC(A?). Suppose that there is A, € TC(A)
such that

(1) Amax = lim;eg Afnax;
/ d aus
(2) for any T < Amax, we have Al Bl A
Then DH(AL) — DH(A,).
Proof 1t follows from Proposition 10.4.2 that
G[AL] - G[A.]

pointwisely on A. Our assertion then follows from the dominated convergence
theorem. O

Similarly, we have

Lemma 10.4.3 Let (A?);c; be an increasing net in K, with Hausdorff limit A such
that vol A > 0 for all i € I. Consider an increasing net (AL);c; with AL € TC(AY)
foralli € I. Let Ae € TC(A) be defined as

(1) Amax = lim;es Afnaxf )
(2) for any T < Amax, A is the Hausdor{f limit of A*.

Then we have '
DH(A.) — DH(A,).

Proof 1t follows from Proposition 10.4.3 that
G[A] = GA.]

almost everywhere on A. Our assertion then follows from the dominated convergence
theorem. O
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The main source of Okounkov test curves is the following:

Theorem 10.4.2 Let X be a connected compact Kéihler manifold and 0 be a closed
smooth real (1, 1)-form on X representing a big cohomology class a. Let Y, be a
smooth flag on X and " € TC(X, 0)~g. Then the map

(—OO, Fmax) 25T Ay. (9, F)T = Ay.(e, FT)

defines an Okounkov test curve relative to Ay, (0,1'_).
If furthermore T' € TCHX,60;T_o) (resp. TC®(X,0;T_)), then we have
Ay,(6,T) € TC' (A, (6. T-w)) (resp. TC* (Ay, (6, T-w))).

See Definition 9.1.1 and Definition 9.1.2 for the relevant definitions.

Proof Consider I' € TC(X, 6)~0. We need to verify that Ay, (6,T") is an Okounkov
test curve relative to Ay, (6, '_«).

First observe that 7 +— Ay, (6, ;) is concave and decreasing for 7 < I'.«. This is
a direct consequence of Theorem 10.3.4.

Next we show that as 7 — —oo, we have

d aus
Ay,(0,T7) =25 Ay, (0, o).

It suffices to compute

1 1
lim volAy,(8,T;) = — lim vol(6 +dd°T;) = — vol(8 + dd°T"_,)
T——00 nl r—-c n!
=vol Ay, (0,T_),

where we applied Theorem 10.3.2 and Theorem 6.2.5.
When " € TC® (X, 0;T_), it is clear that Ay, (8,T") € TC*(Ay, (6,T-)).
When I € TC! (X,0;T_), by Theorem 10.3.2(1), (9.4) and (10.46), we have

E'~(I') = E(Ay,(6.T)).
SoT e TC!(Ay, (0, T_w)). O

Remark 10.4.1 As a special case of this construction, suppose that I' is the test curve
induced by a test configuration as in Example 9.3.1 and Remark 9.3.1, then for any
T < I'max, Ay, (6,T1) is the Okounkov body of a graded linear series

(e8]
D7
k=0

where ¥ is the filtration induced by the test configuration. See [ , Theorem 5.28]
for the details. In particular, in this case, our theory of partial Okounkov bodies
recovers the Okounkov bodies of the filtered linear series in the sense of [ ].



Chapter 11
The theory of b-divisors

The mathematician’s patterns, like the painter’s or the poet’s must
be beautiful; the ideas, like the colors or the words must fit
together in a harmonious way. Beauty is the first test: There is no
permanent place in this world for ugly mathematics.

— Godfrey Harold Hardy"

¢ Godfrey Harold Hardy (1877-1947) was a British mathematician
famous for his work in number theory and mathematical analysis.
Apart from his research, Hardy was a strong advocate for pure
mathematics and believed that mathematics should be pursued for
its own beauty, not just for practical use.

He remained lifelong unmarried and dedicated much of his
life entirely to mathematics, fitting into the common stereotype of
a mathematician.

In this chapter, we study the theory of algebraic b-divisors. In Section 11.2, we prove a
Chern—Weil type formula, which relates volumes of currents to intersection numbers.
In Section 11.3, we prove that the algebraic partial Okounkov bodies constructed
in Chapter 10 have natural interpretations in terms of the b-divisors.
All results in this chapter admit transcendental generalizations, as detailed in

[ I

11.1 The intersection theory of b-divisors

In this section, we briefly recall the intersection theory of Dang—Favre [ ].
Let X be a connected smooth projective variety of dimension 7.

Definition 11.1.1 A birational model of X is a projective birational morphism
n:Y — X from a smooth variety Y. A morphism between two birational models
n:Y > Xand’: Y — X is amorphism ¥ — Y’ over X. When such a morphism
exists, it is necessarily unique. In this case, we say Y dominates Y’.

We write Bir(X) for the isomorphism classes of birational models of X. It is a
directed set under the partial ordering of domination.

We will usually be sloppy by omitting 7 and say Y is a birational model of X.

We write NS (X) for the Néron—Severi group of X and NS' (X)g for NS! (X) @z K
for any subfield K of R. Given &, 8 € NS!(X)x, we write a < B if 8 — a is pseudo-
effective.

Definition 11.1.2 A Weil b-divisor D over X is an assignment that associates with each
(nr: Y — X) € Bir(X) a class Dy = D, € NS'(Y)g such that when 7’ : ¥/ — X
dominates 7 through p : Y/ — Y, we have

233
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p*Dy/ = Dy.

The linear space of Weil b-divisors over X is denoted by bWeil (X).
A Weil b-divisor D on X is Cartier if there is (r: Y — X) € Bir(X) such that for
any (n’ : Y" — X) € Bir(X) which dominates 7 through p : Y’ — Y, we have

Dyf = p*Dy.

In this case we say D is defermined on Y or D has an incarnation Dy on Y, or D is
realized by (Y, Dy) and write D = D(Dy). We also say D is a Cartier b-divisor. The
linear space of Cartier b-divisors is denoted by bCart(X).

Our definition simply means

bWeil(X) = lim NS!(Y)z,
(m: Y>X)eBir(X)
) ' Ly (11.1)
bCart(X) = lim NS (Y)g,

(m: Y—>X)eBir(X)

in the category of vector spaces.

We endow bWeil(X) with the projective limit topology, then the first equation
in (11.1) becomes a projective limit in the category of locally convex linear spaces.
Clearly, bCart(X) is dense in bWeil(X).

Definition 11.1.3 A Cartier b-divisor D over X is nef (resp. big) if some incarnation
is nef (resp. big).

A Weil b-divisor D over X is nef if it lies in the closure of the set of nef Cartier
b-divisors.

Write bWeil,r (X) for the set of nef Weil b-divisors over X.

A Weil b-divisor D over X is pseudo-effective if for all (n: Y — X) € Bir(X),
Dy > 0.

We introduce a partial ordering on bWeil(X):

D < D’ if and only if Dy < Dy, forall (7: ¥ — X) € Bir(X).

We summarise Dang—Favre’s results:
Theorem 11.1.1 ([ , Theorem 2.1]) Let D € bWeil,et(X). Then there is a
decreasing sequence (D;);cy of nef Cartier b-divisors such that

D= hle
iel

Definition 11.1.4 Let D; € bWeilpe;(X) (i = 1,...,n). We define (Dy,...,D;) e R
as follows: Take (7: ¥ — X) € Bir(X) such that all D;s are determined on Y. Then
define

(Dl,...,Dn) = (Dl’y,...,Dmy). (112)

The intersection number (D, ...,D,) does not depend on the choice of Y.
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Theorem 11.1.2 ([ , Proposition 3.1,Theorem 3.2]) There is a unique pairing
(bWeilyet (X))" — Rxo

extending the pairing in Definition 11.1.4 such that

(1) The pairing is monotonically increasing in each variable.
(2) The pairing is continuous along decreasing nets in each variable.

Moreover, this pairing has the following properties:

(1) It is symmetric, multilinear.
(2) It is upper semicontinuous in each variable.

Definition 11.1.5 We define the volume of D € bWeilper(X) by

volD = (D,...,D). (11.3)

We say D € bWeilyet(X) is big if volD > 0.

Note that the definition of bigness is compatible with the definition in Definition 11.1.3
in the case of Cartier b-divisors.

Lemma 11.1.1 Let D € bWeiler(X), then

volD = inf vol Dy = lim vol Dy.
(Y—>X)eBir(X) (Y—>X)eBir(X)

Proof By Theorem 11.1.1, we can find a decreasing sequence (ID'); of nef Cartier
b-divisors over X converging to D. For eachi > 1,

vol D' = inf volDj,.
Y—-X

It follows from Theorem 11.1.2 and the continuity of the volume functional [ ,
Corollary 2.6] that

volD =inf inf volD} = inf volDy.
i>l Y-X Y—-X

On the other hand, as in general push-forward will increase the volume, we see that

vol Dy is decreasing in Y, so we conclude. O

11.2 The singularity b-divisors

Let X be a connected smooth projective variety of dimension n. Let @ € NS'(X)g
be a big class and T be a closed positive (1, 1)-current in .

Fix a closed real smooth (1, 1)-form 6 in [7] and we can write T = 8, for some
¢ € PSH(X, 0).
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Definition 11.2.1 Define the singularity divisor Singy T of T as the formal sum

Sing, T = Z v(T,E)E, (11.4)
E

where E runs over all prime divisors contained in X.
The singularity divisor is not a Weil divisor in general.

Note that this is a countable sum by Siu’s semicontinuity theorem Theorem 1.4.1.
Although Singy T is not a divisor in general, it does define a closed positive (1, 1)-
current due to Siu’s decomposition Lemma 1.7.1. Moreover, the numerical class
[Singy T] in NS (X)g is also well-defined by treating the sum in (11.4) as a sum of
numerical classes [ , Proposition 1.3].

Definition 11.2.2 The singularity b-divisor Sing T of T is the b-divisor over X defined
by
(SingT)y = [Sing, n*T],

where (7: Y — X) € Bir(X).
Define
D(T) := D(a) — SingT.

Here D(«) is the Cartier b-divisor determined by @ on X.
We are ready to derive the first version of the Chern—Weil formula.
Theorem 11.2.1 The b-divisor D(T) is a nef b-divisor and if in addition vol T > 0,
volD(T') = volT. (11.5)

Proof Step 1. We first handle the case where T has analytic singularities. After
replacing X by a modification, we may assume that 7" has log singularities along an
effective Q-divisor D on X. Namely, we can write

T =[D] +R,

where R is a closed positive (1, 1)-current with bounded potential. In this case,
D(T) = D(a — D), which is nef. In order to prove (11.5), it suffices to show that

/T" = ((@ = D)), (11.6)
X

which is obvious.
Step 2. Assume that 7" is a Kdhler current. Take a quasi-equisingular approximation
(Tj)j of T in Z.(X, 6). By Theorem 6.2.5, we have

lim volT; = volT.

Jj—ooo

In view of Step 1 and Theorem 11.1.2, it remains to show that D(7;) — D(T) as
J — oo. In more concrete terms, this means that for any (7: ¥ — X) € Bir(X),
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[Singy (7°T;)] — [Singy (7"T)]

in NS! (Y)g. This obviously follows from Theorem 6.2.4 if Sing(*T)) has only finitely
many components. In general, fix an ample class w in NS!(Y). We want to show that
for any € > 0, we can find jy > 0 so that when j > jj,

[Singy (7°T;)] > [Singy (7°T)] — ew. (11.7)

Write

o)

[Singy ('T)] = )" aiE;,  [Sing(x'T))] = ) alE:.
i=1 i=1

Then a! < a;. We can find N > 0 large enough, so that

N
[Singy (7*T)] < Z a;E; + gw.

i=1

By Theorem 6.2.4, we can take jj large enough so that for j > jj,

_aE < £ =
(a; a‘)El_ZNw’ i=1,...,N.

Then (11.7) follows.
Step 3. Assume that vol 7 > 0.
By Lemma 2.3.2, we can take a Kihler current S € @ such that S < T. Consider

€S+ (1 —¢)T for e € (0,1). When € — 0+, we have €S + (1 — )T ﬁ) T. Using
Theorem 6.2.5, we reduce immediately to the situation of Step 2.

Step 4. We handle the general case.

Take a Kihler form w on X From Step 3, we know that for any € > 0, D(T) +eD(w)
is a nef b-divisor. It follows immediately that D(7) is nef. O

Corollary 11.2.1 Assume that volT > 0, then T is I -good if and only if

vol D(T) = / ™.
X

Proof This follows from Theorem 11.2.1 and Theorem 7.3.1. O

Theorem 11.2.2 The map D: PSH(X,0) — bWeil(X) is continuous. Here on
PSH(X, 0) we take the ds-pseudometric.

Proof Let ¢; € PSH(X, 0) be a sequence converging to ¢ € PSH(X, 8) with respect
to dg. We want to show that

D(6 +dd®¢;) — D(T).

ds d
As @; = ¢ implies that 7% p; = n*¢ forany (7: Y — X) € Bir(X), it suffices to
prove
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[Singy ¢;] — [Singy ¢] in NS'(X)g. (11.8)

Write

Singy ¢; = ZafE, Singy ¢ = ZaEE,
E E

E

where E runs over all prime divisors on X. By Theorem 6.2.4, alE — a"™ asi — co.

When the number of E’s is finite, (11.8) follows trivially. Otherwise, we write the
prime divisors on X having positive coefficients in either Singy ¢; or Singy ¢ as
E\,E,,....

We fix a basis ey, . . ., e of the finite-dimensional vector space NS! (X)g, so that
the pseudo-effective cone is contained in the cone )’ ; R>oey. Write

N
Ei=) flea, i=12,.. .

d=1

Then we need to show that foranyd =1, ..., N,

(o] (o)
lim E a’fd = E a® fa.
i—o t7J J
J=1 J=1

This follows from the dominated convergence theorem, since

(o)

Zafj[Ej] <a, ZaE-"[Ej] <a.
j=1

j=1
A mixed version of Theorem 11.2.1 is also true:

Theorem 11.2.3 Let Ty, ..., T, € Z.(X) such that volT; > 0 for eachi=1,...,n.
Then

(D(T1Y),...,D(Ty)) = /T1 A ATy (11.9)
b'¢
If the T;’s are I -good, then equality holds.

Proof This follows from Theorem 11.2.1 and Proposition 7.2.1. O

11.3 Okounkov bodies of b-divisors

Let X be a connected projective manifold of dimension n and (L, &) be a Hermitian
pseudoeffective line bundle on X with voldd“/ > 0.

Fix a smooth flag ¥, on X. Let v = vy, : C(X)* — Z" be the valuation associated
with Y.

Theorem 11.3.1 The partial Okounkov body Ay, (L, h) admits the following expres-
sion:
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Av.(L.h) = vy, (ddh) + lim Ay, (c1(x"L) - [Singz (x"W)]),  (11.10)

where 1 runs over the directed set of projective birational morphisms to X with Z
normal.

Here the limit is a HausdorfF limit. Recall that vy, (dd°4) is defined in Definition 10.1.3.
This theorem suggests that we define

Ay, (D(dd°R) = Tim Ay, (c1(x"L) - [Singz (x"h)]). (11.11)

Then one could rewrite (11.10) as
Ay, (L, h) = Ay, (D(dd°h)) + vy, (dd°h),

which formally resembles (10.14).

Remark 11.3.1 The formula (11.11) shows that the partial Okounkov bodies are
algebraic objects in nature (modulo the transcendental term vy, (dd°A) of course).

One should be able to prove the existence of the limits like (11.11) over other base
fields, at least after assuming the existence of resolution of singularities. If so, one
would get an interesting extension of the theory of partial Okounkov bodies.

Lemma 11.3.1 Let T be a closed positive (1, 1)-current on X. Then we have
lim _ vy, (Sing, (7*T)) = vy, (T), (11.12)
n: Z—X

where 1t runs over the directed set of projective birational morphisms to X with Z
normal.

Here the valuation of currents is defined in Remark 10.1.2.

Proof Let us write v = vy,.

Given : Z — X, we let Wi denote the strict transform of Y; in Z. The restrjgtion
m1: Wi — Y is necessarily birational due to Zariski’s main theorem. Let W be
the normalization of W;. Let 71 denote the normalization of 7| so that we have a
commutative diagram

We will argue by induction. The case n = 0 is trivial. Assume that n > 0 and the
case n — 1 is known.
We may clearly assume that v(7, Y;) = 0. By definition, we have

v(T) = (0, u(Try, (7)),

where y denotes the valuation induced by the flagY; 2 Y, 2 --- 2 Y.
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Observe that birational morphisms of the form 7y : ‘717; — Yj are cofinal in the
directed set of projective birational morphisms of Y;. This is obvious since the
modifications given by compositions of blow-ups with smooth centers on Y; are
cofinal. It suffices to blow-up X with the same centers.!

Therefore, by the inductive hypothesis applied to Try, 7', we find

u (Try, (1)) = n;liznlxﬂ (Singw1 (1" Try, T)) .
It suffices to argue that for a fixed 7: Z — X,

V(Sing, (7°T)) = (o, p (smngl 71 (Try, (T)))) . (11.13)
From Lemma 8.2.1, we know that
71" Try, (T) ~p Trwy, (7°T).

So we only need to prove

v(Sing, (x°T)) = (0, u(Singg; (Trw, (7)),
This is reduced to the following statement:
Trw, Sing, (7*T) ~p Singg- (Trw, (m*T)). (11.14)

In order to prove this, we may add a Kahler form to 7 and assume that 7" is a Kéhler
current. Take a quasi-equisingular approximation (7;); of T. Then (7*T;); is a
quasi-equisingular approximation of 7*7. Thanks to Proposition 8.2.2, we have

de
Trw, (7°T}) =, Trw, (7°T)

Therefore, as in the proof of Theorem 11.2.2, we find that Sing, and Singg;- are both
continuous along this sequence as well. So we finally reduce to the case where T has
analytic singularities.

In this case, arguing as before, we may assume replace 7= by a modification
dominating it so that 7*T ~p [D] for an effective Q-divisor D on Z, in which case
(11.14) is clear. O

Proof (The proof of Theorem 11.3.1) It would be more convenient to use the lan-
guage of currents. We shall write 7 = dd°/h and v = vy,.

Instead of arguing (11.10), we shall argue a slightly more general version: For any
@ € NS (X)g, we have

Av.(T)=v(T)+ lim Ay, (e~ [Sing,(r'T)]). (11.15)

LIt is in this inductive step that we are forced to introduce singularities, as Wj is not smooth in
general.
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We argue by induction on n. The case n = 0 is of course trivial. Let us assume that
n > 0 and the result is known in dimension n — 1.

We may replace T by T — v(T, Y1)[Y1] and @ by @ — v(T,Y})[Y1], so that we may
reduce to the case where v(7,Y;) = 0.

For any projective birational morphism 7: Z — X with Z normal, it follows from
Theorem 10.3.4 (which also holds for a normal variety, as can be seen after passing
to a resolution) that we have

Ay, (m*a = [Sing, (7*T)]) = {v(S) : S € n*a — [Sing, (x*T)]}.

Therefore,

Ay, (n*a - [Sing, (n*T)]) +v(Sing, (7*T)) € {v(S) : S € @, 7*S > Sing, (7*T)}.

We observe that the right-hand side is decreasing with respect to &, which together with
Lemma 11.3.1 implies that the net of convex bodies Ay, (¢ (7*L) — [Sing, (7*T)])
for various Z is uniformly bounded. Suppose that A is the limit of a subnet. Then we
have

A+v(T) c{v(S):Seci(L),S =7 T}
As shown in Theorem 10.3.4, the right-hand side is exactly Ay, (T'). So

A+v(T) C Ay, (T).

But observe that both sides have the same volume, as computed in Theorem 10.3.2
and Theorem 11.2.1. So equality holds.

It follows from the Blaschke selection theorem Theorem C.1.1 that the limit in
(11.15) exists and (11.15) holds. O
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Applications



In this part, we explain a few applications of the theory developed in this book.

In Chapter 12, we develop the pluripotential theory on big line bundles on toric
varieties. This theory depends crucially on the theory of partial Okounkov bodies
developed in Chapter 10.

In Chapter 13, we develop the transcendental theory of non-Archimedean metrics
based on the theory of test curves developed in Chapter 9.

In Chapter 14, we prove the convergence of partial Bergman measures.



Chapter 12
Toric pluripotential theory on big line bundles

C’est ’harmonie des diverses parties, leur symétrie, leur heureux
balancement; c’est en un mot tout ce qui y met de ['ordre, tout ce
qui leur donne de ’unité, ce qui nous permet par conséquent d’y
voir clair et d’en comprendre [’ensemble en méme temps que les
détails.

— Henri Poincaré” , L avenir des mathématiques

¢ Henri Poincaré (1854-1912) was a French mathematician, physi-
cist, and philosopher of science. He is considered one of the
greatest mathematicians of all time and a pioneer of several
modern mathematical fields. He also played a key role in the devel-
opment of special relativity, and was one of the first to understand
the deep connection between mathematics and physics.

In this chapter, we develop the toric pluripotential theory on big line bundles. Our
development here is based on the theory of partial Okounkov bodies developed in
Chapter 10. We will deduce two non-trivial consequences from the general theory:
Corollary 12.2.2 and Theorem 12.2.2. The author does not know how to prove either
result without relying on partial Okounkov bodies.

12.1 Toric setup

Let T be a complex torus of dimension n with character lattice M and cocharacter
lattice N. Some basic terminologies are recalled in Section 5.1. Recall that T, is the
compact torus contained in 7 (C).

Consider a rational polyhedral fan ¥ in Ny corresponding to an n-dimensional

smooth toric variety X.
D= Y a,D,

Let
peX(l)

be a T-invariant big divisor on X. Then Pp C Mg be the polytope! generated by
m € M such that

D +div ™ > 0.
In view of [ , Proposition 4.1.2], we have
PDz{meMR:(m,up)Z—ap VpeZ(l)}. (12.1)

Since we have assumed that D is big, Pp is n-dimensional.

! Note that Pp is not necessarily a lattice polytope, see [ , Example 10.5.4].

245
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Let L = Ox(D). Note that replacing D by a linearly equivalent divisor amounts
to replacing D by an integral translation.

Recall that for each p € X(1), u,, denotes the ray generator of p. Let {ms}sex
denote the Cartier data associated with D. In other words, foreacho € X, m, € M
satisfies that

(Mg, up) =—a,, Vpe€o(l).

The element m, € M is well-defined modulo
M(o) =0t nM, (12.2)

where
ot ={meMg:{(mu)=0 Yueo}.

Moreover, if 7 is a face of o, then
mye =me mod M(T). (12.3)

See [ , Theorem 4.2.8]. In particular, for an n-dimensional o € X, the element
m is uniquely determined.
Note that for any n-dimensional face o in X and any p € o (1), we have

(m—-mg,u,) >0, VmeP, (12.4)

as a consequence of (12.4) and (12.1).
Recall that
Dly,, =div(x""")lu, (12.5)

forall o € Z, where U, is the affine subvariety of X corresponding to o. See [ ,
Proposition 4.1.2].

Next consider a T-invariant irreducible subvariety Y C X. Since X is smooth, so
is Y. Let o be the cone in X corresponding to Y. We observe that o corresponds to a
face QO of Pp:

Qs ={mePp:(muy)=-a, Ypeo(l)}. (12.6)

The dimension of o is not necessarily equal to the codimension of Q as we will see
in Example 12.1.2.
We will keep two examples in mind.

Example 12.1.1 In this case, X is the fan in Fig. 12.1 consisting of three 2-dimensional
cones oy, o and o»; three 1-dimensional cones o4, 05 and 0; one 0-dimensional
cone oy.

The fan X is just the fan of X = P?. Under the orbit-cone correspondence, we have

Do-l ={[11010]}’ Do‘zz{[o:l:o]}’ D‘T3:{[0:0:1]}’
Do, ={[0: X1 : Xo] : X1 X2 #0}, Doy ={[X0:0: X2] : XoXo # 0},
Dy, ={[Xo: X1 :0] : XoX; #£0}, D, =P~
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g,

Jo

0%

Fig. 12.1 The fan of P?

In particular, (1) = {04, 05, 0% }. We shall take
D=D,,.

In other words,
Ao =05 =0, ag, =1.

Note that the ray generators are given by
g, =(-1,-1), uss =(1,0), ug, =(0,1).
It follows that
Pp ={m=(m,mp) € R?: mp+my < 1,my >0,mp > 0}.

Therefore, Pp is just the polytope in Fig. 12.2 . In this case, the Cartier data for
2-dimensional cones are given as follows:

mey, = (O’ 0)’ Mg, = (1, 0), Mgy = (0, 1),

while the remaining Cartier data are determined by (12.3).
In this case, L = Ox (D) = Op2(1). Hence the line bundle L is ample.
We also observe that
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LAY

~

Fig. 12.2 The polytope Pp

Qs ={(0,0)}, Qo ={(1,0)}, Qoy={(0,1)},

Qo, ={(m1,my) :m; >0,my >0,m; +my =1},
Qo ={0} x [0,1], Qg =[0,1] x {0},
QO’() :PD'

Next we give a non-ample example.

Example 12.1.2 Let X be the fan shown in Fig. 12.3. Comparing with our previous

g

0%

Fig. 12.3 The fan of P? blown-up at the origin
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example Fig. 12.1, we have divided o from the middle, giving rise to two additional
2-dimensional cones o’{ and 0'{', and one additional 1-dimensional cone o07.

The corresponding X = BlgP? is just the blow-up of P? at the origin 0 and hence
L =n*Op(1). Let m: X — P? denote the blow-up morphism. Let

D =Dy,

Then D is the pull-back of the divisor D in Example 12.1.1. Note that D is not ample,
since it has degree O on the exceptional divisor.
In this case, we have
%(1) = {04, 05,06, 07},

and D ., is just the exceptional divisor.
The corresponding ray generators are

Ugy, = (_1’_1)’ Ugs = (1’0)’ Ugg = (0’ 1)’ Uogy = (1’ 1)’
while
mo‘f = mo‘{’ = (O’ O)» mO’z = (1’0)9 m0'3 = (O’ 1)

Therefore, Pp is the same as in Fig. 12.2.
We also observe that

Qo ={(0,0)}, Qsr ={(0,0)}, Qo ={(0,0)}
Qs ={(1,0)}, Qo ={(0,1)},

Qo ={(my,mz) :my > 0,my >0,my +my =1},
Qo5 ={0} x [0,1], Qe =[0,1] x {0},

QO’() =PD-

12.2 Toric partial Okounkov bodies

We continue to use the notations in Section 12.1.
We shall fix a T.-invariant Hermitian metric 2 on L. Let 8 = ¢|(L, h). Fix a
smooth function Fg: Ng — R such that

0 = dd° Trop™ Fy.

Note that Fy is well-defined up to a linear term.

Next, we make an additional requirement on Fy to fix the linear term. Let sp be a
rational section of L corresponding to D. Then sp is well-defined up to a non-zero
multiple. By Proposition 1.8.1, we have

dd° (Trop* Fg +log |sD|i) =0
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on T'(C). Therefore, this function is the tropicalization of a linear function. Therefore,
after adding a linear function to Fy, we can guarantee that

Trop* Fg + log |sD|i =0 (12.7)

from now on. Note that a different choice of sp means adding a constant to Fg.

12.2.1 Newton bodies

Let PSH (X, 6) be the set of T,-invariant functions in PSH(X, 0).
Definition 12.2.1 A function ¢ € PSH (X, 8) can be written as
¢lr(c) = Trop" f
for some unique f: Ng — [—o0, ). Then we define F,: Ng — R as follows:

Fy=Fg+f. (12.8)

Observe that F, is a convex function and takes finite values by Lemma 5.2.1. In
particular, f is also real-valued. Once h and D are fixed, F, is well-defined up to a
constant since Fy is.

Definition 12.2.2 Let ¢ € PSH (X, 0), we define its Newton body as

A8, ¢) = VF,(Nr) € Mg.

Note that A(8, ¢) is independent of the choice of sp. It depends on the choice of
D: A different choice of D corresponds to a translation of A(8, ¢). We will see in a
while (Theorem 12.2.1) that once D is fixed A(6, ¢) depends only on the current 6.
Hence, the choice of 4 is irrelevant.

Proposition 12.2.1 Let ¢ € PSH (X, 0), then
Trop, (0lr(c) + dd°¢lr(c))” = MAR(F,). (12.9)
In particular,

/Xe'; = nlvol A6, ¢) (12.10)

Proof Let Fyy be a smooth convex function on N such that dd° Trop* Fy can be
extended to a Kéhler form on X. For example, Guillemin’s construction (5.5) with
respect to a suitable Delzant polytope gives such an example.
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Then for any large enough C > 0, 6 + Cw is a Kihler form. So we conclude from
Proposition 5.2.5 that

TI‘Op* ((9 + Cw)|1(c) + ddcgolT(@))n = 1\/IAR(F‘)¢7 + CF()).

Since both sides are polynomials in C, we conclude that the same holds for C = 0.
Therefore, (12.9) follows.
(12.10) is a direct consequence. O

12.2.2 Partial Okounkov bodies

There are some canonical choices of smooth flags in the toric setting.
Since X is smooth and projective, we could choose a full-dimensional cone o in
X with rays p1,...,pn € Z(1) such that u,,, ..., u,, form abasis of N. Define

Yi=Dp N---ND,., i=1,....n.
Then Y, is a smooth flag on X. Let
O:M-Z", meo ((m—me,up),....(m-mg,up,)). (12.11)

Then @ is an isomorphism of lattices. It induces an Z-affine isomorphism

Or: Mr — R".
Proposition 12.2.2 We have
kv, (HO(X, Lk)x) . (PD N k—lM) (12.12)
for any k € Z~. In particular,
Ay, (L) = @r(Pp). (12.13)

Proof We firstreduce to the case where D|y,. = 0. Infact, replacing D by D+div y™<
would result in changing Pp to Pp — m . So in view of (12.5), we may assume that
D|y, =0and hence ms = 0.

Fix k € Z.o. Let s € H°(X,L*) be a non-zero section, say y™ for some
m € kPp N M. The zero-locus of s on U, is given by

n
kD + Z(m, Uy YDy,
i=1

see [ , Proposition 4.1.2]. Therefore,

vy, () = ((myup, ), ..., (myup,)) = ®(m).
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So (12.12) follows. O

Example 12.2.1 Let us continue the example of P? in Example 12.1.1. We use the
same notations. Take o as our reference cone, and p; = 05, p2 = 06. Then

Vi ={[X0:0:X3]: XoXo #0}, Yo ={[Xo:0:0]: Xp # 0}.
The map @ is given by
@ (my,mz) = (my, my).

In this case, we see easily

Ay, (O (1)) = Pp
is the polytope in Fig. 12.2.
Example 12.2.2 Let us continue the example of BlyP? in Example 12.1.2. This time,
let us take 0'{ as our reference cone and p| = 05, py = 0. Then Y| is just the strict
transform of the line {[Xp : 0 : X5] : XoX» # 0} in P2, while Y, is the point Y| N E,

where E is the exceptional divisor.
In this case, the map @ is given by

®(my,my) = (m1,my +ma).

We find that
Ay, (BloP?, 7% 052 (1))

is the polytope in Fig. 12.4.

>,

Fig. 12.4 The Okounkov body Ay, (BlgP?, 7% Oz2 (1))

Note that it differs from the polytope in Example 12.2.1.2

2 Although these examples are almost trivial, they did confuse me a lot at the beginning of 2023,
when Kewei Zhang, Tamas Darvas and I were collaborating on [ ]. At that time, Kewei
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Theorem 12.2.1 Let ¢ € PSHy (X, 0)~0, then

Or (A6, ¢)) = Ay, (0. ¢). (12.14)

In particular, once D is fixed, the Newton body A(6, ¢) depends only on the current
6, not on the specific choice of 4 and ¢.

Proof We firstreduce to the case where D |y, = 0. In fact, changing D to D +div y™<
would result in changing Fg to Fg — m . Hence, F, changes to F, — m . Therefore,
A(6, ¢) becomes A(0, ¢) — m. Taking (12.5) into consideration, we may assume
that m, = 0.

Step 1. We first reduce to the case where 6, is a Kihler current.

By Lemma 2.3.2, we can find € PSH(X, 6) such that y < ¢ and 6, is a Kéhler
current. Taking the average along 7., we may assume that i is T -invariant.

For each t € (0, 1), we let

or =1 =Dy +te.

Suppose that Kihler current case is known. Then we get

@p (A6, ¢1)) = Ay, (6, ¢1)

for any ¢ € (0, 1). It follows from Theorem A.4.2 that

DR (A6, 9)) 2 Pr (A6, ¢1)) = Ay, (6, ¢1)

for any ¢ € (0, 1). Thanks to Theorem 10.2.2, we have

®r (A(6, 9)) 2 Ay, (6, ¢).

Comparing the volumes of both sides using Proposition 12.2.1 and (10.11), we find
that

n!vol @y (A(6, ¢)) = / 0, = vol8, = n!vol Ay, (6, ¢).
X

In particular, we conclude (12.14).

Step 2. We handle the case where 6, is a Kahler current.

Let (¢;); be a quasi-equisingular approximation of ¢ in PSH(X, 6).

We may assume that ¢; is T.-invariant for each j > 1 from the construction of
[ , Theorem 13.21].

Now assume that the result is known for each ¢ ;. Then

Dp (A6, ¢))) = Ay, (6, ¢;).

himself already proved the main theorem for a generic flag. I realized that some simple birational
geometry would suffice to prove the same result for general flags. I persuaded myself and Kewei
that the Okounkov bodies are always birationally invariant, and deduced some apparently wrong
conclusions. I got no clue for a couple of weeks, then one day, on the noisy metro line 7 of Paris, I
got nothing to do, so I said to myself: Why not compute the simplest toric examples? Then after a
few minutes, all of a sudden, the whole picture became completely clear.
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In particular, by Proposition 12.2.1 again,

Or (A6, ¢)) € Ay, (6. ¢))
for each j > 1. It follows from Theorem 10.2.2 that

D (A6, ¢)) < Ay, (0, ¢).

Comparing the volumes of both sides using Proposition 12.2.1, (10.11) and Theo-
rem 5.2.2, we conclude (12.14).

Step 3. It remains to handle the case where ¢ has analytic singularities and 6, is a
Kihler current. In fact, we may assume that ¢ has the form

a
p=log > |sil} +O(1),

i=1

where s1,...,85, € HO(X , L) are toric invariant. This follows from the proof of Step 2
and the construction of [ , Theorem 13.21].

Let my,...,mg € Pp N M be the lattice points corresponding to si,...,Sq.
Observe that

A8, ¢) = VF,(Ng) ={m € Mg : Fy(n) — (m,n) is bounded from below}

a
= {m € My : log Z e _ (m, n) is bounded from below}
i=1

=Conv{my,...,mgy},

where we have applied (12.7) on the second line and Lemma A.5.2 on the third line.
In particular, by Lemma A.5.1, let k € Z, given any m € kA(6, ¢) N M, we have
™ 7e ¢

is bounded from above on T'(C). In other words, the section s of L defined by m

satisfies
s € HC (X, LFe Ioo(kga)) .

Therefore,
vy, (s) = ©(m) € kAk(6, ¢),

where Ay is defined Section 10.2. Hence,
@ (kA(6, 9) N M) C kA (6, ¢).
Letting k — oo and applying Theorem 10.2.4, we find that

Op (A6, ¢)) € A6, ).
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Comparing the volumes of both sides using Proposition 12.2.1 and (10.11), we
conclude that the equality holds and (12.14) follows. O

The following two consequences are both due to Yi Yao.

Corollary 12.2.1 Let E be a T-invariant prime divisor on X corresponding to a ray
p € 2(1). Then for any ¢ € PSHo (X, 0)s9, we have

v(p, E) = inf{(m —mp,Uup) 1 m € A, ga)} .

Proof This follows immediately from Theorem 12.2.1 and Theorem 10.2.5. In fact,

since X is projective and smooth, there is always a T-invariant smooth flag Y, with
Y| =E. m}

Corollary 12.2.2 For any T-invariant subvariety Y C X corresponding to a cone o
in X and any ¢ € PSHo: (X, 0)=¢. Then the following are equivalent:

(1) v(p,Y) =0;
(2) there is a point m € A(6, @) such that (m —m,) - u, = 0 for any p € o(1);
(3) we have

A6, ) N Qs #+ @.

Proof (2) < (3). This follows from the definition of Q. in (12.6).

(1) & (2).Letpy,...,p, be the rays of . Up to replacing D by a translation,
we may assume that m, = 0. Hence, we may take m,, = 0 for all i.

Let 7: Z — X be the blow-up of X along Y. See [ , Page 132] for the
basic properties of the toric blow-up. Take the divisor 7*D on Z. We choose the
pull-back metric 7*h on 7* L. Then F+¢ can be taken as 7" Fyg by (12.7). It follows
A6, ¢) = A(n*0, ). On the other hand, the ray corresponding to the exceptional
divisor E is generated by u,, +-- - +u,, . Since X is smooth, this vector is primitive.

Recall that the support function of 7* D is the same as the support function of D,
see [ , Proposition 6.2.7]. In particular, we can take the Cartier datum m, = m,
mod M (p), where p is the ray corresponding to E.

It follows from Corollary 12.2.1 and [ , Corollaire 1.1.8] that

v(e,Y)=v(np, E) =inf{(m —meg,up +---+u, ) :meAb,¢)}. (12.15)
Our assertion follows in view of (12.4). m]

It follows from (12.15) that

a

v(p,Y) = Z v(p, Ei),

i=1

where the E;’s are the prime divisors corresponding to the rays of o-. This inequality
seems to be new as well.

The following consequence of Theorem 12.2.1 is the key to the development of
the toric pluripotential theory.
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Theorem 12.2.2 We have
FVe € S(NR, PD).

In particular,

/9% =n!lvol P. (12.16)
X
Proof Take ¢ = Vy in Theorem 12.2.1, we find
@r (A(0,Ve)) = Ay, (0, Vo) = Ay, (L) = Pr(Pp),
where we applied Proposition 12.2.2 in the last equality. Therefore,
A(8,Vg) = Pp.

Finally, (12.16) follows from Proposition 12.2.1. O

12.3 The pluripotential theory

We continue to use the notations in Section 12.1.

Theorem 12.3.1 There is a canonical bijection between the following sets:

(1) The set of ¢ € PSHr (X, 0);
(2) the set of F € P(Ng, Pp) satisfying F < Fy,, and
(3) the set of closed proper convex functions G € Conv(MR) satisfying

Gx>Fy,.

The set P (Ng, Pp) is defined in Definition A.3.1. As before, we write F,,, G, for
the functions determined by this construction.

Proof The proof is similar to that of Theorem 5.2.1, but due to its importance, we
give the proof. Again, the correspondence between (2) and (3) follows easily from
Proposition A.2.5.

Given ¢, we can construct F, in (2) as explained earlier in (12.8). Conversely,
suppose that F € P(Ng, Pp) is such that F < Fy,,. Then

Trop*(F — Fg) € PSH(T(C), 6|7(c))

by Lemma 5.2.1. Since F < Fy,,, we see that Trop* (F — Fy) is bounded from above. It
follows that Grauert—-Remmert’s extension theorem Theorem 1.2.1 is applicable, and
this function extends to a unique #-psh function ¢. The uniqueness of the extension
guarantees that ¢ € PSH (X, 0).

The two maps are clearly inverse to each other. O

We fix a model potential ¢ € PSHo (X, 0)~¢ with Newton body A(6, ¢).
A similar argument guarantees the following:
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Corollary 12.3.1 There is a canonical bijection between the following sets:

(1) The set of ¢ € PSHyr(X, 0; @),
(2) the set of F € P(Ng,A(0, ¢)) satisfying F < Fy,, and
(3) the set of closed proper convex functions G € Conv(Mpg) satisfying

Gz Fy,, Glma\ao,9) = o

Moreover, under these correspondences, we have the following bijections:

(1) The set Eor (X, 05 @),
(2) the set of F € E(Ng, A0, ¢)) satisfying F < Fy,, and
(3) the set of closed proper convex functions G € Conv(Mpg) satisfying

G2z Fy,, Glu\ae.0) = Gliace.g) < .
Here the notations are defined as follows:

PSHior (X, 0; ¢) =={¢ € PSHor(X, 0) : ¢ < ¢},
Stor(Xa 0, ¢) ZS(X’ 97 ¢) N PSHtor(X’ 0)

The proofs of the following results are similar to the ample case studied in
Chapter 5. We omit the details.

Proposition 12.3.1 Given ¢ € PSH (X, ) and C € R. We have
Forc =Fy,+C, Ggic=G,-C.

Proposition 12.3.2 Given ¢,y € PSH (X, 0), assume that ¢ Ay % —oo, then
¢ ANy € PSHy (X, 6) and
F¢A¢=F¢AF¢, thszG(pVGzp-

Proposition 12.3.3 Let (¢;);cs be a family in PSHo (X, 0) uniformly bounded from
above. Then sup; ;" ¢; € PSHior (X, 6) and

Fsupiel*% = \/ Fys GSUPfel*‘Pi =cl /\ Gy
iel i€l
Moreover, if I is finite, then
G\/iez i = /\ G‘/’i'
iel

Similarly, if {@; }icq is a decreasing net in PSH (X, 0) such that inf;c; ¢; # —oo,
then inf;c; @i € PSer(X, 9) and

Finfiel wi = /\ F i o Ginfiel wi = \/ G%"

iel iel
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Proposition 12.3.4 Let ¢ € PSH (X, ). Then Pg[¢] € PSHi: (X, 6) and

Gy, (x), ifx € A8, ¢);

Grolp1(¥) = { oo, otherwise. (12.17)

As a consequence, we have
Corollary 12.3.2 Let ¢, € PSHo (X, 0)~¢. Then the following are equivalent:

M ¢ =py;
Q) e =ry;
(3) A6, @) < A6, ¥).

Proof (1) < (3). This follows from Proposition 12.3.4.
(1) & (2). This follows from Example 7.3.1. O

Next we handle subgeodesics.

Proposition 12.3.5 Let ¢g, 1 € PSHo (X, 0). There is a canonical bijection between
the following sets:

(1) The set of T,.-invariant subgeodesics from g to ¢1;
(2) the set of convex functions F: Ng X (0,1) — R such that for each r € (0, 1), the
function
F.: Nk >R, n F(n,r) (12.18)

satisfies F,, — F,, (resp. F, — Fy ) everywhere asr — 1— (resp. r — 0+).

Proof We begin with a subgeodesic (¢;);e(0,1) from ¢g to ¢1. Then we define
F: Ng x(0,1) — R as follows:

F(n,t) = F,,(n).
Define F; as in (12.18), we have
Trop™ F, — Trop* Fg = ¢;, t€ (0,1).

By definition, as t — 0+, ¢; — ¢o almost everywhere. By Fubini’s theorem,
F, — Fp almost everywhere, hence everywhere by Theorem A.1.2. Similarly,
F; — F) everywhere as t — 1—.

Next we show that F is convex. Let p;: X X S — X be the projection, where

S={zeC:e ! <|z> < 1}.

Since F' is a subgeodesic, its complexification @ is pj6-psh. Recall that @ is defined
as
®(x, z) = Trop* (F_ logl2]? — Fg) (x). (12.19)

In particular, ¥: T(C) X S — R defined by

¥ (x,z) = @(x,z) + Trop” Fo(x) = Trop" F_ )2 (%)
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is plurisubharmonic and 7, x S Linvariant. Fix a small enough € > 0, we could
find a decreasing sequence of T,. x S'-invariant plurisubharmonic functions ¥; on
T(C) x S¢ converging to W everywhere, where

Se ={zeC:e " +e< |z <e—€).

Let us write
\P[(X, Z) = TI'Op* Fi,—log |Z‘2(x)

for some F;: X X S — R.

The same computation as in Lemma 5.2.1 shows that F; is convex. It follows that
F, as the decreasing limit of F;, is also convex on X X (€,1 — €). Since € > 0 is
arbitrary, we conclude that F is convex on X X (0, 1).

Conversely, suppose that we are given F in (2). We define ®: T(C) x § —» R
using (12.19). The arguments in the previous part can be reversed to show that @ is
P101r(c)xs-psh.

By our assumption, for each ¢ € (0, 1), we have

Fy StFy + (1= 1)Fy < Fy, +C (12.20)

for some constant C € R independent of the choice of ¢. Therefore, @ is bounded from
above and hence by Theorem 1.2.1, we conclude that @ admits a unique extension to
a p|60-psh extension to X X §, which we still denote by ®. We let

@i (x) = D(x,e7'7?)

forall r € (0,1) and x € X. We claim that (¢, ) is a subgeodesic from ¢g to ¢;.

For this purpose, we only need to show that (¢;);e(0,1) has the correct boundary
value. But from our assumption in (2), we know that as t — 0+ (resp. t — 1-),
@r — o (resp. ¢; — ¢1) almost everywhere. In particular, supy ¢; > —C’ for some
large constant C’ > 0 independent of ¢ € (0, 1). Therefore, together with (12.20), we
deduce from Proposition 1.5.1 that {¢; };¢(0,1) is a relatively compact family with
respect to the L'-topology. We need to show that each cluster point ¢ as t — 0+ is

equal to ¢go. But we already know that = ¢( almost everywhere. Hence we deduce
1

¥ = o from Proposition 1.2.6. As t — 0+, we have ¢, L—> ©o. Similarly, as t — 1—,
1

L
we have ¢; — .
The two constructions are clearly inverse to each other.

Corollary 12.3.3 Let ¢g, ¢1 € PSHi (X, 0). Then there is a canonical bijection
between the following sets:

(1) The set of T.-invariant subgeodesics from Y to 1, where Yo, 1 € PSHior (X, 6)
and Yo < @o, Y1 < @15

(2) the set of closed proper convex functions ¥ on Mg X R such that there is a closed
proper convex function G € Conv(Mg) such that
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G(m)+(sVv0)>¥(m,s) > Gy (m)V (Gy, (m)+ s) . (12.21)

Proof Let us begin with a subgeodesic (i/;);¢(0,1) as in (1). Let F be the convex
function as in Proposition 12.3.5. We extend F to a function F: Ng X R — R as
follows: For any n € Ny, we define

Fy,(n),ift =0,
F(n,t) =4Fy (n),ift =1,

oo, otherwise.

Then F is a proper closed convex function on Ng XR. Let ¥ be the Legendre transform
of F. Then W is a proper closed convex function on Mg X R by Theorem A.2.1. By
(A.2), for any m € Mg and s € R, we have

Y(m,s) = sup ({m,n) +ts — F(n,t))
neNg,t€[0,1]
= sup (ts+F/(m)).
tel0,1]
Therefore, the latter half of (12.21) follows. Next recall that

n= inf ¢, € PSHi(X,0),
te(0,1)

as follows from Proposition 4.1.2. Therefore,

Y(m,s) = sup ((m,n) +ts — F(n,t))
neNg,t€[0,1]

< sup ((m,n)+ts—F,)
neNg,t€[0,1]

= sup ts+Gy,(m)
tel0,1]

=(s vV O0)+ G, (m).

Conversely, let us begin with a function ¥ as in (2). Let F be the Legendre
transform of W. We first observe that F'(n,t) = co foralln € Ng and ¢ ¢ [0, 1].
In fact,
F(n,t)= sup ((m,n)+ts—¥(m,s))

meMp,seR

< sup ((m,n)+ts— Gy (m))
meMp,seR

=sup (ts + Fy,(n))
seR

Fyy(n),ift =0,
B o0, otherwise.

Similarly,
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F(n,t)= sup ({m,n)+ts—¥(m,s))

meMpg,seR

< sup  ((m,n)+ts— Gy (m)—ys)
meMp,seR

=sup (ts — s + Fy, (n))
seR

Fpo(n),ift =1,
B oo, otherwise.

Therefore, we conclude that
F(n,t) <tF, + (1 —1)F,,

for all + € [0,1] and n € Ng. Let (¥/);e(0,1) be the subgeodesic defined by
Proposition 12.3.5, then (;);¢(0,1) satisfies (1). Next observe that

F(n,t)= sup ({m,n)+ts—¥(m,s))

meMp,seR
> sup ((m,n)y+ts—G(m)—sVvO0)
meMp,seR
=G*(n) +sup (ts — (s vV 0))
seR

oo, otherwise.

_{G*(n), ift € [0,1]

The two operations are clearly inverse to each other. O
As an immediate corollary,

Corollary 12.3.4 Let ¢, ¢; € PSH (X, 8) N PSH(X, 0)~¢. Then the following are
equivalent:

() po ~p ¢1;
(2) there is a subgeodesic from ¢ to @1,
(3) there is a geodesic from g to ¢;.

If these conditions are satisfied, let (¢;);e(0,1) be the geodesic from ¢g to ¢1. Then
¢ € PSHi (X, 0) forallt € (0,1) and

Gy =(1-1)Gy, +1Gy,. (12.22)

Proof We first observe that (2) <= (3) follows from the definition of geodesics
Definition 4.2.1 and the fact that a geodesic is a subgeodesic Proposition 4.2.1. Also
(1) = (3) follows from Proposition 4.2.1.

Let us assume for the moment that (3) holds. Let (¢;);e(0,1) be the geodesic from
@o to ;. It is clear that ¢, € PSHio (X, 0) for all r € (0, 1). Let ¥ be the proper
convex function on Mg X R defined by Corollary 12.3.3. Then ¥’ is the minimum of
all ¥ satisfying (12.21). We claim that
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W' (m,s) = Gyy(m) V (Gy, (m) +35) . (12.23)

It suffices to show that the right-hand side is proper, namely, G4, V G, is not
identically co. But recall that by Proposition 4.1.2, we have ¢g A ¢ € PSH(X, 6).
Therefore, by Proposition 12.3.2,

Gey VGy =Gyyng # .

In particular, (12.23) follows.
Now by construction,

Gy, (m) =sup (st =¥ (m,s)) = (1 -1)Gy, (m) +1G 4, (m)
seR

forall t € (0,1). So (12.22) follows. It remains to establish (1). We first reduce to
the case where ¢g < ¢j. In fact, we know that (¢o V ¢;);¢[0,1] is a T,-invariant
subgeodesic by Proposition 4.1.3 and Example 4.1.1. It we manage to prove the special
case, then we would know that o ~p @1 V 9. Hence ¢; <p ¢9 by Lemma 6.1.3.
The converse follows similarly.

Next assume that ¢y < ¢;. Then (F%?mfl )m>1 18 an increasing sequence with

limit F,, . Hence by Proposition A.2.3, we have

G (my=cl \ Gy, =

00, if G 4, (m) = o0,
G, (m), otherwise.

m=2
Hence
{Gwo = oo} = {G<p1 = oo},
We conclude that ¢y ~p ¢ by Corollary 12.3.2. O

Next we consider the trace operator. For this purpose, we will need to fix a
T-invariant subvariety ¥ C X. Let o be the corresponding cone in X and Q be the
corresponding face of Pp. The cocharacter lattice of Y is given by

N(o) :=N/Nn{o),

where (o) is the linear span of o. See [ , (3.2.6)]. In particular, we have a
canonical identification of the character lattice M (o) of Y:

M(o)=0c'nNM,

which is compatible with our previous notation (12.2). Let i,: M(0) — M be
the inclusion map. Let Ty be the torus of Y. Then we have a natural surjection
qr: T — Ty. In particular, then tropicalization map

Trop: T(C) — Ny

descends to the tropicalization map of Y:
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Tropy : Ty (C) — N(o)r.

We let

Dy = Z apr|Y,
peZ(1)
pto

where p £ o means that p is not a face of o~. Then Oy (Dy) = Lly.

Theorem 12.3.2 There is a canonical choice of the Cartier datum m s € M such that
forany ¢ € PSH (X, 0) withv(e,Y) =0, Tr;)(go) is defined and vol(0y, Trg(cp)) >
0°, we have

ABly. Try(¢)) = A(6,¢) NQ ~mg
as subsets of M (0)g.

Observe that the condition v(¢,Y) = 0 means exactly that A(6,¢) N Q # @ by
Corollary 12.2.2.

Since Y itself is a smooth toric variety, the proceeding constructions of X all apply
to Y. We briefly summarize the situation in Table 12.1.

Notions for X|Notions for Y
N N(o)
M M (o)
b Star (o)
D Dy
L Lly

h hly
0 Oly
Trop Tropy

Pp o
SD SDy

Table 12.1 The correspondence between X and Y

Recall that Star(o) is the fan in N(o)g consisting of 7 for all faces 7 € X
containing o, where T is the image of 7 in N(o)g. See [ , Proposition 3.2.7].

Proof The idea of the proof is that since we know how the partial Okounkov bodies
behave under restrictions by Lemma 10.3.7 and Remark 10.3.2, and know how to
compare partial Okounkov bodies and Newton bodies Theorem 12.2.1, we should be
able to deduce the behavior of Newton bodies under restriction as well.

First we note that by our assumption, L|y is a big line bundle. In particular, if we
setr =dimo, thendimY =n —r.

For this purpose, let ¢ be an n-dimensional face of X containing o-. The image
0¥ in N(o) is then an r-dimensional face of Star(c"). We shall use these faces as the
reference faces while defining the partial Okounkov bodies.

3 Note that Trf € PSHir (Y, 6ly).
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We list the rays in o%(1) as follows:

Pls--+sPns (12.24)
where py, ..., p, € o(1) and hence p;41, ..., pn € 0 (1). In particular, the images
Prils---sPn (12.25)

of the latter give a list of o0(1).
We construct the flag Y, on X using the rays (12.24) and the flag Z, on Y using
the rays (12.25). Note that
Zi =Yy,

wherei=1,...,n—r. .
Next we compute the Cartier data associated with 0. By definition, mz; € M (o)
is the unique element satisfying

Moy - Up; = ~dp;

forallj=r+1,...,n
Let®: M — Z" and ¥: M (o) — Z"" be defined as

D(m) =((m—mgo,up,),...,{m-mgyo,up,))
= ((m, Up Dsenos (m,upn)) +(ap,,...,ap,),
Y(m) = ({(m — meg, uzp), . . ., (M — meg, uz5—))
Observe that fori =r + 1, ..., n, we have

up: = up, mod N N{c),

SO
Y(m) = ((m, Up, ). {m, “pn>) +(ap,us-->ap,)

for m € M (o). Therefore, we have a commutative diagram

My &)R"

) !

M(o) —= R,
where L: R" — R"™" is the map

(bl,u"bn) = (br+1’-~,bn)'

By Theorem 12.2.1, we have

s (A0.9)) = Ar,(6.¢), ¥ (MOl Tr{(9))) = Az (0ly. Tr{ (¢)).
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The latter can be written as

Az, (0l T (9)) = L o @z (A(6ly. Trf ()
While by Lemma 10.3.7 and Remark 10.3.2,

Az, (Bly, Tr) (9)) =L (Ay, (6, ) N ({0} x R™™"))
=L (@ (A(8), ) N ({0} xR™™))
=L o @y (A(0,9) N Q).

Hence,
Lo @ (A6ly, Trf (9)) = L o Bz (A(6,¢) 1 0).

It follows that
ABly, Trd (@) + m o — m—5=A(0,¢) N Q.

Finally, observe that m ;o — m—g represents m . Our assertion follows.
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Chapter 13
Non-Archimedean pluripotential theory

A good theorem lasts forever. Once proved, it will always stay
proved, and other mathematicians are free to use it and build on
it as they please, sometimes to great effect.

— John Tate"

¢ John Torrence Tate Jr. (1925-2019), the grandfather of Dustin
Clausen, was one of the greatest minds in the whole history of
America. However, his aversion to publishing papers arguably
impeded the progress of the development of mathematics to
some extent. For example, his foundational work on rigid non-
Archimedean geometry was written in 1962, but was not available
to the public until 1971.

In this chapter, we will establish the non-Archimedean pluripotential theory using
the theory of 7-good singularities and test curves. We show that our theory extends
the algebraic theory a la Boucksom—Jonsson in Section 13.4.

We also construct the Duistermaat—-Heckman measure of a non-Archimedean
metric in Section 13.3.

13.1 The definition of non-Archimedean metrics

Let X be a connected compact Kihler manifold of dimension n. Let Kéh(X) be the
set of Kahler forms on X with the partial order given as follows: We say w < w’ if
w > «'. Note that the partially ordered set Kidh(X) is a directed set.

Let 0 be a closed smooth real (1, 1)-form.

Definition 13.1.1 We define

PSHM (X, ) = lim PSH™ (X, 6 + w)>0
weKih(X)

in the category of sets, where the transition maps are given as follows: Suppose that
w,w" € Kih and w > «’, then the transition map is defined in Proposition 9.3.4:

Poiw[®]r: PSHNA (X, 0 + ') — PSHYA (X, 0 + w) 0. (13.1)

Recall that PSHN (X, ) is defined in Definition 9.3.1.
In general, when we denote an element in PSHYA (X, 6) by T, its component in
PSHNA (X, 6 + w)-o (w € Kidh(X)) will be written as either ' or Py, [[] 7.

267



268 CHAPTER 13. NON-ARCHIMEDEAN PLURIPOTENTIAL THEORY

Note that ', is independent of the choice of w € K&h(X). We denote this

common value by I'yax.

Remark 13.1.1 Thanks to Proposition 9.3.2, for any other 6’ representing [6], we
have a canonical bijection

PSHM (X, 0) — PSHM (X, 6).

Moreover, these bijections satisfy the cocycle condition. If we view the set of closed
real smooth (1, 1)-forms representing [#] as a category with a unique morphism
between any two objects, then we can define

PSHNA (X, [6]) = @PSHNA(X, 0).
0

This definition is independent of the choice of the explicit representative of the
cohomology class [6].

However, given the fact that our notations are already quite heavy, we decide to
stick to the set PSHYA (X, #). The readers should verify that all constructions below
are independent of the choice of # within its cohomology class.

Proposition 13.1.1 Let T’ € PSHYNA (X, 6). Then given w, '’ € Kih(X) withw > w’,
we have
P6+w [Ff:ow ] = P9+w [Ff:ow ]I = Ff:cw

Proof Since for any 7 < Iy, the potential T+ is 7 -good by Example 7.1.2, it
follows that
Poso [P0 | = Povo 127 | =T

for all 7 < T'pax. Our assertion follows from Proposition 3.1.10 and Proposi-
tion 3.2.13. O

Proposition 13.1.2 There is a natural injective map

PSHYA(X,0)50 — PSH™(X,0), T = (PorwlT11) mekin(x) -

In the sequel, we will not distinguish an element in PSHNA(X , 0)>0 with its image
in PSHYA (X, 6). Note that given I" € PSHYA(X, 6)., the value of I,y does not
depend on if we view it as an element in PSHYA (X, 6)-¢ or in PSHYA (X, 6).

Proof 1t is obvious that this map is well-defined. It suffices to argue its injectivity.
Suppose that I', T € PSHNA(X, 0)>o and

Poiw [F]I =Porw [F,]I

for some Kihler form w on X. Then 'y, = and for any 7 < [, we have

’
max

I~y
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by Proposition 6.1.3. It follows again from Proposition 6.1.3 that

r,=rI7.
Definition 13.1.2 LetI" € PSHNA(X ,0), we define its volume as follows:

volT :=  lim (0 o+ ddCr_";,w) € [0, co).
weKih(X) Jx
Observe that the net is decreasing, so the limit exists.

Proposition 13.1.3 Ler I € PSHYA (X, 6)~¢. Then

volT" = / (8 +dd°T_)".
X

Proof This follows from Proposition 3.1.9, Corollary 3.1.2 and Proposition 9.1.5.0
Lemma 13.1.1 The image of the canonical injection

PSHNA (X, 6)-¢ < PSH™ (X, )
is given by the set of T' € PSHYA (X, ) with positive volume.

Proof By Proposition 13.1.3, itis clear that the image of an element in PSHN (X, 6)
has positive volume.

Conversely, take I" € PSHNA(X , 0) with positive volume. We want to construct
| S PSHNA(X , 0)>0 representing I".

Fix a Kihler form w on X. Define

I = lim TO% '@ 7 < T (13.2)
We claim that it suffices to show

Jim (9+k*1w+dd°rf+k"w) >0 (13.3)
—oo Jx
for some 7 < Ipnax. If this holds, then the argument of Lemma 9.1.1 implies
that the same holds for all T < I'yax. Then Proposition 3.1.9 guarantees that
I € PSHYA(X, 6)- and represents T".

It remains to argue (13.3). Let € = volI" > 0. Take 7 < I',x so that

n n
/(9+w+ddcrf’;w) —/(9+w+ddcrf+W) <€)
X X

Expanding the left-hand side using the binomial expansion, in view of Proposi-
tion 9.1.5, we find that for any k > 1,
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-1 cpo+klw)” -1 otk tw\"
(9+k w +ddT o ) - (9+k w+dd°T? ) <2
X X

Therefore, (13.3) follows. O

Example 13.1.1 Given ¢ € PSH(X, ), we can define an associated non-Archimedean
metric 'Y € PSHYA(X, 6) as follows:

(D 1—‘rﬁax =0;

(2) for any w € Kéh(X) and any 7 < 0, we set
LE = Porolel s

Such non-Archimedean metrics are called homogeneous non-Archimedean metrics.

Observe that
volT'? = vol 6.

See Proposition 7.2.3 and the footnote there.

Definition 13.1.3 Let w be a closed real smooth positive (1, 1)-form on X. We define
the map
Po.owl®]r: PSHYA (X, 6) — PSHYA(X, 0 + w)

as follows: Given I € PSHNA (X, 6), we define Pg.,[I"]  as the element such that
for any w’ € Kédh(X), we have

Poiw [F] JH_+w+a)’ — l—~6+w+w’ .

It is straightforward to check that under the identification of Proposition 13.1.2, the
map Py, [®] 7 extends the map (13.1).

Proposition 13.1.4 The maps Pg.,[®]| 1 in Definition 13.1.3 together induce a
bijection
PSH™(X,0) » lim PSH™(X, 0+ w). (13.4)
wela(X)

Proof 1t is a tautology that the maps Pg.,[®]r in Definition 13.1.3 are compatible
with the transition maps. So the map (13.4) is well-defined. It is injective by the same
argument as Proposition 13.1.2. We argue the surjectivity.

By unfolding the definitions, an object in the target of (13.4) is an assignment:
With each w € Kdh(X), we associate a family (Fw’w/)w'EK‘ah(X) satisfying:

(1) T®«" € PSHYA(X, 0 + w + ')~ for each w, ' € Kih(X);
(2) foreach w, w’,w” € Kdh(X) satisfying w”’ > w’, we have

’”

’
Porwrw [Fa),w ]I =T

(3) foreach w, w’,w” € Kah(X) satisfying w < w’, we have

" ’ "
Porarvor |7 ]I =’
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The preimage of such an object is given by the family ('), ckin(x) given by

re = l—va)/Z,a)/Z‘
The fact that the image of I" is as expected is a tautology, which we leave to the
readers. O
With an almost identical argument involving Proposition 3.1.9, we get

Proposition 13.1.5 The maps Py [®] 1 in Definition 13.1.3 and the injective maps
Proposition 13.1.2 together induce bijections

PSH™ (X, 0) — yLnPSHNA(X, 0+ w)so — yLnPSHNA(X, 0+w), (13.5)

w w

where w runs over either the partially ordered set of all smooth closed real positive
(1, 1)-forms with positive volume' on X or Kah(X).

Corollary 13.1.1 Let 7: Y — X be a proper bimeromorphic morphism from a
compact Kdihler manifold Y. Then n* induces a bijection

PSH™ (X, 6) = PSHNA(Y, *0).
Proof This follows immediately from Proposition 13.1.5. O

It is immediate to verify that 7* in Corollary 13.1.1 extends the map Proposition 9.3.3.

13.2 Operations on non-Archimedean metrics

Let X be a connected compact Kéhler manifold of dimension n and 6, 6’, 8" be closed
real smooth (1, 1)-forms on X representing big cohomology classes.

This section relies heavily on Section 9.4. We shall use the notions introduced in
that section without further explanations.

Definition 13.2.1 Let I' € PSHN* (X, 9), I” € PSHYA(X, 0). We say I" < I if for
some w € Kdh(X), we have
r-9+a) > F’QHU.

This notion is independent of the choice of w thanks to Lemma 9.4.1.

Moreover, we have the following:

Proposition 13.2.1 Ler I',T” € PSHY (X, 6) and w be a closed smooth positive
(1, 1)-form on X, then the following are equivalent:

HIr <1

1 This partially ordered set is not directed.
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2 P0+w[F]I < P6+w[r’]I-
Proof This follows immediately from Lemma 9.4.1. O

Observe that this definition coincides with the corresponding definition in Defini-
tion 9.4.1 when I', " € PSHYA (X, 6)-,.

Proposition 13.2.2 Let ', " € PSHYA(X, 6). Assume that T < I", then
volT" < vol I,
Proof 1t suffices to show that for any Kéhler form w on X, we have

vol %% < vol %1%

Zoo s
which is an immediate consequence of Theorem 2.3.2. O

Definition 13.2.2 Let I' € PSHYA(X, 0) and I” € PSHYA(X, 6’). Then we define
I'+I” € PSHYA(X, 6 + ') as the unique element such that for any w € Kih(X), we

have
(r + F/)9+0’+2w — 1—~0+w + I—vH’+w

This definition yields an element in PSHY*(X, 6 +6”) by Lemma 9.4.3 and it extends
the definition in Definition 9.4.2 by Lemma 9.4.3 as well.

Proposition 13.2.3 Let I' € PSHYA(X, 6) and T" € PSHY*(X, 8’). Suppose that
w, W’ are two smooth closed positive (1, 1)-forms on X. Then

Porw+o+ew [T +T7]1 = Porow[T]1 + Porswr [T 1
Proof This is a direct consequence of Lemma 9.4.3. O

Proposition 13.2.4 The operation + is commutative and associative: For any I' €
PSHNA(X, 6), TV € PSHNA (X, ¢’) and T’ € PSHYA(X, 0”), we have

r+r'=r"+r, C+I)+I" =T+ +T").

Proof This is a direct consequence of Proposition 9.4.1. O

Definition 13.2.3 Let I € PSHNA (X, 6) and C € R. We define I'+C € PSHYA (X, 6)
as the unique element such that for any w € Kéh(X), we have

(T+C)0* =% 4 C.

It is obvious from Definition 9.4.3 that ' + C € PSHYA(X, 6). It is also obvious that
this definition extends Definition 9.4.3.

Proposition 13.2.5 Let I' € PSHYA (X, 6) and C € R. Suppose that w is a smooth
closed positive (1, 1)-form on X. Then

P9+w[F]I+C=P0+w[F+C]I-
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Proof This is clear by definition. O

Proposition 13.2.6 Let T € PSHYA(X, 0), I' € PSHYA(X, 0’) and C,C’ € R, then

T+ +C=T+T"+C)=T+C)+I";
QTr+(C+C)=T+C)+C.

Proof This is a direct consequence of Proposition 9.4.2. O
Proposition 13.2.7 Let T € PSHYA(X, 0) and C € R, then

volT" = vol(T" + C).
Proof 1t suffices to show that for each Kahler form w on X,

vol T1¢ = vol(T' + C) ¢

—00
which is obvious. ]

Definition 13.2.4 Let I, " € PSHYA (X, 6), we define I' VI” € PSHYA (X, 6) as the
unique element such that for any w € Kih(X), we have

(F v F/)H+w — F9+w v l—~/9+w.

It follows from Lemma 9.4.5 that T v I” € PSHYA(X, 0) and this definition extends
the corresponding definition in Definition 9.4.4.

Proposition 13.2.8 Ler I',T” € PSHYA(X, 6) and w be a closed smooth positive
(1, 1)-form on X. Then

P9+a)[r \ F,]I = P0+w[F]I \ P0+w[F,]I~
Proof This is a direct consequence of Lemma 9.4.5. O
Proposition 13.2.9 The operation V is commutative and associative.

In particular, given a finite non-empty family (I'');c; in PSH™* (X, §), we then define
Vie; ' in the obvious way.

Proof This is a direct consequence of Corollary 9.4.1. O
Definition 13.2.5 Let (I'));<; be a non-empty family in PSHY (X, §). Assume that

supTl . < oo, (13.6)

iel

Then we define sup,.,* I’ € PSHYA(X, 0) as the unique element such that for any
w € Kidh(X), we have

] 0+w )
(Sup*rl) — Sup*l—*l,e-l-u).

iel iel
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It follows immediately from Lemma 9.4.7 that sup,.,"T" € PSHNA(X,6) and
this definition extends Definition 9.4.6. Moreover, this definition clearly extends
Definition 13.2.4 as well.

Proposition 13.2.10 Let (I');c; be a non-empty in PSHYA (X, 6) satisfying (13.6).
Assume that w is a closed smooth positive (1, 1)-form on X. Then

P9+w

sup*l“i] =sup*Po+w [Fi]j .
I

il iel
Proof This is a direct consequence of Lemma 9.4.7. O
We also have a non-Archimedean version of Choquet’s lemma.

Proposition 13.2.11 Let (I');c; be a non-empty in PSHYA(X, 0) satisfying (13.6).
Then there exists a countable subfamily I’ C I such that

sup T = sup*T".

iel iel’
Proof For any fixed w € Kéh(X), thanks to Proposition 9.4.5, we could find a
countable subfamily /” C 7 such that

SUp*Pysew [T 7 = sup*Pose [IM] 7.

iel iel’
It suffices to show that for any other ' € Kidh(X), we have

SUp*Porer [T ] 7 = sup*Poror [T] 7.

iel iel’
This is an immediate consequence of Proposition 6.1.6. O

Proposition 13.2.12 Let (I'));c; be a non-empty family in PSHYA (X, 0) satisfying
(13.6). Let C € R. Then

sup* (I + C) = sup*T" + C.
iel iel
Suppose that (I'"");c; is another family in PSHN (X, 0') satisfying (13.6). Suppose
that T' < T foralli € I, then
sup T < sup*T”’.
il il

Proof This is an immediate consequence of Proposition 9.4.6. O

Proposition 13.2.13 Let (I'));c; be an increasing net in PSHYA (X, 0) satisfying
(13.6). Then

vol (sup*r") =limvol ™. (13.7)

iel iel
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Proof The > direction in (13.7) is a direct consequence of Proposition 13.2.2. It
remains to prove the reverse inequality.

Note that (13.7) holds when volT¥ > 0 for each i € I, as a consequence of
Proposition 9.4.3, Corollary 6.2.3 and Theorem 6.2.5.

In particular, for each Kéhler form w on X, we have

vol (sup*Fi’0+“’) = lim vol -9+«
iel iel
For our purpose, we need to show that for any € > 0, we can find w so that

sup vol I'+9%¢ < supvol T + €.

iel iel
We shall show that it is possible to choose w so that the stronger statement holds:

volTH9%¢ < vol TP +e, Viel.

Equivalently, we need to choose w so that for any Kéhler form «’ on X dominated by
w, we have . .
vol T84 < vol TH0F 4 e/2, Viel.

Choose a Kihler form  on X so that Q > 8, we compute

i, 0+w 0,0+ _ cri, 0+’ \" ’ cri, 0+’ \"
volI'2> ™ — T2 = 0+w+ddT> - 0+w +dd T2y
X X
n-1
. \a
-y (”) / (9 +dderire ) A ("% — ')
al Jx
a=0
n—1
S0 o nare
a=0 a X

It is clearly possible to choose w so that the right-hand side is less than €/2. Our
assertion then follows. O

Definition 13.2.6 Let (I'));¢; be a decreasing net in PSHYA (X, 6). Assume that

infT > —oo, (13.8)

: max
iel

then we define inf;c; IV € PSHNA(X ,0) as the unique element such that for each
w € Kidh(X), we have

) 0+w )
(inf r') = inf 50+, (13.9)
iel iel

We observe that

) 0+w
(inf rl) € PSHYA (X, 0 + w) 0.

i€
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This follows from Proposition 9.4.9. Moreover, by Lemma 9.4.9, we have inf;c; " i e
PSH™ (X, 6), and this definition extends Definition 9.4.8.
In general,

vol (inf Ind ) < limvol T
iel [

iel

as a consequence of Proposition 13.2.2. But the reverse inequality fails in general.

Proposition 13.2.14 Let (I');c; be a decreasing net in PSHY (X, 0) satisfying (13.8).
Assume that w is a closed smooth positive (1, 1)-form on X. Then

P9+w

|, =P 7]

Proof This follows from Lemma 9.4.9. O

Proposition 13.2.15 Let (I'');c; be a decreasing net in PSHY*(X, 6) satisfying
(13.8). Let C € R. Then . ‘

inf(I" +C) =infT" + C.

il iel

Suppose that (r’i )iel is another decreasing net in PSHNA (X, 0') satisfying (13.8).
Suppose that T < T foralli € I, then

inf IV <infI.

iel iel
Proof This is clear by definition. O
Definition 13.2.7 Let " € PSHNA(X ,0) and 1 € R, then we define AI' €
PSHNA(X, 16) as the unique element such that for any w € Kih(X), we have
(ﬂr)/16’+w _ /u—e+/r‘w'

It follows immediately from Lemma 9.4.8 that AT' € PSHYA (X, 16) and this definition
extends Definition 9.4.7.

Proposition 13.2.16 LetT" € PSHNA(X ,0) and A € R.. Then for any closed smooth

positive (1, 1)-form w on X, we have

Pagrwl AUl = APgi a1, 1.
Proof This follows immediately from Lemma 9.4.8. O

Proposition 13.2.17 Ler T' € PSHYA (X, 0), I" € PSHYA(X,6’), C e Rand 1,1’ >
0, we have
AT +T7) =AT + AT,

(AT =2(A'T),
A+ C) =A" + AC.

Suppose that (T");ey is a non-empty family in PSHYA(X, 0) satisfying (13.6), then
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pl (sup*l“") = sup* ().
iel iel

If (T);eq is a decreasing net in PSHNA (X, 0) satisfying (13.8), then
Pl (inf Fi) = inf(AIY).
iel iel

Proof Everything except the last assertion follows from Proposition 9.4.8. The last
assertion is obvious by definition. O

Proposition 13.2.18 Ler ' € PSHY* (X, ) and A € R, then
vol (AI') = A volT".

Proof This is clearly by definition. O

Definition 13.2.8 Let ' € PSHYA(X, ). Let Y C X be an irreducible analytic subset.
We say that the trace operator of I" along Y is well-defined if

y (rf*w, Y) -0
for small enough 7 and any w € Kéh(X). We define
(Try () 1ax = SUp {T < Dax @ v (Ff“",Y) = O} .

In this case, we define Try (I') € PSHNA(Y, 0|y)? as the unique element such that
for any w € Kih(Y), the component

Try (D)7 € PSHN (Y, 05 + w)~0 (13.10)

is defined as follows:
(1) We let
(Try(r)(’lfm) = (Try (1)) : (13.11)
max

(2) for each 7 € R less than (Try (I')) ,ax» We define

9|)~,+w

Try (D)7 1= Pojpue [T (1022

where @ is an arbitrary Kihler form on X such that w > @|y.

It follows from [ , Proposition 3.5] that ¥ is a normal Kihler space and
hence @& exists. We observe that the choice of the trace operator Tri*® (I'¢*?) is
irrelevant since two different choice are 7 -equivalent. Moreover, (13.10) holds as
a consequence of Proposition 8.1.2 and Proposition 8.2.1. It is therefore clear that
Try(I') € PSHYA(X, 6).

2 Here Y — Y is the normalization of Y.
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Proposition 13.2.19 Let n: Y — X be a proper bimeromorphic morphism from a
compact Kdhler manifold Y. Then all definitions in this section are invariant under
pulling-back to'Y .

The meaning is clear in most cases. In the case of the trace operator, this means
the following: Suppose that Z C X is an analytic subset and I' € PSHNA(X, ) has
non-trivial restriction to Z. Suppose that Z is not contained in the non-isomorphism
locus of 7 so that the strict transform W of Z is defined. If we write I1: W — Z for
the restriction of 7 and T1: W — Z the strict transform of II, then we have

IT* Trz (T) = Trw (2*T).
The relevant notations are summarized in the following diagram:

— sy
— X.

N — =
N<—:1 =

W —
—
Proof We only prove the assertion for the trace operator, as the other proofs are
similar.

We shall use the notations above. Observe that for any closed positive smooth
(1, 1)-form w on X with positive mass, we have

(IT* Trz (1) e = (Trz(I)) pax = sup {r < Thax @ Vv (Ff_’“", Z) = 0} ,

and
(Trw (7°T)) . = p{‘r < T 1 v ((71 )7 04w W) o}

=sup {T < Thax 1V ( rore, W) 0}
=sup{T<Fmax: ( Otw Z) }
Here we applied implicitly Proposition 13.1.5. Therefore,
(71 Trz (1) = (Trw (2T

Let 7 € R be less than this common value. Take a Kéhler form w5 (resp. wyy) on Z
(resp. W). Take a Kéhler form wy on Y (resp. wx on X) such that

wy = wxly, wz;>wylz, wy>="rwy.
We want to show that
(H Try, (F))9|Z+‘UZ ~p (Trw(ﬂ' F))(” 9)|w+ww

Unfolding the definitions, we reduce to
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i Trgﬂux [Ff_?+wx] ~p Tr(; O+wy ((ﬂ'*l—‘)_’:* 9+wy) .
Using Proposition 8.2.1, this is equivalent to
T Tr, [Ff_”'wx] ~p Trw ((ﬂ-*r)_’:*e‘*”*wx) .

This is a consequence of Lemma 8.2.1. O

13.3 Duistermaat—-Heckman measures

Let X be a connected compact Kihler manifold of dimension » and 6 be a closed real
smooth (1, 1)-form on X representing a big cohomology class.

Definition 13.3.1 Assume that X admits a smooth flag ¥,. Let I' € PSHYA (X, 6)+.
The Duistermaat—Heckman measure DH(I") of I is defined as

DH(T') := n! - DH (Ay, (6,T)) .

Recall that Ay, (0,T") € TC(Ay,(6,T_)) is the Okounkov test curve defined in
Theorem 10.4.2. See Definition 10.4.4 for the definition of the Duistermaat—Heckman
measure of an Okounkov test curve.

Theorem 13.3.1 Assume that X admits a smooth flag Y.. The Duistermaat—Heckman
measure DH(T) of I' € PSHN*(X, 0)~¢ in Definition 13.3.1 is independent of the
choice of the smooth flag Y,. Furthermore, for any m € Z-, the m-th moment of
DH(T) is given by

Fmax
/x'" DH(I')(x) =T vol T +m / 71 (vol(0 + dd°T’;) — volI) dr,
R _

B (13.12)
and

/DH(F) = volT. (13.13)
R

Proof We observe that the moments of the random variable G [Ay, (6, ") ] as computed
in Proposition 10.4.4 are independent of the choice of the flag: In fact, they are given
by (13.12) and (13.13) thanks to Theorem 10.3.2(1).

Assume first that I is bounded. Since the Duistermaat—-Heckman measure has
bounded support in this case (c.f. Theorem 10.4.1), we conclude that DH(T") is
uniquely determined.

In general, we may assume that I'y,x = 0. For each € > 0, we define I'® €
PSHNA (X, 6)+ as follows:

(1) LetT'5, =0, and
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(2) we set

. -1
¢, if T < —€,

€

T

Po[(1+en)T, —erd],if 7 € (—e—l,o) .

Then it follows from the argument of Theorem 9.2.1 Step 3.3 that Ay, ('), is the
decreasing limit of Ay, (I'), for any 7 < I'px as € — 0+. So DH(I') — DH(I')
by Lemma 10.4.2. It follows that DH(T") is independent of the choice of the flag. O

More generally, when X does not admit a smooth flag, we could make a modification
m:Y — X sothat Y admits a flag. We define

DH(I') := DH(x*T"). (13.14)
It follows from Theorem 10.3.2(5) that this measure is independent of the choice of .

Proposition 13.3.1 Let (I');¢; be a net in PSHYA (X, 6)~0 and T’ € PSHYA(X, 6)+.
Assume one of the following conditions holds:

(1) The net (T'");¢; is decreasing and T = inf;e; ", Assume that

voIT" = lim vol ™ (13.15)

iel
(2) The net (T');¢; is increasing and T = supieI*Fi.

Then
DH(I') — DH(T). (13.16)

Proof We may assume that X admits a smooth flag Y.
Assume (1). Note that (13.15) implies that

o =infl% .
iel
We want to derive (13.16) from Lemma 10.4.2. It boils down to prove the following:
For any 7 < I'yax, we have

dHaus

Ay, (6,T1) =55 Ay, (6,T).

This follows immediately from Theorem 10.3.2(1) and Proposition 3.1.9.
The proof under the assumption (2) is similar. We only need to apply Lemma 10.4.3
instead of Lemma 10.4.2. O

Definition 13.3.2 When [6] is a Hodge class and I" is induced by a test configuration
as in Example 9.3.1 and Remark 9.3.1, our Duistermaat—-Heckman measure coincides
with the more traditional definition of [ , Section 3.2]. This is explained in
[ , Remark 7.17].
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13.4 Comparison with Boucksom—Jonsson’s theory
13.4.1 A brief recap of Boucksom-Jonsson’s theory

In this section, we briefly recall the non-Archimedean global pluripotential theory a
la Boucksom—Jonsson [ ]. As our presentation is far from being complete, the
readers are strongly recommended to read their original paper before reading the
current section.

13.4.1.1 Valuations

Let X be an irreducible reduced variety over C of dimension n. We recall the notion
of Berkovich analytification XA" of X with respect to the trivial valuation on C.

Definition 13.4.1 A (real-valued) valuation on X (or a valuation of C(X)) is a map
v: C(X) — (—o0, co] satisfying the following conditions:

(1) For f € C(X), v(f) = oo if and only if f = 0;
(2) For f,g € C(X), v(fg) =v(f) +v(g);
(3) For f,g € C(X), v(f +8&) 2 v(f) Av(g).

The set of valuations on X is denoted by X", The center of a valuation v is the
scheme-theoretic point ¢ = ¢(v) of X such that v > 0 on Ox . and v > 0 on the
maximal ideal my . of Ox .. The center is unique if exists. It exists if X is proper.
In the remaining of this section, we assume that X is projective.
As a set, XA" is the set of semi-valuations on X, in other words, real-valued
valuations v on irreducible reduced subvarieties Y in X that is trivial on C. We call Y
the support of the semi-valuation v. In other words,

xAn _ ]—[ yval

Y

We will write vy, € XA" for the trivial valuation on X: vyiy(f) = 0 for any
feCX)*.
We endow XA" with the coarsest topology such that

(1) for any Zariski open subset U C X, the subset UA" of XA" consisting of
semi-valuations whose supports meet U is open;

(2) for each Zariski open subset U C X and each f € HO(U, Ox) (here Oy is the
sheaf of regular functions), the map | f|: UA™ — R sending v to exp(—v(f)) is
continuous.

See [ ] for more details.
We will be most interested in divisorial valuations. Recall that a divisorial valuation
on X is a valuation of the form ¢ ordg, where t € Q- and E is a prime divisor over
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X. The set of divisorial valuations on X is denoted by X 4V When Q. is replaced by
R, we can similarly define a space X]gw.
Given any coherent ideal a on X and any v € XA", we define

v(a) :=min{v(f) : f € ac)} € [0, 0], (13.17)

where c¢(v) is the center of the valuation v on X.
Given any valuation v on X, the Gauss extension of v is a valuation o (v) on

X x Al
2

Here ¢ is the standard coordinate on A! = Spec C[¢]. The key property is that when v
is a divisorial valuation, then so it o(v). See [ , Lemma 4.2].

o(v) =min(v(f;) +1). (13.18)

13.4.1.2 Non-Archimedean plurisubharmonic functions

Let X be an irreducible complex projective variety of dimension n and L be a
holomorphic pseudoeffective Q-line bundle on X. Through the GAGA morphism
XA" — X of ringed spaces, L can be pulled-back to an analytic line bundle LA™ on
X. The purpose of this section is to study the psh metrics on LA™, We will follow the
approach of [ 1, which avoids the direct treatment of LA™ itself.

Following [ , Definition 2.18], we define ?{ét(LA“), the set of (rational)
generically finite Fubini-Study functions ¢: X" — [—c0, 00), that are of the follow-
ing form:

1
¢ = —max{log |s;| + 1;}. (13.19)
moj : :

Here m € Z is an integer such that L™ is a line bundle, the s;’s are a finite collection
of non-vanishing sections in HO(X ,L™),and A; € Q. We followed the convention of
Boucksom—Jonsson by writing log |s;|(v) = —v(s;).
Definition 13.4.2 ([ , Definition 4.1]) A plurisubharmonic metric (or psh
metric for short) on LA™ is a function ¢: XA" — [—oc0, c0) that is not identically —co,
and is the pointwise limit of a decreasing net (¢;);c;, Where ¢; € Héf(Lf‘") for some
Q-line bundles L; on X satisfying ¢; (L;) — ¢1(L) in NS'(X)g.

The set of psh metrics on LA" is denoted by PSH(LA"). We endow PSH(LA™)

with the topology of pointwise convergence on X%V. This topology is Hausdorft as
functions in PSH(LA") are completely determined by their restriction on X%V:

Theorem 13.4.1 ([ , Theorem 4.22]) Let ¢ € PSH(LA“) and  : XA" —
[—00, 00) be an usc function. Assume that ¢ <  on X%, then the same holds on
XAn,

Proposition 13.4.1 ([ , Theorem 4.7]) Let ¢, ¢’ € PSH(LAM), then so is their
pointwise maximum ¢ NV ¢’.
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Proposition 13.4.2 Let H be an ample line bundle on X. Consider ¢ € PSH((L +
H)A"). Assume that for each m € Z-g, we have ¢ € PSH((L + m~'H)A"), then
¢ € PSH(LAM).

This is a special case of [ , (PSH2)] on Page 45.
Next we note that we may use sequences instead of nets in the definition of
PSH(LAM):

Theorem 13.4.2 ([ , Corollary 12.18]) Let S be an ample line bundle on X.
Let ¢ € PSH(LA"). Then there is a sequence of rational numbers g; \, 0 and a

decreasing sequence ¢; € Wéf((L +&;S)A") such that ¢ is the pointwise limit of ¢;,
asi — oo,

The space PSH(LA") inherits most of the expected properties of (Archimedean)
psh functions ([ , Theorem 4.7]). However, the following compactness result is
not known:

Conjecture 13.4.1 ([ , §5]) Assume that X is unibranch, then every bounded
from above increasing net of elements in PSH(LA") converges in PSH(LA™).

This prediction is equivalent to so-called envelope conjecture [ , Conjecture 5.14]:
the regularized supremum of a bounded from above family of functions in PSH(LA™)
lies in PSH(LA"). See [ , Theorem 5.11] for the proof of the equivalence. This
conjecture is proved when X is smooth and L is nef in [ ]. More recently, in
[ ], Boucksom—Jonsson further established the case when X is smooth and L is
pseudoeffective.

13.4.2 The analytifications

Let X be a connected projective manifold of dimension n. Let 8 be a closed smooth
real (1, 1)-form on X representing a pseudoeffective cohomology class.
13.4.2.1 The transcendental setting

Definition 13.4.3 For ¢ € PSH(X, 6), we define the analytification ¢*": XA —
[—o0, 0] as follows:

1
™ (v) = —v(p) = - Jlim v (7 (kg)) . (13.20)

By Theorem 1.4.2 and Fekete’s lemma, the limit in (13.20) exists.
Note that we can also write

() = inf -2ty (I(2k¢)) . (13.21)
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When v = tordg for some prime divisor E over X, ¢2"(v) = —tv(p, E) by
Proposition 1.4.4.

Definition 13.4.4 Let I € PSHYA (X, 6). We define the analytification TA": X% —
[—c0, 00) of I" as follows: For any w € Kih(X), we define

AL (y) = sup (F;"’AH(V)+T). (13.22)
T<I'max

Clearly, (13.22) is independent of the choice of w.
Note that (13.22) can be equivalently written as

r"(v) = sup (F;‘”A"(v) + ‘r) = sup (F;"’A“(v) + ‘r)

T<I'max T7eR
with (—c0)A"(v) = —co understood.

Proposition 13.4.3 Let I’ € PSHYA(X, 6)-o with T'max < 0. Let ¥ be the complexifi-
cation of I'*. Then .
rAn(y) = —o(v)(¥) Vv e X, (13.23)

See Definition 4.1.2 for the definition of the complexification ¥ € QPSH(X X A).
Note that since I'yax < 0, by Corollary 9.2.3 and Theorem 1.2.1, ¥ extends uniquely
to a quasi-psh function on X X A.

Proof Recall that

Y(x,6) = sup (Wr(x)—log|s]>r) forxe X,s €A™

T<T'max

By (13.18), we have o (v)(log |6]?) = 1 and o (v)(I';) = v(I';) for all T < Tyayx. SO
we have that
o () (T (x) —log|6]*7) = v(T'r) — 7.

Lastly, since o-(v) is a divisorial valuation on X X A, by Corollary 1.4.1, we conclude
(13.23). O

Definition 13.4.5 Let N € N, and Ao, ..., An be a finite collection of elements
in PSH(X, 6), and 19 > 71 > --- > 75 be finitely many real numbers. Then the
piecewise linear curve A = (A;)recr in PSH(X, 6) U {—co} associated with these
data is the affine interpolation of these data:

(1) Ay, =A;fori=0,...,N;

2) Ar = Aqy for 7 < 15

(3)forte (0,1)andi=0,...,N — 1, we have
A(]ft)‘l'i+l‘l','+1 = (1 - t)AT[ +tAT[+1;

4) A = —oo for T > 1.
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The analytification of A is the function AA": XA" — [—oco, co) defined as follows:

AAY(y) = sup (AM(v) +7) = max (A/:l_"(v) + Ti) Vv e XA, (13.24)

<79 i=0,...,
We also say A = (A¢)r<z, is a piecewise linear curve in PSH(X, 6).

Remark 13.4.1 Note that 7 +— A; is upper semicontinuous, but not necessarily
concave. Let (A”)-cr be the upper concave envelope of 7 +— A.. Then it can be
inductively constructed as follows:

(1) For T € (19, 00), we let A, = —o0;
2y weset AL, = Aq;

T0
(3) define inductively for j =0, ..., N — 1 the following: For 7 € [7}41, 7)), we set

A/ _ Tj_T ’ ’ .
> = max Ar + AL | VAL,
i=j+l,.  N\T; = T; =T J

(4) for 7 € (—oo,Tn), Wweset A7 = A

This construction is just a reformulation of the general formula Proposition A.1.2.
In particular, A, € PSH(X, 6) for all 7 < 7.
Note that A’ is not necessarily piecewise linear.

Lemma 13.4.1 Let A be a piecewise linear curve in PSH(X, 0). Let (A%.)zcr be the
upper concave envelope of T — A. Then A = (Pg [A%] 1)<z € PSHNA(X, 6).
Moreover,

AN = AAY op XV (13.25)

Here Ty is as in Definition 13.4.5.

Proof We continue to use the notations in Definition 13.4.5. The fact that A €
PSHNA (X, 0) follows from Remark 13.4.1. In order to prove (13.25), we fix v € xdiv,
By Remark 13.4.1,

’ Al 7\ Al
T (Po[AL]7)™ (v) = (A7) (v)
is just the upper concave envelope of
T AM(y),

Therefore, (13.25) follows. O

13.4.2.2 The algebraic setting

Let L be a Q-line bundle on X and % be a Hermitian metric on L with 8 = ¢(L, 6).

Lemma 13.4.2 For any ¢ € PSH(X, ) we have that o™ € PSH(LA").
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Proof After replacing L with a sufficiently high power, we may assume that L is a line
bundle. Take a very ample line bundle H on X. By Siu’s uniform global generation
theorem [ LI , Theorem 6.27] there exists b > 0 large enough so that
HY ® L¥ ® T (k) is globally generated for all k > 0. Let {s;}; be a finite set of
global sections that generate the sheaf H” ® L* ® T (k¢). Then

V(L (kg)) = minv(s;).

It follows that v — —k~!v (T (k¢)) lies in Wéf((L + %H)A“). Using (13.21), we
conclude that " € PSH(LAM). o

Lemma 13.4.3 Let T be a piecewise linear curve in PSH(X, ). Then TA" €
PSH(LAM).

Proof The result follows from (13.24), Proposition 13.4.1 and Lemma 13.4.2. 0O

Lemma 13.4.4 Let R be a commutative C-algebra of finite type and I be an ideal of
R[t]. If forany a € S', a*I C I, then I is stable under the C*-action. Moreover, there
are ideals Io C I} C -+ C I,,, in R so that

I=Iy+Lit+---+1,(t™), (13.26)

Proof 1t suffices to argue that / can be expanded as in (13.26). To see this, assume
thata € I. We can write a = ag+at +- - -+ a,,t™ with a; € R. Then our assumption
implies that }; a;p't" € I as well for all p € S'. So by the Lagrange interpolation
formula, a;#* € I for all i. Therefore, we can write I as Iy + 17 + I»#2 + . .. for some
ideals Iy € I} C ... in R. But as R is noetherian, there is m > 0 so that I, = I,,, for

m’ > m. (13.26) follows. O

Lemma 13.4.5 Let X be a complex projective variety and p : X X C — X be the
natural projection. Assume that I is an analytic coherent ideal sheaf on X x C.
Assume that I |xxc+ = p*J for some coherent ideal sheaf J on X. Then I is the
analytification of an algebraic coherent ideal sheaf.

Proof Let g : X x (P! \ {0}) — X be the natural projection. As C* c P! \ {0} we
can glue ¢*J with I to get an analytic coherent ideal sheaf on X x P!. By the GAGA
principle, this ideal sheaf is necessarily algebraic, hence so is its restriction to X X C.O

Next we point out a version of Siu’s uniform global generatedness lemma [ ]
that we will need in the proof of our next theorem:

Lemma 13.4.6 Let L be a big line bundle on X such that ¢{(L) = {0} and ® €
PSH(X X A, p}0), where A is the unit disk. Let G be an ample line bundle on X. Then
there exists k > 0, only dependent on X and G such that pT(Gk QL™ ® I (md) is
globally generated for all m € N.

Proof The argument for this is exactly the same as the one in [ , Lemma 5.6]
with Nadal’s vanishing replaced by the family version proved by Matsumura in
[ , Theorem 1.7]. O
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Proposition 13.4.4 Ler ¢ € PSH(X, 0)~ be a model potential and € € R(X, 0; ¢)
with supy €1 < 0. Let ® be the complexification of . Then the function

v —o()(®) forve X
admits a unique extension to an element in PSH(LA™).

Proof We may assume that L is a line bundle. Observe that the extension is unique if
it exists by Theorem 13.4.1.

Let p;: XXC — X be the projection. Thanks to Proposition 1.4.5 and Lemma 8.4.3,
for each m € Z-(, we have

I (m®)|xxa+ = p1L (me)|xxa-

In particular, 7 (m®) admits a C*-invariant extension to a coherent ideal sheaf on
X x C, namely I (mp7¢).
From Lemma 13.4.4 and Lemma 13.4.5, we get that

IT(m®)=ap+ait+---+an_1t" T +ay V), (13.27)

where the a;’s are coherent ideal sheaves on X.
Using Lemma 13.4.6, there exists 7' — X ample such that pi7 ® L™ ® I (m®) is

globally generated, which is equivalent to 7 ® L™ ® a; being globally generated for
alli.3
We define

om(v) = —%o-(v)(f(mtb)) = —% min(v(a;) +i), ve X,

From the right-hand side of the formula, ¢, can be extended to an element in
Wéf((L +m~!T)A"), which we denote by the same symbol.
For v € X4,

~r()(@®) = lim 2o ()T Q") = lim g (v)

and the right-hand side defines an element in PSH(LA") by definition, since {@om },,
is decreasing. O

Corollary 13.4.1 Let T € PSHNA (X, 6). Then TA" defined in Definition 13.4.4 admits
a unique extension to PSH(LA™).

The extension will be denoted by the same notation T"A™,

Proof Observe that the extension is unique if it exists by Theorem 13.4.1. We may
assume that I'y,x = 0 without loss of generality.

3 In contrast with the case where ¢ is bounded, explored in [ 1, ay # Ox in general.
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When I' € PSHNA (X, 6)-, our assertion follows from Proposition 13.4.4 and
Proposition 13.4.3.

In general, fix an ample line bundle H on X and a Kéhler form w € ¢1(H). Then
we know that

_ Al
A = (rm "“) " € PSH((L + m™'H)™)

for any m € Z.. Therefore, I'A™ € PSH(LA™) by Proposition 13.4.2. O

13.4.3 The comparison theorem

Let X be a connected projective manifold of dimension n. Let L be a pseudoeffective
Q-line bundle on X and /4 be a Hermitian metric on L with § = ¢; (L, h).
Thanks to Corollary 13.4.1, we already have a map

PSHYA(X,6) — PSH(L""), [+ " (13.28)
We observe that for I' € PSHNA(X ,0) and a Kéhler form w on X, we have
(Pose [T17)™" =T,

Also observe that
Diax = rAn (Vuriv)s (13.29)

Lemma 13.4.7 The map (13.28) is order preserving. Moreover, suppose that T',T"”" €
PSHNA (X, 6) satisfies that TA™ < T'A" then T < T".
In particular, the map (13.28) is injective.

Proof The map (13.28) is order preserving by definition. Let us take I', T €
PSHNA(X, ) with TA" < I"A", Fix a Kiihler form w on X.
Let v € X4 and r € Q.. Then, using (13.22) we notice that

(A (flv) = sup ((r;“)A“ ) +n) . (13.30)

TeR

A similar equality holds for I'". Therefore, by Corollary A.2.1, we have

(o)™ < ()™

T

for all T € R. It follows that
ry <1y

for all T € R. Our assertion follows. O

Lemma 13.4.8 Let ¢ € Wg(LA“). Then there is a piecewise linear curve A in
PSH(X, 0) with ¢ = AA". In particular, ¢ is in the image of (13.28).
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Note that from the proof below, the test curve I" corresponding to ¢ satisfies the
following: For any 7 < I'p,x, 'z is elementary. See Definition 6.1.3 for the definition
of elementary metrics.

Proof Let us write

1
¢ =— max (logl|s;|+4;), (13.31)
mi=l,...M
where m € Z+, s1, . .., Sp are a finite number of sections of L™ and Ay, ..., Ay € Q.
Write I, for the set of i such that 1; = 1. We denote the finitely many A so that I,
is non-empty as 19 > - -+ > 7n. Foreachi =0, ..., N, we write

1
A;, = — max (log |sj|im + Ti) .
m jel;

We define A as the piecewise linear curve associated with the A;,’s and the 7;’s. Then
clearly ¢ = AA™,
The final assertion follows from Lemma 13.4.1. O

Proposition 13.4.5 Let (I';);c; be a decreasing net in PSHY*(X, 0). Assume that
(13.8) is satisfied. Then

iel iel

An
(inf Fi) = inf "™,

Proof Take a Kéhler form w on X. We need to show that

An
(inf F,-,a,) = inf [/,
iel [

iel

Therefore, after replacing 6 by 6 + w, we may assume that I'; € PSH(X, 6)~ for all
i € I and inf;c; T; € PSH(X, 6)s0. Fix v € X4, By Theorem 13.4.1, it suffices to
prove that

An
sup ((m; r,-,T) ) + T) — inf sup (r;f:(v) + T) . (13.32)

TeR \ '€ iel TeR

But thanks to Proposition 3.1.9, we have

An
inf Iy = inf (A
(}21 l,T) (V) }Iell l,T(v)’

so (13.32) is a consequence of Proposition A.2.3. O
Theorem 13.4.3 The map (13.28) is an order preserving bijection.

Proof The map (13.28)is an order preserving injection by Lemma 13.4.7. It remains to
prove that it is surjective. Let ¢ € PSH(LN*). We want to construct " € PSHYA (X, 6)
with TA" = ¢,

Let H be an ample line bundle and (¢;); be a decreasing sequence of rational
numbers with limit 0, ¢; € wg((L + &H)A") such that
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¢ = inf ¢[.
i>0

The existence of these data is guaranteed by Theorem 13.4.2. Fix a Kéhler form
w € ci1(H),

Thanks to Lemma 13.4.8, we can find I'" € PSHNA (X, 6 + €;w) with (I')A" = ¢,.
It follows from Lemma 13.4.7 that

Fi 2 P0+5iw [Fl+1]j Z Fi+1.
Therefore, for any ' € Kdh(X), the sequence (P g+ [Fi] ;)i 1s decreasing. We let
I =inf Py [I'], € PSHY(X, 0+ o).
i>0
Note that the infimum is defined thanks to (13.29). It follows from Proposition 13.4.5

that
,\An
(r) "= e.

From this, it is clear that for w’, "’ € Kdh(X) with v’ < w”, we have

”

Posor [Fw’] e’
I

It follows that (") , cxiin(x) defines an element T in PSHN (X, 6) and I'*" = ¢.0

Theorem 13.4.4 Under the bijection Lemma 13.4.7, the operations on PSHYA (X, 6)
defined in Section 13.2 all correspond to the corresponding operations on PSH(LA™)
in Boucksom—Jonsson’s theory.

The meaning should be clear for all operations except for the trace operator, and the
proofs are elementary, as we have seen in Proposition 13.4.5 in the case of infimum
operator. We shall only restate and prove the case of trace operators, and leave the
remaining arguments to the readers.*

Theorem 13.4.5 Let Y C X be an irreducible analytic subset. Consider an element
I € PSHNA(X, 0) with well-defined restriction to Y. Then

Try (D)A" yan = TAY yav. (13.33)

Observe that there is a canonical identification Y4V = Y4V, Recall that a generalized
Fubini—Study metric is defined in Definition 1.8.7.

Proof We may assume that I' € PSHYA(X, 6)-¢. Let ¢ = ' € PSH(LA"). By
Lemma 13.4.9, ¢(vy iv) # —oo.
Take an ample line bundle S on X, a Kihler form w in c;(S). Write ¢ as

the decreasing limit of a sequence ¢’ of elements in 'Héf((L +i718)A") as in
Theorem 13.4.2.

4 In case you find any of the arguments non-trivial, please refer to [ ] for the full details.
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Take I'" € PSHN*(X, 6 + i~ 'w) such that I">A" = ¢’ Note that by Lemma 13.1.1,
I € PSHY (X, 0 +i 'w)so.

It follows from Proposition 13.4.5 (applied to the images of I in PSHNA (X, +w))
that for any 7 < ['pax, we have

inf TL =T,

[—0co

. ds, 00
In particular, I'; Doore, I'; for all T < I'pax.
By Lemma 13.4.9 again, each I has non-trivial restriction to E. By Proposi-
tion 8.2.2, for any Kihler form w’ on ¥ satisfying w’ > w|y we have

Try (Fi’gl?ﬂu,) d—S> Try (Ff|?+w,)
for any 7 < (Try (I") )max. Thanks to Theorem 6.2.4,

Try ()" (c ordg) = ingTry(r)i’An(c ordr)
i>

for any c ordg € Y4V_ In particular, it suffices to prove (13.33) with I'? in place of T".

In other words, we have reduced to the case where ¢ € %g(L) and L is big.

Let I' € PSH(X, 6)- with T'A" = ¢. By Lemma 13.4.8, we can find a concave
curve (I';) z<r,,,, With I'7 being a generalized Fubini—Study metric for each 7 < T'ax
and that

s =Py [F;]

It follows that for any c ordg € E4VY,

@lyan(cordr) = sup (F’TAn(c ordr) +T)

T<I'max

sup ((F’T|y)An (cordp) + ‘r)

T <Dmax

sup (Try (T)A"(cordr) + T)

T<I'max

= sup (Try(l"T)A“(cordF)+‘r)

T <Imax

=Try ()" (c ordg).

The third equality follows from Proposition 8.2.1. It remains to justify the second line.
Namely, we want to show that for any generalized Fubini—Study metric ¢, we have

@™ (cordr) = (¢ly) (cordg). (13.34)

We could immediately reduce to the case where ¢ is a Fubini—Study metric, and then
to the case

¢ =log|s; ,
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where s is a holomorphic section of L, not vanishing identically on Y, in which case
(13.34) is obvious. O

Lemma 13.4.9 Let " € PSHYA (X, 0) and Y C X be an irreducible analytic subset.
Then the following are equivalent:

(1) TAY(vy riv) # —00;
(2) TAY | yan # —oo;
(3) T has a well-defined restriction to Y .

Here vy iy denotes the trivial valuation of C(Y).

Proof The equivalence between (1) and (2) is a simple consequence of the maximum
principle [ , Lemma 1.4(1)].

To see the equivalence between (1) and (3), it suffices to observe that for any
¢ € PSH(X, 9),
—o0, if v(¢p,Y) > 0;

An ) =
("2 (VY,[er) { 0.if V(QO, Y) = 0.



Chapter 14
Partial Bergman kernels

I speak twelve languages: English is the bestest.
— Stefan Bergman“

¢ Stefan Bergman (1895-1977), bearing a very Scandinavian
name, was a Polish-American mathematician best known for his
work in complex analysis, especially in several complex variables.
He introduced the Bergman kernel, a fundamental concept in
complex analysis that has influenced many areas of mathematics
and theoretical physics.

Bergman was born in Poland (then part of the Russian Empire),
and studied in Berlin. He fled Europe during World War II and
eventually settled in the United States.

In this chapter, we prove the convergence of the partial Bergman kernels.

14.1 Partial envelopes

In this section, let X be a connected compact Kéhler manifold of dimension n and
K C X be a closed non-pluripolar set. Let 8 be a smooth closed real (1, 1)-form on
X representing a pseudoeffective cohomology class. Fix ¢ € PSH(X, 6).

Definition 14.1.1 Given a function v: K — [—o0, ), we introduce the relative
P-envelope of ¢ (with respect to K, v, 8) as

Po.xlel(v) i=sup® { € PSH(X,6) : n|x < vandn < ¢}. (14.1)

Similarly, we define the relative I -envelope of ¢ (with respect to K, v, 6) as
Po kl[lr(v) = sup” {n € PSH(X,0) : n|x <vandn <71 ¢}. (14.2)

Observe that when v is bounded, neither envelope is identically —co. When K = X
and v = 0, these definitions reduce to the usual P-envelope and 7 -envelope of ¢
studied in Chapter 3.
It would be helpful to consider the following auxiliary functions:
Py kel (v) :=sup {n € PSH(X,0) : n|lx < vandn < ¢},

Py klelr(v) =sup{n € PSH(X,0) : n|lx <vandn <7 ¢}.

293
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We note the following maximum principles, that follow from the above definitions:

Lemma 14.1.1 Let v € C°(K). Let j € PSH(X, 6). Assume that 1 < ¢, then

sup(n—=v) = sup (n—Py glel(v)) = sup =Py klel(v)). (14.3)
K {n%~c0} (P @] (v)#—o0}

Proof We prove the first equality at first. We write S = {5 = —oo}.
By definition, P}, . [¢](v)|x <V, so

(h - Py ko] (v))(K\S > nlk\s = vIk\s -

This implies that
sup(n —v) < sup(ny — Py g [¢](v)).
K X\S

Conversely, observe that supg (7 — v) > —co as K is non-pluripolar. Let ’ =
n — supg(n — v), then i’ is a candidate in the definition of P}, . [¢](v), hence
n' < Py gle](v), namely,

n- sip(n -v) < Py glel(v),
the latter implies that

sup(n7 —v) > sup(n = Py k [¢] (v)),
K X\S

finishing the proof of the first identity.

We have {P;.,’K [¢](v) = —c0} C S, and we notice that points in S \ {P’B,K [e](v) =
—co} do not contribute to the supremum ofn—P’g’K [¢](v)on X\{P’Q’K [e](v) = —o0},
hence the last equality of (14.3) also follows. O

Next, we make the following observations about the singularity types of our
envelopes:

Lemma 14.1.2 For any v € C°(K) we have
Poklel(v) ~ Polel, Poxlelr(v) ~ Polelr.
If ¢ has analytic singularities, we have
Po klel(v) = Poxlelr(v). (14.4)
Proof Let C > 0 such that —C < v < C. Then
Pgle] = C < Pok[e](v).

Since K is non-pluripolar, for € PSH(X, ) the condition |x < v < C implies that
n < C on X for some C := C(C, K) > 0 by Remark 1.5.2. This implies that
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Poxlel(v) < Poly] +C,

giving
Po.k[¢](v) ~ Polg].

The exact same argument applies in case of the relative 7 -envelope.
Next assume that ¢ has analytic singularities, then we have that

¢~ Polelr

by Proposition 3.2.9. In particular, for n € PSH(X,6), n < ¢ if and only if
n = Pglelr. So (14.4) follows. O

Corollary 14.1.1 Let v € C°(X). Then

Poklelr(v) =Pox[Poxlelr(v)]r(v).

Proof By definition, we have

Pox[Po.xlelr(v)]z(v)
=sup* {n € PSH(X,0) : n|lx <v,n <7 Poxlelr(v)}

=sup” {n € PSH(X,0) : nlx < v,n <7 ¢}
=Po klelr(v),
where we applied Lemma 14.1.2 on the third line. O

Lemma 14.1.3 Assume that ¢ € PSH(X,0)>¢. Let v € C%(K). Let S € X be a
pluripolar set and 1 € PSH(X, 0)>0 with 1 < ¢. Assume that 1j|g\s < v|k\s, then

n < Poxle](v).

Proof By Theorem 1.1.5, there is y € PSH(X, 6), such that y|s = —oco. We claim
that we can choose y so that
X =1

In fact, since /x 9;’7 > 0, fixing some y and € € (0, 1) small enough, we have

n n n
Lgex+(l—e)Vg+L9U>'A0Vg'

Thus, by Proposition 3.1.4, we have
(ex + (1 —€)Vy) Ap € PSH(X, 6).

It suffices to replace y by (ex + (1 —€)Vy) A 1.
Fix y < nas above. For any § € (0, 1), we have

(I-0nlk +oxlxk <v, (1-6n+dx<¢
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Hence,
(1-0)n+0ox < Poxlel(v).
Letting 6 — 0+, we conclude that 7 < Pg g [¢](v). O

Corollary 14.1.2 Assume that ¢ € PSH(X, ). Let v € C°(K). Then
Pox[e]l(v) = Pox[¢] (Po,x[Vol(v)).
Proof 1t is clear that
Po.x[el(v) < Pgx[e] (Po.x[Vol(v)).
For the reverse direction, it suffices to prove that any € PSH(X, 6) such that
n=<¢, n<PoklVellv),

we have
n < Pokle]l(v). (14.5)

As ¢ has positive mass, we can assume that 77 has positive mass as well. Let

S ={Po.x[Vol(v) > Py x[Vol(V)} .

By Proposition 1.2.5, S is a pluripolar set. Observe that

ks < Vvlks.

Hence, (14.5) follows from Lemma 14.1.3. m]

The next result motivates our terminology to call the measures 9';,6 clel) the
partial equilibrium measures of our context: Y
Lemma 14.1.4 Let v € CO(K). Then

n —
/X\K Vpolelv) =0
Moreover, Py k[¢](v)|k = v almost everywhere with respect to 9’;_.,9 clel() More
precisely, we have ’
Oy c101(v) < LKN{Pok[0]()=Po.k [Val()=v} Op, ¢ [Ve](v)- (14.6)

Proof Step 1. We address the case where ¢ = Vy.
Let S C X be a closed pluripolar set, such that Vy is locally bounded on X \ S. This
is possible because we can always find a Kahler current with analytic singularities in
the cohomology class [6], as a consequence of Theorem 1.6.2.
For the first assertion, it suffices to show that 6;

openball Be€ X \ (SUK).

o.xc[Ve(v) does not charge any
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By Proposition 1.2.2, we can take an increasing sequence (77;); in PSH(X, #) such
that
nj — P k[Ve](v) almost everywhere, n;|x <vforall j > 1.

By [ , Proposition 9.1], for each j > 1, we can find y; € PSH(X,6), such
that (6 +dd®y;|p)" = 0 and w; agrees with n; outside B. Note that (), is clearly
increasing and

Yiznp, Yilk Sv.
forall j > 1.

It follows that 7y; converges to Pg x[Ve](v) almost everywhere as well. By
Theorem 2.3.1, we find that 9’;,6 <[Vol(v) does not charge B, as desired.

For the second assertion, letx € (X\S)NK be apoint such that Py x [Vo](v)(x) <
v(x) — € for some € > 0. Let B be a ball centered at x, small enough so that 6 has a
local potential on B, allowing us to identify 8-psh functions with psh functions (on
B). By shrinking B, we can further guarantee

(1) BC X\S.
(2) Po.x[Val(W)lg <v(x) —e.
(3) vIgng > v(x) — €.

Construct the sequences 777, y; as above. On B, by choosing a local potential of 8, we
may identify 77;, v; with the corresponding psh functions in a neighborhood of B.By
(2), we have y; < v(x)—e€ on dB, hence by the comparison principle, y;|p < v(x)—e.
By (3), we have y;|pnk < v|gnk. Thus, we conclude that Hgg’K[VHJ(V) does not
charge B, as in the previous paragraph.

Step 2. We handle the general case. We can assume ¢ € PSH(X, 6)¢. Indeed,
due to Lemma 14.1.2 and Theorem 2.3.2, we have that

n _ n
/X Oy xlol(v) = /X%'

Hence, there is nothing to prove if fX 0, =0.
By Corollary 14.1.2,

Py xle](v) = Po x[¢](Po.x[Vol(v)).
Now [ , Theorem 3.8] gives
Oy le1(v) SLPoxle]()=Po.x[Val)}OP, [V, 1(v)
SLipokl01)=v} 0Py (Vo (v)*
where in the second inequality we have used Step 1. O

Corollary 14.1.3 Let v € C°(K).
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o o =0,
'/(X\K)U{PHVK[QO](VRV} Po.k[el(v)

(14.7)

/ Opo kil =0
KK U(Paxlelr v} "

Proof The first equation in (14.7) follows from Lemma 14.1.4. For the second, we
can assume that

n
LGPQ,K[W]I(V) >0, (14.8)

otherwise there is nothing to prove. By definition, we have

Poklelr(v) =PoxlPolelrlr(v).

Next we show that

Pox[Polelrlr(v) = Pox[Polelr](v).

The > direction is trivial. It remains to prove the reverse inequality. By Lemma 14.1.2,
we get that

Pok[Polelrlr(v) ~ Polelr.

Due to Proposition 1.2.5, we get that

Pok[Polelrlr(v) <v

on K \ S, where S C X is a pluripolar set. As a result, due to (14.8), Lemma 14.1.3
allows to conclude that

Pox[Polelrlr(v) < Pox[Polelr](v).
Since
Po.x[Polelrlr(v) = Poxlelr(v),

we get that the second equation in (14.7), using the first. O

Proposition 14.1.1 Assume that ¢ € PSH(X, 0)~. Let v € C°(K). Then

Po k[e]l(v) = Po.k[Pole]ll(v). (14.9)

In particular,
Po.k[e](v) = Po.x[Po.x[p](V)](v).

Proof The < direction in (14.9) is obvious. We to prove the reverse inequality. As
Po x[¢](v) and Pg x [Pa[¢]](v) have the same singularity types by Lemma 14.1.2,
by the domination principle [ , Corollary 3.10], it suffices to show that

Poxle]l(v) = Py x[Pole]](v) almost everywhere with respect to Ogqu[f]l(v)l.o)

By (14.6),
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Poklel(v) = Pox[Vel(v) =v

almost everywhere with respect to 67 Hence,
Po.x ]

(v)”
Po.x[Polell(v) =v

almost everywhere with respect to 9’;,0 clo](v) We conclude that

el(
Po.xlel(v) = Pox[Polell(v).
Finally, (14.10) follows from Lemma 14.1.2 and (14.9). O

Definition 14.1.2 Given ¢ € PSH(X, 6)~¢, the partial equilibrium energy functional

8[9‘#] «: CU(K) > Rof v € CO(K) as follows

E¢ (V) = EJYI (Pg k(@] 1 (V). 14.11)

Recall that the energy E g" [#17 functional is defined in Definition 3.1.5.
Note that by Lemma 14.1.2, we have

Poxlelr(v) € E¥(X,0; Polelr),
o) Sg‘K(v) eR.

Proposition 14.1.2 Let K C X be a closed non-pluripolar set, v, f € C°(K) and
¢ € PSH(X,0)s0. ThenR 3 t — 85,1( (v +tf) is differentiable and

d
G Soxvrif)= /ngge,x[sv]r(wtf) (14.12)

forallt € R.

Proof We may assume that ¢ is 7 -model by replacing ¢ by Pg[¢]r.
Note that it suffices to prove (14.12) at ¢ = 0, which is equivalent to

EJ(Poxlelr(v+1f) = Ef(Pox[¢]r(v))
: 4 > 4 > _ n
Jim ; = /Kfepe,Km](v)‘ (14.13)
By switching f to —f, we may assume that # > 0 in the above limit.

By the comparison principle [ , Proposition 3.5] and Proposition 3.1.12,
we find

Ey(Poxlelr(v+1f) —E}(Poxlelr(v)

1 < . i
i 0 Pkl 6410 = Pak 116D O 0y A O s 0
i=0

< [Polelr(v419) = Parlels) 8, 1,0
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By Lemma 14.1.4,
[ Poklolsv+19) = Parlols N 0, oy <1 [ £ i,
X : K :
Thus, we get the inequality,

n
Po.klelr(v)”

Tm E{(Poxlelr(v+1f)) = EJ(Pox[elr(v)) < / o
K

t—0+ t

Similarly, we have

Ef(Poxlelr(v+1f) —E}(Poklelr(v)

> [(Poxlelsif) = Poxlel 0D 0, 1)

2t /K S Oby klels (vat )

Together with the above, this implies (14.13). O

Lemma 14.1.5 Fix a Kihler form w on X. For v € C°(K) there exists an increasing
bounded sequence (VJ‘. )j in C*(X) and a decreasing bounded sequence (v‘;.) jin
C*(X), such that for all ¢ € PSH(X, 0)>0 and 6 € [0, 1] we have ‘

(D) Porswx[e](vi) N\ Porsw.k [](v),
() Porswxlel(v;) / Porsw .k [¢](v) almost everywhere,

(3) supy |vj_-| < C, supy |v7| < C for some constant C depending only on ||v|co (k)
K and 0 + w, and

“

lim 7 (v) =67 (). lim & (5) =67 ().

Proof We fix § € [0, 1]. First we prove the existence of (vj‘. )j- Let

Ck.y = sup{supn :n € PSH(X,0+w),n|g < v}.
X

Since K is non-pluripolar, we have that Ck ,, € R. Now define #: X — R as

v(x), x€K;
P(x) =
Cryv+1, xeX\K.

Since ¥ is lower semicontinuous, there exists an increasing and uniformly bounded
sequence (v]‘.)j in C*(X), such that 1 a2

Observe that P15, x[¢] (v7)is increasing in j > 1, and

Porsox[e](v;) < Porswk @] (v).
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To prove that
Porswxlel(v) /" Porsw.k [@](v)

almost everywhere, let 77 be a candidate for P .54, & [¢](v) such that supg (7—v) < 0.
Then, since 7 is upper semicontinuous and 7 < ¥, by Dini’s lemma there exists jo > 0
such that n < vy for j > jo.i.e.
N < Porswxlel(v),
proving existence of (vj‘. )j-
Next, we prove the existence of (v;r.) - Since

h=Porwk[Vorwl (V) V (igfv -1

is usc, there exists a decreasing and uniformly bounded sequence (v;.) jin C*(X),
such that v\, h. Trivially,

X = ]11_)1’1;10 P9+5w,x[<p] (V;—) = P6)+6a),K [90] (v)

In particular, y has positive mass, since it has the same singularity types as
Poi+sw.x [¢](v) by Lemma 14.1.2. We introduce

S = {Pp, ek [Vorwl(v) < Porowk [Vorwl(V)} .

By Proposition 1.2.5, S is a pluripolar set. Observe that

Porswxlel(vi) < v}

for all j > 1. Thus, y < h. On the other hand, 2 < v on K \ S. So in particular,
Xlk\s < vlk\s. By Lemma 14.1.2 we also have that x ~ Pg.s.,k [¢](v). Hence, by
Lemma 14.1.3,

X < Possw.k[Porsw.k [@](WM](V) = Porsw.k [@](v),

where we also used the last statement of Proposition 14.1.1.
Finally observe that (4) follows from Lemma 14.1.2, Lemma 14.1.5 and Theo-
rem 2.3.1. O

Proposition 14.1.3 Let K C X be a compact and non-pluripolar subset. Let v €

C%(K). Let @, € PSH(X,0)s0 (j = 1) with ¢; 4, @. Then the following hold:

W If ¢j N\ @ then Poxleilr(v) v Poxlelr(v) and Poxle;]l(v)
Po k [u](v).

) If ¢; /" ¢ almost everywhere then Py x[¢;17(v) / Po xl¢lr(v) almost
everywhere, and Pg x [¢;]1(v) /" Pg k[¢](v) almost everywhere.

Proof (1) By Theorem 6.2.1, we have
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lim 9",2/9".
j;,oo‘/vX Pj X [

It follows from Lemma 2.3.1 that there is a decreasing sequence €; ~\, 0 with
€; € (0,1) and n; € PSH(X, 0) such that

(I-€pgj+emj<¢.
By the concavity similar to Proposition 3.2.10, we get

(1-€)Poxleilr(v)+€iPox[nijlr(v) <Pox[(1-€)¢;+emilr(v)
<Poklelr(v).

Since (¢;); is decreasing, so is (Pg k [¢;]7(v));, hence

w = lim Pole;]7(v) 2 Poxlelz(v)

exists. Since €; — 0 and supy Pg k [17;] 7 (v) is bounded, we can let j — oo in the
above estimate to conclude that

v =Poklelr(v).

The same ideas yield that

Poxleil(v) \ Po.xle](v).

The proof of (2) is similar and is left to the readers. O

14.2 Quantization of partial equilibrium measures

Let X be a connected compact Kéihler manifold of dimension n and L be a pseudoef-
fective line bundle on X. Let & be a Hermitian metric on L and set 6 = ¢ (L, h). Let
(T, hr) be a Hermitian line bundle on X. Take a Kdhler form w on X so that

/w":l.
X

14.2.1 Bernstein—-Markov measures

Let K C X be a closed non-pluripolar subset. Let v be a measurable function on K
and let u be a positive Borel probability measure on K. We introduce the following
functions on HO(X, LK ® T) (k > 1), with values possibly equaling co:
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1/2
NS, (s) = (/ h* @ hy (s, s)e™* dv) ,
K
k k X 1/2
Ny g(s) == sup (h ® hr(s,s)e” V) )
’ K\{v=—o00}
We start with the following elementary observation:

Lemma 14.2.1 Let v < vy be two measurable functions on X. Assume that {v| =
—oo} = {vy = —oo}. Then forany s e H (X, L* ® T) (k > 1), we have

N g (s) 2 N§ ().
If v puts no mass on {v = —oo} then we always have
N§ () < N& ¢ (s). (14.14)

Definition 14.2.1 A weighted subset of X is a pair (K, v) consisting of a closed
non-pluripolar subset K C X and a function v € C%(K).

Definition 14.2.2 Let (K, v) be a weighted subset of X. A positive Borel probability
measure v on K is Bernstein—-Markov with respect to (K, v) if for each € > 0, there is
a constant C > 0 such that

NE g (5) < Cee*NE (5) (14.15)

for any s € HY(X,L¥ ® T) and any k € N. We write BM(K,v) for the set of
Bernstein—-Markov measures with respect to (K, v).

As pointed out in [ ], any volume form on X is Bernstein—-Markov with
respect to (X, v), with v € C*(X).

Proposition 14.2.1 Assume that (K, v) is a weighted subset of X, then
(1) N¥ o is anorm on H'(X, L* ® T).
(2) For any v € BM(K, v), N"f’U is a norm on HY(X, L* ® T).

Proof (1) As v is bounded, N* . is clearly finite on H’(X, L* ® T'). In order to show

that it is a norm, it suffices to show that for any s € H(X, L ® T), Nf k(s)=0
implies that s = 0. In fact, we have s|x = 0, hence s = 0 by the connectedness of X.

(2) As v is bounded, clearly nyu is finite and satisfies the triangle inequality.
Non-degeneracy follows from the fact that N i‘ x isanorm and (14.15). O

14.2.2 Partial Bergman kernels

In this section, we fix a weighted subset (K, v) of X and v € BM(K, v).
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Definition 14.2.3 For any ¢ € PSH(X, 0), we introduce the partial Bergman kernels
of ¢ (with respect to (K, v)) as follows: For any k£ > 0, we introduce

B"f’%v(x) = sup {hk ® hr(s, s)e ™™ (x) : Nf’v(s, s) <1,

(14.16)
seH (X, L*®T® I(kp))}, xeKk.

We extend BX to the whole X by setting it to be 0 outside K.

vV, QU
The partial Bergman measures of ¢ (with respect to (K, v)) are defined as

!
B\]f,w,u = %B\If,q;,u dv 14.17)
for each £ > 0.
Observe that
k n' 0 k
Bygw= ﬁh (X,T®L*®I(ky)). (14.18)
K

The goal of this section is to prove the following theorem:

Theorem 14.2.1 Suppose that ¢ € PSH(X, ). Let (K, v) be a weighed subset of
X, let v € BM(K, V). Then

k _.pn
By = Opyxlelrv) (14.19)

as k — oo.
Proposition 14.2.2 Let ¢ € PSH(X, 0) be a potential with analytic singularities such
that 0, is a Kdihler current. If v € C*(X), then
k . pon _ pn
Br.gon = Vool (v) = Opoxielv) (14.20)
as k — oo,

Proof The equality part in (14.20) follows from Lemma 14.1.2. We start with noticing
that as k — oo,

k k —
B.g.on < By ve.wn = Op, 1velv) = Liv=Pax[Val(v)} 07

where the convergence follows from [ , Theorem 1.2], and the last identity is
due to [ , Corollary 3.4]. Let u be the weak limit of a subsequence of ﬁ]v" .
then we obtain that

,w?

1= =Py x[Vol(»} 07 - (14.21)
Letk > 0,s € H(X, L* ® T ® T (k¢)) be a section such that N¥ (s, s) < 1. Then
by [ , Lemma 4.1], there exists C > O such that
< BX < k"C.

v,Vo,w" =

hW* ® hy(s,s)e™ < B’vc

,p,w"

This implies that
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logC  logk
o2C , jJogk

1
%loghk®h7(s,s)$v+ .

We define ¢y as in Proposition 1.8.2. Take ax " 1 as in Proposition 1.8.2. Then
1 k
Z logh® ® hr(s,s) < ¢r < akep.

Let € > 0. We notice that + log h* ® hr (s, s) € PSH(X, 6 + ew) for all k > ko(e).
In particular,

logC  logk
= —n— < Porcaxlarg] (v).

1
T log h* ® hy (s, s) —
Now taking supremum over all candidates s, we obtain that

Bk

V., 0"

< Ck"ek(f’mm,x[dwﬁl(V)—V), k > ko. (14.22)
We claim that ¢ does not put mass on {Pg+ew x[¢](v) < v} for any € > 0. Since

P6’+Ew,X[ak¢] (v) \a P9+ea),X[90] (V)

by Proposition 14.1.3, we get that

{P0+ew,X[ak§0] (V) < V} /‘ {P9+Ew,X[‘P] (V) < V}.

As a result, to argue the claim, it suffices to show that u does not put mass on the
set {Po+ew.x[@ke] (v) < v} for any k. Note that the latter set is open, hence (14.22)
implies our claim.

Since ¢ has analytic singularities, we have that

PG+Ew,X[‘P] (V) ~ Y

for all € > 0 by Lemma 14.1.2 and Proposition 3.2.9. As a result,

Porewx[el(v) s Po x[¢](v),

and we can let € ™\, O to conclude that u does not put mass on {Pg x[¢](v) < v} =
Uesof{Po+ew.x[e](v) < v}. Putting this together with (14.21), we obtain that

1< Lipy xg1)=185 = Op, (o100

where the last equality is due to [ , Corollary 3.4]. Comparing total masses via

- . .
(14.18) and Theo;em 7.3.1, we conclude that y = HPG’XW](V). As u is an arbitrary

k n
v.,n» We conclude that B .. converges weakly to ¢

cluster point of 8 Poxlol(v)’
O

as k — oo.

Definition 14.2.4 Take k > Oand ¢ € PSH(X, 6), let Norm(H*(X, LK®T® T (k¢)))
be the space of Hermitian norms on the vector space H*(X, L @ T ® T (k¢)).
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Let Ly ,: Norm(H(X,L*¥ ® T ® T (kg))) — R be the partial Donaldson

functional:
n! I vol{s : H(s) < 1}

kvl vol{s : N(’)‘ wn(8) < 1}

Lio(H) = (14.23)

where vol is simply the Euclidean volume.

Proposition 14.2.3 Let w,w’ € C°(X) and ¢ € PSH(X,0) be a potential with
analytic singularities such that 8, is a Kéihler current, then

Jim (Lk,w(vav’wn) - Lk,w(zvj;,,wn)) =82 (W) -8 (w).  (1424)
In particular,
Jlim Li(Ny n) =88 (W) (14.25)
Proof First observe that by Proposition 14.2.1, for any k > 0, va,w" and va',w"
are both norms, hence the expressions inside the limit in (14.24) make sense.
To start, we make the following observation:
k k td k
Lk,‘P(Nw,a)”) - ‘Eks‘/’(Nw’,w") = -/0' aLk,¢(Nw+t(w/—w),m") dr
1
_ ’ k
= ‘/0 /X(w —w)ﬁw+t(w,_w)’¢,wn dr.
By Proposition 14.2.2, we have
. ’ k _ ’
kh—rgo L(W —-w) ﬁw+t(w'7w),<p,a)" - L(w -w) gyll’e,x[w](WH(W'*W)) )
By Theorem 7.3.1, we have | fX(w’ - W)ﬁlv(v+z(w'—w),u,w"| < Csupy |[w —w’|. Hence,

by the dominated convergence theorem we obtain that

1
klim (‘Lk#’(N\]/(v,w”) - ‘Lk,tﬁ(va’,w")) = /0 /(W, - W) erll’ex[tPJ(WH(W'—W)) dt
—00 X »
= Sg,x(w) - Sg,x(w/)’

where in the last line we have used Proposition 14.1.2.
Finally, (14.25) is just a special case of (14.24) with w” = 0. m]

Lemma 14.2.2 Let ¢ € PSH(X,0). Let (K,v) be a weighted subset of X. Let
v € BM(K, V). Then

Jlim (L (N ) = Li o (NS ,)) =0. (14.26)

Proof This is a direct consequence of the definition of Bernstein-Markov measures
(14.15). O
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Corollary 14.2.1 Let w € C°%(X), ¢ € PSH(X,0) be a potential with analytic
singularities such that 6, is a Kdhler current. Then

Jim Ly o (N ox) =g (W)

Proof This follows from Lemma 14.2.2 and Proposition 14.2.3 and the fact that
w" € BM(X,0). O

Proposition 14.2.4 Let ¢ € PSH(X, 0) be a potential with analytic singularities such
that 0, is a Kihler current. Let (K,v), (K',v") be two weighted subsets of X. Then

Jim (Lk#,(Nf,K) —Lk,w(Nf,’K,)) E () = 8 1 (V). (14.27)
In particular,
Jim Li (N ) = 88 (). (14.28)

Proof First observe that by Proposition 14.2.1, for any £ > 0, N" x and Nk K are
both norms, hence the expressions inside the limit in (14.27) make sense. Moreover,
(14.28) is just a special case of (14.27) for K’ = X and v/ = 0.

To prove (14.27) it is enough to show that for any fixed w € C*(X) we have

Jim (Lep (V) = Lip (N ) = €5 () =8 (w) . (1429)

For € € (0, 1) small enough we have that 6(1_),, is still a Kahler current. Let us
fix such €, along with an arbitrary €’ € (0, 1).

Let (v]‘. )js (v;.) ; be the sequences of smooth functions constructed in Lemma 14.1.5
for the data (K, v).
By Proposition 1.8.2 there exists ko(e, €’) € N such that

1
- log h* & hy(s,s) < (1 - €)u,

and 1 log h* ® hy(s,s) € PSH(X, 6 + €' w) forany s € HY(X,T ® L* ® I (k¢)), as
long as k > ko(e, €).
In particular, Lemma 14.1.1 gives that

k _ark
N, (1-a)¢1(n).x(8) =Ny (5),

H+s wK[

Nk B (S) =Nk7 (S)
P;9+e wX[(l_E)‘P (V ).X v; ¢ >
k

N Porerwx(1= G)W](VJr)X(S) Nv X(S)

As

Phrerwx(L=6)@l(v;) < Pyyor k(1= €)@l (v) < Py, x[(1 = )] (v)),

by Lemma 14.2.1 we have
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N"f;’x(s) SNy k($) SN x(9), s eH(X, T @ L  ® I(kg)). k 2 ko(e, €).
Composing with £y , we arrive at
lk,<p(N5f—,x) < Lip(NS ) < Lk,ga(Nf;,x), k > ko(e, €).

For any j > 0, by Corollary 14.2.1 we get
Sg,x(v;-) - Sg’x(w) = khj}olo (‘Ek,w(N‘lj}-,X) - -Zk,(p(va,X))

< lim (Lk,w(N\lf,K) - Lk»‘P(vav,X))

k—o00
< Jim (L (VE ) = Lip (N )
< lim (Lio (V) = Lio(VE )
=85 (V7)) = Ef x(w).

Using Lemma 14.1.5, we can let j — oo to arrive at

Sg,K(V) - Sg,K(W) < lim (Lk,tﬁ(Nf,K) - Lk,w(N‘]fu,x )
k—

< k@o (-Lk,w(N‘]f,K) - Lk,w(N‘]:;,x))
< SZ’K(\)) - Sz’K(w) .
Hence, (14.29) follows. m]

Corollary 14.2.2 Let ¢ € PSH(X, 0) be a potential with analytic singularities such
that 0, is a Kdihler current. Let (K,v) be a weighted subset of X. Assume that
v € BM(K, V). Then

kh—r>r010 Lk,(p(N\lzc,u = 857K(V)~

Proof Our claim follows from Proposition 14.2.4 and Lemma 14.2.2. O

Proposition 14.2.5 Suppose that ¢ € PSH(X, 0) be a potential with analytic singu-
larities such that 6, is a Kdihler current. Let (K,v) be a weighted subset of X. Let
v € BM(K, V). Then

k . nn _pn
Bv.gv = Oy k101:(v) = Oy k101(v)

weakly as k — oo.

Proof Forw € C°(X), let

fe@) = L g(Njiy ), 8(1) = 88 (v +1w).
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By Corollary 14.2.21im, _,  fi(t) = g(z). Note that f} is concave by Holder’s inequal-
ity (see [ , Proposition 2.4]), so by [ , Lemma 7.6], limy e f;(0) =

g’ (0), which is equivalent to ﬁ"f’(pyv — 6”;,6 clelv) by Proposition 14.1.2. O

Proposition 14.2.6 Suppose that ¢ € PSH(X, 6) such that 0, is a Kihler current.
Let (K, v) be a weighted subset of X and v € BM(K, v). Then

Brew = Opy iglr) (14.30)
as k — oo.
Proof Let u be the weak limit of a subsequence of ﬁ’;’ ,v+ We claim that
B G;H,K[‘P]I(V)' (14.31)

Observe that this claim implies the conclusion. In fact, by Theorem 7.3.1, we have
equality of the total masses, so equality holds in (14.31). As u is an arbitrary cluster
point of the sequence (8~ _ ,)x, we get (14.30).

v,p,U
It remains to prove (14.31). Let (¢;) be a quasi-equisingular approximation of

¢ in PSH(X, §). We may assume that 6, is a Kéhler current for all j > 1. By
Lemma 14.1.2, Corollary 7.1.2, we know that

d
¢; —> Poxlelr(v).

In particular,

J'ILH.}O_/XQPH.K[%]I(V) = /XGPH,KW]I(V)' (14.32)

Observe that
k k
ﬁv,(p,u < ﬂv,g:j,v
forany k > 1. As v € BM(K, v), by Proposition 14.2.5,
F =0, ko)1)

for any j > 1 fixed. By Proposition 14.1.3,

Po.xleilr(v) s Poxlelr(v)
as j — oo. Hence, by (14.32) and Theorem 2.3.1, (14.31) follows. 0O

Proof (Proof of Theorem 14.2.1) By Lemma 14.1.2, we have that
HO (X, LFeT® I(k<p)) - HO (X L*®T ® I(kPg [¢]I))
=H° (X, L*®T®I(kPox [‘P]I(V))) :

This allows us to replace ¢ with Pg g [¢] 7 (v).
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By Lemma 2.3.2, there exists ¢; € PSH(X, 6), such that 9; /" p a.e. and 6, is a
Kihler current for each j > 1. This gives

k k
ﬂv,cpj,v < :8\),<p,u'

Let u be the weak limit of a subsequence of (:8]\5,<p,v)k~ Then by Proposition 14.2.6,

n
Opo kleilsv) S H
By Proposition 14.1.3 and Theorem 2.3.1 we have that

Opoxlelrv) 7~ PPy xlolr v

Hence,

Oboxlolr(v) S 1 (14.33)

A comparison of total masses using (14.18) and Theorem 7.3.1 gives that equality
holds in (14.33). As u is an arbitrary cluster limit of the weak compact sequence
(BY ... )k» we obtain (14.19). o

Remark 14.2.1 The results in this chapter could also be reformulated as the large
deviation principle of a determinantal point process on X using the Gértner—Ellis
theorem exactly as in [ ]. We leave the details to the readers.



Comments

A brief history

Here we recall the origin of various results.

Chapter 1.

The notion of plurisubharmonic functions was introduced by Lelong [ 1,
based on F. Riesz’s theory of subharmonic functions [ 1. See [ ] for an
excellent introduction to the early history of the subject. We refer to [ ] for the
foundations of potential theory and [ ] for the pluripotential theory.

The global Josefson theorem Theorem 1.1.5 was due to Vu [ ]. In the projective
setting, it was due to Dinh—Sibony [ ] and in the Kahler setting, it was established
by Guedj—Zeriahi [ ].

The extension theorem Theorem 1.2.1 was proved in [ ]. In fact, they proved
a more general version for complex spaces, see Theorem B.2.2. For some related
important extension theorems, see [ s 1.

The plurifine topology was introduced by Fuglede during the Séminaire d’analyse
de Lelong—Dolbeault—Skoda of the year 1983/1984 [ ] based on H. Cartan’s
works on the fine topology. The key result Theorem 1.3.2 was claimed in Bedford—
Taylor’s work [ , Theorem 2.3] without proof. The first rigorous proof was given
by El Marzguioui—Wiegerinck [ ]. A weaker result was proved earlier in
[ , Theorem 4.8.7].

Results in Section 1.3.2 are certainly well-known and are already implicitly used
in the literature. I could not find the proofs in the literature and hence all details are

presented.
The strong openness was first established by Guan—Zhou [ ]. A more elegant
proof was due to Hiep [ 1.

The idea of Theorem 1.4.3 first appeared in the ground-breaking work of Boucksom—
Favre—Jonsson [ ].

Proposition 1.2.8 was due to Kiselman [ 1.

The semicontinuity theorem was due to Siu [ ].

Chapter 2

311
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The Monge—Ampere operators for bound plurisubharmonic functions were in-
troduced by Bedford—Taylor [ , ]. The non-pluripolar product is due to
Bedford—Taylor [ ], Guedj—Zeriahi [ ] and Boucksom-Eyssidieux—Guedj—
Zeriahi [ ].

Chapter 3

The notion of the P-envelope is due to Ross—Witt Nystrom [ ] based on
the ideas of Rashkovskii—Sigurdsson [ 1.

The 7 -envelope was introduced by Darvas—Xia [ ], inspired by the works of
Dano Kim [ ] and Boucksom-Favre—Jonsson [ ]. The notion of 7 -model
singularities was first formulated in the explicit way in [ ]in 2020, although it

was already essentially known in Boucksom—Jonsson’s work. In fact, they correspond
exactly to the homogeneous non-Archimedean potentials assuming that the relevant
masses do not vanish. A less explicit equivalent formulation of 7-model potentials

also appeared in [ ]. A few months later, the same notion was rediscovered by
Trusiani [ ].

Proposition 3.1.4 was first proved in [ ].

Chapter 4

The notion of weak geodesics was studied in detail by Darvas [ ] in the
Kihler case.

The case of general big classes was partly handled in [ 1, [ 1.

However, the key fact that the geodesics between two full mass potentials have the
correct limit at the end points does not seem to have been proved in any references.
We give a proof in Proposition 4.2.1. We also extend the relevant results to the relative
setting.

Previously, Proposition 4.2.2 and Proposition 4.2.4 were only known in the Kahler
case.

Chapter 5

The toric framework was first written down by Coman—Guedj—Sahin—Zeriahi in
[ 1.

The beautiful theorem Theorem 5.2.2 was first proved by Yi Yao, who did not
publish the result. Later on, a new proof was found by Botero—Burgos Gil-Holmes—de

Jong [ ]. We chose to present the approach of Yao, which integrates
naturally with our framework.

Chapter 6

The notion of P-partial order is new, as well as most results in Section 6.1.

The ds-pseudometric was introduced in [ ]. The basic properties are
proved in [ ]and [ 1.

Example 6.1.3 was due to Berman—-Boucksom—Jonsson [ ].

Theorem 6.2.4 is proved in [ ]. Theorem 6.2.6 and Theorem 6.2.5 appear to

be new. These results appeared previously in the form of lecture notes.

Chapter 7

The notion of 7-good singularities was due to [ ]. The name 7 -good was
chosen in [ ].

Theorem 7.1.1 and Theorem 7.3.1 are due to [ , 1.
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There are some further examples of 7 -good singularities provided by [ ]
with applications in the theory of modular forms in [ ].

Chapter 8

The trace operator was introduced in [ ]. Here we present a different point
of view. Theorem 8.3.1 was proved in [ ].

The analytic Bertini theorem Theorem 8.4.1 was proved in [ ], based on the
works of Matsumura—Fujino [ ]and [ ]. A weaker result was established
by Meng—Zhou [ ].

Chapter 9

The technique of test curves originates from [ ]. It was generalized by
Darvas-Di Nezza—Lu [ 1, [ 1, [ land [ ]. We give the full

details of the proofs.

Test curves in Definition 9.1.1 are called maximal test curves in the literature, a
terminology which I do not like. I prefer to call the usual notion of test curves in the
literature sub-test curves.

Proposition 9.2.2 was first proved by He—Testorf-~Wang in [ ].

Results in Section 9.4 are easy generalizations of the results proved in [ ].

Chapter 10

The algebraic theory of partial Okounkov bodies was developed in [ ]. The
transcendental Okounkov body was first defined by Deng [ ] as suggested by
Demailly. The volume identity was proved in [ ]. The transcendental theory

of partial Okounkov bodies is new. Results in Section 11.3 are also new.

Chapter 11

The applications of b-divisors in pluripotential theory began with [ ]. The
intersection theory of nef b-divisors was introduced by Dang—Favre [ ]. The
technique of singularity b-divisors was introduced in [ ] in 2020. The general
form first appeared in [ ]. One year later, a special case was rediscovered in
[ I

Chapter 1

The whole chapter appears to be new. The study of toric pluripotential theory on
big line bundles was made possible by the development of partial Okounkov bodies.
The key result is Theorem 12.2.2.

Most results in this chapter resulted from discussions with Yi Yao.

Chapter 13

Most results from this chapter are from [ ]. Results from Section 13.3 are
new, although the main idea was already contained in [ ].

Theorem 13.4.3 is due to [ ]. An alternative approach to the transcendental
theory is due to Mesquita-Piccione [ ].

Special cases of the results in this section have been applied to study K-stability,
see [ 1 [ 1 [ ]and [ ]l.In[ ], we established the bijective
correspondence between a class of 7-model test curves with the maximal geodesic
rays in the sense of [ ].

Chapter 14
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The special case of Theorem 14.2.1 without the prescribed singularity ¢ was due
to Berman—Boucksom—Witt Nystrom, see [ 11 ]. The general case is
due to [ 1.

Open problems

We give a list of important open problem in this theory.
We do not repeat the conjectures mentioned in the main text.

Conjecture 14.2.1 Let X be a connected compact Kéhler manifold and Y be a
submanifold. Fix a Kahler class a on X. For each Kahler current S € a|y, we can
find a Kéhler current 7 € a such that

Try(T) ~7 S.

If we formally view Try as an analogue of the trace operator in the theory of Sobolev
spaces, then this conjecture corresponds exactly to the Dirichlet problem.

Using Proposition 8.2.2, one could also reduce this conjecture to a strong version
of the extension theorem Theorem 1.6.3.

Conjecture 14.2.2 Let X be a connected compact Kihler manifold and Y be a
submanifold. Fix a Kahler class @ on X. Consider Kéhler currents R € a, S € aly
with analytic singularities such that § < R|y. Assume in addition that S has gentle
analytic singularities. Then there is a Kahler current 7 € @ with analytic singularities
such that

Try(T) ~r S, T <R

This conjecture was also proposed by Darvas for different purposes.

Conjecture 14.2.3 Let X be a connected smooth projective variety of dimension r.
Assume that (L;, h;) is a Hermitian big line bundle on X foreachi =1,...,n with
the h;’s being 7 -good. Then

/ C] (L19h1) /\ e /\ C] (LI’H hn) = SuPVOI (AV(L]7h])7 . ’AV(LH’ hn)) ’
X v

where v: C(X)* — Z" runs over all (surjective) valuation of rank n.

See [ , Section 5.1] for the notion of mixed volumes.
This conjecture seems reasonable in view of Corollary 10.2.3 and Corollary 10.2.2.
Even when h, ..., h, have minimal singularities, this conjecture remains open:

Conjecture 14.2.4 Let X be a connected smooth projective variety of dimension #.
Assume that Ly, ..., L, are big line bundles on X. Then

(L1,...,Ly) =supvol (A,(L1),...,A,(Lyn)), (14.34)
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where v: C(X)* — Z" runs over all (surjective) valuation of rank .

Here on the left-hand side, we are using the movable intersection theory [ 1.
In[ ], Wilms proved the < direction of (14.34).

Problem 14.2.1 Is it possible to extend the definition of the trace operator Try to the
case where the ambient variety is only unibranch?

The difficulty lies in the lack of Demailly type regularization theorems.

Problem 14.2.2 What is the relation between the Duistermaat—Heckman measure in
Section 13.3 and the definition in [ 1?

Problem 14.2.3 Is there a natural definition of the transcendental Okounkov body of
a closed positive (1, 1)-current 7 with 0-mass so that its dimension is equal to the
numerical dimension of 7?7

See [ ] for the definition of the numerical dimension of a current.
The following two problems are proposed by Witt Nystrom.

Problem 14.2.4 Consider a compact Kihler manifold X and a connected subman-
ifold Y. We have defined the trace operator Try from a subset of QPSH(X)/~r
to QPSH(Y)/~. Is it possible to refine this operator to one from a subset of
QPSH(X)/~p to QPSH(Y)/~p?

Problem 14.2.5 Consider a connected compact Kihler manifold X of dimension
n and a smooth flag ¥, on X. Consider closed smooth real (1, 1)-form 6 on X
representing a big cohomology class and ¢ € PSH(X, 0) with fX 0y > 0.

Can one define a refined notion of partial Okounkov bodies Ay, (0+dd®yp) contained

in Ay, (6 + dd°p) with volume given by = [, 672

Note that a satisfactory solution to the latter problem is not very likely, as can be
easily seen from examples on P'.
We also look for generalizations of our theory to more general settings.

Problem 14.2.6 To what extent can the results in the current book be generalized to
the non-Kihler setting?

The non-pluripolar products in the non-Kihler setting was recently studied by
Boucksom—-Guedj—Lu in [ ]. See also the references therein.

Problem 14.2.7 To what extent can the results in the current book about closed
positive (1, 1)-currents be generalized to closed positive currents of higher bidegree?

A fundamental issue is the lack of a strong enough Demailly type approximation
for general currents. The regularization theorem of Dinh—Sibony [ ] seems too
weak for our purposes.






Appendix A
Convex functions and convex bodies

We recall some basic facts about convex functions in this section. Our basic reference
is [ ]. The results in this appendix can be applied to concave functions after
considering their negatives.

A.1 The notion of convex functions

Let N be a real vector space of finite dimension.

Definition A.1.1 Let F: N — [—c0, o] be a function. The epigraph of F is defined
as the following set

epiF = {(n,r) e NxR:r>F(n)}.

Definition A.1.2 A convex function on N is a function F: N — [—o0, o] such that
the epigraph epi F' is a convex subset of N X R.
The effective domain of F is the set

DomF = {n € N : F(n) < oo}.

A convex function F on N such that Dom F # @ and F(n) # —co for all n € N is
said to be proper.

The set of convex functions on N is denoted by Conv(N). The subset set of proper
convex functions is denoted by ConvP™P(N).

The following characterization of convex functions is well-known.

Lemma A.1.1 Let F: N — [—c0, o0]. Then F is convex if and only if the following
condition holds: suppose that n,r € N and a, b € R such that a > F(n), b > F(r),
then for any t € (0, 1), we have

F(itn+(1=0r) <ta+(1-1)b.
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See [ , Theorem 4.2] for the proof.

Example A.1.1 Let A C N be a convex subset. Then the characteristic function
xa: N — {0, c0} of A is defined by

0, neA;

xa(n) = {Oo’ néA.

The function y 4 lies in Conv(N).

Example A.1.2 Let M be the dual vector space of N and P C M be a convex subset.
The support function Suppp € Conv(N) of P is defined as follows:

Suppp(n) = sup{(m,n) : m € P}.

It is well-known that convexity is preserved by a number of natural operations.
We recall a few to fix the notation.

Definition A.1.3 Let F1,. .., F,, € ConvP"P(N) (m € Z-(). We define their infimal
convolution F1O - - - OF,, € Conv(N) as follows:

m m
Fio---0F,(n) = inf{ZFi(ni) 1n; € N,Zn,- =n}.
i=1 i=1

The fact FiO---0OF,, € Conv(N) is proved in [ , Theorem 5.4]. One should
note that F|0O- - - OF), is not always proper.

Proposition A.1.1 Let {F;};c; be a non-empty family in Conv(N). Then sup,¢; F; €
Conv(N).

This follows from [ , Theorem 5.5]. In particular, this allows us to introduce

Definition A.1.4 Let f: N — [—o0, co]. The lower convex envelope of f is defined
as
CE f := sup{F € Conv(N) : F < f}.

It follows from Proposition A.1.1 that CE f € Conv(N).

Definition A.1.5 Given a non-empty family {F;};c; in Conv(N), we define
A F, = CE (inf F,-) .
/ iel
iel

When the family 7 is finite, say I = {1, ..., m}, we also write

Fl/\--'/\sz/\Fi.

iel
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Definition A.1.6 Given a non-empty family {F;};c; in Conv(N), we define

\/ F; = supF;.
iel iel
When the family 7 is finite, say / = {1,...,m}, we also write
Flv---vasz-.
iel
Recall that \/;¢; F; € Conv(N) by Proposition A.1.1.

Proposition A.1.2 Let Fy, ..., F,, € ConvP™P(N), then

m
Fi A+ A Fp(x) = inf {Z AiF:(x;) : x; € Dom(F,),

i=1
m m
i € [0, 1]’Z/li = I,Z/lixi =x} .
i=1 i=1
See [ , Theorem 5.6] for the more general result.

Lemma A.1.2 Let {F;};c; be a decreasing net in Conv(N). Then inf;c; F; €
Conv(N).

Proof Write F = inf;c; F;. We shall apply the characterization in Lemma A.1.1.
Take n,r € N, a,b € Rsuchthata > F(n), b > F(r) and t € (0, 1). We need to
show that

F(in+(1-1t)r) <ta+(1-1)b. (A1)

By definition, there exists j € I such that for any i > I withi > j, we have
a> F;(n), b>F(r).
It follows from Lemma A.1.1 that
Fi(itn+ (1 -t)r) <ta+(1—-1)b
for any i > j. Since F; is decreasing in i, we conclude (A.1). O

Definition A.1.7 Let F € Conv(N). The closure cl F € Conv(N) of F is defined as
follows: If F(n) = —co for some n € N, then cl F' := —co. Otherwise, we define cl F
as the lower semicontinuity regularization of F'.

A convex function F € Conv(N) is closed if F = cl F. In other words, F €
Conv(N) if one of the following conditions hold:

(1) F = —o0;
(2) F = o0;
(3) F is proper and lower semi-continuous.
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Proposition A.1.3 Let F € Conv(N) be a closed convex function. Then F is the
supremum of all affine functions lying below F.

See [ , Theorem 12.1].

Theorem A.1.1 Let F € ConvP™P(N). Then cl F is a closed proper convex function.
Moreover, cl F agrees with F except possibly on the relative boundary of Dom F.

See [ , Theorem 7.4].

Definition A.1.8 Given F, F’ € Conv(N), we write F < F’ if there is C € R such
that
F<F +C.

Wesay F ~ F’ if F < F” and F’ < F both hold.

Theorem A.1.2 Let C C N be an open subset. Let (f;)i>0 be a sequence of real-
valued convex functions on C. Suppose that the sequence converges on a dense subset
of C and the limit is finite, then the limit

f@) = lim fi(x)

exists for all x € C and is convex on C. Moreover, the sequence ( f;); converges
uniformly to f on each compact subset of C.

This is a special case of [ , Theorem 10.8].

A.2 Legendre transform

Let N be a real vector space of finite dimension and M be the dual vector space. The
pairing M X N — R will be denoted by (e, o).

Definition A.2.1 Let F € Conv(N) be a convex function. We define the Legendre
transform of F as the function F* € Conv(M):

F*(m) = sup ((m,n) = F(n)) = sup  ((m,n) = F(n)). (A2)
neN neRellnt Dom F
The latter equality follows from [ , Corollary 12.2.2].
Recall the well-known Legendre—Fenchel duality [ , Theorem 12.2].

Theorem A.2.1 Let F € Conv(N). Then F* is a closed convex function. The function
F* is proper if and only if F is.
Moreover, we have (cl F)* = F* and

F*™ =clF.
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Example A.2.1 Let P C M be a closed convex subset. Then

Suppp = xp, Xp = Suppp.
See [ , Theorem 13.2].

The following special case will be useful to us in the sequel.

Corollary A.2.1 Let F: (0,00) — [—00,00) be a convex function. If we define
G:R — (—o0,0] by
G(t) =sup (1t — F(1)),
t>0

then G is a convex function and

F(t)=G*(t), Vt>D0. (A.3)
Moreover,
G(t)= sup (tt—F(1)). (A4)
t€Qxo

Proof We distinguish two cases.

First suppose that F(z) = —co for some ¢ > 0. Then F(#) = —oo for all 7 > 0 by
the convexity of F. Our assertions are clear in this case.

Next assume that F'(z) # —oo for all # > 0. In this case, Theorem A.1.1 guarantees
that F admits a closed proper extension F' € Conv(R) with

F(t) =0, Vt<O.
It follows from (A.2) that
G(t)=F*(1), VreR.
Now Theorem A.2.1 implies (A.3). Finally (A.4) follows from the continuity of F.OO

Proposition A.2.1 Let F: N — [—co, 0], then the function F*: M — [—co, o]
defined by
F*(m) = sup ((m,n) — F(n)).
neN

Then
F* = (cICE f)*.

See [ , Corollary 12.1.1].

Definition A.2.2 Let F € Conv(N) and n € N. An element m € M is a subgradient
of Fatnif
F(n') > F(n)+(n' —n,m), Vn' €N. (A.5)

The set of subgradients of F at n is denoted by VF (n).
More generally, for any subset E C N, we write
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VF(E) = U VF(n).

neE

Definition A.2.3 Given F, F’ € Conv(N), we write F <p F’ if

VF(N) € VF'(N).

We write F ~p F/if F <p F’ and F’ <p F.
Theorem A.2.2 Suppose that F € ConvP™P(N). Then the following hold:

(1) Foranyn ¢ Dom F, VF(n) = @;
(2) for any n € RellntDom F, VF(n) # @; Moreover, for any n’ € N, we have

O F(n) =sup{(n’,m) :me VF(n)};

(3) for n € N, the set VF (n) is bounded if and only if n € IntDom F.
For the proof, we refer to [ , Theorem 23.4].
Proposition A.2.2 Let F € ConvP™P(N). Then

VF(N) C Dom F*.
If moreover F is closed, we have
Rellnt Dom F* € VF(N). (A.6)

In particular, if F is a proper closed convex function on N, then

VF(N) = Dom F*.

Proof Suppose that m € VF(n) for some n € N, it follows that (A.5) holds. In
particular,
(m,n’y — F(n') < (m,n) — F(n).

It follows that
F*(m) < (m,n) — F(n) < oco.

(A.6) is proved in [ , Corollary 23.5.1]. For the last assertion, it suffices to
observe that Rellnt Dom F* = Dom F*. O

Proposition A.2.3 Let {F;};c; be a non-empty family in ConvP™P(N). Then

(AE- * =\/F;, \/ClFi)* =d N\ F}.

iel iel iel iel

If I is finite and Dom F; is independent of the choice of i € I, then

(VFi * = /\F,.*.

iel iel
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Recall that A is defined in Definition A.1.5 and V in Definition A.1.6. See [ X
Theorem 16.5] for the proof.

Proposition A.2.4 Let F, ..., F, € ConvP"™P(N) (r € Z>(). Assume that
r
ﬂRelIntDom(Fl-) + 0,
i=1

then

ZFi) (m) :inf{iFi*(mi) Tmy,...,m, € M,Zr:m,- =m}.
i=1 i

i=1 =1

Proposition A.2.5 Let P C M be a convex body! and F € ConvP™P(N). The
following are equivalent:

(1) F < Suppp;
(2) Dom F = N and F*|p\p = o0;
(3) Dom F = N and VF(N) C P.

Moreover, under these conditions,
F(n) — Suppp(n) < F(0), VrneN. (A7)

Proof (1) = (2). It is clear that Dom F = N since Dom Suppp, = N. From
F < Suppp and Example A.2.1, we know that

xp = Suppp < F".

So ii follows.

(2) = (3). This follows from Proposition A.2.2.

(3) = (1). Taken n € N, we know that F is locally Lipschitz [ ,
Theorem 10.4], so we can compute

1
_OF(tn)dtzfo (VF(tn),n)dt

=l

1
< /0 Suppp(n) dt = Suppp(n).

1
F(n) - F(0) = /O %

In particular, (A.7) also follows. |

1 Here a convex body refers to a non-empty closed convex subset, not necessarily having non-empty
interior.
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A.3 Classes of convex functions

Let N be a real vector space of finite dimension and M be the dual vector space.
We shall fix a convex body P € M.
The following classes are introduced in [ ].

Definition A.3.1 We define the set £ (N, P) as the set of proper convex functions
F € Conv(N) such that F < Suppp.

We define the set & (N, P) as the set of closed convex functions F € Conv(N)
such that F' ~ Suppp.

We define the set &(N, P) as follows: Suppose that Int P = @, then E(N, P) =
P (N, P); otherwise, let

E(N,P) = {F € P(N,P):P= VF(N)} .

We define the set &' (N, P) as the subset of E(N, P) consisting of F € E(N, P) with

/F*dvol < 0o,
P

where d vol is any Lebesgue measure on N.

Observe that for any F € P (N, P), we have Dom F = N and F is necessarily closed.
Proposition A.3.1 We have
E (N,P) C E'(N,P) € E(N,P) C P(N, P).

Proof When Int P = @, the assertion is clear. We assume that Int P # @. The
second inclusion follows from definition. We only hand the first inequality. Take
F € &%(N, P). By definition, F ~ Suppp and hence F* ~ yp. It follows that
P =Dom F*.

By Proposition A.2.5, we already know that

VF(N) € P =Dom F*.
On the other hand, by Proposition A.2.2, we have
IntP C VF(N).

So it follows that
P =VF(N).

It is clear that F* ~ yp is integrable. O

Proposition A.3.2 For any F € E*(N, P), we have F*|yp\p = 0o and F* is bounded
on P.
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Proof From F ~ Suppp, we take the Legendre transform to get F* ~ Suppp = xp,
where we applied Example A.2.1. O

Definition A.3.2 We endow the topology of pointwise convergence on P (N, P). Note
that this topology coincides with the compact-open topology.

Proposition A.3.3 Let F € P (N, P). Then there is a decreasing sequence F; €
E®(N,P) N C®(N) converging to F.

See [ , Lemma 2.2].
We observe that the point 0 € N plays a special role since it does in the definition
of the support function.

Proposition A.3.4 For any F € Conv(N, P), we have

m}\a}x(F — Suppp) = F(0).
Proof 1t follows from (A.7) that

sup(F — Suppp) < F(0).
N

The equality is clearly obtained at 0 € N. O

A.4 Monge-Ampere measures

Let N be a free Abelian group of finite rank (i.e. a lattice) and M be its dual lattice.
There is a canonical Lebesgue type measure on My, denoted by d vol, normalized so
that the smallest cubes in M have volume 1. Similarly, the canonical measure on Ny
is normalized in the same way and is denoted by d vol as well.
We will write
Nr =N®zR, Mr=MezR.

Definition A.4.1 Let F € Conv(Ng), we define the real Monge—Ampére measure
MAR F as the Borel measure on Ny given as follows: for each Borel measurable set
E C Ng, define
MAR F(E) = n!/ dvol.
VF(E)
Proposition A.4.1 Suppose that F € C"!'(Ny) N Conv(Ng), fix an identification
N =7", then
MAg F = n! - det V2F dvol .

See [ , Example 2.2].

Proposition A.4.2 Let P € My be a convex body and F € P (Ng, P). Then F €
E(Ng, P) if and only if

MAR F =n!vol P. (A.8)
Mg
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Proof By definition of MAg, (A.8) is equivalent to
vol VF(Ng) = vol P.

We first handle the case where Int P # @. By Proposition A.2.5, the latter is
equivalent to
VF(Nr) = P.

Now assume that Int P = @, then vol VF(N) = vol P = 0 by Proposition A.2.5.
The assertion is clear. O

Theorem A4.1 Let F,F; € P(Nr,P) (j € Zso). Assume that F; — F, then
MAR (F;) converges to MAg (F) weakly.

See [ , Proposition 2.6].
There is a well-known comparison principle.

Theorem A.4.2 Let F, F’ € P(Ng, P). Assume that F < F’, then

VF(Ng) € VF'(Ng).
MA:(F) < [ MAgx(F).
NR NTRL

See [ , Lemma 2.5].

A.5 Separation lemmata

Lemma A.5.1 Leta, B1, . .., Bm € Z". Let A be the polytope generated by B, . . . , Bm-
Then the following are equivalent:

(1 |
2 (Z E ,.|2) (A9)
i=1

is a bounded function on C*".
2)aeA.

Proof (2) = (1). Write @ = }; t;8;, where t; € [0, 1], >}; t; = 1. Then
m -1 m -1
2P (Z E f|2) = [1#re (Z E f|2)
i= i i=1
m -1
<[] 1 (Z |zﬁi|2) <l
i i=1
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(1) = (2). Assume that @ ¢ A. Let H be a hyperplane that separates @ and A.
Say H is defined by ajx; +--- + anx, = C. Set

z(1) = (", ..., t9).
Then clearly (A.9) evaluated at z(¢) is not bounded. O

Lemma A.5.2 Let By, ..., Bm € N" and B € R". Then the following are equivalent

(1) log 27, e¥Pi — (x, B) is bounded from below.
(2) B is in the convex hull of the B;’s.

Proof The proof follows the same pattern as Lemma A.5.1. O






Appendix B
Pluripotential theory on unibranch spaces

In this appendix, we extend the theory in the book to compact unibranch Kihler
spaces.

B.1 Complex spaces

A complex space is assumed to be reduced, Hausdorff and paracompact in the whole
book.

Definition B.1.1 A prime divisor over an irreducible complex space Z is a connected
smooth hypersurface E C X', where X’ — Z is a proper bimeromorphic morphism
with X’ smooth. Such a morphism X’ — Z is also called a resolution of Z. The
center of the prime divisor is defined as the image of E in Z.

Two prime divisors E; € X| and E» C X) over Z are equivalent if there is
a common resolution X’ — X dominating both X| and XJ such that the strict
transforms of E| and E; coincide.

The set Z4V is the set of pairs (c, E), where ¢ € Q- and E is an equivalence
class of a prime divisor over Z. For simplicity, we will denote the pair (¢, E) by
c ordg, although one should not really think of this object as a valuation unless Z is
projective and irreducible.

Note that a prime divisor on Z does not always define a prime divisor over Z if Z is
singular.

Definition B.1.2 A complex space X is unibranch if for all x € X, the local ring
Ox x is unibranch.

It is shown in the arXiv version of [ , Remark 2.7] that when X is a pro-
jective variety, this notion coincides with the corresponding algebraic notion of
unibranchness.

329
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Theorem B.1.1 (Zariski’s main theorem) Let n: Y — X be a proper bimeromor-
phic morphism between complex spaces. Assume that X is unibranch, then n has
connected fibers.

We refer to [ , Proof of Théoreme 1.7].

Definition B.1.3 A modification of acompact complex space X is a finite composition
of blow-ups with smooth centers.

Theorem B.1.2 (Hironaka’s Chow lemma) Suppose that X is a compact complex
space. Then every proper bimeromorphic morphism to X can be dominated by a
modification.

This follows from the proof of [ , Corollary 2].

Theorem B.1.3 Let X be a compact complex space. Then there is a modification
m: Y — X such that Y is smooth.

See [ s 1.

Corollary B.1.1 Let X be a compact complex space and E be a prime divisor over X.
Then there is a modification w: Y — X such that Y is smooth and E can be realized
as a prime divisor on'Y.

B.2 Plurisubharmonic functions

Let X be a complex space.

Definition B.2.1 A function ¢: X — [—c0, 00) is plurisubharmonic if

(1) ¢ is not identically —co on any irreducible component of X, and
(2) for any x € X, there is an open neighbourhood V of x in X, a domain Q € CV, a
closed immersion V < Q and a plurisubharmonic function ¢ € PSH(Q) such

that ¢|onv = @lonv.

The set of plurisubharmonic functions on X is denoted by PSH(X).

Similarly, if 6 is a smooth closed! real (1, 1)-form on X, then a function ¢: X —
[—00, 00) is O-plurisubharmonic if for any x € X, there is an open neighbourhood V
of x in X, a domain Q@ C CV, a closed immersion V < Q and a smooth function g
on Q such that § = (dd°g)|vna and g + ¢|y € PSH(V).

Theorem B.2.1 (Fornaess—Narasimhan) Let ¢: X — [—oc0,00) be a function.
Assume that ¢ is not identically —co on any irreducible component of X, then the
following are equivalent:

(1) ¢ is psh;

1 Here closed means that locally 6 is defined by a closed form under a local embedding.
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(2) ¢ is usc and for any morphism f: A — X from the open unit disk A in C to X
such that f* ¢ is not identically —oo, the pull-back [~ is psh.

See [ ].

Theorem B.2.2 (Grauert-Remmert) Let X be a unibranch? complex space and
Z be an analytic subset in X and ¢ € PSH(X \ Z). Then the function ¢ admits an
extension to PSH(X) in the following two cases:

(1) The set Z has codimension at least 2 everywhere.
(2) The set Z has codimension at least 1 everywhere and is locally bounded from
above on an open neighborhood of Z.

In both cases, the extension is unique and is given by

= lim € X. B.1
@(x) X\Zlar;lﬁxw(y), x (B.1)

The proof given below combines [ , Théoréme 1.7] and [ ].3

Proof We first prove the uniqueness, which is a local problem on X. Let ¢ denote the
function defined by the right-hand side of (B.1). Since any extension ¢ has to be upper
semicontinuous, we know that ¢ > . Conversely, take z € Z, we take a holomorphic
map f: A — X such that £(0) =z and f(A) ¢ Z. From the subharmonicity of f*¢
and (1.2), we find that

= f* = lim f* < lim .
¢(2) = fp(0) = lim 'fio(w) < X\Zhar;lﬂw(y)

So (B.1) follows.

Having established the uniqueness of the extension, the existence also becomes a
local problem. So we are going to use the same descriptions as in the first paragraph
above.

(2) Let m: Y — X be a resolution of singularities. By Theorem 1.2.1, we know
that 7*¢ admits a unique extension to a psh function on Y, which we denote by 7.

2 Unibranchness is very important here. Otherwise, consider the case where X is the union of two
copies of C intersecting only at their origins, Z is the common origin. If we set ¢ = 0 on one
punctured plane and ¢ = 1 on the other, then it is clear that ¢ cannot be extended to X. This leads
to a few misleading statements in the modern literature. The problem is that in the early German
literature, komplexer Raum is assumed to be either normal or unibranch!

3 This theorem has a quite entangled history. The corresponding results for subharmonic functions
are generally attributed to Brelot. In [ ], they cited a paper of Brelot written 1934, which I
cannot find. But in 1949, on the very first issue of Annales de I’Institut Fourier, Brelot published
a paper [ ] with a very similar title, studying the behavior of a subharmonic function on the
punctured neighborhood of a point. The general theorem was due to Grauert and Remmert, see
[ ]. Their original proof was quite complicated, due to the fact that resolution of singularities
was not available at that time. Later on, in 1985, Demailly published the influential paper [ ]
and gave a simpler proof. Oddly enough, Demailly did not cite either Grauert-Remmert or Brelot. He
did not even mention that this result was already proved by Grauert—Remmert. The paper [ ]
is so influential that in France few people know the existence of [ 1.
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Note that all fibers of & are connected since X is unibranch. Hence 7 is constant along
the fibers of . It therefore descends to an upper semicontinuous function 7 on X.
We verify that ¢ is plurisubharmonic using Theorem B.2.1. Let f: A — X be
a holomorphic map. We assume that f*¢ # —oco. It suffices to show that f*¢p it is
subharmonic at 0 € A. The germ of f lifts to Y, say represented by f”: A — Y so that

F) =n(f" (1)

for all ¢ close to 0, where k is an integer. Therefore, y (f(t*)) = n(f(¢)) near 0. It
follows that f*¢ is subharmonic near 0.

(1) By the local description of complex spaces [ , Section 3.4], we may
assume that there is a domain Q € C", a finite s-sheet branched covering @: X — Q
with branched locus contained in a proper analytic subset V C Q. We may assume
that X is connected, n > 1 and Z € &~ (V).

If suffices to show that ¢ is locally bounded from above near Z. Suppose that
this fails. Then by (2) we can find z € Zand x; € X \ (@1 (®(Z)UV)) (i = 1)
converging to z such that

lim (x;) = oo.

Let L be a complex line passing through ®(z) intersecting (®(Z) U V) N B only at
®(z), where B € B’ are two small open balls centered at ®(z). We can find a sequence
of lines L; passing through ®(x;) converging to L such that L; N (B’ N ®(Z)) = @*
while L; N (B’ N'V) is discrete. Then @ restricts to a branched covering over B’ N L;
for all i > 1. Adding a constant to ¢, we may assume that ¢|e-1(1n98) < 0. We can
then find an open neighborhood U of ®~!(L N dB) so that |y < 0. For large i we
have ®~'(L; N dB) C U, it follows from the maximum principle that ¢(x;) < 0,
which is a contradiction. O

Corollary B.2.1 Let n: Y — X be a proper bimeromorphic morphism between
compact Kdihler spaces. Let 0 be a smooth closed real (1, 1)-form on X. Assume that
X is unibranch, then the pull-back induces a bijection

7" PSH(X, 6) — PSH(Y, 7°6).

B.3 Extensions of the results in the smooth setting

Let X be an irreducible unibranch compact Kéhler space of dimension n. Let 6 be a
closed real smooth (1, 1)-form on X. We say the cohomology class [6] is big if for
any proper bimeromorphic morphism 7: ¥ — X from a compact Kdhler manifold Y,
[7*0] is big.

The non-pluripolar products can be defined exactly as in Chapter 2 and the results
in that chapter hold mutadis mutandis.

4 Here we need the assumption that Z has codimension at least 2.
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The results in Chapter 3 can be also be easily extended. The definition of the
P-envelope remains unchanged. As for the 7 -envelope, we define

Definition B.3.1 Given ¢ € PSH(X, 0), we define Pg[¢]r € PSH(X,0) as the
unique element with the following property: If 7: ¥ — X is a proper bimeromorphic
morphism from a compact Kihler manifold Y, then

7*Polelr = Prgln*e]s.

It follows from Corollary B.2.1 and Proposition 3.2.5 that Py [¢] r is independent of
the choice of  and is well-defined. The other results can be easily extended.

Chapter 4 and Chapter 6 can be extended without big changes. The only exception
is Theorem 6.2.6, where we do not have the notion of multiplier ideal sheaves. So we
do not know how to extend this theorem.

Chapter 7 can be extended except for Section 7.3 for the same reason as above.

The trace operator defined in Chapter 8 can be extended as long as Y is not
contained in X5 using the embedded resolution. In general, due to the lack of
Demailly regularization, we do not know how to define the trace operator.

Chapter 9 can be easily extended.

Chapter 10 is easy to extend since the partial Okounkov bodies are bimeromorphi-
cally invariant in the sense of Theorem 10.3.2.

Chapter 11 is unchanged, since we always take projective limits with respect to all
models in that section.

Chapter 13 can be extended except for the parts involving the trace operator.

Chapter 14 can be easily extended by considering a resolution.

I do not know how to extend the results in Chapter 5 and Chapter 12 to the singular
setting.






Appendix C
Almost semigroups

We introduce and study almost semigroups. In particular, we will define the Okounkov
bodies of almost semigroups.

C.1 Convex bodies

Fixn e N.
Definition C.1.1 A convex body in R" is a non-empty compact convex set.

We allow a convex body to have empty interior.
We write %, for the set of convex bodies in R”.

Definition C.1.2 The Hausdor[f metric between K|, K, € K, is given by
dyaus (K1, K>) = max{ sup inf |x; — x|, sup inf |x; —x2|}.
xleKl x2€K2 szszleKl

It is well-known that the metric space (K}, dpaus) is complete. We will need the
following fundamental theorem:

Theorem C.1.1 (Blaschke selection theorem) The metric space (K, dyaus) is
locally compact.

We refer to [ , Theorem 1.8.7] for details.
Theorem C.1.2 The Lebesgue volume vol: K,, — Rsq is continuous.

See [ , Theorem 1.8.20].

d aus
Theorem C.1.3 Let K;, K € K, (i € N). Then K; ——> K if and only if the following
conditions hold:

(1) each point x € K is the limit of a sequence x; € K;, and
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(2) the limit of any convergent sequence (xi,.)jeN with x;; € K;; lies in K, where i
is a strictly increasing sequence in Zy.

See [ , Theorem 1.8.8].

Lemma C.1.1 Let K € K, be a convex body with positive volume and K’ € ¥K,,.
Assume that for some large enough k € Z-o, K’ contains K 0 (k~'Z)", then
K’ 5 Knl/Zk—l.

Proof Letx € K "I/qu, by assumption, the closed ball B with center x and radius
n'/2k=1 is contained in K. Observe that x can be written as a convex combination
of points in B N (k~'Z)", which are contained in K’ by assumption. It follows that
x ek’ O

Given a sequence of convex bodies K; (i € N), we set

lim i = _J[")&;:

i=0 j>i
Suppose K is the limit of a subsequence of K;, we have

lim K; C K. (C.1)

1—00
This is a simple consequence of Theorem C.1.3.

Lemma C.1.2 Let K C R" be a convex body. Let
tmin =min{t € R: {x; =t} N K # @}, tmax :=max{t € R:{x; =t} NK # @}.
Then for t € [tmin, tmax ], the map
t—>{x;=t}nkK
is continuous with respect to the Hausdorff metric.

Here x; denotes the first coordinate in R”.

Proof We may assume that fy,j, < fmax as otherwise there is nothing to prove.

For each t € [tmin, tmax], we write K; = {x; =t} N K. Lett; — ¢ be a convergent
sequence in [#min, fmax |, Wwe want to show that K . converges to K, with respect to the
Hausdorff metric. Recall that this amounts to the following two assertions:

(1) For each convergent sequence x; € K;; with limit x, we have x € K;
(2) Given any x € K;, up to replacing 7; by a subsequence, we can find x; € K,
converging to x. O

The first assertion is obvious. Let us prove the second. Take x = (#,x”) € K;. Up to
replacing ¢; by a subsequence and taking the symmetry into account, we may assume
that ¢; > ¢ for all 7. In particular, ¢ < fiax.
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We can find a point y = (y',y”) € K such that y! > ¢ (for example, there is always
such a point with y! = #,,,,). Replacing t; by a subsequence, we may assume that
tj € (t, y1) for all j. Then it suffices to take

yl—t;  tj—t

X+
yl—t yl-t

)Cj = y.

Lemma C.1.3 Let D; C R" (j > 1) be a decreasing sequence of convex sets. Assume
that vol(\; Dj > 0O, then

D;=(\D;.

s

1l
—_

s

~
I
—_

J

Proof The C direction is clear. By convexity, it suffices to show that both sides have
the same positive volume. As the boundary of convex sets has zero Lebesgue measure,
it follows that the volumes of both sides are equal to lim; . vol D ;. O

Definition C.1.3 Let K, K’ € K,, their Minkowski sum is given by
K+K ={x+x":xeK,x' €eK'}.
Proposition C.1.1 The Minkowski sum ¥K,, X K, — K, is continuous.

See [ , Page 139].

Theorem C.1.4 (Brunn—Minkowski) Ler K, K’ € K, then for any t € (0, 1), we
have
vol((1 = 1)K’ +tK) > (vol K")'=9) (vol K)'.

In other words, the volume is log concave. See [ , Page 372].

C.2 The Okounkov bodies of almost semigroups

Fix an integer n > 0. Fix a closed convex cone C C R"™ X R such that C N {x,4+; =
0} = {0}. Here x,,, is the last coordinate of R"*!.

C.2.1 Generalities on semigroups

Write S(C) for the set of subsets of C N Z"“ and S(C) for the set of sub-semigroups
S cCnZ"! Foreach k € Nand S € S(C), we write

S ={xeZ":(x,k)eS}.

Note that Si is a finite set by our assumption on C.
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We introduce a pseudometric on S (C) as follows:
dse(S,§') = k@, K (1Sk] + 1871 = 21(S N Sk l) - (C2)
Here | e | denotes the cardinality of a finite set.

Lemma C.2.1 The above defined ds is a pseudometric on S(0).

Proof Only the triangle inequality needs to be argued. Take S, S’, " € S(C). We
claim that for any k € N,

ISkl +1S%] =218k NS+ 1S+ 1851 =287 N Sel =[Skl + S| =218k NS¢

From this the triangle inequality follows. To argue the claim, we rearrange it to the
following form:
[S7e] = 1Sk N Sel = 1S, N SYT= 1Sk N SYL

which is obvious. O

Given S, 8" € S(C), we say S is equivalent to S and write S ~ §” if d, (S, S") = 0.
This is an equivalence relation by Lemma C.2.1.

Lemma C.2.2 Given S,S’,S” € S(C), we have

dg(SNS",8"'NS") <dy(S,S).
In particular, if S*, S"" € S(C)(ieN)and §' - S, §"" — §', then

S'ns"—8sns’.
Proof Observe that for any k € N,
ISk NS =18k NS NSY] < ISk] =[Sk N Sl
The same holds if we interchange S with S’. It follows that
ISk N SYI+ 1S, NS =218k NS, N ST < Skl + [S%] = 2|8k N Syl

The first assertion follows.
Next we compute

dse(S'NS",SNS") <dso (ST NS, 8" NS) +dso(S° NS, SNS)
<dy (S, 8") +de (5", S)

and the second assertion follows. ]

The volume of S € S(C) is defined as

vol§ = lim (ka)™"|Sal = kﬁ k7" Skl,
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where a is a sufficiently divisible positive integer. The existence of the limit and its
independence from a both follow from the more precise result [ , Theorem 2].

Lemma C.2.3 Let S, S’ € S(C), then
[ vol S — vol 8’| < dys (S, S’).
Proof By definition, we have
ds(S,8") = vol S +vol S’ =2 vol(S N S).
It follows that vol § — vol §” < dg (S, S”) and vol " — vol § < dys (S, S"). O

We define S(C) as the closure of S (C) in 8(C) with respect to the topology defined
by the pseudometric d. By Lemma C.2.3, vol: S(C) — R admits aunique 1-Lipschitz
extension to .

vol: S(C) — R. (C.3)

Lemma C.2.4 Suppose that S, S’ € §(C) and S € S’. Then
vol § < vol .

Proof Take sequences S/, S’/ in S(C) such that S/ — §, 8"/ — §’. By Lemma C.2.2,
after replacing S/ by §/ N §’/, we may assume that S/ C S/ for each j. Then our
assertion follows easily. O

C.2.2 Okounkov bodies of semigroups

Given S € S(C), we will write C(S) C C for the closed convex cone generated by
S U {0}. Moreover, for each k € Z.(, we define

Ak(S) = Conv {k'x e R" : x € S¢} CR".
Here Conv denotes the convex hull.

Definition C.2.1 Let S’ (C) be the subset of S(C) consisting of semigroups S such
that S generates Z"**! (as an Abelian group).

Note that for any S € S’(C), the cone C(S) has full dimension (i.e. the topological
interior is non-empty). Given a full-dimensional subcone C’ C C, it is clear that
C’'nZ"! e S'(C).

This class behaves well under intersections:

Lemma C.2.5 Let S, S" € 8'(C). Assume that vol(SNS”) > 0, then SN S’ € S’ (C).
The lemma obviously fails if vol(S N §”) = 0.
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Proof We first observe that the cone C(S) N C(S’) has full dimension since otherwise
vol(S N §”) = 0. Take a full-dimensional subcone C” in C(S) N C(S’) such that C’

intersects the boundary of C(S) N C(S’) only at 0. It follows from [ , Theorem 1]

that there is an integer N > 0 such that for any x € Z"*! N C” with Euclidean norm

no less than N lies in S N S’. Therefore, SN S € S’'(C). O
We recall the following definition from [ ].

Definition C.2.2 Given S € S8’ (C), its Okounkov body is defined as follows
A(S) ={xeR": (x,1) € C(S)}.

Theorem C.2.1 For each S € S8’ (C), we have

vol S = klim k7" Sk| = vol A(S) > 0. (C4)
Moreover, as k — oo,
Ar(S) S A(s). (C.5)
This is essentially proved in [ , Lemma 4.8], which itself follows from a theorem
of Khovanskii [ ]. We remind the readers that (C.4) fails for a general W € S(C),
see [ , Theorem 2].
Proof The equalities (C.4) follow from the general theorem [ , Theorem 2].
It remains to prove (C.5). By the argument of [ , Lemma 4.8], for any

compact set K C Int A(S), there is ko > 0 such that for any k > ko, @ € KN (k~'Z)"
implies that @ € Ag(S).
In particular, taking K = A(S)? for any ¢ > 0 and applying Lemma C.1.1, we find

draus (A(S), A(8)) < n'k™! +6
when £ is large enough. This implies (C.5). O
Corollary C.2.1 Let S, S’ € S’(C). Assume that vol(S N S”) > O, then we have
ds(S,8") = vol(S) + vol(S") = 2vol(S N §’).
Proof This is a direct consequence of Lemma C.2.5 and (C.4). ]
Lemma C.2.6 Given S € §’(C), we have S ~ Reg(S).

Recall that the regularization Reg(S) of S is defined as C(S) N Z"™**!.

Proof Since S and Reg(.S) have the same Okounkov body, we have vol S = vol Reg(S)
by Theorem C.2.1. By Corollary C.2.1 again,

dsg(Reg(S), S) = volReg(S) — vol § = 0.

Lemma C.2.7 Let S, 8" € §'(C). Assume that d(S,S") = 0, then A(S) = A(S).
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Proof Observe that vol(S N S’) > 0, as otherwise
ds(S,8) > vol S +vol S’ > 0,

which is a contradiction.

It follows from Lemma C.2.5 that SN S” € 8’(C). It suffices to show that A(S) =
A(SNS”). In fact, suppose that this holds, since vol A(S’) = vol §” = vol S = vol A(S),
the inclusion A(S”) 2 A(S N S’) = A(S) is an equality.

By Lemma C.2.2, we can therefore replace S’ by S N S” and assume that S 2 §’.
Then clearly A(S) 2 A(S”). By (C.4),

vol A(S) = vol A(S”) > 0.
Thus, A(S) = A(S). O
Lemma C.2.8 Suppose that S' € S’(C) is a decreasing sequence such that

lim vol §* > 0.

1—00

Then there is S € 8’ (C) such that S — S.

In general, one cannot simply take S = (), S'. For example, consider the sequence
Si S Sl N {.xn+1 > l}.

Proof By Lemma C.2.6, we may replace S’ by its regularization and assume that
St = C(§Y) NZ™!. We define

S =

ﬁC(Si)) Nzt
i=1

Since N2, C(8) is a full-dimensional cone by assumption, we have S € S’(C). By
Corollary C.2.1 and Theorem C.2.1, we can compute the distance

dse(S,S") = vol §" — vol § = vol A(S%) — vol A(S),

which tends to 0 by construction. O

C.2.3 Okounkov bodies of almost semigroups

Definition C.2.3 We define S’(C). as elements in the closure of S’(C) in S(0)
with positive volume. An element in S’ (C)., is called an almost semigroup in C.

Recall that the volume here is defined in (C.3).
Our goal is to prove the following theorem:
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Theorem C.2.2 The Okounkov body map A: 8’ (C) — K, as defined in Defini-
tion C.2.2 admits a unique continuous extension

A:8(C)sg — K. (C.6)
Moreover, for any S € §’(C)~, we have
vol § = vol A(S). (C.7

Proof The uniqueness of the extension is clear as long as it exists. Moreover, (C.7)
follows easily from Theorem C.2.1 and Theorem C.1.2 by continuity. It remains to
argue the existence of the continuous extension. We first construct an extension and
prove its continuity.

Step 1. We construct the desired map (C.6). Let S € S’(C).. . We wish to construct
a convex body A(S) € K.

Let S € 8’(C) be a sequence that converges to S such that

dsg(Si,Si+l) < 2—1'.
For each i, j > 0, we introduce
SHT =8 nsH. 0 st

Then by Lemma C.2.2, S o
dsg(Sl’j,Sl’j+l) < 2=i=j

Take iy > 0 large enough so that for i > iy, vol St > 271yol S and 227! < vol S and
hence

Vol §' — vol §™/ < dg (S0, S™) + dyg(S1, 8%2) + -+ + dyg (S™ 71, 877) < 2177,

It follows that vol S/ > 27!1vol § — 2!~/ > 0 whenever i > iy. In particular, by
Lemma C.2.5, S/ € 8’ (C) fori > io.

By Lemma C.2.8, for i > iy, there exists T! € S8'(C) such that §%/ — T* as
J — oo. Moreover,

dso(T",S) = lim dy (5™, S) < lim dso(S™/,S") + dse (S, ) < 2" + dyo (S, S).

Therefore, T" — S. We then define
A(S) = U A(T?).
i=io
In other words, we have defined

A(S) = lim A(SY).

1—00
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This is an honest limit: if A is the limit of a subsequence of A(S?), then A(S) C A by
(C.1). Comparing the volumes, we find that equality holds. So by Theorem C.1.1,

A(S) = lim A(SY). (C.8)

Next we claim that A(S) as defined above does not depend on the choice of the
sequence S'. In fact, suppose that S € S’(C) is another sequence satisfying the
same conditions as S’. The same holds for R’ := S™*! N §"*1 Tt follows that

lim A(R') C lim A(S).

Comparing the volumes, we find that equality holds. The same is true with S’ in
place of S*. So we conclude that A(S) as in (C.8) does not depend on the choices we
made.

Step 2. It remains to prove the continuity of A defined in Step 1. Suppose that
S € 8(C). is a sequence with limit § € S’(C).. We want to show that

A(ST) S A8y, (C.9)

We first reduce to the case where S* € S’(C). By (C.8), for each i, we can choose
T' € 8'(C) such that dse (S', T") < 27" and dpaus(A(ST), A(T?)) < 27", If we have

dHaus

shown A(T") —= A(S), then (C.9) follows immediately.

Next we reduce to the case where dse (5%, S™!) < 277, In fact, thanks to Theo-
rem C.1.1, in order to prove (C.9), it suffices to show that each subsequence of A(S?)
admits a subsequence that converges to A(S). Hence, we easily reduce to the required
case.

After these reductions, (C.9) is nothing but (C.8). m]

Remark C.2.1 As the readers can easily verify from the proof, for any S € 8’(C).,,
there is §” € 8’(C) such that S ~ §’.

Corollary C.2.2 Suppose that S, S’ € 8'(C).o with S C §’, then
A(S) C A(S). (C.10)

Proof Let S/,S"7 € 8'(C) be elements such that S/ — §, S/ — §’. Then it follows
from Lemma C.2.2 that S/ N §”/ — S. Since vol is continuous, for large j, S/ N §’/
has positive volume and hence lies in S’(C) by Lemma C.2.5. We may therefore
replace S/ by S/ N §’/ and assume that S/ C §”/. Hence, (C.10) follows from the
continuity of A proved in Theorem C.2.2. O

Remark C.2.2 As the readers can easily verify, the construction of A is independent of
the choice of C in the following sense: Suppose that C’ is another cone satisfying the
same assumptions as C and C’ 2 C, then the Okounkov body mapA: 8’(C’).o — K
is an extension of the corresponding map (C.6). We will constantly use this fact
without further explanations.
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