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Preface

This book is an expanded version of my lecture notes at the Institute for Advanced
Study in Mathematics (IASM) at Zhejiang university. My initial goal was to write a
self-contained reference for the participants of the lectures. But I soon realized that
many results have never been rigorously proved in any literature. When attempting to
resolve these loose ends, the notes grew increasingly lengthy, ultimately resulting in
the current book.

In this book, I would like to present my point of view towards the global
pluripotential theories. There are three different but interrelated theories which
deserve this name. They are

(1) the pluripotential theory on compact Kähler manifolds,
(2) the pluripotential theory on the Berkovich analytification of projective varieties,

and
(3) the toric pluripotential theory on projective toric varieties.

We will begin by explaining the picture in the first case. Let us fix a compact
Kähler manifold 𝑋 . The central objects are the quasi-plurisubharmonic functions on
𝑋 .

We are mostly interested in the singularities of such functions, that is, the places
where a quasi-plurisubharmonic function 𝜑 tends to −∞ and how it tends to −∞.

Singularities occur naturally in mathematics. In geometric applications, 𝑋 should
be regarded as the compactified moduli space of certain geometric objects. A Zariski
open subset 𝑈 ⊆ 𝑋 would parametrize smooth objects. The natural metric on
the associated polarizing line bundle is usually smooth only on 𝑈, not on 𝑋 . In
case we have suitable positivities, the classical Grauert–Remmert extension theorem
(Theorem B.2.2) allows us to extend the metric outside𝑈, but at the cost of introducing
singularities.

The classification of singularities is a huge project. Locally near the singularities
we know that quasi-plurisubharmonic functions present very complicated behaviours.
There are many local invariants associated with the singularities. The most notable
ones are the Lelong numbers and the multiplier ideal sheaves. These invariants only
reflect the rough behaviour of a quasi-plurisubharmonic function. As an example,
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a quasi-plurisubharmonic function with log-log singularities have the same local
invariants as a bounded one.

The situation changes drastically in the global setting, namely on compact
manifolds. In the global setting, there are three different ways to classify quasi-
plurisubharmonic functions according to their singularities:

(1) The singularity type characterizing the singularities up to a bounded term.
(2) The 𝑃-singularity type associated with global masses.
(3) The I-singularity type associated with all non-Archimedean data.

The classification becomes rougher and rougher as we go downward. In the first case,
we say two quasi-plurisubharmonic functions have the same singularity type if their
difference lies in 𝐿∞. The corresponding equivalence class gives us essentially the
finest information of the singularities we can expect. The other two relations are more
delicate, we will study them in detail in Chapter 6.

A natural idea to study the singularities would consist of the following steps:

(1) Classify the I-singularity types.
(2) Classify the 𝑃-singularity types within a given I-singularity class.
(3) Classify the singularity types within a given 𝑃-equivalence class.

The Step 3 is well-studied in the literature in the last decade under the name of
pluripotential theory with prescribed singularities. There are numerous excellent
results in this direction. In some sense, this step is already well-understood.

We will give a complete answer to Step 1 in Chapter 7, where we show that
I-singularity types can be described very explicitly.

It remains to consider Step 2. This is not an easy task. It is easy to construct examples
where a given I-equivalence class consists of a huge amount of 𝑃-equivalence classes.

On the other hand, by contrast, in the toric pluripotential theory and non-
Archimedean pluripotential theory, Step 2 is essentially trivial: AnI-equivalence class
consists of a single 𝑃-equivalence class. In the toric situation, an I or 𝑃-equivalence
class is simply a sub-convex body of the Newton body, while in the non-Archimedean
situation, an I or 𝑃-equivalence class is a homogeneous plurisubharmonic metric.

This apparent anomaly and numerous examples show that in the pluripotential
theory on compact Kähler manifolds, certain singularities are pathological. Within
each I-equivalence class, we could pick up a canonical 𝑃-equivalence class, the
quasi-plurisubharmonic functions in which are said to be I-good. We will study the
theory of I-good singularities in Chapter 7. As we will see later on, almost all (if not
all) singularities occurring naturally are I-good.

My personal impression is that we are in a situation quite similar to the familiar one
in real analysis. There are many non-measurable functions, but in real life, unless you
construct a pathological function by force, you only encounter measurable functions.
Similarly, although there exist many non-I-good singularities, you would never
encounter them in reality!

Having established this general principle, we could content ourselves in the
framework of I-good singularities. Then Step 2 is essentially solved, and we have a
pretty good understanding of the classification of singularities.
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Of course, this classification is a bit abstract. To put it into use, we will introduce
two general techniques allowing us to make induction on dim 𝑋 . For a prime divisor
𝑌 in general position, we have the so-called analytic Bertini theorems relating
quasi-plurisubharmonic functions on 𝑋 and on 𝑌 . For a non-generic 𝑌 , we have the
technique of trace operators. These techniques will be explained in Chapter 8.

In the toric situation, these constructions and methods are quite straightforward
and are likely known to experts before I entered this field, see Chapter 5 for the toric
pluripotential theory on ample line bundles.

The corresponding toric pluripotential theory on big line bundles has never been
written down in the literature. We will develop the theory of partial Okounkov bodies
in Chapter 10 and the general toric pluripotential theory will be developed as an
application in Chapter 12.

Finally, we give applications to non-Archimedean pluripotential theory in Chap-
ter 13 based on the theory of test curves developed in Chapter 9. We also prove the
convergence of the partial Bergman kernels in Chapter 14.

The readers are only supposed to be familiar with the basic pluripotential theory.
The excellent book [GZ17] is more than enough.

Mingchen Xia
in Hangzhou, March 2024
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Mingchen Xia, professor by special appointment at Institute of

Geometry and Physics, USTC
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Conventions

In the whole book, we adopt the following conventions:

• A complex space is always assumed to be reduced, paracompact and Hausdorff.
• A modification of a complex space 𝑋 is proper bimeromorphic morphism
𝜋 : 𝑌 → 𝑋 that is locally obtained from a finite composition of blow-ups with
smooth centers.

• A subnet of a net refers to a Kelley subnet.
• A domain in C𝑛 refers to a connected open subset.
• A complex manifold is assumed to be paracompact.
• A submanifold of a complex manifold means a closed complex submanifold.
• A neighborhood is not necessarily open.
• The set N of natural numbers includes 0.
• Increasing functions and decreasing functions are not necessarily strictly mono-

tone.

We will use the following notations throughout the book:

• If 𝐼 is a non-empty set, then Fin(𝐼) denote the net of finite non-empty subsets of
𝐼, ordered by inclusion.

• ddc means (2𝜋)−1i𝜕𝜕.
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Part I
Preliminaries



In the first two chapters Chapter 1 and Chapter 2 of this part, we recall a few
preliminaries about the notion of plurisubharmonic functions and the non-pluripolar
products of plurisubharmonic functions.

Most materials in these chapters are standard and are well-documented in other
textbooks, so we will be rather sketchy. The readers are encouraged to consult the
excellent textbook [GZ17].

In Chapter 3, we develop the techniques of envelope operators. All results in this
section are known and are written in various articles.

In Chapter 4, we develop the theory of geodesics in the space of quasi-
plurisubharmonic functions. Most results in this chapter are known to different
degrees, but not in the fully general form as we present. Most proofs are similar to
the known proofs in the literature, but the presence of singularities requires a very
careful treatment.

In Chapter 5, we recall the basic results about the toric pluripotential theory on
ample line bundles, which will be generalized to big line bundles in Chapter 12.

Experienced readers may safely skip the whole part.



Chapter 1
Plurisubharmonic functions

Once Frigyes Riesza gave a brilliant explanation of why scientific
work is easy. "Everyone has ideas, both right ideas and wrong
ideas," he said. "Scientific work consists merely of separating
them."
— Istvan Vincze

a Frigyes Riesz (1880–1956), known as Frédéric Riesz in French
and Frederic Riesz in English was the first mathematician to define
the general notion of subharmonic functions, who also gave these
functions a Frenglish name from the very beginning — fonctions
subharmoniques.

In this chapter, we recall the notion of plurisubharmonic functions and a few basic
properties of these functions. The main purpose is to fix the notations for later
chapters, so we refer to the literature for most of the proofs.

We give some details about the plurifine topology in Section 1.3, since the related
proofs are scattered in a number of articles.

In the literature related to multiplier ideal sheaves and Lelong numbers, there are
several different conventions about their normalizations. The readers can find more
about the conventions we adopt throughout the book in Section 1.4.

1.1 The definition of plurisubharmonic functions

In this section, we recall the notion of plurisubharmonic functions. We will also take
care of the 0-dimensional case, which makes a number of induction arguments easier
to carry out. None of our references treats the 0-dimensional case, but the readers
can easily verify that the results in this section hold in this exceptional case.

1.1.1 The 1-dimensional case

Let Ω be a domain (a connected open subset) in C.

Definition 1.1.1 A subharmonic function on Ω is a function 𝜑 : Ω → [−∞,∞)
satisfying the following three conditions:

(1) 𝜑 . −∞;
(2) 𝜑 is upper semi-continuous;
(3) 𝜑 satisfies the sub-mean value inequality: For any 𝑎 ∈ Ω and 𝑟 > 0 such that

𝐵1 (𝑎, 𝑟) ⋐ Ω, we have

3
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𝜑(𝑎) ≤ 1
2𝜋

∫ 2𝜋

0
𝜑(𝑎 + 𝑟ei𝜃 ) d𝜃 1.

We will denote the set of subharmonic functions on Ω as SH(Ω).

Here, 𝐵1 (𝑎, 𝑟) denotes the open ball with center 𝑎 and radius 𝑟 . See (1.1).
In fact, for each 𝑎 ∈ Ω, in (3), it suffices to require the sub-mean value inequality

for all small enough 𝑟 > 0.
Intuitively, at a specific point 𝑎 ∈ Ω, the Condition (2) gives a lower bound of the

value of 𝜑(𝑎) using the nearby values of 𝜑, while the Condition (3) gives an upper
bound. This intuition leads to the following rigidity theorem:

Theorem 1.1.1 Let 𝜑 : Ω→ [−∞,∞) be a measurable function. Then the following
are equivalent:

(1) 𝜑 is locally integrable and Δ𝜑 ≥ 0.
(2) 𝜑 coincides almost everywhere with a subharmonic function 𝜓 on Ω.

Moreover, the subharmonic function 𝜓 in (2) is unique.

Here in Condition (1), Δ𝜑 is the Laplacian in the sense of currents. This is a special
case of Theorem 1.1.2 below.

This theorem gives a very useful way of constructing subharmonic functions.

1.1.2 The higher dimensional case

We will fix 𝑛 ∈ N and a domain Ω (a connected open subset) in C𝑛.

Definition 1.1.2 When 𝑛 ≥ 1, a plurisubharmonic function on Ω is a function
𝜑 : Ω→ [−∞,∞) satisfying the following three conditions:

(1) 𝜑 . −∞;
(2) 𝜑 is upper semi-continuous;
(3) for any complex line 𝐿 ⊆ C𝑛 and any connected component 𝑈 of 𝐿 ∩ Ω, the

restriction 𝜑|𝑈 is either subharmonic or constantly −∞.2

When 𝑛 = 0, the only domain Ω is the singleton. In this case, a plurisubharmonic
function on Ω is a real-valued function on Ω.

The set of plurisubharmonic functions on Ω is denoted by PSH(Ω).

A plurisubharmonic function is also called a psh function for short. The relevant
notations are indicated in Fig. 1.1.3

1 Condition (2) guarantees that 𝜑 is measurable and locally bounded from above, and hence the
integral in Condition (3) makes sense.
2 An extremely common mistake in the literature is to replace (3) by the condition that 𝜑 is locally
integrable and ddc𝜑 ≥ 0 in the sense of currents. For a concrete counterexample, consider a function
𝜑 that takes a constant value 0 at all but one single point, at which the value of 𝜑 is 1.
3 We remind the readers that most figures in this book are somewhat misleading: We usually draw a
complex dimension as a real dimension. The figures should not be read literally!
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Fig. 1.1 A domain cut by a line

Example 1.1.1 When 𝑛 = 0, we have a canonical bĳection PSH(Ω) � R.

Example 1.1.2 When 𝑛 = 1, we have PSH(Ω) = SH(Ω).

Similar to Theorem 1.1.1, we have a rigidity theorem for plurisubharmonic
functions as well.

Theorem 1.1.2 Let 𝜑 : Ω→ [−∞,∞) be a measurable function. Then the following
are equivalent:

(1) 𝜑 is locally integrable and ddc𝜑 ≥ 0;
(2) 𝜑 coincides almost everywhere with a plurisubharmonic function 𝜓 on Ω.

Moreover, the plurisubharmonic function 𝜓 is unique.

Here, the operator ddc is normalized so that

ddc =
i

2𝜋
𝜕𝜕.

For the proof, we refer to [GZ17, Proposition 1.43].
Plurisubharmonic functions have nice functorialities:

Proposition 1.1.1 Let 𝑛′ ∈ N and Ω′ ⊆ C𝑛′ be a domain. Given any holomorphic
map 𝑓 : Ω→ Ω′ and any 𝜑 ∈ PSH(Ω′) exactly one of the following cases occurs:

(1) 𝑓 ∗𝜑 ≡ −∞;
(2) 𝑓 ∗𝜑 ∈ PSH(Ω).

We refer to [GZ17, Proposition 1.44] for the proof4.
For each 𝑛 ∈ N, 𝑎 ∈ C𝑛 and 𝑟 > 0, we write

𝐵𝑛 (𝑎, 𝑟) = {𝑧 ∈ C𝑛 : |𝑧 − 𝑎 | < 𝑟} . (1.1)

4 We remind the readers that the statement of [GZ17, Proposition 1.44] is flawed. One has to reduce
to the case where Case (1) does not occur before following their proof.
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Proposition 1.1.2 Let 𝜑 ∈ PSH(𝐵𝑛 (𝑎, 𝑟0)) for some 𝑟0 > 0. Then the function

(−∞, log 𝑟0) → R, log 𝑟 ↦→ sup
𝐵𝑛 (𝑎,𝑟 )

𝜑

is convex and increasing.

See [Hö07, Theorem 4.1.13] for the case 𝑛 > 1 and [Bou17, Corollary 2.4] for the
general case.

Proposition 1.1.3 Let 𝑎 < 𝑏 be two real numbers. Let 𝑓 : (𝑎, 𝑏) → [−∞,∞) be a
function. Define

𝑔 : {𝑧 ∈ C : 𝑎 < Re 𝑧 < 𝑏} → [−∞,∞), 𝑧 ↦→ 𝑓 (Re 𝑧).

Suppose that 𝑔 is subharmonic, then 𝑓 is convex. In particular, 𝑓 takes real values
only.

See [HK76, Theorem 2.12] for a more general result.

1.1.3 The manifold case

Let 𝑋 be a complex manifold. In the whole book, complex manifolds are assumed to
be paracompact, namely, all connected components have countable bases.

Definition 1.1.3 A plurisubharmonic function on 𝑋 is a function 𝜑 : 𝑋 → [−∞,∞)
such that for any 𝑥 ∈ 𝑋 , there exists an open neighborhood 𝑈 of 𝑥 in 𝑋 , an
integer 𝑛 ∈ N, a domain Ω ⊆ C𝑛 and a biholomorphic map 𝐹 : Ω → 𝑈 such that
𝐹∗ (𝜑|𝑈) ∈ PSH(Ω).

The set of plurisubharmonic functions on 𝑋 is denoted by PSH(𝑋).

Example 1.1.3 When 𝑋 is a domain in C𝑛, the notions of plurisubharmonic functions
in Definition 1.1.3 and in Definition 1.1.2 coincide.

Example 1.1.4 Write {𝑋𝑖}𝑖∈𝐼 for the set of connected components of 𝑋 . Then we
have a natural bĳection

PSH(𝑋) �
∏
𝑖∈𝐼

PSH(𝑋𝑖).

Here the product is in the category of sets. In particular, if 𝑋 = ∅, then PSH(𝑋) is a
singleton.

This example allows us to reduce to the case of connected manifolds when studying
general plurisubharmonic functions.

Proposition 1.1.4 Let 𝑌 be another complex manifold and 𝑓 : 𝑌 → 𝑋 be a holomor-
phic map. Then for any 𝜑 ∈ PSH(𝑋), exactly one of the following cases occurs:
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(1) 𝑓 ∗𝜑 is identically −∞ on some connected component of 𝑌 ;
(2) 𝑓 ∗𝜑 ∈ PSH(𝑌 ).

This proposition follows easily from Proposition 1.1.1. We leave the details to the
readers.

Theorem 1.1.2 implies immediately the general form of the rigidity theorem:

Theorem 1.1.3 Let 𝜑 : 𝑋 → [−∞,∞) be a measurable function. Then the following
are equivalent:

(1) 𝜑 is locally integrable and ddc𝜑 ≥ 0;
(2) 𝜑 coincides almost everywhere with a plurisubharmonic function 𝜓 on 𝑋 .

Moreover, the plurisubharmonic function 𝜓 in (2) is unique.

Definition 1.1.4 A subset 𝐸 ⊆ 𝑋 is pluripolar if for any 𝑥 ∈ 𝑋 , there is an open
neighborhood𝑈 of 𝑥 in 𝑋 and a function 𝜓 ∈ PSH(𝑈) such that

𝜓 |𝐸∩𝑈 ≡ −∞.

A subset 𝐸 ⊆ 𝑋 is non-pluripolar if 𝐸 is not pluripolar.
A subset 𝐹 ⊆ 𝑋 is co-pluripolar if 𝑋 \ 𝐹 is pluripolar.

When 𝑋 has dimension 1, a pluripolar set is called a polar set. We say some property
about objects on 𝑋 holds quasi-everywhere if it holds outside a pluripolar set.

Theorem 1.1.4 (Josefson’s theorem) Let 𝐸 ⊆ C𝑛 be a pluripolar set. Then there is
𝜑 ∈ PSH(C𝑛) such that 𝜑|𝐸 ≡ −∞.

See [GZ17, Corollary 4.41] for the proof of a more general result.
There is also a global version of Josefson’s theorem:

Theorem 1.1.5 Assume that 𝑋 is a compact complex manifold and 𝐸 ⊆ 𝑋 is
a pluripolar set. Then there is a quasi-plurisubharmonic function 𝜑 on 𝑋 with
𝜑|𝐸 ≡ −∞.

For a proof, see [Vu19].

1.2 Properties of plurisubharmonic functions

In this section, we explore the basic properties of plurisubharmonic functions.
Let 𝑋 be a complex manifold.

Proposition 1.2.1

(1) Assume that (𝜑𝑖)𝑖∈𝐼 is a non-empty family in PSH(𝑋) that is locally uniformly
bounded from above. Then sup𝑖∈𝐼 ∗𝜑𝑖 ∈ PSH(𝑋).

(2) Assume that (𝜑𝑖)𝑖∈𝐼 is a decreasing net in PSH(𝑋) such that lim𝑖∈𝐼 𝜑𝑖 is not
identically −∞ on each connected component of 𝑋 , then lim𝑖∈𝐼 𝜑𝑖 ∈ PSH(𝑋).
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Here sup∗ denotes the upper semicontinuous regularization of the supremum. When
𝐼 is a finite family, observe that

sup
𝑖∈𝐼
∗𝜑𝑖 = sup

𝑖∈𝐼
𝜑𝑖 .

When 𝐼 = {1, . . . , 𝑚}, we write

𝜑1 ∨ · · · ∨ 𝜑𝑚 B sup
𝑖∈𝐼

𝜑𝑖 .

We refer to [GZ17, Proposition 1.28, Proposition 1.40]5.

Proposition 1.2.2 (Choquet’s lemma) Assume that 𝑋 has countably many connected
components. Assume that (𝜑𝑖)𝑖∈𝐼 is a non-empty family in PSH(𝑋) that is locally
uniformly bounded from above. There exists a countable subset 𝐽 ⊆ 𝐼 such that

sup
𝑖∈𝐼
∗𝜑𝑖 = sup

𝑗∈𝐽
∗𝜑 𝑗 .

Proof We may assume that 𝑋 is connected. Since by our convention, the complex
manifold 𝑋 is paracompact, it can be covered by countably many open balls, so we
can easily reduce to the case where 𝑋 is an open ball. In this case, the result is proved
in [GZ17, Lemma 4.31]. □

Proposition 1.2.3 Let 𝜑 ∈ PSH(𝑋), then for any 𝑝 ≥ 1, 𝜑 ∈ 𝐿 𝑝loc (𝑋).

See [GZ17, Theorem 1.46, Theorem 1.48].

Proposition 1.2.4 A pluripolar set 𝐸 ⊆ 𝑋 is a Lebesgue null set.

Proof This is a trivial consequence of Proposition 1.2.3. □

Proposition 1.2.5 Let (𝜑𝑖)𝑖∈𝐼 be a non-empty family in PSH(𝑋) that is locally
uniformly bounded from above. Then the set{

𝑥 ∈ 𝑋 : sup
𝑖∈𝐼

𝜑𝑖 < sup
𝑖∈𝐼
∗𝜑𝑖

}
is pluripolar and hence Lebesgue null.

See [GZ17, Corollary 4.28].

Proposition 1.2.6 Suppose that 𝜑, 𝜓 ∈ PSH(𝑋). Assume that there is a dense subset
𝐸 ⊆ 𝑋 such that 𝜑 |𝐸 ≤ 𝜓 |𝐸 , then 𝜑 ≤ 𝜓.

5 In [GZ17, Proposition 1.28], the second part is only stated for sequences, the net version is obvious
using the sub-mean value inequality.



1.2. PROPERTIES OF PLURISUBHARMONIC FUNCTIONS 9

Proof The problem is local, so we may assume that 𝑋 is a domain in C𝑛.
We may assume that 𝜑|𝐸 = 𝜓 |𝐸 after replacing 𝜑 by 𝜑 ∨ 𝜓. Then we need to show

that 𝜑 = 𝜓.
By [GZ17, Theorem 4.20], 𝜑 and 𝜓 are quasi-continuous. It follows that 𝜑 = 𝜓

outside a set 𝑌 ⊆ 𝑋 with vanishing capacity. By [GZ17, Theorem 4.40], 𝑌 is also
pluripolar. In particular, 𝜑 = 𝜓 almost everywhere. It follows from the uniqueness
statement in Theorem 1.1.3 that 𝜑 = 𝜓. □

Proposition 1.2.7 Let (𝐸𝑖)𝑖∈Z>0 be a sequence of pluripolar sets in 𝑋 . Then

𝐸 B
∞⋃
𝑖=1

𝐸𝑖

is also pluripolar.

Proof The problem is local, so we may assume that 𝑋 ⊆ C𝑛 is a domain. In this case,
by Theorem 1.1.4 for each 𝑖 ∈ Z>0 we can choose 𝜓𝑖 ∈ PSH(C𝑛) such that

𝜓𝑖 |𝐸𝑖 ≡ −∞, 𝜓𝑖 |𝑋 ≤ 0

for all 𝑖 > 0. After shrinking 𝑋 , we may guarantee that 𝜓𝑖 |𝑋 ∈ 𝐿1 (𝑋) for all 𝑖 > 0.
After rescaling, we may also assume that ∥𝜓𝑖 ∥𝐿1 (𝑋) ≤ 1 for all 𝑖 > 0.

We then define

𝜓 =

∞∑︁
𝑖=1

2−𝑖𝜓𝑖 |𝑋 .

Then 𝜓 ∈ PSH(𝑋) according to Proposition 1.2.1 and 𝜓 |𝐸 = −∞. □

Corollary 1.2.1 Let (𝜑 𝑗 ) 𝑗∈Z>0 be a sequence in PSH(𝑋) such that 𝜑 𝑗
𝐿1

loc−−−→ 𝜑 ∈
PSH(𝑋). Then the set {

𝑥 ∈ 𝑋 : 𝜑(𝑥) ≠ lim
𝑗→∞

𝜑 𝑗 (𝑥)
}

is pluripolar.

Proof We first observe that (𝜑 𝑗 ) 𝑗 is locally uniformly bounded from above. This
follows from [GZ17, Exercise 1.20].

For each 𝑗 ≥ 1, let
𝜓 𝑗 = sup

𝑘≥ 𝑗
∗𝜑𝑘 .

Then 𝜓 𝑗 ∈ PSH(𝑋) by Proposition 1.2.1. Moreover, (𝜓 𝑗 ) 𝑗 is a decreasing sequence
and 𝜓 𝑗 ≥ 𝜑 𝑗 for all 𝑗 . In particular, 𝜑 ≤ 𝜓 B inf 𝑗 𝜓 𝑗 almost everywhere. By
Proposition 1.2.1 again, 𝜓 ∈ PSH(𝑋).

On the other hand, by Proposition 1.2.5, there exist pluripolar sets 𝑍 𝑗 ⊆ 𝑋 such
that

𝜓 𝑗 = sup
𝑘≥ 𝑗

𝜑𝑘
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on 𝑋 \ 𝑍 𝑗 . Let

𝑍 =

∞⋃
𝑗=1
𝑍 𝑗 .

Then 𝑍 is a pluripolar set by Proposition 1.2.7, and for any 𝑥 ∈ 𝑋 \ 𝑍 , we have

𝜓(𝑥) = lim 𝑗 𝜑 𝑗 (𝑥). Since 𝜑 𝑗
𝐿1

loc−−−→ 𝜑, we can find a set 𝑌 ⊆ 𝑋 with zero Lebesgue
measure such that 𝜑 𝑗 (𝑥) → 𝜑(𝑥) for all 𝑥 ∈ 𝑋 \ 𝑌 .

In particular, for any 𝑥 ∈ 𝑋 \ (𝑌 ∪ 𝑍), we have

𝜓(𝑥) = 𝜑(𝑥).

But thanks to Proposition 1.2.6, the equality holds everywhere. Therefore, for all
𝑥 ∈ 𝑋 \ 𝑍 ,

𝜑(𝑥) = lim
𝑗→∞

𝜑 𝑗 (𝑥).

Theorem 1.2.1 (Brelot, Grauert–Remmert) Let 𝑍 be an analytic subset in 𝑋 and
𝜑 ∈ PSH(𝑋 \ 𝑍). Then the function 𝜑 admits an extension to PSH(𝑋) in the following
two cases:

(1) The set 𝑍 has codimension at least 2 everywhere.
(2) The set 𝑍 has codimension at least 1 everywhere and 𝜑 is locally bounded from

above on an open neighborhood of 𝑍 .

In both cases, the extension is unique and is given by

𝜑(𝑥) = lim
𝑋\𝑍∋𝑦→𝑥

𝜑(𝑦), 𝑥 ∈ 𝑍. (1.2)

Fig. 1.2 The proof of Grauert–Remmert extension theorem

Proof The extension is unique thanks to Proposition 1.2.6.
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(2) Thanks to the uniqueness of the extension, the problem is local, so we may
assume that 𝑋 is a domain in C𝑛 with 𝑛 > 0 and there is a non-zero holomorphic
function 𝑓 vanishing identically on 𝑍 . For each 𝜖 > 0, we claim that the function 𝜑𝜖
defined by

𝜑𝜖 (𝑥) B
{
𝜑(𝑥) + 𝜖 log | 𝑓 (𝑥) |2, 𝑥 ∈ 𝑋 \ 𝑍;

−∞, 𝑥 ∈ 𝑍

is plurisubharmonic on 𝑋 . By Definition 1.1.2, it suffices to verify the case 𝑛 = 1. In
this case, we may assume that 𝑍 = {0}, It is clear that 𝜑𝜖 ∈ SH(𝑋 \ 𝑍). It suffices to
verify the sub-mean value inequality at 0, which is immediate.

Next observe that the net 𝜑𝜖 is increasing as 𝜖 ↘ 0 and 𝜑𝜖 is locally uniformly
bounded from above. It follows from Proposition 1.2.1 that 𝜑̃ B sup𝜖 >0

∗𝜑𝜖 ∈
PSH(𝑋). Moreover, 𝜑̃ clearly extends 𝜑. Note that (1.2) follows from the construction.

(1) We invite the readers to have a look at Fig. 1.2 for our notations in the proof.
It suffices to verify that 𝜑 is locally bounded from above near each point of 𝑍 . The

problem is local, so we may assume that 𝑋 is a domain in C𝑛 with 𝑛 ≥ 2.
Assume that our assertion fails. Take 𝑧 ∈ 𝑍 so that there exists a sequence (𝑥 𝑗 ) 𝑗 in

𝑋 \ 𝑍 converging to 𝑧 such that

lim
𝑗→∞

𝜑(𝑥 𝑗 ) = ∞.

Since 𝑍 has codimension at least 26, we could take a complex line 𝐿 passing through
𝑧 and intersects 𝑍 only on a discrete set. After shrinking 𝑋 , we may assume that

𝐿 ∩ 𝑍 = {𝑧}.

Take an open ball 𝐵𝑛 (𝑧, 𝑟) ⋐ 𝑋 . After adding a constant to 𝜑, we may guarantee that
𝜑 < 0 on 𝐿 ∩ 𝜕𝐵𝑛 (𝑧, 𝑟). Since 𝜑 is upper semi-continuous, we could find an open
neighborhood𝑈 of 𝐿 ∩ 𝜕𝐵𝑛 (𝑧, 𝑟) such that

𝜑|𝑈 < 0.

For each 𝑗 ≥ 1, take a complex line 𝐿 𝑗 passing through 𝑥 𝑗 and avoiding 𝑍 such that
𝐿 𝑗 → 𝐿 as 𝑗 →∞. Here we rely on the fact that 𝑍 has codimension at least 2. Here
the convergence is in the obvious sense. Then for large enough 𝑗 , we know have

𝐿 𝑗 ∩ 𝜕𝐵𝑛 (𝑧, 𝑟) ⊆ 𝑈.

It follows from the sub-mean value inequality that 𝜑(𝑥 𝑗 ) < 0 for large enough 𝑗 ,
which is a contradiction. □

Lemma 1.2.1 Let 𝜑 ∈ PSH((Δ∗)𝑛) be an (𝑆1)𝑛-invariant plurisubharmonic function.
Then 𝜑 is finite everywhere.

Here

6 In fact, codimension at least 1 suffices for this step.
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Δ∗ = {𝑧 ∈ C : 0 < |𝑧 | < 1}.

Proof It clearly suffices to handle the case 𝑛 = 1. In this case, by [HK76, Theo-
rem 2.12], the map

log 𝑟 ↦→
∫ 1

0
𝜑(𝑟 exp(2𝜋i𝜃)) d𝜃 = 𝜑(𝑟)

is a convex function of log 𝑟. So, the set {𝑟 ∈ (0, 1) : 𝜑(𝑟) = −∞} is convex. But 𝜑
is almost everywhere finite by Proposition 1.2.3. Since 𝜑 is 𝑆1-invariant, 𝜑| (0,1) is
almost everywhere finite. It follows from the convexity that it is everywhere finite.□

Proposition 1.2.8 (Kiselman’s principle) Let Ω ⊆ C𝑚 × C𝑛 be a pseudoconvex
domain. Assume that for each 𝑧 ∈ C𝑚, the set

Ω𝑧 B
{
𝑤 ∈ C𝑛 : (𝑧, 𝑤) ∈ Ω

}
has the form 𝐸 + iR𝑛, where 𝐸 ⊆ R𝑛 is a subset. Let 𝜑 ∈ PSH(Ω), assume that 𝜑 is
independent of the imaginary part of the variable in C𝑛. Let Ω′ be the projection of
Ω to C𝑚. Define 𝜓 : Ω′ → [−∞,∞) as follows:

𝜓(𝑧) = inf
𝑤∈Ω𝑧

𝜑(𝑧, 𝑤).

Then either 𝜓 ≡ −∞ or 𝜓 ∈ PSH(Ω′).

See [Dem12b, Theorem 7.5] for the proof as well as the notion of pseudoconvex
domains.

Lemma 1.2.2 Let Ω ⊆ C𝑛 be a domain and Ω′ ⊆ Ω be a subdomain. Consider
𝜑 ∈ PSH(Ω) and 𝜓 ∈ PSH(Ω′). Assume that

lim
Ω′∋𝑦→𝑥,
𝜓 (𝑦)≠−∞

(
𝜑(𝑦) − 𝜓(𝑦)

)
≥ 0

for any 𝑥 ∈ Ω ∩ 𝜕Ω′. Define

𝜂(𝑧) =
{
𝜑(𝑧) ∨ 𝜓(𝑧), if 𝑧 ∈ Ω′,

𝜑(𝑧), if 𝑧 ∈ Ω \Ω′.

Then 𝜂 ∈ PSH(Ω).

This is morally just [GZ17, Proposition 1.30]. But the statement in the reference is
slightly misleading, so I reproduced the proof just for clarification.

Proof See Fig. 1.3 for the notations used in the proof.
Take 𝜖 > 0. We first define
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Fig. 1.3 Gluing procedure

𝜂𝜖 (𝑧) =
{
𝜑(𝑧) ∨ (𝜓(𝑧) − 2𝜖), if 𝑧 ∈ Ω′,

𝜑(𝑧), if 𝑧 ∈ Ω \Ω′.

We claim that
𝜂𝜖 ∈ PSH(Ω).

By our assumption, for each 𝑥 ∈ Ω∩ 𝜕Ω′, we can find an open neighborhood𝑈𝑥 ⊆ Ω

such that for any 𝑦 ∈ 𝑈𝑥 ∩Ω′, we have 𝜑(𝑦) ≥ 𝜓(𝑦) − 𝜖 . Therefore, there is an open
neighborhood𝑈 of Ω ∩ 𝜕Ω′ such that

𝜑(𝑦) ≥ 𝜓(𝑦) − 𝜖, ∀𝑦 ∈ 𝑈 ∩Ω′.

Therefore, on the open set (Ω \Ω′) ∪𝑈, we have 𝜂𝜖 = 𝜑 and hence 𝜂𝜖 is plurisub-
harmonic there. It is plurisubharmonic on Ω′ by Proposition 1.2.1. So our claim
follows.

Next we observe that as 𝜖 decreases to 0, the functions 𝜂𝜖 increases to 𝜂. Therefore,
𝜂∗ ∈ PSH(Ω) by Proposition 1.2.1. But observe that 𝜂 is upper semicontinuous. This
is only non-trivial on the boundary of Ω′: Take 𝑥 ∈ Ω ∩ 𝜕Ω′ and let (𝑦𝑖)𝑖>0 be a
sequence in Ω′ with limit 𝑥. Then we need to show that

lim
𝑖→∞

𝜓(𝑦𝑖) ≤ 𝜑(𝑥). (1.3)

We may assume that 𝜓(𝑦𝑖) ≠ −∞ for all 𝑖 > 0 and the left-hand side of (1.3) is not
−∞. Then we can compute

lim
𝑖→∞

𝜓(𝑦𝑖) ≤ lim
𝑖→∞

𝜓(𝑦𝑖) + lim
𝑖→∞

(
𝜑(𝑦𝑖) − 𝜓(𝑦𝑖)

)
≤ lim
𝑖→∞

𝜑(𝑦𝑖) ≤ 𝜑(𝑥).

Therefore, 𝜂 = 𝜂∗ ∈ PSH(Ω). □
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1.3 Plurifine topology

In this section, we introduce the notion of plurifine topology. Unlike other sections in
this chapter, this section contains full details. This is mainly due to the unfortunate
omissions and numerous minor problems in the foundational paper [BT87]. In
particular, the key theorem Theorem 1.3.2 was claimed by Bedford–Taylor without
proof. Our presentation largely follows [EMW06]. We also include enough details so
that this section is readable for those who are not familiar with the classical potential
theory.

Very recently (after the submission of this book to Springer), El Kadiri–Fuglede
published a book [EKF25]7 about classical fine potential theory, containing essentially
all results in this section. The interested readers are encouraged to read their book for
further details.

1.3.1 Plurifine topology on domains

Let Ω ⊆ C𝑛 (𝑛 ∈ N) be a domain.

Definition 1.3.1 The plurifine topology on Ω is the weakest topology making all
R-valued plurisubharmonic functions on Ω continuous.

We want to distinguish the Euclidean topology from the plurifine topology. In the
whole book, topological notions without adjectives refer to those with respect to the
Euclidean topology. We include the symbol F in order to denote those with respect
to the plurifine topology. For example, we will say F -open subset, F -neighborhood,
F -closure, etc. The F -closure of a set 𝐸 ⊆ Ω will be denoted by 𝐸̄F .

We remind the readers that in the whole book, we follow Bourbaki’s convention, a
neighborhood is not necessarily open. Similarly, an F -neighborhood is not necessarily
F -open.

A priori, we should include Ω into the notations as well, but as we will see shortly
in Corollary 1.3.1, this is usually unnecessary.

Proposition 1.3.1 The plurifine topology on Ω is finer than the Euclidean topology.

Proof It suffices to show that the unit ball {𝑧 ∈ C𝑛 : |𝑧 | < 1} is F -open. This follows
from the observation that this set can be written as

{𝜓 < 0} with 𝜓(𝑧) B (log |𝑧 |) ∨ (−1).

Example 1.3.1 Let 𝜑 ∈ PSH(Ω) and 𝐶 ∈ R. Then the sets {𝜑 > 𝐶} and {𝜑 < 𝐶} are
both F -open.

7 An anonymous referee kindly pointed me to this reference in a rather enigmatic way — instead
of revealing the title or the authors of the book, he/she merely informed me that, because of the
existence of a book on this subject, my entire section was meaningless.
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In fact, the later case follows from Proposition 1.3.1. While the former follows
from the observation

{𝜑 > 𝐶} = {𝜑 ∨ (𝐶 − 1) > 𝐶}.

Definition 1.3.2 A subset 𝐸 ⊆ Ω is thin8 at 𝑥 ∈ Ω if one of the following conditions
holds:

(1) 𝑥 ∉ 𝐸̄ ;
(2) 𝑥 ∈ 𝐸̄ and there is an open neighborhood𝑈 ⊆ Ω of 𝑥 and 𝜑 ∈ PSH(𝑈) such that

lim
𝑦→𝑥,𝑦∈𝐸\{𝑥}

𝜑(𝑦) < 𝜑(𝑥).

We say 𝐸 is thin if it is thin at all 𝑥 ∈ Ω.

Remark 1.3.1 In the second case, we can always arrange that

𝜑 | (𝐸\{𝑥})∩𝑈

is a constant. In fact, we may assume that 𝜑 ≤ 0 and 𝐶 < 0 is such that

lim
𝑦→𝑥,𝑦∈𝐸\{𝑥}

𝜑(𝑦) < 𝐶 < 𝜑(𝑥).

We let
𝜓 = (−𝐶)−1 (𝜑 ∨ 𝐶) + 1.

Then 𝜓 satisfies our requirements for a smaller𝑈.

In the second case, the function 𝜑 can be very much improved.

Proposition 1.3.2 (Bedford–Taylor) Consider a set 𝐸 ⊆ Ω and 𝑥 ∈ 𝐸̄ . Assume that
𝐸 is thin at 𝑥, then there is 𝜑 ∈ PSH(C𝑛) with the following properties:

(1) 𝜑 is locally bounded outside a neighborhood of 𝑥;
(2) 𝜑(𝑥) > −∞;
(3) lim𝑦→𝑥,𝑦∈𝐸\{𝑥} 𝜑(𝑦) = −∞.

Proof 9 By Remark 1.3.1, there is an open neighborhood𝑈 ⊆ Ω of 𝑥 and𝜓 ∈ PSH(𝑈)
such that

𝜓 |𝑈∩(𝐸\{𝑥}) = −1 < 𝜓(𝑥) = 0.

Without loss of generality, we may assume that 𝑥 = 0,𝑈 is the unit ball in C𝑛.
As 𝜓 is upper semicontinuous, we may choose a decreasing sequence 𝛿 𝑗 ∈ (0, 1)

such that 𝜓(𝑦) < 2− 𝑗−2 when 𝑦 ∈ C𝑛 satisfies |𝑦 | < 𝛿 𝑗 . Set

8 A more proper name would be plurithin. But since we will never need the classical notion of thin
sets à la Cartan in this book, we prefer omitting the prefix pluri-.
9 The original argument in [BT82, Proposition 10.2] was quite intriguing: Neither the auxiliary
functions 𝜑 𝑗 ’s nor the simple computations were correct. However, I believe that Bedford–Taylor
had a correct proof in mind. Something more than a typo, but not yet a mistake, could be properly
called a thinkpo, a terminology invented by R. Berman.
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𝛾 𝑗 B exp
(
2 𝑗+1 log 𝛿 𝑗

)
∈ (0, 1).

Observe that 𝛾 𝑗 is also decreasing.
We let

𝜑 𝑗 (𝑧) B


(

2− 𝑗−1

| log 𝛿 𝑗 |
log |𝑧 |

)
∨

(
𝜓(𝑧) − 2− 𝑗

)
, if |𝑧 | < 𝛿 𝑗 ,

2− 𝑗−1

| log 𝛿 𝑗 |
log |𝑧 |, if |𝑧 | ≥ 𝛿 𝑗 .

Observe that when |𝑧 | is sufficiently close to 𝛿 𝑗 from below (depending on 𝑗), we
have

2− 𝑗−1

| log 𝛿 𝑗 |
log |𝑧 | > 2− 𝑗−2 − 2− 𝑗 > 𝜓(𝑧) − 2− 𝑗 .

In particular, thanks to Lemma 1.2.2, 𝜑 𝑗 ∈ PSH(C𝑛) and 𝜑 𝑗 |𝑈 ≤ 0. Moreover, we
have

𝜑 𝑗 (0) = −2− 𝑗 .

Observe that for 𝑧 ∈ 𝑈 ∩ (𝐸 \ {0}) with |𝑧 | < 𝛾 𝑗 , we have 𝜑 𝑗 (𝑧) ≤ −1.
We then define

𝜑 B
∞∑︁
𝑗=1

𝜑 𝑗 .

Since

𝜑(0) = −
∞∑︁
𝑗=1

2− 𝑗 > −∞,
∞∑︁
𝑗=1

2− 𝑗−1

| log 𝛿 𝑗 |
< ∞,

we have 𝜑 ∈ PSH(C𝑛). Moreover, fix 𝑗 , for any 𝑧 ∈ 𝐸 \ {0} with |𝑧 | < 𝛾 𝑗 , we have

𝜑(𝑧) ≤
𝑗∑︁
𝑘=1

𝜑𝑘 (𝑧) ≤ − 𝑗 .

Therefore,
lim

𝑦→𝑥,𝑦∈𝐸\{0}
𝜑(𝑦) = −∞.

Lemma 1.3.1 Let 𝐸1, 𝐸2 ⊆ Ω. Assume that 𝐸1, 𝐸2 are both thin at 𝑥 ∈ Ω, then so is
𝐸1 ∪ 𝐸2.

Proof We may assume that 𝑥 ∈ 𝐸1 ∩ 𝐸2. Take an open neighborhood 𝑈 ⊆ Ω of 𝑥
and 𝜑1, 𝜑2 ∈ PSH(𝑈) such that

lim
𝑦→𝑥,𝑦∈𝐸𝑖\{𝑥}

𝜑𝑖 (𝑦) < 𝜑𝑖 (𝑥), 𝑖 = 1, 2.

Then 𝜑1 + 𝜑2 ∈ PSH(𝑈) and
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lim
𝑦→𝑥,𝑦∈ (𝐸1∪𝐸2 )\{𝑥}

(𝜑1 + 𝜑2) (𝑦) < 𝜑1 (𝑥) + 𝜑2 (𝑥).

In particular, 𝐸1 ∪ 𝐸2 is thin at 𝑥. □

Theorem 1.3.1 (H. Cartan) Consider 𝑥 ∈ Ω and a set 𝐸 ⊆ Ω. Assume that 𝑥 ∈ 𝐸 .
Then the following are equivalent:

(1) 𝐸 is an F -neighborhood of 𝑥;
(2) Ω \ 𝐸 is thin at 𝑥.

Proof (2) =⇒ (1). We may assume that 𝑥 ∈ Ω \ 𝐸 . Otherwise, our assertion follows
from Proposition 1.3.1.

By Proposition 1.3.2, there is an open neighborhood𝑈 of 𝑥 in Ω and 𝜑 ∈ PSH(C𝑛)
such that

𝜑(𝑥) > sup
𝑦∈𝑈∩(Ω\𝐸 )

𝜑(𝑦) C 𝜆.

Let 𝐹 = {𝑦 ∈ Ω : 𝜑(𝑦) > 𝜆}. Then 𝑥 ∈ 𝐹 and 𝐹 is F -open by Example 1.3.1.
Moreover,𝑈 ∩ 𝐹 ⊆ 𝐸 . By Proposition 1.3.1, we conclude (1).

(1) =⇒ (2). We may always replace 𝐸 by smaller F -neighborhoods of 𝑥. In
particular, we may assume that 𝐸 has the following form

{𝑦 ∈ 𝑈 : 𝜑1 (𝑦) > 𝜆1, . . . , 𝜑𝑚 (𝑦) > 𝜆𝑚},

where 𝑈 ⊆ Ω is an open neighborhood of 𝑥, and 𝜑1, . . . , 𝜑𝑚 are R-valued psh
functions on Ω, and 𝜆1, . . . , 𝜆𝑚 ∈ R. Since a finite union of thin sets is still thin by
Lemma 1.3.1, we may assume that 𝑚 = 1. In this case, Ω \ 𝐸 is clearly thin at 𝑥. □

Theorem 1.3.2 A base of the plurifine topology on Ω is given by sets of the following
form:

{𝑥 ∈ 𝑈 : 𝜑(𝑥) > 0} , (1.4)

where𝑈 ⊆ Ω is an open subset and 𝜑 ∈ PSH(𝑈).

Proof Observe that sets of the form (1.4) are F -open.10 By Theorem 1.3.1, it suffices
to show its complement in Ω is thin at each point of (1.4), which is obvious.

Now consider 𝑥 ∈ Ω and an F -open neighborhood 𝑉 ⊆ Ω of 𝑥. We want to find a
set of the form (1.4) contained in 𝑉 and containing 𝑥.

Write 𝐸 = Ω\𝑉 . In case 𝑥 ∈ Int𝑉 , there is nothing to prove. So we may assume that
𝑥 ∈ 𝐸̄ . By Theorem 1.3.1, 𝐸 is thin at 𝑥. By definition, there is an open neighborhood
𝑈 ⊆ Ω of 𝑥 and 𝜑 ∈ PSH(𝑈) such that

lim
𝑦→𝑥,𝑦∈𝑈∩(𝐸\{𝑥})

𝜑(𝑦) < 𝜑(𝑥).

We may assume that 𝜑|𝐸∩𝑈 ≤ 0 < 𝜑(𝑥), Then the set {𝑦 ∈ 𝑈 : 𝜑(𝑦) > 0} suffices
for our purpose. □

10 This is not entirely obvious by definition, as 𝜑 is not defined on the whole Ω.
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Remark 1.3.2 We remind the readers that in general, an F -open set is not a countable
union of sets of the form (1.4). In fact, an F -open set is not a Borel set in general.
See [EK23] for a concrete example.

Corollary 1.3.1 Let Ω1 ⊆ Ω2 ⊆ C𝑛 be two non-empty open subsets. Then the
plurifine topology on Ω1 is the same as the subspace topology induced from the
plurifine topology on Ω2.

In particular, when we talk about an F -open set𝑈 in C𝑛, we no longer have to specify
the domain Ω ⊇ 𝑈.

Corollary 1.3.2 Let 𝐿 be an affine subspace of C𝑛, then the plurifine topology on 𝐿
is the same as the subspace topology induced from the plurifine topology on C𝑛.

Proof We may assume that 𝐿 = C𝑘 × {0} for some 𝑘 ≤ 𝑛. We write the coordinate 𝑧
on C𝑛 as (𝑧′, 𝑧′′) with 𝑧 ∈ C𝑘 and 𝑧′′ ∈ C𝑛−𝑘 .

Consider an F -open set 𝑈 ⊆ C𝑛 and 𝑥 = (𝑥′, 0) ∈ 𝑈 ∩ 𝐿. We want to show
that 𝑈 ∩ 𝐿 (identified with a subset of C𝑘) is an F -neighborhood of 𝑥′ in 𝐿. By
Theorem 1.3.2, we may assume that there are connected open subsets 𝑈′ ⊆ C𝑘
containing 𝑥′ and𝑈′′ ⊆ C𝑛−𝑘 containing 0 together with a psh function 𝜓 on𝑈′×𝑈′′
such that

𝑥 ∈ {(𝑧′, 𝑧′′) ∈ 𝑈′ ×𝑈′′ : 𝜓(𝑧′, 𝑧′′) > 0} ⊆ Ω.

It follows that
𝑥′ ∈ {𝑧′ ∈ 𝑈′ : 𝜓(𝑧′, 0) > 0} ⊆ 𝑈 ∩ 𝐿.

Thanks to Proposition 1.1.1,𝜓(𝑧′, 0) is plurisubharmonic in 𝑧′ because𝜓(𝑥′, 0) ≠ −∞.
In particular,𝑈 ∩ 𝐿 is an F -neighborhood of 𝑥′.

Conversely, if 𝑈 ⊆ C𝑘 is an F -open subset, we claim that 𝑈 × C𝑛−𝑘 is F -open
in C𝑛. In fact, suppose that (𝑥′, 𝑥′′) ∈ 𝑈 × C𝑛−𝑘 . By Theorem 1.3.1, we can find an
open neighborhood 𝑉 ⊆ C𝑘 of 𝑥′ and a psh function 𝜑 on 𝑉 such that

𝑥′ ∈ {𝑦 ∈ 𝑉 : 𝜑(𝑦) > 0} ⊆ 𝑈.

We define 𝜓(𝑧′, 𝑧′′) B 𝜑(𝑧′). Then 𝜓 ∈ PSH(𝑉 × C𝑛−𝑘) by Proposition 1.1.1 and

(𝑥′, 𝑥′′) ∈ {𝑦 ∈ 𝑉 × C𝑛 : 𝜓(𝑦) > 0} ⊆ 𝑈 × C𝑛−𝑘 .

Corollary 1.3.3 Let Ω ⊆ C𝑛 be an F -open subset and 𝑥 ∈ Ω. Then 𝑥 has a compact
F -neighborhood contained in Ω.

Proof By Theorem 1.3.2, we may assume that there is an open set 𝑈 ⊆ C𝑛 and a
plurisubharmonic function 𝜑 on𝑈 such that Ω = {𝑦 ∈ 𝑈 : 𝜑(𝑦) > 0}.

Take a compact neighborhood 𝐾 of 𝑥 in 𝑈. Now {𝑦 ∈ 𝐾 : 𝜑(𝑦) ≥ 𝜑(𝑥)/2} is a
compact F -neighborhood of 𝑥 contained in Ω. □

Corollary 1.3.4 Let Ω ∈ C𝑛, Ω′ ⊆ C𝑛′ be two domains and 𝐹 : Ω′ → Ω be a
surjective holomorphic map. Then 𝐹 is F -continuous.
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Proof It suffices to show that the inverse image 𝐹−1 (𝑈) of each F -open subset
𝑈 ⊆ Ω is F -open. By Theorem 1.3.2, after possibly shrinking Ω and Ω′, we may
assume that 𝑈 has the form {𝑥 ∈ Ω : 𝜓(𝑥) > 0}, where 𝜓 ∈ PSH(Ω). Since
𝐹∗𝜓 ∈ PSH(Ω′) by Proposition 1.1.4, we find that

𝐹−1 (𝑈) = {𝑦 ∈ Ω′ : 𝐹∗𝜓(𝑦) > 0}

is F -open. □

1.3.2 Plurifine topology on manifolds

Let 𝑋 be a complex manifold.

Definition 1.3.3 The plurifine topology on 𝑋 is the topology with a base consisting
of sets of the form 𝐹−1 (𝑉), where 𝑈 ⊆ 𝑋 is an open subset and 𝐹 : 𝑈 → Ω is a
biholomorphic morphism with Ω ⊆ C𝑛 is a domain for some 𝑛 ∈ N and 𝑉 ⊆ Ω is
F -open.

Note that these sets form a topological base thanks to Corollary 1.3.4. Moreover, it
also follows from Corollary 1.3.4 that the plurifine topologies on domains defined in
Definition 1.3.3 and in Definition 1.3.1 coincide.

We refer to Definition 1.5.1 for the notion of quasi-plurisubharmonic functions.

Proposition 1.3.3 Let 𝜑 ∈ QPSH(𝑋), then 𝜑 |{𝜑≠−∞} is F -continuous.

Proof The problem is local, so we may assume that 𝑋 ⊆ C𝑛 is a domain and
𝜑 = 𝜓 + 𝑔, where 𝜓 ∈ PSH(𝑋) and 𝑔 ∈ 𝐶∞ (𝑋) and |𝑔 | ≤ 𝐶 for some 𝐶 > 0. Take
an open interval (𝑎, 𝑏) ⊆ R, it suffices to show that

𝑈 B {𝑥 ∈ 𝑋 : 𝑎 < 𝜑(𝑥) < 𝑏} = {𝑥 ∈ 𝑋 : 𝑎 − 𝑔(𝑥) < 𝜓(𝑥) < 𝑏 − 𝑔(𝑥)}

is F -open. Take 𝑥 ∈ 𝑈, we can find an open neighborhood 𝑉 of 𝑥 in𝑈 such that

sup
𝑦∈𝑉
(𝑎 − 𝑔(𝑦)) < 𝜓(𝑥) < inf

𝑦∈𝑉
(𝑏 − 𝑔(𝑦)) .

Therefore, {
𝑧 ∈ 𝑉 : sup

𝑦∈𝑉
(𝑎 − 𝑔(𝑦)) < 𝜓(𝑧) < inf

𝑦∈𝑉
(𝑏 − 𝑔(𝑦))

}
is an F -open neighborhood of 𝑧 in𝑈. We conclude that𝑈 is F -open. □

Corollary 1.3.5 Let 𝜑, 𝜓 ∈ QPSH(𝑋). Then the set

{𝑥 ∈ 𝑋 : 𝜑(𝑥) > 𝜓(𝑥)}

is F -open.
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Proof It suffices to show that for any 𝑥 ∈ 𝑋 such that 𝜑(𝑥) > 𝜓(𝑥), the same holds
on an F -neighborhood 𝑈 of 𝑥. Observe that 𝜑(𝑥) ≠ −∞. If 𝜓(𝑥) ≠ −∞, then it
suffices to apply Proposition 1.3.3. Otherwise, take

𝑈 B {𝑦 ∈ 𝑋 : 𝜑(𝑦) > 𝜑(𝑥) − 1} ∩ {𝑦 ∈ 𝑋 : 𝜓(𝑦) < 𝜑(𝑥) − 1}.

Lemma 1.3.2 Let 𝑍 ⊆ 𝑋 be a pluripolar subset. Then

𝑋 \ 𝑍F = 𝑋.

Proof The problem is local, so we may assume that 𝑋 is a domain in C𝑛 and
𝑍 = {𝜑 = −∞} for some 𝜑 ∈ PSH(𝑋). We need to show that {𝜑 > −∞} is F -dense.

Let 𝑥 ∈ 𝑋 be a point with 𝜑(𝑥) = −∞ and𝑈 ⊆ 𝑋 be an F -open neighborhood of
𝑥 in 𝑋 . We need to show that𝑈 ∩ {𝜑 > −∞} ≠ ∅.

Thanks to Theorem 1.3.2, after shrinking 𝑈, we may assume that there is 𝜓 ∈
PSH(𝑋) such that𝑈 = {𝜓 > 0}. Observe that𝑈 is not a pluripolar set: Otherwise,𝜓 ≤
0 almost everywhere by Proposition 1.2.4, and hence everywhere by Proposition 1.2.6.
So 𝜑|𝑈 . −∞. We conclude. □

Corollary 1.3.6 Let 𝜑, 𝜓 ∈ QPSH(𝑋). Set

𝑊 = {𝑥 ∈ 𝑋 : 𝜑(𝑥) = −∞} or𝑊 = {𝑥 ∈ 𝑋 : 𝜓(𝑥) = −∞} .

Then for any pluripolar set 𝑍 ⊆ 𝑋 , we have

sup
𝑋\𝑊
(𝜑 − 𝜓) = sup

𝑋\𝑊∪𝑍
(𝜑 − 𝜓), inf

𝑋\𝑊
(𝜑 − 𝜓) = inf

𝑋\𝑊∪𝑍
(𝜑 − 𝜓).

In particular, taking 𝜓 = 0, we find that

sup
𝑋\𝑍

𝜑 = sup
𝑋

𝜑.

Proof This is an immediate consequence of Lemma 1.3.2 and Proposition 1.3.3. □

In the literature about pluripotential theory, one often finds the careless expressions
like sup𝑋 (𝜑 − 𝜓). The issue is that 𝜑 − 𝜓 is not defined everywhere, and hence this
expression does not make sense if you read it literally. Corollary 1.3.6 tells you that
you do not have to worry too much about the details on a pluripolar set. In other
words, sup and inf could always be understood as a kind of essential supremum and
essential infimum modulo pluripolar sets.

There is a convenient way to fix this issue in the literature — Just replace the
suprema by quasi-suprema:

Definition 1.3.4 Let 𝑍 ⊆ 𝑋 be a pluripolar set, and 𝑓 : 𝑋 \ 𝑍 → [−∞,∞] be a
function. We define the quasi-supremum and the quasi-infimum of 𝑓 as follows:
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q-sup
𝑋

𝑓 B inf{ sup
𝑋\𝑊

: 𝑊 ⊇ 𝑍 is pluripolar},

q-inf
𝑋

𝑓 B sup{ inf
𝑋\𝑊

: 𝑊 ⊇ 𝑍 is pluripolar}.

For two functions 𝑓 and 𝑔 equal quasi-everywhere, the quasi-suprema and quasi-infima
of them are equal, as is clear from the definition.

For a quasi-plurisubharmonic function 𝜑, we have

q-sup
𝑋

𝜑 = sup
𝑋

𝜑,

as a consequence of Corollary 1.3.6.

1.4 Lelong numbers and multiplier ideal sheaves

In this section, we briefly recall the notions of Lelong numbers and multiplier ideal
sheaves. Our presentation is by no means intended to be complete. The readers are
encouraged to read the textbooks [GZ17, Section 2.3] and [Dem12a].

Let 𝑋 be a complex manifold.

Definition 1.4.1 Let 𝜑 ∈ PSH(𝑋) and 𝑥 ∈ 𝑋 . The Lelong number 𝜈(𝜑, 𝑥) of 𝜑 at 𝑥
is defined as follows: Take an open neighborhood𝑈 of 𝑥 in 𝑋 and a biholomorphic
map 𝐹 : 𝑈 → Ω, where Ω is a domain in C𝑛. Then we define

𝜈(𝜑, 𝑥) B sup
{
𝛾 ∈ R≥0 : 𝜑 |𝑈 (𝐹−1 (𝑦)) ≤ 𝛾 log |𝑦 − 𝐹 (𝑥) |2 + O(1) as 𝑦 → 𝐹 (𝑥)

}
.

(1.5)

Observe that 𝜈(𝜑, 𝑥) does not depend on the choices of 𝑈 and 𝐹. Furthermore, it
follows from Proposition 1.4.1 below that the supremum in (1.5) is a maximum.

Remark 1.4.1 Our definition of the Lelong number is not standard. It differs from the
standard definition by a factor of 2. As a mnemonic, just remember

𝜈

(
log |𝑧 |2, 0

)
= 1 (instead of 2).

Our convention of the Lelong numbers together with the convention of the multiplier
ideal sheaves below make sure that (1.8) has no extra factors.

These normalizations together with the normalization of ddc as

ddc =
i

2𝜋
𝜕𝜕

guarantees that in Theorem 7.4.1, there are no ugly factors.
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Proposition 1.4.1 Let 𝜑 ∈ PSH(𝐵𝑛 (0, 1)). Then

𝜈(𝜑, 0) = lim
𝑟↘0

sup𝐵𝑛 (0,𝑟 ) 𝜑
log 𝑟2 ∈ [0,∞). (1.6)

Proof It follows from Proposition 1.1.2 that the limit in (1.6) exists and is finite. We
shall denote the limit by 𝜈′ (𝜑, 0) for the time being.

We first observe that by Proposition 1.1.2,

𝜑(𝑥) ≤ 𝜈′ (𝜑, 0) log |𝑥 |2 + sup
𝐵𝑛 (0,1)

𝜑 (1.7)

when 𝑥 ∈ 𝐵𝑛 (0, 1). In particular, 𝜈(𝜑, 𝑥) ≥ 𝜈′ (𝜑, 0).
In order to argue the reverse inequality, we may assume that 𝜈(𝜑, 𝑥) > 0.
Next observe that by (1.5), for each small enough 𝜖 > 0, we can find 𝑟0 ∈ (0, 1)

and 𝐶 > 0 so that for all 𝑥 ∈ 𝐵𝑛 (0, 𝑟0), we have

𝜑(𝑥) ≤ (𝜈(𝜑, 0) − 𝜖) log |𝑥 |2 + 𝐶.

It follows that 𝜈′ (𝜑, 0) ≥ 𝜈(𝜑, 0) − 𝜖 . Letting 𝜖 → 0+, we conclude. □

We recall Siu’s semicontinuity theorem.

Theorem 1.4.1 (Siu) Let 𝜑 ∈ PSH(𝑋), then the map 𝑋 ∋ 𝑥 ↦→ 𝜈(𝜑, 𝑥) is upper
semi-continuous with respect to the Zariski topology.

For an elegant proof we refer to [Dem12a, Theorem 2.10].

Proposition 1.4.2 Let 𝜑, 𝜓 ∈ PSH(𝑋), 𝜆 ∈ R>0 and 𝑥 ∈ 𝑋 , then

𝜈(𝜑 ∨ 𝜓, 𝑥) =min{𝜈(𝜑, 𝑥), 𝜈(𝜓, 𝑥)},
𝜈(𝜑 + 𝜓, 𝑥) =𝜈(𝜑, 𝑥) + 𝜈(𝜓, 𝑥),
𝜈(𝜆𝜑, 𝑥) =𝜆𝜈(𝜑, 𝑥).

Proof All properties are local, so we may assume that 𝑋 = 𝐵𝑛 (0, 1) for some 𝑛 ∈ N.
All properties follow directly from Proposition 1.4.1. □

Corollary 1.4.1 Let (𝜑𝑖)𝑖∈𝐼 be a non-empty family in PSH(𝑋) locally uniformly
bounded from above and 𝑥 ∈ 𝑋 , then

𝜈

(
sup
𝑖∈𝐼
∗𝜑𝑖 , 𝑥

)
= inf
𝑖∈𝐼
𝜈(𝜑𝑖 , 𝑥).

Proof We may assume that 𝑋 is connected. Write 𝜑 = sup𝑖∈𝐼 ∗𝜑𝑖 . Then 𝜑 ∈ PSH(𝑋)
by Proposition 1.2.1.

We observe that the ≤ inequality is trivial. It remains to argue the reverse inequality.
It follows from Proposition 1.2.2 that we may assume that 𝐼 is countable. When 𝐼 is

finite, this is already proved in Proposition 1.4.2. Otherwise, we may further assume
that 𝐼 = Z>0. Thanks to Proposition 1.4.2, we may further assume that (𝜑𝑖)𝑖∈Z>0 is
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an increasing sequence. Furthermore, since the problem is local, we may assume that
𝑋 = 𝐵𝑛 (0, 1) for some 𝑛 ∈ N and (𝜑𝑖)𝑖 is uniformly bounded from above. In this
case, by (1.7), we have

𝜑𝑖 (𝑥) ≤ 𝜈(𝜑𝑖 , 0) log |𝑥 |2 + 𝐶

for all 𝑥 ∈ 𝐵𝑛 (0, 1) and all 𝑖 ≥ 1 and 𝐶 is a constant independent of 𝑖. In particular,
thanks to Proposition 1.2.5, for almost all 𝑥 ∈ 𝐵𝑛 (0, 1), we have

𝜑(𝑥) ≤ lim
𝑖→∞

𝜈(𝜑𝑖 , 0) log |𝑥 |2 + 𝐶.

Thanks of Proposition 1.2.6, the same holds for all 𝑥 and hence

𝜈(𝜑, 𝑥) ≥ lim
𝑖→∞

𝜈(𝜑𝑖 , 𝑥).

Definition 1.4.2 Let 𝐹 ⊆ 𝑋 be a non-empty analytic subset. Then we define the
generic Lelong number of 𝜑 along 𝐹 as

𝜈(𝜑, 𝐹) B min
𝑥∈𝐹

𝜈(𝜑, 𝑥).

Note that the minimum is attained by Theorem 1.4.1.

Definition 1.4.3 Let 𝜑 ∈ PSH(𝑋). Let 𝐸 be a prime divisor over 𝑋 (see Defini-
tion B.1.1). Take a proper bimeromorphic morphism 𝜋 : 𝑌 → 𝑋 from a complex
manifold 𝑌 such that 𝐸 is a prime divisor on 𝑌 , then we define the generic Lelong
number of 𝜑 along 𝐸 as

𝜈(𝜑, 𝐸) B 𝜈(𝜋∗𝜑, 𝐸).

It follows from Theorem 1.4.1 that 𝜈(𝜑, 𝐸) does not depend on the choice of 𝜋.

Definition 1.4.4 Let 𝜑 ∈ PSH(𝑋), the multiplier ideal sheaf I(𝜑) of 𝜑 is by
definition the ideal sheaf given by

Γ (𝑈,I(𝜑)) =
{
𝑓 ∈ O𝑋 (𝑈) : | 𝑓 |2 exp(−𝜑) ∈ 𝐿1

loc (𝑈)
}

for any open subset𝑈 ⊆ 𝑋 .

Remark 1.4.2 This definition is different from a few references, where instead of
exp(−𝜑), they use exp(−2𝜑). The conventions adopted in the current book is the most
convenient one as far as I know. It simplifies a number of formulae. As a mnemonic,
for any real 𝜆 > 0, we have

I(𝜆 log |𝑧 |2) = OC (−⌊𝜆⌋{0}) (instead of OC (−⌊2𝜆⌋{0})) ,

where 𝑧 is a variable in C and {0} is the divisor defined by 0 ∈ C.
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Proposition 1.4.3 (Nadel) Let 𝜑 ∈ PSH(𝑋). Then I(𝜑) is coherent.

See [Dem12a, Proposition 5.7].

Theorem 1.4.2 Let 𝜑, 𝜓 ∈ PSH(𝑋), then

I(𝜑 + 𝜓) ⊆ I(𝜑) · I(𝜓).

See [Dem12a, Theorem 14.2].
The two invariants are related by the following simple result:

Proposition 1.4.4 Let 𝜑 ∈ PSH(𝑋) and 𝐸 be a prime divisor over 𝑋 . Then

𝜈(𝜑, 𝐸) = lim
𝑘→∞

1
𝑘

ord𝐸 I(𝑘𝜑). (1.8)

See [DX24b, Proposition 2.14].
We remind the readers that this particular form of the formula is compatible with

our conventions of 𝜈 and I. As a consistency check, consider 𝜑 = log |𝑧 |2 with 𝑧 ∈ C
and 𝐸 is the divisor defined by 0 ∈ C. Then both sides of (1.8) are equal to 1. See
Remark 1.4.1 and Remark 1.4.2.

Also observe the following simple lemma:

Lemma 1.4.1 Let 𝑥 ∈ 𝑋 and 𝜑 ∈ PSH(𝑋). Let 𝜋 : 𝑌 → 𝑋 be the blow-up of 𝑋 at 𝑥
with exceptional divisor 𝐸 . Then

𝜈(𝜑, 𝑥) = 𝜈(𝜑, 𝐸),

See [Bou02b, Corollaire 1.1.8].
Conversely, the information of the generic Lelong numbers determines the multi-

plier ideal sheaves:

Theorem 1.4.3 Let 𝜑 ∈ PSH(𝑋). Let 𝑥 ∈ 𝑋 and 𝑓 ∈ O𝑋,𝑥 . Then the following are
equivalent:

(1) 𝑓 ∈ I(𝜑)𝑥;
(2) there exists 𝜖 > 0 such that for any prime divisor 𝐸 over 𝑋 such that 𝑥 is

contained in the center of 𝐸 on 𝑋 , we have

ord𝐸 ( 𝑓 ) ≥ (1 + 𝜖)𝜈(𝜑, 𝐸) −
1
2
𝐴𝑋 (𝐸). (1.9)

In case 𝜑 has analytic singularities and 𝜋 : 𝑌 → 𝑋 is a log resolution of 𝜑 (see
Definition 1.6.3 for the definition) with finitely many exceptional divisors {𝐸𝑖} whose
centers on 𝑋 contain 𝑥, one may replace (1.9) by

ord𝐸𝑖 ( 𝑓 ) > 𝜈(𝜑, 𝐸𝑖) −
1
2
𝐴𝑋 (𝐸𝑖) ∀𝑖. (1.10)

Here 𝐴𝑋 denotes the log discrepancy. We refer to [Bou17, Corollary 10.18, Proposi-
tion 10.12] for the proof and the precise definition of 𝐴𝑋. The formula (1.9) differs
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from that in Boucksom’s notes: The coefficient 1
2 in front of 𝐴𝑋 (𝐸) arises from our

convention for 𝜈 and I.
The notion of analytic singularities is recalled in Section 1.6.

Theorem 1.4.4 (Guan–Zhou) Let 𝜑, 𝜓 𝑗 ∈ PSH(𝑋) ( 𝑗 ∈ Z>0) such that 𝜓 𝑗 is an
increasing sequence converging to 𝜑 almost everywhere. Then for any 𝑥 ∈ 𝑋 , the
germs satisfy

I(𝜓 𝑗 )𝑥 = I(𝜑)𝑥
when 𝑗 is large enough.

See [GZ15, Hie14] for the proof.

Proposition 1.4.5 Let 𝜋 : 𝑌 → 𝑋 be a smooth morphism between complex manifolds.
Assume that 𝜑 ∈ PSH(𝑋), then

I(𝜋∗𝜑) = 𝜋∗I(𝜑).

Proof It follows from [Gro60, Théorème 3.10] that locally 𝜋 can be written as the
composition of an étale morphism and a projection. It suffices to handle the two cases
separately.

Recall that in the complex analytic setting, an étale morphism is locally biholo-
morphic, so there is nothing to prove in this case.

Next, assume that 𝑌 = 𝑋 ×𝑈, where 𝑈 ⊆ C𝑛 is a domain and 𝜋 is the natural
projection. It follows from Fubini’s theorem that

I(𝜋∗𝜑) ⊆ 𝜋∗I(𝜑).

The reverse inequality is proved in [Dem12a, Proposition 14.3]11. □

Definition 1.4.5 Given a coherent ideal sheaf I on 𝑋 , the restriction Res𝑌 I is the
inverse image ideal sheaf given by

Res𝑌 I B I/(I ∩ I𝑌 ), (1.11)

where I𝑌 is the ideal sheaf defining 𝑌 .

In the literature, it is common to denote this sheaf by the misleading notation I|𝑌 .
There is a natural morphism

𝑖∗𝑌I = I/(I · I𝑌 ) → Res𝑌 I, (1.12)

where 𝑖𝑌 : 𝑌 → 𝑋 is the inclusion.

Theorem 1.4.5 (Ohsawa–Takegoshi) Let 𝑌 be a connected submanifold of 𝑋 and
𝜑 ∈ PSH(𝑋). Assume that 𝜑|𝑌 . −∞, then

I(𝜑 |𝑌 ) ⊆ Res𝑌 I(𝜑).
11 In [Dem12a, Proposition 14.3], Demailly used the highly non-standard notation 𝑓 ∗I(𝜑) to denote
the image of 𝑓 ∗I(𝜑) → O𝑋, even when 𝑓 is not flat.
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See [Dem12a, Theorem 14.1].

1.5 Quasi-plurisubharmonic functions

In practice, it is important to consider a variant of plurisubharmonic functions. We
will fix a complex manifold 𝑋 .

Definition 1.5.1 Let 𝜃 be a closed real smooth (1, 1)-form on 𝑋 .
A 𝜃-plurisubharmonic function on 𝑋 is a function 𝜑 : 𝑋 → [−∞,∞) such that for

each 𝑥 ∈ 𝑋 and each open neighborhood 𝑈 of 𝑥 in 𝑋 satisfying the condition that
𝜃 = ddc𝑔 for some smooth function 𝑔 on𝑈, we have 𝑔 + 𝜑|𝑈 ∈ PSH(𝑈). The set of
𝜃-psh functions on 𝑋 is denoted by PSH(𝑋, 𝜃).

A quasi-plurisubharmonic function on 𝑋 is a function 𝜑 : 𝑋 → [−∞,∞) such
that there exists a smooth closed real (1, 1)-form 𝜃′ on 𝑋 such that 𝜑 ∈ PSH(𝑋, 𝜃′).
The set of quasi-plurisubharmonic functions on 𝑋 is denoted by QPSH(𝑋).

There is a natural non-strict partial order on QPSH(𝑋) defined as follows:

Definition 1.5.2 Assume that 𝑋 is compact. Given 𝜑, 𝜓 ∈ QPSH(𝑋), we say that 𝜑
is more singular than 𝜓 and write 𝜑 ⪯ 𝜓 12 if there is 𝐶 ∈ R such that 𝜑 ≤ 𝜓 +𝐶. We
also say 𝜓 is less singular than 𝜑 and write 𝜓 ⪯ 𝜑.

In case 𝜑 ⪯ 𝜓 and 𝜓 ⪯ 𝜑, we say 𝜑 and 𝜓 have the same singularity type. We
write 𝜑 ∼ 𝜓 in this case.

When 𝑋 is not compact, one can still define similar notions, but the generalization is
not unique, and we shall not consider them in this book.

Remark 1.5.1 The proceeding results concerning plurisubharmonic functions can be
extended mutatis mutandis to quasi-plurisubharmonic functions. We will apply these
extensions without further explanations.

Proposition 1.5.1 Assume that 𝑋 is compact. Let 𝜃 be a closed real smooth (1, 1)-form
on 𝑋 . Then for any 𝑎, 𝑏 ∈ R, 𝑎 ≤ 𝑏, the set{

𝜑 ∈ PSH(𝑋, 𝜃) : sup
𝑋

𝜑 ∈ [𝑎, 𝑏]
}

is compact with respect to the 𝐿1-topology. Moreover, 𝜑 ↦→ sup𝑋 𝜑 is 𝐿1-continuous
for 𝜑 ∈ PSH(𝑋, 𝜃).

This is an immediate consequence of [GZ17, Proposition 8.5, Exercise 1.20].

Remark 1.5.2 More generally, if 𝐾 ⊆ 𝑋 is a closed non-pluripolar subset. Then{
𝜑 ∈ PSH(𝑋, 𝜃) : sup

𝐾

𝜑 ∈ [𝑎, 𝑏]
}

12 Some people write 𝜓 ⪯ 𝜑.
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is relatively compact with respect to the 𝐿1-topology. See [GZ05, Corollary 4.3].

Proposition 1.5.2 Assume that 𝑋 is compact. Let 𝜃 be a closed real smooth (1, 1)-form
on 𝑋 and 𝐸 be a prime divisor over 𝐸 . Then

sup {𝜈(𝜑, 𝐸) : 𝜑 ∈ PSH(𝑋, 𝜃)} < ∞.

Proof It follows from the proof of Corollary 1.4.1 that 𝜈(•, 𝐸) is upper semi-
continuous with respect to the 𝐿1-topology on PSH(𝑋, 𝜃). Thus, the desired upper
bound follows from Proposition 1.5.1. □

Proposition 1.5.3 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a
compact Kähler manifold 𝑌 . Let 𝜃 be a closed real smooth (1, 1)-form on 𝑋 . Then
the pull-back gives a bĳection

𝜋∗ : PSH(𝑋, 𝜃) ∼−→ PSH(𝑌, 𝜋∗𝜃).

This follows from a more general result Theorem B.1.1.

1.6 Analytic singularities

The simplest type of plurisubharmonic singularities is given by the so-called analytic
singularities. The notion is fairly subtle and there are several mutually incompatible
definitions in the literature, as we shall explain below.

Let 𝑋 be a complex manifold.

Definition 1.6.1 We say 𝜑 ∈ QPSH(𝑋) has analytic singularities if for each 𝑥 ∈ 𝑋 ,
we can find an open neighborhood𝑈 of 𝑥 such that 𝜑|𝑈 has the form:

𝑐 log( | 𝑓1 |2 + · · · + | 𝑓𝑁 |2) + 𝑅, (1.13)

where 𝑓1, . . . , 𝑓𝑁 are holomorphic functions on 𝑈, 𝑐 ∈ Q>0 and 𝑅 is a bounded
function on𝑈.

When 𝑅 can be taken to be smooth13, we say 𝜑 has neat analytic singularities.
Suppose that there is a coherent ideal I ⊆ O𝑋 on 𝑋 such that we can choose𝑈 so

that the 𝑓1, . . . , 𝑓𝑁 can be chosen as the generators of Γ(𝑈,I) and 𝑐 is independent
of the choice of𝑈, we say 𝜑 has analytic singularities of type (𝑐,I).

Each potential with analytic singularities has a type. The type is not uniquely
determined. We refer to [Bou02b] and [Bou02a] for the details.

Some people take 𝑐 ∈ R>0 in (1.13). But this is a bad definition because the
following proposition, which is essential in constructing Demailly approximations,
would then fail.

13 The decomposition (1.13) is highly non-unique. Here we mean for any 𝑥, there is an open
neighborhood𝑈 and a decomposition of the form (1.13) with 𝑅 smooth. In the non-trivial cases, 𝑅
cannot be smooth for all decompositions (1.13).
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Proposition 1.6.1 Let 𝜑, 𝜓 ∈ QPSH(𝑋) be potentials with analytic singularities,
then so are 𝜆𝜑 (𝜆 ∈ Q>0), 𝜑 + 𝜓 and 𝜑 ∨ 𝜓.

Proof The 𝜆𝜑 assertion is trivial. The ∨ assertion is proved in [Dem15, Proposi-
tion 4.1.8]. The addition assertion is easy and is left to the readers. □

Definition 1.6.2 Let 𝐷 be an effective Q-divisor14 on 𝑋 . We say 𝜑 ∈ QPSH(𝑋) has
log singularities (along 𝐷) on 𝑋 if for each 𝑥 ∈ 𝑋 , there is an open neighborhood𝑈
of 𝑥 such that

(1) 𝐷 |𝑈 has finitely many irreducible components and can be written as

𝐷 |𝑈 =

𝑁∑︁
𝑖=1

𝑎𝑖𝐷𝑖

with 𝐷𝑖 being prime divisors on𝑈, 𝑎𝑖 ∈ Q>0 and there is a holomorphic function
𝑠𝑖 on𝑈 defining 𝐷𝑖 , and

(2) we have

𝜑|𝑈 = 𝑎𝑖

𝑁∑︁
𝑖=1

log |𝑠𝑖 |2 + 𝑅, (1.14)

where 𝑅 is a bounded function on𝑈.

By Proposition 1.6.1, 𝜑 has analytic singularities.

Lemma 1.6.1 Suppose that 𝜃 is a closed smooth real (1, 1)-form on 𝑋 , a compact
Kähler manifold and 𝜑 ∈ PSH(𝑋, 𝜃). Suppose that 𝜑 has log singularities along an
effective Q-divisor 𝐷 on 𝑋 . Then the cohomology class [𝜃] − [𝐷] is nef.

Moreover, if in addition 𝜃𝜑 is a Kähler current15, then the cohomology class
[𝜃] − [𝐷] is ample.

Here and in the sequel, we write 𝜃𝜑 for 𝜃 + ddc𝜑.

Proof The first assertion follows immediately from the fact that 𝑅 in (1.14) has
bounded coefficients.

The second assertion follows immediately from the first. □

The following proposition follows immediate from the definitions:

Proposition 1.6.2 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a
complex manifold𝑌 . Suppose that 𝜑 ∈ QPSH(𝑋) has analytic singularities (resp. has
log singularities along an effective Q-divisor 𝐷). Then 𝜋∗𝜑 has analytic singularities
(resp. has log singularities along 𝜋∗𝐷).

Definition 1.6.3 Let 𝜑 ∈ QPSH(𝑋) be a potential with analytic singularities. A log
resolution of 𝜑 is a modification 𝜋 : 𝑌 → 𝑋 such that 𝜋∗𝜑 has log singularities.

14 Divisors and Q-divisors are implicitly assumed to have locally finite coefficients as usual.
15 That is, there is a Kähler form 𝜔 on 𝑋 such that 𝜃𝜑 ≥ 𝜔 in the sense of currents.
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See Definition B.1.3 for the notion of modification.

Theorem 1.6.1 Assume that 𝑋 is compact. Suppose that 𝜑 ∈ QPSH(𝑋) has analytic
singularities. Then there is a log resolution of 𝜑.

For a proof, we refer to the arguments on [MM07, Page 104].
A general quasi-plurisubharmonic function can be nicely approximated by those

with analytic singularities. We need a few preliminary definitions.

Definition 1.6.4 Let 𝑋 be a compact Kähler manifold and 𝜃 be a closed real smooth
(1, 1)-form on 𝑋 . Consider 𝜑 ∈ PSH(𝑋, 𝜃). A sequence (𝜑 𝑗 ) 𝑗∈Z>0 in QPSH(𝑋) is
quasi-equisingular approximation of 𝜑 if

(1) 𝜑 𝑗 has analytic singularities for each 𝑗 ;
(2) 𝜑 𝑗 is decreasing with limit 𝜑;
(3) there is a decreasing sequence 𝜖 𝑗 ≥ 0 with limit 0 and a Kähler form 𝜔 on 𝑋

such that 𝜑 𝑗 ∈ PSH(𝑋, 𝜃 + 𝜖 𝑗𝜔);
(4) for each 𝜆′ > 𝜆 > 0, there is 𝑗 > 0 such that

I(𝜆′𝜑 𝑗 ) ⊆ I(𝜆𝜑). (1.15)

We also say 𝜃𝜑 𝑗 is a quasi-equisingular approximation of 𝜃𝜑 .

Definition 1.6.5 Let I ⊆ O𝑋 be a coherent ideal sheaf and 𝑐 ∈ Q>0. A function
𝜑 ∈ QPSH(𝑋) is said to have gentle analytic singularities (of type (𝑐,I)) if

(1) 𝜑 has analytic singularities of type (𝑐,I);
(2) e𝜑/𝑐 : 𝑋 → R≥0 is a smooth function;
(3) there is a proper bimeromorphic morphism 𝜋 : 𝑋̃ → 𝑋 from a Kähler manifold

𝑋̃ and an effective Z-divisor 𝐷 on 𝑋̃ such that one can write 𝜋∗𝜑 locally as

𝜋∗𝜑 = 𝑐 log |𝑔 |2 + ℎ,

where 𝑔 is a local equation of the divisor 𝐷 and ℎ is smooth.

Theorem 1.6.2 Let 𝑋 be a compact Kähler manifold and 𝜃 be a closed real smooth
(1, 1)-form on 𝑋 . Then any 𝜑 ∈ PSH(𝑋, 𝜃) admits a quasi-equisingular approxima-
tion (𝜑 𝑗 ) 𝑗∈Z>0 .

Moreover, we can guarantee that for all 𝑗 > 0, 𝜑 𝑗 has gentle analytic singularities
of type

(
2− 𝑗 ,I(2 𝑗𝜑)

)
.

We refer to [DPS01] for the proof.
Quasi-equisingular approximations are essentially unique in the following sense:

Proposition 1.6.3 Let 𝑋 be a compact Kähler manifold and 𝜃 be a closed real
smooth (1, 1)-form on 𝑋 . Consider 𝜑 ∈ PSH(𝑋, 𝜃). Let (𝜑 𝑗 ) 𝑗 and (𝜓 𝑗 ) 𝑗 be two
quasi-equisingular approximations of 𝜑. Then for any 𝜖 > 0 and any 𝑗 > 0, we can
find 𝑘0 > 0 such that for any 𝑘 ≥ 𝑘0, we have

𝜓𝑘 ⪯ (1 − 𝜖)𝜑 𝑗 .
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See [Dem15, Corollary 4.1.7].

Definition 1.6.6 Let 𝜑 ∈ QPSH(𝑋) be a potential with analytic singularities. Then
we define I∞ (𝜑) as the ideal sheaf consisting of germs 𝑓 of holomorphic functions
such that | 𝑓 |2 exp(−𝜑) is locally bounded.

By definition, I∞ (𝜑) ⊆ I(𝜑).

Lemma 1.6.2 Assume that 𝑋 is compact. Let 𝜑 ∈ QPSH(𝑋) be a potential with
analytic singularities. The sheaf I∞ (𝜑) is a coherent sheaf.

Proof By Theorem 1.6.1, we may find a modification 𝜋 : 𝑌 → 𝑋 such that 𝜋∗𝜑 has
log singularities. Observe that

I∞ (𝜑) = 𝜋∗I(𝜋∗𝜑),

so we may replace 𝑋 and 𝜑 by 𝑌 and 𝜋∗𝜑 and assume that 𝜑 has log singularities
along an effective Q-divisor 𝐷. We decompose 𝐷 into its irreducible components:

𝐷 =

𝑁∑︁
𝑖=1

𝑎𝑖𝐷𝑖 .

In this case, observe that

I∞ (𝜑) = O𝑋

(
−

𝑁∑︁
𝑖=1
(⌈𝑎𝑖⌉𝐷𝑖)

)
is clearly coherent. □

The multiplier ideal sheaf I and the sheaf I∞ are not very different in the
asymptotic sense, as shown by the following lemma:

Lemma 1.6.3 Assume that 𝑋 is compact. Let 𝜑 ∈ QPSH(𝑋) be a potential with
analytic singularities. Then for any 𝜖 > 0, we can find 𝑘0 > 0 such that for each
𝑘 ≥ 𝑘0, we have

I(𝑘 (1 + 𝜖)𝜑) ⊆ I∞ (𝑘𝜑). (1.16)

Proof We shall prove a more precise local result. Take 𝑥 ∈ 𝑋 , take an open
neighborhood𝑈 ⊆ 𝑋 of 𝑥, on which

𝜑 = 𝑐 log
(
|𝑔1 |2 + · · · + |𝑔𝑁 |2

)
+ O(1),

where 𝑐 ∈ Q>0 and 𝑔1, . . . , 𝑔𝑁 are holomorphic functions on𝑈. Then we claim that
for any 𝜆 > 0, we have

I(𝜆𝜑)𝑥 ⊆ I∞
((
𝜆 − 𝑐−1𝑛

)
+
𝜑

)
𝑥
, (1.17)
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where for any 𝑎 ∈ R, 𝑎+ means 𝑎∨0. Note that (1.16) is a straigtforward consequence
of (1.17).

Fix a smooth volume form d𝑉 on 𝑋 . Take 𝑓 ∈ I(𝜆𝜑), by strong openness
Theorem 1.4.4, we can find 𝜖 > 0 so that 𝑓 ∈ I((𝜆 + 𝜖/𝑐)𝜑). Therefore, we can find
an open neighborhood𝑊 ⊆ 𝑈 of 𝑥 so that∫

𝑊

| 𝑓 |2
(
|𝑔1 |2 + · · · + |𝑔𝑁 |2

)−𝑐𝜆−𝜖
d𝑉 < ∞.

But it follows from the Briançon–Skoda division theorem ([Dem12a, Theorem 11.17])
that

𝑓𝑥 ∈
(
𝑔1,𝑥 , . . . , 𝑔𝑁,𝑥

)𝛼
,

where𝛼 = (⌊𝑐𝜆⌋ − 𝑛 + 1)+. Here
(
𝑔1,𝑥 , . . . , 𝑔𝑁,𝑥

)
denotes the ideal inO𝑋,𝑥 generated

by the germs of 𝑔1, . . . , 𝑔𝑁 at 𝑥. Note that 𝛼 ≥ (𝑐𝜆 − 𝑛)+.
It follows that on a neighborhood of 𝑥, we have

log | 𝑓 |2 ≤ 𝛼 log
(
|𝑔1 |2 + · · · + |𝑔𝑁 |2

)
+ O(1) ≤ 𝑐−1𝛼𝜑 + O(1).

Hence (1.17) follows. □

Theorem 1.6.3 Let 𝑋 be a connected compact Kähler manifold and 𝑌 ⊆ 𝑋 be a
connected submanifold. Take a Kähler form 𝜔 on 𝑋 and 𝜑 ∈ PSH(𝑌, 𝜔|𝑌 ) such that
𝜔 |𝑌 + ddc𝜑 is a Kähler current and that e𝜑 is a Hölder continuous function on 𝑉 .
Then there exists 𝜑̃ ∈ PSH(𝑋, 𝜔) satisfying

(1) 𝜑̃ |𝑌 = 𝜑;
(2) 𝜔 𝜑̃ is a Kähler current.

In addition, if 𝜑 has analytic singularities, then so does 𝜑̃.

See [DRWN+23, Theorem 6.1].

1.7 The space of currents

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝛼 ∈ H1,1 (𝑋,R).

Definition 1.7.1 Let 𝑌 be a complex manifold and 𝑚 ∈ N. We say an (𝑚, 𝑚)-current
𝑇 on 𝑌 is positive16 if either 𝑚 > 𝑛 or for any smooth (1, 0)-forms 𝛽1, . . . , 𝛽𝑛−𝑚 on
𝑋 , the measure

𝑇 ∧ i𝛽1 ∧ 𝛽1 ∧ · · · ∧ i𝛽𝑛−𝑚 ∧ 𝛽𝑛−𝑚
is positive.

The basic properties of positive currents can be found in [Dem12b, Section III.1].
We remind the readers that a positive current is necessarily real.

16 This notion is sometimes known as weak positivity.
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Definition 1.7.2 We say𝛼 is pseudo-effective if there is a closed positive (1, 1)-current
in 𝛼.

We say 𝛼 is big if there is a closed positive (1, 1)-current 𝑇 in 𝛼 dominating a
Kähler form. Such currents are called Kähler currents.

Given classes 𝛼, 𝛽 ∈ H1,1 (𝑋,R), we say 𝛼 ≤ 𝛽 if 𝛽 − 𝛼 is pseudo-effective.

Definition 1.7.3 We introduce the following notations:

(1) Z+ (𝑋) denotes the space of closed positive (1, 1)-currents on 𝑋;
(2) given a pseudo-effective (1, 1)-class 𝛼 on 𝑋 , we write Z+ (𝑋, 𝛼) for the set of

𝑇 ∈ Z+ (𝑋) such that [𝑇] = 𝛼.

Here [𝑇] denotes the cohomology class represented by 𝑇 .
Definition 1.5.2 has a natural analogue for currents.

Definition 1.7.4 Given 𝑇,𝑇 ′ ∈ Z+ (𝑋), we write 𝑇 ⪯ 𝑇 ′ and say 𝑇 is more singular
than 𝑇 ′ if when we write 𝑇 = 𝜃 + ddc𝜑, 𝑇 ′ = 𝜃′ + ddc𝜑′, we have 𝜑 ⪯ 𝜑′. We write
𝑇 ∼ 𝑇 ′ if 𝑇 ⪯ 𝑇 ′ and 𝑇 ′ ⪯ 𝑇 . In this case, we say 𝑇 and 𝑇 ′ have the same singularity
type.

Remark 1.7.1 Observe that

Z+ (𝑋)/∼� QPSH(𝑋)/∼

canonically. The correspondence sends the class of a closed positive current 𝜃𝜑 =

𝜃 + ddc𝜑 to the class of 𝜑.
We will adopt the following convention: Whenever we have a notion for quasi-

plurisubharmonic functions which depends only on the singularity type, we use the
same notation and the same definition for closed positive (1, 1)-currents.

Example 1.7.1 An an important example of Remark 1.7.1, given 𝑇 = 𝜃 + ddc𝜑 ∈
Z+ (𝑋) and 𝑥 ∈ 𝑋 , we define

𝜈(𝑇, 𝑥) = 𝜈(𝜑, 𝑥). (1.18)

Again, as Remark 1.4.1, this differs from the definitions in some literature by a factor
of 2. But given our normalization

ddc =
i

2𝜋
𝜕𝜕,

(1.18) seems to be the most natural choice.
The key example to keep in mind is the following:

𝜈( [0], 0) = 1,

where [0] is the current of integration at 0 ∈ P1. In fact, as a simple application of
the Green’s second identity, one can verify that
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i
2𝜋
𝜕𝜕 log |𝑧 |2 = 𝛿0,

where the right-hand side is the Dirac delta distribution at 0 ∈ C.

Definition 1.7.5 Given 𝑇 ∈ Z+ (𝑋). We represent 𝑇 as 𝜃 + ddc𝜑 for some closed
smooth real (1, 1)-form 𝜃 on 𝑋 and 𝜑 ∈ PSH(𝑋, 𝜃), then the polar locus of 𝑇 is
defined as the set {𝜑 = −∞}.

It is clear that the polar locus of 𝑇 is independent of the choices of 𝜃 and 𝜑.

Definition 1.7.6 Assume that 𝛼 is big. The non-Kähler locus nK(𝛼) of 𝛼 is the
intersection of the polar loci of all Kähler currents with analytic singularities in 𝛼.

Theorem 1.7.1 (Boucksom) Assume that 𝛼 is big. There is a Kähler current 𝑇 ∈ 𝛼
with analytic singularities, such that the polar locus of 𝑇 is exactly nK(𝛼). In
particular, nK(𝛼) is a proper Zariski closed subset of 𝑋 .

See [Bou02b, Théorème 2.1.20].

Definition 1.7.7 Assume that 𝛼 is big. The non-nef locus nn(𝛼) of 𝛼 is the following
set:

nn(𝛼) B {𝑥 ∈ 𝑋 : 𝜈(𝑇min, 𝑥) > 0},

where 𝑇min is a current with minimal singularities in 𝛼.

Note that nn(𝛼) ⊆ nK(𝛼). Thanks to Theorem 1.4.1, nn(𝛼) is a countable union
of proper Zariski closed subsets of 𝑋 . The non-Kähler locus and non-nef locus are
studied in detail in [Bou02b].

Lemma 1.7.1 (Siu’s decomposition) Let 𝐸 be a prime divisor on 𝑋 . Then for any
closed positive (1, 1)-current 𝑇 on 𝑋 , the difference 𝑇 − 𝜈(𝑇, 𝐸) [𝐸] is a closed
positive (1, 1)-current.

Here [𝐸] is the current of integration associated with 𝐸 .17 See [GH94, Page 386,
Example 1] for the precise definition. See [Dem12a, Lemma 2.17] for the proof.

As a consequence, for each closed positive (1, 1)-current 𝑇 on 𝑋 , we can write

𝑇 = Reg𝑇 +
∑︁
𝑖

𝑐𝑖 [𝐸𝑖], (1.19)

where {𝐸𝑖} is a countable collection of prime divisors on 𝑋 , 𝑐𝑖 > 0.

Definition 1.7.8 A closed positive (1, 1)-current 𝑇 on 𝑋 is non-divisorial (resp.
divisorial) if 𝑇 = Reg𝑇 (resp. Reg𝑇 = 0).

17 We have also used [𝐸 ] to denote the cohomology class of [𝐸 ]. Whenever there is a risk of
confusion, we shall denote the cohomology class by {𝐸 } instead.
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It is helpful to check that our conventions are always consistent: There is no extra
factor of 2 or 1/2 anywhere. One could verify this using our favorite example as in
Example 1.7.1.

Next we recall the notion of modified nef classes.

Definition 1.7.9 A class 𝛼 ∈ H1,1 (𝑋,R) is modified nef if the following condition
holds: Fix a reference Kähler metric 𝜔 on 𝑋 , then for any 𝜖 > 0, we can find a closed
(1, 1)-current 𝑇 ∈ 𝛼 such that

(1) 𝑇 + 𝜖𝜔 ≥ 0;
(2) 𝜈(𝑇 + 𝜖𝜔, 𝐷) = 0 for any prime divisor 𝐷 on 𝑋 .

This definition is independent of the choice of 𝜔.

These classes are called nef en codimension 1 in Boucksom’s thesis [Bou02b], where
they were introduced for the first time. Modified nef classes form a closed convex
cone in H1,1 (𝑋,R). Note that a modified nef class is necessarily pseudo-effective. A
nef class is obviously modified nef.

Recall the multiplicity of a cohomology class as defined in [Bou02b, Section 2.1.3].

Definition 1.7.10 Let 𝛼 ∈ H1,1 (𝑋,R) be a pseudo-effective class and 𝐷 be a prime
divisor on 𝑋 . We define the Lelong number 𝜈(𝛼, 𝐷) as follows:

(1) When 𝛼 is big, define 𝜈(𝛼, 𝐷) = 𝜈(𝑇, 𝐷) for any closed positive (1, 1)-current
𝑇 ∈ 𝛼 with minimal singularities.

(2) In general, define
𝜈(𝛼, 𝐷) B lim

𝜖→0+
𝜈(𝛼 + 𝜖{𝜔}, 𝐷).

When 𝛼 is big, (2) is compatible with (1) and the definition is independent of the
choice of 𝜔.

By definition, a pseudo-effective class 𝛼 is modified nef if and only if 𝜈(𝛼, 𝐷) = 0
for all prime divisors 𝐷 on 𝑋 .

Let us recall the behavior of several cones under modifications.

Proposition 1.7.1 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a
Kähler manifold 𝑌 .

(1) For any nef class 𝛼 ∈ H1,1 (𝑋,R), 𝜋∗𝛼 is nef.
(2) For any modified nef class 𝛽 ∈ H1,1 (𝑌,R), 𝜋∗𝛽 is modified nef.

Proof Only (2) requires a proof. Fix a Kähler class 𝛾. Replacing 𝛽 by 𝛽 + 𝜖𝛾 for
𝜖 ∈ (0, 1), we reduce immediately to the case where 𝛽 is big as well. Let 𝑇 (resp. 𝑆)
be a current with minimal singularities in 𝜋∗𝛽 (resp. in 𝛽) and 𝐷 be a prime divisor
on 𝑋 , it suffices to show that

𝜈(𝑇, 𝐷) = 0,

by Lemma 1.7.2 below, 𝜈(𝜋∗𝑆, 𝐷) = 0, so our assertion follows. □

Recall that non-divisorial currents are introduced in Definition 1.7.8.
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Lemma 1.7.2 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from Kähler
manifold 𝑌 . Let 𝑇 be a non-divisorial current on 𝑌 , then 𝜋∗𝑇 is non-divisorial.

Conversely, if 𝑆 is a non-divisorial current on 𝑋 , 𝜋∗𝑆 is could have divisorial part.
As a simple example, consider 𝑆 on P2, whose local potential near 0 ∈ C2

𝑧,𝑤 looks
like log( |𝑧 |2 + |𝑤 |2).

Proof Let 𝐷 be a prime divisor on 𝑋 . It follows from Zariski’s main theorem
Theorem B.1.1 that 𝐷 is not contained in the exceptional locus of 𝜋. Let 𝐷′ be the
strict transform of 𝐷. Thanks to Siu’s semicontinuity theorem, we have

𝜈(𝜋∗𝑇, 𝐷) = 𝜈(𝑇, 𝐷′) = 0.

Hence 𝜋∗𝑇 is non-divisorial. □

1.8 Plurisubharmonic metrics on line bundles

A natural source of quasi-plurisubharmonic functions is the metrics on line bundles.
Let 𝑋 be a connected Kähler manifold and 𝐿 be a holomorphic line bundle on 𝑋 .

Usually, we do not distinguish 𝐿 from the associated invertible sheaf O𝑋 (𝐿).

Definition 1.8.1 Let 𝑉 be a 1-dimensional complex linear space. A Hermitian form
ℎ on 𝑉 is a map ℎ : 𝑉 ×𝑉 → C such that

(1) ℎ is C-linear in the second variable and conjugate linear in the first, and
(2)

|𝑣 |2ℎ B ℎ(𝑣, 𝑣) ∈ R>0

for each 𝑣 ∈ 𝑉 \ {0}.

We usually identify ℎ with the quadratic form 𝑉 → R sending 𝑣 to |𝑣 |2
ℎ
. We write

|𝑣 |ℎ =
√︃
|𝑣 |2
ℎ

for any 𝑣 ∈ 𝑉 .
The singular Hermitian form on 𝑉 is the map 𝑉 → {0,∞} sending 0 to 0 and

other elements to∞.

Definition 1.8.2 Let 𝑉1 and 𝑉2 be 1-dimensional complex linear spaces. Given two
maps ℎ𝑖 : 𝑉𝑖 → [0,∞] (𝑖 = 1, 2) each of which is either a Hermitian form or a singular
Hermitian form. Then we define the tensor product ℎ1 ⊗ ℎ2 : 𝑉1 ⊗ 𝑉2 → [0,∞] as
follows:

(1) If either ℎ1 or ℎ2 is singular, we define ℎ1 ⊗ ℎ2 as the singular Hermitian form;
(2) otherwise, define ℎ1 ⊗ ℎ2 as the usual tensor product: For any 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2,

set
ℎ1 ⊗ ℎ2 (𝑣1 ⊗ 𝑣2) = ℎ1 (𝑣1)ℎ2 (𝑣2).

Definition 1.8.3 A Hermitian metric ℎ on 𝐿 is a family of Hermitian forms (ℎ𝑥)𝑥∈𝑋,
such that
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(1) for each 𝑥 ∈ 𝑋 , ℎ𝑥 is a Hermitian form on 𝐿𝑥 , and
(2) for each local section 𝑠 of O𝑋 (𝐿), the map 𝑥 ↦→ |𝑠(𝑥) |ℎ𝑥 is smooth.

The pair (𝐿, ℎ) is called a Hermitian line bundle. We shall write ddcℎ = 𝑐1 (𝐿, ℎ) 18
for the first Chern form of ℎ19, normalized so that

[𝑐1 (𝐿, ℎ)] = 𝑐1 (𝐿).

The map 𝑥 ↦→ |𝑠(𝑥) |ℎ𝑥 will be denoted by |𝑠 |ℎ.
To be more precise, if 𝑈 ⊆ 𝑋 is an open subset on which 𝐿 admits a nowhere

vanishing holomorphic section 𝑠, then we define

(ddcℎ) |𝑈 = ddc
(
− log |𝑠 |2ℎ

)
.

Proposition 1.8.1 (Lelong–Poincaré) Let 𝑠 ∈ H0 (𝑋, 𝐿) be non-zero and ℎ be a
Hermitian metric on 𝐿. Then

𝑐1 (𝐿, ℎ) + ddc log |𝑠 |2ℎ = [𝑍 (𝑠)], (1.20)

where 𝑍 (𝑠) is the zero divisor defined by 𝑠 and [•] denote the associated current of
integration.

See [Dem12a, (3.11)]. Again, we want to check that our conventions are compatible
by investigating the following simple example.

Example 1.8.1 Let 𝑋 = P1 and 𝐿 = OP1 (1). The homogeneous coordinates on P1

will be denoted by [𝑋0 : 𝑋1]. At a point 𝑥 = [𝑋0 : 𝑋1] ∈ P1, the fiber 𝐿𝑥 is identified
with the dual of [𝑥], where [𝑥] ⊆ C2 is the line represented by 𝑥.

In order to introduce the Hermitian metric ℎ on 𝐿, we fix the standard Hermitian
norm ∥ • ∥ on C2. Then given 𝜆 ∈ 𝐿𝑥 = [𝑥]∨, we introduce

|𝜆 |ℎ𝑥 =
|𝜆(𝑥) |
∥𝑥∥ ,

where 𝑥 is an arbitrary non-zero element in [𝑥]. The readers can easily verify that ℎ is
indeed a Hermitian metric on 𝐿. The Hermitian metric ℎ is known as the Fubini–Study
metric.

A holomorphic section 𝑠 ∈ H0 (𝑋, 𝐿) can be formally identified with a linear form
𝑎0𝑋0 + 𝑎1𝑋1: At 𝑥 ∈ 𝑋 , the corresponding linear form on [𝑥] is given by sending
(𝑋0, 𝑋1) to 𝑎0𝑋0 + 𝑎1𝑋1.

Next we compute ddcℎ = 𝑐1 (𝐿, ℎ). For this purpose, we cover P1 by C = P1 \ {∞}
and P1 \ {0}. Both are holomorphic coordinate charts with coordinate function
𝑧 = 𝑋0/𝑋1 and 𝑧−1 = 𝑋1/𝑋0 respectively.

18 The unusual notation ddcℎ is sometimes referred to as the Göteborg notation because it is widely
used by the complex geometriers in Göteborg (usually spelled as Gothenburg in English, the second
largest (yet very poorly known) city in Sweden). As I identify myself as Göteborgare, I do not feel
guilty about this notation.
19 In the literature, people sometimes define the curvature form of (𝐿, ℎ) as Θℎ = −2𝜋iddcℎ.
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We claim that on C,
ddcℎ = ddc log(1 + |𝑧 |2). (1.21)

In fact, let 𝑡 be the nowhere vanishing section of 𝐿 on C corresponding to 𝑋1. Then
for 𝑧 ∈ C, we have an obvious lift (𝑧, 1) ∈ [𝑧], so

|𝑡 |2ℎ (𝑧) =
1

|𝑧 |2 + 1
.

So (1.21) follows.
In order to obtain a non-trivial case of the Lelong–Poincaré formula, we need to

consider a section which vanishes at some points in C. Let 𝑠 be the holomorphic
section of 𝐿 corresponding to 𝑋0. Then

log |𝑠 |2ℎ (𝑧) = log
|𝑧 |2
|𝑧 |2 + 1

for any 𝑧 ∈ C using the same argument as above. Therefore, we find that restricted to
C, we have

𝑐1 (𝐿, ℎ) + ddc log |𝑠 |2ℎ = ddc 𝑓 = [0],

where 𝑓 (𝑧) = log |𝑧 |2. So the Lelong–Poincaré formula (1.20) is verified in this case.
The Kähler form ddcℎ on P1 is also known as the Fubini–Study metric.

Definition 1.8.4 A (singular) plurisubharmonic metric (or psh metric for short)20 ℎ
on 𝐿 is a family (ℎ𝑥)𝑥∈𝑋 such that

(1) for each 𝑥 ∈ 𝑋 , ℎ𝑥 is either a Hermitian form on 𝐿𝑥 or the singular Hermitian
form on 𝐿𝑥 , and

(2) there is a Hermitian metric ℎ0 on 𝐿 and 𝜑 ∈ PSH(𝑋, 𝑐1 (𝐿, ℎ0)) such that for
each 𝑥 ∈ 𝑋 and each 𝑣 ∈ 𝐿𝑥 , we have

|𝑣 |2ℎ𝑥 =
{

0, if 𝑣 = 0;

|𝑣 |2ℎ0,𝑥
e−𝜑 (𝑥 ) , if 𝑣 ≠ 0.

(1.22)

The (first) Chern current of ℎ is by definition

ddcℎ = 𝑐1 (𝐿, ℎ) B 𝑐1 (𝐿, ℎ0) + ddc𝜑.

We shall write the plurisubharmonic metric defined by (1.22) as ℎ0 exp(−𝜑)21. As
the readers can easily verify, our conventions guarantee that 𝑐1 (𝐿, ℎ) does not depend
on the choice of ℎ0.

20 In the literature, people usually refer to such metrics as positively curved singular Hermitian
metrics. I dislike this terminology, as having positive curvature only determines a plurisubharmonic
metric almost everywhere, not everywhere.
21 Be careful, this is not ℎ2

0 exp(−𝜑) , as I prefer to think of ℎ0 as a quadratic form.
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Remark 1.8.1 In the literature, some people prefer the convention that in (1.22),
neither side has the square. Our choice seems to be the most natural one given our
normalization of ddc.

Observe that once a Hermitian metric ℎ0 on 𝐿 is given, the construction in (2)
gives a bĳection between PSH(𝑋, 𝑐1 (𝐿, ℎ0)) and the set of plurisubharmonic metrics
on 𝐿.

Definition 1.8.5 Given two holomorphic line bundles 𝐿1, 𝐿2 on 𝑋 and plurisubhar-
monic functions ℎ1 on 𝐿1 and ℎ2 on 𝐿2, we define the tensor product plurisubharmonic
metric ℎ1 ⊗ ℎ2 on 𝐿1 ⊗ 𝐿2 as follows: for each 𝑥 ∈ 𝑋 , define

(ℎ1 ⊗ ℎ2)𝑥 = ℎ1,𝑥 ⊗ ℎ2,𝑥

in the sense of Definition 1.8.2.

We can easily verify that ℎ1 ⊗ ℎ2 is indeed a plurisubharmonic metric on 𝐿1 ⊗ 𝐿2.

Example 1.8.2 We continue with our example Example 1.8.1. Let 𝑋 = P1 and
𝐿 = OP1 (1). Let ℎ0 denote the Fubini–Study metric on 𝐿 as defined in Example 1.8.1.
Note that we have changed the notation from ℎ to ℎ0. Let 𝜔 = ddcℎ0.

We construct 𝜑 ∈ PSH(𝑋, 𝜔) as follows: On C, define

𝜑(𝑧) = log
|𝑧 |2

1 + |𝑧 |2
. (1.23)

Then 𝜑 ∈ PSH(C, 𝜔|C) by (1.21). Setting 𝜑(∞) = 0, we can easily verify that
𝜑 ∈ PSH(P1, 𝜔).22

We then get a plurisubharmonic metric ℎ0 exp(−𝜑). To be more explicit, ℎ0 is
singular, ℎ∞ = ℎ0

∞, while for 𝑧 ∈ C \ {0} and 𝜆 ∈ [𝑧]∨, we have

|𝜆 |ℎ𝑧 =
|𝜆(𝑧, 1) |
|𝑧 | .

In the remaining of this section, we assume that 𝑋 is compact.

Definition 1.8.6 Assume that 𝐿 is a pseudo-effective line bundle on 𝑋 . A Fubini–
Study metric on 𝐿 is a psh metric ℎ on 𝐿 of the following form: There exists 𝑚 ∈ Z>0,
finitely many sections 𝑠1, . . . , 𝑠𝑁 ∈ H0 (𝑋, 𝐿𝑚) and 𝜆1, . . . , 𝜆𝑁 ∈ Q such that for any
local nowhere vanishing holomorphic section 𝑠 of 𝐿, we have

|𝑠 |2ℎ = min
𝑖=1,...,𝑁

���� 𝑠⊗𝑚e𝜆𝑖/2𝑠𝑖

����2𝑚−1

.

We write FS(𝐿) for the set of Fubini–Study metrics on 𝐿.

22 This can also be verified using the Grauert–Remmert extension theorem Theorem 1.2.1.
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If we fix a reference smooth Hermitian metric ℎ0 on 𝐿 with 𝜃 = ddcℎ0, we can write
ℎ = ℎ0 exp(−𝜑) with

𝜑 =
1
𝑚

max
𝑖=1,...,𝑁

(
log |𝑠𝑖 |2ℎ𝑚0 + 𝜆𝑖

)
.

Similarly, we write FS(𝑋, 𝜃) for the set of such functions.

Definition 1.8.7 Assume that 𝐿 is a pseudo-effective line bundle on 𝑋 . The set F̃S(𝐿)
of generalized Fubini metrics is the smallest subset of PSH(𝐿) containing FS(𝐿)
which is closed under the following two operations:

(1) Q-convex combinations: if ℎ1, ℎ2 ∈ F̃S(𝐿) and 𝑡 ∈ (0, 1), then

ℎ𝑡1 ⊗ ℎ
1−𝑡
2 ∈ F̃S(𝐿);

(2) minima: if ℎ1, ℎ2 ∈ F̃S(𝐿), then

min{ℎ1, ℎ2} ∈ F̃S(𝐿).

We shall need the following Ohsawa–Takegoshi type extension theorem.

Theorem 1.8.1 Assume that 𝐿 is big and 𝑇 is a holomorphic line bundle on 𝑋 .
Fix a Hermitian metric ℎ𝑇 on 𝑇 . Take a Kähler form 𝜔 on 𝑋 . Let 𝑌 ⊆ 𝑋 be a
connected submanifold of dimension 𝑚. Suppose that 𝜑 ∈ PSH(𝑋, 𝜃 − 𝛿𝜔) for some
𝛿 > 0 and 𝜑 |𝑌 . −∞. Then there exists 𝑘0 (𝛿, ℎ𝑇 ) > 0 such that for all 𝑘 ≥ 𝑘0 and
𝑠 ∈ H0 (𝑌,𝑇⊗𝐿 |𝑘

𝑌
⊗I(𝑘𝜑|𝑌 ))23, there exists an extension 𝑠 ∈ H0 (𝑋,𝑇⊗𝐿𝑘⊗I(𝑘𝜑))

such that∫
𝑋

(ℎ𝑘 ⊗ ℎ𝑇 ) (𝑠, 𝑠)e−𝑘𝜑 𝜔𝑛 ≤ 𝐶
∫
𝑌

(ℎ𝑘 ⊗ ℎ𝑇 ) |𝑌 (𝑠, 𝑠)e−𝑘𝜑 |𝑌 𝜔 |𝑚𝑌 ,

where 𝐶 > 0 is an absolute constant, independent of the data (𝜑, 𝑠, 𝑘).
This is a special case of [His12, Theorem 1.4].

Proposition 1.8.2 Let (𝐿, ℎ) be a Hermitian line bundle on 𝑋 and set 𝜃 = 𝑐1 (𝐿, ℎ).
Let (𝑇, ℎ𝑇 ) be a Hermitian line bundle on 𝑋 . Assume that 𝜑 ∈ PSH(𝑋, 𝜃) is a
potential with analytic singularities such that 𝜃𝜑 is a Kähler current. Fix a Kähler
form 𝜔 on 𝑋 . For each 𝑘 ≥ 1, we let

𝜑𝑘 B
1
𝑘

log sup
𝑠∈H0 (𝑋,𝐿𝑘⊗𝑇 )∫

𝑋
ℎ𝑘⊗ℎ𝑇 (𝑠,𝑠)e−𝑘𝜑𝜔𝑛≤1

ℎ𝑘 ⊗ ℎ𝑇 (𝑠, 𝑠). (1.24)

Then for any 𝑘 ≥ 0,
𝜑 ⪯ 𝜑𝑘 ⪯ 𝛼𝑘𝜑,

where 𝛼𝑘 ∈ (0, 1) is an increasing sequence with limit 1.

23 Here and in the sequel, we usually abbreviate ⊗𝑘 in the super-index as 𝑘 to save spaces.
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Note that when 𝑘 is large enough, 𝜑𝑘 ∈ PSH(𝑋, 𝜃). We refer to [DX24b, Remark 2.9]
for the proof.



Chapter 2
Non-pluripolar products

Pour exprimer d’une manière frappante que le monument que
j’élève sera placé sous l’invocation de la Science, j’ai décidé
d’inscrire en lettres d’or sur la grande frise du premier étage et à
la place d’honneur, les noms des plus grands savantsa qui ont
honoré la France depuis 1789 jusqu’à nos jours.
— Gustave Eiffel, 1889

a Gaspard Monge, Comte de Péluse (1746–1818), known oddly
by his family name instead of de Péluse, is one of the 72 names
scribed on the Eiffel tower. He was both a mathematician and a
politician, active mainly after the French Revolution.

Let 𝑋 be a complex manifold and 𝜑1, . . . , 𝜑𝑝 ∈ PSH(𝑋) (𝑝 ∈ N). When the functions
𝜑1, . . . , 𝜑𝑝 are all smooth, there is an obvious definition of a differential form

ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 (2.1)

by the usual differential calculus. The product is usually known as the Monge–Ampère
product. It is of interest to extend this construction to the case where the 𝜑𝑖’s have
worse regularities.

There are a number of different approaches to this problem. In this book, we
will choose the so-called non-pluripolar theory due to Bedford, Taylor, Guedj,
Zeriahi, Boucksom and Eyssidieux. The reason is that the non-pluripolar theory is
the only known theory satisfying the following two features: It is defined for all psh
singularities (at least in the global setting) and it satisfies a monotonicity theorem.

We will recall the Bedford–Taylor theory in Section 2.1 and the non-pluripolar
theory in Section 2.2.

Some key properties of the non-pluripolar products are recalled in Section 2.4.
The readers who are not familiar with this notion are encouraged to read the

original article [BEGZ10] as well as the survey article [DDNL23].

2.1 Bedford–Taylor theory

Let 𝑋 be a complex manifold and 𝜑1, . . . , 𝜑𝑝 ∈ PSH(𝑋) (𝑝 ∈ N) be locally bounded
plurisubharmonic functions on 𝑋 1. In this case, there is a canonical definition of the
Monge–Ampère type product (2.1).

1 In the literature, some people use PSH(𝑋) ∩ 𝐿∞loc (𝑋) to denote the set of such functions, which is
an abuse of notation. However, this is legitimate thanks to the rigidity Theorem 1.1.3.

41
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Definition 2.1.1 We define the closed positive (𝑝, 𝑝)-current (2.1) on 𝑋 as follows:
We make an induction on 𝑝 ≥ 0. When 𝑝 = 0, we define (2.1) as the (0, 0)-current
[𝑋]. When 𝑝 > 0, we let

ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 B ddc (
𝜑1 ddc𝜑2 ∧ · · · ∧ ddc𝜑𝑝

)
.

We call this product the Bedford–Taylor product .

Remark 2.1.1 There is also a slightly more general version of this construction. Given
a closed positive current 𝑇 , one can also define the product

ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 ∧ 𝑇

in a very similar way.

Proposition 2.1.1 The product ddc𝜑1∧· · ·∧ddc𝜑𝑝 is a closed positive (𝑝, 𝑝)-current
on 𝑋 . Moreover, the product is symmetric in the 𝜑𝑖’s.

See [GZ17, Proposition 3.3, Corollary 3.12]. The proof relies crucially on an
important estimate, known as the Chern–Levine–Nirenberg inequality. See [GZ17,
Theorem 3.9].

The Bedford–Taylor theory has many satisfactory properties.

Theorem 2.1.1 Let (𝜑 𝑗
𝑖
) 𝑗∈Z>0 be decreasing sequences (resp. increasing sequences)

of locally bounded psh functions on 𝑋 converging (resp. converging a.e.) to locally
bounded psh function 𝜑𝑖 , where 𝑖 = 1, . . . , 𝑝. Then

𝜑
𝑗

0 ddc𝜑
𝑗

1 ∧ · · · ∧ ddc𝜑
𝑗
𝑝 ⇀ 𝜑0 ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝

as 𝑗 →∞. In particular, if 𝜑 𝑗0 is the constant sequence 1, we have

ddc𝜑
𝑗

1 ∧ · · · ∧ ddc𝜑
𝑗
𝑝 ⇀ ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 .

Here the notation ⇀ denotes the weak-* convergence of currents.
We refer to [GZ17, Theorem 3.18, Theorem 3.23] for the proofs.
By contrast, we emphasize that the Bedford–Taylor product is not continuous with

respect to the 𝐿1
loc-convergence in general. A simple example can be found in [GZ17,

Example 3.25].

2.2 The non-pluripolar products

The proof of all results in this section can be found in [BEGZ10].
Let 𝑋 be a complex manifold.

Definition 2.2.1 Let 𝜑1, . . . , 𝜑𝑝 ∈ PSH(𝑋). We set
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𝑂𝑘 B

𝑝⋂
𝑗=1
{𝜑 𝑗 > −𝑘}, 𝑘 ∈ Z>0.

We say that ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 is well-defined if for each connected open subset
𝑈 ⊆ 𝑋 , any smooth Hermitian form 𝜔 on 𝑈, for each compact subset 𝐾 ⊆ 𝑈, we
have

sup
𝑘≥0

∫
𝐾∩𝑂𝑘

©­«
𝑝∧
𝑗=1

ddc (𝜑 𝑗 ∨ (−𝑘))
ª®¬
������
𝑈

∧ 𝜔dim𝑈−𝑝 < ∞. (2.2)

In this case, we define the non-pluripolar product ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 by

1𝑂𝑘 ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 = 1𝑂𝑘

𝑝∧
𝑗=1

ddc (
𝜑 𝑗 ∨ (−𝑘)

)
(2.3)

on
⋃
𝑘≥0𝑂𝑘 and make a zero-extension to 𝑋 .

As recalled in Section 1.3, an F -open subset means an open subset with respect
to the plurifine topology.

Proposition 2.2.1 Let 𝜑1, . . . , 𝜑𝑝 ∈ PSH(𝑋).

(1) The product ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 is local with respect to the plurifine topology in
the following sense: Let 𝑂 ⊆ 𝑋 be an F -open subset and 𝜓1, . . . , 𝜓𝑝 ∈ PSH(𝑋).
Assume that

𝜑 𝑗 |𝑂 = 𝜓 𝑗 |𝑂, 𝑗 = 1, . . . , 𝑝,

and that
𝑝∧
𝑗=1

ddc𝜑 𝑗 and
𝑝∧
𝑗=1

ddc𝜓 𝑗

are both well-defined, then

𝑝∧
𝑗=1

ddc𝜑 𝑗

������
𝑂

=

𝑝∧
𝑗=1

ddc𝜓 𝑗

������
𝑂

. (2.4)

If furthermore 𝑂 is open in the usual topology, then the product

𝑝∧
𝑗=1

ddc𝜑 𝑗 |𝑂

on 𝑂 is well-defined and

𝑝∧
𝑗=1

ddc𝜑 𝑗

������
𝑂

=

𝑝∧
𝑗=1

ddc𝜑 𝑗 |𝑂 . (2.5)
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LetU be an open covering of 𝑋 . Then ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 is well-defined if and
only if each of the following product is well-defined

𝑝∧
𝑗=1

ddc𝜑 𝑗 |𝑈 , 𝑈 ∈ U.

(2) The current ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 and the fact that it is well-defined depend only
on the currents ddc𝜑 𝑗 , not on the choice of the 𝜑 𝑗’s nor on the ordering of the
𝜑 𝑗 ’s.

(3) When 𝜑1, . . . , 𝜑𝑝 ∈ 𝐿∞loc (𝑋), the product ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 is well-defined
and is equal to the Bedford–Taylor product.

(4) Assume that ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 is well-defined, then ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 puts
no mass on pluripolar sets.

(5) Assume that ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝 is well-defined, then
∧𝑝

𝑗=1 ddc𝜑 𝑗 is a closed
positive (𝑝, 𝑝)-current on 𝑋 .

(6) The product is multilinear: Let 𝜓1 ∈ PSH(𝑋), 𝑎, 𝑏 > 0 then

ddc (𝑎𝜑1 + 𝑏𝜓1) ∧
𝑝∧
𝑗=2

ddc𝜑 𝑗 = 𝑎ddc𝜑1 ∧
𝑝∧
𝑗=2

ddc𝜑 𝑗 + 𝑏ddc𝜓1 ∧
𝑝∧
𝑗=2

ddc𝜑 𝑗 (2.6)

in the sense that left-hand side is well-defined if and only if both terms on
right-hand side are well-defined, and the equality holds in that case.

In view of (3), we do not need to specify whether our product ddc𝜑1 ∧ · · · ∧ ddc𝜑𝑝
is the Bedford–Taylor product or the non-pluripolar product when the 𝜑𝑖’s are all
locally bounded.

Definition 2.2.2 Let 𝑇1, . . . , 𝑇𝑝 be closed positive (1, 1)-currents on 𝑋 . We say that
𝑇1 ∧ · · · ∧ 𝑇𝑝 is well-defined if there exists an open coveringU of 𝑋 , such that on
each𝑈 ∈ U, we can find 𝜑𝑈

𝑗
∈ PSH(𝑈) ( 𝑗 = 1, . . . , 𝑝) such that

ddc𝜑𝑈𝑗 = 𝑇𝑗 , 𝑗 = 1, . . . , 𝑝

and ddc𝜑𝑈1 ∧ · · · ∧ ddc𝜑𝑈𝑝 is well-defined. In this case, we define the non-pluripolar
product 𝑇1 ∧ · · · ∧ 𝑇𝑝 as the closed positive (𝑝, 𝑝)-current on 𝑋 defined by(

𝑇1 ∧ · · · ∧ 𝑇𝑝
)
|𝑈 = ddc𝜑𝑈1 ∧ · · · ∧ ddc𝜑𝑈𝑝 , 𝑈 ∈ U. (2.7)

The product 𝑇1 ∧ · · · ∧ 𝑇𝑝 is independent of the choices we made thanks to Proposi-
tion 2.2.1 (1) and (2).

Proposition 2.2.1 can be formulated in terms of currents without any difficulty.

Remark 2.2.1 Similar to Remark 2.1.1, there is also an extension of the non-pluripolar
theory allowing us to define

𝑇1 ∧ · · · ∧ 𝑇𝑝 ∩ 𝑇
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for any closed positive current𝑇 . This is the relative non-pluripolar product introduced
by Vu [Vu21]. Unlike the relative Bedford–Taylor products, the relative non-pluripolar
products present some pathological behaviors. For example, they are not linear in
general.

Remark 2.2.2 Another possible generalization of the non-pluripolar products is
motivated by Proposition 2.2.1. One could begin by defining of generalized notion of
plurisubharmonic functions on F -open sets, called F -plurisubharmonic functions
and define their non-pluripolar products. See [EKFW11, EKW14].

Proposition 2.2.2 Let 𝑋 be a compact Kähler manifold and 𝑇1, . . . , 𝑇𝑝 are closed
positive (1, 1)-currents on 𝑋 . Then 𝑇1 ∧ · · · ∧ 𝑇𝑝 is well-defined.

This proposition explains why we usually work in the setting of compact Kähler
manifolds.

2.3 Quasi-continuous functions

Let 𝑋 be a compact Kähler manifold of dimension 𝑛 and 𝜃 be a closed real smooth
(1, 1)-form on 𝑋 representing a big cohomology class.

Definition 2.3.1 Let 𝐴 ⊆ 𝑋 be a Borel subset. The 𝜃-capacity Cap𝜃 (𝐴) of 𝐴 is
defined as

Cap𝜃 (𝐴) B sup
{∫

𝐴

𝜃𝑛𝜑 : 𝜑 ∈ PSH(𝑋, 𝜃), 𝑉𝜃 − 1 ≤ 𝜑 ≤ 𝑉𝜃
}
.

The capacity is not very sensitive to the choice of 𝜃:

Theorem 2.3.1 Let 𝜃′ be another closed real smooth (1, 1)-form on 𝑋 representing
a big cohomology class. Then there are continuous functions 𝑓 , 𝑔 : [0,∞) → [0,∞)
such that for any Borel subset 𝐸 ⊆ 𝑋 , we have

Cap𝜃 (𝐸) ≤ 𝑓
(
Cap𝜃 ′ (𝐸)

)
, Cap𝜃 ′ (𝐸) ≤ 𝑔

(
Cap𝜃 (𝐸)

)
.

A more general result is proved in [Lu21]. Similar comparison results hold between
𝜃-capacity and the classical Bedford–Taylor capacity, see [GZ17, Section 9.2] for the
proof. As a consequence, we can freely apply the results in [GZ17, Section 4.2], even
though capacity has a different meaning there.

Definition 2.3.2 Let 𝑈 be an open subset of 𝑋 . A function 𝑓 : 𝑈 → [−∞,∞] is
quasi-continuous if it is Borel measurable and for any 𝜖 > 0, there is an open subset
𝐺 ⊆ 𝑈 such that

(1) Cap𝜃 (𝐺) ≤ 𝜖 ;
(2) 𝑓 |𝑈\𝐺 is real-valued and continuous.
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Thanks to Theorem 2.3.1, the notion of quasi-continuous functions is independent of
the choice of 𝜃. Note that if 𝑓 , 𝑔 : 𝑈 → [−∞,∞] are two Borel measurable functions
equal quasi-everywhere (see Definition 1.1.4), then 𝑓 is quasi-continuous if and only
if 𝑔 is.

Theorem 2.3.2 Let 𝐴 ⊆ 𝑋 be a Borel set. Then the following are equivalent:

(1) 𝐴 is pluripolar;
(2) Cap𝜃 (𝐴) = 0.

See [GZ17, Theorem 4.40] for the proof.

Example 2.3.1 A quasi-plurisubharmonic function on an open subset 𝑈 ⊆ 𝑋 is
always quasi-continuous. See [GZ17, Theorem 4.20] for the proof.

More generally, if 𝜑, 𝜓 are two quasi-plurisubharmonic functions on𝑈, then the
following function

𝑓 (𝑥) B
{
𝜑(𝑥) − 𝜓(𝑥), if 𝜑 ∨ 𝜓(𝑥) ≠ −∞;
∞, otherwise

is quasi-continuous.2

Definition 2.3.3 Let𝑈 be an open subset of 𝑋 . Let ( 𝑓𝑖)𝑖∈𝐼 be a net of Borel measurable
functions 𝑓 𝑗 : 𝑈 → [−∞,∞], and 𝑓 : 𝑈 → [−∞,∞] be a Borel measurable function.
We say ( 𝑓𝑖)𝑖∈𝐼 converges to 𝑓 in capacity if for any 𝛿 > 0, we have

lim
𝑖∈𝐼

Cap𝜃 ({ 𝑓𝑖 > 𝑓 + 𝛿}) = 0, lim
𝑖∈𝐼

Cap𝜃 ({ 𝑓𝑖 < 𝑓 − 𝛿}) = 03.

We sometimes write 𝑓𝑖
C−→ 𝑓 .

Note that 𝑓 is not uniquely determined by the net ( 𝑓𝑖)𝑖∈𝐼 . Thanks to Theorem 2.3.1,
the notion of quasi-continuous functions is independent of the choice of 𝜃.

Proposition 2.3.1 Let (𝜑𝑖)𝑖∈𝐼 be a net in PSH(𝑈, 𝜃) and 𝜑 ∈ PSH(𝑈, 𝜃). Assume
one of the following conditions holds:

(1) (𝜑𝑖)𝑖∈𝐼 is decreasing and 𝜑 is the limit of the net;
(2) (𝜑𝑖)𝑖∈𝐼 is increasing and converges almost everywhere to 𝜑.

Then (𝜑𝑖)𝑖∈𝐼 converges to 𝜑 in capacity.

See [GZ17, Proposition 4.25] for the proof. The reference concerns only the sequence
case, but the proof works for nets as well.

2 In the literature, people usually say carelessly that 𝜑 − 𝜓 is quasi-continuous.
3 It is very tempting to write lim𝑖∈𝐼 Cap𝜃 ({ | 𝑓𝑖 − 𝑓 | > 𝛿}) = 0, as in [GZ17, Definition 4.23] for
example. But the set where 𝑓 𝑗 − 𝑓 is not defined is not a pluripolar set in general. Hence this abuse
of notation is not acceptable.
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2.4 Properties of non-pluripolar products

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝜃, 𝜃1, . . . , 𝜃𝑛 be
closed real smooth (1, 1)-forms on 𝑋 .

We write
PSH(𝑋, 𝜃)>0 =

{
𝜑 ∈ PSH(𝑋, 𝜃) :

∫
𝑋

𝜃𝑛𝜑 > 0
}
. (2.8)

The non-pluripolar product 𝜃𝑛𝜑 is well-defined thanks to Proposition 2.2.2.

Remark 2.4.1 Suppose that 𝑋 is a connected complex manifold of dimension 0, namely,
𝑋 is a single point. In this case, by definition, the non-pluripolar product 𝜃𝑛𝜑 is given
by the current of integration at the unique point. So PSH(𝑋, 𝜃)>0 = PSH(𝑋, 𝜃) � R
in this case and

∫
𝑋
𝜃𝑛𝜑 = 1 for all 𝜑 ∈ PSH(𝑋, 𝜃).

Recall the following basic result:

Proposition 2.4.1 Assume that PSH(𝑋, 𝜃)>0 is non-empty, then the cohomology class
[𝜃] is big.

See [BEGZ10, Proposition 1.22].
We recall a few basic facts about the non-pluripolar masses.

Proposition 2.4.2 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a
Kähler manifold 𝑌 and 𝜑𝑖 ∈ PSH(𝑋, 𝜃𝑖) for 𝑖 = 1, . . . , 𝑛. Then∫

𝑌

𝜋∗𝜃1, 𝜋∗𝜑1 ∧ · · · ∧ 𝜋∗𝜃𝑛, 𝜋∗𝜑𝑛 =

∫
𝑋

𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 .

Proof This follows immediately from Proposition 2.2.1 (1) and (4). □

Theorem 2.4.1 Let 𝜑0, 𝜑1 ∈ PSH(𝑋, 𝜃). Then the map

[0, 1] ∋ 𝑡 ↦→ log
∫
𝑋

𝜃𝑛
𝑡 𝜑1+(1−𝑡 )𝜑0

is concave.

See [DDNL21a] for the proof.

Remark 2.4.2 Here and in the sequel, when we write expressions like 𝑡𝜑 + (1 − 𝑡)𝜓
for 𝜑, 𝜓 ∈ QPSH(𝑋), we will follow the convention that when 𝑡 = 0, the value is 𝜓
and when 𝑡 = 1, the value is 𝜑.

We shall write
𝑉𝜃 = sup {𝜑 ∈ PSH(𝑋, 𝜃) : 𝜑 ≤ 0} . (2.9)

It follows from Proposition 1.2.1 that 𝑉𝜃 ∈ PSH(𝑋, 𝜃) if PSH(𝑋, 𝜃) ≠ ∅. The
function 𝑉𝜃 should be regarded as a canonical representative of the least singular
potentials in PSH(𝑋, 𝜃). We recall the following result:
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Theorem 2.4.2 (Di Nezza–Trapani) We have 𝑉𝜃 ∈ 𝐶1,1̄ (𝑋 \ nK({𝜃})), and

𝜃𝑛𝑉𝜃 = 1{𝑉𝜃=0}𝜃
𝑛.

Recall that the non-Kähler locus is defined in Definition 1.7.6. See [DNT21, DNT24]
for the proof.

The non-pluripolar product has a lower semicontinuity property.

Theorem 2.4.3 (Semicontinuity theorem) Let 𝜑 𝑗 , 𝜑𝑘𝑗 ∈ PSH(𝑋, 𝜃 𝑗 ) (𝑘 ∈ Z>0,
𝑗 = 1, . . . , 𝑛). Let 𝜒𝑘 , 𝜒 (𝑘 ∈ Z>0) be non-negative uniformly bounded quasi-
continuous functions on 𝑋 such that (𝜒𝑘)𝑘 converges to 𝜒 in capacity. Assume that
for any 𝑗 = 1, . . . , 𝑛, as 𝑘 →∞, either 𝜑𝑘

𝑗
decreases to 𝜑 𝑗 ∈ PSH(𝑋, 𝜃) or increases

to 𝜑 𝑗 ∈ PSH(𝑋, 𝜃) almost everywhere. Then

lim
𝑘→∞

∫
𝑋

𝜒𝑘 𝜃1,𝜑𝑘1
∧ · · · ∧ 𝜃𝑛,𝜑𝑘𝑛 ≥

∫
𝑋

𝜒 𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 . (2.10)

If in addition,

lim
𝑘→∞

∫
𝑋

𝜃1,𝜑𝑘1
∧ · · · ∧ 𝜃𝑛,𝜑𝑘𝑛 =

∫
𝑋

𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 ,

then 𝜒𝑘 𝜃1,𝜑𝑘1
∧ · · · ∧ 𝜃𝑛,𝜑𝑘𝑛 converges to 𝜒 𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 weakly as measures4.

In particular, the limit in (2.10) exists and equality holds in (2.10).

See [DDNL23, Theorem 2.6] for the proof.
The non-pluripolar mass is a monotone quantity with respect to the singularity

type.

Theorem 2.4.4 (Monotonicity theorem) Let 𝜑 𝑗 , 𝜓 𝑗 ∈ PSH(𝑋, 𝜃 𝑗 ) for 𝑗 = 1, . . . , 𝑛.
Assume that 𝜑 𝑗 ⪰ 𝜓 𝑗 5 for every 𝑗 , then∫

𝑋

𝜃1,𝜑1 ∧ · · · 𝜃𝑛,𝜑𝑛 ≥
∫
𝑋

𝜃1,𝜓1 ∧ · · · 𝜃𝑛,𝜓𝑛 .

In particular, if 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃) with 𝜑 ⪰ 𝜓, then∫
𝑋

𝜃𝑛𝜑 ≥
∫
𝑋

𝜃𝑛𝜓 .

See [DDNL18b, Theorem 1.1]. We will prove a vast extension of this theorem in
Proposition 6.1.4.

Thanks to this theorem, the non-pluripolar mass
∫
𝑋
𝜃𝑛𝜑 could be used as a rough

measure of the singularities of 𝜑 ∈ PSH(𝑋, 𝜃). In Section 3.1, we shall refine this
measure by defining the notion of 𝑃-envelope.

4 We remind the readers that the weak convergence of Radon measures is stronger than the weak
convergence as currents in general. When the Radon measures have uniformly bounded total
variation, they are equivalent.
5 See Definition 1.5.2 for the notation.
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As a corollary, we obtain that

Corollary 2.4.1 Fix a directed set 𝐼. For each 𝑗 = 1, . . . , 𝑛, take an increasing net
(𝜑𝑖

𝑗
)𝑖∈𝐼 in PSH(𝑋, 𝜃 𝑗 ), uniformly bounded from above. Set

𝜑 𝑗 B sup
𝑖∈𝐼
∗𝜑𝑖𝑗 , 𝑗 = 1, . . . , 𝑛.

Then
lim
𝑖∈𝐼

∫
𝑋

𝜃1,𝜑𝑖1
∧ · · · ∧ 𝜃𝑛,𝜑𝑖𝑛 =

∫
𝑋

𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 . (2.11)

Proof We may assume that 𝐼 is infinite as there is nothing to prove otherwise.
Thanks to Theorem 2.4.4, we already know the ≤ inequality in (2.11). We prove
the reverse inequality. When 𝐼 � Z>0 as directed sets, the reverse inequality follows
from Theorem 2.4.3. In general, by Choquet’s lemma Proposition 1.2.2, we can find
a countable infinite subset 𝑅 ⊆ 𝐼 such that

sup
𝑟∈𝑅
∗𝜑𝑟𝑗 = sup

𝑖∈𝐼
∗𝜑𝑖𝑗

for all 𝑗 = 1, . . . , 𝑛. We fix a bĳection 𝑅 � Z>0. For any 𝑗 = 1, . . . , 𝑛, we will then
denote elements 𝜑𝑟

𝑗
(𝑟 ∈ 𝑅) by 𝜑1

𝑗
, 𝜑2

𝑗
, . . . . We shall write

𝜓𝑎𝑗 = 𝜑
1
𝑗 ∨ · · · ∨ 𝜑𝑎𝑗

for each 𝑎 ∈ Z>0.
It follows from the fact that 𝐼 is a directed set and Theorem 2.4.4 that

lim
𝑖∈𝐼

∫
𝑋

𝜃1,𝜑𝑖1
∧ · · · ∧ 𝜃𝑛,𝜑𝑖𝑛 ≥ lim

𝑎→∞

∫
𝑋

𝜃1,𝜓𝑎1 ∧ · · · ∧ 𝜃𝑛,𝜓𝑎𝑛 .

From the special case mentioned above, we know that the right-hand side is exactly
the right-hand side of (2.11), so we conclude. □

We prove an interesting inequality about the Monge–Ampère measure of the
maximum of two potentials.

Lemma 2.4.1 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃). Then

𝜃𝑛𝜑∨𝜓 ≥ 1{𝜑≥𝜓}𝜃𝑛𝜑 + 1{𝜑<𝜓}𝜃𝑛𝜓 . (2.12)

In particular, if 𝜑 ≤ 𝜓, then

1{𝜑=𝜓}𝜃
𝑛
𝜑 ≤ 1{𝜑=𝜓}𝜃𝑛𝜓 .

At a first sight, (2.12) might seem trivial, and it is if we replace {𝜑 ≥ 𝜓} by {𝜑 > 𝜓}.
The difficulty really lies on understanding the contact set {𝜑 = 𝜓}.

Proof Recall that 𝑉𝜃 is defined in (2.9). For each 𝑘 ∈ N, we set
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𝜓𝑘 = 𝜓 ∨ (𝑉𝜃 − 𝑘), 𝜑𝑘 = 𝜑 ∨ (𝑉𝜃 − 𝑘).

For each 𝑡 > 0 and each 𝑘 ∈ N, we have

𝜃𝑛
𝜓𝑘∨(𝜑𝑘+𝑡 ) ≥1{𝜓𝑘>𝜑𝑘+𝑡 }𝜃

𝑛
𝜓𝑘∨(𝜑𝑘+𝑡 ) + 1{𝜓𝑘<𝜑𝑘+𝑡 }𝜃

𝑛
𝜓𝑘∨(𝜑𝑘+𝑡 )

=1{𝜓𝑘>𝜑𝑘+𝑡 }𝜃
𝑛
𝜓𝑘
+ 1{𝜓𝑘<𝜑𝑘+𝑡 }𝜃𝑛𝜑𝑘 ,

where the equality follows from Proposition 2.2.1(1). We observe that as 𝑡 → 0+,
the measures 𝜃𝑛

𝜓𝑘∨(𝜑𝑘+𝑡 ) converges weakly to 𝜃𝑛
𝜓𝑘∨𝜑𝑘 . In fact, as a consequence of

Theorem 2.4.3 and Theorem 2.4.4.
Now letting 𝑡 → 0+, we conclude that

𝜃𝑛𝜓𝑘∨𝜑𝑘 ≥ 1{𝜓𝑘>𝜑𝑘 }𝜃
𝑛
𝜓𝑘
+ 1{𝜓𝑘≤𝜑𝑘 }𝜃𝑛𝜑𝑘 .

In particular, multiplying both sides by 1{min{𝜑,𝜓}>𝑉𝜃−𝑘} and applying Proposi-
tion 2.2.1(1) again, we find that

1{min{𝜑,𝜓}>𝑉𝜃−𝑘}𝜃
𝑛
𝜓∨𝜑 ≥1{min{𝜑,𝜓}>𝑉𝜃−𝑘}∩{𝜓≤𝜑}𝜃

𝑛
𝜑

+ 1{min{𝜑,𝜓}>𝑉𝜃−𝑘}∩{𝜓>𝜑}𝜃
𝑛
𝜓 .

Letting 𝑘 →∞, we conclude (2.12). □

Corollary 2.4.2 Let (𝜑 𝑗 ) 𝑗>0 be a sequence in PSH(𝑋, 𝜃), and 𝜑 ∈ PSH(𝑋, 𝜃) so
that 𝜑 𝑗 → 𝜑 in 𝐿1. Assume that 𝜑 𝑗 ≤ 0 for all 𝑗 > 0. Then

lim
𝑗→∞

∫
{𝜑 𝑗=0}

𝜃𝑛𝜑 𝑗 ≤
∫
{𝜑=0}

𝜃𝑛𝜑 . (2.13)

Proof For each 𝑘 > 0, let
𝜓𝑘 = sup

𝑗≥𝑘
∗𝜑 𝑗 .

Then (𝜓𝑘)𝑘 is a decreasing sequence in PSH(𝑋, 𝜃) with limit 𝜑. See the proof of
Corollary 1.2.1 for example.

Thanks to Lemma 2.4.1, for each 𝑘 > 0, we have

1{𝜑𝑘=𝜓𝑘 }𝜃
𝑛
𝜑𝑘
≤ 1{𝜑𝑘=𝜓𝑘 }𝜃𝑛𝜓𝑘 .

Multiplying both sides with 1{𝜑𝑘=0} , we find that

1{𝜑𝑘=0}𝜃
𝑛
𝜑𝑘
≤ 1{𝜑𝑘=0}𝜃

𝑛
𝜓𝑘
.

Take 𝑏, 𝐶 > 0, for each 𝑘 > 0, we have∫
{𝜑𝑘=0}

𝜃𝑛𝜑𝑘 ≤
∫
{𝜑𝑘=0}

𝜃𝑛𝜓𝑘 ≤
∫
{𝜓𝑘=0}

𝜃𝑛𝜓𝑘

=

∫
{𝜓𝑘=0}

𝜃𝑛
𝜓𝑘∨(𝑉𝜃−𝐶 ) ≤

∫
𝑋

e𝑏𝜓𝑘 𝜃𝑛
𝜓𝑘∨(𝑉𝜃−𝐶 ) ,
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where the equality part follows from Proposition 2.2.1(1).
Letting 𝑘 →∞ with the help of Theorem 2.4.3, we conclude that

lim
𝑘→∞

∫
{𝜑𝑘=0}

𝜃𝑛𝜑𝑘 ≤
∫
𝑋

e𝑏𝜑𝜃𝑛
𝜑∨(𝑉𝜃−𝐶 ) .

Letting 𝑏 →∞ and then 𝐶 →∞, we conclude (2.13). □

Next we introduce an envelope construction, which will be repeatedly used in the
sequel.

Definition 2.4.1 Given a function 𝑓 : 𝑋 → [−∞,∞], we define 𝑃𝜃 ( 𝑓 ) as follows:

𝑃𝜃 ( 𝑓 ) B sup∗ {𝜑 ∈ PSH(𝑋, 𝜃) : 𝜑 ≤ 𝑓 quasi-everywhere} 6. (2.14)

The function 𝑃𝜃 ( 𝑓 ) is either constantly ±∞ or lies in PSH(𝑋, 𝜃). Moreover, given
another function 𝑔 : 𝑋 → [−∞,∞], equal to 𝑓 quasi-everywhere, we have 𝑃𝜃 ( 𝑓 ) =
𝑃𝜃 (𝑔). In particular, it makes sense to talk about 𝑃𝜃 ( 𝑓 ) even if 𝑓 is only defined
outside a pluripolar set.

We also observe that

𝑃𝜃 ( 𝑓 ) ≤ 𝑓 quasi-everywhere. (2.15)

This is a consequence of Proposition 1.2.2 and Proposition 1.2.5.

Theorem 2.4.5 Let 𝑓 : 𝑋 → [−∞,∞] be a quasi-continuous function.
Assume that 𝑃𝜃 ( 𝑓 ) . ±∞. Then 𝑃𝜃 ( 𝑓 ) ∈ PSH(𝑋, 𝜃) and∫

{𝑃𝜃 ( 𝑓 )< 𝑓 }
𝜃𝑛
𝑃𝜃 ( 𝑓 ) = 0. (2.16)

Thanks to (2.15), we could rewrite (2.16) as∫
{𝑃𝜃 ( 𝑓 )≠ 𝑓 }

𝜃𝑛
𝑃𝜃 ( 𝑓 ) = 07.

Proof Step 1. We first reduce to the case where 𝑓 is bounded.
Step 1.1. Reduce to the case where 𝑓 ≤ 0.
Take 𝐶 ∈ R so that 𝑃𝜃 ( 𝑓 ) ≤ 𝐶. Then

6 In the original article [DDNL23], the authors required that 𝜑 ≤ 𝑓 everywhere. But in the proof of
their Theorem 2.7 (Theorem 2.4.5 below), they actually relied on the current definition.
7 It is tempting to say that 𝜃𝑛

𝑃𝜃 ( 𝑓 ) is supported on the contact set {𝑃𝜃 ( 𝑓 ) = 𝑓 }, as people are
already doing in the literature. It should be mentioned that this is an abuse of the language, since the
support of 𝜃𝑛

𝑃𝜃 ( 𝑓 ) (as a closed subset of 𝑋) could be much larger in general. One could probably
introduce a notion of plurifine support, similar to what Fuglede did in the classical potential theory
[Fug72].
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𝑃𝜃 ( 𝑓 ) = 𝑃𝜃 (min{ 𝑓 , 𝐶}) .

So we could replace 𝑓 by min{ 𝑓 , 𝐶}. Replacing 𝑓 by 𝑓 − sup𝑋 𝑓 , we reduce easily
to the case where 𝑓 ≤ 0.

Step 1.2. Reduce to the case where 𝑓 is bounded. Assume that in this case, the
theorem is known. We prove (2.16) for 𝑓 ≤ 0.

For each 𝑗 > 0, we have ∫
{𝑃𝜃 ( 𝑓 𝑗 )< 𝑓 𝑗 }

𝜃𝑛
𝑃𝜃 ( 𝑓 𝑗 ) = 0, (2.17)

where 𝑓 𝑗 = 𝑓 ∨ (− 𝑗).
Now fix 𝐶 > 0 and two open sets 𝐺′ ⋐ 𝐺 ⋐ 𝑋 \ nK({𝜃}). Recall that the non-

Kähler locus is introduced in Definition 1.7.6. Fix a smooth function 𝜒 : 𝑋 → [0, 1]
so that 𝜒 |𝐺′ ≡ 1 and 𝜒 is supported in 𝐺.

Define

𝑈𝐶 B 𝐺 ∩ {𝑃𝜃 ( 𝑓 ) > 𝑉𝜃 − 𝐶}, 𝑈′𝐶 B 𝐺′ ∩ {𝑃𝜃 ( 𝑓 ) > 𝑉𝜃 − 𝐶}.

Then𝑈𝐶 is F -open. It follows from Proposition 2.2.1(1) that for any 𝑗 > 0,

1𝑈𝐶 𝜃
𝑛
𝑃𝜃 ( 𝑓 𝑗 )∨(𝑉𝜃−𝐶 ) = 1𝑈𝐶 𝜃

𝑛
𝑃𝜃 ( 𝑓 𝑗 ) .

In particular, thanks to (2.17),∫
𝑈𝐶

(
1 − e𝑃𝜃 ( 𝑓 𝑗 )− 𝑓 𝑗

)
𝜃𝑛
𝑃𝜃 ( 𝑓 𝑗 )∨(𝑉𝜃−𝐶 ) = 0. (2.18)

Note that the 𝑃𝜃 ( 𝑓 𝑗 ) ∨ (𝑉𝜃 − 𝐶)’s for various 𝑗 are uniformly bounded from below,
thanks to Theorem 2.4.2.

Next we claim that 𝑃𝜃 ( 𝑓 𝑗 ) is decreasing and converges to 𝑃𝜃 ( 𝑓 ).
In fact, 𝑃𝜃 ( 𝑓 𝑗 ) ≤ 𝑓 𝑗 quasi-everywhere. It follows that inf 𝑗 𝑃𝜃 ( 𝑓 𝑗 ) ≤ 𝑓 quasi-

everywhere and hence
inf
𝑗>0

𝑃𝜃 ( 𝑓 𝑗 ) ≤ 𝑃𝜃 ( 𝑓 ).

The reverse inequality is trivial, and our assertion follows.
Since 𝑃𝜃 ( 𝑓 ) . −∞, we know that the set { 𝑓 = −∞} is pluripolar. It follows that

𝑃𝜃 ( 𝑓 𝑗 ) − 𝑓 𝑗 converges to the following function 𝑔 : 𝑋 → [−∞,∞) in capacity:

𝑔(𝑥) =
{
𝑃𝜃 ( 𝑓 ) (𝑥) − 𝑓 (𝑥), if 𝑓 (𝑥) ≠ −∞;
−∞, otherwise.

Therefore,
1 − e𝑃𝜃 ( 𝑓 𝑗 )− 𝑓 𝑗

C−→ 1 − e𝑔 .

Next we claim that
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𝑈′
𝐶

(1 − e𝑔) 𝜃𝑛
𝑃𝜃 ( 𝑓 ) = 0. (2.19)

Since 𝑔 ≤ 0 quasi-everywhere, the left-hand side of (2.19) is non-negative. It suffices
to prove the ≤ direction.

We wish to let 𝑗 →∞ directly in (2.18), but since𝑈𝐶 is not open in general, this
cannot be done directly. In the sequel, we shall slightly enlarge𝑈𝐶 to get an open set
and then take the limit.

Fix 𝜖 > 0, we can find an open subset𝑊 ⋐ 𝑋 \ nK({𝜃}), so that

Cap𝐶−1 𝜃 (𝑊 \𝑈𝐶 ) < 𝜖. (2.20)

For example, we could define 𝑊 in the following way: By Example 2.3.1, we can
always find an open set 𝐴 ⊆ 𝐺 so that Cap𝐶−1 𝜃 (𝐴) < 𝜖 and 𝑃𝜃 ( 𝑓 ) is continuous on
𝐺 \ 𝐴. Then it suffices to take𝑊 = 𝑈𝐶 ∪ 𝐴.

Thanks to (2.20) and (2.18), we have∫
𝑊

𝜒

(
1 − e𝑃𝜃 ( 𝑓 𝑗 )− 𝑓 𝑗

)
𝜃𝑛
𝑃𝜃 ( 𝑓 𝑗 )∨(𝑉𝜃−𝐶 ) ≤ 𝐶

𝑛𝜖 .

Letting 𝑗 →∞ and applying the convergence theorem of [GZ17, Theorem 4.26], we
find that ∫

𝑊

𝜒 (1 − e𝑔) 𝜃𝑛
𝑃𝜃 ( 𝑓 )∨(𝑉𝜃−𝐶 ) ≤ 𝐶

𝑛𝜖 .

Since 𝜖 > 0 is arbitrary, (2.19) follows.
Now letting 𝐶 →∞ in (2.19), we find∫

𝐺′
(1 − e𝑔) 𝜃𝑛

𝑃𝜃 ( 𝑓 ) = 0.

Since 𝐺′ ⋐ 𝑋 \ nK({𝜃}) is arbitrary, we finally conclude∫
𝑋

(1 − e𝑔) 𝜃𝑛
𝑃𝜃 ( 𝑓 ) = 0.

In other words, 𝑃𝜃 ( 𝑓 ) = 𝑓 almost everywhere with respect to 𝜃𝑛
𝑃𝜃 ( 𝑓 ) . This proves

(2.16).
Step 2. We now assume that −𝐶′ ≤ 𝑓 ≤ 0 for some 𝐶′ > 0.
For each 𝑗 > 0, take an open subset 𝑉 𝑗 ⊆ 𝑋 so that

(1) Cap𝜃 (𝑉 𝑗 ) ≤ 2− 𝑗−1, and
(2) 𝑓 |𝑋\𝑉𝑗 is continuous.

Without loss of generality, we may assume that the 𝑉 𝑗’s are decreasing. Take a
continuous function 𝑓 𝑗 : 𝑋 → [−𝐶′, 0] extending 𝑓 |𝑋\𝑉𝑗 . This is always possible
thanks to Tietze’s extension theorem. For each 𝑗 > 0, we let

ℎ 𝑗 B sup
𝑘≥ 𝑗

𝑓𝑘 .
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Then ℎ 𝑗 is lower semi-continuous and ℎ 𝑗 agrees with 𝑓 outside 𝑉 𝑗 .

ℎ = inf
𝑗>0

ℎ 𝑗 .

Then the set {𝑔 ≠ 𝑓 } is contained in the intersection of the 𝑉 𝑗’s and hence is a
pluripolar set, thanks to Theorem 2.3.2. In particular, 𝑃𝜃 ( 𝑓 ) = 𝑃𝜃 (𝑔).

Now we can apply the balayage argument of [BT82, Corollary 9.2] to conclude
that ∫

𝑋\nK({ 𝜃 })

(
1 − e𝑃𝜃 (ℎ 𝑗 )−ℎ 𝑗

)
𝜃𝑛
𝑃𝜃 (ℎ 𝑗 ) = 0

for each 𝑗 > 0.
Fix two open subsets 𝐺′ ⋐ 𝐺 ⋐ 𝑋 \ nK({𝜃}). Note that −𝐶0 ≤ ℎ 𝑗 ≤ 0. In

particular,
𝑉𝜃 − 𝐶0 ≤ 𝑃𝜃 (ℎ 𝑗 ) ≤ 𝑉𝜃 .

Hence, ∫
𝐺

(
1 − e𝑃𝜃 (ℎ 𝑗 )− 𝑓

)
𝜃𝑛
𝑃𝜃 (ℎ 𝑗 )

=

∫
𝐺∩𝑉𝑗

(
1 − e𝑃𝜃 (ℎ 𝑗 )− 𝑓

)
𝜃𝑛
𝑃𝜃 (ℎ 𝑗 ) +

∫
𝐺\𝑉𝑗

(
1 − e𝑃𝜃 (ℎ 𝑗 )−ℎ 𝑗

)
𝜃𝑛
𝑃𝜃 (ℎ 𝑗 )

≤2− 𝑗−1𝐶𝑛0 .

Now we could apply the same arguments as in Step 1.2 to conclude that∫
𝐺′

(
1 − e𝑃𝜃 ( 𝑓 )− 𝑓

)
𝜃𝑛
𝑃𝜃 ( 𝑓 ) = 0.

Since 𝐺′ ⋐ 𝑋 \ nK({𝜃}), (2.16) follows. □

The following lemma is striking in that we begin only with an upper bound of 𝜑,
but at the end of the day, we get a lower bound almost for free. This powerful method
will be employed again and again in the whole book.

Lemma 2.4.2 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃), 𝜑 ⪯ 𝜓 and
∫
𝑋
𝜃𝑛𝜑 > 0. Then for any

𝑎 ∈ ©­«1,

( ∫
𝑋
𝜃𝑛
𝜓∫

𝑋
𝜃𝑛
𝜓
−

∫
𝑋
𝜃𝑛𝜑

)1/𝑛ª®¬ 8, (2.21)

there is 𝜂 ∈ PSH(𝑋, 𝜃)>0 such that

𝑎−1𝜂 + (1 − 𝑎−1)𝜓 ≤ 𝜑. (2.22)

We write

8 The fraction in (2.21) is understood as∞ if either
∫
𝑋
𝜃𝑛
𝜓
=

∫
𝑋
𝜃𝑛𝜑 or 𝑛 = 0. Thanks to Theorem 2.4.4,

the interval (2.21) is non-empty.
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𝑃𝜃 (𝑎𝜑 + (1 − 𝑎)𝜓) B sup∗
{
𝜂 ∈ PSH(𝑋, 𝜃) : 𝑎−1𝜂 + (1 − 𝑎−1)𝜓 ≤ 𝜑

}
∈PSH(𝑋, 𝜃) ∪ {−∞}.

(2.23)

Note that if we regard 𝑎𝜑 + (1 − 𝑎)𝜓 as a function defined outside the pluripolar set
{𝜑 = 𝜓 = −∞} on 𝑋 , then (2.23) coincides with the envelope in the sense of (2.14).

Observe that

𝑎−1𝑃𝜃 (𝑎𝜑 + (1 − 𝑎)𝜓) + (1 − 𝑎−1)𝜓 ≤ 𝜑. (2.24)

In fact, this equation holds outside a pluripolar set by Proposition 1.2.5, hence it
holds everywhere by Proposition 1.2.6.

Proof Without loss of generality, we may assume that 𝜑 ≤ 𝜓 ≤ 0.
Step 1. We show the existence of 𝜂 ∈ PSH(𝑋, 𝜃) satisfying (2.22).
Step 1.1. We make a first reduction of the problem.
Define

𝜙 B sup∗ {𝜂 ∈ PSH(𝑋, 𝜃) : 𝜂 ≤ min{𝜓 + 𝐶, 0} for some 𝐶 > 0} 9.

Observe that due to Corollary 2.4.1 and Theorem 2.4.4, we have∫
𝑋

𝜃𝑛𝜙 =

∫
𝑋

𝜃𝑛𝜓 .

In particular, replacing 𝜓 by 𝜙 does not chance the condition on 𝑎 as in (2.21).
Since 𝜓 ≤ 𝜙, it suffices to prove the existence of 𝜂 ∈ PSH(𝑋, 𝜃) so that

𝑎−1𝜂 + (1 − 𝑎−1)𝜙 ≤ 𝜑. (2.25)

Let us record the following observation for later use. Suppose that 𝜏 ∈ PSH(𝑋, 𝜃)
and 𝜏 ⪯ 𝜓. Then

sup
{𝜙≠−∞}

(𝜏 − 𝜙) = sup
𝑋

𝜏. (2.26)

Observe that 𝜙 ≤ 0, so on the set {𝜙 ≠ −∞}, we have

𝜏 − 𝜙 ≥ 𝜏.

So the ≥ direction in (2.26) follows from Corollary 1.3.6. Conversely, by assumption,
we can find a constant 𝐶 > 0 so that

𝜏 − sup
𝑋

𝜏 ≤ min{𝜓 + 𝐶, 0}.

It follows that 𝜏 − sup𝑋 𝜏 ≤ 𝜙. Therefore, the reverse inequality follows.
For each 𝑘 > 0, we introduce

9 In terms of the 𝑃-envelope introduced later in Definition 3.1.2, this equation says that 𝜙 = 𝑃𝜃 [𝜓].
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𝜑𝑘 = 𝜑 ∨ (𝜙 − 𝑘) , 𝜂𝑘 B 𝑃𝜃 (𝑎𝜑𝑘 + (1 − 𝑎)𝜙) .

Since 𝜑𝑘 ∼ 𝜙, we have 𝜂𝑘 ∈ PSH(𝑋, 𝜃) and 𝜂𝑘 ∼ 𝜙 as well.
Note that 𝜂𝑘 is decreasing in 𝑘 . Let

𝜂 B inf
𝑘∈N

𝜂𝑘 .

Note that 𝜂 automatically satisfies (2.25). It remains to show that 𝜂 . −∞.
Step 1.2. We prove that 𝜂 . −∞.
Assume by contrary that sup𝑋 𝜂𝑘 → −∞. For each 𝑘 > 0, let

𝛾𝑘 B 𝑎−1𝜂𝑘 + (1 − 𝑎−1)𝜙, 𝐷𝑘 B
{
𝑎−1𝜂𝑘 + (1 − 𝑎−1)𝜙 = 𝜑𝑘

}
.

We claim that
𝜃𝑛𝜂𝑘 ≤ 𝑎

𝑛1𝐷𝑘 𝜃
𝑛
𝜑𝑘
. (2.27)

Since 𝛾𝑘 ≤ 𝜑𝑘 with equality on 𝐷𝑘 . It follows from Lemma 2.4.1 that

1𝐷𝑘 𝜃
𝑛
𝛾𝑘
≤ 1𝐷𝑘 𝜃𝑛𝜑𝑘 .

Since
𝑎−1𝜂𝑘 + (1 − 𝑎−1)𝜙 ≤ 𝜑𝑘 ,

we deduce from Theorem 2.4.4 that

𝜃𝑛𝜂𝑘 ≤ 𝑎
𝑛𝜃𝑛𝜑𝑘 . (2.28)

Finally, it follows from Theorem 2.4.5 that

1𝐷𝑘 𝜃
𝑛
𝜂𝑘

= 𝜃𝑛𝜂𝑘 .

Putting these results together, we conclude (2.27).
Fix 𝑗 > 𝑘 > 0. Note that∫

{𝜑≤𝜙−𝑘}
𝜃𝑛𝜑 𝑗 =

∫
𝑋

𝜃𝑛𝜑 𝑗 −
∫
{𝜑>𝜙−𝑘}

𝜃𝑛𝜑 𝑗 =

∫
𝑋

𝜃𝑛𝜙 −
∫
{𝜑>𝜙−𝑘}

𝜃𝑛𝜑 , (2.29)

where we applied Theorem 2.4.4 and Proposition 2.2.1(1) in the second inequality.
Next, we compute
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{𝜂 𝑗≤𝜙−𝑎𝑘}

𝜃𝑛𝜂 𝑗 ≤𝑎
𝑛

∫
{𝜂 𝑗≤𝜙−𝑎𝑘}

1𝐷 𝑗 𝜃
𝑛
𝜑 𝑗

by (2.27)

≤𝑎𝑛
∫
{𝑎𝜑 𝑗+(1−𝑎)𝜙≤𝜙−𝑎𝑘}∩{𝜙≠−∞}

𝜃𝑛𝜑 𝑗

=𝑎𝑛
∫
{𝜑 𝑗≤𝜙−𝑘}

𝜃𝑛𝜑 𝑗

=𝑎𝑛
∫
{𝜑≤𝜙−𝑘}

𝜃𝑛𝜑 𝑗

≤𝑎𝑛
(∫
𝑋

𝜃𝑛𝜙 −
∫
{𝜑>𝜙−𝑘}

𝜃𝑛𝜑

)
by (2.29).

Next thanks to (2.26),

sup
{𝜙≠−∞}

(𝜂 𝑗 − 𝜙) = sup
𝑋

𝜂 𝑗 → −∞.

In particular, for a fixed 𝑘 , if 𝑗 is large enough, we have

{𝜂 𝑗 ≤ 𝜙 − 𝑎𝑘} = 𝑋.

Therefore, for a fix 𝑘 , for any large enough 𝑗 ,∫
𝑋

𝜃𝑛𝜙 =

∫
𝑋

𝜃𝑛𝜂 𝑗 ≤ 𝑎
𝑛

(∫
𝑋

𝜃𝑛𝜙 −
∫
{𝜑>𝜙−𝑘}

𝜃𝑛𝜑

)
.

Letting 𝑘 →∞, we find ∫
𝑋

𝜃𝑛𝜙 ≤ 𝑎𝑛
(∫
𝑋

𝜃𝑛𝜙 −
∫
𝑋

𝜃𝑛𝜑

)
.

This is a contradiction with our choice of 𝑎.
Step 2. Next we argue that 𝑃𝜃 (𝑎𝜑 + (1 − 𝑎)𝜓) ∈ PSH(𝑋, 𝜃)>0. Choose

𝑎′ ∈ ©­«𝑎,
( ∫

𝑋
𝜃𝑛
𝜓∫

𝑋
𝜃𝑛
𝜓
−

∫
𝑋
𝜃𝑛𝜑

)1/𝑛ª®¬ .
It follows from (2.23) that

𝑃𝜃 (𝑎𝜑 + (1 − 𝑎)𝜓) ≥
𝑎

𝑎′
𝑃𝜃 (𝑎′𝜑 + (1 − 𝑎′)𝜓) +

𝑎′ − 𝑎
𝑎′

𝜑. (2.30)

Therefore, by Theorem 2.4.4, we have∫
𝑋

𝜃𝑛
𝑃𝜃 (𝑎𝜑+(1−𝑎)𝜓) ≥

(𝑎′ − 𝑎)𝑛
𝑎′𝑛

∫
𝑋

𝜃𝑛𝜑 > 0. (2.31)
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When 𝜑 and 𝜓 have the same mass, we can say more:

Corollary 2.4.3 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃)>0, 𝜑 ⪯ 𝜓. Assume that
∫
𝑋
𝜃𝑛𝜑 =

∫
𝑋
𝜃𝑛
𝜓

. Then
for any 𝜖 ∈ (0, 1), there is 𝜂 ∈ PSH(𝑋, 𝜃) such that

(1)
∫
𝑋
𝜃𝑛𝜂 =

∫
𝑋
𝜃𝑛𝜑;

(2) 𝜖𝜂 + (1 − 𝜖−1)𝜓 ≤ 𝜑.

Note that by (2), we trivially have 𝜂 ⪯ 𝜓.

Proof Fix 𝜖 ∈ (0, 1), we define

𝜂 = 𝑃𝜃

(
𝜖−1𝜑 + (1 − 𝜖−1)𝜓

)
.

This is well-defined due to Theorem 2.4.4.
Thanks to (2.31), for each 𝑎′ > 𝜖−1, we have∫

𝑋

𝜃𝑛𝜂 >

(
𝑎′ − 𝜖−1

𝑎′

)𝑛 ∫
𝑋

𝜃𝑛𝜑 .

Letting 𝑎′ →∞, we conclude that∫
𝑋

𝜃𝑛𝜂 ≥
∫
𝑋

𝜃𝑛𝜑 .

On the other hand, since 𝜂 ⪯ 𝜓, using Theorem 2.4.4 we find that∫
𝑋

𝜃𝑛𝜂 ≤
∫
𝑋

𝜃𝑛𝜓 =

∫
𝑋

𝜃𝑛𝜑 .

Hence, ∫
𝑋

𝜃𝑛𝜂 =

∫
𝑋

𝜃𝑛𝜑 .

Next we prove a domination principle.

Theorem 2.4.6 (Domination principle) Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃)>0. Assume that there
is 𝜙 ∈ PSH(𝑋, 𝜃) so that

𝜑 ⪯ 𝜙, 𝜓 ⪯ 𝜙,
∫
𝑋

𝜃𝑛𝜑 =

∫
𝑋

𝜃𝑛𝜓 =

∫
𝑋

𝜃𝑛𝜙 , (2.32)

and ∫
{𝜑<𝜓}

𝜃𝑛𝜑 = 0. (2.33)

Then 𝜑 ≥ 𝜓.

Remark 2.4.3 Using the terminologies to be introduced in Chapter 3, we can refor-
mulate a special case of Theorem 2.4.6 as follows: Suppose that 𝜙 ∈ PSH(𝑋, 𝜃)>0 is
a model potential and 𝜑, 𝜓 ∈ E(𝑋, 𝜃; 𝜙). Assume that (2.33) holds then 𝜑 ≥ 𝜓.
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Proof Thanks to Theorem 2.4.4,∫
𝑋

𝜃𝑛𝜑∨𝜓 =

∫
𝑋

𝜃𝑛𝜙 .

We may replace 𝜓 by 𝜑 ∨ 𝜓 and assume that 𝜑 ≤ 𝜓.
Now fix 𝑎 > 1, we define

𝜂𝑎 B 𝑃𝜃 (𝑎𝜑 + (1 − 𝑎)𝜓) .

Note that 𝜂𝑎 ∈ PSH(𝑋, 𝜃) by Corollary 2.4.3 and∫
𝑋

𝜃𝑛𝜂𝑎 =

∫
𝑋

𝜃𝑛𝜙 .

Define
𝛾𝑎 B 𝑎−1𝜂𝑎 + (1 − 𝑎−1)𝜓, 𝐷𝑎 B {𝛾𝑎 = 𝜑}.

Then 𝛾𝑎 ≤ 𝜑 with equality on 𝐷𝑎. Therefore,

𝑎−𝑛 𝜃𝑛𝜂𝑎 ≤𝑎
−𝑛 𝜃𝑛𝜂𝑎 + 1𝐷𝑎 (1 − 𝑎

−1)𝑛 𝜃𝑛𝜓
=1𝐷𝑎𝑎

−𝑛 𝜃𝑛𝜂𝑎 + 1𝐷𝑎 (1 − 𝑎
−1)𝑛 𝜃𝑛𝜓 by Theorem 2.4.5

≤1𝐷𝑎𝜃𝑛𝛾𝑎
≤1𝐷𝑎𝜃𝑛𝜑 by Lemma 2.4.1

=1𝐷𝑎∩{𝜑=𝜓} 𝜃
𝑛
𝜑 by (2.33).

Note that on 𝐷𝑎 ∩ {𝜑 = 𝜓}, we have 𝜂𝑎 = 𝜑. We deduce that

𝜃𝑛𝜂𝑎 = 1{𝜂𝑎=𝜑} 𝜃
𝑛
𝜂𝑎
≤ 𝜃𝑛𝜑 ,

where the inequality follows from Lemma 2.4.1.
But the two ends have the same mass, and hence

𝜃𝑛𝜂𝑎 = 𝜃𝑛𝜑 = 1{𝜂𝑎=𝜑} 𝜃
𝑛
𝜑 .

Therefore, ∫
𝑋

e𝜂𝑎 𝜃𝑛𝜑 =

∫
𝑋

e𝜑 𝜃𝑛𝜑 > 0.

Note that 𝜂𝑎 is decreasing in 𝑎. The above equation shows that

𝜂 B inf
𝑎>1

𝜂𝑎 . −∞.

On the other hand, if 𝑥 ∈ 𝑋 is such that 𝜑(𝑥) < 𝜓(𝑥), we then have

𝜂𝑎 (𝑥) ≤ 𝑎𝜑(𝑥) − (𝑎 − 1)𝜓(𝑥) ≤ 𝜓(𝑥) + 𝑎 (𝜑(𝑥) − 𝜓(𝑥)) .
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Letting 𝑎 →∞, we find that 𝜂(𝑥) = −∞. Therefore, {𝜑 ≠ 𝜓} is pluripolar, and hence
empty by Proposition 1.2.6. Our assertion follows. □

Lemma 2.4.3 For any 𝜑 ∈ PSH(𝑋, 𝜃)>0, there is 𝜓 ∈ PSH(𝑋, 𝜃) such that

(1) 𝜃𝜓 is a Kähler current, and
(2) 𝜓 ≤ 𝜑.

In particular, there is an increasing sequence (𝜑𝑖)𝑖>0 in PSH(𝑋, 𝜃) converging almost
everywhere to 𝜑 such that 𝜃𝜑𝑖 is a Kähler current for all 𝑖 ≥ 1.

Proof Using Lemma 2.4.2, we can find 𝜖 ∈ (0, 1) and 𝛾 ∈ PSH(𝑋, 𝜃) such that

𝜖𝑉𝜃 + (1 − 𝜖)𝛾 ≤ 𝜑.

We observe that the cohomology class [𝜃] is big as a consequence of Proposition 2.4.1.
Therefore, we can take 𝜂 ∈ PSH(𝑋, 𝜃) such that 𝜃𝜂 is a Kähler current and 𝜂 ≤ 0.
Then we may take

𝜓 B 𝜖𝜂 + (1 − 𝜖)𝛾.

Then 𝜓 clearly satisfies (1) and (2).
For the latter claim, it suffices to take

𝜑𝑖 =

(
1 − (𝑖 + 1)−1

)
𝜑 + (𝑖 + 1)−1𝜓

for each 𝑖 > 0. □

Lemma 2.4.4 Let 𝐿 be a holomorphic line bundle on 𝑋 with 𝜃 ∈ 𝑐1 (𝐿). Assume that
𝜑 ∈ PSH(𝑋, 𝜃)>0, then there exists 𝑘0 > 0 such that for each 𝑘 ≥ 𝑘0, we have

H0 (𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)) ≠ 0.

Proof By Lemma 2.4.3, we may further assume that 𝜃𝜑 is a Kähler current. In this case,
the result follows from Hörmander’s 𝐿2-estimate, see [Dem12a, Theorem 13.21]. □



Chapter 3
The envelope operators

Politiques et scientifiques ont le sens des réalités, mais ce ne sont
pas les mêmes. Il en résulte — et ce sera là un principe que le
général de Gaulle fera sien que l’activité de recherche ne peut
être évaluée, quant à sa qualité propre, que par des hommes qui
la pratiquent eux-mêmes.
— Pierre Lelonga, 1999

a Pierre Lelong (1912–2011) was the husband of another famous
mathematician Jacqueline Ferrand. During their marriage (1947–
1977), the latter published under the name of Jacqueline Lelong-
Ferrand.

In this chapter, we study two envelope operators lying at the heart of the whole theory.
The first envelope, called the 𝑃-envelope, is defined using the non-pluripolar masses,
while the second, called the I-envelope, is defined using the multiplier ideal sheaves.
The corresponding theories are developed in Section 3.1 and Section 3.2 respectively.

Later on in Chapter 6, we will develop the corresponding 𝑃 and I-partial orders
associated with these envelopes, allowing us to compare the singularities.

We reproduced a large number of proofs, which are already explained in detail in
the survey of Darvas–Di Nezza–Lu [DDNL23] at the strong request of the referee.
Personally I would encourage the readers to skip these lengthy details, at least on
a first reading. If the readers do wish to understand these techniques in detail, their
survey is much more helpful.

3.1 The 𝑷-envelope

In this section, 𝑋 will denote a connected compact Kähler manifold of dimension 𝑛.

3.1.1 Rooftop operator and the definition of the 𝑷-envelope

We will fix a smooth closed real (1, 1)-form 𝜃 on 𝑋 .

Definition 3.1.1 Given 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃), we define their rooftop operator as follows:

𝜑 ∧ 𝜓 = sup {𝜂 ∈ PSH(𝑋, 𝜃) : 𝜂 ≤ 𝜑, 𝜂 ≤ 𝜓} . (3.1)

For the simplicity of notations, we extend the definition to the case where 𝜑 or 𝜓 is
constantly −∞, in which case we simply set
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𝜑 ∧ 𝜓 = −∞.

When we want to be more specific, we could also write 𝜑 ∧𝜃 𝜓.

Proposition 3.1.1 The operator ∧ is a well-defined commutative, associative binary
operator

PSH(𝑋, 𝜃) ∪ {−∞} × PSH(𝑋, 𝜃) ∪ {−∞} → PSH(𝑋, 𝜃) ∪ {−∞}.

Proof We first show that the map is well-defined. For this purpose, take 𝜑, 𝜓 ∈
PSH(𝑋, 𝜃). When the set in (3.1) is empty, there is nothing to prove. So let us assume
that the set is not empty.

Define
𝛾 = sup∗ {𝜂 ∈ PSH(𝑋, 𝜃) : 𝜂 ≤ 𝜑, 𝜂 ≤ 𝜓} .

Then by Proposition 1.2.1, we find that 𝛾 ∈ PSH(𝑋, 𝜃) and hence 𝛾 is a candidate for
the supremum in (3.1). Therefore, 𝛾 ≤ 𝜑 ∧ 𝜓. The reverse inequality is trivial, so

𝜑 ∧ 𝜓 = 𝛾 ∈ PSH(𝑋, 𝜃).

The commutativity and the associativity of ∧ are both trivial. □

Lemma 3.1.1 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃). Assume that 𝜑 ∧ 𝜓 ∈ PSH(𝑋, 𝜃). Then

𝜃𝑛𝜑∧𝜓 ≤ 1{𝜑∧𝜓=𝜑}𝜃𝑛𝜑 + 1{𝜑∧𝜓=𝜓}𝜃𝑛𝜓 . (3.2)

Proof We first observe that as a consequence of Lemma 2.4.1, we have

1{𝜑∧𝜓=𝜑} 𝜃
𝑛
𝜑∧𝜓 ≤ 1{𝜑∧𝜓=𝜑} 𝜃𝑛𝜑 , 1{𝜑∧𝜓=𝜑} 𝜃

𝑛
𝜑∧𝜓 ≤ 1{𝜑∧𝜓=𝜓} 𝜃𝑛𝜓 .

Applying Theorem 2.4.5 to min{𝜑, 𝜓}, we conclude that

𝜃𝑛𝜑∧𝜓 ≤ 1{𝜑∧𝜓=𝜑} 𝜃𝑛𝜑∧𝜓 + 1{𝜑∧𝜓=𝜓} 𝜃𝑛𝜑∧𝜓 ≤ 1{𝜑∧𝜓=𝜑} 𝜃𝑛𝜑 + 1{𝜑∧𝜓=𝜓} 𝜃𝑛𝜓 ,

and (3.2) is established. □

We recall that the relations ⪯ and ∼ are introduced in Definition 1.5.2.

Definition 3.1.2 Given 𝜑 ∈ PSH(𝑋, 𝜃), we define its 𝑃-envelope as follows:

𝑃𝜃 [𝜑] B sup∗ {𝜓 ∈ PSH(𝑋, 𝜃) : 𝜓 ≤ 0, 𝜓 ⪯ 𝜑} . (3.3)

Observe that by Proposition 1.2.1, we have 𝑃𝜃 [𝜑] ∈ PSH(𝑋, 𝜃) and 𝑃𝜃 [𝜑] ≤ 0.
Moreover, the definition can be equivalently described as

𝑃𝜃 [𝜑] = sup
𝐶∈Z>0

∗ (𝜑 + 𝐶) ∧𝑉𝜃 . (3.4)
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Recall that𝑉𝜃 is introduced in (2.9). For any𝐶 ∈ R, we have (𝜑+𝐶)∧𝑉𝜃 ∈ PSH(𝑋, 𝜃)
and

(𝜑 + 𝐶) ∧𝑉𝜃 ∼ 𝜑.

In other words, in (3.3), we may replace the condition 𝜓 ⪯ 𝜑 by 𝜓 ∼ 𝜑.
The idea lying behind the definition of 𝑃𝜃 [𝜑] is that we choose the least singular

element out of all potentials with the same singularity type as 𝜑. As we shall see in
Example 3.1.1 below, 𝑃𝜃 [𝜑] does not necessarily have the same singularity type as
𝜑. This forces us to define a rougher equivalence relation in Definition 6.1.1.

The envelope depends on the choice of 𝜃, but the dependence is easy to understand:

Proposition 3.1.2 Let 𝜃′ = 𝜃 + ddc𝑔 for some 𝑔 ∈ 𝐶∞ (𝑋). Then for any 𝜑 ∈
PSH(𝑋, 𝜃), we have 𝜑 − 𝑔 ∈ PSH(𝑋, 𝜃′) and

𝑃𝜃 [𝜑] ∼ 𝑃𝜃 ′ [𝜑′] .

Proof By symmetry, it suffices to show that

𝑃𝜃 [𝜑] ⪯ 𝑃𝜃 ′ [𝜑′] .

We may assume that 𝑔 ≥ 0. Then for any 𝜓 ∈ PSH(𝑋, 𝜃) with 𝜓 ⪯ 𝜑 and 𝜓 ≤ 0, we
set 𝜓′ B 𝜓 − 𝑔 ∈ PSH(𝑋, 𝜃′). Then 𝜓′ ⪯ 𝜑′ and 𝜓′ ≤ 0, so 𝜓′ ≤ 𝑃𝜃 ′ [𝜑′]. Since 𝜓
is arbitrary, it follows that

𝑃𝜃 [𝜑] − sup
𝑋

𝑔 ≤ 𝑃𝜃 [𝜑] − 𝑔 ≤ 𝑃𝜃 ′ [𝜑′] .

The 𝑃-envelope preserves the non-pluripolar masses:

Proposition 3.1.3 Suppose that 𝜃1, . . . , 𝜃𝑛 be smooth closed real (1, 1)-forms on 𝑋 .
Let 𝜑𝑖 ∈ PSH(𝑋, 𝜃𝑖) for each 𝑖 = 1, . . . , 𝑛. Then∫

𝑋

𝜃1,𝑃𝜃1 [𝜑1 ] ∧ · · · ∧ 𝜃𝑛,𝑃𝜃𝑛 [𝜑𝑛 ] =
∫
𝑋

𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 . (3.5)

This proposition together with Theorem 2.4.4 will be combined to a common
generalization in Proposition 6.1.4 after introducing the 𝑃-partial order.

Proof For each 𝐶 ∈ Z>0 and each 𝑖 = 1, . . . , 𝑛, we have

(𝜑𝑖 + 𝐶) ∧𝑉𝜃𝑖 ∼ 𝜑𝑖 .

It follows from Theorem 2.4.4 that∫
𝑋

𝜃1, (𝜑1+𝐶 )∧𝑉𝜃1
∧ · · · ∧ 𝜃𝑛, (𝜑𝑛+𝐶 )∧𝑉𝜃𝑛 =

∫
𝑋

𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 .

So (3.5) follows from (3.4) and Corollary 2.4.1. □
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Conversely, Proposition 3.1.3 characterizes the 𝑃-envelope, as we will see in a
moment in Theorem 3.1.2. We need some preparations for the proof. We first show
that the 𝑃-envelope can be regarded as a concentration of the non-pluripolar mass:

Theorem 3.1.1 Let 𝜑 ∈ PSH(𝑋, 𝜃), then

𝜃𝑛
𝑃𝜃 [𝜑 ] ≤ 1{𝑃𝜃 [𝜑 ]=0} 𝜃

𝑛. (3.6)

Proof Thanks to Lemma 3.1.1, for each 𝐶 > 0, we have

𝜃𝑛(𝜑+𝐶 )∧𝑉𝜃 ≤1{ (𝜑+𝐶 )∧𝑉𝜃=𝜑+𝐶 } 𝜃
𝑛
𝜑 + 1{ (𝜑+𝐶 )∧𝑉𝜃=𝑉𝜃 } 𝜃𝑛𝑉𝜃

≤1{𝜑+𝐶≤𝑉𝜃 } 𝜃𝑛𝜑 + 1{𝑃𝜃 [𝜑 ]=𝑉𝜃 } 𝜃𝑛𝑉𝜃 .

We wish to let 𝐶 → ∞. The dominated convergence theorem assures that
1{𝜑+𝐶≤𝑉𝜃 }𝜃

𝑛
𝜑 converges weakly to 0. While Theorem 2.4.3 and Proposition 3.1.3

guarantee that 𝜃𝑛(𝜑+𝐶 )∧𝑉𝜃 converges weakly to 𝜃𝑛
𝑃𝜃 [𝜑 ] . So we conclude that

𝜃𝑛
𝑃𝜃 [𝜑 ] ≤ 1{𝑃𝜃 [𝜑 ]=𝑉𝜃 } 𝜃

𝑛
𝑉𝜃
.

Taking Theorem 2.4.2 into consideration, we conclude (3.6). □

Using essentially the same proof, we arrive at the following conclusion:

Corollary 3.1.1 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃). Assume that 𝜑 ⪯ 𝜓. Let

𝜂 B sup
𝐶>0

∗ (𝜑 + 𝐶) ∧ 𝜓.

Then
𝜃𝑛𝜂 ≤ 1{𝜂=𝜓} 𝜃𝑛𝜓 .

Theorem 3.1.2 Assume that 𝜑 ∈ PSH(𝑋, 𝜃)>0, then

𝑃𝜃 [𝜑] = sup
{
𝜓 ∈ PSH(𝑋, 𝜃) : 𝜓 ≤ 0, 𝜑 ⪯ 𝜓,

∫
𝑋

𝜃𝑛𝜑 =

∫
𝑋

𝜃𝑛𝜓

}
. (3.7)

In particular, in this case,

𝑃𝜃 [𝑃𝜃 [𝜑]] = 𝑃𝜃 [𝜑] . (3.8)

Note that in (3.7) and (3.3), the auxiliary function 𝜓 lies on different sides of 𝜑.

Proof Let 𝜓 be a candidate of the right-hand side of (3.7). It follows from Theo-
rem 3.1.1 that ∫

{𝑃𝜃 [𝜑 ]<𝜓}
𝜃𝑛
𝑃𝜃 [𝜑 ] ≤

∫
{𝑃𝜃 [𝜑 ]<𝜓}∩{𝑃𝜃 [𝜑 ]=0}

𝜃𝑛 = 0.

On the other hand, we have

𝑃𝜃 [𝜑] ⪯ 𝑃𝜃 [𝜓], 𝜓 ⪯ 𝑃𝜃 [𝜓]



3.1. THE 𝑃-ENVELOPE 65

and all these potentials have the same mass due to Proposition 3.1.3. So the domination
principle Theorem 2.4.6 is applicable and gives

𝑃𝜃 [𝜑] ≥ 𝜓.

Hence we get the ≥ direction in (3.7).
Let 𝛾 denote the upper semi-continuous regularization of the right-hand side of

(3.7). We also find

𝑃𝜃 [𝜑] ≥ 𝛾 ≥ sup
{
𝜓 ∈ PSH(𝑋, 𝜃) : 𝜓 ≤ 0, 𝜑 ⪯ 𝜓,

∫
𝑋

𝜃𝑛𝜑 =

∫
𝑋

𝜃𝑛𝜓

}
.

On the other hand, 𝑃𝜃 [𝜑] itself is a candidate of the right-hand side of (3.7), as a
consequence of Proposition 3.1.3. Therefore, (3.7) follows.

As for (3.8), the ≥ direction is trivial. While for the other direction, let 𝜓 ∈
PSH(𝑋, 𝜃) be a potential satisfying

𝜓 ≤ 0, 𝑃𝜃 [𝜑] ⪯ 𝜓,
∫
𝑋

𝜃𝑛
𝑃𝜃 [𝜑 ] =

∫
𝑋

𝜃𝑛𝜓 .

Then it follows from Proposition 3.1.3 that

𝜓 ≤ 0, 𝜑 ⪯ 𝜓,
∫
𝑋

𝜃𝑛𝜑 =

∫
𝑋

𝜃𝑛𝜓 .

In view of (3.7), we conclude the ≤ direction of (3.8). □

In general, we do not know if (3.8) holds when
∫
𝑋
𝜃𝑛𝜑 = 0. We expect it to be wrong.

According to our general philosophy, the 𝑃-envelope operator is the correct object
only when the non-pluripolar mass is positive. We will avoid using the degenerate
case in the whole book.

Definition 3.1.3 If 𝜑 = 𝑃𝜃 [𝜑] and
∫
𝑋
𝜃𝑛𝜑 > 0, we say 𝜑 is a model potential.

We remind the readers that the notion of model potentials depends heavily on the
choice of 𝜃. When there is a risk of confusion, we also say 𝜑 is a model potential in
PSH(𝑋, 𝜃).

Remark 3.1.1 Definition 3.1.3 is different from the common definition in the literature:
We impose the extra condition

∫
𝑋
𝜃𝑛𝜑 > 0. The author believes that this is the only

case where this notion is natural. We sometimes emphasize this point by saying
𝜑 ∈ PSH(𝑋, 𝜃)>0 is a model potential.

There are plenty of model potentials:

Corollary 3.1.2 Let 𝜑 ∈ PSH(𝑋, 𝜃)>0, then 𝑃𝜃 [𝜑] is a model potential in PSH(𝑋, 𝜃).
Moreover, ∫

𝑋

𝜃𝑛
𝑃𝜃 [𝜑 ] =

∫
𝑋

𝜃𝑛𝜑 .
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Proof This follows immediately from Theorem 3.1.2 and Proposition 3.1.3. □

As we have seen in the proof of Lemma 2.4.2, we have the following interesting
property:

Proposition 3.1.4 Let 𝜑 ∈ PSH(𝑋, 𝜃). Consider a model potential 𝜙 ∈ PSH(𝑋, 𝜃)>0.
Assume that 𝜑 ⪯ 𝜙. Then

sup
{𝜙≠−∞}

(𝜑 − 𝜙) = sup
𝑋

𝜑.

Example 3.1.1 We continue our favorite example Example 1.8.1. Let 𝑋 = P1 and 𝜔
be the Fubini–Study metric. We define 𝜑 ∈ PSH(𝑋, 𝜔) as follows: For 𝑧 ∈ C, we let

𝜑(𝑧) =


− log( |𝑧 |2 + 1) +

(
− log

(
− log |𝑧 |2

))
∨

(
2 + log |𝑧 |2

)
, if |𝑧 | < 1/

√
2,

2 + log
|𝑧 |2
|𝑧 |2 + 1

, Otherwise,

while 𝜑(∞) = 2. The singularity of 𝜑 only occurs at 𝑧 = 0, close to which,
𝜑 ∼ − log

(
− log |𝑧 |2

)
. This type of singularity is therefore called the log-log type

singularity.
We claim that

𝑃𝜔 [𝜑] = 0. (3.9)

In particular, we find that 𝜑 and 𝑃𝜔 [𝜑] have different singularity types.
Due to Theorem 3.1.2, in order to verify (3.9), it suffices to verify that∫

𝑋

𝜔𝜑 = 1. (3.10)

Here 𝜔𝜑 is taken in the non-pluripolar sense. Since {0,∞} ⊆ P1 is pluripolar, this
reduces to show that ∫

C∗
ddc𝜓 =

1
4𝜋

∫
C∗
(Δ𝜓) d𝜇 = 1,

where 𝜓(𝑧) = 𝜑(𝑧) + log( |𝑧 |2 + 1) and 𝜇 is the standard Lebesgue measure on C.
Note that the Laplacian vanishes outside 𝐵(0, 0.7) since 𝜓(𝑧) = 2 + log |𝑧 |2 there,

which is harmonic. Therefore,∫
C∗

ddc𝜓 =
1

4𝜋

∫
|𝑧 |<1/

√
2
(Δ𝜓) (𝑧) d𝜇.

It is an elementary exercise to see that the right-hand side is exactly equal to 1. If you
are familiar with toric geometry, this is more or less trivial since

∇𝑟 ((− log(−𝑟)) ∨ (2 + 𝑟)) (−∞,− log 2) = [−1, 0).
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Otherwise, just try to evaluate the integral using Green’s identities. Therefore, (3.10)
is proved and our assertion (3.9) follows.

Next we give a criterion on when the rooftop operator is not identically −∞.

Proposition 3.1.5 Assume that 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃) and∫
𝑋

𝜃𝑛𝜑 +
∫
𝑋

𝜃𝑛𝜓 >

∫
𝑋

𝜃𝑛𝜑∨𝜓 . (3.11)

Then 𝜑 ∧ 𝜓 ∈ PSH(𝑋, 𝜃).
Thanks to Theorem 2.4.4, we may also replace 𝜑 ∨ 𝜓 on the right-hand side of (3.11)
by any 𝛾 ∈ PSH(𝑋, 𝜃) such that 𝜑 ∨ 𝜓 ⪯ 𝛾.

Proof Without loss of generality, we may assume that 𝜑, 𝜓 ≤ 0. For simplicity, we
write

𝜂 = 𝑃𝜃 [𝜑 ∨ 𝜓] .

Take 𝐶 > 0 large enough, so that∫
{𝜑>𝜂−𝐶 }

𝜃𝑛𝜑 +
∫
{𝜓>𝜂−𝐶 }

𝜃𝑛𝜓 >

∫
𝑋

𝜃𝑛𝜂 . (3.12)

This is possible thanks to Proposition 2.2.1(4). Fix 𝐶′ > 𝐶. Write

𝛾𝐶′ B (𝜑 ∨ (𝜂 − 𝐶′)) ∧ (𝜓 ∨ (𝜂 − 𝐶′)) .

Then observe that 𝛾𝐶′ ∼ 𝜂, and

inf
𝐶′>𝐶

𝛾𝐶′ = 𝜑 ∧ 𝜓.

Assume by contradiction that 𝜑 ∧ 𝜓 ≡ −∞, then we have

lim
𝐶′→∞

sup
𝑋

𝛾𝐶′ = −∞.

Thanks to Proposition 3.1.4, for each 𝐶′ > 𝐶,

sup
𝑋

𝛾𝐶′ = sup
{𝜂≠−∞}

(𝛾𝐶′ − 𝜂),

since 𝜂 is a model potential. It follows that

lim
𝐶′→∞

sup
{𝜂≠−∞}

(𝛾𝐶′ − 𝜂) = −∞. (3.13)

In particular, we could take 𝐶′ large enough so that

𝛾𝐶′ ≤ 𝜂 − 𝐶.

For such 𝐶′, we have
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𝑋

𝜃𝑛𝛾𝐶′ =

∫
{𝛾𝐶′ ≤𝜂−𝐶 }

𝜃𝑛𝛾𝐶′

≤
∫
{𝜑∨(𝜂−𝐶′ )≤𝜂−𝐶 }

𝜃𝑛
𝜑∨(𝜂−𝐶′ ) +

∫
{𝜓∨(𝜂−𝐶′ )≤𝜂−𝐶 }

𝜃𝑛
𝜓∨(𝜂−𝐶′ )

=2
∫
𝑋

𝜃𝑛𝜂 −
∫
{𝜑>𝜂−𝐶 }

𝜃𝑛𝜑 −
∫
{𝜓>𝜂−𝐶 }

𝜃𝑛𝜓

<

∫
𝑋

𝜃𝑛𝜂 ,

where the second line follows from Lemma 3.1.1, the fourth line follows from (3.12).
This contradicts the fact that 𝛾𝐶′ ∼ 𝜂 in view of Theorem 2.4.4. □

Proposition 3.1.6 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃). Assume that

𝜑 = 𝑃𝜃 [𝜑], 𝜓 = 𝑃𝜃 [𝜓], 𝜑 ∧ 𝜓 . −∞. (3.14)

Then
𝑃𝜃 [𝜑 ∧ 𝜓] = 𝜑 ∧ 𝜓. (3.15)

Proof Observe that

𝑃𝜃 [𝜑 ∧ 𝜓] ≤ 𝑃𝜃 [𝜑] = 𝜑, 𝑃𝜃 [𝜑 ∧ 𝜓] ≤ 𝑃𝜃 [𝜓] = 𝜓.

So the ≤ direction in (3.15) holds. The reverse direction is trivial. □

Lemma 3.1.2 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃). Assume that (3.14) holds and∫
𝑋

𝜃𝑛𝜑∧𝜓 > 0.

Suppose that 𝛾, 𝜂 ∈ PSH(𝑋, 𝜃) and satisfy

𝛾 ⪯ 𝜑, 𝜂 ⪯ 𝜓,
∫
𝑋

𝜃𝑛𝛾 =

∫
𝑋

𝜃𝑛𝜑 ,

∫
𝑋

𝜃𝑛𝜂 =

∫
𝑋

𝜃𝑛𝜓 .

Then 𝛾 ∧ 𝜂 . −∞ and ∫
𝑋

𝜃𝑛𝛾∧𝜂 =

∫
𝑋

𝜃𝑛𝜑∧𝜓 . (3.16)

Proof Without loss of generality, we may assume that

𝛾 ≤ 𝜑, 𝜂 ≤ 𝜓.

Step 1. We first show that 𝛾 ∧ 𝜓 . −∞ and∫
𝑋

𝜃𝑛𝛾∧𝜓 =

∫
𝑋

𝜃𝑛𝜑∧𝜓 . (3.17)

For any 𝑎 > 1, we define
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𝛾𝑎 B 𝑃𝜃 (𝑎𝛾 + (1 − 𝑎)𝜑) .

When 𝑎 = 1, we simply write 𝛾1 = 𝛾.
Thanks to Corollary 2.4.3, for any 𝑎 ≥ 1, we have 𝛾𝑎 ≤ 𝜑 and∫

𝑋

𝜃𝑛𝛾𝑎 =

∫
𝑋

𝜃𝑛𝜑 .

By our assumption, for any 𝑎 ≥ 1, we have∫
𝑋

𝜃𝑛𝛾𝑎 +
∫
𝑋

𝜃𝑛𝜑∧𝜓 >

∫
𝑋

𝜃𝑛𝜑 , 𝛾𝑎 ⪯ 𝜑, 𝜑 ∧ 𝜓 ⪯ 𝜑.

So Proposition 3.1.5 gives

𝛾𝑎 ∧ 𝜑 ∧ 𝜓 = 𝛾𝑎 ∧ 𝜓 ∈ PSH(𝑋, 𝜃).

In particular, for 𝑎 = 1, we find 𝛾 ∧ 𝜑 . −∞. It remains to verify (3.17).
For 𝑎 > 1, we have

𝛾 ≥ 𝑎−1𝛾𝑎 +
(
1 − 𝑎−1

)
𝜑,

thanks to the definition of 𝛾𝑎 (c.f. (2.24)). Hence

𝛾 ∧ 𝜓 ≥ 𝑎−1 (𝛾𝑎 ∧ 𝜓) +
(
1 − 𝑎−1

)
(𝜑 ∧ 𝜓) .

Therefore, by Theorem 2.4.4,∫
𝑋

𝜃𝑛𝛾∧𝜓 ≥
(
1 − 𝑎−1

)𝑛 ∫
𝑋

𝜃𝑛𝜑∧𝜓 .

Letting 𝑎 →∞ and taking Theorem 2.4.4 into account, (3.17) follows.
Step 2. We complete the proof.
For any 𝑎 > 1, we let

𝜂𝑎 B 𝑃𝜃 (𝑎𝜂 + (1 − 𝑎)𝜓) .

When 𝑎 = 1, we set 𝜂1 = 𝜂. Thanks to Corollary 2.4.3, for each 𝑎 ≥ 1, we have
𝜂𝑎 ≤ 𝜑 and ∫

𝑋

𝜃𝑛𝜂𝑎 =

∫
𝑋

𝜃𝑛𝜓 .

From Step 1, we have∫
𝑋

𝜃𝑛𝛾∧𝜓 +
∫
𝑋

𝜃𝑛𝜂𝑎 =

∫
𝑋

𝜃𝑛𝜑∧𝜓 +
∫
𝑋

𝜃𝑛𝜓 >

∫
𝑋

𝜃𝑛𝜓 .

Applying Proposition 3.1.5 again, we find

𝛾 ∧ 𝜓 ∧ 𝜂𝑎 = 𝛾 ∧ 𝜂𝑎 ∈ PSH(𝑋, 𝜃).
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When 𝑎 = 1, we find 𝛾 ∧ 𝜂 ∈ PSH(𝑋, 𝜃). It remains to prove (3.16).
By definition of 𝜂𝑎, we have

𝜂 ≥ 𝑎−1𝜂𝑎 +
(
1 − 𝑎−1

)
𝜓.

Therefore,
𝛾 ∧ 𝜂 ≥ 𝑎−1 (𝛾 ∧ 𝜂𝑎) +

(
1 − 𝑎−1

)
(𝛾 ∧ 𝜓) .

By Theorem 2.4.4, ∫
𝑋

𝜃𝑛𝛾∧𝜂 ≥
(
1 − 𝑎−1

)𝑛 ∫
𝑋

𝜃𝑛𝛾∧𝜓 .

Letting 𝑎 →∞ and applying Theorem 2.4.4 again, we arrive at (3.16). □

There is an interesting diamond-like inequality regarding the non-pluripolar
masses:

Theorem 3.1.3 Assume that 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃) and 𝜑 ∧ 𝜓 ∈ PSH(𝑋, 𝜃). Then∫
𝑋

𝜃𝑛𝜑 +
∫
𝑋

𝜃𝑛𝜓 ≤
∫
𝑋

𝜃𝑛𝜑∨𝜓 +
∫
𝑋

𝜃𝑛𝜑∧𝜓 . (3.18)

Proof We may assume that 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃)>0, as otherwise (3.18) follows imme-
diately from Theorem 2.4.4.

Step 1. We claim that it suffices to prove (3.18) with 𝑃𝜃 [𝜑] and 𝑃𝜃 [𝜓] in place
of 𝜑 and 𝜓.

In fact, as 𝜑 ∧ 𝜓 . −∞, we also have 𝑃𝜃 [𝜑] ∧ 𝑃𝜃 [𝜓] . −∞. Moreover,∫
𝑋

𝜃𝑛
𝑃𝜃 [𝜑 ] =

∫
𝑋

𝜃𝑛𝜑 ,

∫
𝑋

𝜃𝑛
𝑃𝜃 [𝜓] =

∫
𝑋

𝜃𝑛𝜓

by Proposition 3.1.3. On the other hand, as 𝐶 →∞, the potentials

((𝜑 + 𝐶) ∧𝑉𝜃 ) ∨ ((𝜓 + 𝐶) ∧𝑉𝜃 )

converge to 𝑃𝜃 [𝜑] ∨ 𝑃𝜃 [𝜓] almost everywhere. Therefore, thanks to Corollary 2.4.1
and Theorem 2.4.4, ∫

𝑋

𝜃𝑛
𝑃𝜃 [𝜑 ]∨𝑃𝜃 [𝜓] =

∫
𝑋

𝜃𝑛𝜑∨𝜓 .

Finally, we have ∫
𝑋

𝜃𝑛
𝑃𝜃 [𝜑 ]∧𝑃𝜃 [𝜓] =

∫
𝑋

𝜃𝑛𝜑∧𝜓

as well. When the left-hand side vanishes, this follows from Theorem 2.4.4. Otherwise,
it follows from Lemma 3.1.2.

In particular, (3.18) is equivalent to the corresponding result with 𝑃𝜃 [𝜑] and
𝑃𝜃 [𝜓] in place of 𝜑 and 𝜓.

Step 2. We shall assume that 𝜑 and 𝜓 are model potentials in the sequel.
We write 𝛾 = 𝜑 ∨ 𝜓 for simplicity.
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For each 𝐶 > 0, we introduce

𝜑𝐶 = 𝜑 ∨ (𝛾 − 𝐶), 𝜓𝐶 = 𝜓 ∨ (𝛾 − 𝐶).

Note that 𝜑𝐶 ∼ 𝜓𝐶 ∼ 𝛾.
For 𝐶 > 0, we compute

𝜃𝑛𝜑𝐶 =1{𝜑>𝛾−𝐶 } 𝜃
𝑛
𝜑𝐶
+ 1{𝜑≤𝛾−𝐶 } 𝜃𝑛𝜑𝐶

=1{𝜑>𝛾−𝐶 } 𝜃
𝑛
𝜑 + 1{𝜑≤𝛾−𝐶 } 𝜃𝑛𝜑𝐶 by Proposition 2.2.1

=𝜃𝑛𝜑 + 1{𝜑≤𝛾−𝐶 } 𝜃𝑛𝜑𝐶 by Theorem 3.1.1.

We also get a similar formula for 𝜃𝑛
𝜓𝐶

.
Therefore, taking Theorem 2.4.4 into consideration, we find∫

𝑋

𝜃𝑛𝛾 −
∫
𝑋

𝜃𝑛𝜑 =

∫
{𝜑≤𝛾−𝐶 }

𝜃𝑛𝜑𝐶 ,

∫
𝑋

𝜃𝑛𝛾 −
∫
𝑋

𝜃𝑛𝜓 =

∫
{𝜓≤𝛾−𝐶 }

𝜃𝑛𝜓𝐶 . (3.19)

On the other hand, using Lemma 3.1.1, we find

𝜃𝑛𝜑𝐶∧𝜓𝐶 ≤1{𝜑𝐶∧𝜓𝐶=𝜑𝐶 } 𝜃
𝑛
𝜑𝐶
+ 1{𝜑𝐶∧𝜓𝐶=𝜓𝐶 } 𝜃𝑛𝜓𝐶

≤1{𝜑𝐶∧𝜓𝐶=𝜑𝐶=0} 𝜃
𝑛
𝜑 + 1{𝜑𝐶∧𝜓𝐶=𝜓𝐶=0} 𝜃

𝑛
𝜓 + 1{𝜑≤𝛾−𝐶 } 𝜃𝑛𝜑𝐶

+ 1{𝜓≤𝛾−𝐶 } 𝜃𝑛𝜓𝐶 .

In particular,

1{𝜑𝐶∧𝜓𝐶<0} 𝜃
𝑛
𝜑𝐶∧𝜓𝐶 ≤ 1{𝜑≤𝛾−𝐶 } 𝜃

𝑛
𝜑𝐶
+ 1{𝜓≤𝛾−𝐶 } 𝜃𝑛𝜓𝐶 .

Taking integration, we find∫
{𝜑𝐶∧𝜓𝐶=0}

𝜃𝑛𝜑𝐶∧𝜓𝐶 ≥
∫
𝑋

𝜃𝑛𝛾 −
∫
{𝜑≤𝛾−𝐶 }

𝜃𝑛𝜑𝐶 −
∫
{𝜓≤𝛾−𝐶 }

𝜃𝑛𝜓𝐶

=

∫
𝑋

𝜃𝑛𝜑 +
∫
𝑋

𝜃𝑛𝜓 −
∫
𝑋

𝜃𝑛𝛾 ,

where on the first line we used the fact that 𝜑𝐶 ∧ 𝜓𝐶 ∼ 𝛾, while on the second line,
we used (3.19).

Letting 𝐶 →∞, and using Corollary 2.4.2, we conclude (3.18). □

3.1.2 Properties of the 𝑷-envelope

Let 𝜃, 𝜃1, 𝜃2 be smooth closed real (1, 1)-forms on 𝑋 .

Proposition 3.1.7 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a
Kähler manifold 𝑌 to 𝑋 . Then for any 𝜑 ∈ PSH(𝑋, 𝜃), we have
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𝑃𝜋∗ 𝜃 [𝜋∗𝜑] = 𝜋∗𝑃𝜃 [𝜑] .

In particular, a potential 𝜑 ∈ PSH(𝑋, 𝜃)>0 is model if and only if 𝜋∗𝜑 ∈
PSH(𝑌, 𝜋∗𝜃)>0 is model.

Proof This follows immediately from Proposition 1.5.3. □

We have the following concavity property of the 𝑃-envelope.

Proposition 3.1.8

(1) Suppose that 𝜑 ∈ PSH(𝑋, 𝜃) and 𝜆 ∈ R>0, then

𝑃𝜆𝜃 [𝜆𝜑] = 𝜆𝑃𝜃 [𝜑] .

(2) Suppose that 𝜑1 ∈ PSH(𝑋, 𝜃1) and 𝜑2 ∈ PSH(𝑋, 𝜃2), then

𝑃𝜃1+𝜃2 [𝜑1 + 𝜑2] ≥ 𝑃𝜃1 [𝜑1] + 𝑃𝜃2 [𝜑2] .

(3) Suppose that 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃) and 𝜑 ⪯ 𝜓, then

𝑃𝜃 [𝜑] ≤ 𝑃𝜃 [𝜓] .

Proof (1) This is obvious by definition.
(2) Suppose that 𝜓1 ∈ PSH(𝑋, 𝜃1) and 𝜓2 ∈ PSH(𝑋, 𝜃2) satisfy

𝜓𝑖 ≤ 0, 𝜓𝑖 ⪯ 𝜑𝑖

for 𝑖 = 1, 2. Then
𝜓1 + 𝜓2 ≤ 0, 𝜓1 + 𝜓2 ⪯ 𝜑1 + 𝜑2.

It follows from (3.3) that

𝜓1 + 𝜓2 ≤ 𝑃𝜃1+𝜃2 [𝜑1 + 𝜑2] .

Since 𝜓1 and 𝜓2 are arbitrary, we conclude.
(3) This is obvious by definition. □

Proposition 3.1.9 Let (𝜑 𝑗 ) 𝑗∈𝐼 be a decreasing net of potentials in PSH(𝑋, 𝜃) satis-
fying 𝑃𝜃 [𝜑 𝑗 ] = 𝜑 𝑗 for each 𝑗 ∈ 𝐼. Set 𝜑 B inf 𝑗∈𝐼 𝜑 𝑗 . Then 𝑃𝜃 [𝜑] = 𝜑.

Proof Since sup𝑋 𝜑 𝑗 = 0 for all 𝑗 ∈ 𝐼, we know that 𝜑 . −∞. It follows from
Proposition 1.2.1 that 𝜑 ∈ PSH(𝑋, 𝜃). Therefore, for each 𝑗 ∈ 𝐼,

𝜑 ≤ 𝑃𝜃 [𝜑] ≤ 𝑃𝜃 [𝜑 𝑗 ] = 𝜑 𝑗 .

Therefore, 𝜑 = 𝑃𝜃 [𝜑]. □

Proposition 3.1.10 Let (𝜖 𝑗 ) 𝑗∈𝐼 be a decreasing net in R≥0 with limit 0. Take a Kähler
form 𝜔 on 𝑋 . Consider a decreasing net 𝜑 𝑗 ∈ PSH(𝑋, 𝜃 + 𝜖 𝑗𝜔) ( 𝑗 ∈ 𝐼) satisfying
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𝑃𝜃+𝜖 𝑗𝜔
[
𝜑 𝑗

]
= 𝜑 𝑗 (3.20)

with pointwise limit 𝜑. Then

lim
𝑗∈𝐼

∫
𝑋

(𝜃 + 𝜖 𝑗𝜔)𝑛𝜑 𝑗 =
∫
𝑋

𝜃𝑛𝜑 . (3.21)

Moreover, if
∫
𝑋
𝜃𝑛𝜑 > 0, then for any prime divisor 𝐸 over 𝑋 , we have

lim
𝑗∈𝐼

𝜈
(
𝜑 𝑗 , 𝐸

)
= 𝜈(𝜑, 𝐸). (3.22)

Note that both (3.21) and (3.22) fail without the assumption (3.20).

Proof Observe that 𝜑 ∈ PSH(𝑋, 𝜃). By Theorem 2.4.4, we have

lim
𝑗∈𝐼

∫
𝑋

(𝜃 + 𝜖 𝑗𝜔)𝑛𝜑 𝑗 ≥ lim
𝑗∈𝐼

∫
𝑋

(𝜃 + 𝜖 𝑗𝜔)𝑛𝜑 =

∫
𝑋

𝜃𝑛𝜑 .

We now argue the reverse inequality.
Fix 𝑗0 ∈ 𝐼, we have

lim
𝑗∈𝐼

∫
𝑋

(𝜃 + 𝜖 𝑗𝜔)𝑛𝜑 𝑗 = lim
𝑗∈𝐼

∫
{𝜑 𝑗=0}

(𝜃 + 𝜖 𝑗𝜔)𝑛𝜑 𝑗

≤ lim
𝑗∈𝐼

∫
{𝜑 𝑗=0}

(𝜃 + 𝜖 𝑗0𝜔)𝑛𝜑 𝑗

≤
∫
{𝜑=0}

(𝜃 + 𝜖 𝑗0𝜔)𝑛𝜑 ,

where in the first line we used (3.20) and Theorem 3.1.1, and in the last line we have
used the fact that 𝜑 𝑗 ↘ 𝜑 and Corollary 2.4.2. Taking limit with respect to 𝑗0, we
arrive at the desired conclusion:

lim
𝑗∈𝐼

∫
𝑋

(𝜃 + 𝜖 𝑗𝜔)𝑛𝜑 𝑗 ≤ lim
𝑗0∈𝐼

∫
{𝜑=0}

(𝜃 + 𝜖 𝑗0𝜔)𝑛𝜑 =

∫
{𝜑=0}

𝜃𝑛𝜑 ≤
∫
𝑋

𝜃𝑛𝜑 .

This finishes the proof of (3.21).
It remains to argue (3.22). By Lemma 2.4.2 and (3.21), for any 𝜖 ∈ (0, 1) and 𝑗

big enough there exists 𝜓 𝑗 ∈ PSH(𝑋, 𝜃 + 𝜖 𝑗𝜔) such that (1 − 𝜖)𝜑 𝑗 + 𝜖𝜓 𝑗 ≤ 𝜑. This
implies that for 𝑗 big enough we have

(1 − 𝜖)𝜈(𝜑 𝑗 , 𝐸) + 𝜖𝜈(𝜓 𝑗 , 𝐸) ≥ 𝜈(𝜑, 𝐸) ≥ 𝜈(𝜑 𝑗 , 𝐸).

On the other hand, the Lelong numbers 𝜈(𝜓 𝑗 , 𝐸) admit an upper bound for various 𝑗
by Proposition 1.5.2. So taking limit with respect to 𝑗 , we conclude (3.22). □

Corollary 3.1.3 Let 𝜑 ∈ PSH(𝑋, 𝜃)>0 be a model potential. Let 𝜔 be a Kähler form
on 𝑋 . Then
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𝜑 = inf
𝜖 >0

𝑃𝜃+𝜖 𝜔 [𝜑] .

Proof Clearly, we have the ≤ direction and the right-hand side is non-positive. So by
Theorem 3.1.2, it suffices to show that they have the same mass, which follows from
Proposition 3.1.10. □

Proposition 3.1.11 Let (𝜑𝑖)𝑖∈𝐼 be an increasing net of potentials in PSH(𝑋, 𝜃)>0
uniformly bounded from above. Let 𝜑 B sup𝑖∈𝐼 ∗𝜑𝑖 . Then

sup
𝑖∈𝐼
∗𝑃𝜃 [𝜑𝑖] = 𝑃𝜃 [𝜑] .

In particular, if 𝜑𝑖 is model for all 𝑖 ∈ 𝐼, then so is 𝜑.

Proof We may assume that 𝐼 is infinite since otherwise, there is nothing to prove.
We write

𝜂 B sup
𝑖∈𝐼
∗𝑃𝜃 [𝜑𝑖] .

Then it is clear that 𝜂 ≤ 𝑃𝜃 [𝜑].
By Corollary 2.4.1, we have

lim
𝑖∈𝐼

∫
𝑋

𝜃𝑛𝜑𝑖 =

∫
𝑋

𝜃𝑛𝜑 > 0.

So by Lemma 2.4.2, we can find a decreasing net 𝜖𝑖 ↘ 0 (𝑖 ∈ 𝐼) with 𝜖𝑖 ∈ (0, 1) and
𝜓𝑖 ∈ PSH(𝑋, 𝜃) (𝑖 ∈ 𝐼) such that for all 𝑖 ∈ 𝐼,

(1 − 𝜖𝑖)𝜑 + 𝜖𝑖𝜓𝑖 ≤ 𝜑𝑖 .

By Proposition 3.1.8, we have

𝑃𝜃 [𝜑] + 𝜖𝑖𝑃𝜃 [𝜓𝑖] ≤ (1 − 𝜖𝑖)𝑃𝜃 [𝜑] + 𝜖𝑖𝑃𝜃 [𝜓𝑖] ≤ 𝜂.

Taking limit with respect to 𝑖, we conclude that 𝑃𝜃 [𝜑] ≤ 𝜂. □

3.1.3 Relative full mass classes

Let 𝜃 be a smooth closed real (1, 1)-form on 𝑋 representing a big cohomology class.
Fix a model potential 𝜙 ∈ PSH(𝑋, 𝜃)>0.

Definition 3.1.4 We define
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PSH(𝑋, 𝜃; 𝜙) B {𝜂 ∈ PSH(𝑋, 𝜃) : 𝜂 ⪯ 𝜙} ,
E∞ (𝑋, 𝜃; 𝜙) B {𝜂 ∈ PSH(𝑋, 𝜃) : 𝜂 ∼ 𝜙} ,

E(𝑋, 𝜃; 𝜙) B
{
𝜂 ∈ PSH(𝑋, 𝜃; 𝜙) :

∫
𝑋

𝜃𝑛𝜂 =

∫
𝑋

𝜃𝑛𝜙

}
,

E1 (𝑋, 𝜃; 𝜙) B
{
𝜂 ∈ E(𝑋, 𝜃; 𝜙) :

∫
𝑋

|𝜙 − 𝜂 | 𝜃𝑛𝜂 < ∞
}
.

Potentials in the last three classes are said to have relatively minimal singularities,
full mass and finite energy relative to 𝜙 respectively.

We have the following inclusions:

E∞ (𝑋, 𝜃; 𝜙) ⊆ E1 (𝑋, 𝜃; 𝜙) ⊆ E(𝑋, 𝜃; 𝜙) ⊆ PSH(𝑋, 𝜃; 𝜙). (3.23)

The only non-trivial part is the first inclusion, which follows from Theorem 2.4.4.

Remark 3.1.2 Note that this integral∫
𝑋

|𝜙 − 𝜂 | 𝜃𝑛𝜂

is defined: The locus where 𝜙 − 𝜂 is undefined is a pluripolar set, while the product
𝜃𝑛𝜂 puts no mass on pluripolar sets (Proposition 2.2.1).

Similar remarks apply when we talk about similar integrals in the sequel.

When 𝜙 = 𝑉𝜃 , we usually write

E∞ (𝑋, 𝜃;𝑉𝜃 ) =E∞ (𝑋, 𝜃),
E(𝑋, 𝜃;𝑉𝜃 ) =E(𝑋, 𝜃),
E1 (𝑋, 𝜃;𝑉𝜃 ) =E1 (𝑋, 𝜃).

Potentials in the three classes are said to have minimal singularities, full mass and
finite energy respectively. The relation (3.23) can be written as

E∞ (𝑋, 𝜃) ⊆ E1 (𝑋, 𝜃) ⊆ E(𝑋, 𝜃)

in this case.
The 𝑃-envelope can be used to characterize the full mass classes:

Proposition 3.1.12 Let 𝜑 ∈ PSH(𝑋, 𝜃). Then the following are equivalent:

(1) 𝜑 ∈ E(𝑋, 𝜃; 𝜙);
(2) 𝑃𝜃 [𝜑] = 𝜙.

Proof (2) =⇒ (1). This follows from Proposition 3.1.3.
(1) =⇒ (2). Note that 𝜙 is a candidate of 𝑃𝜃 [𝜑] as in (3.7). So 𝑃𝜃 [𝜑] = 𝜙. □

We have the following comparison principle.
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Proposition 3.1.13 (Comparison principle) Fix 𝑗 ∈ {0, . . . , 𝑛}. Let 𝜃1, . . . , 𝜃 𝑗 be
closed smooth real (1, 1)-forms on 𝑋 and 𝜓𝑖 ∈ PSH(𝑋, 𝜃𝑖) for 𝑖 = 1, . . . , 𝑗 . Suppose
that 𝜑, 𝜓 ∈ E(𝑋, 𝜃; 𝜙), then∫

{𝜑<𝜓}
𝜃
𝑛− 𝑗
𝜑 ∧ 𝜃1,𝜓1 ∧ · · · ∧ 𝜃 𝑗 ,𝜓𝑗 ≥

∫
{𝜑<𝜓}

𝜃
𝑛− 𝑗
𝜓
∧ 𝜃1,𝜓1 ∧ · · · ∧ 𝜃 𝑗 ,𝜓𝑗 . (3.24)

Proof Observe that 𝜑 ∨ 𝜓 ∈ E(𝑋, 𝜃; 𝜙), as a consequence of Theorem 2.4.4. We
compute∫

𝑋

𝜃
𝑛− 𝑗
𝜑∨𝜓 ∧ 𝜃1,𝜓1 ∧ · · · ∧ 𝜃 𝑗 ,𝜓𝑗

≥
∫
{𝜑>𝜓}

𝜃
𝑛− 𝑗
𝜑 ∧ 𝜃1,𝜓1 ∧ · · · ∧ 𝜃 𝑗 ,𝜓𝑗 +

∫
{𝜑<𝜓}

𝜃
𝑛− 𝑗
𝜓
∧ 𝜃1,𝜓1 ∧ · · · ∧ 𝜃 𝑗 ,𝜓𝑗

=

∫
𝑋

𝜃
𝑛− 𝑗
𝜑 ∧ 𝜃1,𝜓1 ∧ · · · ∧ 𝜃 𝑗 ,𝜓𝑗 −

∫
{𝜑≤𝜓}

𝜃
𝑛− 𝑗
𝜑 ∧ 𝜃1,𝜓1 ∧ · · · ∧ 𝜃 𝑗 ,𝜓𝑗

+
∫
{𝜑<𝜓}

𝜃
𝑛− 𝑗
𝜓
∧ 𝜃1,𝜓1 ∧ · · · ∧ 𝜃 𝑗 ,𝜓𝑗

=

∫
𝑋

𝜃
𝑛− 𝑗
𝜑∨𝜓 ∧ 𝜃1,𝜓1 ∧ · · · ∧ 𝜃 𝑗 ,𝜓𝑗 −

∫
{𝜑≤𝜓}

𝜃
𝑛− 𝑗
𝜑 ∧ 𝜃1,𝜓1 ∧ · · · ∧ 𝜃 𝑗 ,𝜓𝑗

+
∫
{𝜑<𝜓}

𝜃
𝑛− 𝑗
𝜓
∧ 𝜃1,𝜓1 ∧ · · · ∧ 𝜃 𝑗 ,𝜓𝑗 ,

where in the last step, we applied Proposition 3.1.3. Therefore,∫
{𝜑≤𝜓}

𝜃
𝑛− 𝑗
𝜑 ∧ 𝜃1,𝜓1 ∧ · · · ∧ 𝜃 𝑗 ,𝜓𝑗 ≥

∫
{𝜑<𝜓}

𝜃
𝑛− 𝑗
𝜓
∧ 𝜃1,𝜓1 ∧ · · · ∧ 𝜃 𝑗 ,𝜓𝑗 .

Next we replace 𝜑 by 𝜑 + 𝜖 and let 𝜖 ↘ 0, then we conclude (3.24). □

The full mass potentials are essential in resolving the Monge–Ampère equations.
We recall the following two theorems.

Theorem 3.1.4 Let 𝜇 be a non-pluripolar measure on 𝑋 with 𝜇(𝑋) =
∫
𝑋
𝜃𝑛
𝜙
. Then

there is a unique 𝜑 ∈ PSH(𝑋, 𝜃; 𝜙) such that

𝜃𝑛𝜑 = 𝜇, sup
𝑋

𝜑 = 0.

Recall that a measure 𝜇 on 𝑋 is non-pluripolar if it is a Radon measure and 𝜇(𝐾) = 0
for each pluripolar set 𝐾 ⊆ 𝑋 .

Theorem 3.1.5 Fix 𝜆 > 0. Let 𝜇 be a non-pluripolar measure on 𝑋 with 𝜇(𝑋) > 0.
Then there is a unique 𝜑 ∈ E(𝑋, 𝜃; 𝜙) such that

𝜃𝑛𝜑 = e𝜆𝜑𝜇.

Furthermore, for any 𝜓 ∈ E(𝑋, 𝜃; 𝜙) satisfying
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𝜃𝑛𝜓 ≥ e𝜆𝜓𝜇,

we have 𝜑 ≥ 𝜓.

For the proofs, we refer to [DDNL21a].
In order to handle the finite energy classes, it is convenient to introduce the

following quantity:
Definition 3.1.5 We define the Monge–Ampère energy 𝐸 𝜙

𝜃
: E∞ (𝑋, 𝜃; 𝜙) → R as

follows

𝐸
𝜙

𝜃
(𝜑) B 1

𝑛 + 1

𝑛∑︁
𝑗=0

∫
𝑋

(𝜑 − 𝜙) 𝜃 𝑗𝜑 ∧ 𝜃𝑛− 𝑗𝜙
. (3.25)

More generally, we extend 𝐸 𝜙
𝜃

to a functional 𝐸 𝜙
𝜃

: PSH(𝑋, 𝜃; 𝜙) → [−∞,∞) as
follows

𝐸
𝜙

𝜃
(𝜑) B inf

{
𝐸
𝜙

𝜃
(𝜓) : 𝜓 ∈ E∞ (𝑋, 𝜃; 𝜙), 𝜑 ≤ 𝜓

}
. (3.26)

We write 𝐸𝜃 instead of 𝐸 𝜙
𝜃

when 𝜙 = 𝑉𝜃 .
Note that

𝐸
𝜙

𝜃
(𝜑 + 𝐶) = 𝐸 𝜙

𝜃
(𝜑) + 𝐶

∫
𝑋

𝜃𝑛𝜙 (3.27)

for any 𝜑 ∈ PSH(𝑋, 𝜃; 𝜙) and 𝐶 ∈ R.

Lemma 3.1.3 The functional 𝐸 𝜙
𝜃

: E∞ (𝑋, 𝜃; 𝜙) → R is increasing. In particular, the
extended definition (3.26) agrees with (3.25) on E∞ (𝑋, 𝜃; 𝜙), and is increasing as
well.

Proof Let 𝜑, 𝜓 ∈ E∞ (𝑋, 𝜃; 𝜙), we have

(𝑛 + 1)𝐸 𝜙
𝜃
(𝜑) − (𝑛 + 1)𝐸 𝜙

𝜃
(𝜓) −

𝑛∑︁
𝑗=0
(𝜑 − 𝜓)𝜃 𝑗𝜑 ∧ 𝜃𝑛− 𝑗𝜓

=

𝑛∑︁
𝑗=0

∫
𝑋

(𝜑 − 𝜙) 𝜃 𝑗𝜑 ∧ 𝜃𝑛− 𝑗𝜙
−

𝑛∑︁
𝑗=0

∫
𝑋

(𝜓 − 𝜙) 𝜃 𝑗
𝜓
∧ 𝜃𝑛− 𝑗

𝜙
−

𝑛∑︁
𝑗=0
(𝜑 − 𝜓)𝜃 𝑗𝜑 ∧ 𝜃𝑛− 𝑗𝜓

=

𝑛∑︁
𝑗=0

∫
𝑋

(𝜑 − 𝜓)
(
𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝜙

− 𝜃 𝑗𝜑 ∧ 𝜃𝑛− 𝑗𝜓

)
+

𝑛∑︁
𝑗=0

∫
𝑋

(𝜓 − 𝜙)
(
𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝜙

− 𝜃 𝑗
𝜓
∧ 𝜃𝑛− 𝑗

𝜙

)
=

∑︁
𝑗+𝑎+𝑏=𝑛−1,
𝑗 ,𝑎,𝑏≥0

(𝑛 − 𝑗)
∫
𝑋

(𝜓 − 𝜙)
(
𝜃𝑎𝜙 ∧ 𝜃𝑏+1𝜓 ∧ 𝜃 𝑗𝜑 − 𝜃𝑎𝜙 ∧ 𝜃𝑏𝜓 ∧ 𝜃

𝑗+1
𝜑

)
+

∑︁
𝑗+𝑎+𝑏=𝑛−1,
𝑗 ,𝑎,𝑏≥0

(𝑛 − 𝑗)
∫
𝑋

(𝜓 − 𝜙)
(
𝜃
𝑗

𝜙
∧ 𝜃𝑎+1𝜑 ∧ 𝜃𝑏𝜓 − 𝜃

𝑗

𝜙
∧ 𝜃𝑎𝜑 ∧ 𝜃𝑏+1𝜓

)
=0,
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where the third equality follows from the integration by parts formula. See [Xia19,
Lu21] for the proof in the context of non-pluripolar products.

In other words,

𝐸
𝜙

𝜃
(𝜑) − 𝐸 𝜙

𝜃
(𝜓) = 1

𝑛 + 1

𝑛∑︁
𝑗=0

∫
𝑋

(𝜑 − 𝜓) 𝜃 𝑗𝜑 ∧ 𝜃𝑛− 𝑗𝜓
. (3.28)

The monotonicity follows. □

Lemma 3.1.4 Let 𝜑, 𝜓 ∈ E∞ (𝑋, 𝜃; 𝜙). Then∫
𝑋

(𝜑 − 𝜓) 𝜃𝑛𝜓 ≥ 𝐸
𝜙

𝜃
(𝜑) − 𝐸 𝜙

𝜃
(𝜓) ≥

∫
𝑋

(𝜑 − 𝜓) 𝜃𝑛𝜑 . (3.29)

Proof Thanks to (3.27), we may assume that 𝜑 ≥ 𝜓.
As we have seen in (3.28), the middle term can be written as

1
𝑛 + 1

𝑛∑︁
𝑗=0

∫
𝑋

(𝜑 − 𝜓) 𝜃 𝑗𝜑 ∧ 𝜃𝑛− 𝑗𝜓
.

We claim that for each individual 𝑗 , the inequality (3.29) holds:∫
𝑋

(𝜑 − 𝜓) 𝜃𝑛𝜓 ≥
∫
𝑋

(𝜑 − 𝜓) 𝜃 𝑗𝜑 ∧ 𝜃𝑛− 𝑗𝜓
≥

∫
𝑋

(𝜑 − 𝜓) 𝜃𝑛𝜑 .

Thanks to Proposition 3.1.13, we have∫
𝑋

(𝜑 − 𝜓) 𝜃 𝑗𝜑 ∧ 𝜃𝑛− 𝑗𝜓
=

∫ ∞

0

∫
{𝜑>𝜓−𝑡 }

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝜓

d𝑡

≥
∫ ∞

0

∫
{𝜑>𝜓−𝑡 }

𝜃𝑛𝜑 d𝑡

=

∫
𝑋

(𝜑 − 𝜓) 𝜃𝑛𝜑 .

The other inequality is similar. □

Proposition 3.1.14 Let (𝜑𝑖)𝑖∈𝐼 be a decreasing net in PSH(𝑋, 𝜃; 𝜙) with limit 𝜑 .
−∞. Then

lim
𝑖∈𝐼

𝐸
𝜙

𝜃
(𝜑𝑖) = 𝐸 𝜙𝜃 (𝜑). (3.30)

Proof Thanks to Lemma 3.1.3, we know that 𝐸 𝜙
𝜃
(𝜑𝑖) is decreasing in 𝑖. So the limit

in (3.30) exists and the ≥ inequality holds. Conversely, let 𝜓 ∈ E∞ (𝑋, 𝜃; 𝜙) and
𝜑 ≤ 𝜓. We need to show that

𝐸
𝜙

𝜃
(𝜓) ≥ lim

𝑖∈𝐼
𝐸
𝜙

𝜃
(𝜑𝑖 ∨ 𝜓).

In particular, we have reduced to the case where 𝜑 ∈ E∞ (𝑋, 𝜃; 𝜙).
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In this case, thanks to Lemma 3.1.4, we have

𝐸
𝜙

𝜃
(𝜑𝑖) − 𝐸 𝜙𝜃 (𝜑) ≤

∫
𝑋

(𝜑𝑖 − 𝜑) 𝜃𝑛𝜑 .

Our assertion follows from the dominated convergence theorem. □

Proposition 3.1.15 Let 𝜑 ∈ E(𝑋, 𝜃; 𝜙). The following are equivalent:

(1) 𝜑 ∈ E1 (𝑋, 𝜃; 𝜙);
(2) 𝐸 𝜙

𝜃
(𝜑) > −∞.

When the conditions are satisfied, (3.25) holds.
Given 𝜑, 𝜓 ∈ E1 (𝑋, 𝜃; 𝜙), we have the following cocycle equality

𝐸
𝜙

𝜃
(𝜓) − 𝐸 𝜙

𝜃
(𝜑) = 1

𝑛 + 1

𝑛∑︁
𝑗=0

∫
𝑋

(𝜓 − 𝜑) 𝜃 𝑗
𝜓
∧ 𝜃𝑛− 𝑗𝜑 . (3.31)

As a consequence of (3.31), for 𝜑 ∈ E1 (𝑋, 𝜃; 𝜙), (3.25) continues to hold.

Proof Fix 𝜑 ∈ E(𝑋, 𝜃; 𝜙). Without loss of generality, we may assume that 𝜑 ≤ 0.
(2) =⇒ (1). Assume (2). Observe that 1{𝜑>𝜙−𝐶 }𝜃𝑛𝜑∨(𝜙−𝐶 ) converges strongly

to 𝜃𝑛𝜑 as 𝐶 → ∞ (Namely, the convergence holds after integrating against any 𝐿∞
function). Therefore, for a fixed 𝐷 > 0,∫

𝑋

(𝜑 ∨ (𝜙 − 𝐷) − 𝜙) 𝜃𝑛𝜑 = lim
𝐶→∞

∫
{𝜑>𝜙−𝐶 }

(𝜑 ∨ (𝜙 − 𝐷) − 𝜙) 𝜃𝑛
𝜑∨(𝜙−𝐶 )

≥ lim
𝐶→∞

∫
{𝜑>𝜙−𝐶 }

(𝜑 ∨ (𝜙 − 𝐶) − 𝜙) 𝜃𝑛
𝜑∨(𝜙−𝐶 )

≥
∫
𝑋

(𝜑 − 𝜙) 𝜃𝑛𝜑

≥(𝑛 + 1)𝐸 𝜙
𝜃
(𝜑).

Letting 𝐷 →∞, we conclude (1).
(1) =⇒ (2). Assume (1). Thanks to Lemma 3.1.4, we know that for each 𝐶 > 0,

𝐸
𝜙

𝜃
(𝜑 ∨ (𝜙 − 𝐶)) ≥

∫
𝑋

(𝜑 ∨ (𝜙 − 𝐶) − 𝜙) 𝜃𝑛
𝜑∨(𝜙−𝐶 )

=

∫
{𝜑+𝐶>𝜙}

(𝜑 + 𝐶 − 𝜙) 𝜃𝑛𝜑 − 𝐶
∫
𝑋

𝜃𝑛𝜙

≥
∫
𝑋

(𝜑 + 𝐶 − 𝜙) 𝜃𝑛𝜑 − 𝐶
∫
𝑋

𝜃𝑛𝜙

=

∫
𝑋

(𝜑 − 𝜙) 𝜃𝑛𝜑 .

Due to Proposition 3.1.14, we have
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lim
𝐶→∞

𝐸
𝜙

𝜃
(𝜑 ∨ (𝜙 − 𝐶)) = 𝐸 𝜙

𝜃
(𝜑),

so (2) holds.
Now assume that 𝜑, 𝜓 ∈ E1 (𝑋, 𝜃; 𝜙). It remains to establish (3.31). Since the

conclusion is known when 𝜑, 𝜓 ∈ E∞ (𝑋, 𝜃;𝜓) (see (3.28)), it suffices to prove that
for each 𝑘 = 0, . . . , 𝑛, we have

lim
𝐶→∞

∫
𝑋

(𝜑 ∨ (𝜙 − 𝐶) − 𝜓 ∨ (𝜙 − 𝐶)) 𝜃𝑘
𝜑∨(𝜙−𝐶 )∧𝜃

𝑛−𝑘
𝜓∨(𝜙−𝐶 ) =

∫
𝑋

(𝜑−𝜓) 𝜃𝑘𝜑∧𝜃𝑛−𝑘𝜓 .

(3.32)
For this purpose, we may assume that 𝜑, 𝜓 ≤ 𝜙 and it suffices to establish the
following:

lim
𝐶→∞

∫
𝑋

(𝜑 ∨ (𝜙 − 𝐶) − 𝜙) 𝜃𝑘
𝜑∨(𝜙−𝐶 ) ∧ 𝜃

𝑛−𝑘
𝜓∨(𝜙−𝐶 ) =

∫
𝑋

(𝜑 − 𝜙) 𝜃𝑘𝜑 ∧ 𝜃𝑛−𝑘𝜓 . (3.33)

We compute the difference as follows:∫
𝑋

(𝜑 ∨ (𝜙 − 𝐶) − 𝜙) 𝜃𝑘
𝜑∨(𝜙−𝐶 ) ∧ 𝜃

𝑛−𝑘
𝜓∨(𝜙−𝐶 ) −

∫
𝑋

(𝜑 − 𝜙) 𝜃𝑘𝜑 ∧ 𝜃𝑛−𝑘𝜓

=

∫
{min{𝜑,𝜓}>𝜙−𝐶 }

(𝜑 − 𝜙) 𝜃𝑘𝜑 ∧ 𝜃𝑛−𝑘𝜓 −
∫
𝑋

(𝜑 − 𝜙) 𝜃𝑘𝜑 ∧ 𝜃𝑛−𝑘𝜓

+
∫
{min{𝜑,𝜓}≤𝜙−𝐶 }

(𝜑 ∨ (𝜙 − 𝐶) − 𝜙) 𝜃𝑘
𝜑∨(𝜙−𝐶 ) ∧ 𝜃

𝑛−𝑘
𝜓∨(𝜙−𝐶 )

= −
∫
{min{𝜑,𝜓}≤𝜙−𝐶 }

(𝜑 − 𝜙) 𝜃𝑘𝜑 ∧ 𝜃𝑛−𝑘𝜓 +

+
∫
{min{𝜑,𝜓}≤𝜙−𝐶 }

(𝜑 ∨ (𝜙 − 𝐶) − 𝜙) 𝜃𝑘
𝜑∨(𝜙−𝐶 ) ∧ 𝜃

𝑛−𝑘
𝜓∨(𝜙−𝐶 )

The first term tends to 0 as 𝐶 →∞ thanks to the fact that 𝐸 𝜙
𝜃
(𝜑) > −∞, so we only

have to establish the same for the second term. It then suffices to prove the following:

lim
𝐶→∞

𝐶

∫
{𝜑≤𝜙−𝐶 }

𝜃𝑘
𝜑∨(𝜙−𝐶 ) ∧ 𝜃

𝑛−𝑘
𝜓∨(𝜙−𝐶 ) =0,

lim
𝐶→∞

𝐶

∫
{𝜓≤𝜙−𝐶 }

𝜃𝑘
𝜑∨(𝜙−𝐶 ) ∧ 𝜃

𝑛−𝑘
𝜓∨(𝜙−𝐶 ) =0.

(3.34)

By symmetry, it suffices to hand the first. Observe the following inclusions:

{𝜑 ≤ 𝜙 − 𝐶} ⊆
{
𝜑 ∨ (𝜙 − 𝐶) ≤ 1

2
(𝜓 ∨ (𝜙 − 𝐶) + 𝜙 − 𝐶)

}
⊆ {𝜑 ≤ 𝜙 − 𝐶/2}.

By Proposition 3.1.13 and the obvious inequality

𝜃𝑛−𝑘
𝜓∨(𝜙−𝐶 ) ≤ 2𝑛−𝑘𝜃𝑛−𝑘1

2 (𝜓∨(𝜙−𝐶 )+𝜙−𝐶 )
,
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we find

𝐶

∫
{𝜑≤𝜙−𝐶 }

𝜃𝑘
𝜑∨(𝜙−𝐶 ) ∧ 𝜃

𝑛−𝑘
𝜓∨(𝜙−𝐶 )

≤𝐶
∫
{𝜑∨(𝜙−𝐶 )≤ 1

2 (𝜓∨(𝜙−𝐶 )+𝜙−𝐶 )}
𝜃𝑘
𝜑∨(𝜙−𝐶 ) ∧ 𝜃

𝑛−𝑘
𝜓∨(𝜙−𝐶 )

≤2𝑛−𝑘𝐶
∫
{𝜑∨(𝜙−𝐶 )≤ 1

2 (𝜓∨(𝜙−𝐶 )+𝜙−𝐶 )}
𝜃𝑘
𝜑∨(𝜙−𝐶 ) ∧ 𝜃

𝑛−𝑘
1
2 (𝜓∨(𝜙−𝐶 )+𝜙−𝐶 )

≤2𝑛−𝑘𝐶
∫
{𝜑∨(𝜙−𝐶 )≤ 1

2 (𝜓∨(𝜙−𝐶 )+𝜙−𝐶 ) }
𝜃𝑛
𝜑∨(𝜙−𝐶 )

≤2𝑛−𝑘𝐶
∫
{𝜑≤𝜙−𝐶/2}

𝜃𝑛
𝜑∨(𝜙−𝐶 )

=2𝑛−𝑘𝐶
∫
{𝜑≤𝜙−𝐶/2}

𝜃𝑛𝜑 .

On the other hand,

lim
𝐶→∞

𝐶

∫
{𝜑≤𝜙−𝐶 }

𝜃𝑛𝜑 ≤ lim
𝐶→∞

∫
{𝜑≤𝜙−𝐶 }

(𝜙 − 𝜑) 𝜃𝑛𝜑 = 0,

since 𝜑 ∈ E1 (𝑋, 𝜃; 𝜙). We conclude (3.34). □

Proposition 3.1.16 Let 𝜑, 𝜓 ∈ E1 (𝑋, 𝜃; 𝜙). Then∫
𝑋

(𝜓 − 𝜑) 𝜃𝑛𝜓 ≤ 𝐸
𝜙

𝜃
(𝜓) − 𝐸 𝜙

𝜃
(𝜑) ≤

∫
𝑋

(𝜓 − 𝜑) 𝜃𝑛𝜑 . (3.35)

Proof Thanks to (3.32), this can be reduced to the case where 𝜑, 𝜓 ∈ E∞ (𝑋, 𝜃; 𝜙),
which is established in Lemma 3.1.4. □

Proposition 3.1.17 Let (𝜑 𝑗 ) 𝑗∈𝐼 be a net in E1 (𝑋, 𝜃; 𝜙). Assume that 𝜑 ∈ E1 (𝑋, 𝜃; 𝜙)
and either one of the following conditions holds:

(1) (𝜑 𝑗 ) 𝑗 is decreasing with limit 𝜑;
(2) (𝜑 𝑗 ) 𝑗 is increasing with almost everywhere limit 𝜑.

Then
lim
𝑗∈𝐼

𝐸
𝜙

𝜃
(𝜑 𝑗 ) = 𝐸 𝜙𝜃 (𝜑). (3.36)

Proof The decreasing case is already proved in Proposition 3.1.14, so let us focus on
the case where (𝜑 𝑗 ) is increasing.

Step 1. We first prove the result when 𝜑 𝑗 , 𝜑 ∈ E∞ (𝑋, 𝜃; 𝜙) for each 𝑗 ∈ 𝐼.
In fact, in this case, by (3.28), we have

0 ≤𝐸 𝜙
𝜃
(𝜑) − 𝐸 𝜙

𝜃
(𝜑 𝑗 )

=
1

𝑛 + 1

𝑛∑︁
𝑘=0

∫
𝑋

(𝜑 − 𝜑 𝑗 ) 𝜃𝑘𝜑 ∧ 𝜃𝑛−𝑘𝜑 𝑗
.
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We then apply Theorem 2.4.3 to conclude that the right-hand side converges to 0.
Step 2. We prove the general case. The ≤ direction in (3.36) follows from the

monotonicity of 𝐸 𝜙
𝜃

, as proved in Lemma 3.1.3. It remains to prove the ≥ direction.
Without loss of generality, we may assume that 𝜑 ≤ 0. For each 𝐶 > 0 and 𝑗 ∈ 𝐼,

we let
𝜑𝐶 B 𝜑 ∨ (𝜙 − 𝐶), 𝜑 𝑗 ,𝐶 B 𝜑 𝑗 ∨ (𝜙 − 𝐶).

By Step 1, for each 𝐶 > 0, we have

lim
𝑗∈𝐼

𝐸
𝜙

𝜃
(𝜑 𝑗 ,𝐶 ) = 𝐸 𝜙𝜃 (𝜑𝐶 ) ≥ 𝐸

𝜙

𝜃
(𝜑).

It suffices therefore to show that

lim
𝐶→∞

𝐸
𝜙

𝜃
(𝜑 𝑗 ,𝐶 ) − 𝐸 𝜙𝜃 (𝜑 𝑗 ) = 0

uniformly in 𝑗 ∈ 𝐼.
Fix 𝑖 ∈ 𝐼. Fix 𝑗 ∈ 𝐼 such that 𝑗 ≥ 𝑖, we compute

𝐸
𝜙

𝜃
(𝜑 𝑗 ,𝐶 ) − 𝐸 𝜙𝜃 (𝜑 𝑗 )

≤
∫
𝑋

(
𝜑 𝑗 ,𝐶 − 𝜑 𝑗

)
𝜃𝑛𝜑 𝑗 by Proposition 3.1.16

≤
∫
{𝜑 𝑗≤𝜙−𝐶 }

(𝜙 − 𝐶 − 𝜑 𝑗 ) 𝜃𝑛𝜑 𝑗

=

∫ ∞

𝐶

∫
{𝜑 𝑗≤𝜙−𝐶 }

𝜃𝑛𝜑 𝑗 d𝑡

≤
∫ ∞

𝐶

∫
{𝜑𝑖≤(𝜑 𝑗+𝜙−𝐶 )/2}

𝜃𝑛𝜑 𝑗 d𝑡

≤2𝑛
∫ ∞

𝐶

∫
{𝜑𝑖≤(𝜑 𝑗+𝜙−𝐶 )/2}

𝜃𝑛(𝜑 𝑗+𝜙−𝐶 )/2 d𝑡

≤2𝑛
∫ ∞

𝐶

∫
{𝜑𝑖≤(𝜑 𝑗+𝜙−𝐶 )/2}

𝜃𝑛𝜑𝑖 d𝑡 by Proposition 3.1.13

≤2𝑛
∫ ∞

𝐶

∫
{𝜑𝑖≤𝜙−𝐶/2}

𝜃𝑛𝜑𝑖 d𝑡

=2𝑛+1
∫
{𝜑𝑖<𝜙−𝐶/2}

(𝜙 − 𝜑𝑖 − 𝐶/2) 𝜃𝑛𝜑𝑖

=2𝑛+1
∫
{𝜑𝑖<𝜙−𝐶/2}

(𝜙 − 𝜑𝑖) 𝜃𝑛𝜑𝑖 − 𝐶2−𝑛
∫
{𝜑𝑖<𝜙−𝐶/2}

𝜃𝑛𝜑𝑖 .

Both terms converge to 0 as 𝐶 → ∞ as we have seen in the proof of Proposi-
tion 3.1.15. □

Next we want to prove that E1 (𝑋, 𝜃; 𝜙) is closed under the rooftop operator. For
this purpose, we shall need a few preliminary results.
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We shall approximate the rooftop operator by solutions of certain Monge–Ampère
equations.

Lemma 3.1.5 Let 𝜑, 𝜓 ∈ E∞ (𝑋, 𝜃; 𝜙). Then there is 𝛾 ∈ E∞ (𝑋, 𝜃; 𝜙) such that

𝜃𝑛𝛾 = e𝛾−𝜑 𝜃𝑛𝜑 + e𝛾−𝜓 𝜃𝑛𝜓 . (3.37)

It is not clear if
∫
𝑋

e−𝜑𝜃𝑛𝜑 < ∞, hence we cannot say that e−𝜑𝜃𝑛𝜑 + e−𝜓𝜃𝑛
𝜓

is a Radon
measure. Hence Theorem 3.1.5 is not directly applicable.

Proof For each 𝑗 ≥ 1, let 𝜑 𝑗 B 𝜑 ∨ (− 𝑗), 𝜓 𝑗 B 𝜓 ∨ (− 𝑗). Let

𝜇 𝑗 = e−𝜑 𝑗 𝜃𝑛𝜑 + e−𝜓𝑗 𝜃𝑛𝜓 .

By Theorem 3.1.5, we can find 𝛾 𝑗 ∈ E(𝑋, 𝜃; 𝜙) such that

𝜃𝑛𝛾 𝑗 = e𝛾 𝑗 𝜇 𝑗 . (3.38)

Take a constant 𝐶 > 0 so that 𝜓 − 2𝐶 ≤ 𝜑 ≤ 𝜓 + 2𝐶. Let

𝜂 B
𝜑 + 𝜓

2
− 𝐶 − 𝑛 log 2.

Then 𝜂 ∈ E∞ (𝑋, 𝜃; 𝜙) and a simple computation shows that

𝜃𝑛𝜂 ≥ e𝜂𝜇 𝑗 .

Hence, 𝛾 𝑗 ≥ 𝜂 by Theorem 3.1.5. By Theorem 3.1.5 again, 𝛾 𝑗 is decreasing in 𝑗 , let
𝛾 = inf 𝑗>0 𝛾 𝑗 . Then 𝛾 ≥ 𝜂, hence 𝛾 ∈ E∞ (𝑋, 𝜃; 𝜙).

Now observe that as 𝑗 → ∞, 𝜃𝑛𝛾 𝑗 converges weakly to 𝜃𝑛𝛾 , as a consequence of
Theorem 2.4.3. Finally observe that there is a constant 𝐶′ > 0 so that

𝛾1 ≤ 𝜑 + 𝐶′, 𝛾1 ≤ 𝜓 + 𝐶′.

Therefore, for each 𝑗 > 0,

𝛾 𝑗 ≤ 𝜑 𝑗 + 𝐶′, 𝛾 𝑗 ≤ 𝜓 𝑗 + 𝐶′.

Hence, (3.37) follows from (3.38) by letting 𝑗 →∞. □

We also need a few integral estimates.

Lemma 3.1.6 Let 𝜑, 𝜓, 𝛾 ∈ E(𝑋, 𝜃; 𝜙). Assume that 𝛾 ≥ 𝜑 ∨ 𝜓. Then∫
𝑋

(𝛾 − 𝜑) 𝜃𝑛𝜓 ≤ 2
∫
𝑋

(𝛾 − 𝜑) 𝜃𝑛𝜑 + 2
∫
𝑋

(𝛾 − 𝜓) 𝜃𝑛𝜓 .

Proof Observe that

{𝛾 > 𝜑 + 2𝑡} ⊆ {𝛾 > 𝜓 + 𝑡} ∪ {𝜓 > 𝜑 + 𝑡} . (3.39)
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So ∫
𝑋

(𝛾 − 𝜑) 𝜃𝑛𝜓 =2
∫ ∞

0

∫
{𝛾>𝜑+2𝑡 }

𝜃𝑛𝜓 d𝑡

≤2
∫ ∞

0

∫
{𝛾>𝜓+𝑡 }

𝜃𝑛𝜓 d𝑡 + 2
∫ ∞

0

∫
{𝜓>𝜑+𝑡 }

𝜃𝑛𝜓 d𝑡

≤2
∫
𝑋

(𝛾 − 𝜓) 𝜃𝑛𝜓 + 2
∫ ∞

0

∫
{𝜓>𝜑+𝑡 }

𝜃𝑛𝜑 d𝑡

≤2
∫
𝑋

(𝛾 − 𝜓) 𝜃𝑛𝜓 + 2
∫ ∞

0

∫
{𝛾>𝜑+𝑡 }

𝜃𝑛𝜑 d𝑡

=2
∫
𝑋

(𝛾 − 𝜓) 𝜃𝑛𝜓 + 2
∫
𝑋

(𝛾 − 𝜑) 𝜃𝑛𝜑 ,

where the second line follows from (3.39), while the third line follows from Proposi-
tion 3.1.13. □

Lemma 3.1.7 Let 𝜑, 𝜓, 𝛾 ∈ E(𝑋, 𝜃; 𝜙). Assume that 𝜑 ≤ 𝜓 ≤ 𝛾. Then∫
𝑋

(𝛾 − 𝜓) 𝜃𝑛𝜓 ≤ 2𝑛+1
∫
𝑋

(𝛾 − 𝜑) 𝜃𝑛𝜑 .

Proof Observe that for any 𝑡 ≥ 0,

{𝛾 > 𝜓 +2𝑡} ⊆ {(𝛾 + 𝜓)/2 > 𝜓 + 𝑡} ⊆ {(𝛾 + 𝜓)/2 > 𝜑 + 𝑡} ⊆ {𝛾 > 𝜑+ 𝑡}. (3.40)

So∫
𝑋

(𝛾 − 𝜓) 𝜃𝑛𝜓 =2
∫ ∞

0

∫
{𝛾−𝜓>2𝑡 }

𝜃𝑛𝜓 d𝑡

≤2
∫ ∞

0

∫
{ (𝛾+𝜓)/2>𝜓+𝑡 }

𝜃𝑛𝜓 d𝑡 by (3.40)

≤2𝑛+1
∫ ∞

0

∫
{ (𝛾+𝜓)/2>𝜑+𝑡 }

𝜃𝑛(𝛾+𝜓)/2 d𝑡

≤2𝑛+1
∫ ∞

0

∫
{ (𝛾+𝜓)/2>𝜑+𝑡 }

𝜃𝑛𝜑 d𝑡 by Proposition 3.1.13

≤2𝑛+1
∫ ∞

0

∫
{𝛾>𝜑+𝑡 }

𝜃𝑛𝜑 d𝑡 by (3.40)

=2𝑛+1
∫
𝑋

(𝛾 − 𝜑) 𝜃𝑛𝜑 by Proposition 3.1.13.

Lemma 3.1.8 Let 𝜑 𝑗 , 𝛾 ∈ E1 (𝑋, 𝜃; 𝜙) ( 𝑗 ∈ Z>0). Assume that 𝜑 𝑗 ≤ 𝛾 for each 𝑗 and
that 𝜑 𝑗 converges to 𝜑 ∈ PSH(𝑋, 𝜃) with respect to the 𝐿1-topology. Assume that
there is a constant 𝐴 > 0 such that for any 𝑗 > 0,∫

𝑋

(𝜑 𝑗 − 𝛾) 𝜃𝑛𝜑 𝑗 ≥ −𝐴.
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Then 𝜑 ∈ E1 (𝑋, 𝜃; 𝜙) and ∫
𝑋

(𝜑 − 𝛾) 𝜃𝑛𝜑 ≥ −2𝑛+3𝐴. (3.41)

Proof Step 1. Assume that (𝜑 𝑗 ) 𝑗 is decreasing. In this case, we prove∫
𝑋

(𝜑 − 𝛾) 𝜃𝑛𝜑 ≥ −4𝐴.

By Lemma 3.1.6, for any 𝑗 , 𝑘 > 0,∫
𝑋

(𝜑 𝑗 − 𝛾) 𝜃𝑛𝜑𝑘 ≥ −4𝐴.

For any 𝐶 > 0,∫
𝑋

(
𝜑 𝑗 ∨ (𝛾 − 𝐶) − 𝛾

)
𝜃𝑛𝜑𝑘 ≥

∫
𝑋

(𝜑 𝑗 − 𝛾) 𝜃𝑛𝜑𝑘 ≥ −4𝐴.

Letting 𝑘 →∞, by Theorem 2.4.3, we find∫
𝑋

(
𝜑 𝑗 ∨ (𝛾 − 𝐶) − 𝛾

)
𝜃𝑛𝜑 ≥ −4𝐴.

Letting 𝑗 →∞, by the monotone convergence theorem, we get∫
𝑋

(𝜑 ∨ (𝛾 − 𝐶) − 𝛾) 𝜃𝑛𝜑 ≥ −4𝐴.

Then we let 𝐶 →∞, again by the monotone convergence theorem,∫
𝑋

(𝜑 − 𝛾) 𝜃𝑛𝜑 ≥ −4𝐴.

Step 2. In general, let
𝜓 𝑗 = sup

𝑘≥ 𝑗
∗𝜑𝑘 .

Then 𝜑 = inf 𝑗>0 𝜓 𝑗 .
For each 𝐶 > 0, let

𝜓 𝑗 ,𝐶 = 𝜓 𝑗 ∨ (𝛾 − 𝐶), 𝜑𝐶 = 𝜑 ∨ (𝛾 − 𝐶).

Observe that 𝜓 𝑗 ,𝐶 decreases to 𝜑𝐶 as 𝑗 →∞. Moreover,

𝛾 ≥ 𝜓 𝑗 ,𝐶 ≥ 𝜓 𝑗 ≥ 𝜑 𝑗 .

By Lemma 3.1.7, ∫
𝑋

(𝜓 𝑗 ,𝐶 − 𝛾) 𝜃𝑛𝜓𝑗,𝐶 ≥ −2𝑛+1𝐴.
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By Step 1, ∫
𝑋

(𝜑𝐶 − 𝛾) 𝜃𝑛𝜑𝐶 ≥ −2𝑛+3𝐴. (3.42)

In particular, ∫
{𝜑>𝛾−𝐶 }

(𝜑 − 𝛾) 𝜃𝑛𝜑 ≥ −2𝑛+3𝐴.

Letting 𝐶 →∞, we conclude (3.41).
In order to conclude that 𝜑 ∈ E1 (𝑋, 𝜃; 𝜙), we still have to prove that 𝜑 ∈ E(𝑋, 𝜃; 𝜙).

In fact, by (3.42),∫
{𝜑≤𝛾−𝐶 }

𝜃𝑛𝜑𝐶 ≤
1
𝐶

∫
𝑋

(𝛾 − 𝜑𝐶 ) 𝜃𝑛𝜑𝐶 ≤ 2𝑛+3𝐶−1𝐴.

Using Theorem 2.4.4, we find∫
𝑋

𝜃𝑛𝜙 =

∫
𝑋

𝜃𝑛𝜑𝐶 =

∫
{𝜑≤𝛾−𝐶 }

𝜃𝑛𝜑𝐶 +
∫
{𝜑>𝛾−𝐶 }

𝜃𝑛𝜑 .

Letting 𝐶 →∞, we conclude that∫
𝑋

𝜃𝑛𝜑 =

∫
𝑋

𝜃𝑛𝜙 .

Proposition 3.1.18 Assume that 𝜑, 𝜓 ∈ E(𝑋, 𝜃; 𝜙) (resp. E1 (𝑋, 𝜃; 𝜙), E∞ (𝑋, 𝜃; 𝜙)),
then so is 𝜑 ∧ 𝜓.

Proof The case of E∞ (𝑋, 𝜃; 𝜙) is trivial.
We consider the case E(𝑋, 𝜃; 𝜙). It follows from Proposition 3.1.5 that 𝜑 ∧ 𝜓 ∈

PSH(𝑋, 𝜃). By Theorem 3.1.3, we have∫
𝑋

𝜃𝑛𝜑∧𝜓 ≥
∫
𝑋

𝜃𝑛𝜙 .

By Theorem 2.4.4, equality holds. By Theorem 3.1.2, we conclude that

𝑃𝜃 [𝜑 ∧ 𝜓] = 𝜙.

Finally, assume that 𝜑, 𝜓 ∈ E1 (𝑋, 𝜃; 𝜙). We may assume that 𝜑, 𝜓 ≤ 𝜙. For each
𝑗 ≥ 1, consider the approximations:

𝜑 𝑗 B 𝜑 ∨ (𝜙 − 𝑗) , 𝜓 𝑗 B 𝜓 ∨ (𝜙 − 𝑗).

By Lemma 3.1.5 below, we can take 𝛾 𝑗 ∈ E∞ (𝑋, 𝜃; 𝜙) solving the following equation:

𝜃𝑛𝛾 𝑗 = e𝛾 𝑗−𝜑 𝑗 𝜃𝑛𝜑 𝑗 + e𝛾 𝑗−𝜓𝑗 𝜃𝑛𝜓𝑗 .

It follows from Theorem 3.1.5 that 𝛾 𝑗 ≤ 𝜑 𝑗 ∧ 𝜓 𝑗 . We claim that
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𝑋

(𝛾 𝑗 − 𝜙) 𝜃𝑛𝛾 𝑗 > −𝐶 (3.43)

for some 𝐶 independent of 𝑗 .
Assume the claim is true for now. We get immediately that

sup
𝑋

𝛾 𝑗 = sup
𝑋\{𝜙=−∞}

(𝛾 𝑗 − 𝜙) ≥ −𝐶/
∫
𝑋

𝜃𝑛𝜙 ,

where the first equality follows from Proposition 3.1.4. By Proposition 1.5.1, after
possibly subtracting a subsequence, we may assume that 𝛾 𝑗 → 𝛾 ∈ PSH(𝑋, 𝜃) in
𝐿1-topology. Then 𝛾 ∈ E1 (𝑋, 𝜃; 𝜙) by Lemma 3.1.8. Moreover, since 𝛾 𝑗 ≤ 𝜑 𝑗 ∧ 𝜓 𝑗 ,
we know that 𝛾 ≤ 𝜑 ∧ 𝜓. In particular, 𝜑 ∧ 𝜓 ∈ PSH(𝑋, 𝜃). Now by Lemma 3.1.7,
𝜑 ∧ 𝜓 ∈ E1 (𝑋, 𝜃; 𝜙).

Now we prove the claim (3.43). By symmetry, it suffices to prove∫
𝑋

(𝜙 − 𝛾 𝑗 )e𝛾 𝑗−𝜑 𝑗 𝜃𝑛𝜑 𝑗 ≤ 𝐶.

But note that∫
𝑋

(𝜙 − 𝛾 𝑗 )e𝛾 𝑗−𝜑 𝑗 𝜃𝑛𝜑 𝑗 =
∫
𝑋

(𝜙 − 𝜑 𝑗 )e𝛾 𝑗−𝜑 𝑗 𝜃𝑛𝜑 𝑗 +
∫
𝑋

(𝜑 𝑗 − 𝛾 𝑗 )e𝛾 𝑗−𝜑 𝑗 𝜃𝑛𝜑 𝑗 .

But 𝑥𝑒−𝑥 ≤ 𝐶 when 𝑥 ≥ 0, so the second term is bounded, it remains to prove∫
𝑋

(𝜙 − 𝜑 𝑗 )e𝛾 𝑗−𝜑 𝑗 𝜃𝑛𝜑 𝑗 ≤ 𝐶.

As 𝛾 𝑗 ≤ 𝜑 𝑗 , it suffices to prove∫
𝑋

(𝜙 − 𝜑 𝑗 ) 𝜃𝑛𝜑 𝑗 ≤ 𝐶. (3.44)

We compute ∫
𝑋

(𝜑 𝑗 − 𝜙) 𝜃𝑛𝜑 𝑗 ≥ (𝑛 + 1)𝐸 𝜙
𝜃
(𝜑 𝑗 )

Thus, (3.44) follows from Proposition 3.1.14. □

Proposition 3.1.19 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃) be potentials such that 𝜑 ⪯ 𝜓 ⪯ 𝜙. Assume
that 𝜑 ∈ E(𝑋, 𝜃; 𝜙) (resp. E1 (𝑋, 𝜃; 𝜙), E∞ (𝑋, 𝜃; 𝜙)), then so is 𝜓.

Proof We may assume that 𝜑 ≤ 𝜓.
The case E∞ (𝑋, 𝜃; 𝜙) is trivial. The case E(𝑋, 𝜃; 𝜙) follows from Theorem 2.4.4.

The case E1 (𝑋, 𝜃; 𝜙) follows from the characterization of E1 (𝑋, 𝜃; 𝜙) in Proposi-
tion 3.1.15 and the monotonicity of 𝐸 𝜙

𝜃
proved in Lemma 3.1.3. □

Proposition 3.1.20 Let (𝜑𝑖)𝑖∈𝐼 be a uniformly bounded from above non-empty family
in E(𝑋, 𝜃; 𝜙) (resp. E1 (𝑋, 𝜃; 𝜙), E∞ (𝑋, 𝜃; 𝜙)), then so is sup𝑖∈𝐼 ∗𝜑𝑖 .
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Proof Thanks to Proposition 3.1.19, it suffices to show that

sup
𝑖∈𝐼
∗𝜑𝑖 ⪯ 𝜙.

Since 𝜙 is model and 𝜑𝑖 ⪯ 𝜙, we know that

𝜑𝑖 − sup
𝑋

𝜑𝑖 ≤ 𝜙

for any 𝑖 ∈ 𝐼. By assumption (𝜑𝑖)𝑖∈𝐼 is uniformly bounded from above, our assertion
follows. □

Proposition 3.1.21 Let 𝜑, 𝜓 ∈ E(𝑋, 𝜃; 𝜙). Then

sup
𝐶>0

∗ (𝜑 + 𝐶) ∧ 𝜓 = 𝜓.

Proof Since for each 𝐶 ≥ 0,

(𝜑 ∧ 𝜓 + 𝐶) ∧ 𝜓 ≤ (𝜑 + 𝐶) ∧ 𝜓 ≤ 𝜓,

we may replace 𝜑 by 𝜑 ∧ 𝜓 (c.f. Proposition 3.1.18) and assume that 𝜑 ≤ 𝜓.
Let

𝛾 B sup
𝐶>0

∗ (𝜑 + 𝐶) ∧ 𝜓.

Observe that 𝛾 ≤ 𝜓. Then Corollary 3.1.1 guarantees that∫
{𝛾<𝜓}

𝜃𝑛𝛾 = 0.

Therefore, we could apply Theorem 2.4.6 to conclude that 𝛾 = 𝜓. □

Lemma 3.1.9 Let 𝜑, 𝜓 ∈ E∞ (𝑋, 𝜃; 𝜙). Define

𝜂𝑡 B ((1 − 𝑡)𝜑 + 𝑡𝜓) ∧ 𝜓, 𝑡 ∈ [0, 1] .

Then 𝐸 𝜙
𝜃
(𝜂𝑡 ) is differentiable for 𝑡 ∈ [0, 1] and

d
d𝑡
𝐸
𝜙

𝜃
(𝜂𝑡 ) =

∫
𝑋

(𝜓 −min{𝜑, 𝜓}) 𝜃𝑛𝜂𝑡 . (3.45)

Proof Let us prove (3.45) with right-derivative instead of derivative, and 𝑡 ∈ [0, 1).
The left-derivative case is completely parallel.

For each 𝑡 ∈ [0, 1], we let

𝑓𝑡 = min{(1 − 𝑡)𝜑 + 𝑡𝜓, 𝜓}.

Fix 𝑡 ∈ [0, 1) and 𝑠 > 0 small enough so that 𝑡+𝑠 < 1. Thanks to Proposition 3.1.16,
we have
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𝐸
𝜙

𝜃
(𝜂𝑡+𝑠) − 𝐸 𝜙𝜃 (𝜂𝑡 ) ≤

∫
𝑋

(𝜂𝑡+𝑠 − 𝜂𝑡 ) 𝜃𝑛𝜂𝑡

=

∫
𝑋

(𝜂𝑡+𝑠 − 𝑓𝑡 ) 𝜃𝑛𝜂𝑡 by Lemma 3.1.1

≤
∫
𝑋

( 𝑓𝑡+𝑠 − 𝑓𝑡 ) 𝜃𝑛𝜂𝑡

=𝑠

∫
𝑋

(𝜓 −min{𝜑, 𝜓}) 𝜃𝑛𝜂𝑡 .

Similarly, we get

𝐸
𝜙

𝜃
(𝜂𝑡+𝑠) − 𝐸 𝜙𝜃 (𝜂𝑡 ) ≥ 𝑠

∫
𝑋

(𝜓 −min{𝜑, 𝜓}) 𝜃𝑛𝜂𝑡+𝑠 .

Observe that 𝜂𝑡+𝑠 converges in capacity (in fact, even uniformly) to 𝜂𝑡 as 𝑠 → 0+.
The desired result (3.45) is then just a consequence of Theorem 2.4.3. □

In particular, we have a diamond-like inequality.

Corollary 3.1.4 Let 𝜑, 𝜓 ∈ E1 (𝑋, 𝜃; 𝜙). Then

𝐸
𝜙

𝜃
(𝜑 ∨ 𝜓) + 𝐸 𝜙

𝜃
(𝜑 ∧ 𝜓) ≥ 𝐸 𝜙

𝜃
(𝜓) + 𝐸 𝜙

𝜃
(𝜑). (3.46)

Proof Step 1. We first reduce to the case where 𝜑, 𝜓 ∈ E∞ (𝑋, 𝜃; 𝜙).
Assume that (3.46) is known in that case. For each 𝐶 > 0, we let

𝜑𝐶 = 𝜑 ∨ (𝜙 − 𝐶), 𝜓𝐶 = 𝜓 ∨ (𝜙 − 𝐶).

Then
𝐸
𝜙

𝜃
(𝜑𝐶 ∨ 𝜓𝐶 ) + 𝐸 𝜙𝜃 (𝜑𝐶 ∧ 𝜓𝐶 ) ≥ 𝐸

𝜙

𝜃
(𝜓𝐶 ) + 𝐸 𝜙𝜃 (𝜑𝐶 ).

Letting 𝐶 →∞ and applying Proposition 3.1.14, we conclude (3.46).
Step 2. We assume that 𝜑, 𝜓 ∈ E∞ (𝑋, 𝜃; 𝜙).
Thanks to (3.1.9), we have

𝐸
𝜙

𝜃
(𝜑 ∨ 𝜓) − 𝐸 𝜙

𝜃
(𝜑) =

∫ 1

0

∫
𝑋

(𝜑 ∨ 𝜓 − 𝜑) 𝜃𝑛(1−𝑡 )𝜑+𝑡 (𝜑∨𝜓) d𝑡

=

∫ 1

0

∫
{𝜓>𝜑}

(𝜓 − 𝜑) 𝜃𝑛(1−𝑡 )𝜑+𝑡 𝜓 d𝑡.

On the other hand,

𝐸
𝜙

𝜃
(𝜓) − 𝐸 𝜙

𝜃
(𝜑 ∧ 𝜓)

=

∫ 1

0

∫
𝑋

(𝜓 −min{𝜑, 𝜓}) 𝜃𝑛( (1−𝑡 )𝜑+𝑡 𝜓)∧𝜓 d𝑡

≤
∫ 1

0

∫
{𝜑<𝜓}

(𝜓 − 𝜑) 𝜃𝑛(1−𝑡 )𝜑+𝑡 𝜓 d𝑡 by Lemma 3.1.1.
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Adding these equations together, we conclude (3.46). □

3.2 The I-envelope

From the algebraic point of view, a more natural envelope operator is given by the
I-envelope.

In this section, 𝑋 will denote a connected compact Kähler manifold of dimension
𝑛.

3.2.1 I-equivalence

Proposition 3.2.1 Given 𝜑, 𝜓 ∈ QPSH(𝑋), the following are equivalent:

(1) For any 𝑘 ∈ Z>0, we have
I(𝑘𝜑) = I(𝑘𝜓);

(2) for any 𝜆 ∈ R>0, we have
I(𝜆𝜑) = I(𝜆𝜓);

(3) for any modification 𝜋 : 𝑌 → 𝑋 and any 𝑦 ∈ 𝑌 , we have

𝜈(𝜋∗𝜑, 𝑦) = 𝜈(𝜋∗𝜓, 𝑦);

(4) for any proper bimeromorphic morphism 𝜋 : 𝑌 → 𝑋 from a Kähler manifold
and any 𝑦 ∈ 𝑌 , we have

𝜈(𝜋∗𝜑, 𝑦) = 𝜈(𝜋∗𝜓, 𝑦);

(5) for any prime divisor 𝐸 over 𝑋 , we have

𝜈(𝜑, 𝐸) = 𝜈(𝜓, 𝐸).

See Definition B.1.1 for the definition of prime divisors over 𝑋 . We remind the
readers that in the whole book, a modification of a compact complex space means
a finite composition of blow-ups with smooth centers. This terminology is highly
non-standard.

Proof (4) ⇐⇒ (5). This follows from Lemma 1.4.1.
(3) ⇐⇒ (5). This follows from Corollary B.1.1.
(1) =⇒ (5). This follows from Proposition 1.4.4.
(5) =⇒ (2). This follows from Theorem 1.4.3.
(2) =⇒ (1). This is trivial. □

Definition 3.2.1 Given 𝜑, 𝜓 ∈ QPSH(𝑋), we say they are I-equivalent and write
𝜑 ∼I 𝜓 if the equivalent conditions in Proposition 3.2.1 are satisfied.
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Clearly, ∼I is an equivalence relation on QPSH(𝑋).

Proposition 3.2.2 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a
Kähler manifold𝑌 to 𝑋 . Then for 𝜑, 𝜓 ∈ QPSH(𝑋), then the following are equivalent:

(1) 𝜑 ∼I 𝜓;
(2) 𝜋∗𝜑 ∼I 𝜋∗𝜓.

Proof (1) =⇒ (2). This follows from Proposition 3.2.1(4).
(2) =⇒ (1). This follows from the simple fact that

I(𝑘𝜑) = 𝜋∗
(
𝜔𝑌/𝑋 ⊗ I(𝑘𝜋∗𝜑)

)
, I(𝑘𝜓) = 𝜋∗

(
𝜔𝑌/𝑋 ⊗ I(𝑘𝜋∗𝜓)

)
for any 𝑘 ∈ Z>0. □

Proposition 3.2.3 Let 𝜑, 𝜑′, 𝜓, 𝜓′ ∈ QPSH(𝑋) and 𝜆 > 0. Assume that 𝜑 ∼I 𝜓 and
𝜑′ ∼I 𝜓′, then

𝜑 ∨ 𝜑′ ∼I 𝜓 ∨ 𝜓′, 𝜑 + 𝜑′ ∼I 𝜓 + 𝜓′, 𝜆𝜑 ∼I 𝜆𝜓.

Similarly, if (𝜑𝑖)𝑖∈𝐼 , (𝜓𝑖)𝑖∈𝐼 are two non-empty uniformly bounded from above
families in PSH(𝑋, 𝜃) for some closed smooth real (1, 1)-form 𝜃 on 𝑋 such that
𝜑𝑖 ∼I 𝜓𝑖 for all 𝑖 ∈ 𝐼, then

sup
𝑖∈𝐼
∗𝜑𝑖 ∼I sup

𝑖∈𝐼
∗𝜓𝑖 .

Proof This follows from Proposition 1.4.2 and Corollary 1.4.1. □

3.2.2 The definition of the I-envelope

We will fix a smooth closed real (1, 1)-form 𝜃 on 𝑋 .

Definition 3.2.2 Given 𝜑 ∈ PSH(𝑋, 𝜃), we define its I-envelope as follows:

𝑃𝜃 [𝜑]I B sup∗{𝜓 ∈ PSH(𝑋, 𝜃) : 𝜓 ≤ 0, 𝜓 ∼I 𝜑}. (3.47)

If 𝜑 = 𝑃𝜃 [𝜑]I , we say 𝜑 is an I-model potential (in PSH(𝑋, 𝜃)).

Note that by Proposition 1.2.1, 𝑃𝜃 [𝜑]I ∈ PSH(𝑋, 𝜃).

Proposition 3.2.4 Let 𝜃′ = 𝜃 + ddc𝑔 for some 𝑔 ∈ 𝐶∞ (𝑋). Then for any 𝜑 ∈
PSH(𝑋, 𝜃), we have 𝜑 − 𝑔 ∈ PSH(𝑋, 𝜃′) and

𝑃𝜃 [𝜑]I ∼ 𝑃𝜃 ′ [𝜑′]I .

The proof is similar to that of Proposition 3.1.2, so we omit it.
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Proposition 3.2.5 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a
Kähler manifold 𝑌 to 𝑋 . Then for 𝜑 ∈ PSH(𝑋, 𝜃), we have

𝑃𝜋∗ 𝜃 [𝜋∗𝜑]I = 𝜋∗𝑃𝜃 [𝜑]I .

Proof The proof is similar to that of Proposition 3.1.7 in view of Proposition 3.2.2.□

Proposition 3.2.6 Let 𝜑 ∈ PSH(𝑋, 𝜃), then

𝜑 ∼I 𝑃𝜃 [𝜑]I .

In particular,
𝑃𝜃 [𝑃𝜃 [𝜑]I]I = 𝑃𝜃 [𝜑]I

and the upper semicontinuous regularization in (3.47) is not necessary.

Proof In view of Proposition 3.2.1, it suffices to show that for 𝑘 ∈ Z>0, we have

I(𝑘𝜑) = I(𝑘𝑃𝜃 [𝜑]I). (3.48)

By Proposition 1.2.2, we can find 𝜓𝑖 ∈ PSH(𝑋, 𝜃) (𝑖 ∈ Z>0) such that 𝜓𝑖 ≤ 0,
𝜓𝑖 ∼I 𝜑 for all 𝑖 ≥ 1 and

sup
𝑖>0

∗𝜓𝑖 = 𝑃𝜃 [𝜑]I .

By Proposition 3.2.3, we may replace 𝜓𝑖 by 𝜓1 ∨ · · · ∨ 𝜓𝑖 and assume that the
sequence 𝜓𝑖 is increasing. In this case, it follows from the strong openness theorem
Theorem 1.4.4 that for each 𝑘 ∈ Z>0, we have

I(𝑘𝜑) = I(𝑘𝜓 𝑗 ) = I(𝑘𝑃𝜃 [𝜑]I)

for 𝑗 large enough. □

Definition 3.2.3 Let 𝜑 ∈ PSH(𝑋, 𝜃), we define the volume1 vol(𝜃, 𝜑) as

vol(𝜃, 𝜑) =
∫
𝑋

(𝜃 + ddc𝑃𝜃 [𝜑]I)𝑛 .

Proposition 3.2.7 Let 𝜃′ = 𝜃 + ddc𝑔 for some 𝑔 ∈ 𝐶∞ (𝑋). Then for any 𝜑 ∈
PSH(𝑋, 𝜃), we have 𝜑′ = 𝜑 − 𝑔 ∈ PSH(𝑋, 𝜃′) and

vol(𝜃, 𝜑) = vol(𝜃′, 𝜑′).

Proof This follows immediately from Proposition 3.2.4 and Theorem 2.4.4. □

In view of Proposition 3.2.7, the volume vol(𝜃, 𝜑) depends only on the current
𝜃𝜑 , and we could write

1 We choose to call this quantity the volume instead of the I-volume so that the terminology is
consistent with the line bundle case.
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vol 𝜃𝜑 = vol(𝜃, 𝜑). (3.49)

Definition 3.2.4 Let 𝛼 ∈ H1,1 (𝑋,R) be a pseudo-effective class. The volume vol𝛼
of 𝛼 is defined as

vol𝛼 = vol𝑇min,

where 𝑇min is a current with minimal singularities in 𝛼. Note that vol𝛼 is independent
of the choice of 𝑇min, thanks to Theorem 2.4.4.

Let us recall the following elementary result for latter use.

Proposition 3.2.8 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a
Kähler manifold 𝑌 .

(1) For any big class 𝛼 ∈ H1,1 (𝑋,R), 𝜋∗𝛼 is big. Moreover, vol 𝜋∗𝛼 = vol𝛼.
(2) For any big class 𝛽 ∈ H1,1 (𝑌,R), 𝜋∗𝛽 is big. Moreover, vol 𝜋∗𝛽 ≥ vol 𝛽.

Proof (1) Take a current 𝑇min with minimal singularities in 𝛼, then 𝜋∗𝑇min is a current
with minimal singularities in 𝜋∗𝛼. Our assertion follows.

(2) Take a current 𝑆min with minimal singularities in 𝛽, then 𝜋∗𝑆min is a current in
𝜋∗𝛽, so our assertion follows from Theorem 2.4.4. □

The I-envelope and the 𝑃-envelope are related in a simple manner.

Proposition 3.2.9 Let 𝜑 ∈ PSH(𝑋, 𝜃), then

𝑃𝜃 [𝜑] ≤ 𝑃𝜃 [𝜑]I , 𝜑 ∼I 𝑃𝜃 [𝜑] .

Proof It suffices to show that 𝜑 ∼I 𝑃𝜃 [𝜑]. Namely, for each 𝑘 ∈ Z>0, we have

I(𝑘𝜑) = I (𝑘𝑃𝜃 [𝜑]) . (3.50)

Fix 𝑘 for now. It follows from (3.4) and the strong openness theorem Theorem 1.4.4
that

I (𝑘𝑃𝜃 [𝜑]) = I ((𝑘𝜑 + 𝐶) ∧ 𝑘𝑉𝜃 ) ,

when 𝐶 is large enough. Since (𝑘𝜑 + 𝐶) ∧ 𝑘𝑉𝜃 ∼ 𝑘𝜑, we have

I ((𝑘𝜑 + 𝐶) ∧ 𝑘𝑉𝜃 ) = I(𝑘𝜑)

and (3.50) follows. □

In particular, we obtain an interesting relation between the non-pluripolar mass
and the volume.

Corollary 3.2.1 Let 𝜑 ∈ PSH(𝑋, 𝜃), then∫
𝑋

𝜃𝑛𝜑 ≤ vol 𝜃𝜑 .
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The reverse inequality fails in general, see Example 6.1.3.

Proof This follows from Proposition 3.2.9, Theorem 2.4.4 and Proposition 3.1.3.□

We note the following special case:

Proposition 3.2.10 Let 𝜑 ∈ PSH(𝑋, 𝜃). Assume that 𝜑 has analytic singularities,
then

𝜑 ∼ 𝑃𝜃 [𝜑] ∼ 𝑃𝜃 [𝜑]I . (3.51)

In particular, ∫
𝑋

𝜃𝑛𝜑 = vol 𝜃𝜑 . (3.52)

Proof First observe that (3.52) follows from (3.51) and Theorem 2.4.4. It remains to
establish (3.51).

In view of Proposition 3.2.9, it suffices to show that

𝑃𝜃 [𝜑]I ⪯ 𝜑. (3.53)

By Proposition 3.2.5, Proposition 3.1.7 and Theorem 1.6.1, we may assume that 𝜑 has
log singularities along an effectiveQ-divisor 𝐷. By rescaling using Proposition 3.2.11,
we may assume that 𝐷 is a divisor. Take quasi-equisingular approximations (𝜂 𝑗 ) 𝑗
and (𝜑 𝑗 ) 𝑗 of 𝑃𝜃 [𝜑]I and of 𝜑 respectively. Recall that by Theorem 1.6.2, we can
guarantee that 𝜂 𝑗 and 𝜑 𝑗 both have the singularity type (2− 𝑗 ,I(2 𝑗𝜑)) and hence
𝜂 𝑗 ∼ 𝜑 𝑗 for all large enough 𝑗 . On the other hand, it is clear that 𝜑 𝑗 ∼ 𝜑 for all 𝑗 ≥ 1.
So (3.53) follows. □

3.2.3 Properties of the I-envelope

Let 𝜃, 𝜃1, 𝜃2 be smooth closed real (1, 1)-forms on 𝑋 .
We have the following properties of the I-envelope.

Proposition 3.2.11

(1) Suppose that 𝜑 ∈ PSH(𝑋, 𝜃) and 𝜆 ∈ R>0, then

𝑃𝜆𝜃 [𝜆𝜑]I = 𝜆𝑃𝜃 [𝜑]I .

(2) Suppose that 𝜑1 ∈ PSH(𝑋, 𝜃1) and 𝜑2 ∈ PSH(𝑋, 𝜃2), then

𝑃𝜃1+𝜃2 [𝜑1 + 𝜑2]I ≥ 𝑃𝜃1 [𝜑1]I + 𝑃𝜃2 [𝜑2]I .

(3) Suppose that 𝜑1 ∈ PSH(𝑋, 𝜃1) and 𝜑2 ∈ PSH(𝑋, 𝜃2), then

𝑃𝜃1+𝜃2 [𝜑1 + 𝜑2]I ∼I 𝑃𝜃1 [𝜑1]I + 𝑃𝜃2 [𝜑2]I .

(4) Suppose that 𝜑1, 𝜑2 ∈ PSH(𝑋, 𝜃), then
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𝑃𝜃 [𝜑1 ∨ 𝜑2]I ∼I 𝑃𝜃 [𝜑1]I ∨ 𝑃𝜃 [𝜑2]I .

Proof (1) This is obvious by definition.
(2) Suppose that 𝜓1 ∈ PSH(𝑋, 𝜃1) and 𝜓2 ∈ PSH(𝑋, 𝜃2) satisfy

𝜓𝑖 ≤ 0, 𝜓𝑖 ∼I 𝜑𝑖

for 𝑖 = 1, 2. Then thanks to Proposition 3.2.3,

𝜓1 + 𝜓2 ≤ 0, 𝜓1 + 𝜓2 ∼I 𝜑1 + 𝜑2.

It follows that
𝜓1 + 𝜓2 ≤ 𝑃𝜃1+𝜃2 [𝜑1 + 𝜑2]I .

Since 𝜓1 and 𝜓2 are arbitrary, we conclude.
(3) and (4) These follow easily from Proposition 3.2.6 and Proposition 3.2.3. □

Lemma 3.2.1 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃). Assume that 𝜑 ⪯ 𝜓, then

𝑃𝜃 [𝜑]I ≤ 𝑃𝜃 [𝜓]I .

Proof It suffices to observe that 𝑃𝜃 [𝜑]I ∨ 𝜓 ∼I 𝜓 as a consequence of Proposi-
tion 1.4.2 and Proposition 3.2.6. □

Proposition 3.2.12 Consider a decreasing net (𝜑𝑖)𝑖∈𝐼 of model potentials in
PSH(𝑋, 𝜃)>0. Suppose that 𝜑 B inf𝑖∈𝐼 𝜑𝑖 . −∞ and

∫
𝑋
𝜃𝑛𝜑 > 0. Then

inf
𝑖∈𝐼
𝑃𝜃 [𝜑𝑖]I = 𝑃𝜃 [𝜑]I .

Proof Let 𝜂 = inf𝑖∈𝐼 𝑃𝜃 [𝜑𝑖]I . We have 𝜂 ≥ 𝑃𝜃 [𝜑]I as a consequence of
Lemma 3.2.1.

By Proposition 3.1.10, we have

lim
𝑖∈𝐼

∫
𝑋

𝜃𝑛𝜑𝑖 =

∫
𝑋

𝜃𝑛𝜑 > 0.

So by Lemma 2.4.2, we can find a decreasing net 𝜖𝑖 ↘ 0 (𝑖 ∈ 𝐼) with 𝜖𝑖 ∈ (0, 1) and
𝜓𝑖 ∈ PSH(𝑋, 𝜃) such that for all 𝑖 ∈ 𝐼,

(1 − 𝜖𝑖)𝜑𝑖 + 𝜖𝑖𝜓𝑖 ≤ 𝜑.

By Proposition 3.2.11 and Lemma 3.2.1, we have

𝜂 + 𝜖𝑖𝑃𝜃 [𝜓𝑖]I ≤ (1− 𝜖𝑖)𝜂 + 𝜖𝑖𝑃𝜃 [𝜓𝑖]I ≤ (1− 𝜖𝑖)𝑃𝜃 [𝜑𝑖]I + 𝜖𝑖𝑃𝜃 [𝜓𝑖]I ≤ 𝑃𝜃 [𝜑]I .

Taking limit with respect to 𝑖, we conclude that 𝜂 ≤ 𝑃𝜃 [𝜑]I . □

Proposition 3.2.13 Let (𝜑𝑖)𝑖∈𝐼 be a decreasing net of I-model potentials in
PSH(𝑋, 𝜃). Set 𝜑 B inf𝑖∈𝐼 𝜑𝑖 , then 𝜑 is also I-model in PSH(𝑋, 𝜃).
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Proof Observe that 𝜑 ≤ 0. Let 𝜂 ∈ PSH(𝑋, 𝜃) with 𝜂 ∼I 𝜑 and 𝜂 ≤ 0. Then for
each 𝑖 ∈ 𝐼, using Proposition 3.2.3, we have 𝜂 ∨ 𝜑𝑖 ∼I 𝜑𝑖 . Therefore,

𝜂 ≤ 𝜂 ∨ 𝜑𝑖 ≤ 𝜑𝑖 .

It follows that 𝜂 ≤ 𝜑. Hence 𝜑 = 𝑃𝜃 [𝜑]I . □

Proposition 3.2.14 Let (𝜑𝑖)𝑖∈𝐼 be an increasing net in PSH(𝑋, 𝜃)>0 uniformly
bounded from above. Let 𝜑 B sup𝑖∈𝐼 ∗𝜑𝑖 . Then

sup
𝑖∈𝐼
∗𝑃𝜃 [𝜑𝑖]I = 𝑃𝜃 [𝜑]I .

In particular, if the 𝜑𝑖’s are all I-model, then so is 𝜑.

Proof Let 𝜂 = sup𝑖∈𝐼 ∗𝑃𝜃 [𝜑𝑖]I . Then 𝜂 ≤ 𝑃𝜃 [𝜑]I as a consequence of Lemma 3.2.1.
By Corollary 2.4.1, we have

lim
𝑖∈𝐼

∫
𝑋

𝜃𝑛𝜑𝑖 =

∫
𝑋

𝜃𝑛𝜑 > 0.

So by Lemma 2.4.2, we can find a decreasing net 𝜖𝑖 ↘ 0 (𝑖 ∈ 𝐼) with 𝜖𝑖 ∈ (0, 1) and
𝜓𝑖 ∈ PSH(𝑋, 𝜃) such that for all 𝑖 ∈ 𝐼,

(1 − 𝜖𝑖)𝜑 + 𝜖𝑖𝜓𝑖 ≤ 𝜑𝑖 .

By Proposition 3.2.11 and Lemma 3.2.1, we have

𝑃𝜃 [𝜑]I + 𝜖𝑖𝑃𝜃 [𝜓𝑖]I ≤ (1 − 𝜖𝑖)𝑃𝜃 [𝜑]I + 𝜖𝑖𝑃𝜃 [𝜓𝑖]I ≤ 𝑃𝜃 [𝜑𝑖]I ≤ 𝜂.

Taking limit with respect to 𝑖, we conclude that 𝜂 ≥ 𝑃𝜃 [𝜑]I . □

Remark 3.2.1 One could also define the following interpolation between the I-
envelope and the 𝑃-envelope: Suppose 𝜑 ∈ PSH(𝑋, 𝜃)>0, 𝑗 ∈ {0, . . . , 𝑛}. Then we
let

𝑃𝜃, 𝑗 [𝜑] B sup∗
{
𝜓 ∈ PSH(𝑋, 𝜃) : 𝜓 ≤ 0, 𝜑 ⪯ 𝜓,

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑃𝜃 [𝜑 ]I

=

∫
𝑋

𝜃
𝑗

𝜓
∧ 𝜃𝑛− 𝑗

𝑃𝜃 [𝜓]I

}
.

Based on the techniques developed in Chapter 6, one could show that 𝑃𝜃, 𝑗 [•] is a
projection operator. When 𝑗 = 𝑛, this operator reduces to the 𝑃-envelope, while when
𝑗 = 0, this operator reduces to the I-envelope.



Chapter 4
Geodesic rays in the space of potentials

In den Dreißiger Jahren besuchte ich regelmäßig die Schweiz,
teils um mich auch auf den Viertausendern zu tummeln, zum
großen Teil aber auch, um Emigrantenblätter zu lesen und mich
mit Kollegen über Naziverbrechen zu unterhalten. Aber auch die
Schweizer schauten sich, wenn sie offen reden wollten, ebenso
ängstlich um wie das bei uns üblich war.a
— Oskar Perronb

a The recent policy of ETH against Chinese students makes me
feel that nothing has changed in Switzerland after the collapsing
of Nazi for almost 80 years.
b Oskar Perron (1880–1975), after earning an Eisernes Kreuz
during WWI, obtained a position in München in 1922, initiating the
glorious period there. Among his colleagues were Carathéodory,
Tietze and Sommerfield.

In this chapter, we study subgeodesics and geodesics in the space of quasi-
plurisubharmonic functions. Unlike what one usually finds in the literature, here we
are carrying out the constructions in the space of Kähler potentials with prescribed
singularities. Therefore, it is impossible to reduce to the case of geodesics with regular
boundary points.

4.1 Subgeodesics

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝜃 be a smooth
closed real (1, 1)-form on 𝑋 representing a big cohomology class.

Definition 4.1.1 Let us fix 𝜑0, 𝜑1 ∈ PSH(𝑋, 𝜃). A subgeodesic from 𝜑0 to 𝜑1 is a
family (𝜑𝑡 )𝑡∈ (0,1) in PSH(𝑋, 𝜃) such that

(1) if we define

Φ : 𝑋 × {𝑧 ∈ C : Re 𝑧 ∈ (0, 1)} → [−∞,∞), (𝑥, 𝑧) ↦→ 𝜑Re 𝑧 (𝑥),

then Φ is 𝑝∗1𝜃-psh, where 𝑝1 : 𝑋 × {𝑧 ∈ C : Re 𝑧 ∈ (0, 1)} → 𝑋 is the natural
projection;

(2) when 𝑡 → 0+ (resp. to 1−), 𝜑𝑡 converges to 𝜑0 (resp. 𝜑1) with respect to the
𝐿1-topology.

We also say (𝜑𝑡 )𝑡∈[0,1] is a subgeodesic.
We call Φ the complexification of the subgeodesic (𝜑𝑡 )𝑡 .

97
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When we do not want to specify 𝜑0 and 𝜑1, we shall say (𝜑𝑡 )𝑡∈ (0,1) is a subgeodesic.
More generally, a family (𝜓𝑡 )𝑡∈[𝑎,𝑏] in PSH(𝑋, 𝜃) for some 𝑎 ≤ 𝑏 is called a

subgeodesic if (𝜓𝑡𝑏+(1−𝑡 )𝑎)𝑡∈[0,1] is a subgeodesic.

Remark 4.1.1 In the literature, people sometimes regard Φ as a function defined on
𝑋 × {𝑧 ∈ C : e−1 < |𝑧 | < 1}, with Φ(𝑥, 𝑧) = 𝜑− log |𝑧 |2 (𝑥). We sometimes also use
this definition without explicit explanation. It should not be difficult to tell which
definition we are using from the context.

In general, there are no subgeodesics from 𝜑0 to 𝜑1. In fact, the existence of a
subgeodesic implies that 𝜑0 ∧ 𝜑1 . −∞ by Proposition 4.1.2 below, which does not
always hold as we show in Example 5.2.3.

We first note that the subgeodesics are well-behaved under the change of 𝜃:

Proposition 4.1.1 Let 𝑔 be a smooth real function on 𝑋 . Let 𝜃′ = 𝜃 + ddc𝑔. Suppose
that (𝜑𝑡 )𝑡∈[0,1] is a subgeodesic in PSH(𝑋, 𝜃). Then (𝜑𝑡 − 𝑔)𝑡∈[0,1] is a subgeodesic
in PSH(𝑋, 𝜃′).
Proof This follows trivially by definition. □

Example 4.1.1 Let 𝜑0 ∈ PSH(𝑋, 𝜃), 𝐶 ∈ R. Let

𝜑𝑡 = 𝜑0 + 𝑡𝐶, 𝑡 ∈ (0, 1] .

Then (𝜑𝑡 )𝑡∈[0,1] is a subgeodesic.
For this purpose, it suffices to observe that Re 𝑧 is a harmonic function in 𝑧.
As a consequence, the constant (𝜑0)𝑡∈[0,1] is a subgeodesic, called the constant

subgeodesic at 𝜑0.
A more general version is as follows: Suppose that (𝜑𝑡 )𝑡∈[0,1] is a subgeodesic in

PSH(𝑋, 𝜃), 𝐶1, 𝐶2 ∈ R, then (𝜑𝑡 + 𝐶1𝑡 + 𝐶2)𝑡∈[0,1] is also a subgeodesic.

Proposition 4.1.2 Let 𝜑0, 𝜑1 ∈ PSH(𝑋, 𝜃) and (𝜑𝑡 )𝑡∈ (0,1) be a subgeodesic from 𝜑0
to 𝜑1. Then for each 𝑥 ∈ 𝑋 , [0, 1] ∋ 𝑡 ↦→ 𝜑𝑡 (𝑥) is a convex function. In particular,

inf
𝑡∈ (0,1)

𝜑𝑡 ∈ PSH(𝑋, 𝜃), inf
𝑡∈ (0,1)

𝜑𝑡 ≤ 𝜑0 ∧ 𝜑1.

Proof Let Φ be the complexification of (𝜑𝑡 )𝑡∈ (0,1) .
For each 𝑥 ∈ 𝑋 , the map

{𝑧 ∈ C : Re 𝑧 ∈ (0, 1)} → [−∞,∞), 𝑧 ↦→ Φ(𝑥, 𝑧)

is either subharmonic or constantly −∞, as follows from Definition 4.1.1 (1) and
Proposition 1.1.4. In the latter case, the convexity of [0, 1] ∋ 𝑡 ↦→ 𝜑𝑡 (𝑥) is trivial. In
the former case, the convexity on the interval (0, 1) follows from Proposition 1.1.3.

In order to verify the convexity at the boundary, let us fix 𝑠 ∈ (0, 1). We need to
show that

𝜑𝑠 (𝑥) ≤ 𝑠𝜑1 (𝑥) + (1 − 𝑠)𝜑0 (𝑥) (4.1)

for all 𝑥 ∈ 𝑋 . Thanks to Proposition 1.2.6, it suffices to prove this for almost all 𝑥.
Take a set 𝑍 ⊆ 𝑋 with zero Lebesgue measure such that for all 𝑥 ∈ 𝑋 \ 𝑍 , we have
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(1) 𝜑𝑡 (𝑥) ≠ −∞ for all 𝑡 ∈ [0, 1] ∩ Q;
(2) 𝜑𝑡 (𝑥) → 𝜑0 (𝑥) as 𝑡 → 0+ and 𝜑𝑡 (𝑥) → 𝜑1 (𝑥) as 𝑡 → 1−.

For all such 𝑥, the convexity of 𝜑𝑡 (𝑥) for 𝑡 ∈ (0, 1) guarantees that 𝜑𝑡 (𝑥) ≠ −∞ for
all 𝑡 ∈ [0, 1] and 𝑡 ↦→ 𝜑𝑡 (𝑥) is convex for 𝑡 ∈ [0, 1]. In particular, (4.1) holds.

Let us prove the last assertion. Let

𝜑 B inf
𝑡∈ (0,1)

𝜑𝑡 .

By Kiselman’s principle Proposition 1.2.8, we know that 𝜑 ∈ PSH(𝑋, 𝜃) ∪ {−∞}.
Take 𝑥 ∈ 𝑋 so that

lim
𝑡→0+

𝜑𝑡 (𝑥) = 𝜑0 (𝑥) ≠ −∞, lim
𝑡→1−

𝜑𝑡 (𝑥) = 𝜑1 (𝑥) ≠ −∞.

Then 𝜑(𝑥) ≠ −∞. Hence we conclude that 𝜑 ∈ PSH(𝑋, 𝜃). For any 𝑡 ∈ (0, 1), using
the convexity established above, we have

𝜑 ≤ (1 − 𝑡)𝜑1 + 𝑡𝜑0.

It follows that 𝜑 ≤ 𝜑0 and 𝜑 ≤ 𝜑1 almost everywhere and hence everywhere by
Proposition 1.2.6. Our assertion follows. □

Proposition 4.1.3 Let (𝜑𝑖0)𝑖∈𝐼 , (𝜑
𝑖
1)𝑖∈𝐼 be two non-empty uniformly bounded from

above families in PSH(𝑋, 𝜃). Let (𝜑𝑖𝑡 )𝑡∈ (0,1) be subgeodesics from 𝜑𝑖0 to 𝜑𝑖1 for each
𝑖 ∈ 𝐼. Then (

sup
𝑖∈𝐼
∗𝜑𝑖𝑡

)
𝑡∈ (0,1)

is a subgeodesic from sup𝑖∗𝜑𝑖0 to sup𝑖∗𝜑𝑖1.

Proof We may assume that 𝜑𝑖0, 𝜑
𝑖
1 ≤ 0 for all 𝑖 ∈ 𝐼. Then it follows that 𝜑𝑖𝑡 ≤ 0 for

all 𝑡 ∈ (0, 1) and all 𝑖 ∈ 𝐼 by Proposition 4.1.2.
We define

𝜑𝑡 B sup
𝑖∈𝐼
∗𝜑𝑖𝑡 ∈ PSH(𝑋, 𝜃)

for all 𝑡 ∈ [0, 1]. Observe that [0, 1] ∋ 𝑡 ↦→ 𝜑𝑡 is convex by the same argument
leading to (4.1).

Let (𝜓𝑡 )𝑡∈ (0,1) be the subgeodesic whose complexification Φ𝜓 corresponds to
sup𝑖∗Φ𝜑𝑖 , where Φ𝜑𝑖 is the complexification of (𝜑𝑖𝑡 )𝑡∈ (0,1) . Then clearly, 𝜑𝑡 ≤ 𝜓𝑡
for each 𝑡 ∈ (0, 1). On the other hand, by Proposition 1.2.5,

𝜓𝑡 = sup
𝑖∈𝐼

𝜑𝑖𝑡 = 𝜑𝑡 almost everywhere

for almost all 𝑡 ∈ (0, 1). Therefore, using Proposition 1.2.6, we find 𝜓𝑡 = 𝜑𝑡 for
almost all 𝑡 ∈ (0, 1). Since both functions are convex in 𝑡, we conclude that 𝜓𝑡 = 𝜑𝑡
for all 𝑡 ∈ (0, 1).
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It remains to argue that 𝜑𝑡
𝐿1

−−→ 𝜑0 as 𝑡 → 0+ and 𝜑𝑡
𝐿1

−−→ 𝜑1 as 𝑡 → 1−. By
symmetry, it suffices to argue the former.

Thanks to Proposition 1.2.2, we may further assume that 𝐼 is a countable set. We
know that for any 𝑡 ∈ (0, 1) and any 𝑗 ∈ 𝐼,

𝜑
𝑗
𝑡 ≤ 𝜑𝑡 ≤ 𝑡𝜑1 + (1 − 𝑡)𝜑0.

Letting 𝑡 → 0+, we find that

𝜑
𝑗

0 ≤ lim
𝑡→0+

𝜑𝑡 ≤ 𝜑0

almost everywhere. Since 𝐼 is countable, we conclude that

𝜑0 = lim
𝑡→0+

𝜑𝑡 (4.2)

almost everywhere.
Fix 𝑖0 ∈ 𝐼. Recall that by Proposition 4.1.2, for each 𝑡 ∈ (0, 1), we have

inf
𝑡∈ (0,1)

sup
𝑋

𝜑𝑡 ≥ inf
𝑡∈ (0,1)

sup
𝑋

𝜑
𝑖0
𝑡 ≥ sup

𝑋

(
𝜑
𝑖0
0 ∧ 𝜑

𝑖0
1

)
> −∞,

so the set {𝜑𝑡 }𝑡∈ (0,1) is relatively compact with respect to the 𝐿1-topology by
Proposition 1.5.1. Let 𝜓 be a cluster point as 𝑡 → 0+. It suffices to show that 𝜓 = 𝜑0.
By Corollary 1.2.1 and (4.2), this holds almost everywhere. Therefore, it holds
everywhere by Proposition 1.2.6. □

Proposition 4.1.4 Let (𝜑𝑡 )𝑡∈[0,1] be a subgeodesic in PSH(𝑋, 𝜃). Then for any
0 ≤ 𝑎 ≤ 𝑏 ≤ 1, the segment (𝜑𝑡 )𝑡∈[𝑎,𝑏] is a subgeodesic.

Proof It suffices to show that

𝜑𝑡𝑏+(1−𝑡 )𝑎
𝐿1

−−→ 𝜑𝑎, 𝜑𝑡𝑏+(1−𝑡 )𝑎
𝐿1

−−→ 𝜑𝑏

as 𝑡 → 0+ and 𝑡 → 1− respectively. In other words, we need to show that for any
𝑐 ∈ (0, 1), we have

𝜑𝑡
𝐿1

−−→ 𝜑𝑐

as 𝑡 → 𝑐. For this purpose, observe that by Proposition 4.1.2,

sup
𝑋

inf
𝑠∈ (0,1)

𝜑𝑠 ≤ sup
𝑋

𝜑𝑡 ≤
(
sup
𝑋

𝜑0

)
∨

(
sup
𝑋

𝜑1

)
for any 𝑡 ∈ (0, 1). Therefore, {𝜑𝑡 }𝑡∈ (0,1) is a relatively compact family with respect
to the 𝐿1-topology on PSH(𝑋, 𝜃) by Proposition 1.5.1. It suffices to show that any
cluster point 𝜓 of 𝜑𝑡 as 𝑡 → 𝑐 is equal to 𝜑𝑐. By Corollary 1.2.1 and the convexity
Proposition 4.1.2, we have 𝜑𝑐 = 𝜓 almost everywhere and hence everywhere by
Proposition 1.2.6. □
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Definition 4.1.2 A ray ℓ = (ℓ𝑡 )𝑡≥0 is a subgeodesic ray in PSH(𝑋, 𝜃) if for any
0 ≤ 𝑎 ≤ 𝑏, the segment (𝜑𝑡 )𝑡∈[𝑎,𝑏] is a subgeodesic in PSH(𝑋, 𝜃). We say ℓ

emanates from ℓ0.
The complexification of a subgeodesic ray ℓ is defined as the potential

Φ : 𝑋 × {𝑧 ∈ C : Re 𝑧 > 0} → [−∞,∞), (𝑥, 𝑧) ↦→ ℓ𝑧 (𝑥).

Note that Φ is 𝑝∗1𝜃-psh, where 𝑝1 : 𝑋 × {𝑧 ∈ C : Re 𝑧 > 0} → 𝑋 is the natural
projection.

Remark 4.1.2 Similar to Remark 4.1.1, we could also define the complexification as
a function 𝑋 × {𝑧 ∈ C : 0 < |𝑧 | < 1} → [−∞,∞).

4.2 Geodesics in the space of potentials

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝜃 be a smooth
closed real (1, 1)-form on 𝑋 representing a big cohomology class. Fix a model
potential 𝜙 ∈ PSH(𝑋, 𝜃)>0. See Definition 3.1.3 for the definition.

Definition 4.2.1 Let 𝜑0, 𝜑1 ∈ PSH(𝑋, 𝜃). The geodesic (𝜑𝑡 )𝑡∈ (0,1) from 𝜑0 to 𝜑1 is
the family of potentials 𝜑𝑡 ∈ PSH(𝑋, 𝜃) ∪ {−∞} such that

𝜑𝑡 = sup∗ {𝜓𝑡 : (𝜓𝑠)𝑠 is a subgeodesic from 𝜓0 to 𝜓1,

𝜓0, 𝜓1 ∈ PSH(𝑋, 𝜃), 𝜓0 ≤ 𝜑0, 𝜓1 ≤ 𝜑1} .
(4.3)

More generally, let (𝜑𝑡 )𝑡∈[𝑎,𝑏] (𝑎, 𝑏 ∈ R, 𝑎 ≤ 𝑏) be a curve in PSH(𝑋, 𝜃). We say
(𝜑𝑡 )𝑡∈[𝑎,𝑏] is a geodesic if the curve (𝜑𝑡𝑏+(1−𝑡 )𝑎)𝑡∈ (0,1) is a geodesic from 𝜑𝑎 to 𝜑𝑏.

We also say (𝜑𝑡 )𝑡∈ (𝑎,𝑏) is a geodesic in PSH(𝑋, 𝜃) from 𝜑𝑎 to 𝜑𝑏.

The envelopes of the form (4.3) are usually referred to as the Perron envelopes. In
general, the geodesic defined by (4.3) fails to have the correct limit when 𝑡 → 0+ or
𝑡 → 1−. Therefore, a priori it is not a subgeodesic from 𝜑0 to 𝜑1. Although geodesics
are defined in this case, we shall always avoid using this terminology.

Example 4.2.1 Let 𝜑0 ∈ PSH(𝑋, 𝜃) and𝐶 ∈ R. Then the subgeodesic (𝜑0+𝑡𝐶)𝑡∈[0,1]
studied in Example 4.1.1 is a geodesic. This follows easily from Proposition 4.1.2.

In particular, when 𝐶 = 0, we find that the constant subgeodesic at 𝜑0 is indeed a
geodesic, which we call the constant geodesic at 𝜑.

More generally, suppose that (𝜑𝑡 )𝑡∈[0,1] is a geodesic and 𝐶1, 𝐶2 ∈ R, then
(𝜑𝑡 +𝐶1𝑡+𝐶2)𝑡∈[0,1] is also a geodesic. This follows immediately from Example 4.1.1.

Next we want to show that under mild assumptions, there exists subgeodesics
between two potentials. The assumption below turns out to be necessary as well, as
we shall prove in Theorem 6.1.1 below.
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Proposition 4.2.1 Given 𝜑0, 𝜑1 ∈ E(𝑋, 𝜃; 𝜙), the geodesic (𝜑𝑡 )𝑡∈ (0,1) from 𝜑0 to
𝜑1 defined by (4.3) is a subgeodesic from 𝜑0 to 𝜑1 and 𝜑𝑡 ∈ E(𝑋, 𝜃; 𝜙) for each
𝑡 ∈ (0, 1).

Moreover, for any 0 ≤ 𝑎 ≤ 𝑏 ≤ 1, the restriction (𝜑𝑡 )𝑡∈[𝑎,𝑏] is a geodesic.
If furthermore 𝜑0, 𝜑1 ∈ E1 (𝑋, 𝜃; 𝜙) (resp. E∞ (𝑋, 𝜃; 𝜙)), then 𝜑𝑡 ∈ E1 (𝑋, 𝜃; 𝜙)

(resp. E∞ (𝑋, 𝜃; 𝜙)) for all 𝑡 ∈ (0, 1).

We refer to Section 3.1.3 for the definition of E(𝑋, 𝜃; 𝜙). Our assumption means that
𝑃𝜃 [𝜑0] = 𝑃𝜃 [𝜑1] = 𝜙.

Proof Without loss of generality, we may assume that 𝜑0, 𝜑1 ≤ 𝜙. It follows from
Proposition 4.1.2 that 𝜑𝑡 ≤ 𝜙 for all 𝑡 ∈ (0, 1). In fact, we have the stronger estimate

𝜑𝑡 ≤ 𝑡𝜑1 + (1 − 𝑡)𝜑0, 𝑡 ∈ (0, 1). (4.4)

We first observe that when 𝜑0, 𝜑1 ∈ E(𝑋, 𝜃; 𝜙), so is 𝜑0∧𝜑1, see Proposition 3.1.18.
In particular, the constant subgeodesic 𝑡 ↦→ 𝜑0 ∧ 𝜑1 is a candidate in (4.3). So

𝜑𝑡 ≥ 𝜑0 ∧ 𝜑1, 𝑡 ∈ (0, 1). (4.5)

By Proposition 4.1.3, (𝜑𝑡 )𝑡∈ (0,1) is a subgeodesic.1 It follows from Proposition 3.1.19
that 𝜑𝑡 ∈ E(𝑋, 𝜃; 𝜙) for all 𝑡 ∈ (0, 1).

Next, we show that as 𝑡 → 0+, we have 𝜑𝑡
𝐿1

−−→ 𝜑0. The corresponding result at
𝑡 = 1 is similar.

We first argue the special case where 𝜑0 ⪯ 𝜑1. Take a constant 𝐶 > 0 such that

𝜑0 − 𝐶 ≤ 𝜑1.

Then (𝜑0 − 𝐶𝑡)𝑡∈ (0,1) is clearly a candidate in (4.3), see Example 4.1.1. Therefore,
for all 𝑡 ∈ (0, 1),

𝜑0 − 𝐶𝑡 ≤ 𝜑𝑡 ≤ 𝑡𝜑1 + (1 − 𝑡)𝜑0. (4.6)

It follows that 𝜑𝑡
𝐿1

−−→ 𝜑0 as 𝑡 → 0+.
Let us come back to the general case. By (4.4) and (4.5), we know that for all

𝑡 ∈ (0, 1),
sup
𝑋

𝜑0 ∧ 𝜑1 ≤ sup
𝑋

𝜑𝑡 ≤
(
sup
𝑋

𝜑0

)
∨

(
sup
𝑋

𝜑1

)
.

It follows from Proposition 1.5.1 that {𝜑𝑡 : 𝑡 ∈ (0, 1)} is a relatively compact subset
of PSH(𝑋, 𝜃) with respect to the 𝐿1-topology.

Let 𝜓 be an 𝐿1-cluster point of 𝜑𝑡 as 𝑡 ↘ 0, it suffices to show that 𝜓 = 𝜑0.
For each 𝑀 ∈ N, we write

𝜑𝑀0 = 𝜑0 ∧ (𝜑1 + 𝑀).

1 Be careful, here 𝑡 ∈ (0, 1) instead of [0, 1].
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Observe that 𝜑𝑀0 ∈ E(𝑋, 𝜃; 𝜙) by Proposition 3.1.18. Let (𝜑𝑀𝑡 )𝑡∈ (0,1) be the geodesic
from 𝜑𝑀0 to 𝜑1. Then it is clear that 𝜑𝑀𝑡 ≤ 𝜑𝑡 for all 𝑡 ∈ (0, 1). Therefore,

𝜓 ≥ 𝜑0 ∧ (𝜑1 + 𝑀)

almost everywhere hence everywhere by Proposition 1.2.6. On the other hand, by
(4.4), 𝜓 ≤ 𝜑0. So it suffices to show that

𝜑0 ∧ (𝜑1 + 𝑀)
𝐿1

−−→ 𝜑0

as 𝑀 →∞, which is shown in Proposition 3.1.21.
Now we have shown that (𝜑𝑡 )𝑡∈[0,1] is a subgeodesic.
Next, take 0 ≤ 𝑎 ≤ 𝑏 ≤ 1. We want to show that the restriction (𝜑𝑡 )𝑡∈[𝑎,𝑏] is the

geodesic from 𝜑𝑎 to 𝜑𝑏. We may assume that 𝑎 < 𝑏. The argument is the standard
balayage argument.

Let (𝜓𝑡 )𝑡∈ (𝑎,𝑏) be the geodesic from 𝜑𝑎 to 𝜑𝑏. Since (𝜑𝑡 )𝑡∈[𝑎,𝑏] is a subgeodesic
by Proposition 4.1.4. we have 𝜓𝑡 ≥ 𝜑𝑡 for all 𝑡 ∈ (𝑎, 𝑏).

We define

𝜂𝑡 =

{
𝜓𝑡 , if 𝑡 ∈ (𝑎, 𝑏),
𝜑𝑡 , if 𝑡 ∈ (0, 1) \ (𝑎, 𝑏).

We claim that (𝜂𝑡 )𝑡∈ (0,1) is a subgeodesic from 𝜑0 to 𝜑1. This is clear by Lemma 1.2.2
when neither 𝑎 = 0 nor 𝑏 = 1. Next we handle the case where 𝑎 = 0. By the previous

part of the proof, we know that 𝜓𝑡
𝐿1

−−→ 𝜑0 as 𝑡 → 0+. But 𝜓𝑡 = 𝜂𝑡 for 𝑡 ∈ (0, 𝑏).
Hence 𝜂𝑡

𝐿1

−−→ 𝜑0 as 𝑡 → 0+. The case 𝑏 = 1 is handled similarly.
Therefore, for all 𝑡 ∈ (0, 1), we have

𝜑𝑡 ≥ 𝜂𝑡 .

In particular, for 𝑡 ∈ (𝑎, 𝑏), we have

𝜑𝑡 ≥ 𝜂𝑡 = 𝜓𝑡 ≥ 𝜑𝑡 .

In other words, (𝜑𝑡 )𝑡∈ (𝑎,𝑏) = (𝜓𝑡 )𝑡∈ (𝑎,𝑏) is the geodesic from 𝜑𝑎 to 𝜑𝑏.
Finally, assume furthermore that 𝜑0, 𝜑1 ∈ E1 (𝑋, 𝜃; 𝜙) (resp. E∞ (𝑋, 𝜃; 𝜙)). Thanks

to (4.5), Proposition 3.1.18 and Proposition 3.1.19, we find 𝜑𝑡 ∈ E1 (𝑋, 𝜃; 𝜙) (resp.
E∞ (𝑋, 𝜃; 𝜙)) for all 𝑡 ∈ (0, 1). □

Proposition 4.2.2 Let 𝜑1, 𝜑0 ∈ E(𝑋, 𝜃; 𝜙) with 𝜑1 ⪯ 𝜑0. Let (𝜑𝑡 )𝑡∈ (0,1) be the
geodesic from 𝜑0 to 𝜑1. Then

𝑠 sup
{𝜑0≠−∞}

(𝜑1 − 𝜑0) = sup
{𝜑0≠−∞}

(𝜑𝑠 − 𝜑0) (4.7)

for all 𝑠 ∈ [0, 1].
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Fig. 4.1 The typical behavior of 𝜑𝑡 (𝑥 )

Proof The notations in the proof are indicated in Fig. 4.1.2
We may assume that 𝑠 ∈ [0, 1) since there is nothing to prove when 𝑠 = 1.
After replacing 𝜑𝑡 by 𝜑𝑡 −𝐶′𝑡 for some large enough 𝐶′ > 0, we may assume that

𝜑1 ≤ 𝜑0. This procedure preserves the geodesic property by Example 4.2.1.
Since the constant geodesic at 𝜑1 is a candidate in (4.3), it follows that 𝜑1 ≤ 𝜑𝑡

for all 𝑡 ∈ [0, 1]. Similarly, [0, 1] ∋ 𝑡 ↦→ 𝜑𝑡 is decreasing.
Let

𝐶 = sup
{𝜑1≠−∞}

(𝜑1 − 𝜑0) ≤ 0. (4.8)

Then by Proposition 1.2.6, we have

𝜑1 ≤ 𝜑0 + 𝐶.

So (𝜑1 − 𝐶 (1 − 𝑡))𝑡∈ (0,1) is a candidate in (4.3) and hence

𝜑1 − 𝐶 (1 − 𝑡) ≤ 𝜑𝑡 , 𝑡 ∈ (0, 1). (4.9)

By Proposition 4.2.1, we have 𝜑𝑡
𝐿1

−−→ 𝜑1 as 𝑡 → 1−. Since 𝜑𝑡 is decreasing in
𝑡 ∈ (0, 1). It follows that 𝜑1 = inf𝑡∈ (0,1) 𝜑𝑡 . Therefore, we can find a pluripolar set
𝑍 ⊆ 𝑋 such that 𝜑𝑡 (𝑥) → 𝜑1 (𝑥) > −∞ as 𝑡 → 1− for all 𝑥 ∈ 𝑋 \ 𝑍 .

2 When dealing with convex functions, drawing a picture is the easiest way to keep track of the
directions of inequalities.
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Similarly, since 𝜑0 = sup𝑡∈ (0,1) ∗𝜑𝑡 , after enlarging 𝑍 , we may also guarantee that
𝜑𝑡 (𝑥) → 𝜑0 (𝑥) > −∞ as 𝑡 → 0+ for all 𝑥 ∈ 𝑋 \ 𝑍 by Proposition 1.2.5.

For any such 𝑥 ∈ 𝑋 \ 𝑍 , the function 𝑡 ↦→ 𝜑𝑡 (𝑥) is a real-valued continuous convex
function on [0, 1]. In particular, 𝑡 ↦→ 𝜑𝑡 (𝑥) is absolutely continuous on [0, 1]. Hence,
for any 𝑠 ∈ [0, 1), we have

𝜑1 (𝑥) − 𝜑𝑠 (𝑥) =
∫ 1

𝑠

d
d𝑡
𝜑𝑡 (𝑥) d𝑡 ≤ (1− 𝑠) lim

𝑡→1−

𝜑1 (𝑥) − 𝜑𝑡 (𝑥)
1 − 𝑡 ≤ (1− 𝑠)𝐶, (4.10)

where the second inequality follows from (4.9).
Taking supremum in (4.10), we find that

sup
𝑋\𝑍
(𝜑1 − 𝜑𝑠) ≤ (1 − 𝑠) sup

𝑥∈𝑋\𝑍
lim
𝑡→1−

𝜑1 (𝑥) − 𝜑𝑡 (𝑥)
1 − 𝑡 ≤ (1 − 𝑠)𝐶. (4.11)

When 𝑠 = 0, we deduce from Corollary 1.3.6 and (4.8) that

sup
{𝜑1≠−∞}

(𝜑1 − 𝜑0) = sup
𝑥∈𝑋\𝑍

lim
𝑡→1−

𝜑1 (𝑥) − 𝜑𝑡 (𝑥)
1 − 𝑡 .

But this equality works equally well for the geodesic (𝜑 (1−𝑠)𝑡+𝑠)𝑡∈[0,1] . It follows that

sup
{𝜑1≠−∞}

(𝜑1 − 𝜑𝑠) = (1 − 𝑠) sup
𝑥∈𝑋\𝑍

lim
𝑡→1−

𝜑1 (𝑥) − 𝜑𝑡 (𝑥)
1 − 𝑡 = (1 − 𝑠)𝐶.

Therefore, invoking Corollary 1.3.6 again, we deduce that all inequalities in (4.11)
are in fact equalities. In other words,

sup
{𝜑1≠−∞}

(𝜑1 − 𝜑0) = sup
𝑥∈𝑋\𝑍

lim
𝑡→1−

𝜑1 (𝑥) − 𝜑𝑡 (𝑥)
1 − 𝑡 = sup

{𝜑1≠−∞}

𝜑1 − 𝜑𝑠
1 − 𝑠 . (4.12)

On the other hand, we have the trivial inequality

sup
{𝜑1≠−∞}

(𝜑1 − 𝜑0) ≤ 𝑠 sup
{𝜑1≠−∞}

𝜑𝑠 − 𝜑0

𝑠
+ (1 − 𝑠) sup

{𝜑1≠−∞}

𝜑1 − 𝜑𝑠
1 − 𝑠 .

Together with (4.12), we find that

sup
{𝜑1≠−∞}

(𝜑1 − 𝜑0) ≤ sup
{𝜑1≠−∞}

𝜑𝑠 − 𝜑0

𝑠
.

The reverse inequality follows from the convexity,

sup
{𝜑1≠−∞}

𝜑𝑠 − 𝜑0

𝑠
= sup
{𝜑1≠−∞}

(𝜑1 − 𝜑0).

Using Corollary 1.3.6, we conclude (4.7). □

With an almost identical proof, we find
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Proposition 4.2.3 Let 𝜑1, 𝜑0 ∈ E∞ (𝑋, 𝜃; 𝜙). Let (𝜑𝑡 )𝑡∈ (0,1) be the geodesic from 𝜑0
to 𝜑1. Then

𝑡 inf
{𝜙≠−∞}

(𝜑1 − 𝜑0) = inf
{𝜙≠−∞}

(𝜑𝑡 − 𝜑0)

for all 𝑡 ∈ (0, 1].

Definition 4.2.2 Let ℓ = (ℓ𝑡 )𝑡≥0 be a curve in E(𝑋, 𝜃; 𝜙). We say ℓ is a geodesic ray
in E(𝑋, 𝜃; 𝜙) emanating from ℓ0 if for each 0 ≤ 𝑎 ≤ 𝑏, the restriction (ℓ𝑡 )𝑡∈[𝑎,𝑏] is a
geodesic.

The set of geodesic rays in E(𝑋, 𝜃; 𝜙) emanating from 𝜙 is denoted by R(𝑋, 𝜃; 𝜙).
We say a geodesic ray ℓ ∈ R(𝑋, 𝜃; 𝜙) has finite energy if ℓ𝑡 ∈ E1 (𝑋, 𝜃; 𝜙) for all

𝑡 > 0. The set of geodesic rays with finite energy is denoted by R1 (𝑋, 𝜃; 𝜙).
We say a geodesic ray ℓ ∈ R(𝑋, 𝜃; 𝜙) is bounded if ℓ𝑡 ∈ E∞ (𝑋, 𝜃; 𝜙) for all 𝑡 ≥ 0.

The set of bounded geodesic rays is denoted by R∞ (𝑋, 𝜃; 𝜙).
Given ℓ, ℓ′ ∈ R(𝑋, 𝜃; 𝜙), we write ℓ ≤ ℓ′ if ℓ𝑡 ≤ ℓ′𝑡 for each 𝑡 ≥ 0.
When 𝜙 = 𝑉𝜃 , we usually omit it from the notations and write R(𝑋, 𝜃), R1 (𝑋, 𝜃)

and R∞ (𝑋, 𝜃) respectively.

Proposition 4.2.4 Let ℓ ∈ R(𝑋, 𝜃; 𝜙). Then there is a constant 𝐶 ∈ R such that

sup
𝑋

ℓ𝑡 = 𝐶𝑡, 𝑡 ≥ 0.

Proof It follows from Proposition 4.2.2 that

sup
{𝜙≠−∞}

(ℓ𝑡 − 𝜙) = 𝑡 sup
𝑋

(ℓ1 − 𝜙)

for all 𝑡 ≥ 0.
It suffices to show that for any 𝑡 ≥ 0,

sup
{𝜙≠−∞}

(ℓ𝑡 − 𝜙) = sup
𝑋

ℓ𝑡 .

This was already proved in Proposition 3.1.4. □

4.3 The metrics on the spaces of potentials and rays

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝜃 be a smooth
closed real (1, 1)-form on 𝑋 representing a big cohomology class. Fix a model
potential 𝜙 ∈ PSH(𝑋, 𝜃)>0.

We first study a natural metric on E1 (𝑋, 𝜃; 𝜙).

Definition 4.3.1 Let 𝜑, 𝜓 ∈ E1 (𝑋, 𝜃; 𝜙), we define

𝑑1 (𝜑, 𝜓) = 𝐸 𝜙𝜃 (𝜑) + 𝐸
𝜙

𝜃
(𝜓) − 2𝐸 𝜙

𝜃
(𝜑 ∧ 𝜓).
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Note that by Proposition 3.1.18, 𝜑 ∧ 𝜓 ∈ E1 (𝑋, 𝜃; 𝜙).

Recall that 𝐸 𝜙
𝜃

is defined in Definition 3.1.5.
In particular, if 𝜑 ≤ 𝜓, we have

𝑑1 (𝜑, 𝜓) = 𝐸 𝜙𝜃 (𝜓) − 𝐸
𝜙

𝜃
(𝜑). (4.13)

We wish to show that 𝑑1 is a complete metric. We first prove a contraction property:

Proposition 4.3.1 Let 𝜑, 𝜓, 𝛾 ∈ E1 (𝑋, 𝜃; 𝜙). Then

𝑑1 (𝜑, 𝜓) ≥ 𝑑1 (𝜑 ∧ 𝛾, 𝜓 ∧ 𝛾). (4.14)

Proof Step 1. We first assume that 𝜑 ≥ 𝜓. Then

𝑑1 (𝜑, 𝜓) =𝐸 𝜙𝜃 (𝜑) − 𝐸
𝜙

𝜃
(𝜓)

≥𝐸 𝜙
𝜃
((𝜑 ∧ 𝛾) ∨ 𝜓) − 𝐸 𝜙

𝜃
(𝜓) by Lemma 3.1.3

≥𝐸 𝜙
𝜃
(𝜑 ∧ 𝛾) − 𝐸 𝜙

𝜃
(𝜓 ∧ 𝛾) by Corollary 3.1.4.

Step 2. We prove the general case.
By Step 1, we have

𝑑1 (𝜑, 𝜑 ∧ 𝜓) ≥ 𝑑1 (𝜑 ∧ 𝛾, 𝜑 ∧ 𝜓 ∧ 𝛾), 𝑑1 (𝜓, 𝜑 ∧ 𝜓) ≥ 𝑑1 (𝜓 ∧ 𝛾, 𝜑 ∧ 𝜓 ∧ 𝛾).

Adding the two inequalities together, we conclude (4.14). □

Lemma 4.3.1 The function 𝑑1 is a metric on E1 (𝑋, 𝜃; 𝜙).

Proof There are two facts to prove, as in the two steps below.
Step 1. Let 𝜑, 𝜓 ∈ E1 (𝑋, 𝜃; 𝜙). Assume that 𝑑1 (𝜑, 𝜓) = 0, then we will show that

𝜑 = 𝜓.
We may assume that 𝜓 ≤ 𝜑, thanks to the definition of 𝑑1. Then it follows from

(4.13) and Proposition 3.1.15 that∫
𝑋

(𝜓 − 𝜑) 𝜃𝑛𝜑 = 0.

We conclude that 𝜓 = 𝜑 using Theorem 2.4.6.
Step 2. Let 𝜑, 𝜓, 𝛾 ∈ E1 (𝑋, 𝜃; 𝜙). We prove the triangle inequality:

𝑑1 (𝜑, 𝜓) ≤ 𝑑1 (𝜑, 𝛾) + 𝑑1 (𝜓, 𝛾).

This can be translated to

𝐸
𝜙

𝜃
(𝜑 ∧ 𝛾) − 𝐸 𝜙

𝜃
(𝜑 ∧ 𝜓) ≤ 𝐸 𝜙

𝜃
(𝛾) − 𝐸 𝜙

𝜃
(𝜓 ∧ 𝛾).

We just have to compute using Proposition 4.3.1:
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𝐸
𝜙

𝜃
(𝛾) − 𝐸 𝜙

𝜃
(𝜓 ∧ 𝛾) ≥𝐸 𝜙

𝜃
(𝜑 ∧ 𝛾) − 𝐸 𝜙

𝜃
(𝜑 ∧ 𝜓 ∧ 𝛾)

≥𝐸 𝜙
𝜃
(𝜑 ∧ 𝛾) − 𝐸 𝜙

𝜃
(𝜑 ∧ 𝜓),

where the second line follows from Lemma 3.1.3. □

We introduce an auxiliary functional.

Definition 4.3.2 Define 𝐼𝜃 : E1 (𝑋, 𝜃; 𝜙) × E1 (𝑋, 𝜃; 𝜙) → R as follows:

𝐼𝜃 (𝜑, 𝜓) B
∫
𝑋

|𝜑 − 𝜓 |
(
𝜃𝑛𝜑 + 𝜃𝑛𝜓

)
. (4.15)

We observe the following elementary equality.

Lemma 4.3.2 Let 𝜑, 𝜓 ∈ E1 (𝑋, 𝜃; 𝜙), then

𝐼𝜃 (𝜑, 𝜓) = 𝐼𝜃 (𝜑 ∨ 𝜓, 𝜑) + 𝐼𝜃 (𝜑 ∨ 𝜓, 𝜓).

Proof It suffices to write

𝐼𝜃 (𝜑, 𝜓) =
∫
{𝜑<𝜓}

(𝜓 − 𝜑)
(
𝜃𝑛𝜑 + 𝜃𝑛𝜓

)
+

∫
{𝜑>𝜓}

(𝜑 − 𝜓)
(
𝜃𝑛𝜑 + 𝜃𝑛𝜓

)
,

𝐼𝜃 (𝜑 ∨ 𝜓, 𝜑) =
∫
{𝜓>𝜑}

(𝜓 − 𝜑)
(
𝜃𝑛𝜓 + 𝜃𝑛𝜑

)
,

𝐼𝜃 (𝜑 ∨ 𝜓, 𝜓) =
∫
{𝜓<𝜑}

(𝜑 − 𝜓)
(
𝜃𝑛𝜓 + 𝜃𝑛𝜑

)
.

We have an interesting relation between 𝑑1 and 𝐼𝜃 defined in Definition 4.3.2.

Theorem 4.3.1 Let 𝜑, 𝜓 ∈ E1 (𝑋, 𝜃; 𝜙). Then

1
𝐶𝑛
𝐼𝜃 (𝜑, 𝜓) ≤ 𝑑1 (𝜑, 𝜓) ≤ 𝐼𝜃 (𝜑, 𝜓), (4.16)

where 𝐶𝑛 = 3 · 2𝑛+2 (𝑛 + 1).

Proof Step 1. We first prove the right-hand part of (4.16).
Thanks to Proposition 3.1.16 and Lemma 3.1.1, we have

𝐸
𝜙

𝜃
(𝜑) − 𝐸 𝜙

𝜃
(𝜑 ∧ 𝜓) ≤

∫
𝑋

(𝜑 − 𝜑 ∧ 𝜓) 𝜃𝑛𝜑∧𝜓

≤
∫
{𝜓=𝜑∧𝜓}

(𝜑 − 𝜓) 𝜃𝑛𝜓

≤
∫
𝑋

|𝜑 − 𝜓 | 𝜃𝑛𝜓 .

Similarly,
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𝐸
𝜙

𝜃
(𝜓) − 𝐸 𝜙

𝜃
(𝜑 ∧ 𝜓) ≤

∫
𝑋

|𝜑 − 𝜓 | 𝜃𝑛𝜑 .

Adding these inequalities up, we find

𝑑1 (𝜑, 𝜓) ≤ 𝐼𝜃 (𝜑, 𝜓).

Step 2. We prove the left-hand part of (4.16).
We claim that

𝑑1

(
𝜑,
𝜑 + 𝜓

2

)
≤ 3(𝑛 + 1)

2
𝑑1 (𝜑, 𝜓). (4.17)

For this purpose, we compute directly

𝑑1

(
𝜑,
𝜑 + 𝜓

2

)
=𝑑1

(
𝜑, 𝜑 ∧ 𝜑 + 𝜓

2

)
+ 𝑑1

(
𝜑 + 𝜓

2
, 𝜑 ∧ 𝜑 + 𝜓

2

)
≤𝑑1 (𝜑, 𝜑 ∧ 𝜓) + 𝑑1

(
𝜑 + 𝜓

2
, 𝜑 ∧ 𝜓

)
by Lemma 3.1.3

≤
∫
𝑋

(𝜑 − 𝜑 ∧ 𝜓) 𝜃𝑛𝜑∧𝜓 +
∫
𝑋

(
𝜑 + 𝜓

2
− 𝜑 ∧ 𝜓

)
𝜃𝑛𝜑∧𝜓 by Proposition 3.1.16

=
3
2

∫
𝑋

(𝜑 − 𝜑 ∧ 𝜓) 𝜃𝑛𝜑∧𝜓 +
1
2

∫
𝑋

(𝜓 − 𝜑 ∧ 𝜓) 𝜃𝑛𝜑∧𝜓

≤3(𝑛 + 1)
2

𝑑1 (𝜑, 𝜑 ∧ 𝜓) +
𝑛 + 1

2
𝑑1 (𝜓, 𝜑 ∧ 𝜓) by (3.31)

≤3(𝑛 + 1)
2

𝑑1 (𝜑, 𝜓),

and (4.17) follows.
We now estimate the left-hand side of (4.17):

𝑑1

(
𝜑,
𝜑 + 𝜓

2

)
≥𝑑1

(
𝜑, 𝜑 ∧ 𝜑 + 𝜓

2

)
≥

∫
𝑋

(
𝜑 − 𝜑 ∧ 𝜑 + 𝜓

2

)
𝜃𝑛𝜑 ,

as a consequence of Proposition 3.1.16.
Similarly,

𝑑1

(
𝜑,
𝜑 + 𝜓

2

)
≥𝑑1

(
𝜑 + 𝜓

2
, 𝜑 ∧ 𝜑 + 𝜓

2

)
≥

∫
𝑋

(
𝜑 + 𝜓

2
− 𝜑 ∧ 𝜑 + 𝜓

2

)
𝜃𝑛(𝜑+𝜓)/2

≥2−𝑛
∫
𝑋

(
𝜑 + 𝜓

2
− 𝜑 ∧ 𝜑 + 𝜓

2

)
𝜃𝑛𝜑 .
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Adding these estimates up, we find

3 · 2𝑛 (𝑛 + 1)𝑑1 (𝜑, 𝜓) ≥
1
2

∫
𝑋

|𝜑 − 𝜓 | 𝜃𝑛𝜑 .

By symmetry, we also get a similar expression after exchanging 𝜑 and 𝜓. Adding
these inequalities together, we find

3 · 2𝑛+2 (𝑛 + 1)𝑑1 (𝜑, 𝜓) ≥ 𝐼𝜃 (𝜑, 𝜓).

The left-hand part of (4.16) then follows, in view of (4.17). □

Lemma 4.3.3 There is 𝐴, 𝐵 > 0 so that for any 𝜑 ∈ E1 (𝑋, 𝜃; 𝜙), we have

𝑑1 (𝜑, 𝜙) ≥ −
∫
𝑋

𝜃𝑛𝜙 · sup
𝑋

𝜑 ≥ −𝐴𝑑1 (𝜑, 𝜙) − 𝐵. (4.18)

Proof When sup𝑋 𝜑 ≤ 0, the right-hand part of (4.18) is trivial. While

𝑑1 (𝜙, 𝜑) = −𝐸 𝜙𝜃 (𝜑) ≥ −
∫
𝑋

𝜃𝑛𝜙 · sup
{𝜙≠−∞}

(𝜑 − 𝜙) = −
∫
𝑋

𝜃𝑛𝜙 · sup
𝑋

𝜑,

where the last equality follows from Proposition 3.1.4.
We can therefore assume that sup𝑋 𝜑 > 0. In this case, the left-hand part of (4.18)

is trivial. Take a Kähler form 𝜔 ≥ 𝜃 on 𝑋 . Then thanks to Theorem 3.1.1, we can
find a constant 𝐶 > 0 so that

𝜃𝑛𝜙 ≤ 𝐶𝜔𝑛.

Thanks to Proposition 1.5.1, there is a constant 𝐶′ > 0, independent of the choice of
𝜑, so that ∫

𝑋

(
𝜙 − 𝜑 + sup

𝑋

𝜑

)
𝜃𝑛𝜙 ≤ 𝐶′.

We estimate

𝐼𝜃 (𝜙, 𝜑) ≥
∫
𝑋

|𝜑 − 𝜙| 𝜃𝑛𝜙

≥
(
sup
𝑋

𝜑

) ∫
𝑋

𝜃𝑛𝜙 −
∫
𝑋

(
𝜙 − 𝜑 + sup

𝑋

𝜑

)
𝜃𝑛𝜙

≥
(
sup
𝑋

𝜑

) ∫
𝑋

𝜃𝑛𝜙 − 𝐶′.

The right-hand part of (4.18) then follows from Theorem 4.3.1. □

Next we handle the completeness of 𝑑1. The completeness can be proved in a
more general framework.

Definition 4.3.3 Let 𝐸 be a set. A pre-rooftop structure on 𝐸 is a binary operator
∧ : 𝐸 × 𝐸 → 𝐸 , satisfying the following axioms: For 𝑥, 𝑦, 𝑧 ∈ 𝐸 ,
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(1) 𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥.
(2) (𝑥 ∧ 𝑦) ∧ 𝑧 = 𝑥 ∧ (𝑦 ∧ 𝑧).
(3) 𝑥 ∧ 𝑥 = 𝑥.

We call (𝐸,∧) a pre-rooftop space.

A pre-rooftop structure ∧ defines a partial order ≤ on 𝐸 as follows:

𝑥 ≤ 𝑦 if and only if 𝑥 ∧ 𝑦 = 𝑥.

Here by abuse of notation, we use ≤ to denote the partial order.
In particular, it makes sense to talk about an increasing and decreasing sequences

in 𝐸 .

Definition 4.3.4 Let (𝐸, 𝑑) be a metric space. A pre-rooftop structure on (𝐸, 𝑑) is a
pre-rooftop structure ∧ on 𝐸 . We say (𝐸, 𝑑,∧) is a pre-rooftop metric space.

A rooftop structure on (𝐸, 𝑑) is a pre-rooftop structure ∧ on 𝐸 such that

𝑑 (𝑥 ∧ 𝑧, 𝑦 ∧ 𝑧) ≤ 𝑑 (𝑥, 𝑦), ∀𝑥, 𝑦, 𝑧 ∈ 𝐸. (4.19)

We call (𝐸, 𝑑,∧) a rooftop metric space.

Lemma 4.3.4 Let (𝐸, 𝑑,∧) be a rooftop metric space. Let 𝑥, 𝑦, 𝑥′, 𝑦′ ∈ 𝐸 , then

𝑑 (𝑥 ∧ 𝑦, 𝑥′ ∧ 𝑦′) ≤ 𝑑 (𝑥, 𝑥′) + 𝑑 (𝑦, 𝑦′). (4.20)

Proof We compute

𝑑 (𝑥 ∧ 𝑦, 𝑥′ ∧ 𝑦′) ≤ 𝑑 (𝑥 ∧ 𝑦, 𝑥 ∧ 𝑦′) + 𝑑 (𝑥 ∧ 𝑦′, 𝑥′ ∧ 𝑦′) ≤ 𝑑 (𝑥, 𝑥′) + 𝑑 (𝑦, 𝑦′).

Proposition 4.3.2 Let (𝐸, 𝑑,∧) be a rooftop metric space. Then (𝐸, 𝑑) is complete
if and only if both of the followings hold:

(1) Each increasing Cauchy sequence converges.
(2) Each decreasing Cauchy sequence converges.

Proof The direct implication is trivial.
Conversely, assume that both conditions are true. Let (𝑥 𝑗 ) 𝑗>0 be a Cauchy sequence

in 𝐸 . We want to prove that (𝑥 𝑗 ) 𝑗 converges. By passing to a subsequence, we may
assume that

𝑑 (𝑥 𝑗 , 𝑥 𝑗+1) ≤ 2− 𝑗 .

For 𝑘, 𝑗 ≥ 1, let
𝑦𝑘𝑗 B 𝑥𝑘 ∧ · · · ∧ 𝑥𝑘+ 𝑗 .

Then (𝑦𝑘
𝑗
) 𝑗 is decreasing, and

𝑑 (𝑦𝑘𝑗 , 𝑦𝑘𝑗+1) ≤ 𝑑 (𝑥𝑘+ 𝑗 , 𝑥𝑘+ 𝑗+1) ≤ 2−𝑘− 𝑗 .
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So (𝑦 𝑗
𝑘
) 𝑗 is a decreasing Cauchy sequence. Define

𝑦𝑘 B lim
𝑗→∞

𝑦𝑘𝑗 .

Then
𝑑 (𝑦𝑘 , 𝑦𝑘+1) = lim

𝑗→∞
𝑑 (𝑦𝑘𝑗+1, 𝑦

𝑘+1
𝑗 ) ≤ 𝑑 (𝑥𝑘 , 𝑥𝑘+1) ≤ 2−𝑘 .

So 𝑦𝑘 is an increasing Cauchy sequence. Let

𝑦 B lim
𝑘→∞

𝑦𝑘 .

Then
𝑑 (𝑦𝑘 , 𝑥𝑘) = lim

𝑗→∞
𝑑 (𝑦𝑘𝑗 , 𝑥𝑘) ≤ lim

𝑗→∞
𝑑 (𝑦𝑘+1𝑗−1, 𝑥𝑘).

Note that

𝑑 (𝑦𝑘+1𝑗−1, 𝑥𝑘) ≤ 𝑑 (𝑦
𝑘+1
𝑗−1, 𝑥𝑘+1) + 𝑑 (𝑥𝑘+1, 𝑥𝑘) ≤ 𝑑 (𝑦

𝑘+2
𝑗−1, 𝑥𝑘+1) + 2−𝑘 .

Hence

𝑑 (𝑦𝑘 , 𝑥𝑘) ≤ 2−𝑘 + lim
𝑗→∞

𝑑 (𝑦𝑘+2𝑗−1, 𝑥𝑘+1) ≤ lim
𝑗→∞

𝑗+𝑘∑︁
𝑟=𝑘

𝑑 (𝑥𝑟 , 𝑥𝑟+1) ≤ 21−𝑘 .

So (𝑥𝑘)𝑘 converges to 𝑦. □

Theorem 4.3.2 The metric space (E1 (𝑋, 𝜃; 𝜙), 𝑑1) is complete.

It follows from the proof below that if (𝜑 𝑗 ) 𝑗>0 is a monotone sequence in E1 (𝑋, 𝜃; 𝜙)
with 𝑑1-limit 𝜑, then 𝜑 is the almost everywhere limit of (𝜑 𝑗 ) 𝑗>0. We will use this
result without further explanation in the sequel.

Proof As we have seen in Lemma 4.3.1 and Proposition 4.3.1, the triple(
E1 (𝑋, 𝜃; 𝜙), 𝑑1,∧

)
is a rooftop metric space. Hence thanks to Proposition 4.3.2, it remains to show that
each increasing or decreasing Cauchy sequence in E1 (𝑋, 𝜃; 𝜙) converges.

We first consider an increasing sequence (𝜑𝑖)𝑖>0 in E1 (𝑋, 𝜃; 𝜙). The Cauchy
property simply means that

sup
𝑖>0

𝐸
𝜙

𝜃
(𝜑𝑖) < ∞.

We claim that
𝜑 B sup

𝑖>0

∗𝜑𝑖

is the 𝑑1-limit of the sequence. We first observe that (sup𝑋 𝜑𝑖)𝑖>0 is bounded,
as a consequence of Lemma 4.3.3. Therefore, Proposition 3.1.20 guarantees that
𝜑 ∈ E1 (𝑋, 𝜃; 𝜙), and hence our assertion follows from Proposition 3.1.17.
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Next we consider a decreasing sequence (𝜑𝑖)𝑖>0 in E1 (𝑋, 𝜃; 𝜙). The Cauchy
property simply means that

inf
𝑖>0

𝐸
𝜙

𝜃
(𝜑𝑖) > −∞.

We claim that
𝜑 B inf

𝑖>0
𝜑𝑖

is the 𝑑1-limit of the sequence. We first observe that (sup𝑋 𝜑𝑖)𝑖>0 is bounded, as
a consequence of Lemma 4.3.3. Therefore, 𝜑 ∈ PSH(𝑋, 𝜃; 𝜙). Our assertion then
follows from Proposition 3.1.14. □

Lemma 4.3.5 Let (𝜑𝑖)𝑖>0 be a sequence in E1 (𝑋, 𝜃; 𝜙) with 𝑑1-limit 𝜑 ∈ E1 (𝑋, 𝜃; 𝜙).
Then after replacing (𝜑𝑖)𝑖>0 by a subsequence, we can find two sequences (𝜓𝑖)𝑖>0
and (𝜂𝑖)𝑖>0 in E1 (𝑋, 𝜃; 𝜙) such that

(1) (𝜓𝑖)𝑖>0 is decreasing with 𝑑1 and pointwise limit 𝜑;
(2) (𝜂𝑖)𝑖>0 is increasing with 𝑑1 and almost everywhere limit 𝜑.

Proof We first note that as a consequence of Lemma 4.3.3, (sup𝑋 𝜑𝑖)𝑖>0 is bounded.
We first construct (𝜓𝑖)𝑖>0. For this purpose, it suffices to define

𝜓𝑖 B sup
𝑗≥𝑖
∗𝜑 𝑗

for each 𝑖 > 0. It follows from Proposition 3.1.20 that 𝜓𝑖 ∈ E1 (𝑋, 𝜃; 𝜙) for each 𝑖 > 0.
Furthermore, 𝜑 is the limit of the decreasing sequence (𝜓𝑖)𝑖>0 as we have seen in
the proof of Corollary 1.2.1. Then 𝜑 is the 𝑑1-limit of (𝜓 𝑗 ) 𝑗>0 as a consequence of
Proposition 3.1.14.

Next we construct (𝜂𝑖)𝑖>0. For this purpose, we may replace (𝜑𝑖)𝑖>0 by a subse-
quence and assume that

𝑑1 (𝜑𝑖 , 𝜑𝑖+1) ≤ 2−𝑖 .

For each 𝑖 > 0 and 𝑘 ≥ 0, we let

𝜂𝑘𝑖 B 𝜑𝑖 ∧ 𝜑𝑖+1 ∧ · · · ∧ 𝜑𝑖+𝑘 .

Then

𝑑1 (𝜑𝑖 , 𝜂𝑘𝑖 ) ≤
𝑘−1∑︁
𝑗=0

𝑑1

(
𝜂
𝑗

𝑖
, 𝜂
𝑗+1
𝑖

)
≤
𝑘−1∑︁
𝑗=0

𝑑1
(
𝜑𝑖+1, 𝜑𝑖+ 𝑗+1

)
by Proposition 4.3.1

≤
𝑘−1∑︁
𝑗=0

2−𝑖− 𝑗

≤21−𝑖 .

Therefore, Theorem 4.3.2 shows that



114 CHAPTER 4. GEODESIC RAYS IN THE SPACE OF POTENTIALS

𝜂𝑖 B sup
𝑘≥0

∗𝜂𝑘𝑖

is the 𝑑1-limit of (𝜂𝑘
𝑖
)𝑘≥0 and Proposition 3.1.17 shows that

𝑑1 (𝜑𝑖 , 𝜂𝑖) ≤ 21−𝑖 .

Therefore, 𝜑 is the 𝑑1-limit of the increasing sequence (𝜂𝑖)𝑖>0. As we have seen in
the proof of Theorem 4.3.2, this implies that 𝜑 is also the almost everywhere limit of
(𝜂𝑖)𝑖>0. □

Theorem 4.3.3 The functional 𝐸 𝜙
𝜃

: E1 (𝑋, 𝜃; 𝜙) → R is continuous.

Proof Let (𝜑 𝑗 ) 𝑗>0 be a sequence in E1 (𝑋, 𝜃; 𝜙) with 𝑑1-limit 𝜑 ∈ E1 (𝑋, 𝜃; 𝜙). We
wish to show that

lim
𝑗→∞

𝐸
𝜙

𝜃
(𝜑 𝑗 ) = 𝐸 𝜙𝜃 (𝜑). (4.21)

For this purpose, we may freely replace (𝜑 𝑗 ) 𝑗>0 by a subsequence. In particular,
thanks to Lemma 4.3.5 and Lemma 3.1.3, we may assume that (𝜑 𝑗 ) 𝑗>0 is a monotone
sequence. In this case, (4.21) follows from Proposition 3.1.17. □

Next we recall two particular properties when 𝜙 = 𝑉𝜃 .3

Proposition 4.3.3 Let (𝜑𝑡 )𝑡∈[𝑎,𝑏] be a geodesic in E1 (𝑋, 𝜃), then 𝑡 ↦→ 𝐸𝜃 (𝜑𝑡 ) is a
linear function of 𝑡 ∈ [𝑎, 𝑏].

See [DDNL18c, Theorem 3.12].

Proposition 4.3.4 Let (𝜑𝑖0)𝑖∈𝐼 , (𝜑
𝑖
1)𝑖∈𝐼 be two uniformly bounded from above increas-

ing nets in E∞ (𝑋, 𝜃). Let (𝜑𝑖𝑡 )𝑡∈ (0,1) be the geodesic from 𝜑𝑖0 to 𝜑𝑖1 for each 𝑖 ∈ 𝐼.
Then (

sup
𝑖∈𝐼
∗𝜑𝑖𝑡

)
𝑡∈ (0,1)

is the geodesic from sup𝑖∗𝜑𝑖0 to sup𝑖∗𝜑𝑖0.

Proof By Proposition 1.2.2 and Proposition 4.1.3, we may assume that 𝐼 is count-
able. In this case, the assertion follows from [DDNL18c, Proposition 3.3] and
Theorem 2.1.1. □

Proposition 4.3.5 Let (𝜑𝑡 )𝑡∈[0,1] , (𝜓𝑡 )𝑡∈[0,1] be geodesics in E1 (𝑋, 𝜃). Then the
distance 𝑑1 (𝜑𝑡 , 𝜓𝑡 ) is a convex function of 𝑡 ∈ [0, 1].

Proof By definition of 𝑑1, it suffices to show the concavity of

[0, 1] ∋ 𝑡 ↦→ 𝐸𝜃 (𝜑𝑡 ∧ 𝜓𝑡 ).

3 I expect that these assertions hold even when 𝜙 ≠ 𝑉𝜃 . But I am unable to prove them in full
generality.
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Let (𝜂𝑡 )𝑡∈[0,1] be the geodesic from 𝜑0 ∧ 𝜓0 to 𝜑1 ∧ 𝜓1. Then for each 𝑡 ∈ [0, 1], we
have 𝜂𝑡 ≤ 𝜑𝑡 ∧ 𝜓𝑡 . Then thanks to Proposition 4.3.6 and Proposition 3.1.17, we have

𝐸𝜃 (𝜑𝑡 ∧ 𝜓𝑡 ) ≥ 𝐸𝜃 (𝜂𝑡 ) = 𝑡𝐸𝜃 (𝜑0 ∧ 𝜓0) + (1 − 𝑡)𝐸𝜃 (𝜑1 ∧ 𝜓1)

for each 𝑡 ∈ [0, 1]. Our assertion follows. □

In particular, we can introduce:

Definition 4.3.5 Let ℓ, ℓ′ ∈ R1 (𝑋, 𝜃). We define

𝑑1 (ℓ, ℓ′) B lim
𝑡→∞

1
𝑡
𝑑1 (ℓ𝑡 , ℓ′𝑡 ).

Theorem 4.3.4 The function 𝑑1 defined in Definition 4.3.5 is a metric.

One can actually show that (R1 (𝑋, 𝜃), 𝑑1) is a complete metric space. We do not
need this fact in the sequel, so we omit the proof. See [DDNL21b, Theorem 2.14].

Proof We first observe that 𝑑1 (ℓ, ℓ′) < ∞ for any ℓ, ℓ′ ∈ R1 (𝑋, 𝜃). In fact, for each
𝑡 > 0, we have

𝑑1 (ℓ𝑡 , ℓ′𝑡 ) ≤ 𝑑1 (ℓ𝑡 , 𝜙) + 𝑑1 (ℓ′𝑡 , 𝜙) = −𝐸
𝜙

𝜃
(ℓ𝑡 ) − 𝐸 𝜙𝜃 (ℓ

′
𝑡 ) = −𝑡𝐸

𝜙

𝜃
(ℓ1) − 𝑡𝐸 𝜙𝜃 (ℓ

′
1)

by Proposition 4.3.3.
In view of Lemma 4.3.1, in order to prove that 𝑑1 is a metric onR1 (𝑋, 𝜃), it suffices

to prove the following assertion: Suppose that ℓ, ℓ′ ∈ R1 (𝑋, 𝜃) and 𝑑1 (ℓ, ℓ′) = 0,
then ℓ = ℓ′.

Fix 𝑠 > 0, then it follows from Proposition 4.3.5 that

𝑑1 (ℓ𝑠 , ℓ′𝑠)
𝑠

≤ lim
𝑡→∞

𝑑1 (ℓ𝑡 , ℓ′𝑡 )
𝑡

= 𝑑1 (ℓ, ℓ′) = 0.

Therefore, ℓ𝑠 = ℓ′𝑠 and hence ℓ = ℓ′.

Definition 4.3.6 We define the radial Monge–Ampère energy E𝜙 : R(𝑋, 𝜃; 𝜙) →
R ∪ {∞} as follows:

E𝜙 (ℓ) B lim
𝑡→∞

𝐸
𝜙

𝜃
(ℓ𝑡 )
𝑡

.

When 𝜙 = 𝑉𝜃 , we write E instead of E𝑉𝜃 .

Proposition 4.3.6 Let ℓ, ℓ′ ∈ R1 (𝑋, 𝜃) and ℓ ≤ ℓ′. Then

𝑑1 (ℓ, ℓ′) = E(ℓ′) − E(ℓ). (4.22)

Proof This is a direct consequence of (4.13). □

Next we recall that ∨ operator at the level of geodesic rays.



116 CHAPTER 4. GEODESIC RAYS IN THE SPACE OF POTENTIALS

Definition 4.3.7 Let ℓ, ℓ′ ∈ R∞ (𝑋, 𝜃). We define ℓ ∨ ℓ′ as the minimal ray in
R∞ (𝑋, 𝜃) lying above both ℓ and ℓ′.

Proposition 4.3.7 Given ℓ, ℓ′ ∈ R∞ (𝑋, 𝜃). Then ℓ ∨ ℓ′ ∈ R∞ (𝑋, 𝜃) exists, and

E(ℓ ∨ ℓ′) = lim
𝑡→∞

1
𝑡
𝐸𝜃

(
ℓ𝑡 ∨ ℓ′𝑡

)
. (4.23)

Proof For each 𝑡 > 0, let (ℓ′′𝑡𝑠 )𝑠∈[0,𝑡 ] be the geodesic from 𝑉𝜃 to ℓ𝑡 ∨ ℓ′𝑡 .
Step 1. We first show that for each fixed 𝑠 ≥ 0, ℓ′′𝑡𝑠 is increasing in 𝑡 ∈ [𝑠,∞).
To see this, fix 𝑠 ≥ 0 and choose 𝑡′ > 𝑡 ≥ 𝑠. We need to show that

ℓ′′𝑡
′

𝑠 ≥ ℓ′′𝑡𝑠 . (4.24)

Since (ℓ′′𝑡 ′𝑎 )𝑎∈[0,𝑡 ] is a geodesic. It suffices to show that (ℓ′′𝑡𝑎 )𝑎∈[0,𝑡 ] is a candidate in
the Perron envelope defining the former geodesic. In other words, in verifying (4.24),
we may assume that either 𝑠 = 0 or 𝑠 = 𝑡. The case 𝑠 = 0 is of course trivial. So it
remains to prove the following:

ℓ′′𝑡
′

𝑡 ≥ ℓ𝑡 ∨ ℓ′𝑡 .

By symmetry, it suffices to prove

ℓ′′𝑡
′

𝑡 ≥ ℓ𝑡 .

But since (ℓ𝑎)𝑎∈[0,𝑡 ′ ] is a candidate in the Perron envelope defining ℓ′′𝑡 ′ , this inequality
follows.

Step 2. Next, observe that for a fixed 𝑠 ≥ 0, we have

sup
𝑋

ℓ′′𝑡𝑠 ≤
𝑠

𝑡
sup
𝑋

ℓ′′𝑡𝑡 +
𝑡 − 𝑠
𝑡

sup
𝑋

ℓ′′𝑡0 =
𝑠

𝑡

(
sup
𝑋

ℓ𝑡

)
∨

(
sup
𝑋

ℓ′𝑡

)
for all 𝑡 > 𝑠. The right-hand side is bounded from above by a constant independent of
𝑡 ≥ 𝑠 by Proposition 4.2.4. Let

(ℓ ∨ ℓ′)𝑠 B sup
𝑡>𝑠

∗ℓ′′𝑡𝑠 . (4.25)

Then Proposition 4.3.4 guarantees that ℓ ∨ ℓ′ ∈ R∞ (𝑋, 𝜃).
Step 3. We need to show that ℓ ∨ ℓ′ defined in this way is indeed the minimal ray

lying above ℓ and ℓ′.
First, by Step 1, we have

ℓ′′𝑡𝑠 ≥ ℓ′′𝑠𝑠 ≥ ℓ𝑠
for any 𝑡 ≥ 𝑠 ≥ 0. Therefore,

(ℓ ∨ ℓ′)𝑠 ≥ ℓ𝑠
for all 𝑠 ≥ 0. In other words, ℓ ∨ ℓ′ ≥ ℓ. Similarly, ℓ ∨ ℓ′ ≥ ℓ′.

Next, let 𝐿 ∈ R∞ (𝑋, 𝜃) be a ray lying above both ℓ and ℓ′. Then we have
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𝐿𝑡 ≥ ℓ𝑡 ∨ ℓ′𝑡

for all 𝑡 ≥ 0. In particular,
𝐿𝑠 ≥ ℓ′′𝑡𝑠

for all 𝑡 ≥ 𝑠 ≥ 0. It follows that

𝐿𝑠 ≥ (ℓ ∨ ℓ′)𝑠

for all 𝑠 ≥ 0.
Step 4. It remains to argue (4.23):

E(ℓ ∨ ℓ′) = 𝐸𝜃 (ℓ ∨ ℓ′)1 = lim
𝑡→∞

𝐸𝜃
(
ℓ′′𝑡1

)
= lim
𝑡→∞

1
𝑡
𝐸𝜃

(
ℓ𝑡 ∨ ℓ′𝑡

)
,

where we applied Proposition 3.1.17 and Proposition 4.3.3. □

Lemma 4.3.6 For any ℓ, ℓ′ ∈ R∞ (𝑋, 𝜃), we have

𝑑1 (ℓ, ℓ′) ≤ 𝑑1 (ℓ, ℓ ∨ ℓ′) + 𝑑1 (ℓ′, ℓ ∨ ℓ′) ≤ 𝐶𝑛𝑑1 (ℓ, ℓ′), (4.26)

where 𝐶𝑛 = 3(𝑛 + 1)2𝑛+2.

Proof The first inequality is trivial. As for the second, we estimate

𝑑1 (ℓ, ℓ ∨ ℓ′) =E(ℓ ∨ ℓ′) − E(ℓ) by Proposition 4.3.6

= lim
𝑡→∞

1
𝑡
E

(
ℓ𝑡 ∨ ℓ′𝑡

)
− E(ℓ) by (4.23)

= lim
𝑡→∞

1
𝑡
𝑑1

(
ℓ𝑡 ∨ ℓ′𝑡 , ℓ𝑡

)
by Proposition 4.3.6.

By symmetry, we find

𝑑1 (ℓ, ℓ ∨ ℓ′) + 𝑑1 (ℓ′, ℓ ∨ ℓ′) ≤ lim
𝑡→∞

1
𝑡

(
𝑑1

(
ℓ𝑡 ∨ ℓ′𝑡 , ℓ𝑡

)
+ 𝑑1

(
ℓ𝑡 ∨ ℓ′𝑡 , ℓ′𝑡

) )
.

By Theorem 4.3.1 and Lemma 4.3.2, for each 𝑡 > 0,

𝑑1
(
ℓ𝑡 ∨ ℓ′𝑡 , ℓ𝑡

)
+ 𝑑1

(
ℓ𝑡 ∨ ℓ′𝑡 , ℓ′𝑡

)
≤ 3(𝑛 + 1)2𝑛+2𝑑1 (ℓ𝑡 , ℓ′𝑡 ).

Now (4.26) follows. □

Example 4.3.1 Let 𝜑 ∈ PSH(𝑋, 𝜃). Assume that 𝜑 ≤ 0. For each 𝐶 > 0, let
(ℓ𝜑,𝐶𝑡 )𝑡∈[0,𝐶 ] be the geodesic from 𝑉𝜃 to (𝑉𝜃 − 𝐶) ∨ 𝜑. For each 𝑡 ≥ 0, there is
ℓ
𝜑
𝑡 ∈ E∞ (𝑋, 𝜃) such that

ℓ
𝜑,𝐶
𝑡

𝑑1−−→ ℓ
𝜑
𝑡 (4.27)

as 𝐶 →∞. Then ℓ𝜑 ∈ R∞ (𝑋, 𝜃) and
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E(ℓ𝜑) = 1
𝑛 + 1

𝑛∑︁
𝑗=0

(∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

−
∫
𝑋

𝜃𝑛𝑉𝜃

)
. (4.28)

From (4.28), we see that ℓ𝜑+𝐶 = ℓ𝜑 for any 𝐶 ∈ R. Therefore, for a general
𝜑 ∈ PSH(𝑋, 𝜃), we could simply define

ℓ𝜑 B ℓ𝜑−sup𝑋 𝜑 .

Then the conclusions of this example continue to hold.

Proof We first show that for each fixed 𝑡 ≥ 0, ℓ𝜑,𝐶𝑡 is increasing in 𝐶 ≥ 𝑡.
To see this, choose 𝑡 ≤ 𝐶1 < 𝐶2. We need to show that

ℓ
𝜑,𝐶1
𝑡 ≤ ℓ𝜑,𝐶2

𝑡 .

Since both sides are geodesics for 𝑡 ∈ [0, 𝐶1], it suffices to show that

(𝑉𝜃 − 𝐶1) ∨ 𝜑 ≤ ℓ𝜑,𝐶2
𝐶1

. (4.29)

Now ((𝑉𝜃 − 𝑡) ∨ 𝜑)𝑡∈[0,𝐶2 ] is a subgeodesic from 𝑉𝜃 to (𝑉𝜃 − 𝐶2) ∨ 𝜑 by Proposi-
tion 4.1.3.4 At 𝑡 = 0 and 𝑡 = 𝐶1, it is dominated by the geodesic ℓ𝜑,𝐶2

𝑡 , hence we
conclude that the same holds at 𝑡 = 𝐶1, which is exactly (4.29).

From Proposition 4.1.2, we know that for any 𝐶 > 𝑡 > 0, we have

ℓ
𝜑,𝐶
𝑡 ≤ 𝑡

𝐶
((𝑉𝜃 − 𝐶) ∨ 𝜑) +

𝐶 − 𝑡
𝐶
· 𝑉𝜃 ≤ 0,

so by Proposition 1.2.1,

ℓ
𝜑
𝑡 B sup

𝐶>𝑡

∗ℓ𝜑,𝐶𝑡 ∈ E∞ (𝑋, 𝜃) (4.30)

for all 𝑡 ≥ 0. Thanks to Proposition 3.1.17, we have

ℓ
𝜑,𝐶
𝑡

𝑑1−−→ ℓ
𝜑
𝑡

as 𝐶 →∞ for all 𝑡 ≥ 0. It follows from Proposition 4.3.4 that ℓ𝜑 ∈ R∞ (𝑋, 𝜃).
It remains to compute the energy of ℓ𝜑 . We first fix 𝐶 ≥ 𝑡 > 0 and compute using

Proposition 4.3.3:
𝐸𝜃

(
ℓ
𝜑,𝐶
𝑡

)
=
𝑡

𝐶
𝐸𝜃 ((𝑉𝜃 − 𝐶) ∨ 𝜑) .

Letting 𝐶 →∞ and applying Proposition 3.1.17, we find that

𝐸𝜃 (ℓ𝜑𝑡 ) = lim
𝐶→∞

𝑡

𝐶
𝐸𝜃 ((𝑉𝜃 − 𝐶) ∨ 𝜑)

for any 𝑡 ≥ 0. It follows that

4 Here we need 𝜑 ≤ 0.
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E(ℓ𝜑) = lim
𝐶→∞

1
𝐶
𝐸𝜃 ((𝑉𝜃 − 𝐶) ∨ 𝜑) .

Using the definition of 𝐸𝜃 , in order to obtain (4.28), it suffices to show that for each
𝑗 = 0, . . . , 𝑛, we have

lim
𝐶→∞

∫
𝑋

(𝑉𝜃 − 𝐶) ∨ 𝜑 −𝑉𝜃
𝐶

𝜃
𝑗

(𝑉𝜃−𝐶 )∨𝜑 ∧ 𝜃
𝑛− 𝑗
𝑉𝜃

=

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

−
∫
𝑋

𝜃𝑛𝑉𝜃 . (4.31)

For this purpose, for each 𝐶 > 0, we decompose 𝑋 as {𝜑 > 𝑉𝜃 − 𝐶} and
{𝜑 ≤ 𝑉𝜃 − 𝐶}. We have∫

{𝜑>𝑉𝜃−𝐶 }

(𝑉𝜃 − 𝐶) ∨ 𝜑 −𝑉𝜃
𝐶

𝜃
𝑗

(𝑉𝜃−𝐶 )∨𝜑 ∧ 𝜃
𝑛− 𝑗
𝑉𝜃

=

∫
{𝜑>𝑉𝜃−𝐶 }

𝜑 −𝑉𝜃
𝐶

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

.

On the other hand,∫
{𝜑≤𝑉𝜃−𝐶 }

(𝑉𝜃 − 𝐶) ∨ 𝜑 −𝑉𝜃
𝐶

𝜃
𝑗

(𝑉𝜃−𝐶 )∨𝜑 ∧ 𝜃
𝑛− 𝑗
𝑉𝜃

= −
∫
{𝜑≤𝑉𝜃−𝐶 }

𝜃
𝑗

(𝑉𝜃−𝐶 )∨𝜑 ∧ 𝜃
𝑛− 𝑗
𝑉𝜃

= −
∫
𝑋

𝜃𝑛𝑉𝜃 +
∫
{𝜑>𝑉𝜃−𝐶 }

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

.

Observe that for 𝐶 > 0, the functions 1{𝜑>𝑉𝜃−𝐶 }𝐶−1 (𝜑 − 𝑉𝜃 ) is defined quasi-
everywhere and is bounded. When 𝐶 → ∞, these functions converge to 0 almost
everywhere. Therefore, (4.31) follows.





Chapter 5
Toric pluripotential theory on ample line bundles

There are two principal ways to formulate mathematical
assertions (problems, conjectures, theorems, . . . ): Russian and
French. The Russian way is to choose the most simple and specific
case (so that nobody could simplify the formulation preserving
the main point). The French way is to generalize the statement as
far as nobody could generalize it further.
— Vladimir Arnolda

a Vladimir Igorevich Arnold (1937–2010), who became a professor
at l’Université Paris IX after the dissolution of USSR, was always
sick of France (so am I!). In the public lecture entitled "Sur
l’éducation mathématique" in 1997, he invented the famous joke
"Combien font 2 + 3?" to question the french education system.

In this chapter, we briefly recall the toric pluripotential theory relative to an ample
line bundle. The general case of big line bundles will be handled in Chapter 12 after
developing the powerful machinery of partial Okounkov bodies in Chapter 10. The
main new result is Theorem 5.2.2 computing the 𝐿2-sections of a Hermitian big line
bundle in the toric setting.

We assume that the readers are familiar with basic toric geometry, such as the
materials in [CLS11]. If not, this section can be safely skipped.

Some basic facts about convex functions and convex bodies are recalled in
Appendix A.

5.1 Toric setup

Let 𝑇 be a complex torus of dimension 𝑛1 and 𝑇𝑐 ⊂ 𝑇 (C) denotes the corresponding
compact torus. Write 𝑀 for the character lattice of 𝑇 , which is a free Abelian group
of rank 𝑛. Similarly, let 𝑁 be cocharacter lattice of 𝑇 , which is the dual lattice
of 𝑀. Given 𝑚 ∈ 𝑀, the corresponding character of 𝑀 is denoted by 𝜒𝑚. Write
𝑀R = 𝑀 ⊗Z R and 𝑁R = 𝑁 ⊗Z R. The pairing between 𝑀R and 𝑁R is denoted by
⟨•, •⟩.

Let 𝑃 ⊆ 𝑀R be a full-dimensional smooth2 lattice polytope3.
Given any (closed) facet 𝐹 of 𝑃, let 𝑢𝐹 ∈ 𝑁 denote the unique ray generator

(the first non-zero integral element) of the inward normal ray of 𝐹. Then 𝑃 can be

1 Namely, an algebraic group defined over C, which is isomorphic to G𝑛m.
2 Recall that smooth means that for every vertex 𝑣 ∈ 𝑃, if we take the first lattice point 𝑤𝐸 apart
from 𝑣 as one transverses each edge 𝐸 of 𝑃 containing 𝑣 from 𝑣, then {𝑤𝐸 − 𝑣}𝐸 forms a basis of
𝑀. See [CLS11, Definition 2.4.2]. We also say 𝑃 is a Delzant polytope in this case.
3 A lattice polytope in 𝑀R is the convex hull of finitely many points in 𝑀.
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represented as

𝑃 = {𝑚 ∈ 𝑀R : ⟨𝑚, 𝑢𝐹⟩ ≥ −𝑎𝐹 for all facets 𝐹 of 𝑃} (5.1)

for some uniquely determined integers 𝑎𝐹 . The presentation is called the facet
presentation of 𝑃.

Given any (closed) face 𝑄 of 𝑃, we let 𝜎𝑄 ⊆ 𝑁R be the closed convex cone
generated by the 𝑢𝐹 ’s, where 𝐹 runs over all facets of 𝑃 containing 𝑄. When 𝑄 = 𝑃,
𝜎𝑃 is understood as {0}.

Let Σ be the (inner) normal fan of 𝑃. Namely,

Σ =
{
𝜎𝑄 : 𝑄 is a face of 𝑃

}
.

The notation Σ(1) denotes the set of rays in Σ. Note that Σ(1) is in bĳective
correspondence with the set of facets of 𝑃. In fact, given any facet 𝐹 of 𝑃, the cone
𝜎𝐹 is just the ray generated by 𝑢𝐹 , namely, the inward normal ray of 𝐹.

For any 𝜌 ∈ Σ(1), let 𝑢𝜌 ∈ 𝑁 denote the ray generator of 𝜌, namely the first
non-zero element in 𝑁 ∩ 𝜌. If 𝜌 = 𝜎𝐹 for some facet 𝐹 of 𝑃, then 𝑢𝜌 = 𝑢𝐹 .

Now the facet presentation (5.1) can be equivalently rewritten as

𝑃 =
{
𝑚 ∈ 𝑀R : ⟨𝑚, 𝑢𝜌⟩ ≥ −𝑎𝜌 for all 𝜌 ∈ Σ(1)

}
.

Let Supp𝑃 : 𝑁R → R denote the support function of 𝑃. Recall that the support
function (Example A.1.2) of 𝑃 is defined as

Supp𝑃 (𝑛) = max {⟨𝑚, 𝑛⟩ : 𝑚 ∈ 𝑃} .

Note that our support function differs from [CLS11, Proposition 4.2.14], where
instead of a maximum, they took the minimum.

Recall that the characteristic function 𝜒𝑃 : 𝑁R → {0,∞} of 𝑃 is defined as in
Example A.1.1:

𝜒𝑃 (𝑛) B
{

0, 𝑛 ∈ 𝑃;
∞, 𝑛 ∉ 𝑃.

Let 𝑋 = 𝑋Σ be the smooth projective toric variety corresponding to Σ. See
[CLS11, Theorem 3.1.5] for the construction of 𝑋 and [CLS11, Theorem 3.1.19] for
the smoothness of 𝑋 . There is a canonical embedding 𝑇 ⊆ 𝑋 as a dense Zariski open
subset.

Let 𝐷 be the Cartier divisor on 𝑋 defined by 𝑃:

𝐷 =
∑︁
𝜌∈Σ (1)

𝑎𝜌𝐷𝜌,

where 𝐷𝜌 is the toric prime divisor defined by 𝜌 under the orbit-cone correspondence
[CLS11, Theorem 3.2.6].
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Let 𝐿 be the toric line bundle induced by 𝑃, namely 𝐿 = O𝑋 (𝐷). Since 𝑃 has full
dimension, 𝐿𝑘 is very ample for each 𝑘 ≥ 𝑛 − 1 by [CLS11, Corollary 2.2.19], we
actually know that 𝐿 is ample.

We will choose the base e for the logarithm map

C∗ → R, 𝑧 ↦→ log |𝑧 |2.4 (5.2)

This choice will be fixed throughout the whole book. Since we have a canonical
identification 𝑇 (C) � 𝑁 ⊗Z C∗, the logarithm map then induces a tropicalization map
after tensoring with 𝑁:

Trop: 𝑇 (C) → 𝑁R. (5.3)

Before proceeding, it is always helpful to understand everything in our favorite
example.

Example 5.1.1 We take 𝑛 = 1 and 𝑃 = [0, 1] ⊆ 𝑀R = R. In this case, the facet
representation (5.1) becomes

𝑃 =
{
𝑚 ∈ R : ⟨𝑚, 1⟩ ≥ 0, ⟨𝑚,−1⟩ ≥ −1

}
,

with 𝑢{0} = 1, 𝑢{1} = −1, 𝑎{0} = 0 and 𝑎{1} = 1. The normal fan Σ is

Σ =
{
(−∞, 0], {0}, [0,∞)

}
.

See Fig. 5.1.

Fig. 5.1 The fan Σ of P1.

The corresponding toric variety is just 𝑋 = P1. Under the orbit-cone correspon-
dence, we have

𝐷 { [0,∞)} = [0], 𝐷 { (−∞,0] } = [∞] .

The associated divisor 𝐷 = [∞] and therefore,

𝐿 = O𝑋 (𝐷) = OP1 (1).

4 Be careful when you compare with other references, some people prefer log |𝑧 |, − log |𝑧 | or
− log |𝑧 |2 instead.
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5.2 Toric plurisubharmonic functions

We continue to use the notations of Section 5.1.

Lemma 5.2.1 Let 𝐹 : 𝑁R → [−∞,∞] be a function. Then the following are equiva-
lent:

(1) 𝐹 is convex and takes values in R, and
(2) Trop∗ 𝐹 is plurisubharmonic on 𝑇 (C).

Proof We may choose an identification 𝑁 � Z𝑛 so that we have an identification
𝑇 (C) � C∗𝑛. Then Trop is identified with the map

Trop: C∗𝑛 → R𝑛, (𝑧1, . . . , 𝑧𝑛) ↦→
(
log |𝑧1 |2, . . . , log |𝑧𝑛 |2

)
.

(1) =⇒ (2). Let 𝐹𝑘 ∈ 𝐶∞ (R𝑛) ∩ Conv(R𝑛) be a decreasing sequence with limit
𝐹 (see Proposition A.3.3). It follows from a straightforward computation that

ddc Trop∗ 𝐹𝑘 (𝑧1, . . . , 𝑧𝑛) =
i

2𝜋

𝑛∑︁
𝑖, 𝑗=1

𝜕𝑖 𝑗𝐹𝑘

(
log |𝑧1 |2, . . . , log |𝑧𝑛 |2

)
𝑧−1
𝑖 𝑧 𝑗

−1d𝑧𝑖∧d𝑧 𝑗 .

(5.4)
So Trop∗ 𝐹𝑘 is plurisubharmonic. It follows from Proposition 1.2.1 that Trop∗ 𝐹 is
plurisubharmonic.

(2) =⇒ (1). It follows from Lemma 1.2.1 that 𝐹 is finite. Moreover, take a
radial mollifier, we may find a decreasing sequence 𝜑𝑘 of (𝑆1)𝑛-invariant smooth
psh functions on C∗𝑛 with limit Trop∗ 𝐹. Write 𝜑𝑘 = Trop∗ 𝐹𝑘 for some function
𝐹𝑘 : R𝑛 → R, it follows from (5.4) that 𝐹𝑘 is convex for all 𝑘 . Therefore, 𝐹 is convex
by Lemma A.1.2. □

Next we define a canonical Kähler form in 𝑐1 (𝐿).
Let 𝐺0 : 𝑀R → (−∞,∞] be defined as

𝐺0 (𝑚) B


∑
𝜌∈Σ (1)

(
⟨𝑚, 𝑢𝜌⟩ + 𝑎𝜌

)
log

(
⟨𝑚, 𝑢𝜌⟩ + 𝑎𝜌

)
5, if 𝑚 ∈ 𝑃,

∞, otherwise.
(5.5)

This is a closed proper convex function and 𝐺0 ∼ 𝜒𝑃 , where ∼ is the relation
defined in Definition A.1.8.

Let
𝐹0 = 𝐺∗0 ∈ E

∞ (𝑁R, 𝑃). (5.6)

Here 𝐺∗0 is the Legendre transform of 𝐺0, as recalled in Definition A.2.1. The set
E∞ (𝑁R, 𝑃) is defined in Definition A.3.1.

By Guillemin’s theorem [Gui94, CDG03], ddc Trop∗ 𝐹0 can be extended to a
unique Kähler form 𝜔 in 𝑐1 (𝐿). The Kähler form 𝜔 is clearly 𝑇𝑐-invariant.

5 We understand that 0 log 0 = 0 in this expression.
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For each 𝜌 ∈ Σ(1), we write

𝑟𝜌 (𝑚) = log
(
⟨𝑚, 𝑢𝜌⟩ + 𝑎𝜌

)
+ 1, 𝑚 ∈ 𝑃.

It follows from (5.5) that

∇𝐺0 (𝑚) =
∑︁
𝜌∈Σ (1)

𝑟𝜌 (𝑚)𝑢𝜌, 𝑚 ∈ Int 𝑃. (5.7)

Example 5.2.1 Let us move on with our favorite example Example 5.1.1. We continue
to use the same notations. In this case,

𝐺0 (𝑚) =
{
𝑚 log𝑚 + (1 − 𝑚) log(1 − 𝑚), if 𝑚 ∈ [0, 1],
∞, otherwise.

The Legendre transform is given6 by

𝐹0 (𝑛) = log (1 + e𝑛) .

Composing with the tropicalization map, we find that

𝜔 |C∗ (𝑧) = ddc log
(
1 + |𝑧 |2

)
.

This is exactly the Fubini–Study metric as we have seen in Example 1.8.1.
Now we could explain one subtlety: In our expression (5.5), there is no factor

1/2 before the sum, this is due to the presence of the square in our choice of the
tropicalization map (5.2).

Let PSHtor (𝑋, 𝜔) denote the set of 𝑇𝑐-invariant 𝜔-psh functions.

Theorem 5.2.1 There are canonical bĳections between the following three sets:

(1) The set of 𝜑 ∈ PSHtor (𝑋, 𝜔),
(2) the setP(𝑁R, 𝑃) in Definition A.3.1, namely, the set of convex functions 𝐹 : 𝑁R →
R satisfying 𝐹 ⪯ Supp𝑃 , and

(3) the set of closed proper convex functions 𝐺 ∈ Conv(𝑀R) satisfying

𝐺 |𝑀R\𝑃 ≡ ∞.

For the notion of closeness and properness, we refer to Definition A.1.2 and Defini-
tion A.1.7.

Proof The bĳection between (2) and (3) is the classical Legendre duality. Given 𝐹
as in (2), we construct 𝐺 = 𝐹∗ and vice versa, see Proposition A.2.5.

6 While reading an advanced mathematical textbook/paper, I usually tend to trust the authors for
their elementary computations. A few years ago, I was asked to present the result of a landmark
paper written by two respected mathematicians on a conference. After spending a few days on the
elementary integrals, I found out that all non-trivial constants in that paper were wrong. So I ask the
readers to really verify this expression, if it is not obvious to you.
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The map from (1) to (2) is given as follows: Given 𝜑 ∈ PSHtor (𝑋, 𝜔), since 𝜑 is
𝑇𝑐-invariant, we can find 𝑓 : 𝑁R → [−∞,∞) such that

𝜑|𝑇 (C) = Trop∗ 𝑓 . (5.8)

We then define 𝐹 = 𝑓 + 𝐹0. Then Trop∗ 𝐹 ∈ PSH(𝑇 (C)). By Lemma 5.2.1, 𝐹 (𝑛) is
finite for any 𝑛 ∈ 𝑁R and 𝐹 is convex. Moreover, 𝐹 ⪯ Supp𝑃 since this holds for 𝐹0.

Conversely, given a map 𝐹 ∈ P(𝑁R, 𝑃), then

Trop∗ (𝐹 − 𝐹0) ∈ PSH
(
𝑇 (C), 𝜔|𝑇 (C)

)
.

It follows from Theorem 1.2.1 that this function can be extended uniquely to an 𝜔-psh
function on 𝑋 . The uniqueness of the extension guarantees its 𝑇𝑐-invariance.

The two maps are clearly inverse to each other. □

Given 𝜑 ∈ PSHtor (𝑋, 𝜔), we will write 𝐹𝜑 and 𝐺𝜑 for the convex functions given
by Theorem 5.2.1. From the proof, we have the following relations:

𝜑|𝑇 (C) = Trop∗
(
𝐹𝜑 − 𝐹0

)
, 𝐺𝜑 = 𝐹∗𝜑 . (5.9)

Example 5.2.2 Let us take our favorite example Example 5.2.1 again. We will continue
to use the same notations.

Recall that in Example 1.8.2 and Example 3.1.1, we constructed two 𝑆1-invariant
functions in PSH(𝑋, 𝜔).

We begin with the function 𝜑 in Example 1.8.2. Recall that

𝜑(𝑧) = log
|𝑧 |2
|𝑧 |2 + 1

for 𝑧 ∈ C. The function 𝑓 : R→ R in (5.8) is therefore

𝑓 (𝑛) = log
e𝑛

1 + e𝑛
.

Therefore, 𝐹𝜑 : R→ R is
𝐹𝜑 (𝑛) = 𝑛.

Correspondingly, 𝐺𝜑 : R→ R is

𝐺𝜑 (𝑚) =
{

0, if 𝑚 = 1;
∞, otherwise.

Similarly, if 𝜓 denote the function in Example 3.1.1, then the function 𝑓 in (5.8) is

𝑓 (𝑛) =
{
− log (e𝑛 + 1) + (− log(−𝑛)) ∨ (𝑛 + 2), if 𝑛 < − log 2;
2 + log e𝑛

1+e𝑛 , otherwise.

Therefore,
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𝐹𝜓 (𝑛) =
{
(− log(−𝑛)) ∨ (𝑛 + 2), if 𝑛 < − log 2;
2 + 𝑛, otherwise.

The Legendre transform is tricky to compute. Let𝜆 be the large solution of log 𝑥 = 𝑥−2.
So 𝜆 ≈ 3.146. The smaller solution is around 0.159 < log 2 ≈ 0.693. It might be
helpful to have a look at the poorly drawn picture Fig. 5.2.

Fig. 5.2 The graphs of log 𝑥 and 𝑥 − 2.

It is immediate that𝐺𝜓 (𝑚) = −∞ unless𝑚 ∈ [0, 1]. Let us assume that𝑚 ∈ [0, 1].
Then

𝐺𝜓 (𝑚) = sup
𝑛∈R

(
𝑚𝑛 − 𝐹𝜓 (𝑛)

)
= sup
𝑛<− log 2

(𝑚𝑛 − (− log(−𝑛)) ∨ (𝑛 + 2)) ∨ sup
𝑛≥− log 2

(𝑚𝑛 − 𝑛 − 2)

= sup
𝑛>log 2

(−𝑚𝑛 + (log 𝑛) ∧ (𝑛 − 2)) ∨ ((1 − 𝑚) log 2 − 2) .

Let us focus on the first part, which can be decomposed further into

sup
𝑛>log 2

(−𝑚𝑛 + (log 𝑛) ∧ (𝑛 − 2))

= sup
𝑛∈ (log 2,𝜆]

(𝑛 − 2 − 𝑚𝑛) ∨ sup
𝑛>𝜆

(log 𝑛 − 𝑚𝑛)

= ((1 − 𝑚)𝜆 − 2) ∨ sup
𝑛>𝜆

(log 𝑛 − 𝑚𝑛) .
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The latter part can be computed easily:

sup
𝑛>𝜆

(log 𝑛 − 𝑚𝑛) =
{
− log𝑚 − 1, if 𝑚 ∈

[
0, 𝜆−1] ;

log𝜆 − 𝑚𝜆, if 𝑚 ∈
(
𝜆−1, 1

]
.

Putting everything together, we find

𝐺𝜓 (𝑚) =
{
(− log𝑚 − 1) ∨ ((1 − 𝑚)𝜆 − 2) , if 𝑚 ∈

[
0, 𝜆−1] ;

(log𝜆 − 𝑚𝜆) ∨ ((1 − 𝑚)𝜆 − 2) , if 𝑚 ∈
(
𝜆−1, 1

]
.

This can be further simplified, the final result is

𝐺𝜓 (𝑚) =


− log𝑚 − 1, if 𝑚 ∈

[
0, 𝜆−1] ;

(1 − 𝑚)𝜆 − 2, if 𝑚 ∈
(
𝜆−1, 1

]
;

∞, otherwise.

The graph of 𝐺𝜓 on (0, 1] is sketched in Fig. 5.3.

Fig. 5.3 The graph of 𝐺𝜓 .

We observe a few elementary facts.

Proposition 5.2.1 Given 𝜑, 𝜓 ∈ PSHtor (𝑋, 𝜔). The following are equivalent:

(1) 𝜑 ⪯ 𝜓,
(2) 𝐹𝜑 ⪯ 𝐹𝜓 , and
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(3) 𝐺𝜓 ⪯ 𝐺𝜑 .

The same holds if we replace all ⪯’s by ≤.

Proof The equivalence between (1) and (2) follows from the definition (5.9). The
equivalence between (2) and (3) follows from the definition of the Legendre trans-
form. □

Similarly, we have

Proposition 5.2.2 Given 𝜑 ∈ PSHtor (𝑋, 𝜔) and 𝐶 ∈ R. We have

𝐹𝜑+𝐶 = 𝐹𝜑 + 𝐶, 𝐺𝜑+𝐶 = 𝐺𝜑 − 𝐶.

Proposition 5.2.3 Given 𝜑, 𝜓 ∈ PSHtor (𝑋, 𝜔) with 𝜑 ∧ 𝜓 . −∞, then 𝜑 ∧ 𝜓 ∈
PSHtor (𝑋, 𝜔) and

𝐹𝜑∧𝜓 = 𝐹𝜑 ∧ 𝐹𝜓 , 𝐺𝜑∧𝜓 = 𝐺𝜑 ∨ 𝐺𝜓 .

The operators ∧ and ∨ are defined in Definition A.1.5 and Definition A.1.6.

Proof It is clear that 𝜑 ∧ 𝜓 ∈ PSHtor (𝑋, 𝜔). So 𝜑 ∧ 𝜓 is the biggest element in
PSHtor (𝑋, 𝜔) which id dominated by both 𝜑 and 𝜓. In view of Theorem 5.2.1 and
Proposition 5.2.1, 𝐺𝜑∧𝜓 is the smallest closed proper convex function 𝐺 on 𝑀R
dominating both 𝐺𝜑 and 𝐺𝜓 , which is just 𝐺𝜑 ∨ 𝐺𝜓 .

The claim for 𝐹 follows from Proposition A.2.3. □

Example 5.2.3 Now we can give an example of 𝜑, 𝜓 ∈ PSHtor (𝑋, 𝜔) with 𝜑∧𝜓 ≡ −∞.
We take 𝑃 = [0, 1] so that 𝑋 = P1 and 𝜔 is the Fubini–Study metric. Let

𝜑 ∈ PSH(𝑋, 𝜔) be such that

𝜑(𝑧) = log
|𝑧 |2
|𝑧 |2 + 1

for 𝑧 ∈ C. We have computed that 𝐺𝜑 in Example 5.2.2:

𝐺𝜑 (𝑚) =
{

0, if 𝑚 = 1,
∞, otherwise.

Now we define 𝜓 ∈ PSHtor (𝑋, 𝜔) as the unique function such that

𝜓(𝑧) = log
1

|𝑧 |2 + 1

for 𝑧 ∈ C. Then a similar computation shows that

𝐺𝜓 (𝑚) =
{

0, if 𝑚 = 0,
∞, otherwise.

Now we claim that 𝜑 ∧ 𝜓 ≡ −∞. Otherwise, we would have
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𝐺𝜑∨𝜓 = 𝐺𝜑 ∨ 𝐺𝜓 ≡ ∞,

which is not proper.

Proposition 5.2.4 Let {𝜑𝑖}𝑖∈𝐼 be a non-empty family in PSHtor (𝑋, 𝜔) uniformly
bounded from above. Then sup𝑖∈𝐼 ∗𝜑𝑖 ∈ PSHtor (𝑋, 𝜔) and

𝐹sup𝑖∈𝐼 ∗𝜑𝑖 =
∨
𝑖∈𝐼

𝐹𝜑𝑖 , 𝐺sup𝑖∈𝐼 ∗𝜑𝑖 = cl
∧
𝑖∈𝐼

𝐺𝜑𝑖 .

Moreover, if 𝐼 is finite, then

𝐺max𝑖∈𝐼 𝜑𝑖 =
∧
𝑖∈𝐼

𝐺𝜑𝑖 .

Similarly, if {𝜑𝑖}𝑖∈𝐼 is a decreasing net in PSHtor (𝑋, 𝜔) such that inf𝑖∈𝐼 𝜑𝑖 . −∞,
then inf𝑖∈𝐼 𝜑𝑖 ∈ PSHtor (𝑋, 𝜔) and

𝐹inf𝑖∈𝐼 𝜑𝑖 = inf
𝑖∈𝐼
𝐹𝜑𝑖 , 𝐺 inf𝑖∈𝐼 𝜑𝑖 =

∨
𝑖∈𝐼

𝐺𝜑𝑖 .

Recall that the closure cl is defined in Definition A.1.7.

Proof Thanks to Lemma A.1.2 and Proposition A.1.1, in both cases, the statement
for 𝐹 is clear. The corresponding statement for 𝐺 is obtained via Proposition A.2.3.□

The complex Monge–Ampère operator is closely related to the real one:

Proposition 5.2.5 Let 𝜑 ∈ PSHtor (𝑋, 𝜔), then

Trop∗
(
𝜔|𝑇 (C) + ddc𝜑|𝑇 (C)

)𝑛
= MAR (𝐹𝜑). (5.10)

In particular, ∫
𝑋

𝜔𝑛𝜑 =

∫
𝑁R

MAR (𝐹𝜑) = 𝑛! vol {𝐺𝜑 < ∞}

and ∫
𝑋

𝜔𝑛 = 𝑛! vol 𝑃.

Here the real Monge–Ampère operator is defined in Definition A.4.1. The normaliza-
tion of the Lebesgue measure vol on 𝑀R is such that the fundamental lattice cube as
measure 1.7

Proof We only need to prove (5.10). By Proposition A.3.3, we can find a decreasing
sequence of smooth convex functions 𝐹𝑗 on 𝑁R with limit 𝐹𝜑 . We write 𝐹𝑗 = 𝐹𝜑 𝑗
for some 𝜑 𝑗 ∈ PSHtor (𝑋, 𝜔). By Theorem 2.1.1 and Theorem A.4.1, it suffices to
establish (5.10) for the 𝜑 𝑗 ’s. We may therefore reduce to the case where 𝐹𝜑 is smooth.

7 In some references like [GKZ08], the normalization is so that the fundamental lattice cube has
measure 𝑛!. Be careful when making comparisons with these references.
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We write 𝐹 = 𝐹𝜑 to simplify the notations. The notations 𝑎𝑖 = log |𝑧𝑖 |2 will be used,
where 𝑖 = 1, . . . , 𝑛.

Next we fix an identification 𝑁 = Z𝑛. Fix a test function 𝑓 ∈ 𝐶0
𝑐 (𝑁R), we need to

show that∫
C∗𝑛

𝑓 (𝑎1, . . . , 𝑎𝑛) (ddc Trop∗ 𝐹 (𝑧1, . . . , 𝑧𝑛))𝑛 =
∫
R𝑛
𝑓 MAR (𝐹).

Using Proposition A.4.1 and (5.4), this reduces to(
i

2𝜋

)𝑛 ∫
C∗𝑛

𝑓 (𝑎1, . . . , 𝑎𝑛)
©­«
𝑛∑︁

𝑖, 𝑗=1
𝜕𝑖, 𝑗𝐹 (𝑎1, . . . , 𝑎𝑛)𝑧−1

𝑖 𝑧 𝑗
−1d𝑧𝑖 ∧ d𝑧 𝑗

ª®¬
𝑛

=

𝑛!
∫
R𝑛
𝑓 det∇2𝐹 d vol .

(5.11)

Expanding the bracket, we get

©­«
𝑛∑︁

𝑖, 𝑗=1
𝜕𝑖, 𝑗𝐹𝑧

−1
𝑖 𝑧 𝑗

−1d𝑧𝑖 ∧ d𝑧 𝑗
ª®¬
𝑛

=

𝑛∑︁
𝑖1 ,...,𝑖𝑛=1

𝑛∑︁
𝑗1 ,..., 𝑗𝑛=1

𝜕𝑖1 𝑗1𝐹 · · · 𝜕𝑖𝑛 𝑗𝑛𝐹·

d log 𝑧𝑖1 ∧ d log 𝑧 𝑗1 ∧ · · · ∧ d log 𝑧𝑖𝑛 ∧ d log 𝑧 𝑗𝑛 ,

where d log 𝑧𝑖 = 𝑧−1
𝑖

d𝑧𝑖 and d log 𝑧𝑖 = 𝑧𝑖−1d𝑧𝑖 are understood.
Using the apparent symmetry, the expression on the right-hand side becomes∑︁
𝜎,𝜏∈𝔖𝑛

𝑛∏
𝑘=1

𝜕𝜎 (𝑘 )𝜏 (𝑘 )𝐹 d log 𝑧𝜎 (1) ∧ d log 𝑧𝜏 (1) ∧ · · · ∧ d log 𝑧𝜎 (𝑛) ∧ d log 𝑧𝜏 (𝑛) ,

=𝑛!
∑︁
𝜏∈𝔖𝑛

𝑛∏
𝑘=1

𝜕𝑘𝜏 (𝑘 )𝐹 d log 𝑧1 ∧ d log 𝑧𝜏 (1) ∧ · · · ∧ d log 𝑧𝑛 ∧ d log 𝑧𝜏 (𝑛)

=𝑛!
∑︁
𝜏∈𝔖𝑛
(−1)Sign 𝜏

𝑛∏
𝑘=1

𝜕𝑘𝜏 (𝑘 )𝐹 d log 𝑧1 ∧ d log 𝑧1 ∧ · · · ∧ d log 𝑧𝑛 ∧ d log 𝑧𝑛

=𝑛! det∇2𝐹d log 𝑧1 ∧ d log 𝑧1 ∧ · · · ∧ d log 𝑧𝑛 ∧ d log 𝑧𝑛,

where 𝔖𝑛 is the permutation group on {1, . . . , 𝑛} and Sign(𝜏) is the sign of 𝜏.
Next, switch to polar coordinates for each 𝑧𝑖: Let 𝑧𝑖 = 𝑟𝑖 exp(i𝜃𝑖) and recall that

𝑟𝑖 = exp(𝑎𝑖/2), then the left-hand side of (5.11) becomes

𝑛!
(2𝜋)𝑛

∫
R𝑛×[0,2𝜋 )𝑛

𝑓 det∇2𝐹 d𝑎1 ∧ d𝜃1 ∧ · · · ∧ d𝑎𝑛 ∧ d𝜃𝑛

=𝑛!
∫
R𝑛
𝑓 det∇2𝐹 d𝑎1 ∧ · · · ∧ d𝑎𝑛,

which is exactly what we have expected. □
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Next we study the envelope operators developed in Chapter 3 in the toric setting.

Definition 5.2.1 Let 𝜑 ∈ PSHtor (𝑋, 𝜔). We define its Newton body as

Δ(𝜔, 𝜑) B {𝐺𝜑 < ∞} ⊆ 𝑃.

Note that Δ(𝜔, 𝜑) is a convex body.

By Proposition A.2.2, we have

Δ(𝜔, 𝜑) = ∇𝐹𝜑 (𝑁R).

Example 5.2.4 By (5.5), we have

Δ(𝜔, 0) = 𝑃.

In the case of Example 5.2.2, we have

Δ(𝜔, 𝜑) = {1}, Δ(𝜔, 𝜓) = [0, 1] .

Observe that in the latter case,

{𝐺𝜑 < ∞} ⊊ 𝑃.

Proposition 5.2.6 Let 𝜑 ∈ PSHtor (𝑋, 𝜔). Then 𝑃𝜔 [𝜑] ∈ PSHtor (𝑋, 𝜔) and

𝐺𝑃𝜔 [𝜑 ] (𝑥) =
{
𝐺0 (𝑥), if 𝑥 ∈ Δ(𝜔, 𝜑);
∞, otherwise.

(5.12)

Proof By (3.4), we have

𝑃𝜔 [𝜑] = sup
𝐶∈R

∗ ((𝜑 + 𝐶) ∧ 0
)
.

It follows from Proposition 5.2.2, Proposition 5.2.3 and Proposition 5.2.4 that
𝑃𝜔 [𝜑] ∈ PSHtor (𝑋, 𝜔). Moreover, by the same propositions, we have

𝐺𝑃𝜔 [𝜑 ] = cl inf
𝐶∈R

(
𝐺0 ∨ (𝐺𝜑 − 𝐶)

)
,

which is clearly equal to the right-hand side of (5.12).

Recall that H0 (𝑋, 𝐿) can be identified with the vector space generated by 𝜒𝑚 for
all 𝑚 ∈ 𝑃 ∩ 𝑀 , see [CLS11, Proposition 4.3.3]. In other words, a character 𝜒𝑚 of 𝑇
can be extended to a regular function on 𝑋 if and only if 𝑚 ∈ 𝑃. This gives a beautiful
characterization of the lattice points in 𝑃. The following theorem of Yi Yao gives an
analogous characterization of the lattice points in the Newton body.

Theorem 5.2.2 (Yao) Let 𝜑 ∈ PSHtor (𝑋, 𝜔). Let 𝑚 ∈ 𝑀 .

(1) Suppose that 𝑚 ∈ Δ(𝜔, 𝜑), then 𝜒𝑚 ∈ H0 (𝑋, 𝐿 ⊗ I(𝜑)).
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(2) There is a constant 𝐶0 > 0 such that if there is 𝜌 ∈ Σ(1) with

⟨𝑚,−𝑢𝜌⟩ − SuppΔ(𝜔,𝜑) (−𝑢𝜌) > 𝐶0, (5.13)

then 𝜒𝑚 ∉ H0 (𝑋, 𝐿 ⊗ I(𝜑)).
Moreover, the constant 𝐶0 does not change if we replace 𝑃 by a positive integer
multiple of 𝑃.

(3) More generally, there is a constant 𝐶0 > 0 such that if 𝜎 ∈ Σ is a cone of
dimension 𝑝 and 𝑐1, . . . , 𝑐𝑝 > 0 are such that

∑𝑝

𝑖=1 𝑐𝑖 = 1, and

⟨𝑚,−𝑢⟩ − SuppΔ(𝜔,𝜑) (−𝑢) > 𝐶0, 𝑢 =

𝑝∑︁
𝑖=1

𝑐𝑖𝑢𝜌𝑖 , (5.14)

where 𝜌1, . . . , 𝜌𝑝 are the rays in 𝜎(1), then 𝜒𝑚 ∉ H0 (𝑋, 𝐿 ⊗ I(𝜑)).
Moreover, the constant 𝐶0 does not change if we replace 𝑃 by a positive integer
multiple of 𝑃.

In (3), there are exactly 𝑝 rays in 𝜎(1) since 𝜎 is smooth.

Proof It is convenient to use explicit coordinates. We will identify 𝑁 with Z𝑛 after
choosing a basis. In this way, we get an identification 𝑀 = Z𝑛 and 𝑇 (C) = C∗𝑛. In
this case, we have

𝜒𝑚 (𝑧) = 𝑧𝑚

with the multi-index notation.
Observe that H0 (𝑋, 𝐿 ⊗ I(𝜑)) is a C∗𝑛-invariant subspace of H0 (𝑋, 𝐿), it follows

that H0 (𝑋, 𝐿 ⊗ I(𝜑)) is the direct sum of suitable C𝜒𝑚’s. Due to Proposition 3.2.9,
we may replace 𝜑 by 𝑃𝜔 [𝜑] and thanks to Proposition 5.2.6, we may assume that
𝐺𝜑 has the following form:

𝐺𝜑 (𝑥) =
{
𝐺0 (𝑥), if 𝑥 ∈ Δ(𝜔, 𝜑);
∞, otherwise.

In particular, 𝐹𝜑 ∼ SuppΔ(𝜔,𝜑) .
Now given 𝑚 ∈ 𝑀 ∩ 𝑃, we need to know whether the following expression is

finite or not: ∫
C∗𝑛
|𝜒𝑚 |2 exp(−Trop∗ 𝐹0 − 𝜑) 𝜔𝑛. (5.15)

By Proposition 5.2.5, (5.15) is finite if and only if the following integral is finite:∫
R𝑛

exp
(
⟨𝑚, 𝑛⟩ − SuppΔ(𝜔,𝜑) (𝑛)

)
MAR (𝐹0) (𝑛).

By a change of variable, this integral is finite if and only if the following integral is:∫
𝑃

exp
(
⟨𝑚,∇𝐺0 (𝑚′)⟩ − SuppΔ(𝜔,𝜑) (∇𝐺0 (𝑚′))

)
d𝑚′. (5.16)
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Suppose that 𝑚 ∈ Δ(𝜔, 𝜑), then the integrand in (5.16) is bounded from above by 1,
so (1) follows.

Next we consider (2). Fix the standard norm on 𝑁R = R𝑛.
Suppose that 𝑚 satisfies the assumptions of (2). Take 𝜌 ∈ Σ(1) so that (5.13)

holds. The condition on 𝐶0 > 0 will be clarified later on. Take an open subset𝑈 of 𝑃
which satisfies the following two conditions:

• The intersection𝑈 ∩𝑄 has dimension 𝑛 − 1, where 𝑄 is the face of 𝑃 defined by
⟨•, 𝜌⟩ = −𝑎𝜌;

• 𝑈 does not intersect other faces of 𝑃. □

See Fig. 5.4 for the visualization of𝑈.

Fig. 5.4 The choice of𝑈.

Then by (5.7),
(∇𝐺0) |𝑈 = −|𝑟𝜌 |𝑢𝜌 + O(1). (5.17)

We claim that∫
𝑈

exp
(
⟨𝑚,∇𝐺0 (𝑚′)⟩ − SuppΔ(𝜔,𝜑) (∇𝐺0 (𝑚′))

)
d𝑚′ = ∞.

In view of (5.13) and (5.17), after slightly shrinking 𝑈, we may guarantee that the
direction of ∇𝐺0 (𝑚′) is close enough to that of −𝑢𝜌, so that

⟨𝑚,∇𝐺0 (𝑚′)⟩ − SuppΔ(𝜔,𝜑) (∇𝐺0 (𝑚′)) >
1
2
𝐶0 |∇𝐺0 (𝑚′) |.
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It suffices therefore to establish the following assertion:∫
𝑈

exp
(
−2−1𝐶0𝑟𝜌 (𝑚′) |𝑢𝜌 (𝑚′) |

)
d𝑚′ = ∞.

Taking the definition of 𝑟𝜌 into account, this is further equivalent to the following:∫
𝑈

(
⟨𝑚′, 𝑢𝜌⟩ + 𝑎0

)−2−1𝐶0 |𝑢𝜌 | d𝑚′ = ∞.

This holds as long as 𝐶0 |𝑢𝜌 | > 2. Since there are only finitely many 𝜌 ∈ Σ(1), the
constant 𝐶0 can be chosen so that it is independent of the choice of 𝜌. Furthermore,
since replace 𝑃 by 𝑘𝑃 for some 𝑘 ∈ Z>0 does not change the condition on 𝐶0, we
conclude the final assertion.

(3) This is similar to (2), but the notations get more complicated.
Let 𝑄 be the face of 𝑃 corresponding to 𝜎. Without loss of generality, we may

assume that
𝑐1 ≤ 𝑐2 ≤ · · · ≤ 𝑐𝑝 .

We first take 𝜖 ∈ (0, 1/2) so that when 𝑏1, . . . , 𝑏𝑝 > 0 satisfies

−𝜖 ≤
𝑏 𝑗

𝑏1
−
𝑐 𝑗

𝑐1
≤ 𝜖 ∀ 𝑗 = 2, . . . , 𝑝,

we have 〈
𝑚,−

𝑝∑︁
𝑖=1

𝑏𝑖𝑢𝜌𝑖

〉
− SuppΔ(𝜔,𝜑)

(
−

𝑝∑︁
𝑖=1

𝑏𝑖𝑢𝜌𝑖

)
>
𝐶0

2
·
𝑝∑︁
𝑖=1

𝑏𝑖 .

This is possible thanks to (5.14).
Take a small open neighborhood 𝑉 of 𝑄 in 𝑀R with positive distances to all facets

of 𝑃 not containing𝑄. Fix a permutation 𝛾 of {0, 1, . . . , 𝑝}. Consider the open subset
𝑈 of 𝑚′ ∈ 𝑉 ∩ Int 𝑃 defined by the following conditions:

−𝜖 <
−𝑟𝜌 𝑗 (𝑚′)
−𝑟𝜌1 (𝑚′)

−
𝑐 𝑗

𝑐1
< 𝜖, ∀ 𝑗 = 2, . . . , 𝑝. (5.18)

Then after possibly shrinking𝑉 so that 𝑟𝜌 𝑗 (𝑚′) < 0 for all𝑚′ ∈ 𝑈 and all 𝑗 = 2, . . . , 𝑝,
we then have〈

𝑚,

𝑝∑︁
𝑖=1

𝑟𝜌𝑖 (𝑚′)𝑢𝜌𝑖

〉
− SuppΔ(𝜔,𝜑)

(
𝑝∑︁
𝑖=1

𝑟𝜌𝑖 (𝑚′)𝑢𝜌𝑖

)
>
𝐶0

2
·
𝑝∑︁
𝑖=1

��𝑟𝜌𝑖 (𝑚′)�� .
Thanks to (5.7), after shrinking 𝑉 , we may further guarantee that for 𝑚′ ∈ 𝑈,

⟨𝑚,∇𝐺0 (𝑚′)⟩ − SuppΔ(𝜔,𝜑) (∇𝐺0 (𝑚′)) >
𝐶0

3
·
����� 𝑝∑︁
𝑖=1

log
(
⟨𝑢𝜌𝑖 , 𝑚′⟩ + 𝑎𝜌𝑖

)
𝑢𝜌𝑖

����� .
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Since the 𝑢𝜌𝑖 ’s are linearly independent, by the standard estimates in linear algebra,
we may find 𝛿 > 0 so that

⟨𝑚,∇𝐺0 (𝑚′)⟩ − SuppΔ(𝜔,𝜑) (∇𝐺0 (𝑚′)) > 𝛿𝐶0 ·
𝑝∑︁
𝑖=1

log
(
⟨𝑢𝜌𝑖 , 𝑚′⟩ + 𝑎𝜌𝑖

)−1

whenever 𝑚′ ∈ 𝑈.
Now we claim that for 𝐶0 large enough, the integral∫

𝑈

𝑝∏
𝑖=1

(
⟨𝑢𝜌𝑖 , 𝑚′⟩ + 𝑎𝜌𝑖

)−𝛿𝐶0 d𝑚′ = ∞. (5.19)

This will then conclude the proof as in (2).
We observe that the integral (5.19) after a simple change of variable takes the

following form ∫
𝑊

𝑝∏
𝑖=1

𝑥−𝑐𝑖 d𝑥, (5.20)

where 𝑐 = 𝛿𝐶0 > 1,𝑊 ⊆ R𝑝 is defined by the following conditions:

0 < 𝑥1 < 𝜖0, 𝑥
𝑐𝑖/𝑐1+𝜖
1 < 𝑥𝑖 < 𝑥

𝑐𝑖/𝑐1−𝜖
1

for all 𝑖 = 2, . . . , 𝑝, where 𝜖0 > 0. A straightforward computation shows that the
principal term of the integrand is

𝑥−𝑐1 ·
𝑝∏
𝑖=2

𝑥
(𝑐𝑖/𝑐1−𝜖 ) (1−𝑐)
1 = 𝑥𝑑1 ,

where
𝑑 = − 𝑐 + (1 − 𝑐)

(
𝑐−1

1 − 1 − 𝜖 (𝑝 − 1)
)

≤ − 𝑐 + (1 − 𝑐) (𝑝 − 1 − 𝜖 (𝑝 − 1))
≤ − 𝑐 + (1 − 𝑐) (𝑝 − 1)/2

= − 𝑝 + 1
2

𝑐 + 𝑝 − 1
2

.

When 𝑐 is large enough, we can guarantee that 𝑑 ≤ −1 and hence the integral (5.20)
diverges.

Corollary 5.2.1 Let 𝜑 ∈ PSHtor (𝑋, 𝜔), then

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)
= 𝑛! volΔ(𝜔, 𝜑).

Proof Thanks to Theorem 5.2.2 (1), we have

# (Δ(𝜔, 𝑘𝜑) ∩ 𝑀) ≤ ℎ0
(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)
.
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Here # denotes the number of elements. Therefore,

lim
𝑘→∞

𝑘−𝑛 (𝑘Δ(𝜔, 𝜑) ∩ 𝑀) ≤ lim
𝑘→∞

𝑘−𝑛ℎ0
(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)
.

The left-hand side is just volΔ(𝜔, 𝜑), as follows from [KK12, Theorem 2]. So we
conclude that

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)
= 𝑛! volΔ(𝜔, 𝜑).

It remains to prove the reverse inequality.
We choose an identification 𝑀 � Z𝑛. In particular, there is a natural distance d on

𝑀R � R
𝑛. Given a convex body 𝐾 and 𝜖 > 0, we let

𝐾 𝜖 B {𝑥 ∈ R𝑛 : d(𝑥, 𝐾) ≤ 𝜖} .

This is again a convex body, since it can be realized as the Minkowski sum of 𝐾 with
a closed ball of radius 𝜖 .

Thanks to Theorem 5.2.2 (3), we can find 𝐶 > 0 so that for each 𝑘 ∈ Z>0, we have{
𝑚 ∈ 𝑀 : 𝜒𝑚 ∈ H0

(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)}
⊆ Δ(𝜔, 𝑘𝜑)𝐶

Fix 𝜖 > 0, then for large enough 𝑘 , we have

Δ(𝜔, 𝑘𝜑)𝐶 ⊆ Δ(𝜔, 𝑘𝜑)𝑘𝜖 .

It follows that
ℎ0

(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≤ # (𝑘Δ(𝜔, 𝜑) 𝜖 ∩ 𝑀) .

Applying [KK12, Theorem 2] again, we conclude that

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≤ 𝑛! volΔ(𝜔, 𝜑) 𝜖 .

Letting 𝜖 → 0+ and applying Theorem C.1.2, we find

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≤ 𝑛! volΔ(𝜔, 𝜑).

Our assertion follows. □

Example 5.2.5 In general, in the setup of Theorem 5.2.2, there exists 𝑚 ∈ 𝑀 ∩ (𝑃 \
Δ(𝜔, 𝜑)) such that 𝜒𝑚 ∈ H0 (𝑋, 𝐿 ⊗ I(𝜑)).

As a concrete example, let us take 𝑃 = [0, 1]. Take 𝜑 so that Δ(𝜔, 𝜑) = [0, 1/2].
We claim that 𝜒1 is 𝐿2-integrable.

It suffices to verify the convergence of (5.16). Recall that

∇𝐺0 (𝑚′) = log
𝑚′

1 − 𝑚′ , 𝑚′ ∈ [0, 1],
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while

Supp[0,1/2] (𝑎) =
{
𝑎/2, if 𝑎 > 0;
0, otherwise.

Therefore, (5.16) becomes∫ 1/2

0

𝑚′

1 − 𝑚′ d𝑚′ +
∫ 1

1/2

(
𝑚′

1 − 𝑚′

)1/2
d𝑚′ < ∞.

We interpret various classes of potentials studied in Section 3.1.3 in the toric
setting.

Proposition 5.2.7 Let 𝜑 ∈ PSHtor (𝑋, 𝜔). Then the following are equivalent:

(1) 𝜑 ∈ E∞ (𝑋, 𝜔);
(2) 𝐹𝜑 ∈ E∞ (𝑁R, 𝑃);
(3) 𝐺𝜑 ∼ 𝐺0.

The notation E∞ (𝑁R, 𝑃) is defined in Definition A.3.1.

Proof This follows immediately from Proposition 5.2.1. □

Proposition 5.2.8 Let 𝜑 ∈ PSHtor (𝑋, 𝜔). Then the following are equivalent:

(1) 𝜑 ∈ E(𝑋, 𝜔);
(2) 𝐹𝜑 ∈ E(𝑁R, 𝑃);
(3) Dom𝐺𝜑 = 𝑃.

The notation E(𝑁R, 𝑃) is defined in Definition A.3.1.

Proof (1) ⇐⇒ (3). By Proposition 5.2.5∫
𝑋

𝜔𝑛𝜑 =

∫
𝑇 (C)

(
𝜔 |𝑇 (C) + ddc𝜑 |𝑇 (C)

)𝑛
= 𝑛! vol Dom𝐺𝜑 ,

∫
𝑋

𝜔𝑛 = 𝑛! vol 𝑃.

Therefore, (1) and (3) are equivalent.
(2) ⇐⇒ (3). This follows from Proposition A.2.2. □

Proposition 5.2.9 Let 𝜑 ∈ PSHtor (𝑋, 𝜔), then

𝐸𝜔 (𝜑) = 𝑛!
∫
𝑃

(
𝐺0 − 𝐺𝜑

)
d vol .

Proof It suffices to consider the case where 𝜑 is bounded. In this case, one could
apply [BB13, Proposition 2.9]. □

Corollary 5.2.2 Let 𝜑 ∈ PSHtor (𝑋, 𝜔). Then the following are equivalent:

(1) 𝜑 ∈ E1 (𝑋, 𝜔);
(2) 𝐹𝜑 ∈ E1 (𝑁R, 𝑃);
(3) 𝐺𝜑 ∈ 𝐿1 (𝑃).
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The notation E1 (𝑁R, 𝑃) is defined in Definition A.3.1.

Definition 5.2.2 We define

E∞tor (𝑋, 𝜔) =E∞ (𝑋, 𝜔) ∩ PSHtor (𝑋, 𝜔),
E1

tor (𝑋, 𝜔) =E1 (𝑋, 𝜔) ∩ PSHtor (𝑋, 𝜔),
Etor (𝑋, 𝜔) =E(𝑋, 𝜔) ∩ PSHtor (𝑋, 𝜔).

Corollary 5.2.3 Let 𝜑, 𝜓 ∈ E1
tor (𝑋, 𝜔), then

𝑑1 (𝜑, 𝜓) = 𝑛!
∫
𝑃

(
2
(
𝐺𝜑 ∨ 𝐺𝜓

)
− 𝐺𝜑 − 𝐺𝜓

)
d vol .

Proof This follows from (5.2.9), Proposition 5.2.3 and Definition 4.3.1. □





Part II
The theory of I-good singularities



This part is the technical core of the whole book. We will develop the theory of
I-good singularities.

We first develop some general techniques to compare the singularities in Chapter 6:
The 𝑃-partial order, the I-partial order and the 𝑑𝑆-pseudometric.

The 𝑃-partial order seems to be new. Some basic properties of the 𝑑𝑆-pseudometric
have never appeared in the literature either.

Then in Chapter 7, we introduce the notion ofI-good singularities and characterize
I-good singularities in different ways. Then we establish the asymptotic Riemann–
Roch formula for Hermitian pseudoeffective line bundles.

In Chapter 8, we develop two key techniques in the inductive study of singularities:
The trace operator and the analytic Bertini theorem. Roughly speaking, the latter tells
us the behavior of a quasi-plurisubharmonic function along a general divisor, while
the former handles the case of special divisors. We will establish a relative version of
the asymptotic Riemann–Roch formula as well.

In Chapter 9, we develop the theory of test curves. These are curves of model
potentials. The key technique is the Ross–Witt Nyström correspondence, which
relates test curves to geodesic rays. The complete proof of the most general form
of this correspondence has never appeared in the literature, so we will give the full
details.

In Chapter 10, we develop the theory of partial Okounkov bodies, in both algebraic
and transcendental setting. The partial Okounkov bodies can be regarded as non-toric
extensions of the Newton bodies. It turns out that even in the toric setting, our
techniques give non-trivial new results.

In Chapter 11, we develop the theory of b-divisors. We establish their intersection
theory. We also relate the theory of partial Okounkov bodies to b-divisors.

These chapters are supposed to be read linearly, but after finishing Chapter 7 and
Chapter 8, the readers could also choose to proceed to any following chapters in this
book.



Chapter 6
Comparison of singularities

Algebra is the offer made by the devil to the mathematician. The
devil says: "I will give you this powerful machine, it will answer
any question you like. All you need to do is give me your soul:
give up geometry and you will have this marvelous machine.
— Michael Atiyaha

a Sir Michael Francis Atiyah (1929–2019) wrote the influential
Introduction to commutative algebra together with I. G. MacDon-
ald, a poor guy whose name is often omitted or misspelled.

In this chapter, we study several ways of comparing the singularities of quasi-
plurisubharmonic functions. In Section 6.1, we will introduce the 𝑃 and I-partial
orders, closely related to the 𝑃 and I-equivalence relations introduced in Chapter 3.

In Section 6.2, we introduce and study the 𝑑𝑆-pseudometric characterizing the
differences between singularities. We will prove that a number of continuity results
with respect to 𝑑𝑆 .

6.1 The 𝑷 and I-partial orders

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛.
Recall that we have defined a (non-strict) partial order on QPSH(𝑋) in Defini-

tion 1.5.2 to compare the singularity types of quasi-plurisubharmonic functions. The
problem with this partial order is that it is too fine. In general, for our interest, it is
helpful to consider rougher relations.

6.1.1 The definitions of the partial orders

Recall that the 𝑃-envelope is defined in Definition 3.1.2.

Definition 6.1.1 Let 𝜑, 𝜓 ∈ QPSH(𝑋), we say 𝜑 is 𝑃-more singular than 𝜓 and
write 𝜑 ⪯𝑃 𝜓 if for some closed smooth real (1, 1)-form 𝜃 on 𝑋 such that 𝜑, 𝜓 ∈
PSH(𝑋, 𝜃)>0, we have

𝑃𝜃 [𝜑] ≤ 𝑃𝜃 [𝜓] . (6.1)

Suppose that 𝜑 ⪯𝑃 𝜓 and 𝜓 ⪯𝑃 𝜑, we shall write 𝜑 ∼𝑃 𝜓 and say 𝜑 and 𝜓 have the
same 𝑃-singularity type.

Note that if 𝜑 ⪯ 𝜓, then 𝜑 ⪯𝑃 𝜓. So the 𝑃-partial order is coarser than ⪯.
The condition (6.1) is independent of the choice of 𝜃:

143
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Lemma 6.1.1 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃)>0. For any Kähler form 𝜔 on 𝑋 , the following
are equivalent:

(1) 𝑃𝜃 [𝜑] ≤ 𝑃𝜃 [𝜓];
(2) 𝑃𝜃+𝜔 [𝜑] ≤ 𝑃𝜃+𝜔 [𝜓].

In particular, ⪯𝑃 defines a non-strict partial order on QPSH(𝑋).

Proof (1) =⇒ (2). Observe that

𝜑 ⪯ 𝑃𝜃 [𝜑] ≤ 𝑃𝜃+𝜔 [𝜑] .

It follows from Theorem 3.1.2 that

𝑃𝜃+𝜔 [𝜑] = 𝑃𝜃+𝜔 [𝑃𝜃 [𝜑]] . (6.2)

A similar formula holds for 𝜓. So we see that (2) holds.
(2) =⇒ (1). By (6.2), we may assume that 𝜑 and 𝜓 are both model potentials in

PSH(𝑋, 𝜃)>0.
Observe that 𝜑 ∨ 𝜓 ⪯ 𝑃𝜃+𝜔 [𝜓]. It follows that 𝑃𝜃+𝜔 [𝜑 ∨ 𝜓] ≤ 𝑃𝜃+𝜔 [𝜓]. The

reverse inequality is trivial, so

𝑃𝜃+𝜔 [𝜑 ∨ 𝜓] = 𝑃𝜃+𝜔 [𝜓] .

From the direction we have proved, for any 𝐶 ≥ 1,

𝑃𝜃+𝐶𝜔 [𝜑 ∨ 𝜓] = 𝑃𝜃+𝐶𝜔 [𝜓] .

So by Proposition 3.1.3,∫
𝑋

(𝜃 + 𝐶𝜔 + ddc (𝜑 ∨ 𝜓))𝑛 =
∫
𝑋

(𝜃 + 𝐶𝜔 + ddc𝜓)𝑛 .

Since both sides are polynomials in 𝐶, the equality extends to 𝐶 = 0, namely,∫
𝑋

𝜃𝑛𝜑∨𝜓 =

∫
𝑋

𝜃𝑛𝜓 .

In particular, 𝜑 ∨ 𝜓 ≤ 𝑃𝜃 [𝜓] = 𝜓 by (3.7). So (1) follows. □

As a consequence of Lemma 6.1.1, we can define the 𝑃-partial order at the level of
currents. Given closed positive (1, 1)-currents 𝑇 = 𝜃𝜑 , 𝑆 = 𝜃′

𝜓
, we write 𝑇 ⪯𝑃 𝑆

(resp. 𝑇 ∼𝑃 𝑆) if 𝜑 ⪯𝑃 𝜓 (resp. 𝜑 ∼𝑃 𝜓). This definition is independent of the
decompositions of 𝑇 and 𝑆.

As a first example of 𝑃-equivalence, we have:

Example 6.1.1 Let 𝜃 be a closed smooth real (1, 1)-form on 𝑋 and 𝜑 ∈ PSH(𝑋, 𝜃)>0,
then

𝜑 ∼𝑃 𝑃𝜃 [𝜑] 1.
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This follows immediately from Theorem 3.1.2.

We give a very useful criterion of the 𝑃-equivalence in terms of the non-pluripolar
masses.

Proposition 6.1.1 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃) and 𝜑 ⪯ 𝜓. Then the following are equiva-
lent:

(1) 𝜑 ∼𝑃 𝜓;
(2) for each 𝑗 = 0, . . . , 𝑛, we have∫

𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

=

∫
𝑋

𝜃
𝑗

𝜓
∧ 𝜃𝑛− 𝑗

𝑉𝜃
. (6.3)

Assume furthermore that 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃)>0, then these conditions are equivalent
to the following:

(3) We have ∫
𝑋

𝜃𝑛𝜑 =

∫
𝑋

𝜃𝑛𝜓 .

Recall that 𝑉𝜃 is introduced in (2.9).

Proof We first prove the equivalence between (1) and (3) when 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃)>0.
(1) =⇒ (3). Assume that 𝜑 ∼𝑃 𝜓. By Lemma 6.1.1, we have

𝑃𝜃 [𝜑] = 𝑃𝜃 [𝜓] .

So (3) follows from Proposition 3.1.3.
(3) =⇒ (1). It follows from Theorem 3.1.2 that 𝑃𝜃 [𝜑] = 𝑃𝜃 [𝜓], so (1) follows.
Let us come back to the general case.
(1) =⇒ (2). Fix 𝑗 ∈ {0, . . . , 𝑛}, we argue (6.3).
Take a Kähler form 𝜔 on 𝑋 . By Lemma 6.1.1, for each 𝜖 > 0, we have

𝑃𝜃+𝜖 𝜔 [𝜑] = 𝑃𝜃+𝜖 𝜔 [𝜓] .

It follows from Proposition 3.1.3 that∫
𝑋

(𝜃 + 𝜖𝜔 + ddc𝜓) 𝑗 ∧ 𝜃𝑛− 𝑗
𝑉𝜃

=

∫
𝑋

(𝜃 + 𝜖𝜔 + ddc𝑃𝜃+𝜖 𝜔 [𝜓]) 𝑗 ∧ 𝜃𝑛− 𝑗𝑉𝜃

=

∫
𝑋

(𝜃 + 𝜖𝜔 + ddc𝑃𝜃+𝜖 𝜔 [𝜑]) 𝑗 ∧ 𝜃𝑛− 𝑗𝑉𝜃

=

∫
𝑋

(𝜃 + 𝜖𝜔 + ddc𝜑) 𝑗 ∧ 𝜃𝑛− 𝑗
𝑉𝜃

.

Since the two extremes are both polynomials in 𝜖 , we conclude that the same holds
when 𝜖 = 0, that is, (6.3) holds.

(2) =⇒ (1). Assume (6.3) holds for all 𝑗 = 0, . . . , 𝑛. For each 𝑡 ∈ (0, 1), we have

1 I do not know if the same holds when 𝜑 has vanishing mass.
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𝑋

𝜃𝑛
𝑡 𝜑+(1−𝑡 )𝑉𝜃 =

∫
𝑋

𝜃𝑛
𝑡𝜓+(1−𝑡 )𝑉𝜃

by the binomial expansion. By the implication (3) =⇒ (1), we have

𝑡𝜑 + (1 − 𝑡)𝑉𝜃 ∼𝑃 𝑡𝜓 + (1 − 𝑡)𝑉𝜃

for each 𝑡 ∈ (0, 1).
Fix a Kähler form 𝜔 on 𝑋 . From the implication (1) =⇒ (3), we have∫

𝑋

(𝜃 + 𝜔)𝑛
𝑡 𝜑+(1−𝑡 )𝑉𝜃 =

∫
𝑋

(𝜃 + 𝜔)𝑛
𝑡𝜓+(1−𝑡 )𝑉𝜃 .

Since both sides are polynomials in 𝑡, the same holds when 𝑡 = 1. From the implication
(3) =⇒ (1) again, we have 𝜑 ∼𝑃 𝜓. □

Next we introduce a different partial order.

Proposition 6.1.2 Given 𝜑, 𝜓 ∈ QPSH(𝑋), the following are equivalent:

(1) For any 𝑘 ∈ Z>0, we have
I(𝑘𝜑) ⊆ I(𝑘𝜓);

(2) for any 𝜆 ∈ R>0, we have
I(𝜆𝜑) ⊆ I(𝜆𝜓);

(3) for any modification 𝜋 : 𝑌 → 𝑋 and any 𝑦 ∈ 𝑌 , we have

𝜈(𝜋∗𝜑, 𝑦) ≥ 𝜈(𝜋∗𝜓, 𝑦);

(4) for any proper bimeromorphic morphism 𝜋 : 𝑌 → 𝑋 from a Kähler manifold
and any 𝑦 ∈ 𝑌 , we have

𝜈(𝜋∗𝜑, 𝑦) ≥ 𝜈(𝜋∗𝜓, 𝑦);

(5) for any prime divisor 𝐸 over 𝑋 , we have

𝜈(𝜑, 𝐸) ≥ 𝜈(𝜓, 𝐸).

Proof The proof is almost identical to that of Proposition 3.2.1. □

Definition 6.1.2 Let 𝜑, 𝜓 ∈ QPSH(𝑋), we say 𝜑 is I-more singular than 𝜓 and write
𝜑 ⪯I 𝜓 if the equivalent conditions in Proposition 6.1.2 are satisfied.

It is clear that ⪯I is a non-strict partial order on QPSH(𝑋).
Note that 𝜑 ⪯I 𝜓 and 𝜓 ⪯I 𝜑 both hold if and only if 𝜑 ∼I 𝜓 in the sense of

Definition 3.2.1.
Given closed positive (1, 1)-currents𝑇 = 𝜃𝜑 , 𝑆 = 𝜃′

𝜓
, we write𝑇 ⪯I 𝑆 (resp.𝑇 ∼I

𝑆) if 𝜑 ⪯I 𝜓 (resp. 𝜑 ∼I 𝜓). This definition is independent of the decompositions of
𝑇 and 𝑆.
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Lemma 6.1.2 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃)>0, then

𝑃𝜃 [𝜑 ∨ 𝜓] = 𝑃𝜃 [𝑃𝜃 [𝜑] ∨ 𝑃𝜃 [𝜓]] . (6.4)

Proof Since 𝜑 ∨ 𝜓 ⪯ 𝑃𝜃 [𝜑] ∨ 𝑃𝜃 [𝜓], the ≤ direction of (6.4) follows. Conversely,
it suffices to show that

𝑃𝜃 [𝜑 ∨ 𝜓] ≥ 𝑃𝜃 [𝜑] ∨ 𝑃𝜃 [𝜓],

which is obvious. □

Lemma 6.1.3 Let 𝜑, 𝜓 ∈ QPSH(𝑋). Then the following are equivalent:

(1) 𝜑 ⪯𝑃 𝜓 (resp. 𝜑 ⪯I 𝜓);
(2) 𝜑 ∨ 𝜓 ∼𝑃 𝜓 (resp. 𝜑 ∨ 𝜓 ∼I 𝜓).

Proof Take a closed real smooth (1, 1)-form 𝜃 on 𝑋 such that 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃)>0.
We only prove the 𝑃 case, the I case is similar.

(2) =⇒ (1). By (2) and Example 6.1.1, 𝑃𝜃 [𝜑 ∨ 𝜓] = 𝑃𝜃 [𝜓] ∼𝑃 𝜓. But
𝜑 ⪯ 𝑃𝜃 [𝜑 ∨ 𝜓], so (1) follows.

(1) =⇒ (2). We may assume that 𝜑, 𝜓 are both model by Lemma 6.1.2. Then
𝜑 ≤ 𝜓 and (2) follows. □

Corollary 6.1.1 Let 𝜑, 𝜓 ∈ QPSH(𝑋). Assume that 𝜑 ⪯𝑃 𝜓, then 𝜑 ⪯I 𝜓.

Proof This follows from Lemma 6.1.3 and Proposition 3.2.9. □

Next we give a few extra characterizations of the 𝑃-envelope.

Corollary 6.1.2 Assume that 𝜑 ∈ PSH(𝑋, 𝜃)>0, then

𝑃𝜃 [𝜑] = sup {𝜓 ∈ PSH(𝑋, 𝜃) : 𝜓 ≤ 0, 𝜓 ∼𝑃 𝜑}
= sup {𝜓 ∈ PSH(𝑋, 𝜃) : 𝜓 ≤ 0, 𝜓 ⪯𝑃 𝜑} .

Just for comparison, let us recall a few other characterizations of the 𝑃-envelope for
𝜑 ∈ PSH(𝑋, 𝜃)>0:

𝑃𝜃 [𝜑] = sup∗ {𝜓 ∈ PSH(𝑋, 𝜃) : 𝜓 ≤ 0, 𝜓 ⪯ 𝜑}

= sup∗ {𝜓 ∈ PSH(𝑋, 𝜃) : 𝜓 ≤ 0, 𝜓 ∼ 𝜑}

= sup
𝐶∈Z>0

∗ (𝜑 + 𝐶) ∧𝑉𝜃

= sup
{
𝜓 ∈ PSH(𝑋, 𝜃) : 𝜓 ≤ 0, 𝜑 ⪯ 𝜓,

∫
𝑋

𝜃𝑛𝜑 =

∫
𝑋

𝜃𝑛𝜓

}
.

Proof Note that 𝜓 ∼𝑃 𝜑 implies that 𝜓 ∈ PSH(𝑋, 𝜃)>0 by Proposition 6.1.4. We
observe that
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sup {𝜓 ∈ PSH(𝑋, 𝜃) : 𝜓 ≤ 0, 𝜓 ∼𝑃 𝜑}
= sup {𝜓 ∈ PSH(𝑋, 𝜃) : 𝜓 ≤ 0, 𝜑 ⪯ 𝜓, 𝜓 ∼𝑃 𝜑}

by Lemma 6.1.3. So the first equality is a direct consequence of Proposition 6.1.1
and Theorem 3.1.2.

Next we prove the second equality. We only need to show that for any 𝜓 ∈
PSH(𝑋, 𝜃) with 𝜓 ≤ 0 and 𝜓 ⪯𝑃 𝜑, we have 𝜓 ≤ 𝑃𝜃 [𝜑].

By Lemma 6.1.3 and Example 6.1.1, we know that 𝑃𝜃 [𝜑] ∨ 𝜓 ∼𝑃 𝜑 and
𝑃𝜃 [𝜑] ∨ 𝜓 ≤ 0. It follows from the first equality that 𝜓 ≤ 𝑃𝜃 [𝜑]. □

Similarly, we have a new characterization of the I-envelope.

Corollary 6.1.3 Assume that 𝜑 ∈ PSH(𝑋, 𝜃), then

𝑃𝜃 [𝜑]I = sup {𝜓 ∈ PSH(𝑋, 𝜃) : 𝜓 ≤ 0, 𝜓 ⪯I 𝜑} .

Proof It suffices to show that for any𝜓 ∈ PSH(𝑋, 𝜃) with𝜓 ≤ 0 and𝜓 ⪯I 𝜑, we have
𝜓 ≤ 𝑃𝜃 [𝜑]I . By Lemma 6.1.3 and Proposition 3.2.6, we know that 𝑃𝜃 [𝜑]I∨𝜓 ∼I 𝜑.
Therefore,

𝜓 ≤ 𝑃𝜃 [𝜑]I ∨ 𝜓 ≤ 𝑃𝜃 [𝜑]I .

Proposition 6.1.3 Suppose that 𝜑, 𝜓 ∈ QPSH(𝑋) and 𝜃 is a closed real smooth
(1, 1)-form on 𝑋 such that 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃). Then the following are equivalent:

(1) 𝜑 ⪯I 𝜓;
(2) 𝑃𝜃 [𝜑]I ≤ 𝑃𝜃 [𝜓]I .

Proof (1) =⇒ (2). This follows immediately from Corollary 6.1.3.
(2) =⇒ (1). This follows from Proposition 3.2.6. □

Example 6.1.2 Let us continue our example Example 3.1.1, where 𝑋 = P1, 𝜔 is the
Fubini–Study metric and 𝜑 ∈ PSH(𝑋, 𝜔) has log-log singularity at 0. We have shown
that 𝑃𝜔 [𝜑] = 0 in (3.9), so 𝜑 ∼𝑃 0 and hence 𝜑 ∼I 0. In particular, 𝑃-equivalence
is not equivalent to the equivalence of singularity types.

On the other hand, consider a potential 𝜓 ∈ PSH(𝑋, 𝜔) with log singularity at 0,
as in Example 1.8.2. We know that 𝜈(𝜓, 0) = 1 from the explicit expression (1.23).
So 𝜓 ≁I 0 and hence 𝜓 ≁𝑃 0.

Moreover, 𝜓 ⪯𝑃 𝜑 and hence 𝜓 ⪯I 𝜑.

We give an example showing that 𝑃-equivalence is not equivalent toI-equivalence.

Example 6.1.3 Let 𝑋 = P1 and 𝜔 be the Fubini–Study metric. Let 𝐾 ⊆ P1 be a polar
Cantor sets carrying an atom free probability measure 𝜇 supported on 𝐾 (see [Car83,
Page 31]). Write 𝜇 = 𝜔 + ddc𝜑 for some 𝜔-subharmonic function 𝜑. Since 𝜇 is
atom free, we know that all Lelong numbers of 𝜑 are 0. On the other hand, 𝜑 has 0
non-pluripolar mass since 𝐾 is pluripolar.

Then observe that 𝜑 ∼I 0 while 𝜑 ≁𝑃 0.



6.1. THE 𝑃 AND I-PARTIAL ORDERS 149

For later use, we give the following definition.

Definition 6.1.3 Let 𝐿 be a pseudo-effective line bundle on 𝑋 . An elementary metric
on 𝐿 is a psh metric ℎ on 𝐿 such that there is a generalized Fubini–Study metric ℎ′
on 𝐿 such that

ddcℎ ∼𝑃 ddcℎ′.

The set of elementary metrics on 𝐿 is denoted by Ele(𝐿).
We also say ddcℎ is elementary. If we have fixed a Hermitian metric ℎ0 on 𝐿, and

if we represent ℎ as ℎ0 exp(−𝜑), we also say the quasi-psh function 𝜑 is elementary.

Recall that the generalized Fubini–Study metrics are defined in Definition 1.8.7.

6.1.2 Properties of the partial orders

Now we state a more natural version of the monotonicity theorem Theorem 2.4.4.

Proposition 6.1.4 Let 𝜃1, . . . , 𝜃𝑛 be closed real smooth (1, 1)-forms on 𝑋 . Let 𝜑𝑖 , 𝜓𝑖 ∈
PSH(𝑋, 𝜃𝑖) for 𝑖 = 1, . . . , 𝑛. Assume that 𝜑𝑖 ⪯𝑃 𝜓𝑖 for each 𝑖. Then∫

𝑋

𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 ≤
∫
𝑋

𝜃1,𝜓1 ∧ · · · ∧ 𝜃𝑛,𝜓𝑛 .

Proof Fix a Kähler form 𝜔 on 𝑋 . For each 𝑖 = 1, . . . , 𝑛, since 𝜑𝑖 ⪯𝑃 𝜓𝑖 , we have

𝑃𝜃𝑖+𝜖 𝜔 [𝜑𝑖] ≤ 𝑃𝜃𝑖+𝜖 𝜔 [𝜓𝑖]

for all 𝜖 > 0. Therefore, by Proposition 3.1.3 and Theorem 2.4.4, we have∫
𝑋

(𝜃1 + 𝜖𝜔)𝜑1 ∧ · · · ∧ (𝜃𝑛 + 𝜖𝜔)𝜑𝑛 ≤
∫
𝑋

(𝜃1 + 𝜖𝜔)𝜓1 ∧ · · · ∧ (𝜃𝑛 + 𝜖𝜔)𝜓𝑛 .

Letting 𝜖 → 0+, we find the desired inequality. □

Next we show that the 𝑃 and I-partial orders are preserved by some natural
operations.

Lemma 6.1.4 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a Kähler
manifold𝑌 . Given two quasi-plurisubharmonic functions 𝜑, 𝜓 on 𝑋 , then the following
are equivalent:

• 𝜑 ⪯𝑃 𝜓;
• 𝜋∗𝜑 ⪯𝑃 𝜋∗𝜓.

The same holds with I in place of 𝑃.

Proof In the 𝑃-case, this follows from Proposition 3.1.7, while in the I-case, this
follows from Proposition 3.2.5. □
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Proposition 6.1.5 Let 𝜑, 𝜓, 𝜑′, 𝜓′ ∈ QPSH(𝑋). Assume that

𝜑 ⪯𝑃 𝜓, 𝜑′ ⪯𝑃 𝜓′.

Then
𝜑 + 𝜑′ ⪯𝑃 𝜓 + 𝜓′.

The same holds with ⪯I in place of ⪯𝑃 .

Proof Take a Kähler form 𝜔 on 𝑋 such that 𝜑, 𝜓, 𝜑′, 𝜓′ ∈ PSH(𝑋, 𝜔)>0. The
statement for ⪯I is a simple consequence of Proposition 1.4.2. We only need to
handle the case of ⪯𝑃 .

Step 1. We first show that

𝑃𝜔 [𝜑] + 𝑃𝜔 [𝜑′] ∼𝑃 𝜑 + 𝜑′.

In fact, we clearly have

𝑃𝜔 [𝜑] + 𝑃𝜔 [𝜑′] ⪰ 𝜑 + 𝜑′.

So by Proposition 6.1.1, it suffices to show that they have the same mass. We compute∫
𝑋

(2𝜔 + ddc𝑃𝜔 [𝜑] + ddc𝑃𝜔 [𝜑′])𝑛

=

𝑛∑︁
𝑗=0

(
𝑛

𝑗

) ∫
𝑋

(𝜔 + ddc𝑃𝜔 [𝜑]) 𝑗 ∧ (𝜔 + ddc𝑃𝜔 [𝜑′])𝑛− 𝑗

=

𝑛∑︁
𝑗=0

(
𝑛

𝑗

) ∫
𝑋

𝜔
𝑗
𝜑 ∧ 𝜔𝑛− 𝑗𝜑′

=

∫
𝑋

(2𝜔 + 𝜑 + 𝜑′)𝑛 ,

where we applied Proposition 3.1.3 on the third line.
Step 2. By Step 1, we may assume that 𝜑, 𝜓, 𝜑′, 𝜓′ are all model potentials. So

𝜑 ≤ 𝜓 and 𝜑′ ≤ 𝜓′. Our assertion follows. □

Proposition 6.1.6 Let (𝜑𝑖)𝑖∈𝐼 , (𝜓𝑖)𝑖∈𝐼 be uniformly bounded from above non-empty
families in QPSH(𝑋). Assume that there exists a closed smooth real (1, 1)-form 𝜃

such that 𝜑𝑖 , 𝜓𝑖 ∈ PSH(𝑋, 𝜃) and 𝜑𝑖 ⪯𝑃 𝜓𝑖 for all 𝑖 ∈ 𝐼. Then

sup
𝑖∈𝐼
∗𝜑𝑖 ⪯𝑃 sup

𝑖∈𝐼
∗𝜓𝑖 .

The same holds with ⪯I in place of ⪯𝑃 .

Proof By increasing 𝜃, we may assume that 𝜑𝑖 , 𝜓𝑖 ∈ PSH(𝑋, 𝜃)>0 for all 𝑖 ∈ 𝐼. The
statement for ⪯I is a simple consequence of Corollary 1.4.1, we only have to consider
the statement for ⪯𝑃 .
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Step 1. We first handle the case where 𝐼 is a directed set and (𝜑𝑖)𝑖∈𝐼 and (𝜓𝑖)𝑖∈𝐼
are increasing nets.

In this case, our assertion follows simply from Proposition 3.1.11.
Step 2. We handle the case where 𝐼 is finite. We may assume that 𝐼 = {0, 1}. It

suffices to show that
𝑃𝜃 [𝜑0] ∨ 𝑃𝜃 [𝜑1] ∼𝑃 𝜑0 ∨ 𝜑1,

which follows from Lemma 6.1.2.
Step 3. The general case can be reduced to the two cases handled in Step 1 and

Step 2. More precisely, by Proposition 1.2.2, we could find a countable subset 𝐽 ⊆ 𝐼
such that

sup
𝑗∈𝐽
∗𝜑 𝑗 = sup

𝑖∈𝐼
∗𝜑𝑖 , sup

𝑖∈𝐼
∗𝜓 𝑗 = sup

𝑖∈𝐼
∗𝜓𝑖 .

We may replace 𝐼 by 𝐽 and assume that 𝐼 is countable. We may assume that 𝐼 is
infinite, as otherwise, we could apply Step 2 directly. So let us assume that 𝐽 = Z>0.
In this case, by Step 2 again, we may assume that both (𝜑𝑖)𝑖 and (𝜓𝑖)𝑖 are increasing,
which is the situation of Step 1.

Proposition 6.1.7 Let 𝜑, 𝜓, 𝜑′, 𝜓′ ∈ PSH(𝑋, 𝜃)>0 for some closed smooth real (1, 1)-
form 𝜃 on 𝑋 . Assume that

𝜑 ∼𝑃 𝜑′, 𝜓 ∼𝑃 𝜓′, 𝜑′ ∧ 𝜓′ ∈ PSH(𝑋, 𝜃)>0.

Then
𝜑 ∧ 𝜓 ∈ PSH(𝑋, 𝜃)>0, 𝜑 ∧ 𝜓 ∼𝑃 𝜑′ ∧ 𝜓′.

Proof We first observe that 𝜑, 𝜑′, 𝜓, 𝜓′ ∈ PSH(𝑋, 𝜃)>0 by assumption. Let

𝜙 B 𝑃𝜃 [𝜑] = 𝑃𝜃 [𝜑′], 𝛾 = 𝑃𝜃 [𝜓] = 𝑃𝜃 [𝜓′] .

Then 𝜙 ∧ 𝛾 ∈ PSH(𝑋, 𝜃)>0 since this holds for 𝜑′ ∧ 𝜓′. It follows from Lemma 3.1.2
that ∫

𝑋

𝜃𝑛𝜑′∧𝜓′ =

∫
𝑋

𝜃𝑛𝜙∧𝛾 .

Next, we apply Lemma 3.1.2 again to conclude that 𝜑 ∧ 𝜓 ∈ PSH(𝑋, 𝜃) and∫
𝑋

𝜃𝑛𝜑∧𝜓 =

∫
𝑋

𝜃𝑛𝜙∧𝛾 =

∫
𝑋

𝜃𝑛𝜑′∧𝜓′ > 0.

The 𝑃-equivalence relation characterizes when a subgeodesic exists. See Defini-
tion 4.1.1 for the notion of subgeodesics.

Theorem 6.1.1 Let 𝜑0, 𝜑1 ∈ PSH(𝑋, 𝜃)>0. Then the following are equivalent:

(1) There is a subgeodesic from 𝜑0 to 𝜑1;
(2) 𝜑0 ∼𝑃 𝜑1.

Proof (2) =⇒ (1). This follows from Proposition 4.2.1.
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(1) =⇒ (2). Let (𝜑𝑡 )𝑡∈ (0,1) be a subgeodesic from 𝜑0 to 𝜑1.
Step 1. We assume that 𝜑0 ≥ 𝜑1.
Without loss of generality, we may assume that (𝜑𝑡 )𝑡∈ (0,1) is the geodesic from 𝜑0

to 𝜑1. Then 𝑡 ↦→ 𝜑𝑡 is decreasing as we have seen in the proof of Proposition 4.2.2.
Let 𝜑𝑡 = 𝜑1 for all 𝑡 > 1. Then by the gluing lemma Lemma 1.2.2, we find that

(𝜑𝑡 )𝑡≥0 is a subgeodesic ray.
Next, we consider the Legendre transform

Γ𝜏 B inf
𝑡≥0
(𝜑𝑡 − 𝑡𝜏), 𝜏 ∈ R.

It follows from Kiselman’s principle Proposition 1.2.8 that Γ𝜏 ∈ PSH(𝑋, 𝜃) ∪ {−∞}.
Note that for 𝜏 > 0, we clearly have Γ𝜏 ≡ −∞. On the other hand, for 𝜏 ≤ 0,

Γ𝜏 = inf
𝑡∈[0,1]

(𝜑𝑡 − 𝑡𝜏) ∈ PSH(𝑋, 𝜃).

By Legendre inversion, for 𝑡 > 0,

𝜑𝑡 = sup
𝜏∈R
(Γ𝜏 + 𝑡𝜏).

Fix a Kähler form 𝜔 on 𝑋 . It follows from Proposition 6.1.6 that for each 𝑡 > 0,

𝜑𝑡 ∼𝑃 sup
𝜏<0

∗𝑃𝜃+𝜔 [Γ𝜏] .

The right-hand side is independent of 𝑡. Here by adding 𝜔, we no longer have to
worry about the possibility where Γ𝜏 has vanishing mass.

Write
𝜑0 = sup

𝑡∈ (0,1)

∗𝜑𝑡 .

By Proposition 6.1.6 again, we find that

𝜑0 ∼𝑃 sup
𝜏<0

∗𝑃𝜃+𝜔 [Γ𝜏]

as well. So 𝜑0 ∼𝑃 𝜑1.
Step 2. We prove the general case.
Observe that (𝜑𝑡 ∨ 𝜑1)𝑡∈ (0,1) is a subgeodesic from 𝜑0 ∨ 𝜑1 to 𝜑1. By Step 1,

𝜑0 ∨ 𝜑1 ∼𝑃 𝜑1.

Hence 𝜑0 ⪯𝑃 𝜑1 by Proposition 6.1.3. The converse is proved similarly. Hence (2)
follows.

Restating the (1) =⇒ (2) direction in the theorem in terms of the complexification,
we find the following interesting result.

Let 𝑆 = {𝑧 ∈ C : 0 < Re 𝑧 < 1}. We write 𝑝1 : 𝑋 × 𝑆 → 𝑋 for the natural
projection.
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Corollary 6.1.4 Let Φ ∈ PSH(𝑋 × 𝑆, 𝑝∗1𝜃). Assume that for any 𝑐 ∈ R, 𝑥 ∈ 𝑋 and
𝑧 ∈ 𝑆, we have

Φ(𝑥, 𝑧) = Φ(𝑥, 𝑧 + i𝑐).

Then
∫
𝑋
(𝜃 + ddcΦ𝑧)𝑛 is independent of 𝑧 ∈ 𝑆, where Φ𝑧 ∈ PSH(𝑋, 𝜃) is given by

Φ𝑧 (𝑥) = Φ(𝑥, 𝑧).

This seems to be the first non-trivial result concerning the variation of non-pluripolar
masses.

6.2 The 𝒅𝑺-pseudometric

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝜃 be a closed
real smooth (1, 1)-form on 𝑋 representing a big cohomology class. The goal of this
section is to study a pseudometric on the space PSH(𝑋, 𝜃).

6.2.1 The definition of the 𝒅𝑺-pseudometric

Recall that for any 𝜑 ∈ PSH(𝑋, 𝜃), the geodesic ray ℓ𝜑 ∈ R1 (𝑋, 𝜃) is defined in
Example 4.3.1.

Definition 6.2.1 For 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃), we define

𝑑𝑆 (𝜑, 𝜓) B 𝑑1 (ℓ𝜑 , ℓ𝜓).

When we want to be more specific, we write 𝑑𝑆,𝜃 instead of 𝑑𝑆 .

The 𝑑1 distance of geodesic rays is defined in Definition 4.3.5.

Proposition 6.2.1 The function 𝑑𝑆 defined in Definition 6.2.1 is a pseudometric on
PSH(𝑋, 𝜃).

Proof This follows immediately from Theorem 4.3.4. □

When studying a pseudometric, the first thing is to understand when the distance
between two elements vanishes.

We first prove a preparation:

Lemma 6.2.1 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃). Then

𝑑𝑆 (𝜑, 𝜓) ≤ 𝑑𝑆 (𝜑, 𝜑 ∨ 𝜓) + 𝑑𝑆 (𝜓, 𝜑 ∨ 𝜓) ≤ 𝐶𝑛𝑑𝑆 (𝜑, 𝜓),

where 𝐶𝑛 = 3(𝑛 + 1)2𝑛+2.

We shall use the notations introduced in Example 4.3.1.
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Proof We claim that
ℓ𝜑 ∨ ℓ𝜓 = ℓ𝜑∨𝜓 . (6.5)

Recall that ∨ is defined in Definition 4.3.7. Note that this assertion implies our desired
inequality by Lemma 4.3.6.

In proving this assertion, we may assume that 𝜑, 𝜓 ≤ 0 since

ℓ𝜑+𝐶 = ℓ𝜑 , ℓ𝜓+𝐶 = ℓ𝜓 , ℓ (𝜑+𝐶 )∨(𝜓+𝐶 ) = ℓ𝜑∨𝜓

for any 𝐶 ∈ R.
In fact, it is clear that

ℓ𝜑 ≤ ℓ𝜑∨𝜓 , ℓ𝜓 ≤ ℓ𝜑∨𝜓 ,

so the ≤ direction in (6.5) holds.
Conversely, if ℓ′ ∈ R1 (𝑋, 𝜃) and ℓ′ ≥ ℓ𝜑 ∨ ℓ𝜓 , then for each 𝑡 ≥ 0,

ℓ′𝑡 ≥ ((𝑉𝜃 − 𝑡) ∨ 𝜑) ∨ ((𝑉𝜃 − 𝑡) ∨ 𝜓) = (𝑉𝜃 − 𝑡) ∨ (𝜑 ∨ 𝜓).

Therefore,
ℓ′𝑠 ≥ ℓ

𝜑∨𝜓,𝑡
𝑠

for any 0 ≤ 𝑠 ≤ 𝑡. It follows from (4.30) that ℓ′𝑠 ≥ ℓ
𝜑∨𝜓
𝑠 for any 𝑠 ≥ 0. □

Proposition 6.2.2 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃). Then the following are equivalent:

(1) 𝜑 ∼𝑃 𝜓;
(2) 𝑑𝑆 (𝜑, 𝜓) = 0.

In particular, 𝑑𝑆 (𝜑, 𝑃𝜃 [𝜑]) = 0 for all 𝜑 ∈ PSH(𝑋, 𝜃)>0.

Proof By Lemma 6.1.3, we have 𝜑 ∼𝑃 𝜓 if and only if 𝜑 ∼𝑃 𝜑 ∨𝜓 and 𝜓 ∼𝑃 𝜑 ∨𝜓.
By Lemma 6.2.1, 𝑑𝑆 (𝜑, 𝜓) = 0 if and only if 𝑑𝑆 (𝜑, 𝜑∨𝜓) = 0 and 𝑑𝑆 (𝜓, 𝜑∨𝜓) = 0.
So it suffices to prove the assertion when 𝜑 ≤ 𝜓. Assuming this, by Proposition 4.3.6
we have that (2) holds if and only if

E(ℓ𝜑) = E(ℓ𝜓),

where E is introduced in Definition 4.3.6. But by (4.28), this holds if and only if

𝑛∑︁
𝑗=0

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

=

𝑛∑︁
𝑗=0

∫
𝑋

𝜃
𝑗

𝜓
∧ 𝜃𝑛− 𝑗

𝑉𝜃
.

Thanks to Theorem 2.4.4, this holds if and only if for all 𝑗 = 0, . . . , 𝑛,∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

=

∫
𝑋

𝜃
𝑗

𝜓
∧ 𝜃𝑛− 𝑗

𝑉𝜃
,

which is equivalent to (1) by Proposition 6.1.1. □
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Lemma 6.2.2 Suppose that 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃) and 𝜑 ⪯𝑃 𝜓, then

𝑑𝑆 (𝜑, 𝜓) =
1

𝑛 + 1

𝑛∑︁
𝑗=0

(∫
𝑋

𝜃
𝑗

𝜓
∧ 𝜃𝑛− 𝑗

𝑉𝜃
−

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

)
.

Proof This follows trivially from (4.28). □

Corollary 6.2.1 Suppose that 𝜑, 𝜓, 𝜂 ∈ PSH(𝑋, 𝜃) and 𝜑 ⪯𝑃 𝜓 ⪯𝑃 𝜂. Then

𝑑𝑆 (𝜑, 𝜂) ≥ 𝑑𝑆 (𝜑, 𝜓), 𝑑𝑆 (𝜑, 𝜂) ≥ 𝑑𝑆 (𝜓, 𝜂).

Proof This is an immediate consequence of Lemma 6.2.2 and Proposition 6.1.4. □

Corollary 6.2.2 For any 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃), we have

𝑑𝑆 (𝜑, 𝜓) ≤
1

𝑛 + 1

𝑛∑︁
𝑗=0

(
2
∫
𝑋

𝜃
𝑗

𝜑∨𝜓 ∧ 𝜃
𝑛− 𝑗
𝑉𝜃
−

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

−
∫
𝑋

𝜃
𝑗

𝜓
∧ 𝜃𝑛− 𝑗

𝑉𝜃

)
≤𝐶𝑛𝑑𝑆 (𝜑, 𝜓),

(6.6)

where 𝐶𝑛 = 3(𝑛 + 1)2𝑛+2.
In particular, if (𝜑𝑖)𝑖∈𝐼 is a net in PSH(𝑋, 𝜃) with 𝑑𝑆-limit 𝜑, then for each

𝑗 = 0, . . . , 𝑛,

lim
𝑖∈𝐼

∫
𝑋

𝜃
𝑗
𝜑𝑖 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃

=

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

= lim
𝑖∈𝐼

∫
𝑋

𝜃
𝑗
𝜑𝑖∨𝜑 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃

.

Proof The estimates (6.6) follows from the combination of Lemma 6.2.2 and
Lemma 6.2.1.

Suppose that 𝜑𝑖
𝑑𝑆−−→ 𝜑, then 𝜑𝑖 ∨ 𝜑

𝑑𝑆−−→ 𝜑 by Lemma 6.2.1. Therefore, Theo-
rem 2.4.4 and Lemma 6.2.2 imply that

lim
𝑖∈𝐼

∫
𝑋

𝜃
𝑗
𝜑𝑖∨𝜑 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃

=

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

for any 𝑗 = 0, . . . , 𝑛. The last assertion now follows from (6.6) and Theorem 2.4.4.□

Corollary 6.2.3 Suppose that 𝜑𝑖 ∈ PSH(𝑋, 𝜃) (𝑖 ∈ 𝐼) be an increasing net, uniformly
bounded from above. Then

𝜑𝑖
𝑑𝑆−−→ sup

𝑗∈𝐼
∗𝜑 𝑗 .

If the 𝜑𝑖’s are all model potentials in PSH(𝑋, 𝜃)>0, then so is sup 𝑗∈𝐼 ∗𝜑 𝑗 , as we have
seen in Proposition 3.1.11.

Proof Write 𝜑 = sup 𝑗∈𝐼 ∗𝜑 𝑗 . Recall that by Proposition 1.2.1, 𝜑 ∈ PSH(𝑋, 𝜃). By
Lemma 6.2.2, it suffices to show that for each 𝑘 = 0, . . . , 𝑛, we have

lim
𝑗∈𝐼

∫
𝑋

𝜃𝑘𝜑 𝑗 ∧ 𝜃
𝑛−𝑘
𝑉𝜃

=

∫
𝑋

𝜃𝑘𝜑 ∧ 𝜃𝑛−𝑘𝑉𝜃
.
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The latter follows from Corollary 2.4.1. □

Corollary 6.2.4 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃). Then����∫
𝑋

𝜃𝑛𝜑 −
∫
𝑋

𝜃𝑛𝜓

���� ≤ 𝐷𝑛𝑑𝑆 (𝜑, 𝜓),
where 𝐷𝑛 = 3(𝑛 + 1)𝐶𝑛 with 𝐶𝑛 being the same constant as in Lemma 6.2.1.

Proof We compute����∫
𝑋

𝜃𝑛𝜑 −
∫
𝑋

𝜃𝑛𝜓

���� ≤ ����2 ∫
𝑋

𝜃𝑛𝜑∨𝜓 −
∫
𝑋

𝜃𝑛𝜑 −
∫
𝑋

𝜃𝑛𝜓

���� + 2
����∫
𝑋

𝜃𝑛𝜑∨𝜓 −
∫
𝑋

𝜃𝑛𝜑

����
≤(𝑛 + 1)𝐶𝑛𝑑𝑆 (𝜑, 𝜓) + 2(𝑛 + 1)𝑑𝑆 (𝜑, 𝜑 ∨ 𝜓)
≤(𝑛 + 1)𝐶𝑛𝑑𝑆 (𝜑, 𝜓) + 2(𝑛 + 1)𝐶𝑛𝑑𝑆 (𝜑, 𝜓),

where the first line is just the triangle inequality, the second line follows from
Corollary 6.2.2 and the third line follows from Lemma 6.2.1. □

By contrast, for decreasing nets, the situation is different:

Corollary 6.2.5 Suppose that (𝜑𝑖)𝑖∈𝐼 is a decreasing net in PSH(𝑋, 𝜃) such that
𝜑 B inf𝑖∈𝐼 𝜑𝑖 . −∞. Then the following are equivalent:

(1) We have
𝜑𝑖

𝑑𝑆−−→ 𝜑;

(2) for each 𝑘 = 0, . . . , 𝑛, we have

lim
𝑗∈𝐼

∫
𝑋

𝜃𝑘𝜑 𝑗 ∧ 𝜃
𝑛−𝑘
𝑉𝜃

=

∫
𝑋

𝜃𝑘𝜑 ∧ 𝜃𝑛−𝑘𝑉𝜃
. (6.7)

If we assume furthermore that
∫
𝑋
𝜃𝑛𝜑 > 0, then the above conditions are equivalent to

the following:

(3) We have
lim
𝑗∈𝐼

∫
𝑋

𝜃𝑛𝜑 𝑗 =

∫
𝑋

𝜃𝑛𝜑 .

In the latter case, we also have

𝑃𝜃 [𝜑] = inf
𝑗∈𝐼
𝑃𝜃 [𝜑 𝑗 ] . (6.8)

Proof Recall that by Proposition 1.2.1, 𝜑 ∈ PSH(𝑋, 𝜃).
(1) ⇐⇒ (2). This follows immediately from Lemma 6.2.2.
Assume that

∫
𝑋
𝜃𝑛𝜑 > 0.

(2) =⇒ (3). This is trivial.
(3) =⇒ (2). Let (𝑏 𝑗 ) 𝑗∈𝐼 be a net converging to∞ such that
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𝑏 𝑗 ∈ ©­«1,

( ∫
𝑋
𝜃𝑛𝜑 𝑗∫

𝑋
𝜃𝑛𝜑 𝑗 −

∫
𝑋
𝜃𝑛𝜑

)1/𝑛ª®¬ .
By Lemma 2.4.2, for each 𝑗 ∈ 𝐼, we can find 𝜂 𝑗 ∈ PSH(𝑋, 𝜃) such that

𝑏−1
𝑗 𝜂 𝑗 + (1 − 𝑏−1

𝑗 )𝜑 𝑗 ≤ 𝜑.

It follows from Theorem 2.4.4 that for any 𝑘 = 0, . . . , 𝑛,∫
𝑋

𝜃𝑘𝜑 ∧ 𝜃𝑛−𝑘𝑉𝜃
≥

(
1 − 𝑏−1

𝑗

) 𝑘 ∫
𝑋

𝜃𝑘𝜑 𝑗 ∧ 𝜃
𝑛−𝑘
𝑉𝜃

.

Taking the limit, we conclude the ≤ direction in (6.7). The ≥ direction follows from
Theorem 2.4.4.

Finally, we argue (6.8). We may assume that 𝜑 𝑗 ≤ 0 for all 𝑗 ∈ 𝐼. Let 𝜓 𝑗 =
𝑃𝜃 [𝜑 𝑗 ] ≥ 𝜑 𝑗 . It follows from Corollary 3.1.2 that 𝜓 𝑗 is a model potential. Let

𝜓 = inf
𝑗∈𝐼
𝜓 𝑗 ≥ 𝜑.

It follows from Proposition 3.1.3 and Proposition 3.1.10 that∫
𝑋

𝜃𝑛𝜓 = lim
𝑗∈𝐼

∫
𝑋

𝜃𝑛𝜓𝑗 = lim
𝑗∈𝐼

∫
𝑋

𝜃𝑛𝜑 𝑗 =

∫
𝑋

𝜃𝑛𝜑 .

By Proposition 3.1.9, 𝜓 is a model potential. Hence 𝜓 = 𝑃𝜃 [𝜑] by Theorem 3.1.2.□

Having understood the increasing and decreasing cases, we shall handle more
general convergent sequences. In fact, since 𝑑𝑆 is a pseudometric, the topology is
completely determined by convergent sequences, so we do not need to consider nets
in general.

Proposition 6.2.3 Let 𝜑 𝑗 , 𝜑 ∈ PSH(𝑋, 𝜃) ( 𝑗 ≥ 1), 𝜑 𝑗
𝑑𝑆−−→ 𝜑. Assume that there is

𝛿 > 0 such that ∫
𝑋

𝜃𝑛𝜑 𝑗 ≥ 𝛿

for all 𝑗 and the 𝜑 𝑗 ’s and 𝜑 are all model potentials. Then up to replacing (𝜑 𝑗 ) 𝑗 by
a subsequence, there is a decreasing sequence (𝜓 𝑗 ) 𝑗 and an increasing sequence
(𝜂 𝑗 ) 𝑗 in PSH(𝑋, 𝜃) such that

(1) 𝜓 𝑗
𝑑𝑆−−→ 𝜑, 𝜂 𝑗

𝑑𝑆−−→ 𝜑;
(2) 𝜓 𝑗 ≥ 𝜑 𝑗 ≥ 𝜂 𝑗 for all 𝑗 .

In fact, for any 𝑗 ≥ 1, we will take

𝜂 𝑗 = inf
𝑘∈N

𝜑 𝑗 ∧ 𝜑 𝑗+1 ∧ · · · ∧ 𝜑 𝑗+𝑘 , 𝜓 𝑗 = sup
𝑘≥ 𝑗
∗𝜑𝑘 .
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Proof We are free to replace (𝜑 𝑗 ) 𝑗 by a subsequence. So we may assume that

𝑑𝑆 (𝜑 𝑗 , 𝜑 𝑗+1) ≤ 𝐶−2 𝑗
𝑛 , 𝑑𝑆 (𝜑, 𝜑 𝑗 ) ≤

2− 𝑗

𝐷𝑛
, (6.9)

where 𝐶𝑛 is the constant in Corollary 6.2.2, 𝐷𝑛 is the constant in Corollary 6.2.4.
In particular, by Corollary 6.2.4,����∫

𝑋

𝜃𝑛𝜑 𝑗 −
∫
𝑋

𝜃𝑛𝜑

���� ≤ 2− 𝑗 . (6.10)

Step 1. We handle the 𝜓 𝑗 ’s. For each 𝑗 ≥ 1 and 𝑘 ≥ 1, by Lemma 6.2.1 we have

𝑑𝑆 (𝜑 𝑗 , 𝜑 𝑗 ∨ 𝜑 𝑗+1 ∨ · · · ∨ 𝜑 𝑗+𝑘) ≤𝐶𝑛𝑑𝑆 (𝜑 𝑗 , 𝜑 𝑗+1 ∨ · · · ∨ 𝜑 𝑗+𝑘)
≤𝐶𝑛𝑑𝑆 (𝜑 𝑗 , 𝜑 𝑗+1) + 𝐶𝑛𝑑𝑆 (𝜑 𝑗+1, 𝜑 𝑗+1 ∨ · · · ∨ 𝜑 𝑗+𝑘).

By iteration, we find

𝑑𝑆 (𝜑 𝑗 , 𝜑 𝑗 ∨ 𝜑 𝑗+1 ∨ · · · ∨ 𝜑 𝑗+𝑘) ≤
𝑗+𝑘−1∑︁
𝑎= 𝑗

𝐶
𝑎+1− 𝑗
𝑛 𝑑𝑆 (𝜑𝑎, 𝜑𝑎+1)

≤
𝑗+𝑘−1∑︁
𝑎= 𝑗

𝐶
𝑎+1− 𝑗
𝑛 𝐶−2𝑎

𝑛 ≤ 𝐶
1−2 𝑗
𝑛

1 − 𝐶−1
𝑛

.

Using Corollary 6.2.3, we have

𝜑 𝑗 ∨ 𝜑 𝑗+1 ∨ · · · ∨ 𝜑 𝑗+𝑘
𝑑𝑆−−→ 𝜓 𝑗

as 𝑘 →∞. Hence

𝑑𝑆 (𝜑 𝑗 , 𝜓 𝑗 ) ≤
𝐶

1−2 𝑗
𝑛

1 − 𝐶−1
𝑛

. (6.11)

We conclude that 𝜓 𝑗
𝑑𝑆−−→ 𝜑.

Moreover, we observe that

𝜑 = inf
𝑗≥1

𝑃𝜃 [𝜓 𝑗 ] (6.12)

by Corollary 6.2.5.
Step 2. We consider the 𝜂 𝑗 ’s.
For each 𝑗 ≥ 1 and 𝑘 ≥ 0, we let

𝜂𝑘𝑗 B 𝜑 𝑗 ∧ · · · ∧ 𝜑 𝑗+𝑘 .

Using (6.11) and Corollary 6.2.4, we have



6.2. THE 𝑑𝑆-PSEUDOMETRIC 159����∫
𝑋

𝜃𝑛𝜓𝑗 −
∫
𝑋

𝜃𝑛𝜑

���� ≤ 2− 𝑗−1

when 𝑗 ≥ 𝑗0 for some large 𝑗0. Taking (6.10), we have����∫
𝑋

𝜃𝑛𝜑 𝑗 −
∫
𝑋

𝜃𝑛𝜓𝑗−1

���� ≤ 21− 𝑗 (6.13)

for 𝑗 > 𝑗0. Take 𝑗1 > 𝑗0 so that for 𝑗 ≥ 𝑗1, 21− 𝑗 < 𝛿.
Step 2.1. We claim that for a fixed 𝑗 ≥ 𝑗1, for any 𝑘 ∈ N, we have 𝜂𝑘

𝑗
∈ PSH(𝑋, 𝜃)

and ∫
𝑋

𝜃𝑛
𝜂𝑘
𝑗

≥
∫
𝑋

𝜃𝑛𝜑 𝑗 −
𝑘∑︁
𝑎=1

21− 𝑗−𝑎 . (6.14)

We argue by induction on 𝑘 ≥ 0. The case 𝑘 = 0 is trivial. When 𝑘 > 0, assume
that the case 𝑘 − 1 is known. Then∫

𝑋

𝜃𝑛
𝜂𝑘−1
𝑗

+
∫
𝑋

𝜃𝑛𝜑 𝑗+𝑘 ≥
∫
𝑋

𝜃𝑛𝜑 𝑗 −
𝑘−1∑︁
𝑎=1

21− 𝑗−𝑎 +
∫
𝑋

𝜃𝑛𝜓𝑗+𝑘−1
− 21− 𝑗−𝑘

>

∫
𝑋

𝜃𝑛𝜑 𝑗 − 21− 𝑗 +
∫
𝑋

𝜃𝑛𝜓𝑗+𝑘−1
>

∫
𝑋

𝜃𝑛𝜓𝑗+𝑘−1
,

where the first inequality follows from the inductive hypothesis and (6.13).
Observe that

𝜂𝑘−1
𝑗 ∨ 𝜑 𝑗+𝑘 ≤ 𝜓 𝑗+𝑘−1,

it follows from Proposition 3.1.5 that 𝜂𝑘
𝑗
∈ PSH(𝑋, 𝜃). By Theorem 3.1.3, we deduce

that ∫
𝑋

𝜃𝑛
𝜂𝑘
𝑗

≥
∫
𝑋

𝜃𝑛𝜑 𝑗+𝑘 +
∫
𝑋

𝜃𝑛
𝜂𝑘−1
𝑗

−
∫
𝑋

𝜃𝑛𝜓𝑗+𝑘−1

≥
∫
𝑋

𝜃𝑛𝜑 𝑗 −
𝑘∑︁
𝑎=1

21− 𝑗−𝑎,

where the second inequality follows from the inductive hypothesis and (6.13).
Therefore, (6.14) follows.

Step 2.2. It follows from Proposition 3.1.6 that for any 𝑗 ≥ 𝑗1, 𝑘 ≥ 0,

𝑃𝜃

[
𝜂𝑘𝑗

]
= 𝜂

𝑗

𝑘
.

By Proposition 3.1.10, we have

lim
𝑘→∞

∫
𝑋

𝜃𝑛
𝜂𝑘
𝑗

=

∫
𝑋

𝜃𝑛𝜂 𝑗

for any 𝑗 ≥ 𝑗1. Letting 𝑘 →∞ in (6.14), we find that
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𝑋

𝜃𝑛𝜂 𝑗 ≥
∫
𝑋

𝜃𝑛𝜑 𝑗 − 21− 𝑗 > 0

for 𝑗 ≥ 𝑗1. Observe that we also have∫
𝑋

𝜃𝑛𝜂 𝑗 ≤
∫
𝑋

𝜃𝑛𝜑 𝑗 ≤
∫
𝑋

𝜃𝑛𝜓𝑗

for 𝑗 ≥ 𝑗1 by Theorem 2.4.4. It follows from Corollary 2.4.1 that∫
𝑋

𝜃𝑛𝜂 = lim
𝑗→∞

∫
𝑋

𝜃𝑛𝜑 𝑗 = lim
𝑗→∞

∫
𝑋

𝜃𝑛𝜓𝑗 =

∫
𝑋

𝜃𝑛𝜑 ,

where 𝜂 = sup 𝑗≥ 𝑗1
∗𝜂 𝑗 . Since 𝜂 𝑗 ≤ 𝜑 𝑗 ≤ 𝜓 𝑗 ≤ 0, we also have that 𝜂 𝑗 ≤ 𝑃𝜃 [𝜓 𝑗 ].

Therefore, by (6.12), we also have 𝜂 ≤ 𝜑. It follows from Proposition 6.1.1 that
𝜂 ∼𝑃 𝜑. By Corollary 6.2.3 and Proposition 6.2.2, we have 𝜂 𝑗

𝑑𝑆−−→ 𝜑. □

Corollary 6.2.6 Let (𝜑 𝑗 ) 𝑗∈𝐼 be a Cauchy net (with respect to 𝑑𝑆) in PSH(𝑋, 𝜃).
Assume that there is 𝛿 > 0 such that

∫
𝑋
𝜃𝑛𝜑 𝑗 ≥ 𝛿 for all 𝑗 ∈ 𝐼. Then (𝜑 𝑗 ) 𝑗∈𝐼 converges

with respect to 𝑑𝑆 .
In particular, if (𝜑 𝑗 ) 𝑗∈𝐼 is a decreasing net such that

∫
𝑋
𝜃𝑛𝜑 𝑗 ≥ 𝛿 > 0 for all 𝑗 ∈ 𝐼,

then (𝜑 𝑗 ) 𝑗∈𝐼 converges with respect to 𝑑𝑆 .

We can obviously relax the decreasing condition to the following: the 𝑃-singularity
types of (𝜑 𝑗 ) 𝑗∈𝐼 are decreasing.

Proof If the net (𝜑 𝑗 ) 𝑗∈𝐼 is decreasing, then it is convergent by Corollary 6.2.5 and
Proposition 3.1.10.

It remains to prove the first assertion. Since the space of 𝜑 ∈ PSH(𝑋, 𝜃) with∫
𝑋
𝜃𝑛𝜑 ≥ 𝛿 is a pseudometric space, its completeness can be characterized using

sequences instead of nets. So we may assume that (𝜑 𝑗 ) 𝑗∈𝐼 is a sequence and 𝐼 = Z>0.
Replacing (𝜑 𝑗 ) 𝑗>0 by a subsequence, we may assume that (6.9) holds. Define

𝜓 𝑗 = sup
𝑘≥ 𝑗
∗𝜑𝑘

for each 𝑗 > 0. As in the proof of Proposition 6.2.3 Step 1, especially (6.11), we
know that

lim
𝑗→∞

𝑑𝑆 (𝜑 𝑗 , 𝜓 𝑗 ) = 0.

It suffices to prove our assertion for (𝜓 𝑗 ) 𝑗 in place of (𝜑 𝑗 ) 𝑗 . But since (𝜓 𝑗 ) 𝑗 is
decreasing, this case has already been handled at the beginning of the proof. □

Lemma 6.2.3 There is a constant 𝐶 > 0 depending only on 𝑋 and 𝜃 such that for
any 𝜑 ∈ PSH(𝑋, 𝜃) satisfying that 𝜃𝜑 is a Kähler current, we have

𝑑𝑆,𝜃 ((1 − 𝜖)𝜑, 𝜑) ≤ 𝐶𝜖

for 𝜖 > 0 such that (1 − 𝜖)𝜑 ∈ PSH(𝑋, 𝜃).
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Proof By Lemma 6.2.2, we can compute

𝑑𝑆,𝜃 ((1 − 𝜖)𝜑, 𝜑) =
1

𝑛 + 1

𝑛∑︁
𝑗=0

(∫
𝑋

𝜃
𝑗

(1−𝜖 )𝜑 ∧ 𝜃
𝑛− 𝑗
𝑉𝜃
−

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

)
=

1
𝑛 + 1

𝑛∑︁
𝑗=0

(∫
𝑋

(1 − 𝜖) 𝑗𝜃 𝑗𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃
−

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

)
+ 1
𝑛 + 1

𝑛∑︁
𝑗=0

𝑗−1∑︁
𝑘=0

(
𝑗

𝑘

)
(1 − 𝜖)𝑘𝜖 𝑗−𝑘

∫
𝑋

𝜃 𝑗−𝑘 ∧ 𝜃𝑘𝜑 ∧ 𝜃
𝑛− 𝑗
𝑉𝜃

.

Both terms are of the order of O(𝜖). □

6.2.2 Convergence theorems

Next we establish some important convergence theorems, allowing us to effectively
manipulate the 𝑑𝑆-convergence.

Lemma 6.2.4 Let (𝜑𝑖)𝑖∈𝐼 be a net in PSH(𝑋, 𝜃) and 𝜑 ∈ PSH(𝑋, 𝜃). Assume that
𝜑𝑖

𝑑𝑆−−→ 𝜑. Then for any 𝑡 ∈ (0, 1],

(1 − 𝑡)𝜑𝑖 + 𝑡𝑉𝜃
𝑑𝑆−−→ (1 − 𝑡)𝜑 + 𝑡𝑉𝜃 .

When 𝑡 = 1, the sum is understood as in Remark 2.4.2.

Proof Fix 𝑡 ∈ (0, 1], we write

𝜑𝑖,𝑡 = (1 − 𝑡)𝜑𝑖 + 𝑡𝑉𝜃 , 𝜑𝑡 = (1 − 𝑡)𝜑 + 𝑡𝑉𝜃

for any 𝑖 ∈ 𝐼.
By Corollary 6.2.2, it suffices to show that for each 𝑗 = 0, . . . , 𝑛,

2
∫
𝑋

𝜃
𝑗
𝜑𝑖,𝑡∨𝜑𝑡 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃
−

∫
𝑋

𝜃
𝑗
𝜑𝑖,𝑡 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃
−

∫
𝑋

𝜃
𝑗
𝜑𝑡 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃
→ 0. (6.15)

Observe that
𝜑𝑖,𝑡 ∨ 𝜑𝑡 = (1 − 𝑡) (𝜑 ∨ 𝜑𝑖) + 𝑡𝑉𝜃 .

So after binomial expansion, (6.15) follows from Corollary 6.2.2. □

Lemma 6.2.5 Let 𝜑 ∈ PSH(𝑋, 𝜃). For each 𝑡 ∈ (0, 1), let 𝜑𝑡 = (1 − 𝑡)𝜑 + 𝑡𝑉𝜃 . Then

𝜑𝑡
𝑑𝑆−−→ 𝜑

as 𝑡 → 0+.
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Proof By Lemma 6.2.2, we need to show that for each 𝑗 = 1, . . . , 𝑛, we have

lim
𝑡→0+

∫
𝑋

𝜃
𝑗
𝜑𝑡 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃

=

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

.

For this purpose, we compute∫
𝑋

𝜃
𝑗
𝜑𝑡 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃
−

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

=

𝑗−1∑︁
𝑖=0

(
𝑗

𝑖

)
(1 − 𝑡)𝑖𝑡 𝑗−𝑖

∫
𝑋

𝜃𝑖𝜑 ∧ 𝜃𝑛−𝑖𝑉𝜃
.

As 𝑡 → 0+, the right-hand side clearly tends to 0. □

The following convergent theorem lies at the heart of the whole theory.

Theorem 6.2.1 Let 𝜃1, . . . , 𝜃𝑛 be smooth closed real (1, 1)-forms on 𝑋 representing
big cohomology classes. Suppose that (𝜑𝑘

𝑗
)𝑘∈𝐼 are nets in PSH(𝑋, 𝜃 𝑗 ) and 𝜑 𝑗 ∈

PSH(𝑋, 𝜃 𝑗 ) for 𝑗 = 1, . . . , 𝑛. We assume that 𝜑𝑘
𝑗

𝑑𝑆−−→ 𝜑 𝑗 for each 𝑗 = 1, . . . , 𝑛. Then

lim
𝑘∈𝐼

∫
𝑋

𝜃1,𝜑𝑘1
∧ · · · ∧ 𝜃𝑛,𝜑𝑘𝑛 =

∫
𝑋

𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 . (6.16)

Proof Since 𝑑𝑆 is a pseudometric, in order to establish the continuity of mixed
masses, it suffices to consider sequences instead of nets. So we may assume that
𝐼 = Z>0 as ordered sets.

Step 1. We reduce to the case where 𝜑𝑘
𝑗
, 𝜑 𝑗 all have positive masses and there is a

constant 𝛿 > 0, such that for all 𝑗 and 𝑘 ,∫
𝑋

𝜃𝑛
𝑗,𝜑𝑘

𝑗

> 𝛿.

Take 𝑡 ∈ (0, 1). By Lemma 6.2.4, we have

(1 − 𝑡)𝜑𝑘𝑗 + 𝑡𝑉𝜃 𝑗
𝑑𝑆−−→ (1 − 𝑡)𝜑 𝑗 + 𝑡𝑉𝜃 𝑗

as 𝑘 →∞ for each 𝑗 . Assume that we have proved the special case of the theorem,
we have

lim
𝑘→∞

∫
𝑋

𝜃1, (1−𝑡 )𝜑𝑘1 +𝑡𝑉𝜃1
∧ · · · ∧ 𝜃𝑛, (1−𝑡 )𝜑𝑘𝑛+𝑡𝑉𝜃𝑛

=

∫
𝑋

𝜃1, (1−𝑡 )𝜑1+𝑡𝑉𝜃1
∧ · · · ∧ 𝜃𝑛, (1−𝑡 )𝜑𝑛+𝑡𝑉𝜃𝑛 .

Since both sides are polynomials in 𝑡, by Lagrange interpolation formula, the limit
exists at 𝑡 = 0 as well and the same formula holds at 𝑡 = 0. From this, (6.16) follows.
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Step 2. Next we may assume that 𝜑𝑘
𝑗
, 𝜑 𝑗 are model potentials for all 𝑗 = 1, . . . , 𝑛,

𝑘 > 0 by Proposition 6.2.2 and Corollary 3.1.2.
It suffices to prove that any subsequence of

∫
𝑋
𝜃1,𝜑𝑘1

∧ · · · ∧ 𝜃𝑛,𝜑𝑘𝑛 has a converging
subsequence with limit

∫
𝑋
𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 . Thus, by Proposition 6.2.3 and

Theorem 2.4.4, we may assume that for each fixed 𝑖, (𝜑𝑘
𝑖
)𝑘 is either increasing or

decreasing. We may assume that there is 𝑖0 ∈ {0, . . . , 𝑛} such that for 𝑖 ≤ 𝑖0, the
sequence is decreasing and for 𝑖 > 𝑖0, the sequence is increasing.

Thanks to Corollary 6.2.5, Corollary 6.2.3 and Proposition 3.1.11, we have

𝜑𝑖 = inf
𝑘>0

𝜑𝑘𝑖 , 𝑖 ≤ 𝑖0

and
𝜑𝑖 = sup

𝑘>0

∗𝜑𝑘𝑗 , 𝑖 > 𝑖0.

Therefore, for each 𝑘 > 0, using Theorem 2.4.4, we have∫
𝑋

𝜃1,𝜑𝑘1
∧ · · · ∧ 𝜃𝑛,𝜑𝑘𝑛 ≥

∫
𝑋

𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑖0 ,𝜑𝑖0 ∧ 𝜃𝑖0+1,𝜑𝑖0+1𝑛

∧ · · · ∧ 𝜃𝑛,𝜑𝑘𝑛 .

Using Corollary 2.4.1, we therefore conclude that

lim
𝑘→∞

∫
𝑋

𝜃1,𝜑𝑘1
∧ · · · ∧ 𝜃𝑛,𝜑𝑘𝑛 ≥

∫
𝑋

𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 .

It remains to prove

lim
𝑘→∞

∫
𝑋

𝜃1,𝜑𝑘1
∧ · · · ∧ 𝜃𝑛,𝜑𝑘𝑛 ≤

∫
𝑋

𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 . (6.17)

By Theorem 2.4.4, for each 𝑘 > 0, we have∫
𝑋

𝜃1,𝜑𝑘1
∧ · · · ∧ 𝜃𝑛,𝜑𝑘𝑛 ≤

∫
𝑋

𝜃1,𝜑𝑘1
∧ · · · ∧ 𝜃𝑖0 ,𝜑𝑘𝑖0

∧ 𝜃𝑖0+1,𝜑𝑖0+1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 .

When proving (6.17), we may replace 𝜑𝑘
𝑗

by 𝜑 𝑗 whenever 𝑗 > 𝑖0, 𝑘 > 0. Thus, we
are reduced to the case where for all 𝑖, (𝜑𝑘

𝑖
)𝑘 is decreasing.

Thanks to Lemma 2.4.2, for each 𝑖 = 1, . . . , 𝑛, we may take an increasing sequence
(𝑏𝑘
𝑖
)𝑘 tending to∞ satisfying

𝑏𝑘𝑖 ∈
©­­«1, ©­«

∫
𝑋
𝜃𝑛
𝑖,𝜑𝑘

𝑖∫
𝑋
𝜃𝑛
𝑖,𝜑𝑘

𝑖

−
∫
𝑋
𝜃𝑛
𝑖,𝜑𝑖

ª®¬
1/𝑛ª®®¬

and a sequence (𝜓𝑘
𝑖
)𝑘 in PSH(𝑋, 𝜃𝑖) such that

(𝑏𝑘𝑖 )−1𝜓𝑘𝑖 +
(
1 − (𝑏𝑘𝑖 )−1

)
𝜑𝑘𝑖 ≤ 𝜑𝑖 .
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Then by Theorem 2.4.4 again,

𝑛∏
𝑖=1

(
1 − (𝑏𝑘𝑖 )−1

) ∫
𝑋

𝜃1,𝜑𝑘1
∧ · · · ∧ 𝜃𝑛,𝜑𝑘𝑛 ≤

∫
𝑋

𝜃1,𝜑1 ∧ · · · ∧ 𝜃𝑛,𝜑𝑛 .

Letting 𝑘 →∞, we conclude (6.17). □

Corollary 6.2.7 Suppose that (𝜑𝑖)𝑖∈𝐼 is a net in PSH(𝑋, 𝜃) and 𝜑 ∈ PSH(𝑋, 𝜃).
Then the following are equivalent:

(1) 𝜑𝑖
𝑑𝑆−−→ 𝜑;

(2) 𝜑𝑖 ∨ 𝜑
𝑑𝑆−−→ 𝜑 and

lim
𝑖∈𝐼

∫
𝑋

𝜃
𝑗
𝜑𝑖 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃

=

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

(6.18)

for each 𝑗 = 0, . . . , 𝑛;
(3) for each 𝑗 = 0, . . . , 𝑛, (6.18) holds and

lim
𝑖∈𝐼

∫
𝑋

𝜃
𝑗
𝜑𝑖∨𝜑 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃

=

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

. (6.19)

The corollary allows us to reduce a number of convergence problems related to 𝑑𝑆
to the case 𝜑𝑖 ≥ 𝜑. This is the most handy way of establishing 𝑑𝑆-convergence in
practice.

Proof The equivalence between (2) and (3) follows directly from Lemma 6.2.2.
(1) =⇒ (2). That 𝜑𝑖 ∨𝜑

𝑑𝑆−−→ 𝜑 follows from Corollary 6.2.2. While (6.18) follows
from Theorem 6.2.1.

(2) =⇒ (1). By (6.6), we need to show that for each 𝑗 = 0, . . . , 𝑛, we have

2
∫
𝑋

𝜃
𝑗
𝜑𝑖∨𝜑 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃
−

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

−
∫
𝑋

𝜃
𝑗
𝜑𝑖 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃
→ 0.

This follows from Theorem 6.2.1 and (6.18). □

Corollary 6.2.8 Let (𝜑𝑖)𝑖∈𝐼 be a net in PSH(𝑋, 𝜃) and 𝜑 ∈ PSH(𝑋, 𝜃). Let 𝜔 be a
closed smooth positive (1, 1)-form on 𝑋 . Then the following are equivalent:

(1) 𝜑𝑖
𝑑𝑆,𝜃−−−→ 𝜑;

(2) 𝜑𝑖
𝑑𝑆,𝜃+𝜔−−−−−→ 𝜑.

In particular, there is no risk when we simply write 𝜑𝑖
𝑑𝑆−−→ 𝜑.

Proof (1) =⇒ (2). It suffices to show that for each 𝑗 = 0, . . . , 𝑛, we have
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2
∫
𝑋

(𝜃 + 𝜔) 𝑗𝜑𝑖∨𝜑 ∧ (𝜃 + 𝜔)
𝑛− 𝑗
𝑉𝜃+𝜔
−

∫
𝑋

(𝜃 + 𝜔) 𝑗𝜑𝑖 ∧ (𝜃 + 𝜔)
𝑛− 𝑗
𝑉𝜃+𝜔

−
∫
𝑋

(𝜃 + 𝜔) 𝑗𝜑 ∧ (𝜃 + 𝜔)𝑛− 𝑗𝑉𝜃+𝜔
→ 0.

Note that this quantity is a linear combination of terms of the following form:

2
∫
𝑋

𝜃𝑟𝜑𝑖∨𝜑 ∧ 𝜔
𝑗−𝑟 ∧ (𝜃 + 𝜔)𝑛− 𝑗

𝑉𝜃+𝜔
−

∫
𝑋

𝜃𝑟𝜑𝑖 ∧ 𝜔
𝑗−𝑟 ∧ (𝜃 + 𝜔)𝑛− 𝑗

𝑉𝜃+𝜔

−
∫
𝑋

𝜃𝑟𝜑 ∧ 𝜔 𝑗−𝑟 ∧ (𝜃 + 𝜔)
𝑛− 𝑗
𝑉𝜃+𝜔

,

where 𝑟 = 0, . . . , 𝑗 . By Theorem 6.2.1, it suffices to show that 𝜑 ∨ 𝜑𝑖
𝑑𝑆−−→ 𝜑. But this

follows from Corollary 6.2.7.
(2) =⇒ (1). From the direction we already proved, for each 𝐶 ≥ 1, we have that

𝜑𝑖
𝑑𝑆,𝜃+𝐶𝜔−−−−−−−→ 𝜑.

By Theorem 6.2.1, it follows that

lim
𝑖∈𝐼

∫
𝑋

(𝜃 + 𝐶𝜔) 𝑗𝜑𝑖 ∧ 𝜃
𝑛− 𝑗
𝑉𝜃

=

∫
𝑋

(𝜃 + 𝐶𝜔) 𝑗𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

for all 𝑗 = 0, . . . , 𝑛. It follows that

lim
𝑖∈𝐼

∫
𝑋

𝜃
𝑗
𝜑𝑖 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃

=

∫
𝑋

𝜃
𝑗
𝜑 ∧ 𝜃𝑛− 𝑗𝑉𝜃

. (6.20)

By Corollary 6.2.7, it remains to show that 𝜑𝑖 ∨ 𝜑
𝑑𝑆,𝜃−−−→ 𝜑. By Corollary 6.2.7 again,

we know that 𝜑𝑖 ∨ 𝜑
𝑑𝑆,𝜃+𝜔−−−−−→ 𝜑. So it suffices to apply (6.20) to 𝜑𝑖 ∨ 𝜑 instead of 𝜑𝑖 ,

and we conclude by Lemma 6.2.2. □

We sometimes need a slightly more general form.
Corollary 6.2.9 Let (𝜑 𝑗 ) 𝑗∈𝐼 , (𝜓 𝑗 ) 𝑗∈𝐼 be nets in PSH(𝑋, 𝜃). Consider a closed smooth
positive (1, 1)-form 𝜔 on 𝑋 . Then the following are equivalent:

(1) 𝑑𝑆,𝜃 (𝜑𝑖 , 𝜓𝑖) → 0;
(2) 𝑑𝑆,𝜃+𝜔 (𝜑𝑖 , 𝜓𝑖) → 0.
In particular, we can write 𝑑𝑆 (𝜑𝑖 , 𝜓𝑖) → 0 without ambiguity.

Proof The proof is similar to that of Corollary 6.2.8, which is therefore left to the
readers. □

Corollary 6.2.10 Let 𝜑0, 𝜑1 ∈ PSH(𝑋, 𝜃). Define 𝜑𝑡 = 𝑡𝜑1 + (1− 𝑡)𝜑0 for 𝑡 ∈ (0, 1).
Then

𝜑𝑡
𝑑𝑆−−→ 𝜑0

as 𝑡 → 0+.
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Proof First note that for each 𝑗 = 0, . . . , 𝑛,

lim
𝑡→0+

∫
𝑋

𝜃
𝑗
𝜑𝑡 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃

=

∫
𝑋

𝜃
𝑗
𝜑0 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃

.

So thanks to Corollary 6.2.7, it remains to argue that for all 𝑗 = 0, . . . , 𝑛,

lim
𝑡→0+

∫
𝑋

𝜃
𝑗
𝜑𝑡∨𝜑0

∧ 𝜃𝑛− 𝑗
𝑉𝜃

=

∫
𝑋

𝜃
𝑗
𝜑0 ∧ 𝜃

𝑛− 𝑗
𝑉𝜃

.

Observe that for 𝑡 ∈ (0, 1), we have

𝜑𝑡 ∨ 𝜑0 = 𝑡 (𝜑1 ∨ 𝜑0) + (1 − 𝑡)𝜑0,

so the desired inequality follows. □

We have the following sandwich criterion:

Corollary 6.2.11 Let (𝜑𝑖)𝑖∈𝐼 , (𝜓𝑖)𝑖∈𝐼 , (𝜂𝑖)𝑖∈𝐼 be three nets in PSH(𝑋, 𝜃) and 𝜑 ∈
PSH(𝑋, 𝜃). Assume that

(1) 𝜓𝑖 ⪯𝑃 𝜑𝑖 ⪯𝑃 𝜂𝑖 for each 𝑖 ∈ 𝐼;
(2) 𝜂𝑖

𝑑𝑆−−→ 𝜑, 𝜓𝑖
𝑑𝑆−−→ 𝜑.

Then 𝜑𝑖
𝑑𝑆−−→ 𝜑.

Proof By Corollary 6.2.8, we may replace 𝜃 by 𝜃 + 𝜔, where 𝜔 is a Kähler form
on 𝑋 . In particular, we may assume that 𝜑𝑖 , 𝜓𝑖 , 𝜂𝑖 ∈ PSH(𝑋, 𝜃)>0 for all 𝑖 ∈ 𝐼. By
Proposition 6.2.2, we may assume that 𝜑𝑖 , 𝜓𝑖 , 𝜂𝑖 are model potentials for all 𝑖 ∈ 𝐼 and
hence 𝜑𝑖 ≤ 𝜓𝑖 ≤ 𝜂𝑖 for all 𝑖 ∈ 𝐼.

It follows from Theorem 2.4.4 that for each 𝑘 = 0, . . . , 𝑛, we have∫
𝑋

𝜃𝑘𝜓𝑖 ∧ 𝜃
𝑛−𝑘
𝑉𝜃
≤

∫
𝑋

𝜃𝑘𝜑𝑖 ∧ 𝜃
𝑛−𝑘
𝑉𝜃
≤

∫
𝑋

𝜃𝑘𝜂𝑖 ∧ 𝜃
𝑛−𝑘
𝑉𝜃

for all 𝑖 ∈ 𝐼. By Theorem 6.2.1, the limits with respect to 𝑖 ∈ 𝐼 of the both ends are∫
𝑋
𝜃𝑘𝜑 ∧ 𝜃𝑛−𝑘𝑉𝜃

. It follows that

lim
𝑖∈𝐼

∫
𝑋

𝜃𝑘𝜑𝑖 ∧ 𝜃
𝑛−𝑘
𝑉𝜃

=

∫
𝑋

𝜃𝑘𝜑 ∧ 𝜃𝑛−𝑘𝑉𝜃
. (6.21)

By Corollary 6.2.7, it remains to prove that 𝜑𝑖 ∨ 𝜑
𝑑𝑆−−→ 𝜑. By Corollary 6.2.7 and

Proposition 6.1.6, up to replacing 𝜓𝑖 (resp. 𝜑𝑖 , 𝜂𝑖) by 𝜓𝑖 ∨ 𝜑 (resp. 𝜑𝑖 ∨ 𝜑, 𝜂𝑖 ∨ 𝜑),
we may assume from the beginning that 𝜓𝑖 , 𝜑𝑖 , 𝜂𝑖 ≥ 𝜑. Now 𝜑𝑖

𝑑𝑆−−→ 𝜑 by (6.21) and
Lemma 6.2.2. □

Proposition 6.2.4 Let (𝜑𝑖)𝑖∈𝐼 , (𝜓𝑖)𝑖∈𝐼 be nets in PSH(𝑋, 𝜃) such that 𝜑𝑖
𝑑𝑆−−→ 𝜑 ∈

PSH(𝑋, 𝜃) and 𝜓𝑖
𝑑𝑆−−→ 𝜓 ∈ PSH(𝑋, 𝜃). Assume that 𝜑𝑖 ⪯𝑃 𝜓𝑖 for all 𝑖 ∈ 𝐼. Then

𝜑 ⪯𝑃 𝜓.
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Proof It follows from Proposition 6.2.5 that

𝜑𝑖 ∨ 𝜓𝑖
𝑑𝑆−−→ 𝜑 ∨ 𝜓.

By Lemma 6.1.3, we have 𝜑𝑖∨𝜓𝑖 ∼𝑃 𝜓𝑖 for all 𝑖 ∈ 𝐼. In particular, by Proposition 6.2.2,

𝜑𝑖 ∨ 𝜓𝑖
𝑑𝑆−−→ 𝜓.

By Proposition 6.2.2 again, 𝜑 ∨ 𝜓 ∼𝑃 𝜓 and hence 𝜑 ⪯𝑃 𝜓 by Lemma 6.1.3. □

Proposition 6.2.5 Let (𝜑𝑖)𝑖∈𝐼 (resp. (𝜓𝑖)𝑖∈𝐼 ) be a net in PSH(𝑋, 𝜃) such that 𝜑𝑖
𝑑𝑆−−→

𝜑 ∈ PSH(𝑋, 𝜃) (resp. 𝜑𝑖
𝑑𝑆−−→ 𝜓 ∈ PSH(𝑋, 𝜃)). Then

𝜑𝑖 ∨ 𝜓𝑖
𝑑𝑆−−→ 𝜑 ∨ 𝜓.

Proof Since 𝑑𝑆 is a pseudometric, we may assume that both nets are actually
sequences and 𝐼 = Z>0. By Corollary 6.2.8, we may assume that the masses∫
𝑋
𝜃𝑛𝜑 > 0,

∫
𝑋
𝜃𝑛
𝜓
> 0.

Using Proposition 6.2.3, we may assume that both sequences are monotone and
lie in PSH(𝑋, 𝜃)>0.

Thanks to Proposition 6.1.6, we may assume that the 𝜑 𝑗 ’s, the 𝜓 𝑗 ’s, 𝜑 and 𝜓 are all
model. In particular, (𝜑 𝑗 ) 𝑗 (resp. (𝜓 𝑗 ) 𝑗 ) converges to 𝜑 (rest. 𝜓) almost everywhere.

We handle three cases separately.
Step 1. Assume that both sequences are increasing.
In this case, we have 𝜑 𝑗 ∨𝜓 𝑗 ↗ 𝜑∨𝜓 almost everywhere. Therefore, 𝜑 𝑗 ∨𝜓 𝑗

𝑑𝑆−−→
𝜑 ∨ 𝜓 by Corollary 6.2.3.

Step 2. Assume that one sequence, say (𝜑 𝑗 ) 𝑗 is increasing while the other is
decreasing. Then we have

𝜑 𝑗 ∨ 𝜓 ≤ 𝜑 𝑗 ∨ 𝜓 𝑗 ≤ 𝜑 ∨ 𝜓 𝑗 .

Thanks to Corollary 6.2.11, it suffices to show that both sides converge to 𝜑 ∨ 𝜓 with
respect to 𝑑𝑆 . So we reduce to the case where both sequences are decreasing.

Step 3. Assume that both sequences are decreasing.
In this case, due to Corollary 6.2.5, it suffices to show that

lim
𝑗→∞

∫
𝑋

𝜃𝑛𝜑 𝑗∨𝜓𝑗 =

∫
𝑋

𝜃𝑛𝜑∨𝜓 . (6.22)

The ≥ direction follows from Theorem 2.4.4, it remains to argue the ≤ direction.
Thanks to Lemma 2.4.2, we may find a sequence (𝜖 𝑗 ) 𝑗 in (0, 1) with limit 0 and a

sequences (𝜂 𝑗 ) 𝑗 in PSH(𝑋, 𝜃)>0 such that

(1 − 𝜖 𝑗 )𝜑 𝑗 + 𝜖 𝑗𝜂 𝑗 ≤ 𝜑, 𝜂 𝑗 ≤ 𝜑 𝑗 .

It follows that for each 𝑗 ≥ 1, we have
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(1 − 𝜖 𝑗 ) (𝜑 𝑗 ∨ 𝜓 𝑗 ) + 𝜖 𝑗𝜂 𝑗 ≤ 𝜑 ∨ 𝜓 𝑗 .

Therefore by Theorem 2.4.4,

(1 − 𝜖 𝑗 )𝑛
∫
𝑋

𝜃𝑛𝜑 𝑗∨𝜓𝑗 ≤
∫
𝑋

𝜃𝑛𝜑∨𝜓𝑗 .

Letting 𝑗 →∞, we find that

lim
𝑗→∞

∫
𝑋

𝜃𝑛𝜑 𝑗∨𝜓𝑗 ≤ lim
𝑗→∞

∫
𝑋

𝜃𝑛𝜑∨𝜓𝑗 .

Therefore, in order to prove (6.22), we may assume that one of the sequences is
constant, let us say 𝜓 𝑗 = 𝜓 for all 𝑗 . Repeating the same argument as before and
constructing (𝜖 𝑗 ) 𝑗 , (𝜂 𝑗 ) 𝑗 as above, we get

(1 − 𝜖 𝑗 )𝑛
∫
𝑋

𝜃𝑛𝜑 𝑗∨𝜓 ≤
∫
𝑋

𝜃𝑛𝜑∨𝜓 .

Letting 𝑗 →∞, we conclude (6.22). □

Theorem 6.2.2 Let 𝜃1, 𝜃2 be smooth real closed (1, 1)-forms on 𝑋 representing big
cohomology classes. Suppose that (𝜑𝑖)𝑖∈𝐼 (resp. (𝜓𝑖)𝑖∈𝐼 ) be a net in PSH(𝑋, 𝜃1) (resp.
PSH(𝑋, 𝜃2)) and 𝜑 ∈ PSH(𝑋, 𝜃1) (resp. 𝜓 ∈ PSH(𝑋, 𝜃2)). Consider the following
three conditions:

(1) 𝜑𝑖
𝑑𝑆−−→ 𝜑;

(2) 𝜓𝑖
𝑑𝑆−−→ 𝜓;

(3) 𝜑𝑖 + 𝜓𝑖
𝑑𝑆−−→ 𝜑 + 𝜓.

Then any two of these conditions imply the third.

Proof By Corollary 6.2.8, we may assume that 𝜃1, 𝜃2 are both Kähler forms. We
denote them by 𝜔1, 𝜔2 instead. Let 𝜔 = 𝜔1 + 𝜔2.

(1)+(2) =⇒ (3). It suffices to show that for each 𝑟 = 0, . . . , 𝑛,

2
∫
𝑋

𝜔𝑟(𝜑 𝑗+𝜓𝑗 )∨(𝜑+𝜓) ∧ 𝜔
𝑛−𝑟 −

∫
𝑋

𝜔𝑟𝜑 𝑗+𝜓𝑗 ∧ 𝜔
𝑛−𝑟 −

∫
𝑋

𝜔𝑟𝜑+𝜓 ∧ 𝜔𝑛−𝑟 → 0.

Observe that for each 𝑗 ∈ 𝐼,

(𝜑 𝑗 + 𝜓 𝑗 ) ∨ (𝜑 + 𝜓) ≤ 𝜑 𝑗 ∨ 𝜑 + 𝜓 𝑗 ∨ 𝜓.

Thus, it suffices to show that

2
∫
𝑋

𝜔𝑟𝜑 𝑗∨𝜑+𝜓𝑗∨𝜓 ∧ 𝜔 −
∫
𝑋

𝜔𝑟𝜑 𝑗+𝜓𝑗 ∧ 𝜔
𝑛−𝑟 −

∫
𝑋

𝜔𝑟𝜑+𝜓 ∧ 𝜔𝑛−𝑟 → 0.

The left-hand side is a linear combination of



6.2. THE 𝑑𝑆-PSEUDOMETRIC 169

2
∫
𝑋

𝜔𝑎1,𝜑 𝑗∨𝜑 ∧𝜔
𝑟−𝑎
2,𝜓𝑗∨𝜓 ∧𝜔

𝑛−𝑟 −
∫
𝑋

𝜔𝑎1,𝜑 𝑗 ∧𝜔
𝑟−𝑎
2,𝜓𝑗 ∧𝜔

𝑛−𝑟 −
∫
𝑋

𝜔𝑎1,𝜑 ∧𝜔
𝑟−𝑎
2,𝜓 ∧𝜔

𝑛−𝑟

with 𝑎 = 0, . . . , 𝑟. Observe that 𝜑 𝑗 ∨ 𝜑
𝑑𝑆−−→ 𝜑 and 𝜓 𝑗 ∨ 𝜓

𝑑𝑆−−→ 𝜓 by Corollary 6.2.2,
each term tends to 0 by Theorem 6.2.1.

(1)+(3) =⇒ (2). For each 𝐶 ≥ 1, from the direction we already proved,

𝐶𝜑𝑖 + 𝜓𝑖
𝑑𝑆−−→ 𝐶𝜑 + 𝜓.

By Theorem 6.2.1, for each 𝑗 = 0, . . . , 𝑛,

lim
𝑖∈𝐼

∫
𝑋

(𝐶𝜔1 + 𝜔2 + ddc (𝐶𝜑𝑖 + 𝜓𝑖)) 𝑗 ∧ 𝜔𝑛− 𝑗2

=

∫
𝑋

(𝐶𝜔1 + 𝜔2 + ddc (𝐶𝜑 + 𝜓)) 𝑗 ∧ 𝜔𝑛− 𝑗2 .

It follows that
lim
𝑖∈𝐼

∫
𝑋

𝜔
𝑗

2,𝜓𝑖 ∧ 𝜔
𝑛− 𝑗
2 =

∫
𝑋

𝜔
𝑗

2,𝜓 ∧ 𝜔
𝑛− 𝑗
2 . (6.23)

Therefore, (2) follows if 𝜓𝑖 ≥ 𝜓 for each 𝑖 by Lemma 6.2.2.
Next we prove the general case. By the direction that we already proved, we know

that 𝜑𝑖 + 𝜓
𝑑𝑆−−→ 𝜑 + 𝜓. By Proposition 6.2.5, we have that

𝜑𝑖 + 𝜓𝑖 ∨ 𝜓
𝑑𝑆−−→ 𝜑 + 𝜓.

It follows from the special case above that 𝜓𝑖 ∨ 𝜓
𝑑𝑆−−→ 𝜓. It follows from (6.23) and

Corollary 6.2.7 that (2) holds.
(2)+(3) =⇒ (1). This is similar.

Theorem 6.2.3 The map

𝑃𝜃 [•]I : PSH(𝑋, 𝜃)>0 → PSH(𝑋, 𝜃)>0

is continuous with respect to 𝑑𝑆 .

Proof Let (𝜑𝑖)𝑖∈Z>0 be a sequence in PSH(𝑋, 𝜃)>0 such that 𝜑𝑖
𝑑𝑆−−→ 𝜑 ∈

PSH(𝑋, 𝜃)>0. We want to show that

𝑃𝜃 [𝜑𝑖]I
𝑑𝑆−−→ 𝑃𝜃 [𝜑]I . (6.24)

We may assume that the 𝜑𝑖’s and 𝜑 are all model potentials by Proposition 6.2.2.
By Proposition 6.2.3 and Corollary 6.2.11, we may assume that (𝜑𝑖)𝑖 is ei-

ther increasing or decreasing. In the increasing case, we apply Proposition 3.2.14
and Corollary 6.2.3, while in the decreasing case, we apply Proposition 3.2.12,
Proposition 3.1.10 and Corollary 6.2.5. □
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We record the following result for later use.

Lemma 6.2.6 Fix a Kähler form 𝜔 on 𝑋 . As 𝜖 → 02, we have

𝑉𝜃+𝜖 𝜔
𝑑𝑆−−→ 𝑉𝜃 . (6.25)

Proof There are two assertions to prove, as detailed in the two steps.
Step 1. We first handle the case where 𝜖 → 0+.
In this case (6.25) means

𝑉𝜃+𝜖 𝜔
𝑑𝑆,𝜔−−−−→ 𝑉𝜃

as 𝜖 → 0+. So thanks to Corollary 6.2.5 and Proposition 3.1.10, it suffices to prove
the following:

inf
𝜖 >0

𝑃𝜃+𝜔 [𝑉𝜃+𝜖 𝜔] = 𝑃𝜃+𝜔 [𝑉𝜃 ] . (6.26)

First observe that
𝑉𝜃 = inf

𝜖 >0
𝑉𝜃+𝜖 𝜔 .

In fact, the ≤ direction is trivial. As for the reverse inequality, it suffices to observe
that the right-hand side lies in PSH(𝑋, 𝜃). Therefore, due to Proposition 3.1.10,

lim
𝜖→0+

∫
𝑋

(𝜃 + 𝜖𝜔 + ddc𝑉𝜃+𝜖 𝜔)𝑛 =
∫
𝑋

𝜃𝑛𝑉𝜃 .

Therefore, for all 𝜖 > 0 small enough, we can find 𝜂𝜖 ∈ PSH(𝑋, 𝜃 + 𝜖𝜔) and 𝑎 𝜖 > 0
decreasing to 0 so that

(1 − 𝑎 𝜖 )𝑉𝜃+𝜖 𝜔 + 𝑎 𝜖 𝜂𝜖 ≤ 𝑉𝜃 .

Therefore, thanks to Proposition 3.1.8,

(1 − 𝑎 𝜖 )𝑃𝜃+𝜔 [𝑉𝜃+𝜖 𝜔] + 𝑎 𝜖 𝑃𝜃+𝜔 [𝜂𝜖 ] ≤ 𝑃𝜃+𝜔 [𝑉𝜃 ] .

Letting 𝜖 → 0, we conclude (6.26).
Step 2. We then handle the case where 𝜖 → 0−.
In this case, (6.25) simply means

𝑉𝜃−𝜖 𝜔
𝑑𝑆,𝜃−−−→ 𝑉𝜃

as 𝜖 → 0+. But this follows from Corollary 6.2.3 if we can prove

sup
𝜖 >0

∗𝑉𝜃−𝜖 𝜔 = 𝑉𝜃 , (6.27)

where we understand that 𝜖 is small enough so that 𝜃−𝜖𝜔 represents a big cohomology
class. Since {𝜃} is big, we can find 𝜑 ∈ PSH(𝑋, 𝜃) so that

2 This is not a typo, we mean 𝜖 → 0 from two sides.
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𝜑 ≤ 0, 𝜃𝜑 ≥ 𝛿𝜔

for some 𝛿 > 0. For a small 𝜖 > 0, we then have

𝜃 + ddc
((

1 − 𝜖
𝛿

)
𝑉𝜃 +

𝜖

𝛿
𝜑

)
≥ 𝜖𝜔.

Therefore, (
1 − 𝜖

𝛿

)
𝑉𝜃 +

𝜖

𝛿
𝜑 ≤ 𝑉𝜃−𝜖 𝜔 .

Letting 𝜖 → 0+, we then find

𝑉𝜃 ≤ sup
𝜖 >0

∗𝑉𝜃−𝜖 𝜔 .

The reverse inequality is trivial, hence (6.27) is established. □

6.2.3 Continuity of invariants

In this section, we prove the continuity of a few invariants of the singularities with
respect to 𝑑𝑆 .

Theorem 6.2.4 Let (𝜑 𝑗 ) 𝑗∈𝐼 be a net in PSH(𝑋, 𝜃) and 𝜑 𝑗
𝑑𝑆−−→ 𝜑 ∈ PSH(𝑋, 𝜃). Then

for any prime divisor 𝐸 over 𝑋 , we have

lim
𝑗∈𝐼

𝜈(𝜑 𝑗 , 𝐸) = 𝜈(𝜑, 𝐸). (6.28)

Proof First observe that since 𝑑𝑆 is a pseudometric, it suffices to prove (6.28) when
𝐼 = Z>0 as partially ordered sets.

By Corollary 6.2.8, we may assume that the masses of 𝜑 𝑗 and of 𝜑 are bounded
from below by a positive constant.

By Theorem 6.2.3, we may assume that 𝜑𝑖 and 𝜑 are both I-model and hence
model. When proving (6.28), we are free to pass to subsequences.

By Proposition 6.2.3, we may assume that the sequence (𝜑𝑖) is either increasing
or decreasing. In the increasing case, there is nothing to prove. In the decreasing case,
(6.28) follows from Proposition 3.1.10. □

Theorem 6.2.5 Let (𝜑 𝑗 ) 𝑗∈𝐼 be a net in PSH(𝑋, 𝜃) and 𝜑 ∈ PSH(𝑋, 𝜃)>0. Assume

that 𝜑 𝑗
𝑑𝑆−−→ 𝜑, then

vol 𝜃𝜑 𝑗 → vol 𝜃𝜑 ,
∫
𝑋

𝜃𝑛𝜑 𝑗 →
∫
𝑋

𝜃𝑛𝜑 . (6.29)

Recall the volume is defined in Definition 3.2.3. In fact, we do not have to assume
the positivity of the mass of 𝜑. The proof of the general statement is slightly more
involved. See Corollary 7.3.1 below.
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Proof The latter part of (6.29) is just a special case of Theorem 6.2.1. It remains to
prove the former part.

We may therefore assume that
∫
𝑋
𝜃𝑛𝜑 𝑗 > 0 for all 𝑗 ∈ 𝐼. Then by Theorem 6.2.3,

we have
𝑃𝜃 [𝜑 𝑗 ]I

𝑑𝑆−−→ 𝑃𝜃 [𝜑]I .

Therefore, the first part of (6.29) follows again from Theorem 6.2.1. □

Next we show that 𝑑𝑆-convergent sequences have a sort of quasi-equisingular
property (c.f. (1.15)).

Theorem 6.2.6 Let 𝜑 𝑗 , 𝜑 ∈ PSH(𝑋, 𝜃) ( 𝑗 ∈ Z>0). Assume that 𝜑 𝑗
𝑑𝑆−−→ 𝜑. Then for

each 𝜆′ > 𝜆 > 0, there is 𝑗0 > 0 so that for 𝑗 ≥ 𝑗0,

I(𝜆′𝜑 𝑗 ) ⊆ I(𝜆𝜑). (6.30)

Proof Fix 𝜆′ > 𝜆 > 0, we want to find 𝑗0 > 0 so that for 𝑗 ≥ 𝑗0, (6.30) holds.
Step 1. We first assume that 𝜑 has analytic singularities.
Let 𝜋 : 𝑌 → 𝑋 be a log resolution of 𝜑 and let 𝐸1, . . . , 𝐸𝑁 be all prime divisors in

the polar locus of 𝜑 on 𝑌 . Recall that by Theorem 1.4.3, a local holomorphic function
𝑓 lies in the right-hand side of (6.30) if and only if

ord𝐸𝑖 ( 𝑓 ) > 𝜆𝜈(𝜑, 𝐸𝑖) −
1
2
𝐴𝑋 (𝐸𝑖) (6.31)

whenever they make sense. Here 𝐴𝑋 denotes the log discrepancy. Similarly, 𝑓 lies in
the left-hand side of (6.30) implies that there is 𝜖 > 0 so that

ord𝐸𝑖 ( 𝑓 ) ≥ (1 + 𝜖)𝜆′𝜈(𝜑 𝑗 , 𝐸𝑖) −
1
2
𝐴𝑋 (𝐸𝑖).

As Lelong numbers are continuous with respect to 𝑑𝑆 by Theorem 6.2.4, we can find
𝑗0 > 0 so that when 𝑗 ≥ 𝑗0, 𝜆′𝜈(𝜑 𝑗 , 𝐸𝑖) ≥ 𝜆𝜈(𝜑, 𝐸𝑖) for all 𝑖. In particular, (6.31)
follows.

Step 2. We handle the general case.
By Corollary 6.2.8, we are free to increase 𝜃 and assume that 𝜃𝜑 is a Kähler

current.
Take a quasi-equisingular approximation (𝜓𝑘)𝑘 of 𝜑 in PSH(𝑋, 𝜃). The existence

is guaranteed by Theorem 1.6.2. Take 𝜆′′ ∈ (𝜆, 𝜆′), then by definition, we can find
𝑘 > 0 so that

I(𝜆′′𝜓𝑘) ⊆ I(𝜆𝜑).

Observe that 𝜑 𝑗 ∨ 𝜓𝑘
𝑑𝑆−−→ 𝜓𝑘 as 𝑗 →∞ by Proposition 6.2.5. By Step 1, we can find

𝑗0 > 0 so that for 𝑗 ≥ 𝑗0,

I(𝜆′ (𝜑 𝑗 ∨ 𝜓𝑘)) ⊆ I(𝜆′′𝜓𝑘).

It follows that for 𝑗 ≥ 𝑗0,
I(𝜆′𝜑 𝑗 ) ⊆ I(𝜆𝜑).



Chapter 7
I-good singularities

Le but de cette thèse est de munir son auteur du titre de Docteur.a
— Adrien Douadyb, at the beginning of his thesis

a Similarly, the purpose of the current book is to make my com-
plaints about France in the acknowledgments published.
b Adrien Douady (1935–2006) was a French mathematician known
for his pioneering work in complex dynamics and fractal geometry.
Along with John H. Hubbard, he proved important results about
the Mandelbrot set and developed renormalization theory for
polynomial mappings. He discovered the Douady Rabbit, a famous
fractal Julia set.

Douady studied at École Normale Supérieure (the place where
I began to hate France, thanks to Claude Viterbo) and taught at
several French universities. He was also a member of the Bourbaki
group.

Tragically, he died in a swimming accident in 2006.

In this chapter, we study the key notion in the whole theory: The I-good singularities.
We will give several useful characterizations of I-good singularities. The key result
is the asymptotic Riemann–Roch formula for Hermitian pseudo-effective line bundles
Theorem 7.4.1.

7.1 The notion of I-good singularities

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛.

Theorem 7.1.1 Let 𝜃 be a closed real smooth (1, 1)-form on 𝑋 representing a big
cohomology class, and 𝜑 ∈ PSH(𝑋, 𝜃)>0. Then the following are equivalent:

(1) There exists a sequence (𝜑 𝑗 ) 𝑗>0 in PSH(𝑋, 𝜃) with analytic singularities such

that 𝜑 𝑗
𝑑𝑆−−→ 𝜑;

(2) we have ∫
𝑋

𝜃𝑛𝜑 = vol 𝜃𝜑; (7.1)

(3) we have
𝑃𝜃 [𝜑] = 𝑃𝜃 [𝜑]I . (7.2)

In (1), we could in addition require that each 𝜃𝜑 𝑗 is a Kähler current.
Moreover, if 𝜃𝜑 is a Kähler current, the sequence in (1) can be taken as any

quasi-equisingular approximation of 𝜑 in PSH(𝑋, 𝜃).

173
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Since (PSH(𝑋, 𝜃), 𝑑𝑆) is a pseudometric space, in (1) we could also replace the word
sequence by net.

Recall that according to Corollary 3.2.1 and Proposition 3.2.9, one direction of
(7.1) and (7.2) always holds:∫

𝑋

𝜃𝑛𝜑 ≤ vol 𝜃𝜑 , 𝑃𝜃 [𝜑] ≤ 𝑃𝜃 [𝜑]I .

Proof (1) =⇒ (2). By Theorem 6.2.1, we have

lim
𝑗→∞

∫
𝑋

𝜃𝑛𝜑 𝑗 =

∫
𝑋

𝜃𝑛𝜑 > 0.

We may therefore assume that
∫
𝑋
𝜃𝑛𝜑 𝑗 > 0 for all 𝑗 ≥ 1. It follows from Proposi-

tion 3.2.10 that ∫
𝑋

𝜃𝑛𝜑 𝑗 = vol 𝜃𝜑 𝑗

for any 𝑗 ≥ 1. Using Theorem 6.2.5, we conclude (7.1).
(2) ⇐⇒ (3). This follows from Theorem 3.1.2.
(3) =⇒ (1). Note that the condition in (1) characterizes the closure of analytic

singularities in PSH(𝑋, 𝜃).
Step 1. We first assume that 𝜃𝜑 is a Kähler current. We will prove the following

more general result in this case: Without assuming (3), 𝑃𝜃 [𝜑]I always lies in the
closure of analytic singularities.

Let (𝜑 𝑗 ) 𝑗 be a quasi-equisingular approximation of 𝜑 in PSH(𝑋, 𝜃). We will show

that 𝜑 𝑗
𝑑𝑆−−→ 𝑃𝜃 [𝜑]I . Let

𝜓 = inf
𝑗∈Z>0

𝑃𝜃 [𝜑 𝑗 ] .

We know that 𝜑 𝑗
𝑑𝑆−−→ 𝜓 by Proposition 6.2.2, Proposition 3.1.10 and Corollary 6.2.5.

Moreover, observe that 𝜓 is I-model by Proposition 3.2.12 and Proposition 3.2.10.
So it suffices to show that 𝜑 ∼I 𝜓.

First observe that since for all 𝑗 > 0, 𝜑 ≤ 𝜑 𝑗 , we have

𝜑 − sup
𝑋

𝜑 ≤ 𝑃𝜃 [𝜑 𝑗 ] .

Therefore,
𝜑 − sup

𝑋

𝜑 ≤ 𝜓.

Conversely, it remains to argue that 𝜓 ⪯I 𝜑. For this purpose, take 𝜆 > 0, we need to
show that

I(𝜆𝜓) ⊆ I(𝜆𝜑).

By the strong openness Theorem 1.4.4, we may take𝜆′ > 𝜆 such thatI(𝜆𝜓) = I(𝜆′𝜓),
then it follows from the definition of the quasi-equisingular approximation that
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I(𝜆′𝜓) ⊆ I(𝜆′𝜑 𝑗 ) ⊆ I(𝜆𝜑)

for large enough 𝑗 . Our assertion follows.
It follows from the proof that we may take 𝜑 𝑗 so that 𝜃𝜑 𝑗 is a Kähler current for

all 𝑗 ≥ 1.
Step 2. We handle the general case.
Assume (3) holds. By Lemma 2.4.3, we can find 𝜓 ∈ PSH(𝑋, 𝜃) so that 𝜃𝜓 is a

Kähler current and 𝜓 ≤ 𝜑. We let

𝜓 𝑗 = (1 − 𝑗−1)𝜑 + 𝑗−1𝜓

for each 𝑗 ∈ Z>1. Then (𝜓 𝑗 ) 𝑗 is an increasing sequence converging almost everywhere
to 𝜑. Then

𝑃𝜃 [𝜓 𝑗 ]I
𝑑𝑆−−→ 𝑃𝜃 [𝜑]I = 𝑃𝜃 [𝜑]

by Proposition 3.2.14, Corollary 6.2.3. From Step 1, we know that each 𝑃𝜃 [𝜓 𝑗 ]I
lies in the closure of analytic singularities, hence so is 𝑃𝜃 [𝜑] ∼𝑃 𝜑. Therefore, (1)
follows. □

Definition 7.1.1 We say a potential 𝜑 ∈ QPSH(𝑋) is I-good if for some smooth
closed real (1, 1)-form on 𝑋 such that 𝜑 ∈ PSH(𝑋, 𝜃)>0, we have

𝑃𝜃 [𝜑] = 𝑃𝜃 [𝜑]I . (7.3)

Remark 7.1.1 In view of Theorem 7.1.1 and Corollary 3.2.1, the failure ofI-goodness
of a given 𝜑 ∈ PSH(𝑋, 𝜃)>0 can be characterized using the difference between the
volume and the mass. We therefore introduce

Macron(𝜃𝜑) B vol 𝜃𝜑 −
∫
𝑋

𝜃𝑛𝜑 .

As we mentioned in the introduction, all potentials in practice are expected to be
I-good. The evil guy Macron is bound to be eliminated1.

An immediate question is to verify that Definition 7.1.1 is in dependent of the
choice of 𝜃.

Lemma 7.1.1 Let 𝜑 ∈ PSH(𝑋, 𝜃)>0 for some smooth closed real (1, 1)-form 𝜃 on 𝑋 .
Take a Kähler form 𝜔 on 𝑋 . Then the following are equivalent:

(1) 𝑃𝜃 [𝜑] = 𝑃𝜃 [𝜑]I;
(2) 𝑃𝜃+𝜔 [𝜑] = 𝑃𝜃+𝜔 [𝜑]I .

Proof (1) =⇒ (2). By Theorem 7.1.1, we can find a sequence (𝜑 𝑗 ) 𝑗 in PSH(𝑋, 𝜃)
with analytic singularities such that 𝜑 𝑗

𝑑𝑆,𝜃−−−→ 𝜑. By Corollary 6.2.8, we have

𝜑 𝑗
𝑑𝑆,𝜃+𝜔−−−−−→ 𝜑. Therefore, by Theorem 7.1.1 again, (2) holds.

1 I learned the following folklore claim at the math department of Chalmers university: If you hate
someone, you should name an extremely trivial mathematical object after him/her.
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(2) =⇒ (1). Suppose that (1) fails, so that∫
𝑋

(𝜃 + ddc𝜑)𝑛 <
∫
𝑋

(𝜃 + ddc𝑃𝜃 [𝜑]I)𝑛.

It follows that ∫
𝑋

(𝜃 + 𝜔 + ddc𝜑)𝑛 =
𝑛∑︁
𝑖=0

(
𝑛

𝑖

) ∫
𝑋

𝜃𝑖𝜑 ∧ 𝜔𝑛−𝑖

<

𝑛∑︁
𝑖=0

(
𝑛

𝑖

) ∫
𝑋

𝜃𝑖
𝑃𝜃 [𝜑 ]I ∧ 𝜔

𝑛−𝑖

=

∫
𝑋

(𝜃 + 𝜔 + ddc𝑃𝜃 [𝜑]I)𝑛

≤
∫
𝑋

(𝜃 + 𝜔 + ddc𝑃𝜃+𝜔 [𝜑]I)𝑛.

So (2) fails as well. □

Corollary 7.1.1 Let 𝜃 be a closed real smooth (1, 1)-form on 𝑋 representing a big
cohomology class. Let (𝜑 𝑗 ) 𝑗∈𝐼 be a net of I-good potentials in PSH(𝑋, 𝜃) such that

𝜑 𝑗
𝑑𝑆−−→ 𝜑. Then 𝜑 is I-good.

Note that we do not need to assume that 𝜑 ∈ PSH(𝑋, 𝜃)>0.

Proof By Corollary 6.2.8, we may assume that 𝜑 𝑗 , 𝜑 ∈ PSH(𝑋, 𝜃)>0 for all 𝑗 ∈ 𝐼. It
follows from Theorem 7.1.1 that ∫

𝑋

𝜃𝑛𝜑 𝑗 = vol 𝜃𝜑 𝑗

for all 𝑗 ∈ 𝐼. Taking limit with respect to 𝑗 with the help of Theorem 6.2.5, we
conclude that ∫

𝑋

𝜃𝑛𝜑 = vol 𝜃𝜑 .

Therefore, by Theorem 7.1.1 again, we find that 𝜑 is I-good. □

Example 7.1.1 Assume that 𝜑 ∈ QPSH(𝑋) has analytic singularities. Then 𝜑 is
I-good. This is proved in Proposition 3.2.10.

In particular, the potential in Example 1.8.2 is I-good.

Example 7.1.2 Let 𝜃 be a closed real smooth (1, 1)-form on 𝑋 representing a big
cohomology class, and 𝜑 ∈ PSH(𝑋, 𝜃)>02 is an I-model potential for some closed
real smooth (1, 1)-form 𝜃 on 𝑋 . Then 𝜑 is I-good.

2 I do not know whether the same holds when 𝜑 has vanishing mass.
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Example 7.1.3 Let 𝜃 be a closed real smooth (1, 1)-form on 𝑋 representing a big
cohomology class, and 𝜑 ∈ E(𝑋, 𝜃). Then 𝜑 is I-good. In fact, since 𝑃𝜃 [𝜑] = 𝑉𝜃 ,
we deduce that 𝑃𝜃 [𝜑]I = 𝑉𝜃 as well.

In particular, the potential in Example 3.1.1 is I-good.

A further class of examples of I-good singularities will be given in Example 7.4.1
below.

On the other hand, there do exist non-I-good potentials.

Example 7.1.4 The potential in Example 6.1.3 is not I-good. In fact, since 𝜑 has no
non-vanishing Lelong numbers, we know that 𝜑 ∼I 0, hence

𝑃2𝜔 [𝜑] = 0.

On the other hand, ∫
𝑋

(2𝜔 + ddc𝜑) =
∫
𝑋

𝜔 <

∫
𝑋

(2𝜔),

where 2𝜔 + ddc𝜑 is understood in the non-pluripolar sense.

Quasi-equisingular approximations and 𝑑𝑆-convergent sequences are related in
the following manner:

Corollary 7.1.2 Let 𝜑 ∈ PSH(𝑋, 𝜃)>0 and (𝜖 𝑗 ) 𝑗 be a decreasing sequence in R≥0
with limit 0. Fix a Kähler form 𝜔 on 𝑋 . Consider a decreasing sequence (𝜑 𝑗 ) 𝑗>0
with 𝜑 𝑗 ∈ PSH(𝑋, 𝜃 + 𝜖 𝑗𝜔) being a potential with analytic singularities. Assume
that 𝜑 = inf 𝑗 𝜑 𝑗 . Then the following are equivalent:

(1) 𝜑 𝑗
𝑑𝑆−−→ 𝑃𝜃 [𝜑]I 3, and

(2) (𝜑 𝑗 ) 𝑗 is a quasi-equisingular approximation of 𝜑.

Proof By Corollary 6.2.8 and Example 7.1.2, we may replace 𝜃 by 𝜃 + 𝐶𝜔 for some
large constant 𝐶 > 0 and assume that 𝜑, 𝜑 𝑗 ∈ PSH(𝑋, 𝜃 − 𝜔) for all 𝑗 ≥ 1.

(2) =⇒ (1). This is already proved in the proof of Theorem 7.1.1.
(1) =⇒ (2). This follows from Theorem 6.2.6. □

7.2 Properties of I-good singularities

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛.
We show that I-goodness is preserved by a number of natural operations.

Proposition 7.2.1 Let 𝜑, 𝜓 ∈ QPSH(𝑋) be I-good and 𝜆 > 0. Then the following
potentials are all I-good:

(1) 𝜑 + 𝜓;

3 Just to be sure, this means 𝜑 𝑗
𝑑𝑆,𝜃+𝜖 𝜔−−−−−→ 𝑃𝜃 [𝜑 ]I for any 𝜖 > 0. The choice of 𝜖 is irrelevant due

to Corollary 6.2.8.
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(2) 𝜑 ∨ 𝜓;
(3) 𝜆𝜑.

Proof Take a closed real smooth (1, 1)-form 𝜃 on 𝑋 such that 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃)>0.
It follows from Theorem 7.1.1 that there are sequences (𝜑 𝑗 ) 𝑗 , (𝜓 𝑗 ) 𝑗 in PSH(𝑋, 𝜃)
with analytic singularities such that 𝜑 𝑗

𝑑𝑆−−→ 𝜑 and 𝜓 𝑗
𝑑𝑆−−→ 𝜓.

By Theorem 6.2.2, Proposition 6.2.5, we have

𝜑 𝑗 + 𝜓 𝑗
𝑑𝑆−−→ 𝜑 + 𝜓, 𝜑 𝑗 ∨ 𝜓 𝑗

𝑑𝑆−−→ 𝜑 ∨ 𝜓.

On the other hand, it is clear that

𝜆𝜑 𝑗
𝑑𝑆−−→ 𝜆𝜑.

Therefore, our assertions follow from Theorem 7.1.1. □

Example 7.2.1 Let 𝐿 be a pseudo-effective line bundle on 𝑋 . Elementary metrics on
𝐿 are defined in Definition 6.1.3. Let ℎ be an elementary metric on 𝐿, then ddcℎ is
I-good.

This is a direct consequence of Proposition 7.2.1 and Example 7.1.1.

Proposition 7.2.2 Let (𝜑 𝑗 ) 𝑗∈𝐼 be a non-empty family of I-good potentials in
PSH(𝑋, 𝜃) for some closed real smooth (1, 1)-form 𝜃 on 𝑋 . Then sup 𝑗∈𝐼 ∗𝜑 𝑗 is
I-good.

Proof After adding a Kähler form to 𝜃, we may assume that 𝜑 𝑗 ∈ PSH(𝑋, 𝜃)>0 for
all 𝑗 ∈ 𝐼.

When 𝐼 is finite, this result follows from Proposition 7.2.1. When 𝐼 is infinite, we
may assume that 𝐼 = Z>0 by Proposition 1.2.2. By Proposition 7.2.1, we may assume
that the sequence (𝜑 𝑗 ) 𝑗 is increasing. In this case, as shown in Corollary 6.2.3,

𝜑 𝑗
𝑑𝑆−−→ sup

𝑖∈Z>0

∗𝜑𝑖 .

Therefore, sup𝑖∈Z>0
∗𝜑𝑖 is I-good by Corollary 7.1.1. □

7.3 Mixed volumes

We first extend the notion of volume in Definition 3.2.3 to the mixed case. Let
𝜃1, . . . , 𝜃𝑛 be smooth closed real (1, 1)-forms on 𝑋 representing pseudo-effective
classes.

Definition 7.3.1 Let 𝜑𝑖 ∈ PSH(𝑋, 𝜃𝑖) for 𝑖 = 1, . . . , 𝑛. Write 𝑇𝑖 = 𝜃𝑖 +ddc𝜑𝑖 for each
𝑖 = 1, . . . , 𝑛. We define the mixed volume vol(𝑇1, . . . , 𝑇𝑛) as follows:
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(1) Suppose that vol𝑇𝑖 > 0 for all 𝑖 = 1, . . . , 𝑛, then we let

vol(𝑇1, . . . , 𝑇𝑛) =
∫
𝑋

(
𝜃1 + ddc𝑃𝜃1 [𝜑1]I

)
∧ · · · ∧

(
𝜃𝑛 + ddc𝑃𝜃𝑛 [𝜑𝑛]I

)
; (7.4)

(2) in general, take a Kähler form 𝜔 on 𝑋 , we define

vol(𝑇1, . . . , 𝑇𝑛) = lim
𝜖→0+

vol(𝑇1 + 𝜖𝜔, . . . , 𝑇𝑛 + 𝜖𝜔). (7.5)

Note that vol(𝑇1, . . . , 𝑇𝑛) does not depend on the choice of 𝜔.

We first make a few observations: When vol𝑇𝑖 > 0 for each 𝑖 = 1, . . . , 𝑛, the definition
(7.4) does not depend on how we represent 𝑇𝑖 as 𝑇𝑖 = 𝜃𝑖 +ddc𝜑𝑖 , this is a consequence
of Theorem 2.4.4 and Proposition 3.2.4.

Next, when vol𝑇𝑖 > 0 for each 𝑖, the definition (7.5) coincides with (7.4). In fact,
in this case, for each 𝑖 and each 𝜖 > 0, we have

𝑃𝜃𝑖 [𝜑𝑖]I ∼𝑃 𝑃𝜃𝑖+𝜖 𝜔 [𝑃𝜃 [𝜑𝑖]I]I = 𝑃𝜃𝑖+𝜖 𝜔 [𝜑𝑖]I

as a consequence of Example 7.1.2. Hence using Proposition 6.1.4,

lim
𝜖→0+

vol(𝑇1 + 𝜖𝜔, . . . , 𝑇𝑛 + 𝜖𝜔)

= lim
𝜖→0+

∫
𝑋

(
𝜃1 + 𝜖𝜔 + 𝑃𝜃1 [𝜑1]I

)
∧ · · · ∧

(
𝜃𝑛 + 𝜖𝜔 + 𝑃𝜃𝑛 [𝜑𝑛]I

)
= vol(𝑇1, . . . , 𝑇𝑛).

Finally, for any closed positive (1, 1)-current 𝑇 on 𝑋 , we have

vol(𝑇, . . . , 𝑇) = vol𝑇. (7.6)

Write 𝑇 = 𝜃𝜑 . In more concrete terms, we need to show that

lim
𝜖→0+

∫
𝑋

(𝜃 + 𝜖𝜔 + ddc𝑃𝜃+𝜖 𝜔 [𝜑]I)𝑛 =
∫
𝑋

(𝜃 + ddc𝑃𝜃 [𝜑]I)𝑛.

We may replace 𝜑 by 𝑃𝜃 [𝜑]I and assume that 𝜑 is I-model in PSH(𝑋, 𝜃). Then
we claim that

𝜑 = inf
𝜖 >0

𝑃𝜃+𝜖 𝜔 [𝜑]I .

From this, our assertion follows from Proposition 3.1.10.
The ≤ direction is clear. For the converse, it suffices to show that for each prime

divisor 𝐸 over 𝑋 , we have

𝜈(𝜑, 𝐸) ≤ 𝜈
(

inf
𝜖 >0

𝑃𝜃+𝜖 𝜔 [𝜑]I , 𝐸
)
.

We simply compute
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𝜈

(
inf
𝜖 >0

𝑃𝜃+𝜖 𝜔 [𝜑]I , 𝐸
)
≥ sup
𝜖 >0

𝜈 (𝑃𝜃+𝜖 𝜔 [𝜑]I , 𝐸) = 𝜈(𝜑, 𝐸).

Proposition 7.3.1

(1) The mixed volume is symmetric in its 𝑛-variables.
(2) Consider closed positive (1, 1)-currents 𝑇1, . . . , 𝑇𝑛, 𝑇

′
1 on 𝑋 , then

vol(𝑇1 + 𝑇 ′1 , 𝑇2, . . . , 𝑇𝑛) = vol(𝑇1, 𝑇2, . . . , 𝑇𝑛) + vol(𝑇 ′1 , 𝑇2, . . . , 𝑇𝑛). (7.7)

(3) Consider closed positive (1, 1)-currents 𝑇1, . . . , 𝑇𝑛 on 𝑋 and 𝜆 ≥ 0, then

vol(𝜆𝑇1, 𝑇2, . . . , 𝑇𝑛) = 𝜆 vol(𝑇1, 𝑇2, . . . , 𝑇𝑛).

(4) Suppose that 𝑇1, . . . , 𝑇𝑛, 𝑆1, . . . , 𝑆𝑛 are closed positive (1, 1)-currents on 𝑋 such
that 𝑇𝑖 ⪯I 𝑆𝑖 and {𝑇𝑖} = {𝑆𝑖} for each 𝑖 = 1, . . . , 𝑛. Then

vol(𝑇1, . . . , 𝑇𝑛) ≤ vol(𝑆1, . . . , 𝑆𝑛). (7.8)

(5) Suppose that 𝑇1, . . . , 𝑇𝑛 are closed positive (1, 1)-currents on 𝑋 , then

vol (𝑇1, . . . , 𝑇𝑛) = vol (Reg𝑇1, . . . ,Reg𝑇𝑛) . (7.9)

The notation Reg is defined in (1.19).

Proof (1) This is obvious.
(2) By definition of the mixed volume, we may assume that the relevant currents

𝑇1, . . . , 𝑇𝑛, 𝑇
′
1 are all Kähler currents. We write 𝑇𝑖 = 𝜃𝑖 + ddc𝜑𝑖 as before for each 𝑖

and 𝑇 ′1 = 𝜃′1 + ddc𝜑′1. Then thanks to Proposition 7.2.1,

𝑃𝜃1 [𝜑1]I + 𝑃𝜃 ′1 [𝜑
′
1]I ∼𝑃 𝑃𝜃1+𝜃 ′1

[
𝑃𝜃1 [𝜑1]I + 𝑃𝜃 ′1 [𝜑

′
1]I

]
I
= 𝑃𝜃1+𝜃 ′1

[
𝜑1 + 𝜑′1

]
I

Thus by Proposition 6.1.4, we have

vol(𝑇1 + 𝑇 ′1 , 𝑇2, . . . , 𝑇𝑛)

=

∫
𝑋

(
𝜃1 + 𝜃′1 + ddc𝑃𝜃1+𝜃 ′1 [𝜑1 + 𝜑′1]I

)
∧

(
𝜃2 + ddc𝑃𝜃2 [𝜑2]I

)
∧ · · ·

∧
(
𝜃𝑛 + ddc𝑃𝜃𝑛 [𝜑𝑛]I

)
=

∫
𝑋

(
𝜃1 + 𝜃′1 + ddc𝑃𝜃1 [𝜑1]I + ddc𝑃𝜃 ′1 [𝜑

′
1]I

)
∧

(
𝜃2 + ddc𝑃𝜃2 [𝜑2]I

)
∧ · · ·

∧
(
𝜃𝑛 + ddc𝑃𝜃𝑛 [𝜑𝑛]I

)
= vol(𝑇1, 𝑇2, . . . , 𝑇𝑛) + vol(𝑇 ′1 , 𝑇2, . . . , 𝑇𝑛).

(3) This is obvious.
(4) Thanks to the definition of the mixed volume, we may assume that 𝑇1, . . . , 𝑇𝑛

and 𝑆1, . . . , 𝑆𝑛 are all Kähler currents. In this case, our assertion follows from
Proposition 6.1.4.
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(5) Using (2) and (3), it suffices to establish the following: Suppose that

𝑇 =
∑︁
𝑖

𝑐𝑖 [𝐸𝑖] (7.10)

is a closed positive (1, 1)-current on 𝑋 , where {𝐸𝑖} is a countable collection of prime
divisors on 𝑋 and 𝑐𝑖 > 0. Then

vol (𝑇,𝑇2, . . . , 𝑇𝑛) = 0 (7.11)

for any closed positive (1, 1)-currents 𝑇2, . . . , 𝑇𝑛 on 𝑋 .
Step 1. We first assume that (7.10) is a finite sum. Fix a Kähler form 𝜔 on 𝑋 .
In this case, thanks to (2) and (3) again, we may assume that 𝑇 = [𝐸] for some

prime divisor 𝐸 on 𝑋 . Write 𝐸 = 𝜃𝜑 , then 𝜑 has analytic singularities thanks to
Proposition 1.8.1. Therefore, 𝑃𝜃+𝜖 𝜔 [𝜑]I ∼ 𝜑 for any 𝜖 > 0 due to Proposition 3.2.10.
Therefore, writing 𝑇𝑖 = 𝜃𝑖 + ddc𝜑𝑖 for 𝑖 = 2, . . . , 𝑛, and take 𝐶 > 0 so that 𝐶𝜔 + 𝜃𝑖
are Kähler forms for each 𝑖 = 2, . . . , 𝑛, then we have

vol(𝑇,𝑇2, . . . , 𝑇𝑛)

= lim
𝜖→0+

∫
𝑋

( [𝐸] + 𝜖𝜔) ∧
(
𝜃2 + 𝜖𝜔 + ddc𝑃𝜃2+𝜖 𝜔 [𝜑2]I

)
∧ · · ·

∧
(
𝜃𝑛 + 𝜖𝜔 + ddc𝑃𝜃𝑛+𝜖 𝜔 [𝜑𝑛]I

)
= lim
𝜖→0+

𝜖

∫
𝑋

𝜔 ∧
(
𝜃2 + 𝜖𝜔 + ddc𝑃𝜃2+𝜖 𝜔 [𝜑2]I

)
∧ · · ·

∧
(
𝜃𝑛 + 𝜖𝜔 + ddc𝑃𝜃𝑛+𝜖 𝜔 [𝜑𝑛]I

)
≤ lim
𝜖→0+

𝜖

∫
𝑋

𝜔 ∧ (𝜃2 + 𝐶𝜔) ∧ · · · ∧ (𝜃𝑛 + 𝐶𝜔)

=0.

Step 2. We prove the case where {𝐸𝑖} is infinite. We may assume that 𝑖 runs over
Z>0.

Write 𝑇𝑖 = 𝜃𝑖 + ddc𝜑𝑖 for 𝑖 = 2, . . . , 𝑛 as before. Fix a 𝜔 on 𝑋 so that 𝜃𝑖 + 𝜔 is a
Kähler form for each 𝑖 = 2, . . . , 𝑛. Fix 𝜖 > 0.

We can find 𝑁0 > 0 so that for any 𝑁 ≥ 𝑁0, the class of

𝜖𝜔 +
∞∑︁

𝑖=𝑁+1
𝑐𝑖 [𝐸𝑖]

is Kähler. Take a Kähler form 𝜔𝑁 in this class. Then the currents

𝑁∑︁
𝑖=1

𝑐𝑖 [𝐸𝑖] + 𝜔𝑁 ,
∞∑︁
𝑖=1

𝑐𝑖 [𝐸𝑖] + 𝜖𝜔

all lie in the same cohomology class.
We claim that
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𝑁∑︁
𝑖=1

𝑐𝑖 [𝐸𝑖] + 𝜔𝑁
𝑑𝑆−−→

∞∑︁
𝑖=1

𝑐𝑖 [𝐸𝑖] + 𝜖𝜔. (7.12)

In fact, it suffices to show the convergence of the non-pluripolar masses, due to
Corollary 6.2.5. In other words, we need to show that

lim
𝑁→∞

∫
𝑋

𝜔𝑛𝑁 =

∫
𝑋

(𝜖𝜔)𝑛,

which follows from the convergence {𝜔𝑁 } → {𝜖𝜔} as 𝑁 → ∞. Our claim (7.12)
follows.

Then thanks to Theorem 6.2.1,

vol (𝑇,𝑇2, . . . , 𝑇𝑛) ≤ vol (𝑇 + 𝜖𝜔, 𝑇2, . . . , 𝑇𝑛)

= lim
𝑁→∞

vol

(
𝑁∑︁
𝑖=1

𝑐𝑖 [𝐸𝑖] + 𝜔𝑁 , 𝑇2, . . . , 𝑇𝑛

)
= lim
𝑁→∞

vol (𝜔𝑁 , 𝑇2, . . . , 𝑇𝑛)

≤ lim
𝑁→∞

∫
𝑋

𝜔𝑁 ∧ (𝜃2 + 𝜔) ∧ · · · ∧ (𝜃𝑛 + 𝜔)

=𝜖

∫
𝑋

𝜔 ∧ (𝜃2 + 𝜔) ∧ · · · ∧ (𝜃𝑛 + 𝜔),

where the third line follows from Step 1. Since 𝜖 > 0 is arbitrary, we conclude
(7.11). □

Lemma 7.3.1 Let𝜔 be a Kähler form on 𝑋 . Then there is a constant𝐶 > 0 depending
only on 𝑋, 𝜔, {𝑇1}, . . . , {𝑇𝑛} such that

0 ≤ vol(𝑇1 + 𝜖𝜔, . . . , 𝑇𝑛 + 𝜖𝜔) − vol(𝑇1, . . . , 𝑇𝑛) ≤ 𝐶𝜖

for any 𝜖 ∈ [0, 1].

Proof By linearity, we can write

vol(𝑇1 + 𝜖𝜔, . . . , 𝑇𝑛 + 𝜖𝜔) − vol(𝑇1, . . . , 𝑇𝑛)

as a linear combination of the mixed volumes between the 𝑇𝑖’s and 𝜔 with coefficients
𝜖 𝑗 for some 𝑗 ≥ 1. It suffices to show that

vol (𝜔,𝑇2, . . . , 𝑇𝑛) ≤ 𝐶,

where 𝐶 depends only on 𝑋, 𝜔, {𝑇2}, . . . , {𝑇𝑛}. Represent 𝑇𝑖 as 𝑇𝑖 = 𝜃𝑖 + ddc𝜑𝑖 . Take
a constant 𝐷 > 0 so that 𝐷𝜔 + 𝜃𝑖 is a Kähler form for each 𝑖 = 2, . . . , 𝑛. Then

vol (𝜔,𝑇2, . . . , 𝑇𝑛) ≤ vol (𝜔, 𝐷𝜔 + 𝜃2, . . . , 𝐷𝜔 + 𝜃𝑛) .

Our assertion follows. □
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Next we show that Theorem 6.2.5 continues to hold even when 𝜑 has vanishing
mass. We prove a slightly more general result:

Theorem 7.3.1 Suppose that (𝜑𝑘
𝑗
)𝑘∈𝐼 are nets in PSH(𝑋, 𝜃 𝑗 ) and 𝜑 𝑗 ∈ PSH(𝑋, 𝜃 𝑗 )

for 𝑗 = 1, . . . , 𝑛. We assume that 𝜑𝑘
𝑗

𝑑𝑆−−→ 𝜑 𝑗 for each 𝑗 = 1, . . . , 𝑛. Then

lim
𝑘∈𝐼

vol
(
𝜃1,𝜑𝑘1

, . . . , 𝜃𝑛,𝜑𝑘𝑛

)
= vol

(
𝜃1,𝜑1 , . . . , 𝜃𝑛,𝜑𝑛

)
. (7.13)

Proof Fix a Kähler form 𝜔, then for any 𝜖 > 0, we have

lim
𝑘∈𝐼

vol
(
(𝜃1 + 𝜖𝜔)𝜑𝑘1 , . . . , (𝜃𝑛 + 𝜖𝜔)𝜑𝑘𝑛

)
= vol

(
(𝜃1 + 𝜖𝜔)𝜑1 , . . . , (𝜃𝑛 + 𝜖𝜔)𝜑𝑛

)
as a consequence of Theorem 6.2.1 and Theorem 6.2.3.

Now thanks to Lemma 7.3.1, there is 𝐶 > 0 so that for each 𝑘 ∈ 𝐼,

0 ≤ vol
(
(𝜃1 + 𝜖𝜔)𝜑𝑘1 , . . . , (𝜃𝑛 + 𝜖𝜔)𝜑𝑘𝑛

)
− vol

(
𝜃1,𝜑𝑘1

, . . . , 𝜃𝑛,𝜑𝑘𝑛

)
≤ 𝐶𝜖,

0 ≤ vol
(
(𝜃1 + 𝜖𝜔)𝜑1 , . . . , (𝜃𝑛 + 𝜖𝜔)𝜑𝑛

)
− vol

(
𝜃1,𝜑1 , . . . , 𝜃𝑛,𝜑𝑛

)
≤ 𝐶𝜖.

Therefore, (7.13) follows. □

Corollary 7.3.1 Let (𝜑 𝑗 ) 𝑗∈𝐼 be a net in PSH(𝑋, 𝜃) and 𝜑 ∈ PSH(𝑋, 𝜃). Assume that

𝜑 𝑗
𝑑𝑆−−→ 𝜑, then

vol 𝜃𝜑 𝑗 → vol 𝜃𝜑 ,
∫
𝑋

𝜃𝑛𝜑 𝑗 →
∫
𝑋

𝜃𝑛𝜑 . (7.14)

Proof The first part of (7.14) is a special case of Theorem 7.3.1, while the second
part of (7.14) is a special case of Theorem 6.2.1. □

The mixed volume has a log-concavity property:

Proposition 7.3.2 Let 𝑇1, . . . , 𝑇𝑛 be closed positive (1, 1)-currents on 𝑋 , then

vol(𝑇1, . . . , 𝑇𝑛) ≥
𝑛∏
𝑖=1
(vol𝑇𝑖)1/𝑛.

Proof We may assume that vol𝑇𝑖 > 0 for each 𝑖 = 1, . . . , 𝑛 since there is nothing to
prove otherwise. In this case, we need to show that∫

𝑋

(
𝜃1 + ddc𝑃𝜃1 [𝜑1]I

)
∧ · · · ∧

(
𝜃𝑛 + ddc𝑃𝜃1 [𝜑𝑛]I

)
≥

𝑛∏
𝑖=1

(∫
𝑋

(
𝜃𝑖 + ddc𝑃𝜃𝑖 [𝜑𝑖]I

)𝑛)1/𝑛
.

This is a special case of Theorem 2.4.1. □
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Next, we also study how the mixed volume behaves under bimeromorphic trans-
forms.

Proposition 7.3.3 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a
Kähler manifold 𝑌 to 𝑋 , then

vol (𝜋∗𝑇1, . . . , 𝜋
∗𝑇𝑛) = vol (𝑇1, . . . , 𝑇𝑛) .

Proof Using the definition of the mixed volume, we may easily reduce to the
case where vol𝑇𝑖 > 0 for each 𝑖 = 1, . . . , 𝑛. By 3.2.5, we know that if we write
𝑇𝑖 = 𝜃𝑖 + ddc𝜑𝑖 , then

𝜋∗𝑃𝜃𝑖 [𝜑𝑖]I = 𝑃𝜋∗ 𝜃𝑖 [𝜋∗𝜑𝑖]I
for each 𝑖 = 1, . . . , 𝑛. In particular,

vol 𝜋∗𝑇𝑖 = vol𝑇𝑖 > 0.

Our assertion follows from the bimeromorphic invariance of the non-pluripolar
product Proposition 2.4.2. □

As for pushforward, we also have a similar result. We need a preliminary result:

Lemma 7.3.2 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a Kähler
manifold 𝑌 . Then for any non-divisorial closed positive (1, 1)-current 𝑇 on 𝑋 , we
have

𝜋∗𝜋∗𝑇 = 𝑇 +
𝑁∑︁
𝑖=1

𝑐𝑖 [𝐸𝑖]

for finitely many 𝜋-exceptional divisors 𝐸𝑖 and 𝑐𝑖 > 0.

Proof Let 𝐸 be the exceptional locus of 𝜋. Then

𝑇 = 1𝑌\𝐸𝜋
∗𝜋∗𝑇.

Therefore,
𝜋∗𝜋∗𝑇 − 𝑇 = 1𝐸𝜋

∗𝜋∗𝑇,

which has the stated form, due to the support theorems, see [Dem12b, Section 8]. □

Corollary 7.3.2 Let 𝜋 : 𝑋 → 𝑍 be a proper bimeromorphic morphism from 𝑋 to a
Kähler manifold 𝑍 . Then

vol(𝑇1, . . . , 𝑇𝑛) = vol(𝜋∗𝑇1, . . . , 𝜋∗𝑇𝑛). (7.15)

Proof Observe that we may assume that 𝑇𝑖 = Reg𝑇𝑖 for all 𝑖 = 1, . . . , 𝑛. In fact,
since the pushforward of the divisorial part of 𝑇𝑖 is divisorial as well, hence by
Proposition 7.3.1(5), they do not contribute to the volumes.

Now by Proposition 7.3.3, it remains to show that

vol(𝑇1, . . . , 𝑇𝑛) = vol(𝜋∗𝜋∗𝑇1, . . . , 𝜋
∗𝜋∗𝑇𝑛).
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By Lemma 7.3.2, the difference 𝜋∗𝜋∗𝑇𝑖 − 𝑇𝑖 is divisorial, hence our desired equality
follows from Proposition 7.3.1(5). □

A particular corollary of Corollary 7.3.2 will be useful later.

Corollary 7.3.3 Let 𝜋 : 𝑋 → 𝑍 be a proper bimeromorphic morphism from 𝑋 to a
Kähler manifold 𝑍 . Assume that 𝑇 is an I-good closed positive (1, 1)-current on 𝑋 ,
then so is 𝜋∗𝑇 .

Proof We may assume that
∫
𝑋
𝑇𝑛 > 0. Then by Corollary 7.3.2,

vol 𝜋∗𝑇 = vol𝑇 > 0

as well. Since 𝑇 is I-good, we have

vol𝑇 =

∫
𝑋

𝑇𝑛.

But
∫
𝑋
𝑇𝑛 =

∫
𝑍
(𝜋∗𝑇)𝑛, so

vol 𝜋∗𝑇 =

∫
𝑍

(𝜋∗𝑇)𝑛 > 0.

It follows that 𝜋∗𝑇 is I-good. □

Finally we establish a semicontinuity property of the mixed volumes.

Theorem 7.3.2 Let (𝜑 𝑗
𝑖
) 𝑗∈𝐽 (𝑖 = 1, . . . , 𝑛) be nets in PSH(𝑋, 𝜃𝑖). Assume that for

each prime divisor 𝐸 over 𝑋 , we have

lim
𝑗∈𝐽

𝜈

(
𝜑
𝑗

𝑖
, 𝐸

)
= 𝜈 (𝜑𝑖 , 𝐸) , 𝑖 = 1, . . . , 𝑛.

Then

lim
𝑗∈𝐽

vol
(
𝜃1 + ddc𝜑

𝑗

1, . . . , 𝜃𝑛 + ddc𝜑
𝑗
𝑛

)
≤ vol (𝜃1 + ddc𝜑1, . . . , 𝜃𝑛 + ddc𝜑𝑛) .

Proof Step 1. We first assume that vol(𝜃𝑖 + ddc𝜑
𝑗

𝑖
) > 0 and vol(𝜃𝑖 + ddc𝜑𝑖) > 0 for

all 𝑖 = 1, . . . , 𝑛 and 𝑗 ∈ 𝐽.
Without loss of generality, we may assume that the 𝜑 𝑗

𝑖
’s and the 𝜑𝑖’s are I-model

for all 𝑖 = 1, . . . , 𝑛 and 𝑗 ∈ 𝐽. Our assertion becomes

lim
𝑗∈𝐽

∫
𝑋

(
𝜃1 + ddc𝜑

𝑗

1

)
∧ · · · ∧

(
𝜃𝑛 + ddc𝜑

𝑗
𝑛

)
≤

∫
𝑋

(𝜃1 + ddc𝜑1) ∧ · · · ∧ (𝜃𝑛 + ddc𝜑𝑛) .
(7.16)

For each 𝑗 ∈ 𝐽, define

𝜓
𝑗

𝑖
B sup

𝑘≥ 𝑗
∗𝜑𝑘𝑖 , 𝑖 = 1, . . . , 𝑛.
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Observe that 𝜓 𝑗
𝑖

is I-good thanks to Proposition 7.2.2. It follows from Corollary 1.4.1
and our assumption that

lim
𝑗∈𝐽

𝜈

(
𝜓
𝑗

𝑖
, 𝐸

)
= 𝜈 (𝜑𝑖 , 𝐸) , 𝑖 = 1, . . . , 𝑛.

For each 𝑖 = 1, . . . , 𝑛, we define

𝜓𝑖 = inf
𝑗∈𝐽

𝑃𝜃𝑖 [𝜓
𝑗

𝑖
] .

Due to Proposition 3.2.13, 𝜓𝑖 is I-model. Thanks to Proposition 3.1.10, we know

𝜈(𝜓𝑖 , 𝐸) = 𝜈(𝜑𝑖 , 𝐸)

for any 𝑖 = 1, . . . , 𝑛 and any prime divisor 𝐸 over 𝑋 . In other words, 𝜓𝑖 ∼I 𝜑𝑖 for
𝑖 = 1, . . . , 𝑛. But both 𝜑𝑖 and 𝜓𝑖 are I-good, therefore,

𝜓𝑖 ∼𝑃 𝜑𝑖 , 𝑖 = 1, . . . , 𝑛.

By Proposition 6.1.4, we have∫
𝑋

(𝜃1 + ddc𝜓1) ∧ · · · ∧ (𝜃𝑛 + ddc𝜓𝑛) =
∫
𝑋

(𝜃1 + ddc𝜑1) ∧ · · · ∧ (𝜃𝑛 + ddc𝜑𝑛).

Next by Proposition 6.1.4 again,

lim
𝑗∈𝐽

∫
𝑋

(
𝜃1 + ddc𝜑

𝑗

1

)
∧ · · · ∧

(
𝜃𝑛 + ddc𝜑

𝑗
𝑛

)
≤ lim
𝑗∈𝐽

∫
𝑋

(
𝜃1 + ddc𝜓

𝑗

1

)
∧ · · · ∧

(
𝜃𝑛 + ddc𝜓

𝑗
𝑛

)
.

On the other hand, due to Proposition 3.1.10 and Corollary 6.2.5, for each 𝑖 = 1, . . . , 𝑛,
we have

𝜓
𝑗

𝑖

𝑑𝑆−−→ 𝜓𝑖 .

We conclude from Theorem 6.2.1 that

lim
𝑗∈𝐽

∫
𝑋

(
𝜃1 + ddc𝜓

𝑗

1

)
∧ · · · ∧

(
𝜃𝑛 + ddc𝜓

𝑗
𝑛

)
=

∫
𝑋

(𝜃1 + ddc𝜓1) ∧ · · · ∧ (𝜃𝑛 + ddc𝜓𝑛).

Putting these equations together, (7.16) follows.
Step 2. Next we handle the general case.
Fix a Kähler form 𝜔 on 𝑋 . For any 𝜖 ∈ (0, 1], from Step 1, we know that

lim
𝑗∈𝐽

vol
(
𝜃1 + 𝜖𝜔 + ddc𝜑

𝑗

1, . . . , 𝜃𝑛 + 𝜖𝜔 + ddc𝜑
𝑗
𝑛

)
≤ vol (𝜃1 + 𝜖𝜔 + ddc𝜑1, . . . , 𝜃𝑛 + 𝜖𝜔 + ddc𝜑𝑛) .

Using Lemma 7.3.1, we have
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lim
𝑗∈𝐽

vol
(
𝜃1 + ddc𝜑

𝑗

1, . . . , 𝜃𝑛 + ddc𝜑
𝑗
𝑛

)
≤ lim
𝑗∈𝐽

vol
(
𝜃1 + 𝜖𝜔 + ddc𝜑

𝑗

1, . . . , 𝜃𝑛 + 𝜖𝜔 + ddc𝜑
𝑗
𝑛

)
≤ vol (𝜃1 + 𝜖𝜔 + ddc𝜑1, . . . , 𝜃𝑛 + 𝜖𝜔 + ddc𝜑𝑛)
≤ vol (𝜃1 + ddc𝜑1, . . . , 𝜃𝑛 + ddc𝜑𝑛) + 𝐶𝜖.

But since 𝜖 is arbitrary, our assertion follows. □

7.4 The volumes of Hermitian pseudo-effective line bundles

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛.

Definition 7.4.1 A Hermitian pseudo-effective line bundle (𝐿, ℎ) on a complex mani-
fold𝑌 consists of a holomorphic line bundle 𝐿 on𝑌 together with a plurisubharmonic
metric ℎ on 𝐿.

Theorem 7.4.1 Let (𝐿, ℎ) be a Hermitian pseudo-effective line bundle on 𝑋 and 𝑇
be a holomorphic line bundle on 𝑋 . We have

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(ℎ𝑘)

)
= vol (ddcℎ) . (7.17)

In particular, the limit exists.

For the proof, let us fix a smooth Hermitian metric ℎ0 on 𝐿 with 𝜃 = 𝑐1 (𝐿, ℎ0).
We identify ℎ with ℎ0 exp(−𝜑) for some 𝜑 ∈ PSH(𝑋, 𝜃). See Section 1.8 for the
relevant notations.

Recall that when 𝑋 admits a big line bundle, it is necessarily projective. See
[MM07, Theorem 2.2.26].

We first handle the case where 𝜑 has analytic singularities.

Proposition 7.4.1 Under the assumptions of Theorem 7.4.1, assume furthermore that
𝜑 has analytic singularities, then (7.17) holds.

Proof Step 1. Reduce to the case of log singularities.
Let 𝜋 : 𝑌 → 𝑋 be a log resolution of 𝜑. In this case, for each 𝑘 ∈ Z>0, we have

ℎ0 (𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘ℎ)) = ℎ0 (𝑌, 𝐾𝑌/𝑋 ⊗ 𝜋∗𝑇 ⊗ 𝜋∗𝐿𝑘 ⊗ I(𝑘𝜋∗ℎ)).

By Proposition 3.2.5, we have

vol(ddcℎ) = vol(ddc𝜋∗ℎ).

Therefore, it suffices to argue (7.17) with 𝐾𝑌/𝑋 ⊗ 𝜋∗𝑇 , 𝜋∗𝐿 and 𝜋∗ℎ in place of 𝑇 , 𝐿
and ℎ.
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Step 2. Assume that 𝜑 has log singularities along an effective Q-divisor 𝐷, we
decompose 𝐷 into irreducible components, say

𝐷 =

𝑁∑︁
𝑖=1

𝑎𝑖𝐷𝑖 .

In this case, we can easily compute

I(𝑘𝜑) = O𝑋

(
−

𝑁∑︁
𝑖=1
⌊𝑘𝑎𝑖⌋𝐷𝑖

)
for each 𝑘 ∈ Z>0. Observe that 𝐿 − 𝐷 is nef (see Lemma 1.6.1), so we could apply
the asymptotic Riemann–Roch theorem [Laz04, Corollary 1.4.41]4 to conclude that

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ O𝑋

(
−

𝑁∑︁
𝑖=1
⌊𝑘𝑎𝑖⌋𝐷𝑖

))
= (𝐿 − 𝐷)𝑛.

Observe that by Proposition 1.8.1,

𝜃𝜑 = [𝐷] + 𝑇,

where 𝑇 is a closed positive (1, 1)-current with bounded potential. Therefore,

(𝐿 − 𝐷)𝑛 =
∫
𝑋

𝑇𝑛 =

∫
𝑋

𝜃𝑛𝜑 .

By Example 7.1.1, we know that the right-hand side is exactly vol 𝜃𝜑 . □

Proof (Proof of Theorem 7.4.1) Step 1. We first handle the case where 𝜃𝜑 is a
Kähler current. Fix a Kähler form 𝜔 ≥ 𝜃 on 𝑋 such that 𝜃𝜑 ≥ 2𝛿𝜔 for some
𝛿 ∈ (0, 1).

Let (𝜑 𝑗 ) 𝑗 be a quasi-equisingular approximation of 𝜑 in PSH(𝑋, 𝜃). We may
assume that 𝜃𝜑 𝑗 ≥ 𝛿𝜔 for all 𝑗 . From Proposition 7.4.1, we know that for each 𝑗 ≥ 1,

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≤ lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑 𝑗 )

)
= vol 𝜃𝜑 𝑗 .

It follows from Theorem 7.1.1 and Theorem 6.2.5 that the right-hand side converges
to vol 𝜃𝜑 as 𝑗 →∞. Therefore,

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≤ vol 𝜃𝜑 .

Conversely, fix an integer 𝑁 > 𝛿−1. From Theorem 7.1.1 and Theorem 6.2.1, we
know that

4 Please try to complete the full details if it is not completely clear to you how to apply the
Riemann–Roch theorem of integral divisors in this setup.
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lim
𝑗→∞

∫
𝑋

𝜃𝑛𝜑 𝑗 =

∫
𝑋

𝜃𝑛
𝑃𝜃 [𝜑 ]I > 0. (7.18)

Therefore, by Lemma 2.4.2, we can find 𝑗0 > 0 such that for 𝑗 ≥ 𝑗0, there is
𝜓 ∈ PSH(𝑋, 𝜃)>0 (depending on 𝑗) with

(1 − 𝑁−1)𝜑 𝑗 + 𝑁−1𝜓 ≤ 𝑃𝜃 [𝜑]I . (7.19)

For each 𝑘 > 0, we write 𝑘 = 𝑘 ′𝑁 − 𝑟 , where 𝑘 ′ ∈ N and 𝑟 ∈ {0, 1, . . . , 𝑁 − 1}. Then
we compute for 𝑗 ≥ 𝑗0 and large enough 𝑘 (to be specified shortly) that

ℎ0
(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≥ℎ0

(
𝑋,𝑇 ⊗ 𝐿−𝑟 ⊗ 𝐿𝑘′𝑁 ⊗ I(𝑘 ′𝑁𝜑)

)
≥ℎ0

(
𝑋,𝑇 ⊗ 𝐿−𝑟 ⊗ 𝐿𝑘′𝑁 ⊗ I

(
𝑘 ′ (𝜓 + (𝑁 − 1)𝜑 𝑗 )

) )
≥ℎ0

(
𝑋,𝑇 ⊗ 𝐿−𝑟 ⊗ 𝐿𝑘′ (𝑁−1) ⊗ I

(
𝑘 ′𝑁𝜑 𝑗

) )
,

where the third line follows from (7.19), the fourth line can be argued as follows: For
large enough 𝑘 , there is a non-zero section 𝑠 ∈ H0 (𝑋, 𝐿𝑘′ ⊗I(𝑘 ′𝜓)) by Lemma 2.4.4.
It follows from Lemma 1.6.3 that for large enough 𝑘 ,

I
(
𝑘 ′𝑁𝜑 𝑗

)
⊆ I∞

(
𝑘 ′ (𝑁 − 1)𝜑 𝑗

)
.

It follows that multiplication by 𝑠 gives an injective map

H0
(
𝑋,𝑇 ⊗ 𝐿−𝑟 ⊗ 𝐿𝑘′ (𝑁−1) ⊗ I

(
𝑘 ′𝑁𝜑 𝑗

) )
↩→

H0
(
𝑋,𝑇 ⊗ 𝐿−𝑟 ⊗ 𝐿𝑘′𝑁 ⊗ I

(
𝑘 ′𝜓 + 𝑘 ′ (𝑁 − 1)𝜑 𝑗

) )
.

Next observe that
(𝑁 − 1)𝜃 + 𝑁ddc𝜑 𝑗 ≥ 0.

So Proposition 7.4.1 is applicable. We let 𝑘 →∞ to conclude that

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0 (𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)) ≥𝑁−𝑛

∫
𝑋

(
(𝑁 − 1)𝜃 + 𝑁ddc𝜑 𝑗

)𝑛
=

∫
𝑋

(
(1 − 𝑁−1)𝜃 + ddc𝜑 𝑗

)𝑛
≥

∫
𝑋

(
𝜃 + ddc𝜑 𝑗

)𝑛 − 𝐶𝑁−1,

where 𝐶 is a constant independent of 𝑁 and 𝑗 . Letting 𝑗 →∞ and then 𝑁 →∞ and
using (7.18), we find that

lim
𝑘→∞

ℎ0
(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≥

∫
𝑋

𝜃𝑛
𝑃𝜃 [𝜑 ]I .
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Therefore, (7.17) follows.
Step 2. We handle the case where vol 𝜃𝜑 > 0. We may assume that 𝜑 is I-model.
Fix observe that 𝐿 is big by Proposition 2.4.1. Hence 𝑋 is projective. Take a very

ample line bundle 𝐴 on 𝑋 and a Kähler form 𝜔 in 𝑐1 (𝐴). Take a Hermitian metric
ℎ𝐴 on 𝐴 with ddcℎ𝐴 = 𝜔.

Fix 𝑁 ∈ Z>0, we decompose any 𝑘 > 0 as 𝑘 = 𝑘 ′𝑁 + 𝑟 with 𝑘 ′ ∈ N and
𝑟 ∈ {0, 1, . . . , 𝑁 − 1}. Then

ℎ0
(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≤ ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑟 ⊗ 𝐿𝑘′𝑁 ⊗ I(𝑘 ′𝑁𝜑)

)
.

Therefore,

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≤ max
𝑟=0,...,𝑁−1

lim
𝑘′→∞

𝑛!
𝑘 ′𝑛𝑁𝑛

ℎ0
(
𝑋,𝑇 ⊗ 𝐿𝑟 ⊗ 𝐿𝑘′𝑁 ⊗ I(𝑘 ′𝑁𝜑)

)
≤ max
𝑟=0,...,𝑁−1

lim
𝑘′→∞

𝑛!
𝑘 ′𝑛𝑁𝑛

ℎ0
(
𝑋,𝑇 ⊗ 𝐿𝑟 ⊗ 𝐿𝑘′𝑁 ⊗ 𝐴𝑘′ ⊗ I(𝑘 ′𝑁𝜑)

)
=

∫
𝑋

(
𝑁−1𝜔 + 𝜃 + ddc𝑃𝜃+𝑁−1𝜔 [𝜑]I

)𝑛
,

where we have applied Step 1 to the Hermitian pseudo-effective line bundle (𝐿𝑁 ⊗
𝐴, ℎ⊗𝑁 ⊗ℎ𝐴) on the fourth line. On the other hand, since 𝜑 isI-good by Example 7.1.2,
we have

𝑃𝜃+𝑁−1𝜔 [𝜑]I = 𝑃𝜃+𝑁−1𝜔 [𝜑] .

It follows from Proposition 3.1.3 that

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≤

∫
𝑋

(
𝑁−1𝜔 + 𝜃 + ddc𝜑

)𝑛
.

Letting 𝑁 →∞, we conclude

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≤

∫
𝑋

𝜃𝑛𝜑 .

It remains to argue the reverse inequality.
Choose 𝜓 ∈ PSH(𝑋, 𝜃) such that 𝜃𝜓 is a Kähler current and 𝜓 ≤ 𝜑. The existence

of 𝜓 is guaranteed by Lemma 2.4.3. Then for any 𝑡 ∈ (0, 1), we set

𝜑𝑡 = (1 − 𝑡)𝜑 + 𝑡𝜓.

It follows again from Step 1 that

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≥ lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑𝑡 )

)
= vol 𝜃𝜑𝑡 .
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On the other hand, by Proposition 7.3.1,

lim
𝑡→0+

vol 𝜃𝜑𝑡 = vol 𝜃𝜑 .

So we find
lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≥ vol 𝜃𝜑 .

We conclude (7.17) in this case.
Step 3. We finally handle the case where vol 𝜃𝜑 = 0. Replacing 𝜑 by 𝑃𝜃 [𝜑]I , we

may assume that 𝜑 is I-model.
Assume that (7.17) fails. That is,

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘

)
≥ lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
> 0,

then 𝐿 is a big line bundle and hence 𝑋 is projective.
Fix a very ample line bundle 𝐴 on 𝑋 and a Kähler form 𝜔 ∈ 𝑐1 (𝐴). Take a

decreasing sequence (𝜖 𝑗 ) 𝑗 of rational numbers with limit 0 and a quasi-equisingular
approximation (𝜑 𝑗 ) 𝑗 of 𝜑 with 𝜑 𝑗 ∈ PSH(𝑋, 𝜃 + 𝜖 𝑗𝜔)>0.

We claim that as 𝑗 →∞, the sequence 𝑃𝜃+𝜖 𝑗𝜔 [𝜑 𝑗 ] is decreasing with limit 𝜑.
It is clear that this sequence is decreasing. Let 𝜓 denote its limit for the moment.

It is also clear that 𝜓 ≥ 𝜑. Since 𝜑 is I-model, it remains to show that 𝜓 ⪯I 𝜑. But
the argument is exactly as in the proof of Theorem 7.1.1. So we conclude.

By our claim and Proposition 3.1.10, we find that

lim
𝑗→∞

∫
𝑋

(
𝜃 + 𝜖 𝑗𝜔 + ddc𝜑 𝑗

)𝑛
=

∫
𝑋

𝜃𝑛𝜑 = 0. (7.20)

Fix 𝑗 > 0, take an integer 𝑁 > 0 so that 𝑁𝜖 𝑗 is an integer. Then we compute

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≤ lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑 𝑗 )

)
≤ max
𝑎=0,...,𝑁−1

lim
𝑘′→∞

𝑛!
(𝑘 ′𝑁)𝑛 ℎ

0
(
𝑋,𝑇 ⊗ 𝐿𝑎 ⊗ 𝐿𝑁𝑘′ ⊗ I(𝑁𝑘 ′𝜑 𝑗 )

)
≤ max
𝑎=0,...,𝑁−1

lim
𝑘′→∞

𝑛!
(𝑘 ′𝑁)𝑛 ℎ

0
(
𝑋,𝑇 ⊗ 𝐿𝑎 ⊗ 𝐿𝑁𝑘′ ⊗ 𝐴𝑘′𝑁 𝜖 𝑗 ⊗ I(𝑁𝑘 ′𝜑 𝑗 )

)
=

1
𝑁𝑛

∫
𝑋

(
𝑁𝜃 + 𝜖 𝑗𝑁𝜔 + 𝑁ddc𝜑 𝑗

)𝑛
,

where the third line follows by writing 𝑘 = 𝑁𝑘 ′ + 𝑎 as before, we applied Step 2 on
the last line. Letting 𝑁 →∞, we find that

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
≤

∫
𝑋

(
𝜃 + 𝜖 𝑗𝜔 + ddc𝜑 𝑗

)𝑛
.
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Since we know (7.20), letting 𝑗 →∞, we conclude that

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
= 0,

which is a contradiction. Hence (7.17) is established in full generality. □

Corollary 7.4.1 Let 𝐿 be a pseudo-effective line bundle on 𝑋 , ℎ be a Hermitian
metric on 𝐿 with 𝜃 = 𝑐1 (𝐿, ℎ). Then we have

lim
𝑘→∞

𝑛!
𝑘𝑛
ℎ0

(
𝑋, 𝐿𝑘

)
=

∫
𝑋

𝜃𝑛𝑉𝜃 . (7.21)

This common quantity is the volume of 𝐿, usually denoted by vol 𝐿. In view of
Definition 3.2.4, we have

vol 𝐿 = vol 𝑐1 (𝐿). (7.22)

Example 7.4.1 If 𝑋 is a toric smooth projective variety and 𝜃 is invariant under the
action of the compact torus. Then any 𝜑 ∈ PSHtor (𝑋, 𝜃) is I-good.

Proof Thanks to Lemma 7.1.1, we may assume that 𝜃 ∈ 𝑐1 (𝐿) for some toric
invariant ample line bundle 𝐿. In this case, the result follows from Theorem 7.1.1,
Theorem 7.4.1 and Theorem 5.2.2. □



Chapter 8
The trace operator

The difference between mathematicians and physicists is that
after physicists prove a big result they think it is fantastic but after
mathematicians prove a big result they think it is trivial.
— Lucien Szpiroa

a Lucien Szpiro (1941–2020) was a French mathematician known
for his significant contributions to number theory and arithmetic
geometry. His work often focused on problems related to Diophan-
tine equations and the arithmetic of elliptic curves.

Szpiro is perhaps best known for Szpiro’s Conjecture, which
has deep connections to the famous abc conjecture in number
theory, an important open problem with wide-ranging implications.

In this chapter, we develop the theory of trace operators and prove the analytic
Bertini theorem. These techniques allow us to make induction on the dimension while
studying the singularities. Roughly speaking, the analytic Bertini theorem allows us
to study generic restrictions, while the trace operator handles the remaining cases.

In Section 8.4, we establish a relative version of the Theorem 7.4.1.
The name trace operator comes from the familiar situation in the theory of Sobolev

spaces. Let me take this opportunity to explain a general analogy which I had in mind
for years.

Pluripotential theory Real analysis
Quasi-psh functions Functions

Quasi-psh functions with analytic singularities Smooth functions
I-good singularities Measurable functions
I-equivalence Almost everywhere equality

In real analysis, people wish to study all functions, while in pluripotential theory,
people wish to study all quasi-psh functions. In general, neither is realistic: In real
analysis, we only have a good function theory for measurable functions, for example,
measurability is the key property underlying Littlewood’s three famous principles.
Similarly, in pluripotential theory, a reasonable theory is only established for I-good
singularities.

Smooth functions, as a special class of measurable functions, enjoy much better
properties compared to general ones. For example, the precise pointwise value is
meaningful. For general measurable functions, we only care about their properties
modulo almost everywhere equality. In pluripotential theory, quasi-psh functions with
analytic singularities play the role of smooth functions. General quasi-psh functions
are limits of those with analytic singularities, just as a measurable function can be
approximated by smooth functions.

Coming back to the theme of this chapter, our notion of trace operator is motivated
by this analogy. Recall that given a bounded domain Ω ⊆ R𝑛 with smooth boundary,

193
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we have the famous trace operator of Sobolev:

Tr : 𝑊1, 𝑝 (Ω) → 𝐿 𝑝 (𝜕Ω).

For a smooth function 𝑓 on Ω̄, Tr 𝑓 is nothing but the pointwise restriction of 𝑓
to 𝜕Ω, while for a general Sobolev function 𝑓 , the trace Tr 𝑓 is only defined up to
almost everywhere equality.

Similarly, in pluripotential theory, we wish to restrict a quasi-psh function 𝜑 to
a subvariety. When 𝜑 has analytic singularities, the restriction has a definite value,
while for general singularities, the restriction is only defined up to I-equivalence.

8.1 The definition of the trace operator

Let 𝑋 be a connected compact Kähler manifold and 𝑌 ⊆ 𝑋 be an irreducible analytic
subset.

The trace operator gives a way to restrict a quasi-plurisubharmonic function on
𝑋 to 𝑌 , the normalization of 𝑌 . It follows from [GK20, Proposition 3.5] that 𝑌 is
a normal Kähler space. We refer to Appendix B for the pluripotential theory on
unibranch Kähler spaces.

For later applications, we need this generality even if initially we are only interested
in the smooth case.

Before diving into the trace operators, let us try to understand what goes wrong
with the naive way of doing the restriction: Just take 𝜑|𝑌̃ . Both examples below are
local, but can easily be globalized since the singularities are isolated.

Example 8.1.1 Consider the case where 𝜑 has log-log singularities as in Example 3.1.1.
Locally we can take 𝜑(𝑧) = − log(− log |𝑧 |2). We have 𝜈(𝜑, 0) = 0 but 𝜑 |0 = −∞. So
the naive restriction is not defined in this case.

Even if the naive restriction is defined, it does not behave well.

Example 8.1.2 Consider a psh function 𝜑 in two variables, say

𝜑(𝑧, 𝑤) =
(
− log(− log |𝑧 |2)

)
∨

(
log |𝑤 |2

)
.

Take an arbitrary quasi-equisingular approximation (𝜑 𝑗 ) 𝑗 . Then each 𝜑 𝑗 is locally
bounded since 𝜈(𝜑, (0, 0)) = 0. Let us consider the restrictions to 𝐻 = {𝑧 = 0}. Then
𝜑 𝑗 |𝐻 is still bounded, while

𝜑|𝐻 (𝑤) = log |𝑤 |2.

In other words, the restrictions 𝜑 𝑗 |𝐻 fail to be a quasi-equisingular approximation of
𝜑|𝐻 .

Our trace operator gives an elegant way to solve both problems.
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We first observe that given 𝜑 ∈ QPSH(𝑋) with analytic singularities such that
𝜈(𝜑,𝑌 ) = 0, then 𝜑 |𝑌 . −∞. This observation will be crucial in the sequel.

Proposition 8.1.1 Let 𝜑 ∈ QPSH(𝑋) be a function such that 𝜈(𝜑,𝑌 ) = 0. Let (𝜑𝑖)𝑖 ,
(𝜓𝑖)𝑖 be quasi-equisingular approximations of 𝜑. Then

lim
𝑖→∞

𝑑𝑆
(
𝜑𝑖 |𝑌̃ , 𝜓𝑖 |𝑌̃

)
= 0. (8.1)

The meaning of (8.1) is explained in Corollary 6.2.9.

Proof Take a Kähler form 𝜔 on 𝑋 such that 𝜑𝑖 , 𝜓𝑖 ∈ PSH(𝑋, 𝜔/2) for all 𝑖 ≥ 1. By
Corollary 6.2.9, we need to show that

lim
𝑖→∞

𝑑𝑆,𝜔 |𝑌̃
(
𝜑𝑖 |𝑌̃ , 𝜓𝑖 |𝑌̃

)
= 0.

Assume that this fails, then up to replacing the sequences by subsequences, we may
assume that the following limit exists and

lim
𝑖→∞

𝑑𝑆,𝜔 |𝑌̃
(
𝜑𝑖 |𝑌̃ , 𝜓𝑖 |𝑌̃

)
> 0.

Take a Kähler form 𝜔̃ on 𝑌 , then

lim
𝑖→∞

𝑑𝑆,𝜔 |𝑌̃+𝜔̃
(
𝜑𝑖 |𝑌̃ , 𝜓𝑖 |𝑌̃

)
> 0

by Corollary 6.2.9.
Replacing 𝜑 by 𝑃𝜔 [𝜑]I , we may assume that 𝜑 is I-good. In particular, 𝜑𝑖

𝑑𝑆−−→ 𝜑,
𝜓𝑖

𝑑𝑆−−→ 𝜑. Therefore,
𝜑𝑖 ∨ 𝜓

𝑑𝑆−−→ 𝜑

due to Proposition 6.2.5. We may replace (𝜓𝑖)𝑖 with (𝜑𝑖 ∨ 𝜓𝑖)𝑖 and assume that
𝜑𝑖 ≤ 𝜓𝑖 for all 𝑖 ≥ 1.

Take a decreasing sequence (𝜖 𝑗 ) 𝑗 in R>0 with limit 0 such that (1 − 𝜖 𝑗 )𝜑 𝑗 ∈
PSH(𝑋, 𝜔). We first observe that

lim
𝑖→∞

𝑑𝑆,𝜔 |𝑌̃
(
𝜑𝑖 |𝑌̃ , (1 − 𝜖𝑖)𝜑𝑖 |𝑌̃

)
= 0.

This is a consequence of Lemma 6.2.3. Hence, by Corollary 6.2.9, we find

lim
𝑖→∞

𝑑𝑆,𝜔 |𝑌̃+𝜔̃
(
𝜑𝑖 |𝑌̃ , (1 − 𝜖𝑖)𝜑𝑖 |𝑌̃

)
= 0.

But thanks to Corollary 6.2.6, there is 𝜓 ∈ PSH(𝑌, 𝜔|𝑌̃ + 𝜔̃) such that

𝜑𝑖 |𝑌̃
𝑑𝑆−−→ 𝜓.

Hence,
lim
𝑖→∞

𝑑𝑆,𝜔 |𝑌̃+𝜔̃
(
𝜖, (1 − 𝜖𝑖)𝜑𝑖 |𝑌̃

)
= 0.
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Next by Proposition 1.6.3, we could find a subsequence (𝜓 𝑗𝑖 )𝑖∈Z>0 of (𝜓 𝑗 ) 𝑗 such
that for each 𝑖 ≥ 1,

𝜑 𝑗𝑖 ≤ 𝜓 𝑗𝑖 ⪯ (1 − 𝜖𝑖)𝜑𝑖 .

Hence,
𝜑 𝑗𝑖 |𝑌̃ ≤ 𝜓 𝑗𝑖 |𝑌̃ ⪯ (1 − 𝜖𝑖)𝜑𝑖 |𝑌̃ .

Therefore, by Corollary 6.2.1,

lim
𝑖→∞

𝑑𝑆,𝜔 |𝑌̃+𝜔̃
(
𝜑 𝑗𝑖 |𝑌̃ , 𝜓 𝑗𝑖 |𝑌̃

)
≤ lim
𝑖→∞

𝑑𝑆,𝜔 |𝑌̃+𝜔̃
(
𝜑 𝑗𝑖 |𝑌̃ , (1 − 𝜖𝑖)𝜑𝑖 |𝑌̃

)
= lim
𝑖→∞

𝑑𝑆,𝜔 |𝑌̃+𝜔̃
(
𝜓, (1 − 𝜖𝑖)𝜑𝑖 |𝑌̃

)
=0,

which is a contradiction. □

Definition 8.1.1 Let 𝜑 ∈ QPSH(𝑋) be a function such that 𝜈(𝜑,𝑌 ) = 0. We say
a potential 𝜓 ∈ QPSH(𝑌 ) is a1 trace operator of 𝜑 along 𝑌 if there is a quasi-
equisingular approximation (𝜑 𝑗 ) 𝑗>0 of 𝜑 such that

𝜑 𝑗 |𝑌̃
𝑑𝑆−−→ 𝜓2. (8.2)

By Corollary 6.2.6, the trace operator is always defined. Observe that by Proposi-
tion 8.1.1, the condition (8.2) is independent of the choice of (𝜑 𝑗 ) 𝑗 .

Later on in Theorem 12.3.2, we shall prove that the trace operator corresponds to
the natural way of restricting convex bodies in the toric setting.

Proposition 8.1.2 Let 𝜑 ∈ QPSH(𝑋) such that 𝜈(𝜑,𝑌 ) = 0. Suppose that 𝜓 and 𝜓′
are trace operators of 𝜑 along 𝑌 . Then 𝜓 and 𝜓′ are I-good and 𝜓 ∼𝑃 𝜓′.

Proof That 𝜓 and 𝜓′ are I-good follows from Theorem 7.1.1. The fact that 𝜓 ∼𝑃 𝜓′
follows from Proposition 8.1.1 and Proposition 6.2.2. □

Example 8.1.3 As a trivial example, when 𝑌 is just a single point, then QPSH(𝑌 ) is
canonically identified with R. Any constant 𝑐 ∈ R is a trace operator of a function
𝜑 ∈ QPSH(𝑋) satisfying 𝜈(𝜑,𝑌 ) = 0.

1 Let us resume our analogy in the introduction of this chapter. In real analysis, instead of saying that
a function on 𝜕Ω modulo almost everywhere equality is the trace operator of a Sobolev function 𝑓
on Ω, we say the function is a trace operator of 𝑓 . Similarly, here we sat 𝜓 is a trace operator of 𝜑
instead of the 𝑃-equivalence class of 𝜓 is the trace operator of 𝜑.
2 To be more precise, what we mean is the following: We can find a closed smooth real (1, 1)-form
on 𝑋 such that 𝜑 ∈ PSH(𝑋, 𝜃 ) . Then there is a Kähler form such that 𝜔 + 𝜃 + ddc𝜑 𝑗 ≥ 0 for all
𝑗 ≥ 1. Take a Kähler form 𝜔̃ on 𝑌̃ so that 𝜔̃ ≥ (𝜃 + 𝜔) |𝑌̃ and that 𝜓 ∈ PSH(𝑌̃ , 𝜔̃) . Then our

condition means that 𝜑 𝑗 |𝑌̃
𝑑𝑆,𝜔̃−−−→ 𝜓. This condition is independent of the choices of 𝜃 , 𝜔 and 𝜔̃ by

Corollary 6.2.8.
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Definition 8.1.2 Let 𝜑 ∈ QPSH(𝑋) such that 𝜈(𝜑,𝑌 ) = 0. We write Tr𝑌 (𝜑) for any
trace operator of 𝜑 along 𝑌 .

Given a closed smooth real (1, 1)-form 𝜃 on 𝑋 . When Tr𝑌 (𝜑) can be chosen to lie
in PSH(𝑌, 𝜃 |𝑌̃ )>0, we write

Tr𝜃𝑌 (𝜑) B 𝑃𝜃 |𝑌̃
[
Tr𝑌 (𝜑)

]
= 𝑃𝜃 |𝑌̃

[
Tr𝑌 (𝜑)

]
I .

The trace operator Tr𝑌 (𝜑) is therefore well-defined only up to 𝑃-equivalence by
Proposition 8.1.2. Also observe that if 𝜑 ∈ PSH(𝑋, 𝜃) for some smooth closed real
(1, 1)-form 𝜃 on 𝑋 , then for any Kähler form 𝜔 on 𝑋 , the trace operator Tr𝜃+𝜔

𝑌
(𝜑) is

always defined. In particular, if 𝜃𝜑 is a Kähler current, Tr𝜃
𝑌
(𝜑) is always defined.

Remark 8.1.1 As in Remark 1.7.1, the trace operator could also be applied to closed
positive (1, 1)-currents on 𝑋 . If 𝑇 ∈ Z+ (𝑋, 𝛼) for some pseudo-effective class 𝛼 on
𝑋 (see Definition 1.7.3) and 𝛽 ∈ H1,1 (𝑌,R), then we write

Tr𝛽
𝑌
(𝑇)

for any (if exists) closed positive (1, 1)-current in 𝛽 representing Tr𝑌 (𝑇) when
𝜈(𝑇,𝑌 ) = 0.

Proposition 8.1.3 Let 𝜑 ∈ QPSH(𝑋) such that 𝜈(𝜑,𝑌 ) = 0. Assume that 𝜑|𝑌 . −∞.
Then

𝜑 |𝑌̃ ⪯𝑃 Tr𝑌 (𝜑).

Proof Take a Kähler form 𝜔 such that 𝜔𝜑 is a Kähler current. Let (𝜑 𝑗 ) 𝑗>0 be a
quasi-equisingular approximation of 𝜑 in PSH(𝑋, 𝜔)>0. We may assume that 𝜑 𝑗 ≤ 0
for all 𝑗 ≥ 1.

Then
𝜑 𝑗 |𝑌̃ ≤ 𝑃𝜔 |𝑌̃

[
𝜑 𝑗 |𝑌̃

]
(8.3)

for all 𝑗 ≥ 1. In particular,

𝜑|𝑌̃ ≤ inf
𝑗≥1

𝑃𝜔 |𝑌̃
[
𝜑 𝑗 |𝑌̃

]
.

Thanks to Corollary 6.2.5,

Tr𝑌 (𝜑) ∼𝑃 inf
𝑗≥1

𝑃𝜔 |𝑌̃ [𝜑 𝑗 |𝑌̃ ] . (8.4)

We conclude our assertion. □

Example 8.1.4 Let 𝜑 ∈ QPSH(𝑋) such that 𝜈(𝜑,𝑌 ) = 0. Assume that 𝜑 has analytic
singularities, then

Tr𝑌 (𝜑) ∼𝑃 𝜑 |𝑌̃ .

Example 8.1.5 Let 𝜑 ∈ QPSH(𝑋). Take a closed real smooth (1, 1)-form 𝜃 on 𝑋
such that 𝜑 ∈ PSH(𝑋, 𝜃)>0, then
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Tr𝑋 (𝜑) ∼𝑃 𝑃𝜃 [𝜑]I , Tr𝜃𝑋 (𝜑) = 𝑃𝜃 [𝜑]I .

In particular, the trace operator can be regarded as a generalization of the I-envelope.

Example 8.1.6 Assume that 𝜑 ∈ PSH(𝑋, 𝜃) for some closed smooth real (1, 1)-form
𝜃 on 𝑋 , 𝜈(𝜑,𝑌 ) = 0 and

lim
𝜖↘0

∫
𝑌

(
𝜃 |𝑌 + 𝜖𝜔|𝑌 + ddc Tr𝜃+𝜖 𝜔𝑌 (𝜑)

)dim𝑌
> 0 (8.5)

for any arbitrary choice of a Kähler form 𝜔 on 𝑋 . Then it follows from Proposi-
tion 3.1.10 that Tr𝜃

𝑌
(𝜑) is defined, and its mass is exact the above limit.

As a consequence, we have the following formula:∫
𝑌

(
𝜃 |𝑌 + 𝜖𝜔 |𝑌 + ddc Tr𝜃𝑌 (𝜑)

)dim𝑌
= lim
𝜖↘0

∫
𝑌

(
𝜃 |𝑌 + 𝜖𝜔 |𝑌 + ddc Tr𝜃+𝜖 𝜔𝑌 (𝜑)

)dim𝑌
,

(8.6)
where the left-hand side is understood as 0 if Tr𝜃

𝑌
(𝜑) is not defined.

Remark 8.1.2 The trace operator allows us to introduce the following extension of
the moving Seshadri constant: Let 𝑇 ∈ Z+ (𝑋, 𝛼) and 𝑥 ∈ 𝑋 , we define

𝜖 (𝑇, 𝑥) B inf
𝑉∋𝑥

(
vol Tr𝛼 |𝑉̃

𝑉
𝑇

mult𝑥 𝑉

) 1
dim𝑉

,

where vol Tr𝛼 |𝑉̃
𝑉

𝑇 = 0 if Tr𝛼 |𝑉̃
𝑉

𝑇 is not defined. Here 𝑉 runs over all positive-
dimensional closed irreducible analytic subsets of 𝑋 containing 𝑥.

These moving Seshadri constants seem to be new. But since I do not have
particularly good applications in mind, I will not study these objects in this book.

8.2 Properties of the trace operator

Let 𝑋 be a connected compact Kähler manifold and 𝑌 ⊆ 𝑋 be an irreducible analytic
subset.

We prove a few elementary properties of the trace operator.

Proposition 8.2.1 Let 𝜑, 𝜓 ∈ QPSH(𝑋), 𝜆 > 0. Assume that 𝜈(𝜑,𝑌 ) = 𝜈(𝜓,𝑌 ) = 0.
Then we have the following:

(1) Suppose that 𝜑 ⪯I 𝜓, then Tr𝑌 (𝜑) ⪯𝑃 Tr𝑌 (𝜓).
(2) We have

Tr𝑌 (𝜑 + 𝜓) ∼𝑃 Tr𝑌 (𝜑) + Tr𝑌 (𝜓).

(3) We have
Tr𝑌 (𝜆𝜑) ∼𝑃 𝜆 Tr𝑌 (𝜑).
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(4) We have
Tr𝑌 (𝜑 ∨ 𝜓) ∼𝑃 Tr𝑌 (𝜑) ∨ Tr𝑌 (𝜓).

Proof Take a closed smooth real (1, 1)-form 𝜃 on 𝑋 such that 𝜃𝜑 , 𝜃𝜓 are both Kähler
currents. Let (𝜑 𝑗 ) 𝑗 and (𝜓 𝑗 ) 𝑗 be quasi-equisingular approximations of 𝜑 and 𝜓 in
PSH(𝑋, 𝜃) respectively. We may assume that 𝜑 𝑗 ≤ 0 and 𝜓 𝑗 ≤ 0 for all 𝑗 ≥ 1.

(1) By Corollary 7.1.2 and Proposition 6.2.5, we may assume that 𝜑 𝑗 ≤ 𝜓 𝑗 for all
𝑗 . Then our assertion follows from Proposition 6.2.4.

(2) It follows from Theorem 6.2.2 that 𝜑 𝑗 + 𝜓 𝑗
𝑑𝑆−−→ 𝑃𝜃 [𝜑]I + 𝑃𝜃 [𝜓]I . However,

by Proposition 3.2.11 and Proposition 7.2.1, we have

𝑃𝜃 [𝜑]I + 𝑃𝜃 [𝜓]I ∼𝑃 𝑃𝜃 [𝜑 + 𝜓]I .

Therefore, by Proposition 6.2.2, Corollary 7.1.2 and Proposition 1.6.1, (𝜑 𝑗 + 𝜓 𝑗 ) 𝑗 is
a quasi-equisingular approximation of 𝜑 + 𝜓. We conclude using Theorem 6.2.2.

(3) Let (𝜆 𝑗 ) 𝑗 be an increasing sequence of positive rational numbers with limit
𝜆. Then (𝜆 𝑗𝜑 𝑗 ) 𝑗 is a quasi-equisingular approximation of 𝜑. Our assertion follows
Lemma 6.2.3.

(4) By Proposition 6.2.5, we have

𝜑 𝑗 ∨ 𝜓 𝑗
𝑑𝑆−−→ 𝑃𝜃 [𝜑]I ∨ 𝑃𝜃 [𝜓]I .

By Proposition 3.2.11 and Proposition 7.2.1, we have

𝑃𝜃 [𝜑]I ∨ 𝑃𝜃 [𝜓]I ∼𝑃 𝑃𝜃 [𝜑 ∨ 𝜓]I .

Therefore, our assertion follows exactly as in the proof of (2). □

The trace operator is continuous along 𝑑𝑆-convergent decreasing sequences.

Proposition 8.2.2 Let (𝜑 𝑗 ) 𝑗∈𝐼 be a decreasing net in QPSH(𝑋). Assume that there
exists a closed real smooth (1, 1)-form 𝜃 such that 𝜑 𝑗 ∈ PSH(𝑋, 𝜃) for each 𝑗 ∈ 𝐼.
Assume that 𝜑 𝑗

𝑑𝑆−−→ 𝜑 ∈ QPSH(𝑋) and 𝜈(𝜑,𝑌 ) = 0. Then

Tr𝑌 (𝜑 𝑗 )
𝑑𝑆−−→ Tr𝑌 (𝜑).

In view of Corollary 7.1.2, the trace operator preserves the property of being a
quasi-equisingular approximation, hence solving the problem in Example 8.1.1.

Proof By Corollary 6.2.8, we may assume that there is a Kähler form 𝜔 on 𝑋 such
that 𝜑, 𝜑 𝑗 ∈ PSH(𝑋, 𝜃 −𝜔) for all 𝑗 ∈ 𝐼. Thanks to Proposition 8.2.1, for each 𝑗 ≥ 1,

Tr𝑌 (𝜑 𝑗+1) ⪯𝑃 Tr𝑌 (𝜑 𝑗 ).

It follows from Proposition 8.2.1 and Corollary 6.2.6 that there exists𝜓 ∈ PSH(𝑌, 𝜃 |𝑌̃ )
such that Tr𝑌 (𝜑 𝑗 )

𝑑𝑆−−→ 𝜓.
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For each 𝑗 ≥ 1, we take a quasi-equisingular approximation (𝜑𝑘
𝑗
)𝑘 in PSH(𝑋, 𝜃)

of 𝜑 𝑗 . Using Theorem 1.6.2, we may guarantee that

𝜑𝑘𝑗+1 ⪯ 𝜑
𝑘
𝑗

for each 𝑗 , 𝑘 ≥ 1. In particular, (𝜑 𝑗
𝑗
) 𝑗 is a quasi-equisingular approximation of 𝜑. By

Proposition 6.2.4, we have 𝜓 ⪯𝑃 Tr𝑌 (𝜑).
Conversely, by Proposition 8.2.1, Tr𝑌 (𝜑 𝑗 ) ⪰𝑃 Tr𝑌 (𝜑). It follows again from

Proposition 6.2.4 that Tr𝑌 (𝜑) ⪯𝑃 𝜓. □

Example 8.2.1 The trace operator is not continuous along increasing sequences. Let
us consider the case 𝑋 = P2 with coordinates (𝑧1, 𝑧2) on C2 ⊆ 𝑋 . Let 𝜔FS denote
the Fubini–Study metric. The subvariety 𝑌 � P1 is defined by 𝑧2 = 0. Consider an
increasing sequence (𝜑 𝑗 ) 𝑗 in PSH(𝑋, 𝜔FS), whose potentials near (0, 0) are given by

log |𝑧1 |2 ∨
(
𝑘−1 log |𝑧2 |2

)
+ O(1).

The pointwise restriction of these potentials to 𝑌 are given locally by

log |𝑧1 |2 + O(1).

On the other hand, locally

log |𝑧1 |2 ∨
(
𝑘−1 log |𝑧2 |2

)
→ 0

almost everywhere as 𝑘 → ∞. So the trace operator is not continuous along the
sequence (𝜑 𝑗 ) 𝑗 .

Lemma 8.2.1 Let 𝜋 : 𝑍 → 𝑋 be a proper bimeromorphic morphism with 𝑍 being a
connected Kähler manifold. Assume that𝑊 (resp. 𝑌 ) be analytic subsets in 𝑍 (resp.
𝑋) of codimension 1 such that the restriction Π : 𝑊 → 𝑌 of 𝜋 is defined and is
bimeromorphic, so that we have the following commutative diagram

𝑊̃ 𝑊 𝑍

𝑌 𝑌 𝑋.

Π̃ Π 𝜋

Then for any 𝜑 ∈ QPSH(𝑋) with 𝜈(𝜑,𝑌 ) = 0, we have

Π̃∗ Tr𝑌 (𝜑) ∼𝑃 Tr𝑊 (𝜋∗𝜑). (8.7)

Proof We first observe that by Zariski’s main theorem, 𝜈(𝜋∗𝜑,𝑊) = 0. So the
right-hand side of (8.7) makes sense.

Step 1. Assume that 𝜑 has analytic singularities. It suffices to apply Example 8.1.4
to reformulate (8.7) as

Π̃∗ (𝜑 |𝑌̃ ) ∼𝑃 (𝜋∗𝜑) |𝑊̃ .
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In fact, the strict equality holds, which is nothing but the functoriality of pullbacks.
Step 2. Next we handle the general case. Choose a smooth closed real (1, 1)-form

𝜃 such that 𝜃𝜑 is a Kähler current. Take a quasi-equisingular approximation (𝜑 𝑗 ) 𝑗 of
𝜑 in PSH(𝑋, 𝜃). By Corollary 7.1.2, (𝜋∗𝜑 𝑗 ) 𝑗 is a quasi-equisingular approximation
of 𝜋∗𝜑. From Step 1, we know that for each 𝑗 ,

Π̃∗ Tr𝑌 (𝜑 𝑗 ) ∼𝑃 Tr𝑊 (𝜋∗𝜑 𝑗 ).

Letting 𝑗 →∞, we conclude (8.7) using Proposition 8.2.2. □

Proposition 8.2.3 Let 𝜑 ∈ QPSH(𝑋) with 𝜈(𝜑,𝑌 ) = 0. Assume that 𝑌 is smooth.
Then for any 𝜆 > 0, we have

I(𝜆 Tr𝑌 (𝜑)) ⊆ Res𝑌 I(𝜆𝜑). (8.8)

See Definition 1.4.5 for the definition of Res𝑌 .

Proof Take a Kähler form 𝜔 on 𝑋 such that 𝜔𝜑 is a Kähler current.
Let (𝜑 𝑗 ) 𝑗 be a quasi-equisingular approximation of 𝜑 in PSH(𝑋, 𝜔).
By definition, for each 𝑗 ≥ 1, we get that

Tr𝑌 (𝜑) ⪯𝑃 𝜑 𝑗 |𝑌 .

For any 𝜆′ > 𝜆 > 0, we can find 𝑗 > 0 so that

I(𝜆′𝜑 𝑗 ) ⊆ I(𝜆𝜑).

By Theorem 1.4.5, we have

I(𝜆′ Tr𝑌 (𝜑)) ⊆ I(𝜆′𝜑 𝑗 |𝑌 ) ⊆ Res𝑌 I(𝜆′𝜑 𝑗 ) ⊆ Res𝑌 I(𝜆𝜑).

Thanks to Theorem 1.4.4, we conclude (8.8). □

Lastly, we turn our attention to global sections. For this we will need the following
global Ohsawa–Takegoshi extension theorem for the trace operator:

Theorem 8.2.1 Let 𝐿 be a big line bundle on 𝑋 and 𝜃 is a closed real smooth
(1, 1)-form on 𝑋 representing 𝑐1 (𝐿). Suppose that 𝜑 ∈ PSH(𝑋, 𝜃) and 𝜃𝜑 is a
Kähler current. Assume that 𝜈(𝜑,𝑌 ) = 0. Let 𝑇 be a holomorphic line bundle on 𝑋 .
Then there exists 𝑘0 such that for all 𝑘 ≥ 𝑘0 and 𝑠 ∈ H0 (𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗I(𝑘 Tr𝜃

𝑌
(𝜑))),

there exists an extension 𝑠 ∈ H0 (𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)).

It is of interest to know if one could control the 𝐿2-norm of 𝑠 in the above result.

Proof Fix a Kähler form 𝜔 on 𝑋 . We may assume that 𝑌 ≠ 𝑋 and that 𝜃𝜑 ≥ 3𝛿𝜔 for
some 𝛿 > 0. Let (𝜑 𝑗 ) 𝑗 be the decreasing quasi-equisingular approximation of 𝜑 in
PSH(𝑋, 𝜃). We can assume that 𝜃𝜑 𝑗 ≥ 2𝛿𝜔 for all 𝑗 ≥ 1. Also, there exists 𝜖0 > 0
such that 𝜃 (1+𝜖 )𝜑 𝑗 ≥ 𝛿𝜔 for any 𝜖 ∈ (0, 𝜖0). Take 𝑘0 = 𝑘0 (𝛿) as in Theorem 1.8.1.
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We fix 𝑘 ≥ 𝑘0 and 𝑠 ∈ H0 (𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I(𝑘 Tr𝜃
𝑌
(𝜑))). By Theorem 1.4.4, there

exists 𝜖 ∈ (0, 𝜖0) such that 𝑠 ∈ H0 (𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I(𝑘 (1 + 𝜖) Tr𝜃
𝑌
(𝜑))).

Since Tr𝜃
𝑌
(𝜑) ⪯ 𝜑 𝑗 |𝑌 , we obtain that 𝑠 ∈ H0 (𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I(𝑘 (1 + 𝜖)𝜑 𝑗 |𝑌 )).

Due to Theorem 1.8.1 there exists 𝑠 𝑗 ∈ H0 (𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘 (1 + 𝜖)𝜑 𝑗 )) such that
𝑠 𝑗 |𝑌 = 𝑠, for all 𝑗 .

But by definition of quasi-equisingular approximation, we obtain that for high
enough 𝑗 the inclusion I(𝑘 (1 + 𝜖)𝜑 𝑗 ) ⊆ I(𝑘𝜑) holds. As a result, 𝑠 𝑗 ∈ H0 (𝑋,𝑇 ⊗
𝐿𝑘 ⊗ I(𝑘𝜑)) for high enough 𝑗 , finishing the argument. □

8.3 Relation to the classical restricted volumes

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝑌 be a connected
submanifold of dimension 𝑚. Fix a big class 𝛼 ∈ H1,1 (𝑋,R). Take a closed smooth
real (1, 1)-form 𝜃 ∈ 𝛼. Fix a Kähler form 𝜔 on 𝑋 .

Recall that the notions of non-Kähler locus and non-nef locus was defined in
Definition 1.7.6 and Definition 1.7.7.

When 𝑌 ⊈ nK(𝛼), Matsumura ([Mat13, Definition 1.4]) defines the restricted
volume of {𝜃} to 𝑌 in the following manner:

vol𝑋 |𝑌 (𝛼) B sup
𝜑

∫
𝑌

(𝜃 |𝑌 + ddc𝜑|𝑌 )𝑚 , (8.9)

where 𝜑 runs over elements in PSH(𝑋, 𝜃) with analytic singularities such that
𝜑|𝑌 . −∞. This definition is independent of the choice of 𝜃.

In case𝑌 ⊈ nn(𝛼), Collins–Tosatti [CT22] extend the above definition of restricted
volume:

vol𝑋 |𝑌 (𝛼) B lim
𝜖↘0

sup
𝜑

∫
𝑌

(𝜃 |𝑌 + 𝜖𝜔 |𝑌 + ddc𝜑 |𝑌 )𝑚 . (8.10)

where 𝜑 runs over elements in PSH(𝑋, 𝜃 + 𝜖𝜔) with analytic singularities such that
𝜑|𝑌 . −∞. This definition is independent of the choice of 𝜃.

These definitions extend the more classical definition in the algebraic setting due
to [ELM+09].
Proposition 8.3.1 Assume that 𝑌 ⊈ nK(𝛼), then

vol𝑋 |𝑌 (𝛼) =
∫
𝑌

(
𝜃 |𝑌 + ddc Tr𝜃𝑌 (𝑉𝜃 )

)𝑚
=

∫
𝑌

(𝜃 |𝑌 + ddc𝑉𝜃 |𝑌 )𝑚. (8.11)

Proof We start with the first equality of (8.11). Since 𝑌 ⊈ nK(𝛼), 𝑉𝜃 |𝑌 . −∞ as a
consequence of Theorem 2.4.2, hence also 𝜈(𝑉𝜃 , 𝑌 ) = 0.

Take a quasi-equisingular approximation (𝜑 𝑗 ) 𝑗>0 of𝑉𝜃 with 𝜑 𝑗 ∈ PSH(𝑋, 𝜃+𝜖 𝑗𝜔).
By Theorem 2.4.4, we have∫

𝑌

(
𝜃 |𝑌 + 𝜖 𝑗𝜔 + ddc𝜑 𝑗 |𝑌

)𝑚 ≥ ∫
𝑌

(𝜃 |𝑌 + ddc𝜑 |𝑌 )𝑚 .
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Letting 𝑗 →∞ and applying Example 8.1.6, we conclude that the ≥ direction in the
first equality of (8.11).

For the reverse direction, by definition, for any fixed 𝜖 > 0, we have∫
𝑌

(𝜃 |𝑌 + 𝜖 𝑗𝜔 |𝑌 + ddc𝜑 𝑗 |𝑌 )𝑚 ≤
∫
𝑌

(𝜃 |𝑌 + 𝜖𝜔 |𝑌 + ddc𝜑 𝑗 |𝑌 )𝑚 ≤ vol𝑋 |𝑌 ({𝜃} + 𝜖{𝜔})

for all large enough 𝑗 . Letting 𝑗 → ∞ and 𝜖 ↘ 0, using the continuity of vol𝑋 |𝑌
([Mat13, Corollary 4.11]) together with Example 8.1.6, we conclude the first equality
of (8.11).

Now we address the second equality. Due to Theorem 2.4.4, the defining formula
(8.9), and the definition of 𝑉𝜃 , we obtain that

vol𝑋 |𝑌 ({𝜃}) ≤
∫
𝑌

(𝜃 |𝑌 + ddc𝑉𝜃 |𝑌 )𝑚.

The reverse equality now follows from the first equality of (8.11), Theorem 2.4.4 and
the fact that 𝑉𝜃 |𝑌 ⪯𝑃 Tr𝜃

𝑌
(𝑉𝜃 ) as proved in Proposition 8.1.3. □

Theorem 8.3.1 If 𝑌 ⊈ nn(𝛼), then

vol𝑋 |𝑌 (𝛼) = lim
𝜖→0+

∫
𝑌

(𝜃 |𝑌 + 𝜖𝜔 |𝑌 + ddc𝑉𝜃+𝜖 𝜔 |𝑌 )𝑚

= lim
𝜖→0+

∫
𝑌

(
𝜃 |𝑌 + 𝜖𝜔 |𝑌 + ddc Tr𝜃+𝜖 𝜔𝑌 (𝑉𝜃+𝜖 𝜔)

)𝑚
=

∫
𝑌

(
𝜃 |𝑌 + ddc Tr𝜃𝑌 (𝑉𝜃 )

)𝑚
.

(8.12)

Proof Since 𝜈(𝑉𝜃 , 𝑌 ) = 0, we have 𝑌 ⊈ nK(𝛼 + 𝜖{𝜔}) for all 𝜖 > 0. As a result, due
to (8.10) and (8.11) only the last equality of (8.12) needs to be argued.

Thanks to Lemma 6.2.6, we have

𝑉𝜃+𝜖 𝜔
𝑑𝑆−−→ 𝑉𝜃

as 𝜖 → 0+.
Therefore, using Proposition 8.2.2, we find

Tr𝑌 (𝑉𝜃+𝜖 𝜔)
𝑑𝑆−−→ Tr𝑌 (𝑉𝜃 ) .

Therefore, thanks to Theorem 6.2.1, for any 𝜖0 > 0, we have

lim
𝜖→0+

∫
𝑌

(𝜃 |𝑌 + 𝜖0𝜔 |𝑌 )𝑚Tr𝜃+𝜖0𝜔
𝑌

(𝑉𝜃+𝜖 𝜔 )
=

∫
𝑌

(𝜃 |𝑌+𝜖0𝜔 |𝑌 )𝑚Tr𝜃+𝜖0𝜔
𝑌

(𝑉𝜃 )
≥

∫
𝑌

(𝜃 |𝑌 )𝑚Tr𝜃
𝑌
(𝑉𝜃 )

On the other hand,
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lim
𝜖0→0+

∫
𝑌

(𝜃 |𝑌 + 𝜖0𝜔|𝑌 )𝑚Tr𝜃+𝜖0𝜔
𝑌

(𝑉𝜃 )
= lim
𝜖0→0+

∫
𝑌

(𝜃 |𝑌 + 𝜖0𝜔 |𝑌 )𝑚Tr𝜃
𝑌
(𝑉𝜃 )

=

∫
𝑌

(𝜃 |𝑌 )𝑚Tr𝜃
𝑌
(𝑉𝜃 )

.

These two equations together imply the existence of (𝜖 𝑗 ) 𝑗>0 so that 0 < 𝜖 𝑗 < 1/ 𝑗 we
have that

lim
𝑗→∞

∫
𝑌

(
𝜃 |𝑌 + 𝑗−1𝜔 |𝑌

)𝑚
Tr𝜃+ 𝑗

−1𝜔
𝑌

(𝑉𝜃+𝜖 𝑗 𝜔 )
=

∫
𝑌

(𝜃 |𝑌 )𝑚Tr𝜃
𝑌
(𝑉𝜃 )

. (8.13)

Moreover, for each 𝑗 > 0,∫
𝑌

(
𝜃 |𝑌 + 𝑗−1𝜔 |𝑌

)𝑚
Tr𝜃 |𝑌 + 𝑗

−1𝜔 |𝑌
𝑌

(𝑉𝜃+𝜖 𝑗 𝜔 )
≥

∫
𝑌

(
𝜃 |𝑌 + 𝜖 𝑗𝜔 |𝑌

)𝑚
Tr
𝜃+𝜖 𝑗 𝜔
𝑌

(𝑉𝜃+𝜖 𝑗 𝜔 )

≥
∫
𝑌

(𝜃 |𝑌 )𝑚Tr𝜃
𝑌
(𝑉𝜃 )

.

(8.14)

Putting (8.13) and (8.14) together, it results that

lim
𝑗→∞

∫
𝑌

(
𝜃 |𝑌 + 𝜖 𝑗𝜔 |𝑌

)𝑚
Tr
𝜃+𝜖 𝑗 𝜔
𝑌

(𝑉𝜃+𝜖 𝑗 𝜔 )
=

∫
𝑌

(𝜃 |𝑌 )𝑚Tr𝜃
𝑌
(𝑉𝜃 )

.

Finally, since
∫
𝑌

(
𝜃 |𝑌 + 𝜖𝜔 |𝑌 + ddc Tr𝜃+𝜖 𝜔

𝑌
(𝑉𝜃+𝜖 𝜔)

)𝑚 depends monotonically on
𝜖 > 0, we conclude that

lim
𝜖→0+

∫
𝑌

(
𝜃 |𝑌 + 𝜖𝜔 |𝑌 + ddc Tr𝜃+𝜖 𝜔𝑌 (𝑉𝜃+𝜖 𝜔)

)𝑚
=

∫
𝑌

(𝜃 |𝑌 )𝑚Tr𝜃
𝑌
(𝑉𝜃 )

.

8.4 Restricted volumes of line bundles

Let 𝑋 be a connected projective manifold of dimension 𝑛 and 𝑌 ⊆ 𝑋 be a connected
submanifold of dimension 𝑚. Consider a big line bundle 𝐿 on 𝑋 , a Hermitian metric
ℎ0 on 𝐿 with 𝜃 = 𝑐1 (𝐿, ℎ0). Let 𝐴 be a very ample line bundle on 𝑋 . Take a Hermitian
metric ℎ𝐴 on 𝐴 such that 𝜔 = ddcℎ𝐴 is a Kähler form.

Using the trace operator, one could prove the following generalization of Theo-
rem 7.4.1.

Theorem 8.4.1 Let ℎ be a singular plurisubharmonic metric on 𝐿 with 𝜈(ddcℎ,𝑌 ) = 0.
Assume that

lim
𝜖→0+

(
Tr𝑐1 (𝐿 |𝑌 )+𝜖 𝜔
𝑌

(
𝑐1 (𝐿, ℎ)

) )𝑚
> 0. (8.15)

Then for any holomorphic line bundle 𝑇 on 𝑋 we have that
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𝑌

(
Tr𝑐1 (𝐿 |𝑌 )
𝑌

(
𝑐1 (𝐿, ℎ)

) )𝑚
= lim
𝑘→∞

𝑚!
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ Res𝑌

(
I(ℎ𝑘)

))
. (8.16)

Recall that Res𝑌 is defined in Definition 1.4.5. Observe that by Example 8.1.6, (8.15)
implies that Tr𝑐1 (𝐿 |𝑌 )

𝑌
(𝑐1 (𝐿, ℎ)) is defined. So (8.16) is defined.

We will identify ℎ with 𝜑 ∈ PSH(𝑋, 𝜃) as in (1.22).
We only need to consider the case 𝑌 ≠ 𝑋 , since otherwise, the result is proved in

Theorem 7.4.1. We will always assume 𝑌 ≠ 𝑋 in the sequel.

Lemma 8.4.1 There is 𝜓𝑌 ∈ QPSH(𝑋) with neat analytic singularities such that
{𝜓𝑌 = −∞} = 𝑌 and in an open neighborhood of 𝑌 , we have

𝜓𝑌 (𝑥) = 2(𝑛 − 𝑚) log dist(𝑥,𝑌 ) (8.17)

for some Riemannian distance function dist(·, 𝑌 ).

See Definition 1.6.1 for the definition of neat analytic singularities.
See [Fin22a, Lemma 2.3] for the proof.

Lemma 8.4.2 The multiplier ideal sheaf of 𝜓𝑌 can be calculated as

I(𝜓𝑌 ) = I𝑌 . (8.18)

Moreover, given 𝑦 ∈ 𝑌 and 𝜖 > 0, for any germ 𝑓 ∈ I𝑌,𝑦 we have∫
𝑈

| 𝑓 | 𝜖 e−𝜓𝑌𝜔𝑛 < ∞, (8.19)

where𝑈 is an open neighborhood of 𝑦 in 𝑋 .

In other words, 𝜓𝑌 has log canonical singularities.

Proof Since 𝜓𝑌 is locally bounded away from 𝑌 , it suffices to prove (8.18) along 𝑌 .
Fix 𝑦 ∈ 𝑌 , and we will verify (8.18) germ-wise at 𝑦.

Take an open neighbourhood𝑈 ⊂ 𝑋 of 𝑦 and a biholomorphic map 𝐹 : 𝑈 → 𝑉×𝑊 ,
where 𝑉 is an open neighbourhood of 𝑦 in 𝑌 and 𝑊 is a connected open subset in
C𝑛−𝑚 containing 0, such that 𝐹 (𝑌 ∩𝑈) = 𝑉 × {0}. For any 𝑥 ∈ 𝑈, write 𝑥𝑉 , 𝑥𝑊 for
the two components of 𝐹 (𝑥) in 𝑉 and𝑊 respectively. We denote the coordinates in
C𝑛−𝑚 as 𝑤1, . . . , 𝑤𝑛−𝑚.

Due to (8.17), after possibly shrinking𝑈, we may assume that

exp(−𝜓𝑌 (𝑥)) = |𝑥𝑊 |2𝑚−2𝑛 + O(1)

for any 𝑥 ∈ 𝑈 \ 𝑌 .
Given 𝑓 ∈ I𝑌,𝑦 , after shrinking𝑈, we may assume that there exists 𝑔1, . . . , 𝑔𝑛−𝑚 ∈

H0 (𝑉 ×𝑊,O𝑉×𝑊 ) such that

𝑓 =

𝑛−𝑚∑︁
𝑖=1

𝑤𝑖𝑔𝑖 .
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In order to verify 𝑓 ∈ I(𝜓𝑌 )𝑦 , it suffices to show 𝑤𝑖𝑔𝑖 ∈ I
(
(∑𝑛−𝑚

𝑖=1 |𝑤𝑖 |2)𝑚−𝑛
)
𝐹 (𝑦) ,

which follows from Fubini’s theorem. The proof of (8.19) is similar.
Conversely, take 𝑓 ∈ I(𝜓𝑌 ), the similar application of Fubini’s theorem shows

that after possible shrinking𝑈, we have 𝑓 |𝑌 = 0. By Rückert’s Nullstellensatz [GR84,
Page 67], it follows that 𝑓 ∈ I𝑌 . □

Lemma 8.4.3 Assume that 𝜑 has analytic singularity type and 𝜃𝑢 is a Kähler current.
Suppose that 𝜑|𝑌 . −∞. Then∫

𝑌

(𝜃 |𝑌 + ddc𝜑 |𝑌 )𝑚 = lim
𝑘→∞

𝑚!
𝑘𝑚

dimC
{
𝑠 |𝑌 : 𝑠 ∈ H0 (𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑))

}
. (8.20)

Recall that I∞ is defined in Definition 1.6.6.

Proof Suppose that 𝜖 ∈ (0, 1) is small enough so that (1 − 𝜖)𝑢 ∈ PSH(𝑋, 𝜃).
Using Theorem 7.4.1 we can start to write the following sequence of inequalities:

1
𝑚!

∫
𝑌

(𝜃 |𝑌 + ddc𝜑|𝑌 )𝑚

= lim
𝑘→∞

1
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I(𝑘𝜑 |𝑌 )

)
≤ lim
𝑘→∞

1
𝑘𝑚

dim
{
𝑠 |𝑌 : 𝑠 ∈ H0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)}
by Theorem 1.8.1

≤ lim
𝑘→∞

1
𝑘𝑚

dim
{
𝑠 |𝑌 : 𝑠 ∈ H0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)}
≤ lim
𝑘→∞

1
𝑘𝑚

dim
{
𝑠 |𝑌 : 𝑠 ∈ H0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I∞ ((1 − 𝜖)𝑘𝜑)

)}
by Lemma 1.6.3

≤ lim
𝑘→∞

1
𝑘𝑚

dim
{
𝑠 ∈ H0

(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌

)
: log ℎ𝑘 (𝑠, 𝑠) ≤ (1 − 𝜖)𝑘𝜑 |𝑌

}
≤ lim
𝑘→∞

1
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I ((1 − 𝜖)𝑘𝜑 |𝑌 )

)
=

1
𝑚!

∫
𝑌

(𝜃 |𝑌 + (1 − 𝜖)ddc𝜑|𝑌 )𝑚 by Theorem 7.4.1.

Letting 𝜖 → 0, (8.20) follows from multi-linearity of the non-pluripolar product. □

Proposition 8.4.1 In the setting of Theorem 8.4.1, assume that ddcℎ is a Kähler
current. Then (8.16) holds.

Proof Let (𝜑 𝑗 ) 𝑗 a quasi-equisingular approximation of 𝜑 in PSH(𝑋, 𝜃). After
possibly replacing (𝜑 𝑗 ) 𝑗 by a subsequence, there exists 𝜖0 ∈ (0, 1) ∩ Q such that
𝜃 (1−𝜖 )2𝜑 𝑗 and 𝜃 (1−𝜖 )𝜑 𝑗 are also Kähler currents for any 𝜖 ∈ (0, 𝜖0).

We claim that for any 𝑗 ≥ 1 and 𝑘 ∈ N, we have

I∞
(
(1 − 𝜖)𝑘𝜑 𝑗

)
∩ I(𝜓𝑌 ) ⊆ I

(
(1 − 𝜖)2𝑘𝜑 𝑗 + 𝜓𝑌

)
. (8.21)
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Take 𝑥 ∈ 𝑋 , and it suffices to argue (8.21) along the germ of 𝑥. Since 𝜓𝑌 is
locally bounded outside 𝑌 , we may assume that 𝑥 ∈ 𝑌 . Recall that by Lemma 8.4.2,
I(𝜓𝑌 ) = I𝑌 .

Let 𝑓 ∈ I∞ ((1 − 𝜖)𝑘𝜑 𝑗 )𝑥 ∩ I(𝜓𝑌 )𝑥 . Then there is an open neighborhood𝑈 of 𝑥
in 𝑋 such that | 𝑓 |2(1−𝜖 )e−𝑘 (1−𝜖 )2𝜑 𝑗 ≤ 𝐶 holds on 𝑈 \ {𝜑 𝑗 = −∞} for some 𝐶 > 0,
hence ∫

𝑈

| 𝑓 |2e−𝑘 (1−𝜖 )
2𝜑 𝑗−𝜓𝑌 𝜔𝑛 =

∫
𝑈

| 𝑓 |2(1−𝜖 )e−𝑘 (1−𝜖 )2𝜑 𝑗 | 𝑓 |2𝜖 e−𝜓𝑌 𝜔𝑛

≤𝐶
∫
𝑈

| 𝑓 |2𝜖 e−𝜓𝑌 𝜔𝑛 < ∞,

where the last inequality follows from Lemma 8.4.2. We have proved the claim (8.21).
Next we consider the following composition morphism of coherent sheaves on 𝑌 :

Res𝑌 I∞ ((1 − 𝜖)𝑘𝜑 𝑗 ) ↩→
I((1 − 𝜖)2𝑘𝜑 𝑗 )

I∞ ((1 − 𝜖)𝑘𝜑 𝑗 ) ∩ I𝑌
→

I((1 − 𝜖)2𝑘𝜑 𝑗 )
I((1 − 𝜖)2𝑘𝜑 𝑗 + 𝜓𝑌 )

. (8.22)

Here we have identified the coherent O𝑋-modules supported on 𝑌 with coherent
O𝑌 -modules. Note that the target of (8.22) is also supported on 𝑌 as 𝜓𝑌 is locally
bounded outside 𝑌 . We denote the coherent O𝑌 -module whose pushforward to 𝑋
gives I( (1−𝜖 )2𝑘𝜑 𝑗 )

I ( (1−𝜖 )2𝑘𝜑 𝑗+𝜓𝑌 )
by I𝑘, 𝑗 .

In (8.22), the first map is the inclusion and the second one is the obvious projection
induced by (8.21). Although in general the second map fails to be injective, we
observe that the composition is still injective as

I
(
(1 − 𝜖)2𝑘𝜑 𝑗 + 𝜓𝑌

)
⊆ I (𝜓𝑌 ) = I𝑌 .

Therefore, for any 𝑘 ∈ N, we have an injective morphism of coherent O𝑌 -modules:

𝐿 |𝑘𝑌 ⊗ 𝑇 |𝑌 ⊗ Res𝑌 I∞
(
(1 − 𝜖)𝑘𝜑 𝑗

)
↩→ 𝐿 |𝑘𝑌 ⊗ 𝑇 |𝑌 ⊗ I𝑘, 𝑗 . (8.23)

Using Theorem 7.4.1 we can start the following inequalities:
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1
𝑚!

∫
𝑌

(
𝜃 |𝑌 + ddc Tr𝜃𝑌 (𝜑)

)𝑚
= lim
𝑘→∞

1
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I

(
𝑘 Tr𝜃𝑌 (𝜑)

))
by Theorem 7.4.1

≤ lim
𝑘→∞

1
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ Res𝑌 (I(𝑘𝜑))

)
by Theorem 1.4.5

≤ lim
𝑘→∞

1
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ Res𝑌 (I(𝑘𝜑))

)
≤ lim
𝑘→∞

1
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I

(
𝑘𝜑 𝑗

) ��
𝑌

)
≤ lim
𝑘→∞

1
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I∞

(
(1 − 𝜖)𝑘𝜑 𝑗

) ��
𝑌

)
by Lemma 1.6.3

≤ lim
𝑘→∞

1
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I𝑘, 𝑗

)
by (8.23)

≤ lim
𝑘→∞

1
𝑘𝑚

dim

{
𝑠 |𝑌 : 𝑠 ∈ H0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗

I((1 − 𝜖)2𝑘𝜑 𝑗 )
I((1 − 𝜖)2𝑘𝜑 𝑗 + 𝜓𝑌 )

)}
= lim
𝑘→∞

1
𝑘𝑚

dim
{
𝑠 |𝑌 : 𝑠 ∈ H0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I

(
(1 − 𝜖)2𝑘𝜑 𝑗

))}
=

1
𝑚!

∫
𝑌

(
𝜃 |𝑌 + (1 − 𝜖)2ddc𝜑 𝑗 |𝑌

)𝑚
by Lemma 8.4.3,

where in the penultimate line we used [CDM17, Theorem 1.1(6)] for 𝑞 = 0. Letting
𝜖 →∞ and then 𝑗 →∞ the result follows. □

Proof (Proof of Theorem 8.4.1) Using Proposition 8.2.3 and Theorem 7.4.1 we
obtain that∫

𝑌

(
𝜃 |𝑌 + ddc Tr𝜃𝑌 (𝜑)

)𝑚
= lim
𝑘→∞

𝑚!
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I

(
𝑘 Tr𝜃𝑌 (𝜑)

))
≤ lim
𝑘→∞

𝑚!
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ Res𝑌 (I(𝑘𝜑))

)
.

Now we address the other direction in (8.16). Let 𝜙 ∈ H0 (𝑋, 𝐴) be a section that
does not vanish identically on 𝑌 . Such 𝜙 exists since 𝐴 is very ample.

We fix 𝑘0 ∈ N. For any 𝑘 ≥ 0, we have that 𝑘 = 𝑞𝑘0 + 𝑟 with 𝑞, 𝑟 ∈ N and
𝑟 ∈ {0, . . . , 𝑘0 − 1}. Also, we have an injective linear map

H0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I (𝑘𝜑 |𝑌 )

) ·𝜙⊗𝑞
−−−−→ H0

(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ 𝐴|

𝑞

𝑌
⊗ I (𝑘𝜑|𝑌 )

)
.

Therefore,
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lim
𝑘→∞

𝑚!
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I (𝑘𝜑 |𝑌 )

)
≤ lim
𝑘→∞

𝑚!
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ 𝐴|

𝑞

𝑌
⊗ I (𝑘𝜑 |𝑌 )

)
=

1
𝑘𝑚0

lim
𝑞→∞

𝑚!
𝑞𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑞𝑘0

𝑌
⊗ 𝐴|𝑞

𝑌
⊗ 𝐿 |𝑟𝑌 ⊗ I (𝑘𝜑 |𝑌 )

)
≤ 1
𝑘𝑚0

lim
𝑞→∞

𝑚!
𝑞𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑞𝑘0

𝑌
⊗ 𝐴|𝑞

𝑌
⊗ 𝐿 |𝑟𝑌 ⊗ I (𝑘0𝑞𝜑|𝑌 )

)
=

∫
𝑌

(
𝜃 |𝑌 + 𝑘−1

0 𝜔 |𝑌 + ddc Tr𝜃+𝑘
−1
0 𝜔

𝑌
(𝜑)

)𝑚
=

∫
𝑌

(
𝜃 |𝑌 + 𝑘−1

0 𝜔 |𝑌 + ddc Tr𝜃𝑌 (𝜑)
)𝑚
,

where in the fourth line we have used that 𝑘0𝑞 ≤ 𝑘 and in the last line we have used
Proposition 8.4.1 for the big line bundle 𝐿𝑘0 ⊗ 𝐴, the Kähler current 𝑘0𝜃𝑢−ddc log 𝑔 =

𝑘0𝜃𝑢 + 𝜔, and twisting bundle 𝑇 ⊗ 𝐿𝑟 . Letting 𝑘0 →∞, we conclude that

lim
𝑘→∞

𝑚!
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I (𝑘𝜑 |𝑌 )

)
≤

∫
𝑌

(
𝜃 |𝑌 + ddc Tr𝜃𝑌 (𝜑)

)𝑚
.

Theorem 8.4.2 Let 𝜑 ∈ PSH(𝑋, 𝜃) such that 𝜈(𝜑,𝑌 ) = 0. Assume that 𝜃𝜑 is a Kähler
current. Then∫

𝑌

(
𝜃 |𝑌 + ddc Tr𝜃𝑌 (𝜑)

)𝑚
= lim
𝑘→∞

𝑚!
𝑘𝑚

dimC
{
𝑠 |𝑌 : 𝑠 ∈ H0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)}
.

Proof This is a consequence of Theorem 7.4.1, Theorem 8.2.1 and Theorem 8.4.1:∫
𝑌

(
𝜃 |𝑌 + ddc Tr𝜃𝑌 (𝜑)

)𝑚
= lim
𝑘→∞

𝑚!
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I

(
𝑘 Tr𝜃𝑌 (𝜑)

))
≤ lim
𝑘→∞

𝑚!
𝑘𝑚

dimC
{
𝑠 |𝑌 : 𝑠 ∈ H0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)}
≤ lim
𝑘→∞

𝑚!
𝑘𝑚

dimC
{
𝑠 |𝑌 : 𝑠 ∈ H0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)}
≤ lim
𝑘→∞

𝑚!
𝑘𝑚

ℎ0
(
𝑌,𝑇 |𝑌 ⊗ 𝐿 |𝑘𝑌 ⊗ I(𝑘𝜑) |𝑌

)
=

∫
𝑌

(
𝜃 |𝑌 + ddc Tr𝜃𝑌 (𝜑)

)𝑚
.

Remark 8.4.1 One could also show that when (8.15) fails, the right-hand side of
(8.16) is 0. See [DX24a].
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8.5 Analytic Bertini theorems

Let 𝑋 be a connected projective manifold of dimension 𝑛 ≥ 1.
The analytic Bertini theorem handles the restriction along a generic subvariety.

Theorem 8.5.1 Let 𝜑 ∈ QPSH(𝑋). Let 𝑝 : 𝑋 → P𝑁 be a morphism (𝑁 ≥ 1). Define

G B
{
𝐻 ∈ |OP𝑁 (1) | : 𝐻′ B 𝐻 ∩ 𝑋 is smooth and I(𝜑 |𝐻′ ) = Res𝐻′

(
I(𝜑)

)}
.

Then G ⊆ |OP𝑁 (1) | is co-pluripolar.

Recall that co-pluripolar sets are defined in Definition 1.1.4. We adopt the convention
that I(−∞) = 0.

Remark 8.5.1 Here and in the sequel, we slightly abuse the notation by writing 𝐻 ∩ 𝑋
for 𝑝−1𝐻, the scheme-theoretic inverse image of𝐻. In other words,𝐻∩𝑋 B 𝐻×P𝑁 𝑋 .

By definition, any 𝐻 ∈ |OP𝑁 (1) | such that 𝑝−1𝐻 = ∅ lies in G.

Proof Take an ample line bundle 𝐿 with a smooth Hermitian metric ℎ such that
𝑐1 (𝐿, ℎ) + ddc𝜑 ≥ 0, where 𝑐1 (𝐿, ℎ) is the first Chern form of (𝐿, ℎ), namely the
curvature form of ℎ. We introduce Λ B |OP𝑁 (1) | to simplify our notations.

Step 1. We prove that the following set is co-pluripolar:

G𝐿 B
{
𝐻 ∈ Λ : 𝐻 ∩ 𝑋 is smooth and H0 (𝐻 ∩ 𝑋, 𝜔𝐻∩𝑋 ⊗ 𝐿 |𝐻∩𝑋 ⊗ I(𝜑|𝐻∩𝑋)) =

H0 (𝐻 ∩ 𝑋, 𝜔𝐻∩𝑋 ⊗ 𝐿 |𝐻∩𝑋 ⊗ Res𝐻∩𝑋 (I(𝜑)))
}
.

Here 𝜔𝐻∩𝑋 denotes the dualizing sheaf of 𝐻 ∩ 𝑋 .
Let 𝑈 ⊆ Λ × 𝑋 be the closed subvariety whose C-points correspond to pairs

(𝐻, 𝑥) ∈ Λ × 𝑋 with 𝑝(𝑥) ∈ 𝐻. Let 𝜋1 : 𝑈 → Λ be the natural projection. We may
assume that 𝜋1 is surjective, as otherwise there is nothing to prove.

Observe that𝑈 is a local complete intersection scheme by Krulls Hauptidealsatz
and a fortiori a Cohen–Macaulay scheme. It follows from miracle flatness [Mat89,
Theorem 23.1] that the natural projection 𝜋2 : 𝑈 → 𝑋 is flat. As the fibers of 𝜋2 over
closed points of 𝑋 are isomorphic to P𝑁−1, it follows that 𝜋2 is smooth. Thus,𝑈 is
smooth as well. Moreover, observe that

I(𝜋∗2𝜑) = 𝜋
∗
2I(𝜑) (8.24)

by Proposition 1.4.5.
In the following, we will construct pluripolar sets Σ1 ⊆ Σ2 ⊆ Σ3 ⊆ Σ4 ⊆ Λ such

that the behaviour of 𝜋1 is improved successively on the complement of Σ𝑖 .
Step 1.1. The usual Bertini theorem shows that there is a proper Zariski closed set

Σ1 ⊆ Λ such that 𝜋1 has smooth fibres outside Σ1. Enlarging Σ1, we could guarantee
that 𝜋1 and I(𝜋∗2𝜑) are both flat outside Σ1. See [DG65, Théorème 6.9.1]. Then
after further enlarging Σ1 so that 𝐻 avoids all associated points of O𝑋/I(𝜑), for all
𝐻 ∈ Λ \ Σ1. Let 𝜋1,𝐻 denote the fibre of 𝜋1 at 𝐻 and write 𝑖𝐻 : 𝜋1,𝐻 → 𝑈 for the
inclusion morphism. We arrive at
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Res𝜋1,𝐻 (I(𝜋∗2𝜑)) = 𝑖
∗
𝐻I(𝜋∗2𝜑)

for all 𝐻 ∈ Λ \ Σ1.3
Step 1.2. By Grauert’s coherence theorem,

F 𝑖 B 𝑅𝑖𝜋1∗
(
𝜔𝑈/Λ ⊗ 𝜋∗2𝐿 ⊗ I(𝜋

∗
2𝜑)

)
is coherent for all 𝑖. Here 𝜔𝑈/Λ denotes the relative dualizing sheaf of the morphism
𝑈 → Λ. Thus, there is a proper Zariski closed set Σ2 ⊆ Λ such that

(1) Σ2 ⊇ Σ1.
(2) The F 𝑖’s are locally free outside Σ2.

We write F = F 0. By cohomology and base change [Har77, Theorem III.12.11], for
any 𝐻 ∈ Λ \ Σ2, the fibre F |𝐻 of F is given by

F |𝐻 = H0 (
𝜋1,𝐻 , 𝜔𝑈/Λ |𝜋1,𝐻 ⊗ 𝜋∗2𝐿 |𝜋1,𝐻 ⊗ Res𝜋1,𝐻 (I(𝜋∗2𝜑))

)
.

Step 1.3. In order to proceed, we need to make use of the Hodge metric ℎH on
F defined in [HPS18]. We briefly recall its definition in our setting. By [HPS18,
Section 22], we can find a proper Zariski closed set Σ3 ⊆ Λ such that

(1) Σ3 ⊇ Σ2,
(2) 𝜋1 is smooth outside Σ3,
(3) both F and 𝜋1∗

(
𝜔𝑈/Λ ⊗ 𝜋∗2𝐿

)
/F are locally free outside Σ3, and

(4) for each 𝑖,
𝑅𝑖𝜋1∗

(
𝜔𝑈/Λ ⊗ 𝜋∗2𝐿

)
is locally free outside Σ3.

Then for any 𝐻 ∈ Λ \ Σ3,

H0 (𝐻 ∩ 𝑋, 𝜔𝐻∩𝑋 ⊗ 𝐿 |𝐻∩𝑋 ⊗ I(𝜑|𝐻∩𝑋)) ⊆ F |𝐻 ⊆ H0 (𝐻 ∩ 𝑋, 𝜔𝐻∩𝑋 ⊗ 𝐿 |𝐻∩𝑋).

See [HPS18, Lemma 22.1].
Now we can give the definition of the Hodge metric onΛ\Σ3. Given any𝐻 ∈ Λ\Σ3,

any 𝛼 ∈ F |𝐻 , the Hodge metric is defined as

ℎH (𝛼, 𝛼) :=
∫
𝑋∩𝐻
|𝛼 |2ℎe−𝜑 ∈ [0,∞] .

Observe that ℎH (𝛼, 𝛼) < ∞ if and only if𝛼 ∈ H0 (𝐻∩𝑋, 𝜔𝐻∩𝑋⊗𝐿 |𝐻∩𝑋⊗I(𝜑|𝐻∩𝑋)).
Moreover, ℎH (𝛼, 𝛼) > 0 if 𝛼 ≠ 0. It is shown in [HPS18] (c.f. [PT18, Theorem 3.3.5])
that ℎH is indeed a singular Hermitian metric, and it extends to a positive metric on
F .

Step 1.4. The determinant det ℎH is singular at all 𝐻 ∈ Λ \ Σ3 such that

H0 (𝐻 ∩ 𝑋, 𝜔𝐻∩𝑋 ⊗ 𝐿 |𝐻∩𝑋 ⊗ I(𝜑|𝐻∩𝑋)) ≠ F |𝐻 .

3 This subtle point was overlooked in the proof of [Xia22a].
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As the map 𝜋2 is smooth, we have 𝜋∗2I(𝜑) = I(𝜋
∗
2𝜑) by Proposition 1.4.5. Under

the identification 𝜋1,𝐻 � 𝐻 ∩ 𝑋 , we have

Res𝜋1,𝐻

(
𝜋∗2I(𝜑)

)
� Res𝐻∩𝑋 (I(𝜑)) .

Thus, we have the following inclusions:

H0
(
𝐻 ∩ 𝑋, 𝜔𝐻∩𝑋 ⊗ 𝐿 |𝐻∩𝑋 ⊗ I (𝜑|𝐻∩𝑋)

)
⊆H0

(
𝐻 ∩ 𝑋, 𝜔𝐻∩𝑋 ⊗ 𝐿 |𝐻∩𝑋 ⊗ Res𝐻∩𝑋

(
I(𝜑)

) )
,

the right-hand side being F |𝐻 .
Recall that the first inclusion follows from Theorem 1.4.5. Hence, det ℎH is

singular at all 𝐻 ∈ |OP𝑁 (1) | \ Σ3 such that

H0
(
𝐻 ∩ 𝑋, 𝜔𝐻∩𝑋 ⊗ 𝐿 |𝐻∩𝑋 ⊗ I (𝜑 |𝐻∩𝑋)

)
≠H0

(
𝐻 ∩ 𝑋, 𝜔𝐻∩𝑋 ⊗ 𝐿 |𝐻∩𝑋 ⊗ Res𝐻∩𝑋

(
I(𝜑)

) )
.

Let Σ4 be the union of Σ3 and the set of all such 𝐻. Since the Hodge metric ℎH
is positive ([PT18, Theorem 3.3.5] and [HPS18, Theorem 21.1]), its determinant
det ℎH is also positive ([Rau15, Proposition 1.3] and [HPS18, Proposition 25.1]), it
follows that Σ4 is pluripolar. As a consequence, G𝐿 is co-pluripolar.

Step 2.
Fix an ample invertible sheaf 𝑆 on 𝑋 . The same result holds with 𝐿 ⊗ 𝑆⊗𝑎 in place

of 𝐿. Thus, the set

𝐴 B
∞⋂
𝑎=0
G𝐿⊗𝑆⊗𝑎

is co-pluripolar. For each 𝐻 ∈ 𝑊 such that 𝑋 ∩ 𝐻 is smooth and I(𝜑|𝑋∩𝐻 ) ≠
Res𝐻∩𝑋 (I(𝜑)), let K be the following cokernel:

0→ I (𝜑|𝑋∩𝐻 ) → Res𝐻∩𝑋
(
I(𝜑)

)
→ K → 0.

By Serre vanishing theorem, taking 𝑎 large enough, we may guarantee that

H1
(
𝑋 ∩ 𝐻, 𝜔𝑋∩𝐻 ⊗ (𝐿 ⊗ 𝑆⊗𝑎) |𝑋∩𝐻 ⊗ I(𝜑|𝑋∩𝐻 )

)
= 0

and
H0

(
𝑋 ∩ 𝐻, 𝜔𝑋∩𝐻 ⊗ (𝐿 ⊗ 𝑆⊗𝑎) |𝑋∩𝐻 ⊗ K

)
≠ 0.

Then

H0
(
𝑋 ∩ 𝐻, 𝜔𝑋∩𝐻 ⊗ (𝐿 ⊗ 𝑆⊗𝑎) |𝑋∩𝐻 ⊗ I (𝜑|𝑋∩𝐻 )

)
≠

H0
(
𝑋 ∩ 𝐻, 𝜔𝑋∩𝐻 ⊗ (𝐿 ⊗ 𝑆⊗𝑎) |𝑋∩𝐻 ⊗ Res𝐻∩𝑋 (I(𝜑))

)
.



8.5. ANALYTIC BERTINI THEOREMS 213

Thus, 𝐻 ∉ 𝐴. We conclude that G is co-pluripolar. □

Remark 8.5.2 More generally, the same technique implies the following general result:
Let 𝑓 : 𝑋 → 𝑌 be a projective morphism between complex manifolds and (𝐿, ℎ) be a
Hermitian pseudo-effective line bundle on 𝑋 . Then for quasi-every4 𝑦 ∈ 𝑌 , the fiber
𝑋𝑦 is smooth and

I(𝜆ℎ|𝑋𝑦 ) = Res𝑋𝑦 (I(𝜆ℎ)) .

In the sequel of this section, we fix a base-point free linear system Λ on 𝑋 .

Corollary 8.5.1 Let 𝜑 ∈ QPSH(𝑋). Then for quasi-every𝐻 ∈ Λ, we have 𝜑 |𝐻 . −∞.

Proof This follows immediately from Theorem 8.5.1. □

Corollary 8.5.2 Assume that 𝑛 ≥ 2. Let 𝜑 ∈ QPSH(𝑋). Then quasi-every 𝐻 ∈ Λ is
connected and smooth, satisfies 𝜈(𝜑, 𝐻) = 0 and we have

Tr𝐻 (𝜑) ∼I 𝜑|𝐻 .

The assumption 𝑛 ≥ 2 is only to guarantee that a general element 𝐻 ∈ Λ is connected,
since we developed most of our theories only in this case.

Proof First observe that the set {𝑥 ∈ 𝑋 : 𝜈(𝜑, 𝑥) > 0} is a countable union of proper
analytic subsets by Theorem 1.4.1. It follows that a very general element in Λ is not
contained in this set.

Fix an ample line bundle 𝐿 so that there is a smooth psh metric ℎ𝐿 such that
𝑐1 (𝐿, ℎ𝐿) + ddc𝜑 is a Kähler current. Thanks to Theorem 8.5.1, we can find a
co-pluripolar set Λ′ ⊆ Λ such that each 𝐻 ∈ Λ′ satisfies the following:

(1) 𝐻 is smooth;
(2) 𝜈(𝜑, 𝐻) = 0;
(3) I(𝑘𝜑 |𝐻 ) = Res𝐻 (I(𝑘𝜑)) for all 𝑘 > 0.

It follows from Theorem 8.4.1 and Theorem 7.4.1 that∫
𝐻

(
𝑐1 (𝐿, ℎ𝐿) |𝐻 + ddc Tr𝑐1 (𝐿,ℎ𝐿 )

𝑌
(𝜑)

)𝑛−1
=

∫
𝐻

(
𝑐1 (𝐿, ℎ𝐿) |𝐻 + ddc𝜑|𝐻

)𝑛−1
.

Since 𝜑 |𝐻 ⪯𝑃 Tr𝑌 (𝜑) by Proposition 8.1.3, our assertion follows. □

Lemma 8.5.1 Assume that 𝑛 ≥ 2. Let 𝑇 be a closed positive (1, 1)-current on 𝑋 with∫
𝑋
𝑇𝑛 > 0. Then quasi-every 𝐻 ∈ Λ is connected and smooth, 𝑇 |𝐻 is well-defined

and satisfies ∫
𝐻

𝑇 |𝑛−1
𝐻 > 0.

Proof Write 𝑇 = 𝜃𝜑 for some smooth closed real (1, 1)-form 𝜃 on 𝑋 and 𝜑 ∈
PSH(𝑋, 𝜃)>0. Thanks to Lemma 2.4.3, we can find 𝜓 ∈ PSH(𝑋, 𝜃) such that 𝜃𝜓 is a
Kähler current and 𝜓 ≤ 𝜑. By Corollary 8.5.1, we can find a co-pluripolar set Λ′ ⊆ Λ

such that each 𝐻 ∈ Λ′ satisfies:

4 That is, for all 𝑦 outside a pluripolar subset of 𝑌 .
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(1) 𝐻 is smooth and connected;
(2) the restriction 𝜓 |𝐻 is not identically −∞.

Therefore, 𝜓 |𝐻 ≤ 𝜑|𝐻 are two potentials in PSH(𝐻, 𝜃 |𝐻 ) for any 𝐻 ∈ Λ′. Our
assertion follows from Theorem 2.4.4. □

Corollary 8.5.3 Assume that 𝑛 ≥ 2. Let 𝑇 be a closed positive (1, 1)-current on 𝑋
with vol𝑇 > 0. Then quasi-every 𝐻 ∈ Λ is connected and smooth, and Tr[𝑇 ] |𝐻

𝐻
(𝑇) is

well-defined.

Proof This follows from Example 8.1.6, Corollary 8.5.2 and Lemma 8.5.1. □

Proposition 8.5.1 Assume that 𝑛 ≥ 2. Let 𝜑, 𝜓 ∈ QPSH(𝑋). Assume that 𝜑 ⪯𝑃 𝜓.
Then quasi-every 𝐻 ∈ Λ is connected and smooth, and 𝜑|𝐻 ⪯𝑃 𝜓 |𝐻 .

Proof Thanks to Lemma 6.1.3, we may replace 𝜑 by 𝜑 ∨ 𝜓 and assume that 𝜑 ∼𝑃 𝜓.
It suffices to show that 𝜑|𝐻 ∼𝑃 𝜓 |𝐻 for quasi-every 𝐻 ∈ Λ.

Take a smooth closed real (1, 1)-form 𝜃 on 𝑋 so that 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃)>0. It
suffices to compare 𝜑 and 𝜓 with 𝑃𝜃 [𝜑], so without loss of generality, we may
assume that 𝜓 is a model potential in PSH(𝑋, 𝜃)>0. Up to adding a constant to 𝜑,
we may then assume that 𝜑 ≤ 𝜓. It follows from Lemma 2.4.2 that we can find a
sequence (𝜂 𝑗 ) 𝑗 in PSH(𝑋, 𝜃)>0 such that

𝑗−1𝜂 𝑗 +
(
1 − 𝑗−1

)
𝜓 ≤ 𝜑

for all 𝑗 ≥ 2. By Corollary 8.5.1, Lemma 8.5.1, we can find a co-pluripolar set
Λ′ ⊆ Λ such that any 𝐻 ∈ Λ′ satisfies:

(1) 𝐻 is smooth and connected;
(2) 𝜂 𝑗 |𝐻 ∈ PSH(𝐻, 𝜃 |𝐻 )>0 for all 𝑗 ≥ 2 and 𝜓 |𝐻 ∈ PSH(𝐻, 𝜃 |𝐻 )>0.

Therefore, taking Proposition 3.1.8 into account, we arrive at

𝑗−1𝑃𝜃 |𝐻
[
𝜂 𝑗 |𝐻

]
+

(
1 − 𝑗−1

)
𝑃𝜃 |𝐻

[
𝜓 |𝐻

]
≤ 𝑃𝜃 |𝐻

[
𝜑 |𝐻

]
for all 𝑗 ≥ 2. Letting 𝑗 →∞, we conclude that

𝑃𝜃 |𝐻 [𝜓 |𝐻 ] ≤ 𝑃𝜃 |𝐻 [𝜑 |𝐻 ]

and hence 𝜓 |𝐻 ⪯𝑃 𝜑|𝐻 . □

Lemma 8.5.2 Assume that 𝑛 ≥ 2. Let 𝜃 be a closed smooth (1, 1)-form on 𝑋 repre-
senting a big cohomology class and (𝜑 𝑗 ) 𝑗 be a decreasing sequence in PSH(𝑋, 𝜃).
Assume that 𝜑 ∈ PSH(𝑋, 𝜃) and 𝜑 𝑗

𝑑𝑆−−→ 𝜑. Then quasi-every 𝐻 ∈ Λ is connected
and smooth, 𝜑 𝑗 |𝐻 . −∞ for all 𝑗 ≥ 1, 𝜑|𝐻 . −∞, and

𝜑 𝑗 |𝐻
𝑑𝑆−−→ 𝜑|𝐻 .
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Proof By Corollary 6.2.8, we may assume that 𝜑 ∈ PSH(𝑋, 𝜃)>0. Using Lemma 2.4.2,
we could find a decreasing sequence (𝜖 𝑗 ) 𝑗 in (0, 1) with limit 0 and 𝜂 𝑗 ∈ PSH(𝑋, 𝜃)>0
such that 𝜂 𝑗 ≤ 𝜑 𝑗 and

𝜖 𝑗𝜂 𝑗 + (1 − 𝜖 𝑗 )𝜑 𝑗 ≤ 𝜑.

By Corollary 8.5.1, Lemma 8.5.1, we can find a co-pluripolar set Λ′ ⊆ Λ such that
any 𝐻 ∈ Λ′ satisfies:

(1) 𝐻 is smooth and connected;
(2) 𝜂 𝑗 |𝐻 ∈ PSH(𝐻, 𝜃 |𝐻 )>0 for all 𝑗 ≥ 1 and 𝜑|𝐻 ∈ PSH(𝐻, 𝜃 |𝐻 )>0.

Therefore, taking Proposition 3.1.8 into account, we arrive at

𝜖 𝑗𝑃𝜃 |𝐻
[
𝜂 𝑗 |𝐻

]
+

(
1 − 𝜖 𝑗

)
𝑃𝜃 |𝐻

[
𝜑 𝑗 |𝐻

]
≤ 𝑃𝜃 |𝐻

[
𝜑 |𝐻

]
.

Letting 𝑗 →∞, we get

lim
𝑗→∞

𝑃𝜃 |𝐻
[
𝜑 𝑗 |𝐻

]
≤ 𝑃𝜃 |𝐻

[
𝜑|𝐻

]
.

By Theorem 2.4.4 and Proposition 3.1.10, we conclude that

lim
𝑗→∞

∫
𝐻

(
𝜃 |𝐻 + ddc𝜑 𝑗 |𝐻

)𝑛−1
=

∫
𝐻

(
𝜃 |𝐻 + ddc𝜑 |𝐻

)𝑛−1
.

Therefore, using Corollary 6.2.5, we conclude that 𝜑 𝑗 |𝐻
𝑑𝑆−−→ 𝜑 |𝐻 . □

Corollary 8.5.4 Assume that 𝑛 ≥ 2. Let 𝜑 ∈ QPSH(𝑋) be an I-good potential. Then
quasi-every 𝐻 ∈ Λ satisfies:

(1) 𝐻 is connected and smooth;
(2) 𝜑 |𝐻 ∈ PSH(𝑋, 𝜃 |𝐻 ) is I-good;
(3) 𝜈(𝜑, 𝐻) = 0;
(4) Tr𝐻 𝜑 ∼𝑃 𝜑 |𝐻 .

Furthermore, if 𝜃 is a closed smooth real (1, 1)-form on 𝑋 such that 𝜑 ∈ PSH(𝑋, 𝜃)>0,
then we could further guarantee that Tr𝐻 (𝜑) has a representative Tr𝐻 (𝜑) ∈
PSH(𝐻, 𝜃 |𝐻 )>0 for all 𝐻 ∈ Λ′.

Proof This is a consequence of Lemma 8.5.2, Theorem 7.1.1, Corollary 8.5.2 and
Corollary 8.5.3. □

For later use, let us also prove a reverse Bertini theorem herem.

Lemma 8.5.3 (Reverse Bertini theorem) Let 𝑋 be a complex manifold, 𝑓 : 𝑋 → Δ∗

be a projective surjective morphism to the punctured unit disk Δ∗. Let (𝐿, ℎ), (𝐿, ℎ′)
be Hermitian pseudo-effective line bundles on 𝑋 with the same underlying line bundle.
Assume that there is a biholomorphic 𝑆1-action on (𝑋, 𝐿) making 𝑓 equivariant and
such that ℎ and ℎ′ are invariant under this action. Assume that for quasi-every 𝑧 ∈ Δ∗,
𝑋𝑧 is smooth and ℎ|𝑋𝑧 ∼I ℎ|′𝑋𝑧 , then ℎ ∼I ℎ′.
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Proof We need to show that I(𝑘ℎ) = I(𝑘ℎ′) for all positive integer 𝑘 . Clearly, it
suffices to prove the case 𝑘 = 1. We will therefore prove I(ℎ) = I(ℎ′). First observe
that it suffices to prove that

𝑓∗ (𝐾𝑋 ⊗ 𝐿 ⊗ I(ℎ)) = 𝑓∗ (𝐾𝑋 ⊗ 𝐿 ⊗ I(ℎ′)) (8.25)

as subsheaves of 𝑓∗ (𝐾𝑋 ⊗ 𝐿). In fact, suppose that (8.25) holds. Let 𝐻 be a 𝑓 -ample
invertible sheaf on 𝑋 , then (8.25) also holds with 𝐿⊗𝐻𝑚 in place of 𝐿. It follows from
Grauert–Remmert’s version of Serre vanishing theorem [BS76, Theorem 2.1(A)] that
I(ℎ) = I(ℎ′).

It remains to prove (8.25). Observe that both sides of (8.25) are locally free by
[Mat22, Corollary 1.5]. We claim that it suffices to show that

𝑓∗ (𝐾𝑋 ⊗ 𝐿 ⊗ I(ℎ))𝑧 = 𝑓∗ (𝐾𝑋 ⊗ 𝐿 ⊗ I(ℎ′))𝑧 (8.26)

for one 𝑧 ∈ Δ∗. In fact, this implies that the same holds outside a countable subset of
Δ∗. But the set where (8.26) fails has to be 𝑆1-invariant, it has to be empty.

In fact, we will prove (8.26) for quasi-every 𝑧 ∈ Δ∗. By cohomology and base
change together with the analytic Bertini theorem Remark 8.5.2, for quasi-every
𝑧 ∈ Δ∗, we have

𝑓∗ (𝐾𝑋 ⊗ 𝐿 ⊗ I(ℎ))𝑧 = H0 (
𝑋𝑧 , 𝐾𝑋 |𝑋𝑧 ⊗ 𝐿 |𝑋𝑧 ⊗ I(ℎ|𝑋𝑧 )

)
,

𝑓∗ (𝐾𝑋 ⊗ 𝐿 ⊗ I(ℎ′))𝑧 = H0 (
𝑋𝑧 , 𝐾𝑋 |𝑋𝑧 ⊗ 𝐿 |𝑋𝑧 ⊗ I(ℎ′ |𝑋𝑧 )

)
.

But we assumed that for quasi-every 𝑧, ℎ|𝑋𝑧 ∼I ℎ|′𝑋𝑧 , it follows that for quasi-every
𝑧 ∈ Δ∗, (8.26) holds. The proof is complete. □



Chapter 9
Test curves

Comment se fait-il que M. Gauss ait osé vous faire dire que la
plupart de vos théorèmes lui étaient connus et qu’il en avait fait la
découverte dès 1808. Cet excès d’impudence n’est pas croyable
de la part d’un homme qui a assez de mérite personnel pour
n’avoir pas besoin de s’approprier les découvertes des autres.
— Adrien-Marie Legendrea, in a letter to Jacobi in 1827

a Adrien-Marie Legendre (1752–1833) was a French mathemati-
cian known for his foundational contributions to number theory,
statistics, and mathematical analysis. Apart from his mathematical
contributions, he also helped formalize the metric system during
the French Revolution.

In this chapter, we develop the theory of test curves. Roughly speaking, a test curve
is a concave curve of model potentials. In Section 9.2, we will prove the Ross–Witt
Nyström1 correspondence, through which the test curves are related to geodesic rays
in the space of quasi-plurisubharmonic functions. Our version of the correspondence
here is more general than all similar results in the literature. In Section 9.4, we define
operations on test curves, anticipating applications in non-Archimedean pluripotential
theory in Chapter 13.

We shall freely apply all results in Appendix A. The results in that appendix are
all about convex functions. When we apply those results to concave functions, we
always apply to their negatives.

9.1 The notion of test curves

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝜃 be a smooth
closed real (1, 1)-form on 𝑋 representing a big cohomology class.

Recall that the notion of model potentials is defined in Definition 3.1.3.

Definition 9.1.1 A test curve Γ in PSH(𝑋, 𝜃) consists of a real number Γmax together
with a map (−∞, Γmax) → PSH(𝑋, 𝜃) denoted by 𝜏 ↦→ Γ𝜏 satisfying the following
conditions:

(1) The map 𝜏 ↦→ Γ𝜏 is concave and decreasing;
(2) each Γ𝜏 is a model potential;
(3) the potential

Γ−∞ B sup
𝜏<Γmax

∗Γ𝜏 (9.1)

1 Witt and Nyström are both family names of a single person. Some Swedes have double family
names. It should not be spelled as Witt-Nyström as some people do in the literature.
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satisfies ∫
𝑋

(𝜃 + ddcΓ−∞)𝑛 > 0.

Let 𝜙 ∈ PSH(𝑋, 𝜃)>0 be a model potential. The set of test curves Γ with Γ−∞ = 𝜙 is
denoted by TC(𝑋, 𝜃; 𝜙).

The union of all TC(𝑋, 𝜃; 𝜙)’s for various model potentials 𝜙 ∈ PSH(𝑋, 𝜃)>0 is
denoted by TC(𝑋, 𝜃)>0.

By (2), sup𝑋 Γ𝜏 = 0 for each 𝜏 < Γmax. So Γ−∞ ∈ PSH(𝑋, 𝜃) by Proposition 1.2.1.
Moreover, Γ−∞ is a model potential by Proposition 3.1.11.

Remark 9.1.1 Sometimes it is convenient to extend Γ𝜏 to 𝜏 ≥ Γmax as well. This can
be done as follows: For 𝜏 > Γmax, we set Γ𝜏 ≡ −∞. For 𝜏 = Γmax, we set

Γ𝜏 B inf
𝜏′<Γmax

Γ𝜏′ ∈ PSH(𝑋, 𝜃).

We will always make this extension in the sequel.

Recall that according to our general principle, we only talk about model potentials
when a potential has positive mass. Fortunately, this principle is not violated in the
above definition, as shown below:

Lemma 9.1.1 Assume that Γ ∈ TC(𝑋, 𝜃)>0. Then for each 𝜏 < Γmax, we have∫
𝑋

(𝜃 + ddcΓ𝜏)𝑛 > 0. (9.2)

Proof The notations in the proof below are summarized in Fig. 9.1.
Fix 𝜏 ∈ (−∞, Γmax).
By assumption, Γ−∞ has positive mass. By Corollary 2.4.1, we have∫

𝑋

𝜃𝑛Γ−∞ = lim
𝜏→−∞

∫
𝑋

𝜃𝑛Γ𝜏 .

In particular, for a sufficiently small 𝜏0 < 𝜏, we have∫
𝑋

𝜃𝑛Γ𝜏0
> 0.

Now take 𝜏′ ∈ (𝜏, Γmax) and 𝑡 ∈ (0, 1) so that

𝜏 = (1 − 𝑡)𝜏′ + 𝑡𝜏0.

From the concavity of Γ, we find that

Γ𝜏 ≥ (1 − 𝑡)Γ𝜏′ + 𝑡Γ𝜏0 .

By Theorem 2.4.4,
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Fig. 9.1 The test curve Γ.

∫
𝑋

𝜃𝑛Γ𝜏 ≥
∫
𝑋

𝜃𝑛(1−𝑡 )Γ𝜏′+𝑡Γ𝜏0
≥ 𝑡𝑛

∫
𝑋

𝜃𝑛Γ𝜏0
> 0

and (9.2) follows. □

Proposition 9.1.1 Let Γ ∈ TC(𝑋, 𝜃)>0. Then the map

[−∞, Γmax) → R, 𝜏 ↦→ log
∫
𝑋

𝜃𝑛Γ𝜏

is concave and continuous.

Proof The concavity of this function follows from Theorem 2.4.1 and Theorem 2.4.4.
The continuity at −∞ is a consequence of Corollary 2.4.1. □

Definition 9.1.2 Let 𝜙 ∈ PSH(𝑋, 𝜃)>0 be a model potential.
A test curve Γ ∈ TC(𝑋, 𝜃; 𝜙) is said to be bounded if for 𝜏 small enough, Γ𝜏 = 𝜙.

The subset of bounded test curves in TC(𝑋, 𝜃; 𝜙) is denoted by TC∞ (𝑋, 𝜃; 𝜙). In this
case, we write

Γmin B max{𝜏 ∈ R : Γ𝜏 = 𝜙}. (9.3)

A test curve Γ ∈ TC(𝑋, 𝜃; 𝜙) is said to have finite energy if

E𝜙 (Γ) B Γmax

∫
𝑋

𝜃𝑛𝜙 +
∫ Γmax

−∞

(∫
𝑋

𝜃𝑛Γ𝜏 −
∫
𝑋

𝜃𝑛𝜙

)
d𝜏 > −∞. (9.4)

When 𝜙 = 𝑉𝜃 , we write E instead of E𝜙 .
The subset of test curves with finite energy in TC(𝑋, 𝜃; 𝜙) is denoted by

TC1 (𝑋, 𝜃; 𝜙).
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Example 9.1.1 Given 𝜑 ∈ PSH(𝑋, 𝜃), there is a canonically associated test curve
Γ𝜑 ∈ TC∞ (𝑋, 𝜃;𝑉𝜃 ): Set Γ𝜑max = 0 and

Γ
𝜑
𝜏 =

{
𝑉𝜃 , if 𝜏 ≤ −1;
𝑃𝜃 [(1 + 𝜏)𝜑 − 𝜏𝑉𝜃 ] , if − 1 < 𝜏 < 0.

Note that Γ𝜑 is indeed a test curve, as follows from Proposition 3.1.8.

We first observe that the notion of test curves does not really depend on the choice
of 𝜃 within its cohomology class.

Proposition 9.1.2 Let 𝜃′ be another smooth closed real (1, 1)-form on 𝑋 representing
the same cohomology class as 𝜃. Let 𝜙 ∈ PSH(𝑋, 𝜃)>0 be a model potential. Let
𝜙′ ∈ PSH(𝑋, 𝜃′)>0 be the unique model potential satisfying 𝜙 ∼ 𝜙′.

Then there is a canonical bĳection

TC(𝑋, 𝜃; 𝜙) ∼−→ TC(𝑋, 𝜃′; 𝜙′).

This bĳection induces the following bĳections:

TC1 (𝑋, 𝜃; 𝜙) ∼−→ TC1 (𝑋, 𝜃′; 𝜙′), TC∞ (𝑋, 𝜃; 𝜙) ∼−→ TC∞ (𝑋, 𝜃′; 𝜙′).

These bĳections satisfy the obvious cocycle conditions.

Proof Choose 𝑔 ∈ 𝐶∞ (𝑋) such that 𝜃′ = 𝜃 + ddc𝑔. Given any Γ ∈ TC(𝑋, 𝜃; 𝜙), we
observe that Γ′ : (−∞, Γmax) → PSH(𝑋, 𝜃′) defined as

𝜏 ↦→ 𝑃𝜃 ′ [Γ𝜏 − 𝑔]

lies in TC(𝑋, 𝜃′; 𝜙′). Moreover, the choice of 𝑔 is irrelevant since for any other choice
of 𝑔, say 𝑔′, we have

Γ𝜏 − 𝑔 ∼ Γ𝜏 − 𝑔′

for all 𝜏 < Γmax. All assertions follow directly from the definition. □

Proposition 9.1.3 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a
Kähler manifold 𝑌 . Then the pointwise pull-back induces a bĳection

𝜋∗ : TC(𝑋, 𝜃; 𝜙) ∼−→ TC(𝑌, 𝜋∗𝜃; 𝜋∗𝜙).

Proof This follows immediately from Proposition 3.1.7. □

Next we verify the closedness of a test curve as a family of concave functions, so
that no pathologies are presented in the Legendre transforms which we will consider
shortly. The notion of closeness is recalled in Definition A.1.7.

Proposition 9.1.4 Let Γ be a test curve in PSH(𝑋, 𝜃). For each 𝑥 ∈ 𝑋 , the map
R ∋ 𝜏 ↦→ Γ𝜏 (𝑥) is a closed concave function. Moreover, the map is proper as long as
ΓΓmax (𝑥) ≠ −∞.
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Proof We argue the closeness. Fix 𝑥 ∈ 𝑋 . Assume that Γ𝜏 (𝑥) ≠ −∞ for some
𝜏 ∈ R. We only need to argue the upper-semicontinuity of 𝜏 ↦→ Γ𝜏 (𝑥). The upper
semi-continuity is clear at 𝜏 ≥ Γmax, so we are reduced to prove the following:

Γ𝜏 = inf
𝜏′<𝜏

Γ𝜏′ (9.5)

for any 𝜏 < Γmax. Take 𝜏′′ ∈ (𝜏, Γmax). Outside the polar locus of Γ𝜏′′ , we know that
(9.5) holds by continuity of real-valued concave functions. So (9.5) holds everywhere
by Proposition 1.2.6.

The final assertion is trivial. □

Definition 9.1.3 Let Γ ∈ TC(𝑋, 𝜃)>0 and 𝜔 be a smooth closed real positive (1, 1)-
form. Then we define 𝑃𝜃+𝜔 [Γ] ∈ TC(𝑋, 𝜃 + 𝜔)>0 as follows:

(1) Define
𝑃𝜃+𝜔 [Γ]max = Γmax;

(2) for each 𝜏 < Γmax, define

𝑃𝜃+𝜔 [Γ]𝜏 = 𝑃𝜃+𝜔 [Γ𝜏] .

It follows form Proposition 3.1.8 that 𝑃𝜃+𝜔 [Γ] ∈ TC(𝑋, 𝜃 + 𝜔)>0.

Proposition 9.1.5 Let Γ ∈ TC(𝑋, 𝜃)>0 and 𝜔 be a closed real smooth semipositive
(1, 1)-form on 𝑋 . Then

𝑃𝜃+𝜔 [Γ]−∞ = 𝑃𝜃+𝜔 [Γ−∞] .

Proof This follows from Proposition 3.1.11. □

9.2 Ross–Witt Nyström correspondence

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝜃 be a smooth
closed real (1, 1)-form on 𝑋 representing a big cohomology class. Fix a model
potential 𝜙 ∈ PSH(𝑋, 𝜃)>0.

Proposition 9.1.4 allows us to talk about the Legendre transforms of test curves in
the expected way.

The general definition of the Legendre transform Definition A.2.1 can be translated
as follows:
Definition 9.2.1 Let Γ ∈ TC(𝑋, 𝜃; 𝜙). We define its Legendre transform as
Γ∗ : (0,∞) → PSH(𝑋, 𝜃) given by

Γ∗𝑡 = sup
𝜏∈R
(𝑡𝜏 + Γ𝜏) 2. (9.6)

2 There is no usc regularization in the following formula. This is not a typo.
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Thanks to Remark 9.1.1, (9.6) can be equivalently written as

Γ∗𝑡 = sup
𝜏<Γmax

(𝑡𝜏 + Γ𝜏) = sup
𝜏≤Γmax

(𝑡𝜏 + Γ𝜏) .

It is sometimes handy to define

Γ∗0 B 𝜙 (9.7)

at 𝑡 = 0. But it is important to remember by doing so, (9.6) is not true at 𝑡 = 0 in
general.

Remark 9.2.1 Here we do not talk about the case 𝑡 < 0 because its behavior is pretty
trivial: Take 𝑥 ∈ 𝑋 , if Γ𝜏 (𝑥) = −∞ for all 𝜏 < Γmax, then Γ∗𝑡 (𝑥) = −∞; otherwise,
Γ∗𝑡 (𝑥) = ∞.

The information about 𝑡 > 0 suffices to characterize Γ.

Proposition 9.2.1 Let Γ ∈ TC(𝑋, 𝜃; 𝜙). Then

Γ𝜏 = inf
𝑡>0

(
Γ∗𝑡 − 𝑡𝜏

)
(9.8)

for all 𝜏 ∈ R.

Due to our convention (9.7), in (9.8) we could as well take 𝑡 ≥ 0.

Proof Fix 𝑥 ∈ 𝑋 . We want to establish (9.8) at 𝑥. We distinguish two cases. First
suppose that Γ𝜏 (𝑥) = −∞ for all 𝜏 < Γmax and hence all 𝜏 ∈ R. In this case, we have
Γ∗𝑡 (𝑥) = −∞ for all 𝑡 > 0. Therefore, (9.8) follows trivially.

Otherwise, by Remark 9.2.1, we know that Γ∗𝑡 (𝑥) = ∞ for all 𝑡 < 0. The relative
interior of the domain of 𝑡 ↦→ Γ∗𝑡 (𝑥) is contained in (0,∞). Therefore, (9.8) follows
from Theorem A.2.1, Proposition 9.1.4. □

In Definition 9.2.1, we have made a non-trivial claim that Γ∗𝑡 ∈ PSH(𝑋, 𝜃) for all
𝑡 > 0. Let us prove this.

Lemma 9.2.1 Let Γ ∈ TC(𝑋, 𝜃; 𝜙). Then Γ∗𝑡 ∈ PSH(𝑋, 𝜃) for all 𝑡 > 0. In fact, Γ is
upper semicontinuous as a function of 𝑋 × (0,∞).

Proof We first observe that for each 𝑥 ∈ 𝑋 , we have

Γ∗𝑡 (𝑥) ≤ 𝑡Γmax < ∞.

Let 𝑅 = {𝑎 + i𝑏 ∈ C : 𝑎 > 0, 𝑏 ∈ R}. We consider

𝐹 : 𝑋 × 𝑅 → [−∞,∞), (𝑥, 𝑎 + i𝑏) ↦→ Γ∗𝑎 (𝑥).

Let 𝜋 : 𝑋 × 𝑅 → 𝑋 be the natural projection. Observe that the upper-semicontinuous
regularization 𝐺 of 𝐹 is 𝜋∗𝜃-psh by Proposition 1.2.1. It suffices to show that 𝐹 = 𝐺.
We let
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𝐸 B {(𝑥, 𝑧) ∈ 𝑋 × 𝑅 : 𝐹 (𝑥, 𝑧) < 𝐺 (𝑥, 𝑧)} .

We want to argue that 𝐸 = ∅. Clearly, 𝐸 can be written as 𝐵 × iR for some set
𝐵 ⊆ 𝑋 × (0,∞). Since 𝐸 is a pluripolar set by Proposition 1.2.5, it has zero Lebesgue
measure. Hence, 𝐵 has zero Lebesgue measure. For each 𝑥 ∈ 𝑋 , write

𝐵𝑥 = {𝑡 ∈ (0,∞) : (𝑡, 𝑥) ∈ 𝐵} .

By Fubini’s theorem, 𝐵𝑥 has vanishing 1-dimensional Lebesgue measure for all
𝑥 ∈ 𝑋 \ 𝑍 , where 𝑍 ⊆ 𝑋 is a subset of measure 0. We may assume that 𝑍 ⊇ {ΓΓmax =

−∞} so that for 𝑥 ∈ 𝑋 \ 𝑍 , Γ𝑡 (𝑥) ≠ −∞ for all 𝑡 > 0.
For any 𝑥 ∈ 𝑋 \ 𝑍 , both 𝑡 ↦→ 𝐹 (𝑥, 𝑡) and 𝐺 (𝑥, 𝑡) are convex functions with values

in R on (0,∞). They agree almost everywhere, hence everywhere by their continuity.
It follows that for 𝑥 ∈ 𝑋 \ 𝑍 , we have 𝐵𝑥 = ∅.

By Proposition 9.2.1, for any 𝑥 ∈ 𝑋 , we have

Γ𝜏 (𝑥) = inf
𝑡>0
(𝐹 (𝑥, 𝑡) − 𝑡𝜏), 𝜏 < Γmax.

On the other hand, let

𝜒𝜏 (𝑥) = inf
𝑡>0
(𝐺 (𝑥, 𝑡) − 𝑡𝜏), 𝜏 < Γmax, 𝑥 ∈ 𝑋. (9.9)

By Kiselman’s principle Proposition 1.2.8, 𝜒𝜏 ∈ PSH(𝑋, 𝜃). But on 𝑋 \𝑍 , we already
know that Γ𝜏 = 𝜒𝜏 for all 𝜏 < Γmax. By Proposition 1.2.6,

Γ𝜏 = 𝜒𝜏 , 𝜏 < Γmax.

Now we conclude that 𝐹 (𝑥, 𝑡) = 𝐺 (𝑥, 𝑡) by Corollary A.2.1. □

Corollary 9.2.1 Let Γ ∈ TC(𝑋, 𝜃; 𝜙). Then Γ∗𝑡 ∈ E(𝑋, 𝜃; 𝜙) for all 𝑡 > 0.

Proof Fix 𝑡 > 0. We already know that Γ∗𝑡 ∈ PSH(𝑋, 𝜃) by Lemma 9.2.1. It suffices
to show that

Γ∗𝑡 ∼𝑃 𝜙.

From (9.6) and Proposition 6.1.6, we know that

Γ∗𝑡 ∼𝑃 sup
𝜏<Γmax

∗Γ𝜏 = 𝜙.

Lemma 9.2.2 Let Γ ∈ TC(𝑋, 𝜃; 𝜙), then

sup
𝑋

Γ∗𝑡 = 𝑡Γmax

for all 𝑡 > 0.
In particular, 𝑡 ↦→ Γ∗𝑡 − 𝑡Γmax is a decreasing function in 𝑡 > 0.
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Proof Choose 𝑥 ∈ 𝑋 such that ΓΓmax (𝑥) = 0. Then Γ𝜏 (𝑥) = 0 for all 𝜏 < Γmax, and
hence for all 𝑡 > 0,

Γ∗𝑡 (𝑥) = 𝑡Γmax

by definition. On the other hand, since Γ𝜏 ≤ 0 for all 𝜏 < Γmax, we have

sup
𝑋

Γ∗𝑡 ≤ 𝑡Γmax

for all 𝑡 > 0. □

Lemma 9.2.3 Given Γ ∈ TC(𝑋, 𝜃; 𝜙), we have Γ∗ ∈ R(𝑋, 𝜃; 𝜙).

See Definition 4.2.2 for the notation R(𝑋, 𝜃; 𝜙).

Proof It follows from Lemma 9.2.1, (9.6) and Proposition 1.2.1 that Γ∗ is a sub-
geodesic ray. By Corollary 9.2.1, for any 𝑡 > 0, Γ∗𝑡 ∈ E(𝑋, 𝜃; 𝜙).

First observe that as 𝑡 → 0+, we have

Γ∗𝑡
𝐿1

−−→ 𝜙. (9.10)

By Lemma 9.2.2 and Proposition 1.5.1, it suffices to show each 𝐿1-cluster point
𝜓 ∈ PSH(𝑋, 𝜃) as Γ∗𝑡 as 𝑡 → 0 is equal to 𝜙.

To see this, first observe that by (9.6), for any fixed 𝑡 > 0,

Γ∗𝑡 ≤ 𝑡Γmax + 𝜙.

Therefore, 𝜓 ≤ 𝜙. On the other hand, for any fixed 𝜏 < Γmax, by (9.6), we have

Γ∗𝑡 ≥ Γ𝜏 + 𝑡𝜏

for any 𝑡 > 0. So 𝜓 ≥ Γ𝜏 almost everywhere and hence everywhere by Proposi-
tion 1.2.6. It follows that 𝜓 ≥ 𝜙. Therefore, 𝜓 = 𝜙.

Assume that Γ∗ is not a geodesic ray. Then we can find 0 ≤ 𝑎 < 𝑏 such that
(Γ∗𝑡 )𝑡∈ (𝑎,𝑏) differs from the geodesic (𝜂𝑡 )𝑡∈ (𝑎,𝑏) from Γ∗𝑎 to Γ∗

𝑏
. The existence of

(𝜂𝑡 )𝑡 is guaranteed by Proposition 4.2.1. We consider the subgeodesic (ℓ𝑡 )𝑡>0 given
by ℓ𝑡 = 𝜂𝑡 for 𝑡 ∈ (𝑎, 𝑏) and ℓ𝑡 = Γ∗𝑡 otherwise. Note that ℓ is a subgeodesic due to
Lemma 1.2.2.

Consider the Legendre transform

Γ′𝜏 = inf
𝑡>0
(ℓ𝑡 − 𝑡𝜏), 𝜏 ∈ R.

Then Γ′𝜏 ≥ Γ𝜏 and Γ′𝜏 ∈ PSH(𝑋, 𝜃) ∪ {−∞} by Proposition 1.2.8 for all 𝜏 ∈ R.
We claim that

Γ′𝜏 ≤ Γ𝜏 + (𝑏 − 𝑎) (Γmax − 𝜏), 𝜏 ∈ R. (9.11)

Observe that Γ′𝜏 ≡ −∞ when 𝜏 > Γmax by Lemma 9.2.2. So it suffices to consider
𝜏 ≤ Γmax. In this case, we compute
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inf
𝑡∈[𝑎,𝑏]

(ℓ𝑡 − 𝑡𝜏) ≤ Γ∗𝑏 − 𝑏𝜏 ≤ (𝑏 − 𝑎) (Γmax − 𝜏) + inf
𝑡∈[𝑎,𝑏]

(Γ∗𝑡 − 𝑡𝜏),

where we applied Lemma 9.2.2. Therefore, (9.11) follows. In particular, for any
𝜏 < Γmax, we have Γ′𝜏 ∼ Γ𝜏 . On the other hand, by definition of Γ′𝜏 , we clearly have
Γ′𝜏 ≤ 0 for all 𝜏 < Γmax. It follows from the fact that Γ𝜏 is a model potential that
Γ𝜏 = Γ′𝜏 for all 𝜏 < Γmax. Therefore, by Theorem A.2.1, we have Γ∗𝑡 = ℓ′𝑡 for all 𝑡 > 0,
which is a contradiction. □

Given ℓ ∈ R(𝑋, 𝜃; 𝜙), define its Legendre transform

ℓ∗𝜏 B inf
𝑡>0
(ℓ𝑡 − 𝑡𝜏), 𝜏 ∈ R. (9.12)

Lemma 9.2.4 Given ℓ ∈ R(𝑋, 𝜃; 𝜙), then ℓ∗ = (ℓ∗𝜏)𝜏<sup𝑋 ℓ1 ∈ TC(𝑋, 𝜃).

Proof Note that it follows from Proposition 1.2.8 that ℓ∗𝜏 ∈ PSH(𝑋, 𝜃) ∪ {−∞} for
all 𝜏 ∈ R. It is clear that R ∋ 𝜏 ↦→ ℓ∗𝜏 is a decreasing and concave function.

By Proposition 4.2.4,

sup
𝑋

ℓ𝑡 = 𝑡 sup
𝑋

ℓ1 ∀𝑡 ≥ 0.

Observe that (0,∞) ∋ 𝑡 ↦→ ℓ𝑡 − 𝑡 sup𝑋 ℓ1 is a decreasing net in PSH(𝑋, 𝜃) with
sup𝑋 (ℓ𝑡 − 𝑡 sup𝑋 ℓ1) = 0. It follows that

ℓ∗sup𝑋 ℓ1
= inf
𝑡>0

(
ℓ𝑡 − 𝑡 sup

𝑋

ℓ1

)
∈ PSH(𝑋, 𝜃).

On the other hand, for 𝜏 > sup𝑋 ℓ1, the same argument shows that

ℓ∗𝜏 ≡ −∞.

Therefore, ℓ∗𝜏 ∈ PSH(𝑋, 𝜃) if and only if 𝜏 ≤ ℓ∗max B sup𝑋 ℓ1.
We claim that (ℓ∗𝜏)𝜏<ℓ∗max is a test curve. We first observe that for 𝜏 < ℓ∗max, we have

ℓ∗𝜏 ≤ ℓ1 − 𝜏 ∼𝑃 𝜙.

Therefore,
ℓ∗𝜏 ⪯𝑃 𝜙, ∀𝜏 < ℓ∗max. (9.13)

Also observe that for any 𝜏 ≤ ℓ∗max and any 𝑡 > 0, we have

sup
𝑋

ℓ∗𝜏 ≤ sup
𝑋

ℓ𝑡 − 𝑡𝜏 = ℓ∗max𝑡 − 𝑡𝜏.

Letting 𝑡 → 0+, we find that for any 𝜏 ≤ ℓ∗max, we have

sup
𝑋

ℓ∗𝜏 ≤ 0. (9.14)

Fix 𝜏 < ℓ∗max, we want to argue that
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𝑃𝜃
[
ℓ∗𝜏

]
= ℓ∗𝜏 . (9.15)

First we claim that for any 𝐶 > 0, we have

(ℓ∗𝜏 + 𝐶) ∧ 𝜙 = (ℓ∗𝜏 + 𝐶) ∧𝑉𝜃 . (9.16)

The ≤ direction is trivial. We argue the reverse inequality, which reduces to

𝜙 ≥ (ℓ∗𝜏 + 𝐶) ∧𝑉𝜃 .

Since 𝜙 is model and (ℓ∗𝜏 + 𝐶) ∧𝑉𝜃 ≤ 0, it suffices to show that

𝜙 ⪰𝑃 (ℓ∗𝜏 + 𝐶) ∧𝑉𝜃 ,

which follows from (9.13). Therefore, (9.16) is established. Thanks to (9.14), we have
the obvious inequality

(ℓ∗𝜏 + 𝐶) ∧𝑉𝜃 ≥ ℓ∗𝜏
for any 𝐶 > 0. Therefore, in order to prove (9.15), it remains to argue that for any
𝐶 > 0,

(ℓ∗𝜏 + 𝐶) ∧ 𝜙 ≤ ℓ∗𝜏 . (9.17)

For this purpose, let us consider the following geodesics: For any𝑀 > 0 and 𝑡 ∈ [0, 1],
let

ℓ
1,𝑀
𝑡 = ℓ𝑡𝑀 − 𝑡𝑀𝜏, ℓ

2,𝑀
𝑡 = (ℓ∗𝜏 + 𝐶) ∧ 𝜙 − 𝐶𝑡.

It is clear that at 𝑡 = 0, 1, we have ℓ2,𝑀
𝑡 ≤ ℓ

1,𝑀
𝑡 . Hence, the same holds for all

𝑡 ∈ [0, 1]. In particular, for any fixed 𝑠 ∈ (0, 1], we have

(ℓ∗𝜏 + 𝐶) ∧ 𝜙 − 𝐶𝑠 ≤ ℓ𝑠𝑀 − 𝑠𝑀𝜏

for all 𝑀 > 0. Taking infimum with respect to 𝑀 > 0, we find

(ℓ∗𝜏 + 𝐶) ∧ 𝜙 − 𝐶𝑠 ≤ ℓ∗𝜏 .

Since 𝑠 ∈ (0, 1] is arbitrary, we conclude (9.17). □

Theorem 9.2.1 The Legendre transform in Definition 9.2.1 is a bĳection

TC(𝑋, 𝜃; 𝜙) ∼−→ R(𝑋, 𝜃; 𝜙). (9.18)

Moreover, this bĳection restricts to the following bĳections:

TC1 (𝑋, 𝜃; 𝜙) ∼−→ R1 (𝑋, 𝜃; 𝜙), TC∞ (𝑋, 𝜃; 𝜙) ∼−→ R∞ (𝑋, 𝜃; 𝜙). (9.19)

For any Γ ∈ TC1 (𝑋, 𝜃; 𝜙), we have

E𝜙 (Γ) = E𝜙 (Γ∗). (9.20)
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Recall that the two energy functionals in (9.20) are defined in (9.4) and Definition 4.3.6
respectively.

The correspondence (9.18) will be referred to as the Ross–Witt Nyström corre-
spondence.

To appreciate this result, just consider the simple case where 𝜃 is a Kähler form
and 𝜙 = 0. In this case, elements in R∞ (𝑋, 𝜃) are rays of bounded potentials, while
elements in TC∞ (𝑋, 𝜃) are rays of singular potentials. This result establishes a bridge
between the pluripotential theory of regular potentials and that of singular potentials!

Proof Step 1. We first establish (9.18).
It follows from Lemma 9.2.3 that the forward map is well-defined. The inverse

map is given by (9.12). We show that the inverse map is also well-defined. Given
ℓ ∈ R(𝑋, 𝜃; 𝜙), we know from Lemma 9.2.4 that ℓ∗ ∈ TC(𝑋, 𝜃). We need to show
that ℓ∗ ∈ TC(𝑋, 𝜃; 𝜙).

By Corollary A.2.1 and Lemma 9.2.3, we know that

ℓ = (ℓ∗)∗ ∈ R(𝑋, 𝜃; ℓ∗−∞).

So it follows that ℓ∗−∞ = 𝜙. Therefore, ℓ∗ ∈ TC(𝑋, 𝜃; 𝜙) as expected.
The two operations are inverse to each other thanks to Corollary A.2.1. Hence,

(9.18) is established.
Step 2. Next we consider the bounded situation. Namely, we want to establish the

second half of (9.19).
Suppose that Γ ∈ TC∞ (𝑋, 𝜃; 𝜙). Take 𝜏0 ∈ R so that Γ𝜏 = 𝜙 for all 𝜏 ≤ 𝜏0. It

follows from (9.6) that
Γ∗𝑡 ≥ 𝜙 + 𝑡𝜏0

for all 𝑡 > 0. Therefore, Γ∗𝑡 ∼ 𝜙 for all 𝑡 > 0 and hence Γ∗ ∈ R∞ (𝑋, 𝜃; 𝜙).
Conversely, suppose that ℓ ∈ R∞ (𝑋, 𝜃; 𝜙). Thanks to Proposition 4.2.3, there is a

constant 𝐶 > 0 such that
ℓ𝑡 ≥ 𝜙 − 𝐶𝑡.

Therefore, according to (9.12), we have

ℓ∗𝜏 ≥ inf
𝑡>0
(𝜙 − (𝐶 + 𝜏)𝑡) = 𝜙

if 𝜏 ≤ −𝐶. Therefore, ℓ∗𝜏 = 𝜙 for all 𝜏 ≤ −𝐶.
Step 3. We establish (9.20) and the first half of (9.19).
Step 3.1. We reduce to the case where Γmax = 0.
Suppose that we define

Γ′𝜏 = Γ𝜏+Γmax , ∀𝜏 < 0.

Then Γ′ ∈ TC(𝑋, 𝜃; 𝜙) as well and for all 𝑡 > 0,

Γ′∗𝑡 = sup
𝜏<0

(
𝑡𝜏 + Γ′𝜏

)
= sup
𝜏<Γmax

(𝑡𝜏 + Γ𝜏) − 𝑡Γmax = Γ∗𝑡 − 𝑡Γmax.
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Therefore,
E𝜙 (Γ′∗) = E𝜙 (Γ∗) − Γmax

∫
𝑋

𝜃𝑛𝜙 .

by (3.27). Using (9.4), we also have

E𝜙 (Γ′) =
∫ 0

−∞

(∫
𝑋

𝜃𝑛
Γ′𝜏
−

∫
𝑋

𝜃𝑛𝜙

)
d𝜏

=

∫ Γmax

−∞

(∫
𝑋

𝜃𝑛Γ𝜏 −
∫
𝑋

𝜃𝑛𝜙

)
d𝜏

=E𝜙 (Γ) − Γmax

∫
𝑋

𝜃𝑛𝜙 .

Therefore, it suffices to establish (9.20) for Γ′ in place of Γ.
Step 3.2. We assume that Γmax = 0 and Γ ∈ TC∞ (𝑋, 𝜃; 𝜙). We prove (9.20).
For 𝑁 ∈ Z>0, 𝑀 ∈ Z, we introduce the following:

Γ
∗,𝑁 ,𝑀
𝑡 B max

𝑘∈Z
𝑘≤𝑀

(
Γ𝑘/2𝑁 + 𝑡𝑘/2𝑁

)
∈ E∞ (𝑋, 𝜃; 𝜙), 𝑡 > 0.

We first claim that for all 𝑡 > 0, 𝑁 ∈ Z>0 and 𝑀 ∈ Z,

𝑡

2𝑁

∫
𝑋

𝜃𝑛Γ(𝑀+1)/2𝑁
≤ 𝐸 𝜙

𝜃

(
Γ
∗,𝑁 ,𝑀+1
𝑡

)
− 𝐸 𝜙

𝜃

(
Γ
∗,𝑁 ,𝑀
𝑡

)
≤ 𝑡

2𝑁

∫
𝑋

𝜃𝑛Γ
𝑀/2𝑁

. (9.21)

Assuming this, let us prove (9.20).
Fixing 𝑁 , let 𝑀 = ⌊2𝑁Γmin⌋. Recall that Γmin is defined in (9.3). Then repeated

applications of (9.21) yield

0∑︁
𝑗=𝑀+1

𝑡

2𝑁

∫
𝑋

𝜃𝑛Γ
𝑗/2𝑁
≤ 𝐸 𝜙

𝜃

(
Γ
∗,𝑁 ,0
𝑡

)
− 𝐸 𝜙

𝜃

(
𝐸
∗,𝑁 ,𝑀
𝑡

)
≤
−1∑︁
𝑗=𝑀

𝑡

2𝑁

∫
𝑋

𝜃𝑛Γ
𝑗/2𝑁

.

Since 𝑀 ≤ 2𝑁Γmin, we have that

Γ
∗,𝑁 ,𝑀
𝑡 = 𝜙 + 𝑡𝑀/2𝑁 .

Using (3.27), we can continue to write

0∑︁
𝑗=𝑀+1

𝑡

2𝑁

(∫
𝑋

𝜃𝑛Γ
𝑗/2𝑁
−

∫
𝑋

𝜃𝑛𝜙

)
≤ 𝐸 𝜙

𝜃

(
Γ
∗,𝑁 ,0
𝑡

)
≤
−1∑︁
𝑗=𝑀

𝑡

2𝑁

(∫
𝑋

𝜃𝑛Γ
𝑗/2𝑁
−

∫
𝑋

𝜃𝑛𝜙

)
.

We now notice that we have Riemann sums on both the left and right of the above
inequality. Using Proposition 9.1.1, it is possible to let 𝑁 →∞ and obtain

𝐸
𝜙

𝜃
(Γ∗𝑡 ) = 𝑡E𝜙 (Γ) (9.22)
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So (9.20) follows as desired.
It remains to argue (9.21). Fix 𝑡 > 0, 𝑁 ∈ Z>0 and 𝑀 ∈ Z. By Proposition 3.1.16,∫
𝑋

(
Γ
∗,𝑁 ,𝑀+1
𝑡 − Γ∗,𝑁 ,𝑀𝑡

)
𝜃𝑛
Γ
∗,𝑁,𝑀+1
𝑡

≤𝐸 𝜙
𝜃

(
Γ
∗,𝑁 ,𝑀+1
𝑡

)
− 𝐸 𝜙

𝜃

(
Γ
∗,𝑁 ,𝑀
𝑡

)
≤

∫
𝑋

(
Γ
∗,𝑁 ,𝑀+1
𝑡 − Γ∗,𝑁 ,𝑀𝑡

)
𝜃𝑛
Γ
∗,𝑁,𝑀
𝑡

.

(9.23)

Clearly Γ
∗,𝑁 ,𝑀+1
𝑡 ≥ Γ

∗,𝑁 ,𝑀
𝑡 . Moreover, since R ∋ 𝜏 ↦→ Γ𝜏 + 𝑡𝜏 is concave, we notice

that
𝑈𝑡 B

{
Γ
∗,𝑁 ,𝑀+1
𝑡 > Γ

∗,𝑁 ,𝑀
𝑡

}
=

{
Γ(𝑀+1)/2𝑁 + 2−𝑁 𝑡 > Γ𝑀/2𝑁

}
,

and on𝑈𝑡 we have

Γ
∗,𝑁 ,𝑀+1
𝑡 = Γ(𝑀+1)/2𝑁 + 𝑡 (𝑀 + 1)/2𝑁 , Γ

∗,𝑁 ,𝑀
𝑡 = Γ𝑀/2𝑁 + 𝑡𝑀/2𝑁 . (9.24)

We also note that𝑈𝑡 is F -open by Corollary 1.3.5. So from the lower bound in (9.23),
we have

𝐸
𝜙

𝜃

(
Γ
∗,𝑁 ,𝑀+1
𝑡

)
− 𝐸 𝜙

𝜃

(
Γ
∗,𝑁 ,𝑀
𝑡

)
≥

∫
𝑈𝑡

(
Γ
∗,𝑁 ,𝑀+1
𝑡 − Γ∗,𝑁 ,𝑀𝑡

)
𝜃𝑛
Γ
∗,𝑁,𝑀+1
𝑡

=

∫
𝑈𝑡

(
Γ(𝑀+1)/2𝑁 − Γ𝑀/2𝑁 + 𝑡2−𝑁

)
𝜃𝑛Γ(𝑀+1)/2𝑁

≥
∫{

Γ(𝑀+1)/2𝑁 =0
} 𝑡2−𝑁 𝜃𝑛Γ(𝑀+1)/2𝑁 ,

where on the second line, we applied (9.24) and Proposition 2.2.1, on the third line,
we applied the fact that 𝜃𝑛

Γ(𝑀+1)/2𝑁
is supported on the set{

Γ(𝑀+1)/2𝑁 = 0
}
⊆ 𝑈𝑡 ∩

{
Γ𝑀/2𝑁 = 0

}
,

see Theorem 3.1.1. We have deduced the first inequality in (9.21). Next, we apply the
upper bound part in (9.23) and compute similarly

𝐸
𝜙

𝜃
(Γ∗,𝑁 ,𝑀+1𝑡 ) − 𝐸 𝜙

𝜃
(Γ∗,𝑁 ,𝑀𝑡 ) ≤

∫
𝑋

(
Γ
∗,𝑁 ,𝑀+1
𝑡 − Γ∗,𝑁 ,𝑀𝑡

)
𝜃𝑛
Γ
∗,𝑁,𝑀
𝑡

=

∫
𝑈𝑡

(
Γ(𝑀+1)/2𝑁 − Γ𝑀/2𝑁 + 𝑡2−𝑁

)
𝜃𝑛Γ

𝑀/2𝑁

≤
∫
{Γ
𝑀/2𝑁 =0}∩𝑈𝑡

(
Γ(𝑀+1)/2𝑁 + 𝑡2−𝑁

)
𝜃𝑛Γ

𝑀/2𝑁

≤
∫
{Γ
𝑀/2𝑁 =0}∩𝑈𝑡

𝑡2−𝑁 𝜃𝑛Γ
𝑀/2𝑁

.

We conclude the latter half of (9.21).
Step 3.3. We assume that Γmax = 0. Now Γ ∈ TC(𝑋, 𝜃; 𝜙) only.
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For each 𝜖 > 0, we introduce Γ𝜖 ∈ TC∞ (𝑋, 𝜃; 𝜙) as follows:

(1) Let Γ𝜖max = 0, and
(2) we set

Γ𝜖𝜏 =

{
𝜙, if 𝜏 ≤ −𝜖−1;
𝑃𝜃 [(1 + 𝜖𝜏)Γ𝜏 − 𝜖𝜏𝜙] , if 𝜏 ∈

(
−𝜖−1, 0

)
.

It follows from Corollary 6.2.10 and Corollary 6.2.5 that for each 𝜏 < 0, the sequence
Γ𝜖𝜏 is a decreasing sequence with limit Γ𝜏 as 𝜖 ↘ 0. Therefore, by Proposition 3.1.10,
we have

lim
𝜖→0+

∫
𝑋

(
𝜃 + ddcΓ𝜖𝜏

)𝑛
=

∫
𝑋

(𝜃 + ddcΓ𝜏)𝑛

for all 𝜏 < 0. Hence, by the monotone convergence theorem and Step 3.2, we find

E𝜙 (Γ) = lim
𝜖→0+

E𝜙 (Γ𝜖 ) = lim
𝜖→0+

E𝜙 (Γ𝜖 ∗) = lim
𝜖→0+

𝐸
𝜙

𝜃
(Γ𝜖 ∗1 ), (9.25)

where the last equality follows from (9.22). Furthermore, according to Proposi-
tion A.2.3, we have

Γ∗𝑡 = inf
𝜖 >0

Γ𝜖 ∗𝑡

for all 𝑡 > 0. Note that we do not have to take the closure of the right-hand side since
it is automatically upper semicontinuous in 𝑡.

Now suppose that Γ ∈ TC1 (𝑋, 𝜃; 𝜙). Then by (9.25), as 𝜖 → 0+, (Γ𝜖 ∗𝑡 )𝜖 is a
decreasing Cauchy net in E1 (𝑋, 𝜃; 𝜙) and hence by Theorem 4.3.3 for each 𝑡 > 0,

𝐸
𝜙

𝜃

(
Γ∗𝑡

)
= lim
𝜖→0+

𝐸
𝜙

𝜃

(
Γ
𝜖 ,∗
𝑡

)
= 𝑡E𝜙 (Γ) > −∞,

where we have applied (9.22) and (9.25). Hence, Γ∗ ∈ E1 (𝑋, 𝜃; 𝜙). Moreover, (9.20)
follows.

Conversely, suppose that Γ∗ ∈ R1 (𝑋, 𝜃; 𝜙). Then (9.25) implies that

E𝜙 (Γ) = lim
𝜖→0+

𝐸
𝜙

𝜃

(
Γ𝜖 ∗1

)
≥ 𝐸 𝜙

𝜃

(
Γ∗1

)
> −∞.

Hence, Γ ∈ TC1 (𝑋, 𝜃; 𝜙). □

Remark 9.2.2 One could also consider geodesic rays emanating from another potential
Φ ∈ E(𝑋, 𝜃; 𝜙). In this case, one can show that these geodesic rays are in bĳection
with Φ-twisted test curves: In Definition 9.1.1, we replace (2) by the following
condition:

sup
𝐶>0

∗ (Γ𝜏 + 𝐶) ∧Φ = Γ𝜏 .

Furthermore, we require that Γ−∞ = Φ.
The above results equally work in the twisted setting. The proofs are almost

identical to the untwisted case.

As an immediate consequence of the proof, we have
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Corollary 9.2.2 Let ℓ ∈ R1 (𝑋, 𝜃; 𝜙), then [0,∞) ∋ 𝑡 ↦→ 𝐸
𝜙

𝜃
(ℓ𝑡 ) is linear.

Proof This follows from the same argument as that of (9.25). □

Corollary 9.2.3 Let ℓ ∈ R(𝑋, 𝜃; 𝜙). Then sup𝑋 ℓ𝑡 = ℓ∗max𝑡 for any 𝑡 ≥ 0.
In particular, ℓ𝑡 − ℓ∗max𝑡 is a decreasing function of 𝑡 ≥ 0.

Proof This follows from Lemma 9.2.2 and Theorem 9.2.1. □

Example 9.2.1 Let us see what the test curve in Example 9.1.1 correspond to under
the Ross–Witt Nyström correspondence. Fix 𝜑 ∈ PSH(𝑋, 𝜃). We claim that

ℓ𝜑 = Γ𝜑∗, (9.26)

where ℓ𝜑 is as in Example 4.3.1. We may assume that 𝜑 ≤ 0 since both sides are
invariant after adding a constant to 𝜑.

We first prove the easy direction ℓ𝜑 ≥ Γ𝜑∗, which is equivalent to ℓ𝜑∗ ≥ Γ𝜑 .
Since ℓ𝜑∗ is a test curve, the latter is equivalent to

ℓ
𝜑∗
𝜏 ≥ (1 + 𝜏)𝜑 − 𝜏𝑉𝜃

for all 𝜏 ∈ (−1, 0). By Legendre duality, this is equivalent to

ℓ
𝜑
𝑡 ≥ sup

𝜏∈ (−1,0)
((1 + 𝜏)𝜑 − 𝜏𝑉𝜃 + 𝑡𝜏) = 𝜑 ∨ (𝑉𝜃 − 𝑡) (9.27)

for all 𝑡 > 0.
Using the notations of Example 4.3.1, we find easily that

ℓ
𝜑,𝐶
𝑡 ≥ 𝜑 ∨ (𝑉𝜃 − 𝑡)

for any 𝐶 > 0 and 𝑡 ∈ [0, 𝐶], since it holds at 𝑡 = 0 and 𝑡 = 𝐶. Letting 𝐶 → ∞, we
find (9.27) Therefore, ℓ𝜑 ≥ Γ𝜑∗ follows.

In order to prove the equality in (9.26), it suffices to show that the two sides have
the same energy, as a consequence of (4.22). So we compute

E (Γ𝜑∗) =E (Γ𝜑)

=

∫ 0

−1

(∫
𝑋

𝜃𝑛(1+𝜏 )𝑉𝜃−𝜏𝜑 −
∫
𝑋

𝜃𝑛𝑉𝜃

)
d𝜏

=

𝑛∑︁
𝑗=0

(
𝑛

𝑗

) ∫
𝑋

𝜃
𝑗

𝑉𝜃
∧ 𝜃𝑛− 𝑗𝜑

∫ 1

0
𝜏 𝑗 (1 − 𝜏)𝑛− 𝑗 d𝜏 −

∫
𝑋

𝜃𝑛𝑉𝜃

=

𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
𝑗!(𝑛 − 𝑗)!
(𝑛 + 1)!

∫
𝑋

𝜃
𝑗

𝑉𝜃
∧ 𝜃𝑛− 𝑗𝜑 −

∫
𝑋

𝜃𝑛𝑉𝜃

=E(ℓ𝜑),
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where we used the value of the 𝛽-function3 on the fourth line, and the last line is just
(4.28).

The multiplier ideal sheaves of a test curve can be characterized using the
corresponding geodesic ray in a very simple manner.

Proposition 9.2.2 (He–Testorf–Wang) Let ℓ ∈ R(𝑋, 𝜃; 𝜙). Given any 𝜏 < ℓ∗max and
𝑥 ∈ 𝑋 , we have

I
(
ℓ∗𝜏

)
𝑥
=

{
𝑓 ∈ O𝑋,𝑥 : | 𝑓 |2

∫ ∞

0
exp(−ℓ𝑡 + 𝑡𝜏) d𝑡 is integrable near 𝑥

}
. (9.28)

Proof Fix 𝑥 ∈ 𝑋 , 𝜏 < ℓ∗max and 𝑓 ∈ O𝑋,𝑥 . Fix a Kähler form 𝜔 on 𝑋 .
Step 1. We first assume that 𝑓 lies in the right-hand side of (9.28).
Given any 𝑦 ∈ 𝑋 , it follows from (9.12) that there is 𝑡0 > 0 with

ℓ∗𝜏 (𝑦) + 1 ≥ ℓ𝑡0 (𝑦) − 𝑡0𝜏.

Observe that 𝑡 ↦→ ℓ𝑡 − 𝑡ℓ∗max is decreasing in 𝑡 by Corollary 9.2.3, it follows that for
𝑡 ∈ [𝑡0, 𝑡0 + 1], we have

ℓ∗𝜏 (𝑦) + 1 − 𝑡0 (ℓ∗max − 𝜏) ≥ ℓ𝑡0 (𝑦) − 𝑡0ℓ∗max ≥ ℓ𝑡 (𝑦) − 𝑡ℓ∗max.

Since 𝜏 < ℓ∗max and 𝑡0 ≥ 𝑡 − 1, we deduce that

ℓ∗𝜏 (𝑦) + 1 + ℓ∗max − 𝜏 ≥ ℓ𝑡 (𝑦) − 𝑡𝜏, 𝑡 ∈ [𝑡0, 𝑡0 + 1] . (9.29)

Take a sufficiently small open neighborhood𝑈 of 𝑥 such that∫
𝑈

| 𝑓 |2
∫ ∞

0
exp(−ℓ𝑡 + 𝑡𝜏) d𝑡 𝜔𝑛 < ∞.

Applying (9.29), we deduce that∫
𝑈

| 𝑓 |2 exp
(
−ℓ∗𝜏

)
𝜔𝑛 < ∞.

Therefore, 𝑓 ∈ I(ℓ∗𝜏)𝑥 .
Step 2. Assume that 𝑓 ∈ I(ℓ∗𝜏)𝑥 .
It follows from Theorem 1.4.4 that 𝑓 ∈ I(ℓ∗𝜏+𝜖 )𝑥 for some small enough 𝜖 > 0

with 𝜏 + 𝜖 < ℓ∗max. Take a sufficiently small open neighborhood𝑈 of 𝑥 such that∫
𝑈

| 𝑓 |2 exp
(
−ℓ∗𝜏+𝜖

)
𝜔𝑛 < ∞.

We compute

3 Also known as Euler integral of the first kind.
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𝑈

| 𝑓 |2
∫ ∞

0
exp (−ℓ𝑡 + 𝑡𝜏) d𝑡 𝜔𝑛 ≤

∫
𝑈

| 𝑓 |2
∫ ∞

0
exp

(
−ℓ∗𝜏+𝜖 − 𝑡𝜖

)
d𝑡 𝜔𝑛

=
1
𝜖

∫
𝑈

| 𝑓 |2 exp
(
−ℓ∗𝜏+𝜖

)
𝜔𝑛

<∞.

Therefore, 𝑓 lies in the right-hand side of (9.28). □

The masses of potentials on a test curve can also be expressed in terms of the
corresponding geodesic ray.

Proposition 9.2.3 (Hisamoto) Let ℓ ∈ R(𝑋, 𝜃; 𝜙). Given any 𝜏 < ℓ∗max, we have∫
𝑋

(
𝜃 + ddcℓ∗𝜏

)𝑛
=

∫
{ ¤ℓ0≥𝜏}

𝜃𝑛𝜙 . (9.30)

Here ¤ℓ0 denotes the right-derivative of ℓ𝑡 with respect to 𝑡 at 𝑡 = 0. It is well-defined
quasi-everywhere, and hence the right-hand side of (9.30) makes sense.

Proof Fix 𝜏 < ℓ∗max. We first observe that∫
{ ¤ℓ0≥𝜏}

𝜃𝑛𝜙 =

∫
{ℓ∗𝜏=𝜙}

𝜃𝑛𝜙 . (9.31)

From this, (9.30) follows from [DNT21, Corollary 3.4], since both sides of (9.30)
can then be written as ∫

{ℓ∗𝜏=0}
𝜃𝑛.

In order to prove (9.31), it suffices to show that{ ¤ℓ0 ≥ 𝜏
}
=

{
ℓ∗𝜏 = 𝜙

}
outside a pluripolar set. (9.32)

Take 𝑥 ∈ 𝑋 so that (ℓ𝑡 (𝑥))𝑡≥0 is finite and right-differentiable at 𝑡 = 0. Note that
this condition holds quasi-everywhere. Suppose that ℓ∗𝜏 (𝑥) = 𝜙(𝑥), then

¤ℓ0 (𝑥) = inf
𝑡>0

ℓ𝑡 (𝑥) − 𝜙(𝑥)
𝑡

≥ inf
𝑡>0

ℓ∗𝜏 (𝑥) + 𝑡𝜏 − 𝜙(𝑥)
𝑡

= 𝜏.

Therefore, the ⊇ direction in (9.32) follows. Conversely, suppose that ¤ℓ0 (𝑥) ≥ 𝜏, then

ℓ∗𝜏 (𝑥) = inf
𝑡>0
(ℓ𝑡 (𝑥) − 𝑡𝜏) ≥ inf

𝑡>0

(
𝜙(𝑥) + 𝑡 ¤ℓ0 (𝑥) − 𝑡𝜏

)
≥ 𝜙(𝑥).

Therefore, the ⊆ direction in (9.32) follows as well. □
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9.3 I-model test curves

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝜃 be a smooth
closed real (1, 1)-form on 𝑋 representing a big cohomology class. Fix a model
potential 𝜙 ∈ PSH(𝑋, 𝜃)>0.

Definition 9.3.1 A test curve Γ ∈ TC(𝑋, 𝜃; 𝜙) is I-model if for any 𝜏 < Γmax, the
potential Γ𝜏 is I-model.

The subset of I-model test curves in TC(𝑋, 𝜃; 𝜙) is denoted by ENA (𝑋, 𝜃; 𝜙).
When 𝜙 = 𝑉𝜃 , we omit 𝜙 and write ENA (𝑋, 𝜃) instead.

The union of the sets of I-model test curves in PSH(𝑋, 𝜃) for all model potentials
𝜙 ∈ PSH(𝑋, 𝜃)>0 is denoted by PSHNA (𝑋, 𝜃)>0.

Note that ΓΓmax is automatically I-model by Proposition 3.2.13.
Here we write NA with non-Archimedean in mind. The precise relation with

non-Archimedean pluripotential theory will be clear in Chapter 13. The readers are
encouraged to skip this section and the next, and consult the necessary results only
when reading Chapter 13.

Proposition 9.3.1 Let Γ ∈ PSHNA (𝑋, 𝜃)>0. Then Γ−∞ is an I-model potential.

Proof This follows from Proposition 3.2.14. □

Proposition 9.3.2 Let 𝜃′ be another smooth closed real (1, 1)-form on 𝑋 representing
the same cohomology class as 𝜃. Then there is a canonical bĳection

PSHNA (𝑋, 𝜃)>0
∼−→ PSHNA (𝑋, 𝜃′)>0.

This bĳection satisfies the obvious cocycle condition.

Proof This is an immediate consequence of Proposition 9.1.2 and Example 7.1.2.□

Proposition 9.3.3 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a
Kähler manifold. Then the pointwise pull-back induces a bĳection

𝜋∗ : PSHNA (𝑋, 𝜃; 𝜙) ∼−→ PSHNA (𝑌, 𝜋∗𝜃; 𝜋∗𝜙).

Proof This is an immediate consequence of Proposition 9.1.3 and Proposition 3.2.5.□

Definition 9.3.2 Given Γ ∈ TC(𝑋, 𝜃; 𝜙), we define its I-envelope 𝑃𝜃 [Γ]I as the
map

(−∞, Γmax) → PSH(𝑋, 𝜃), 𝜏 ↦→ 𝑃𝜃 [Γ𝜏]I .

More generally, for any closed real smooth positive (1, 1)-form 𝜔 on 𝑋 , we define
𝑃𝜃+𝜔 [Γ]I as the map

(−∞, Γmax) → PSH(𝑋, 𝜃), 𝜏 ↦→ 𝑃𝜃+𝜔 [Γ𝜏]I .



9.3. I-MODEL TEST CURVES 235

Proposition 9.3.4 Let Γ ∈ TC(𝑋, 𝜃; 𝜙), then

𝑃𝜃 [Γ]I ∈ PSHNA (𝑋, 𝜃; 𝑃𝜃 [𝜙]I).

More generally, for any closed real smooth positive (1, 1)-form 𝜔 on 𝑋 , we have

𝑃𝜃+𝜔 [Γ]I ∈ PSHNA (𝑋, 𝜃 + 𝜔; 𝑃𝜃+𝜔 [𝜙]I).

Proof The only non-trivial point is to show that

sup
𝜏<Γmax

∗𝑃𝜃 [Γ𝜏]I = 𝑃𝜃 [𝜙]I , sup
𝜏<Γmax

∗𝑃𝜃+𝜔 [Γ𝜏]I = 𝑃𝜃+𝜔 [𝜙]I .

These follow from Proposition 3.2.14. □

Definition 9.3.3 Let 𝜙 ∈ PSH(𝑋, 𝜃)>0 be a model potential. A geodesic ray ℓ ∈
R(𝑋, 𝜃; 𝜙) is maximal if ℓ∗ is I-model.

An important class of I-model test curves is given by filtrations. We briefly recall
the corresponding terminology.

Definition 9.3.4 Let 𝐿 be a big line bundle. We write

𝑅(𝑋, 𝐿) =
∞⊕
𝑘=0

H0 (𝑋, 𝐿𝑘)

for the section ring4 of 𝐿.
A filtration on 𝑅(𝑋, 𝐿) is a decreasing family of graded linear subspaces (F 𝜆)𝜆∈R

of 𝑅(𝑋, 𝐿) with graded pieces

F 𝜆 =
∞⊕
𝑘=0
F 𝜆𝑘 ,

such that the following conditions are satisfied:

• The filtration is left-continuous: For any 𝜆 ∈ R, we have

F 𝜆 =
⋂
𝜆′<𝜆

F 𝜆′ ;

• the filtration is multiplicative: For any 𝜆, 𝜆′ ∈ R and any 𝑘, 𝑘 ′ ∈ N, we have

F 𝜆𝑘 · F
𝜆′

𝑘′ ⊆ F
𝜆+𝜆′
𝑘+𝑘′ ;

4 Personally I hate the notion of section rings: We never consider inhomogeneous elements. So it
is more natural to replace the direct sum by a disjoint union. This leads to the notion of ringoids
(annénoïdes in French), introduced by Ducros in [Duc21] in the context of Temkin’s graded reduction
of Berkovich germs.
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• there is an integer 𝐶 > 0 such that

F𝐶𝑚𝑚 = 0, F −𝐶𝑚𝑚 = H0 (𝑋, 𝐿𝑘) (9.33)

for all 𝑚 ∈ N.

Given a filtration F on 𝑅(𝑋, 𝐿), we define

𝜏𝑘 (F ) = max
{
𝜆 ∈ R : F 𝜆𝑘 ≠ 0

}
.

By Fekete’s lemma, we can introduce

𝜏(F ) = lim
𝑘→∞

1
𝑘
𝜏𝑘 (F ) = sup

𝑘∈Z>0

1
𝑘
𝜏𝑘 (F ).

Note that 𝜏(F ) is bounded from above by the constant 𝐶 in (9.33), hence finite.

Example 9.3.1 Let 𝐿 be a big line bundle on 𝑋 and F be a filtration on 𝑅(𝑋, 𝐿). Fix
a smooth Hermitian metric ℎ on 𝐿 and write 𝜃 = 𝑐1 (𝐿, ℎ).

We introduce a few auxiliary functions. For each 𝑘 ∈ Z>0, we introduce

ΓF,𝑘𝜏 B sup∗
{
log |𝑠 |2

ℎ𝑘
: 𝑠 ∈ F 𝑘𝜏𝑘 , |𝑠 |2

ℎ𝑘
≤ 1

}
.

When 𝑘𝜏 ≤ 𝜏𝑘 (F ), we know that F 𝑘𝜏
𝑘

≠ 0. Moreover, Proposition 1.8.1 and
Proposition 1.2.1 imply that

ΓF,𝑘𝜏 ∈ PSH(𝑋, 𝑘𝜃), 𝜏 ≤ 𝑘−1𝜏𝑘 (F ).

Observe that for 𝑘, 𝑘 ′ ∈ Z>0, we have

ΓF,𝑘+𝑘
′

𝜏 ≥ ΓF,𝑘𝜏 + ΓF,𝑘′𝜏 .

In particular, by Fekete’s lemma,

lim
𝑘∈Z>0

1
𝑘
ΓF,𝑘𝜏 = sup

𝑘∈Z>0

1
𝑘
ΓF,𝑘𝜏 (9.34)

exists for any 𝜏 < 𝜏(F ).
We define (ΓF𝜏 )𝜏<𝜏 (F) as follows:

ΓF𝜏 B 𝑃𝜃

[
sup
𝑘∈Z>0

∗ 1
𝑘
ΓF,𝑘𝜏

]
5.

We claim that ΓF ∈ ENA (𝑋, 𝜃) and is bounded.

5 It is not clear if 𝑃𝜃 [•] is necessary here. When 𝐿 is ample, it is shown in [RWN14, Proposition 7.11]
that it is not necessary. The proof in the reference relies on a Skoda division theorem [RWN14,
Theorem 7.10], which is not known in the case of big line bundles.
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It is clear that (−∞, 𝜏(F )) ∋ 𝜏 ↦→ ΓF𝜏 is decreasing. We prove its concavity. By
Proposition 3.1.8, it suffices to show that

(−∞, 𝜏(F )) ∋ 𝜏 ↦→ sup
𝑘∈Z>0

∗ 1
𝑘
ΓF,𝑘𝜏

is concave. In other words, we need to prove the following: Given 𝜏0 < 𝜏1 < 𝜏(F )
and 𝑡 ∈ (0, 1), we have

sup
𝑘∈Z>0

∗ 1
𝑘
Γ
F,𝑘
𝑡 𝜏1+(1−𝑡 )𝜏0

≥ 𝑡 sup
𝑘∈Z>0

∗ 1
𝑘
ΓF,𝑘𝜏1

+ (1 − 𝑡) sup
𝑘∈Z>0

∗ 1
𝑘
ΓF,𝑘𝜏0

.

But thanks to Proposition 1.2.6 and Proposition 1.2.5, it suffices to show that

sup
𝑘∈Z>0

1
𝑘
Γ
F,𝑘
𝑡 𝜏1+(1−𝑡 )𝜏0

≥ 𝑡 sup
𝑘∈Z>0

1
𝑘
ΓF,𝑘𝜏1

+ (1 − 𝑡) sup
𝑘∈Z>0

1
𝑘
ΓF,𝑘𝜏0

for all 𝑡 ∈ (0, 1). Take 𝑠𝑖 ∈ F 𝑘𝑖 𝜏𝑖𝑘𝑖
for 𝑖 = 0, 1 with |𝑠 |2

ℎ𝑘𝑖
≤ 1, where 𝑘0, 𝑘1 ∈ Z>0.

We need to prove that

sup
𝑘∈Z>0

1
𝑘
Γ
F,𝑘
𝑡 𝜏1+(1−𝑡 )𝜏0

≥ 1 − 𝑡
𝑘0

log |𝑠0 |2ℎ𝑘0
+ 𝑡

𝑘1
log |𝑠1 |2ℎ𝑘1

. (9.35)

Approximate 𝑡 by rational number from above, we may reduce to the case where
𝑡 ∈ Q. Write 𝑡 = 𝑝/𝑞 with 𝑝, 𝑞 ∈ Z>0. Then

𝑠 B 𝑠
𝑘1 (𝑞−𝑝)
0 ⊗ 𝑠𝑘0 𝑝

1 ∈ F 𝑘0𝑘1𝜏0 (𝑞−𝑝)+𝑘0𝑘1𝜏1 𝑝
𝑘0𝑘1𝑞

,

and
1

𝑘0𝑘1𝑞
log |𝑠 |2

ℎ𝑘0𝑘1𝑞

=
1

𝑘0𝑘1𝑞

(
𝑘1 (𝑞 − 𝑝) log |𝑠0 |2 + 𝑘0𝑝 log |𝑠1 |2

)
=

1 − 𝑡
𝑘0

log |𝑠0 |2ℎ𝑘0
+ 𝑡

𝑘1
log |𝑠1 |2ℎ𝑘1

.

So (9.35) follows.
Note that for each 𝑘 ∈ Z>0, 𝜏 ≤ 𝑘−1𝜏𝑘 (F ), we know that ΓF,𝑘𝜏 is I-good by

Proposition 7.2.2. It follows from the same proposition that for each 𝜏 < 𝜏(F ), the
potential ΓF𝜏 is also I-good.

It remains to show that the test curve ΓF is bounded and lies in ENA (𝑋, 𝜃). Fix
𝜏 ≤ −𝐶, where 𝐶 is as in (9.33), we will show that

ΓF𝜏 = 𝑉𝜃 . (9.36)

Of course, this follows from the Bergman kernel technique. But based on the theory
we have developed so far, we could give an elegant and elementary argument.
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Fix 𝑘 > 0. Observe that for any 𝑠 ∈ H0 (𝑋, 𝐿𝑘), we have

𝑠 ∈ H0 (𝑋, 𝐿𝑘 ⊗ I(𝑘ΓF𝜏 )).

In fact, by definition of ΓF𝜏 , it suffices to show that

𝑠 ∈ H0 (𝑋, 𝐿𝑘 ⊗ I(ΓF,𝑘𝜏 )),

which is clear by definition. Therefore, by Theorem 7.4.1,

vol
(
𝜃 + ddcΓF𝜏

)
= vol 𝐿.

But since ΓF𝜏 is I-model, this implies (9.36).

Remark 9.3.1 There is an important special case of Example 9.3.1: Suppose that 𝐿 is
ample and F is the filtration induced by a smooth test configuration (X,L) of (𝑋, 𝐿).
Then the geodesic ray ΓF∗ is exactly the Phong–Sturm geodesic ray associated with
(X,L). See [RWN14, Section 9].

Remark 9.3.2 We deduce from Example 9.3.1 that the ray ΓF∗ induced by a filtration
F is maximal.

9.4 Operations on test curves

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝜃, 𝜃′, 𝜃′′ be
smooth closed real (1, 1)-forms on 𝑋 representing big cohomology classes.

In this section, we develop several general operations on test curves, anticipating
the applications in non-Archimedean geometry in Chapter 13. The readers are
encouraged to read Chapter 13 first and consult this section when necessary.

Definition 9.4.1 Given Γ ∈ TC(𝑋, 𝜃)>0, Γ′ ∈ TC(𝑋, 𝜃′)>0, we say Γ ≤ Γ′ if for all
Γmax ≤ Γ′max and for all 𝜏 < Γmax, we have

Γ𝜏 ⪯𝑃 Γ′𝜏 . (9.37)

Observe that (9.37) actually holds for all 𝜏 ∈ R if 𝜃 = 𝜃′. It is easy to verify that ≤
defines a partial order on TC(𝑋, 𝜃)>0.

Lemma 9.4.1 Let Γ, Γ′ ∈ TC(𝑋, 𝜃)>0 and 𝜔 be a closed real smooth positive
(1, 1)-form on 𝑋 . Then the following are equivalent:

(1) Γ ≤ Γ′;
(2) 𝑃𝜃+𝜔 [Γ] ≤ 𝑃𝜃+𝜔 [Γ′].

Proof This follows from Example 6.1.1. □
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Definition 9.4.2 Let Γ ∈ TC(𝑋, 𝜃)>0 and Γ′ ∈ TC(𝑋, 𝜃′)>0, then we define Γ + Γ′ ∈
TC(𝑋, 𝜃 + 𝜃′)>0 as follows:

(1) We set
(Γ + Γ′)max B Γmax + Γ′max;

(2) for any 𝜏 < (Γ + Γ′)max, we define6

(Γ + Γ′)𝜏 B 𝑃𝜃+𝜃 ′

[
sup
𝛿∈R

(
Γ𝛿 + Γ′𝜏−𝛿

) ]
. (9.38)

Lemma 9.4.2 Let Γ ∈ TC(𝑋, 𝜃)>0 and Γ′ ∈ TC(𝑋, 𝜃′)>0, then for any 𝜏 < (Γ +
Γ′)max, we have

sup
𝛿∈R

(
Γ𝛿 + Γ′𝜏−𝛿

)
∈ PSH(𝑋, 𝜃).

This potential is I-good if Γ ∈ PSHNA (𝑋, 𝜃)>0 and Γ′ ∈ PSHNA (𝑋, 𝜃′)>0.
In particular, (9.38) in Definition 9.4.2 makes sense.

Proof Let
𝜂𝜏 = sup

𝛿∈R

(
Γ𝛿 + Γ′𝜏−𝛿

)
= sup
𝜏−Γ′max<𝛿<Γmax

(
Γ𝛿 + Γ′𝜏−𝛿

)
for all 𝜏 ∈ R. Set

𝑍 = {𝑥 ∈ 𝑋 : Γ𝜐 (𝑥) = −∞∀𝜐 ∈ R} ∪
{
𝑥 ∈ 𝑋 : Γ′𝜐 (𝑥) = −∞∀𝜐 ∈ R

}
.

It follows from Proposition A.2.4 that for any 𝑥 ∈ 𝑋 \ 𝑍 , we have

𝜂∗𝑡 (𝑥) = Γ∗𝑡 (𝑥) + Γ′∗𝑡 (𝑥)

for all 𝑡 > 0. The same trivially holds when 𝑥 ∈ 𝑍 , so the equation holds everywhere.
In particular, by Corollary A.2.1 and Proposition 1.2.8, we have

𝜂𝜏 = (Γ∗ + Γ′∗)∗𝜏 ∈ PSH(𝑋, 𝜃 + 𝜃′)

when 𝜏 < Γmax + Γ′max.
Next, assume that Γ and Γ′ are I-model. We need to argue that so is Γ + Γ′.

Fix 𝜏 < Γmax + Γ′max. Then for each 𝛿 ∈ R such that 𝛿 < Γmax and 𝜏 − 𝛿 < Γ′max,
we know that Γ𝛿 ∈ PSH(𝑋, 𝜃)>0 and Γ′

𝜏−𝛿 ∈ PSH(𝑋, 𝜃′)>0 by Lemma 9.1.1.
It follows from Example 7.1.2 that Γ𝑡 and Γ′𝜏−𝑡 are both I-good, hence so is
Γ𝑡 + Γ′𝜏−𝑡 ∈ PSH(𝑋, 𝜃 + 𝜃′)>0 by Proposition 7.2.1. Therefore, 𝜂𝜏 is I-good by
Proposition 7.2.2. Therefore, Γ + Γ′ is I-model. □

Proposition 9.4.1 Let Γ ∈ TC(𝑋, 𝜃)>0 and Γ′ ∈ TC(𝑋, 𝜃′)>0, then Γ + Γ′ ∈
TC(𝑋, 𝜃 + 𝜃′)>0. Moreover,

(Γ + Γ′)−∞ = 𝑃𝜃+𝜃 ′
[
Γ−∞ + Γ′−∞

]
. (9.39)

6 There is no usc regularization in the formula. It is not a typo.
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When Γ ∈ PSHNA (𝑋, 𝜃)>0 and Γ′ ∈ PSHNA (𝑋, 𝜃′)>0, we have Γ + Γ′ ∈
PSHNA (𝑋, 𝜃 + 𝜃′)>0.

The operation + is commutative and associative.

Proof It follows immediately from Lemma 9.4.2 that Γ + Γ′ ∈ TC(𝑋, 𝜃 + 𝜃′)>0, and
it lies in PSHNA (𝑋, 𝜃 + 𝜃′)>0 if Γ ∈ PSHNA (𝑋, 𝜃)>0 and Γ′ ∈ PSHNA (𝑋, 𝜃′)>0.

We argue (9.39). By definition, for any small enough 𝜏, we have

(Γ + Γ′)−∞ ≥ (Γ + Γ′)2𝜏 ⪰𝑃 Γ𝜏 + Γ′𝜏 .

Letting 𝜏 → −∞ and applying Proposition 6.2.4 and Theorem 6.2.2, we find that

(Γ + Γ′)−∞ ⪰𝑃 Γ−∞ + Γ′−∞.

On the other hand, for each small enough 𝜏, we have

(Γ + Γ′)𝜏 ∼𝑃 sup
𝛿∈R

(
Γ𝛿 + Γ′𝜏−𝛿

)
⪯𝑃 Γ−∞ + Γ′−∞

by Proposition 6.1.5 and Proposition 6.2.4. We apply Proposition 6.2.4 again, we
conclude that

(Γ + Γ′)−∞ ⪯𝑃 Γ−∞ + Γ′−∞.

So (9.39) follows.
Finally, let us show that + is commutative and associative. Commutativity is

obvious. Let Γ′′ ∈ TC(𝑋, 𝜃′′)>0. Then we want to show that

(Γ + Γ′) + Γ′′ = Γ + (Γ′ + Γ′′).

First observe that

((Γ + Γ′) + Γ′′)max = (Γ + (Γ′ + Γ′′))max .

Fix 𝜏 less than this common value. We compute that

((Γ + Γ′) + Γ′′)𝜏

=𝑃𝜃

[
sup
𝛿1∈R

(
(Γ + Γ′)𝛿1 + Γ′′𝜏−𝛿1

)]
∼𝑃 sup

𝛿1∈R

(
(Γ + Γ′)𝛿1 + Γ′′𝜏−𝛿1

)
∼𝑃 sup

𝛿1 , 𝛿2∈R

(
Γ𝛿2 + Γ′𝛿1−𝛿2

+ Γ′′𝜏−𝛿1

)
,

where in the last line, we applied Proposition 6.2.4 and Proposition 6.1.5. Similarly,
for (Γ + (Γ′ + Γ′′))𝜏 , we get the same expression. The associativity follows. □

Lemma 9.4.3 Let Γ ∈ TC(𝑋, 𝜃)>0 and Γ′ ∈ TC(𝑋, 𝜃′)>0, then for any closed smooth
positive (1, 1)-forms 𝜔 and 𝜔′ on 𝑋 , we have
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𝑃𝜃+𝜃 ′+𝜔+𝜔′ [Γ + Γ′] = 𝑃𝜃+𝜔 [Γ] + 𝑃𝜃 ′+𝜔′ [Γ] .

Proof Observe that

𝑃𝜃+𝜃 ′+𝜔+𝜔′ [Γ + Γ′]max = (𝑃𝜃+𝜔 [Γ] + 𝑃𝜃 ′+𝜔′ [Γ])max

=Γmax + Γmax.

Take 𝜏 ∈ R less than this common value, we need to verify that

(Γ + Γ′)𝜏 ∼𝑃 (𝑃𝜃+𝜔 [Γ] + 𝑃𝜃 ′+𝜔′ [Γ])𝜏 .

By definition, this means that

sup
𝜏−Γ′max<𝛿<Γmax

(
Γ𝛿 + Γ′𝜏−𝛿

)
∼𝑃 sup

𝜏−Γ′max<𝛿<Γmax

(
𝑃𝜃+𝜔 [Γ𝛿] + 𝑃𝜃 ′+𝜔′ [Γ′𝜏−𝛿]

)
.

This is a consequence of Proposition 6.1.5 and Proposition 6.1.6. □

Definition 9.4.3 Let Γ ∈ TC(𝑋, 𝜃)>0 and 𝐶 ∈ R, we define Γ + 𝐶 ∈ TC(𝑋, 𝜃)>0 as
follows:

(1) We set
(Γ + 𝐶)max B Γmax + 𝐶;

(2) for any 𝜏 < (Γ + 𝐶)max, we set

(Γ + 𝐶)𝜏 B Γ𝜏−𝐶 .

It is obvious that if Γ ∈ PSHNA (𝑋, 𝜃)>0, then so is Γ + 𝐶.

Proposition 9.4.2 Let Γ ∈ TC(𝑋, 𝜃)>0, Γ ∈ TC(𝑋, 𝜃′)>0 and 𝐶,𝐶′ ∈ R, then

(1) (Γ + Γ′) + 𝐶 = Γ + (Γ′ + 𝐶) = (Γ + 𝐶) + Γ′;
(2) Γ + (𝐶 + 𝐶′) = (Γ + 𝐶) + 𝐶′.

Proof (1) We first observe that

((Γ + Γ′) + 𝐶)max = (Γ + (Γ′ + 𝐶))max = ((Γ + 𝐶) + Γ′)max = Γmax + Γ′max + 𝐶.

Take any 𝜏 ∈ R less than this common value. We compute

((Γ + Γ′) + 𝐶)𝜏 =(Γ + Γ′)𝜏−𝐶 = 𝑃𝜃+𝜃 ′

[
sup
𝛿∈R

(
Γ𝛿 + Γ′𝜏−𝐶−𝛿

) ]
,

(Γ + (Γ′ + 𝐶))𝜏 =𝑃𝜃+𝜃 ′
[
sup
𝛿∈R
(Γ𝛿 + (Γ′ + 𝐶)𝜏−𝛿)

]
= 𝑃𝜃+𝜃 ′

[
sup
𝛿∈R

(
Γ𝛿 + Γ′𝜏−𝐶−𝛿

) ]
,

((Γ + 𝐶) + Γ′)𝜏 =𝑃𝜃+𝜃 ′
[
sup
𝛿∈R

(
(Γ + 𝐶)𝐶+𝛿 + Γ′𝜏−𝐶−𝛿

) ]
=𝑃𝜃+𝜃 ′

[
sup
𝛿∈R

(
Γ𝛿 + Γ′𝜏−𝐶−𝛿

) ]
.
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(2) Observe that

(Γ + (𝐶 + 𝐶′))max = ((Γ + 𝐶) + 𝐶′)max = Γmax + 𝐶 + 𝐶′.

For any 𝜏 ∈ R less than this value, we have

(Γ + (𝐶 + 𝐶′))𝜏 = Γ𝜏−𝐶−𝐶′ = ((Γ + 𝐶) + 𝐶′)𝜏 .

Definition 9.4.4 Let Γ, Γ′ ∈ TC(𝑋, 𝜃)>0. We define Γ∨ Γ′ ∈ TC(𝑋, 𝜃)>0 as follows:

(1) We set
(Γ ∨ Γ′)max B Γmax ∨ Γ′max;

(2) for any 𝜏 < (Γ ∨ Γ′)max, we define

(Γ ∨ Γ′)𝜏 B 𝑃𝜃

[
CE

(
𝜌 ↦→ Γ𝜌 ∨ Γ′𝜌

)]
. (9.40)

Recall that the upper concave envelope CE is defined in Definition A.1.47. Trivially,
we have Γ ∨ Γ′ ≥ Γ and Γ ∨ Γ′ ≥ Γ′.

Lemma 9.4.4 Let Γ, Γ′ ∈ TC(𝑋, 𝜃)>0. Then for any 𝜏 < Γmax ∨ Γ′max, we have

CE
(
𝜌 ↦→ Γ𝜌 ∨ Γ′𝜌

)
𝜏
∈ PSH(𝑋, 𝜃).

This potential is I-good if Γ, Γ′ ∈ PSHNA (𝑋, 𝜃)>0.
In particular, (9.40) in Definition 9.4.4 makes sense.

Proof To simply the notations, we write

𝜓𝜏 = CE
(
𝜌 ↦→ Γ𝜌 ∨ Γ′𝜌

)
𝜏

for all 𝜏 ∈ R. Thanks to Proposition A.2.3, we have

𝜓∗𝑡 (𝑥) = Γ∗𝑡 (𝑥) ∨ Γ′∗𝑡 (𝑥) (9.41)

for all 𝑡 > 0 as long as Γ𝜏 (𝑥) ≠ −∞ and Γ𝜏 (𝑥) ≠ −∞ for some 𝜏 ∈ R. Otherwise,
assume that 𝑥 ∈ 𝑋 is such that Γ𝜏 = −∞ for all 𝜏 ∈ R, then by definition,
𝜓𝜏 (𝑥) = Γ′𝜏 (𝑥) for all 𝜏 ∈ R. Therefore, Γ∗𝑡 (𝑥) = −∞ for all 𝑡 > 0 and hence (9.41)
continues to hold. Therefore, we have shown that

𝜓∗𝑡 = Γ∗𝑡 ∨ Γ′∗𝑡 ∈ PSH(𝑋, 𝜃).

It follows from Proposition 4.1.3 that (𝜓∗𝑡 )𝑡∈[𝑎,𝑏] is a subgeodesic for any 0 < 𝑎 < 𝑏.
Next we observe that𝜓• is closed by definition. So it follows from Proposition A.2.3

and Proposition 1.2.8 that

7 In Definition A.1.4, we define the convex analogue, the lower convex envelope. This can be
translated into concave functions in the obvious manner.
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𝜓𝜏 = (𝜓∗•)∗𝜏 ∈ PSH(𝑋, 𝜃) ∪ {−∞}.

Due to Proposition 9.1.4 and Proposition A.1.2, there is a pluripolar set 𝑍 ⊆ 𝑋
such that for 𝑥 ∈ 𝑋 \ 𝑍 , we have

𝜓𝜏 (𝑥) = sup
{
𝜆Γ𝜌 (𝑥) + (1 − 𝜆)Γ′𝜌′ (𝑥) : 𝜆 ∈ (0, 1), 𝜌, 𝜌′ ∈ R, 𝜆𝜌 + (1 − 𝜆)𝜌′ = 𝜏

}
for all 𝜏 < Γmax ∨ Γ′max. It follows from Proposition 1.2.6 that

𝜓𝜏 = sup∗
{
𝜆Γ𝜌 + (1 − 𝜆)Γ′𝜌′ : 𝜆 ∈ (0, 1), 𝜌, 𝜌′ ∈ R, 𝜆𝜌 + (1 − 𝜆)𝜌′ = 𝜏

}
(9.42)

for all 𝜏 < Γmax ∨ Γ′max.
It follows from (9.42) that 𝜓𝜏 is I-good if Γ, Γ′ ∈ PSHNA (𝑋, 𝜃)>0, thanks to

Proposition 7.2.1 and Proposition 7.2.2. □

Corollary 9.4.1 Let Γ, Γ′ ∈ TC(𝑋, 𝜃)>0. Then Γ ∨ Γ′ ∈ TC(𝑋, 𝜃)>0 and

(Γ ∨ Γ′)−∞ = 𝑃𝜃
[
Γ−∞ ∨ Γ′−∞

]
. (9.43)

If Γ, Γ′ ∈ PSHNA (𝑋, 𝜃)>0, then Γ ∨ Γ′ ∈ PSHNA (𝑋, 𝜃)>0.
For each Γ′′ ∈ TC(𝑋, 𝜃)>0 and each Γ′′ ≥ Γ and Γ′′ ≥ Γ′, we have Γ′′ ≥ Γ ∨ Γ′.
Moreover, the operation ∨ is associative and commutative.

In particular, given a finite family {Γ𝑖}𝑖∈𝐼 in TC(𝑋, 𝜃)>0, we can define∨
𝑖∈𝐼

Γ𝑖

without ambiguity.

Proof It follows immediately from Lemma 9.4.4 that Γ ∨ Γ′ ∈ TC(𝑋, 𝜃)>0, and it
lies in PSHNA (𝑋, 𝜃)>0 if Γ, Γ′ ∈ PSHNA (𝑋, 𝜃)>0.

The argument of (9.43) is very similar to that of (9.39), which we leave to the
readers.

Take Γ′′ as in the statement of the proposition. First observe that

Γ′′max ≥ Γmax ∨ Γ′max = (Γ ∨ Γ′)max.

Take 𝜏 < (Γ ∨ Γ′)max, we argue that

Γ′′𝜏 ≥ (Γ ∨ Γ′)𝜏 .

By the concavity of Γ′′, this is equivalent to

Γ′′𝜏 ≥ Γ𝜏 ∨ Γ′𝜏 .

Therefore,
Γ′′ ≥ Γ ∨ Γ′.
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The commutativity and associativity of ∨ are trivial. □

Lemma 9.4.5 Let Γ, Γ′ ∈ TC(𝑋, 𝜃)>0 and 𝜔 be a closed smooth positive (1, 1)-form
on 𝑋 . Then

𝑃𝜃+𝜔 [Γ ∨ Γ′] = 𝑃𝜃+𝜔 [Γ] ∨ 𝑃𝜃+𝜔 [Γ′] .

Proof We first observe that

(𝑃𝜃+𝜔 [Γ ∨ Γ′])max = (𝑃𝜃+𝜔 [Γ] ∨ 𝑃𝜃+𝜔 [Γ′])max = Γmax ∨ Γ′max.

Let 𝜏 ∈ R be less than this common value. We need to show that

(Γ ∨ Γ′)𝜏 ∼𝑃 (𝑃𝜃+𝜔 [Γ] ∨ 𝑃𝜃+𝜔 [Γ′])𝜏 .

We need the formula (9.42) proved in the proof of Lemma 9.4.4:

(Γ ∨ Γ′)𝜏 = sup∗
{
𝜆Γ𝜌 + (1 − 𝜆)Γ′𝜌′ : 𝜆 ∈ (0, 1), 𝜌, 𝜌′ ∈ R, 𝜆𝜌 + (1 − 𝜆)𝜌′ = 𝜏

}
.

A similar result holds with 𝑃𝜃+𝜔 [Γ] and 𝑃𝜃+𝜔 [Γ′] in place of Γ and Γ′. So our
assertion is a direct consequence of Proposition 6.1.5 and Proposition 6.1.6. □

Definition 9.4.5 Let (Γ𝑖)𝑖∈𝐼 be an increasing net in TC(𝑋, 𝜃)>0. Assume that

sup
𝑖∈𝐼

Γ𝑖max < ∞. (9.44)

Then we define sup𝑖∈𝐼 ∗Γ𝑖 ∈ TC(𝑋, 𝜃)>0 as follows:

(1) We set (
sup
𝑖∈𝐼
∗Γ𝑖

)
max

= sup
𝑖∈𝐼

Γ𝑖max;

(2) for any 𝜏 < sup𝑖∈𝐼 Γ𝑖max, we let(
sup
𝑖∈𝐼
∗Γ𝑖

)
𝜏

B sup
𝑖∈𝐼
∗Γ𝑖𝜏 .

Proposition 9.4.3 Let (Γ𝑖)𝑖∈𝐼 be an increasing net in TC(𝑋, 𝜃)>0 satisfying (9.44).
Then sup𝑖∈𝐼 ∗Γ𝑖 as defined in Definition 9.4.5 lies in TC(𝑋, 𝜃)>0. Moreover, if
Γ𝑖 ∈ PSHNA (𝑋, 𝜃)>0 for all 𝑖 ∈ 𝐼, then sup𝑖∈𝐼 ∗Γ𝑖 lies in PSHNA (𝑋, 𝜃)>0 as well.

Moreover, we have (
sup
𝑖∈𝐼
∗Γ𝑖

)
−∞

= sup
𝑖∈𝐼
∗Γ𝑖−∞. (9.45)

Proof The first assertion follows easily from Proposition 3.1.11, while the second
follows from Proposition 3.2.14.

It remains to argue (9.45). Without loss of generality, we may assume that 𝐼
contains a minimal element 𝑖0.

By Proposition 1.2.5, there is a pluripolar set 𝑍 ⊆ 𝑋 such that for any 𝑥 ∈ 𝑋 \ 𝑍 ,
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sup
𝑖∈𝐼
∗Γ𝑖

)
−∞
(𝑥) = sup

Q∋𝜏<Γ𝑖0max

(
sup
𝑖∈𝐼
∗Γ𝑖𝜏

)
(𝑥) = sup

Q∋𝜏<Γ𝑖0max ,𝑖∈𝐼
Γ𝑖𝜏 (𝑥) = sup

𝑖∈𝐼
Γ𝑖−∞ (𝑥).

So they are equal everywhere by Proposition 1.2.6. □

Lemma 9.4.6 Let (Γ𝑖)𝑖∈𝐼 be an increasing net in TC(𝑋, 𝜃)>0 satisfying (9.44).
Assume that 𝜔 is a closed smooth positive (1, 1)-form on 𝑋 . Then

𝑃𝜃+𝜔

[
sup
𝑖∈𝐼
∗Γ𝑖

]
= sup
𝑖∈𝐼
∗𝑃𝜃+𝜔

[
Γ𝑖

]
.

Proof Observe that(
𝑃𝜃+𝜔

[
sup
𝑖∈𝐼
∗Γ𝑖

] )
max

=

(
sup
𝑖∈𝐼
∗𝑃𝜃+𝜔

[
Γ𝑖

] )
max

= sup
𝑖∈𝐼

Γ𝑖max.

Fix 𝜏 ∈ R less than this common value.
It suffices to show that(

sup
𝑖∈𝐼
∗Γ𝑖

)
𝜏

∼𝑃
(
sup
𝑖∈𝐼
∗𝑃𝜃+𝜔

[
Γ𝑖

] )
𝜏

.

This is an immediate consequence of Proposition 6.1.6. □

Definition 9.4.6 Let (Γ𝑖)𝑖∈𝐼 be a non-empty family in TC(𝑋, 𝜃)>0 satisfying (9.44).
Then we define

sup
𝑖∈𝐼
∗Γ𝑖 B sup

𝐽∈Fin(𝐼 )

∗

(∨
𝑗∈𝐽

Γ 𝑗

)
. (9.46)

Recall that Fin(𝐼) is the net of non-empty finite subsets of 𝐼, ordered by inclusion.
Observe that by Definition 9.4.4, we have

sup
𝐽∈Fin(𝐼 )

(∨
𝑗∈𝐽

Γ 𝑗

)
max

= sup
𝑖∈𝐼

Γ𝑖max < ∞.

So (9.46) makes sense. In particular,(
sup
𝑖∈𝐼

Γ𝑖
)

max
= sup
𝑖∈𝐼

Γ𝑖max. (9.47)

It is clear that Definition 9.4.6 extends both Definition 9.4.5 and Definition 9.4.4.

Proposition 9.4.4 Let (Γ𝑖)𝑖∈𝐼 be a non-empty family in TC(𝑋, 𝜃)>0 satisfying (9.44).
Then sup𝑖∈𝐼 ∗Γ𝑖 ∈ TC(𝑋, 𝜃)>0. Moreover, if Γ𝑖 ∈ PSHNA (𝑋, 𝜃)>0 for all 𝑖 ∈ 𝐼, then
so is sup𝑖∈𝐼 ∗Γ𝑖 .

Finally, we have (
sup
𝑖∈𝐼
∗Γ𝑖

)
−∞

= sup
𝑖∈𝐼
∗Γ𝑖−∞. (9.48)
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Proof The first assertion and the second follow from Proposition 9.4.3 and Corol-
lary 9.4.1.

It remains to argue (9.48). For this purpose, it suffices to show that(
sup
𝑖∈𝐼
∗Γ𝑖

)
−∞
∼𝑃 sup

𝑖∈𝐼
∗Γ𝑖−∞.

For any 𝐽 ∈ Fin(𝐼), it follows from Corollary 9.4.1 and Proposition 6.1.6 that(∨
𝑗∈𝐽

Γ 𝑗

)
−∞

∼𝑃
∨
𝑗∈𝐽

Γ
𝑗
−∞.

From this, applying Proposition 3.1.11, Proposition 6.1.6 and Proposition 9.4.3, we
conclude our assertion. □

Lemma 9.4.7 Let (Γ𝑖)𝑖∈𝐼 be a non-empty family in TC(𝑋, 𝜃)>0 satisfying (9.44).
Assume that 𝜔 is a closed smooth positive (1, 1)-form on 𝑋 . Then

𝑃𝜃+𝜔

[
sup
𝑖∈𝐼
∗Γ𝑖

]
= sup
𝑖∈𝐼
∗𝑃𝜃+𝜔

[
Γ𝑖

]
.

Proof This is a direct consequence of Lemma 9.4.6 and Lemma 9.4.5. □

We prove a version of Choquet’s lemma.

Proposition 9.4.5 Let (Γ𝑖)𝑖∈𝐼 be a non-empty family in TC(𝑋, 𝜃)>0 satisfying (9.44).
Then there is a countable subset 𝐼 ′ ⊆ 𝐼 such that

sup
𝑖∈𝐼
∗Γ𝑖 = sup

𝑖∈𝐼 ′
∗Γ𝑖 .

Proof We may assume that 𝐼 is infinite.
It follows from Proposition 1.2.2 that we can find a countable subset 𝐼 ′ ⊆ 𝐼 such

that for each
𝜏 ∈

(
−∞, sup

𝑖∈𝐼
∗Γ𝑖max

)
∩ Q,

we have
sup
𝑖∈𝐼
∗Γ𝑖𝜏 = sup

𝑖∈𝐼 ′
∗Γ𝑖𝜏 .

Let Γ′ = sup𝑖∈𝐼 ′∗Γ𝑖 . Then clearly, Γ′ ≤ Γ. We claim that they are actually equal.
Thanks to Proposition 6.1.1 and Lemma 9.1.1, it suffices to show that for any

𝜏 < sup𝑖∈𝐼 ∗Γ𝑖max, we have∫
𝑋

(
𝜃 + ddcΓ′𝜏

)𝑛
=

∫
𝑋

(𝜃 + ddcΓ𝜏)𝑛 .

Since we know that this holds for 𝜏 lying in a dense subset, the same holds everywhere
by Proposition 9.1.1. □
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Proposition 9.4.6 Let (Γ𝑖)𝑖∈𝐼 be a non-empty family in TC(𝑋, 𝜃)>0 satisfying (9.44).
Let 𝐶 ∈ R. Then

sup
𝑖∈𝐼
∗ (Γ𝑖 + 𝐶) = sup

𝑖∈𝐼
∗Γ𝑖 + 𝐶.

Suppose that (Γ′𝑖)𝑖∈𝐼 is another family in TC(𝑋, 𝜃′)>0 satisfying (9.44). Suppose
that Γ𝑖 ≤ Γ′𝑖 for all 𝑖 ∈ 𝐼, then

sup
𝑖∈𝐼
∗Γ𝑖 ≤ sup

𝑖∈𝐼
∗Γ′𝑖 .

Proof This is immediate by definition. □

Definition 9.4.7 Let Γ ∈ TC(𝑋, 𝜃)>0 and 𝜆 > 0, we define 𝜆Γ ∈ TC(𝑋, 𝜆𝜃)>0 as
follows:

(1) We set
(𝜆Γ)max = 𝜆Γmax;

(2) for any 𝜏 < (𝜆Γ)max, we set

(𝜆Γ)𝜏 = 𝜆Γ𝜆−1𝜏 .

Proposition 9.4.7 Let Γ ∈ TC(𝑋, 𝜃)>0 and 𝜆 > 0, then 𝜆Γ as defined in Defi-
nition 9.4.7 lies in TC(𝑋, 𝜆𝜃)>0. Moreover, if Γ ∈ PSHNA (𝑋, 𝜃)>0, then 𝜆Γ ∈
PSHNA (𝑋, 𝜆𝜃)>0.

We have
(𝜆Γ)−∞ = 𝜆Γ−∞. (9.49)

Proof This is immediate by definition. □

Proposition 9.4.8 Let Γ ∈ TC(𝑋, 𝜃)>0, Γ′ ∈ TC(𝑋, 𝜃′)>0, 𝐶 ∈ R and 𝜆, 𝜆′ > 0, we
have

𝜆(Γ + Γ′) =𝜆Γ + 𝜆Γ′,
(𝜆𝜆′)Γ =𝜆(𝜆′Γ),

𝜆(Γ + 𝐶) =𝜆Γ + 𝜆𝐶.

Suppose that (Γ𝑖)𝑖∈𝐼 is a non-empty family in TC(𝑋, 𝜃)>0 satisfying (9.44), then

𝜆

(
sup
𝑖∈𝐼
∗Γ𝑖

)
= sup
𝑖∈𝐼
∗ (𝜆Γ𝑖).

Proof This is immediate by definition. □

Lemma 9.4.8 Let Γ ∈ TC(𝑋, 𝜃)>0 and 𝜆 > 0. Then for any closed smooth positive
(1, 1)-form 𝜔 on 𝑋 , we have

𝑃𝜆𝜃+𝜆𝜔 [𝜆Γ] = 𝜆𝑃𝜃+𝜔 [Γ] .

Proof This is clear by definition. □



248 CHAPTER 9. TEST CURVES

Definition 9.4.8 Let (Γ𝑖)𝑖∈𝐼 be a decreasing net in TC(𝑋, 𝜃)>0. Assume that

inf
𝑖∈𝐼

Γ𝑖max > −∞, (9.50)

and
inf
𝑖∈𝐼

∫
𝑋

(
𝜃 + ddcΓ𝑖𝜏

)𝑛
> 0, for some 𝜏 < inf

𝑖∈𝐼
Γ𝑖max. (9.51)

Then we define inf𝑖∈𝐼 Γ𝑖 ∈ TC(𝑋, 𝜃)>0 as follows:

(1) We set (
inf
𝑖∈𝐼

Γ𝑖
)

max
= inf
𝑖∈𝐼

Γ𝑖max;

(2) for any 𝜏 <
(
inf𝑖∈𝐼 Γ𝑖

)
max, we let(

inf
𝑖∈𝐼

Γ𝑖
)
𝜏

B inf
𝑖∈𝐼

Γ𝑖𝜏 .

Proposition 9.4.9 Let (Γ𝑖)𝑖∈𝐼 be a decreasing net in TC(𝑋, 𝜃)>0 satisfying (9.50)
and (9.51), then inf𝑖∈𝐼 Γ𝑖 ∈ TC(𝑋, 𝜃)>0.

Moreover, if Γ𝑖 ∈ PSHNA (𝑋, 𝜃)>0 for all 𝑖 ∈ 𝐼, then so is inf𝑖∈𝐼 Γ𝑖 .

Proof The first assertion is an immediate consequence of Proposition 3.1.9 and
Proposition 3.1.10. The last assertion follows from Proposition 3.2.13. □

In general, it is not true that (
inf
𝑖∈𝐼

Γ𝑖
)
−∞

= inf
𝑖∈𝐼

Γ𝑖−∞.

Lemma 9.4.9 Let (Γ𝑖)𝑖∈𝐼 be a decreasing net in TC(𝑋, 𝜃)>0 satisfying (9.50) and
(9.51). Assume that 𝜔 is a closed smooth positive (1, 1)-form on 𝑋 . Then

𝑃𝜃+𝜔

[
inf
𝑖∈𝐼

Γ𝑖
]
= inf
𝑖∈𝐼
𝑃𝜃+𝜔

[
Γ𝑖

]
.

Proof First observe that(
𝑃𝜃+𝜔

[
inf
𝑖∈𝐼

Γ𝑖
] )

max
=

(
inf
𝑖∈𝐼
𝑃𝜃+𝜔

[
Γ𝑖

] )
max

.

Let 𝜏 ∈ R be less than this common value. Then we need to show the following:

𝑃𝜃+𝜔

[
inf
𝑖∈𝐼

Γ𝑖𝜏

]
∼𝑃 inf

𝑖∈𝐼
𝑃𝜃+𝜔

[
Γ𝑖𝜏

]
. (9.52)

It follows from Proposition 3.1.10 and Corollary 6.2.5 that Γ𝑖𝜏
𝑑𝑆−−→ inf 𝑗∈𝐼 Γ

𝑗
𝜏 . Thanks

to Corollary 6.2.8 and Corollary 6.2.5, we have
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𝑃𝜃+𝜔
[
Γ𝑖𝜏

] 𝑑𝑆−−→ inf
𝑗∈𝐼

Γ
𝑗
𝜏 , 𝑃𝜃+𝜔

[
Γ𝑖𝜏

] 𝑑𝑆−−→ inf
𝑗∈𝐼
𝑃𝜃+𝜔

[
Γ
𝑗
𝜏

]
.

Hence, (9.52) follows from Proposition 6.2.2. □





Chapter 10
The theory of Okounkov bodies

It is very fortunate that, unlike people who dig for gold,
mathematicians can freely share their precious treasures with
everybody. Once you understand something really well, it feels
great to explain it to all.
— Andrei Okounkova

a Andrei Yuryevich Okounkov (1969–) is a Russian-American
mathematician renowned for his contributions to representation
theory. He was one of the key organizers of the ICM 2022
in St. Petersburg, which was unfortunately canceled under the
indiscriminate discrimination against Russian citizens by the virtue
signalers all over the western world after the war waged by the
ruling class.

In this chapter, we apply our theory of singularities to the study of Okounkov
bodies. We establish the theory of partial Okounkov bodies, which are convex bodies
constructed from a given plurisubharmonic singularity. These objects allow us to
reduce many problems in pluripotential theory to problems in convex geometry,
which are usually simpler.

We will establish two related theories — One in the algebraic setting in Section 10.3
and one in the transcendental setting in Section 10.4.

The readers are assumed to have some knowledge in the classical Okounkov bodies.
The original papers of Lazarsfeld–Mustat,ă [LM09] and Kaveh–Khovanskii[KK12]
are highly recommended. We give a rather brief introduction here.

Let 𝑋 be an irreducible smooth projective variety of dimension 𝑛 and 𝐿 be a big
holomorphic line bundle on 𝑋 . Given any admissible flag 𝑋 = 𝑌0 ⊇ 𝑌1 ⊇ · · · ⊇ 𝑌𝑛
on 𝑋 (see Definition 10.2.1 for the precise definition), one can attach a natural
convex body Δ(𝐿) of dimension 𝑛 to 𝐿, generalizing the classical Newton polytope
construction in toric geometry as we recalled in Definition 5.2.1. This construction
was first considered by Okounkov [Oko96, Oko03] and then extended by Lazarsfeld–
Mustat,ă [LM09] and Kaveh–Khovanskii [KK12]. The convex body Δ(𝐿) is known
as the Okounkov body or Newton–Okounkov body associated with 𝐿 (with respect to
the given flag). In fact, by taking the successive order of vanishing along the flag, we
can define a valuation 𝜈 : C(𝑋)× → Z𝑛. Consider the semigroup

Γ(𝐿) B
{
(𝜈(𝑠), 𝑘) ∈ Z𝑛+1 : 𝑘 ∈ N, 𝑠 ∈ H0 (𝑋, 𝐿𝑘)×

}
.

Then Δ(𝐿) is the intersection of the closed convex cone in R𝑛+1 generated by Γ(𝐿)
with the hyperplane {(𝑥, 1) : 𝑥 ∈ R𝑛}.

In [LM09], Lazarsfeld–Mustat,ă showed moreover that Δ(𝐿) depends only on the
numerical class of 𝐿. Conversely, it is shown by Jow [Jow10] that the information of
all Okounkov bodies with respect to various flags actually determines the numerical
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class of 𝐿. In other words, Okounkov bodies can be regarded as universal numerical
invariants of big line bundles.

This chapter concerns a similar problem. Assume that 𝐿 is equipped with a psh
metric 𝜙. We will construct universal invariants of the singularity type of 𝜙. We call
these universal invariants the partial Okounkov bodies of (𝐿, 𝜙). The name partial
refers to the fact that these convex bodies are contained in Δ(𝐿).

We define a set

Γ(𝐿, 𝜙) B
{
(𝜈(𝑠), 𝑘) ∈ Z𝑛+1 : 𝑘 ∈ N, 𝑠 ∈ H0 (𝑋, 𝐿𝑘 ⊗ I(𝑘𝜙))×

}
similar to Γ(𝐿). However, a key difference here is that Γ(𝐿, 𝜙) is not a semigroup in
general. Thus, the constructions in both [LM09] and [KK12] break down. We will
show that in this case, there is still a canonical construction of Okounkov bodies.

As we will see shortly, although Γ(𝐿, 𝜙) fails to be a semigroup, it is not very
far away from a semigroup. It is an instance of the almost semigroups that we are
about to define in Section 10.1. We will show that the Okounkov body construction Δ

admits a continuous extension to almost semigroups. In particular, we can define

Δ(𝐿, 𝜙) B Δ (Γ(𝐿, 𝜙)) .

We will prove that Δ(𝐿, 𝜙) can be regarded as universal invariants of the singularities
of 𝜙, see Corollary 10.3.3.

10.1 Almost semigroups

We give a brief presentation of the theory of almost semigroups. The proofs will be
presented in Appendix C.

Fix an integer 𝑛 ≥ 0. Fix a closed convex cone 𝐶 ⊆ R𝑛 × R≥0 such that
𝐶 ∩ {𝑥𝑛+1 = 0} = {0}. Here 𝑥𝑛+1 is the last coordinate of R𝑛+1.

Write Ŝ(𝐶) for the set of subsets of𝐶∩Z𝑛+1 andS(𝐶) for the set of sub-semigroups
𝑆 ⊆ 𝐶 ∩ Z𝑛+1. For each 𝑘 ∈ N and 𝑆 ∈ Ŝ(𝐶), we write

𝑆𝑘 B {𝑥 ∈ Z𝑛 : (𝑥, 𝑘) ∈ 𝑆} .

Note that 𝑆𝑘 is a finite set by our assumption on 𝐶.
We introduce a pseudometric on Ŝ(𝐶) as follows:

𝑑sg (𝑆, 𝑆′) B lim
𝑘→∞

𝑘−𝑛
(
|𝑆𝑘 | + |𝑆′𝑘 | − 2| (𝑆 ∩ 𝑆′)𝑘 |

)
. (10.1)

Here | • | denotes the cardinality of a finite set. The above defined 𝑑sg is a pseudometric
on Ŝ(𝐶). Given 𝑆, 𝑆′ ∈ Ŝ(𝐶), we say 𝑆 is equivalent to 𝑆′ and write 𝑆 ∼ 𝑆′ if
𝑑sg (𝑆, 𝑆′) = 0. This is an equivalence relation.

The volume of 𝑆 ∈ S(𝐶) is defined as
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vol 𝑆 B lim
𝑘→∞
(𝑘𝑎)−𝑛 |𝑆𝑘𝑎 | = lim

𝑘→∞
𝑘−𝑛 |𝑆𝑘 |,

where 𝑎 is a sufficiently divisible positive integer. The existence of the limit and its
independence from 𝑎 both follow from the more precise result [KK12, Theorem 2].

We define S(𝐶) as the closure of S(𝐶) in Ŝ(𝐶) with respect to the topology
defined by the pseudometric 𝑑. The function vol : S(𝐶) → R admits a unique
1-Lipschitz extension to

vol : S(𝐶) → R. (10.2)

Given 𝑆 ∈ Ŝ(𝐶), we will write 𝐶 (𝑆) ⊆ 𝐶 for the closed convex cone generated
by 𝑆 ∪ {0}. Moreover, for each 𝑘 ∈ Z>0, we define

Δ𝑘 (𝑆) B Conv
{
𝑘−1𝑥 ∈ R𝑛 : 𝑥 ∈ 𝑆𝑘

}
⊆ R𝑛.

Here Conv denotes the convex hull.

Definition 10.1.1 Let S′ (𝐶) be the subset of S(𝐶) consisting of semigroups 𝑆 such
that 𝑆 generates Z𝑛+1 (as an Abelian group).

Note that for any 𝑆 ∈ S′ (𝐶), the cone 𝐶 (𝑆) has full dimension (i.e. the topological
interior is non-empty). Given a full-dimensional subcone 𝐶′ ⊆ 𝐶, it is clear that
𝐶′ ∩ Z𝑛+1 ∈ S′ (𝐶).

We recall the following definition from [KK12].

Definition 10.1.2 Given 𝑆 ∈ S′ (𝐶), its Okounkov body is defined as follows

Δ(𝑆) B {𝑥 ∈ R𝑛 : (𝑥, 1) ∈ 𝐶 (𝑆)} .

Theorem 10.1.1 For each 𝑆 ∈ S′ (𝐶), we have

vol 𝑆 = lim
𝑘→∞

𝑘−𝑛 |𝑆𝑘 | = volΔ(𝑆) > 0. (10.3)

Moreover, as 𝑘 →∞,
Δ𝑘 (𝑆)

𝑑Haus−−−−→ Δ(𝑆). (10.4)

Corollary 10.1.1 Let 𝑆, 𝑆′ ∈ S′ (𝐶). Assume that vol(𝑆 ∩ 𝑆′) > 0, then we have

𝑑sg (𝑆, 𝑆′) = vol(𝑆) + vol(𝑆′) − 2 vol(𝑆 ∩ 𝑆′).

Definition 10.1.3 We define S′ (𝐶)>0 as elements in the closure of S′ (𝐶) in Ŝ(𝐶)
with positive volume. An element in S′ (𝐶)>0 is called an almost semigroup in 𝐶.

Recall that the volume here is defined in (10.2).

Theorem 10.1.2 The Okounkov body map Δ : S′ (𝐶) → K𝑛 as defined in Defini-
tion 10.1.2 admits a unique continuous extension

Δ : S′ (𝐶)>0 → K𝑛. (10.5)
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Moreover, for any 𝑆 ∈ S′ (𝐶)>0, we have

vol 𝑆 = volΔ(𝑆). (10.6)

Corollary 10.1.2 Suppose that 𝑆, 𝑆′ ∈ S′ (𝐶)>0 with 𝑆 ⊆ 𝑆′, then

Δ(𝑆) ⊆ Δ(𝑆′). (10.7)

10.2 Flags and valuations

10.2.1 The algebraic setting

Let 𝑋 be an irreducible normal projective variety of dimension 𝑛.

Definition 10.2.1 An admissible flag 𝑌• on 𝑋 is a flag of subvarieties

𝑋 = 𝑌0 ⊇ 𝑌1 ⊇ · · · ⊇ 𝑌𝑛

such that 𝑌𝑖 is irreducible of codimension 𝑖 and is smooth at the point 𝑌𝑛.

Given any admissible flag 𝑌•, we can define a rank 𝑛 valuation 𝜈𝑌• : C(𝑋)× → Z𝑛.
Here we consider Z𝑛 as a totally ordered Abelian group with the lexicographic order.
We sometimes write Z𝑛lex to emphasize this point.

If we identify the elements in Z𝑛 with a row vector, the automorphism group
Aut(Z𝑛lex) of Z𝑛lex is then identified with the subgroup of GL(𝑛,Z) consisting of
matrices of the form I +𝑈, where I is the identity matrix and 𝑈 is a strictly upper
triangular matrix with elements in Z.

We recall the definition of 𝜈𝑌• : Let 𝑠 ∈ C(𝑋)× . Let 𝜈(𝑠)1 = ord𝑌1 𝑠. After
localization around 𝑌𝑛, we can take a local defining equation 𝑡1 of 𝑌1, set 𝑠1 =

(𝑠(𝑡1)−𝜈1 (𝑠) ) |𝑌1 . Then 𝑠1 ∈ C(𝑌1)× . We can repeat this construction with 𝑌2 in place
of 𝑌1 to get 𝜈(𝑠)2 and 𝑠2. Repeating this construction 𝑛 times, we get

𝜈𝑌• (𝑠) = (𝜈(𝑠)1, 𝜈(𝑠)2, . . . , 𝜈(𝑠)𝑛) ∈ Z𝑛.

It is easy to verify that 𝜈𝑌• is indeed a rank 𝑛 valuation.
The same construction can be applied to define 𝜈𝑌• (𝑠) when 𝑠 ∈ H0 (𝑋, 𝐿) or

𝜈𝑌• (𝐷) when 𝐷 is an effective divisor on 𝑋 .

Remark 10.2.1 Conversely, by a theorem of Abhyankar, any valuation of C(𝑋) with
Noetherian valuation ring of rank 𝑛 is equivalent to a valuation taking value in Z𝑛,
see [FK18, Chapter 0, Theorem 6.5.2]. As shown in [CFK+17, Theorem 2.9], any
such valuation is equivalent1 to (but not necessarily equal to) a valuation induced by
an admissible flag on a modification of 𝑋 .

1 Two valuations 𝜈, 𝜈′ with value in Z𝑛 are equivalent if one can find a matrix 𝐺 of the form I + 𝑁 ,
where 𝑁 is strictly upper triangular with integral entries, such that 𝜈′ = 𝜈𝐺.
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10.2.2 The transcendental setting

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛.

Definition 10.2.2 A smooth flag 𝑌• on 𝑋 consists of a flag of connected closed
submanifolds of 𝑋:

𝑋 = 𝑌0 ⊇ 𝑌1 ⊇ · · · ⊇ 𝑌𝑛,

where 𝑌𝑖 has dimension 𝑛 − 𝑖.

In this section, we will fix a smooth flag 𝑌• on 𝑋 .

Definition 10.2.3 Let 𝑇 be a closed positive (1, 1)-current on 𝑋 . We define the
valuation of 𝑇 along 𝑌• as

𝜈𝑌• (𝑇) =
(
𝜈𝑌• (𝑇)1, . . . , 𝜈𝑌• (𝑇)𝑛

)
∈ R𝑛≥0

by induction on 𝑛. When 𝑛 = 0, we define 𝜈𝑌• (𝑇) as the unique point in R0. When
𝑛 ≥ 1, we define

𝜈𝑌• (𝑇)1 (𝑇) = 𝜈(𝑇,𝑌1);

Then for 𝑖 = 2, . . . , 𝑛, we define

𝜈𝑌• (𝑇)𝑖 = 𝜈𝑌1⊇···⊇𝑌𝑛
(
Tr𝑌1 (𝑇 − 𝜈(𝑇,𝑌1) [𝑌1])

)
𝑖−1 .

Proposition 10.2.1 Let𝑇 be a closed positive (1, 1)-current on 𝑋 . Then 𝜈𝑌• (𝑇) ∈ R𝑛≥0
defined in Definition 10.2.3 is independent of the choices of the trace operators in the
definition. Moreover, 𝜈𝑌• (𝑇) depends only on the I-equivalence class of 𝑇 .

Proof We will prove both statements at the same time by induction on 𝑛 ≥ 0. The
cases 𝑛 = 0, 1 are trivial.

Let us consider the case 𝑛 > 1 and assume that the result is known in dimension
𝑛 − 1. We first observe that 𝜈𝑌• (𝑇) is independent of the choice of the trace operator:
Different choices of Tr𝑌1 (𝑇 − 𝜈(𝑇,𝑌1) [𝑌1]) are I-equivalent by Proposition 8.1.2.
Therefore, by induction, its valuation is well-defined.

Next, let 𝑇 ′ be another closed positive (1, 1)-current such that 𝑇 ∼I 𝑇 ′. Using
Proposition 3.2.1, we know that 𝜈(𝑇,𝑌1) = 𝜈(𝑇 ′, 𝑌1). Therefore,

𝑇 − 𝜈(𝑇,𝑌1) [𝑌1] ∼I 𝑇 ′ − 𝜈(𝑇 ′, 𝑌1) [𝑌1] .

It follows by induction that

𝜈𝑌1⊇···⊇𝑌𝑛
(
Tr𝑌1 (𝑇 − 𝜈(𝑇,𝑌1) [𝑌1])

)
= 𝜈𝑌1⊇···⊇𝑌𝑛

(
Tr𝑌1 (𝑇 ′ − 𝜈(𝑇 ′, 𝑌1) [𝑌1])

)
.

Example 10.2.1 When 𝑋 is projective, we have

𝜈𝑌• ( [𝐷]) = 𝜈𝑌• (𝐷),

where the right-hand side is defined in Section 10.2.1.
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Proposition 10.2.2 Let 𝑇 , 𝑆 be closed positive (1, 1)-currents on 𝑋 , 𝜆 ∈ R≥0. Then

(1) if 𝑇 ⪯I 𝑆, we have
𝜈𝑌• (𝑇) ≥lex 𝜈𝑌• (𝑆). (10.8)

(2) We have the following additivity property:

𝜈𝑌• (𝑇 + 𝑆) = 𝜈𝑌• (𝑇) + 𝜈𝑌• (𝑆), 𝜈𝑌• (𝜆𝑇) = 𝜆𝜈𝑌• (𝑇). (10.9)

Proof (1) We make an induction on 𝑛 ≥ 0. The case 𝑛 = 0, 1 is trivial. Assume that
𝑛 ≥ 2 and the case 𝑛 − 1 is known. Observe that 𝜈(𝑇,𝑌1) ≥ 𝜈(𝑆,𝑌1), if the inequality
is strict, we are done. So let us assume that 𝜈(𝑇,𝑌1) = 𝜈(𝑆,𝑌1). By Proposition 8.2.1,
we find that

Tr𝑌1 (𝑇 − 𝜈(𝑇,𝑌1) [𝑌1]) ⪯I Tr𝑌1 (𝑆 − 𝜈(𝑇,𝑌1) [𝑌1]).

By the inductive hypothesis, we conclude (10.8).
(2) We make an induction on 𝑛 ≥ 0. The cases 𝑛 = 0, 1 are trivial. Assume that

𝑛 ≥ 2 and the case 𝑛 − 1 is known. By Proposition 1.4.2, we have

𝜈(𝑇 + 𝑆,𝑌1) = 𝜈(𝑇,𝑌1) + 𝜈(𝑆,𝑌1), 𝜈(𝜆𝑇,𝑌1) = 𝜆𝜈(𝑇,𝑌1).

By Proposition 8.2.1, we have

Tr𝑌1 (𝑇 + 𝑆 − 𝜈(𝑇 + 𝑆,𝑌1) [𝑌1]) ∼𝑃 Tr𝑌1 (𝑇 − 𝜈(𝑇,𝑌1) [𝑌1])
+ Tr𝑌1 (𝑆 − 𝜈(𝑆,𝑌1) [𝑌1]) ,

Tr𝑌1 (𝜆𝑇 − 𝜈(𝜆𝑇,𝑌1) [𝑌1]) ∼𝑃𝜆 Tr𝑌1 (𝑇 − 𝜈(𝑇,𝑌1) [𝑌1]) .

By the inductive hypothesis, we conclude (10.9).

Assume that 𝑛 > 0 for the remaining of this section.

Definition 10.2.4 Let 𝜋 : 𝑍 → 𝑋 be a proper bimeromorphic morphism with 𝑍 being
a Kähler manifold. We say that a smooth flag 𝑊• on 𝑍 is a lifting of 𝑌• to 𝑍 if the
restriction of 𝜋 to𝑊𝑖 → 𝑌𝑖 is defined and is bimeromorphic for each 𝑖 = 0, . . . , 𝑛.

In this case, we define cor(𝑌•, 𝜋) ∈ Aut(Z𝑛lex) inductively as follows: When 𝑛 = 1,
we define cor(𝑌•, 𝜋) = [1]; when 𝑛 > 1, we set

cor(𝑌•, 𝜋) B
[
1 −𝜈𝑊1⊇···⊇𝑊𝑛 ((𝜋∗ [𝑌1] − [𝑊1]) |𝑊1 )
0 cor(𝑌1 ⊇ · · · ⊇ 𝑌𝑛, 𝜋 |𝑊1 : 𝑊1 → 𝑌1)

]
. (10.10)

We observe that a lifting𝑊• of 𝑌• on 𝑍 is unique if it exists: For each 𝑖 = 0, . . . , 𝑛− 1,
the component 𝑊𝑖+1 is necessarily the strict transform of 𝑌𝑖+1 with respect to the
bimeromorphic morphism 𝑊𝑖 → 𝑌𝑖 . We shall also say that (𝑊•, cor(𝑌•, 𝜋)) is the
lifting of 𝑌• to 𝑍 .
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Proposition 10.2.3 Let 𝜋 : 𝑍 → 𝑋 be a proper bimeromorphic morphism with 𝑍
being a Kähler manifold. Let 𝑊• be a lifting of 𝑌•, then for any closed positive
(1, 1)-current 𝑇 on 𝑋 , we have

𝜈𝑊• (𝜋∗𝑇) = 𝜈𝑌• (𝑇) cor(𝑌•, 𝜋). (10.11)

Proof We make induction on 𝑛 ≥ 0. The case 𝑛 = 0 is trivial. In general, assume
that 𝑛 ≥ 1 and the result is proved in dimension 𝑛 − 1.

For simplicity, we write 𝜈 = 𝜈𝑌• and 𝜈′ = 𝜈𝑊• . Let 𝜇 (resp. 𝜇′) be the valuation of
currents defined by the truncated flag 𝑌1 ⊇ · · · ⊇ 𝑌𝑛 (resp.𝑊1 ⊇ · · · ⊇ 𝑊𝑛). Then we
need to show that [

𝜈′ (𝜋∗𝑇)1 𝜇′ (Tr𝑊1 (𝜋∗𝑇 − 𝜈′ (𝜋∗𝑇)1 [𝑊1]))
]

=
[
𝜈(𝑇)1 𝜇(Tr𝑌1 (𝑇 − 𝜈(𝑇)1 [𝑌1]))

]
cor(𝑌•, 𝜋).

(10.12)

By Zariski’s main theorem,

𝜈′ (𝜋∗𝑇)1 = 𝜈(𝑇)1 C 𝑐.

By the inductive hypothesis, we have

𝜇′ (Π∗ Tr𝑌1 (𝑇 − 𝑐[𝑌1])) = 𝜇(Tr𝑌1 (𝑇 − 𝑐[𝑌1])) cor(𝑌1 ⊇ · · · ⊇ 𝑌𝑛,Π), (10.13)

where Π : 𝑊1 → 𝑌1 is the restriction of 𝜋. By Lemma 8.2.1 and Proposition 8.2.1,

Π∗ Tr𝑌1 (𝑇 − 𝑐[𝑌1]) ∼𝑃 Tr𝑊1 (𝜋∗ (𝑇 − 𝑐[𝑌1]))
∼𝑃 Tr𝑊1 (𝜋∗𝑇 − 𝑐[𝑊1]) + 𝑐 Tr𝑊1 (𝜋∗ [𝑌1] − [𝑊1]).

So

𝜇′ (Π∗ Tr𝑌1 (𝑇 − 𝑐[𝑌1])) = 𝜇′ (Tr𝑊1 (𝜋∗𝑇 − 𝑐[𝑊1])) + 𝑐𝜇′ (Tr𝑊1 (𝜋∗ [𝑌1] − [𝑊1])).

Combining the above with (10.13), we see that (10.12) follows. □

Proposition 10.2.4 Let 𝜋 : 𝑍 → 𝑋 , 𝑝 : 𝑍 ′ → 𝑍 be proper bimeromorphic morphisms
with 𝑍 and 𝑍 ′ being Kähler manifolds. Assume that 𝑌• admits a lifting𝑊• (resp.𝑊 ′•)
to 𝑍 (resp. 𝑍 ′). Then

cor(𝑌•, 𝜋 ◦ 𝑝) = cor(𝑌•, 𝜋) cor(𝑊•, 𝑝). (10.14)

Proof We let 𝜋′ = 𝜋 ◦ 𝑝:

𝑍 ′ 𝑍

𝑋.

𝑝

𝜋′ 𝜋
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We make induction on 𝑛 ≥ 1. The case 𝑛 = 1 is trivial. Assume that 𝑛 ≥ 2 and the
case 𝑛 − 1 has been solved. Then by (10.10), the desired formula (10.14) can be
reformulated as [

1 −𝜈𝑊 ′1⊇···⊇𝑊 ′𝑛 ((𝜋
′∗ [𝑌1] − [𝑊 ′1]) |𝑊 ′1 )

0 cor(𝑌1 ⊇ · · · ⊇ 𝑌𝑛, 𝜋′ |𝑊 ′1 : 𝑊 ′1 → 𝑌1)

]
=[

1 −𝜈𝑊1⊇···⊇𝑊𝑛 ((𝜋∗ [𝑌1] − [𝑊1]) |𝑊1 )
0 cor(𝑌1 ⊇ · · · ⊇ 𝑌𝑛, 𝜋 |𝑊1 : 𝑊1 → 𝑌1)

]
·[

1 −𝜈𝑊 ′1⊇···⊇𝑊 ′𝑛 ((𝑝
∗ [𝑊1] − [𝑊 ′1]) |𝑊 ′1 )

0 cor(𝑊1 ⊇ · · · ⊇ 𝑊𝑛, 𝑝 |𝑊 ′1 : 𝑊 ′1 → 𝑊1)

] .

By the inductive hypothesis, this is equivalent to

𝜈𝑊 ′1⊇···⊇𝑊
′
𝑛

(
(𝜋′∗ [𝑌1] − [𝑊 ′1]) |𝑊 ′1

)
= 𝜈𝑊 ′1⊇···⊇𝑊

′
𝑛

(
(𝑝∗ [𝑊1] − [𝑊 ′1]) |𝑊 ′1

)
+

𝜈𝑊1⊇···⊇𝑊𝑛
(
(𝜋∗ [𝑌1] − [𝑊1]) |𝑊1

)
cor

(
𝑊1 ⊇ · · · ⊇ 𝑊𝑛, 𝑝 |𝑊 ′1 : 𝑊 ′1 → 𝑊1

)
,

which, thanks to Proposition 10.2.3, can be further rewritten as

𝜈𝑊 ′1⊇···⊇𝑊
′
𝑛

(
(𝜋′∗ [𝑌1] − [𝑊 ′1]) |𝑊 ′1

)
= 𝜈𝑊 ′1⊇···⊇𝑊

′
𝑛

(
(𝑝∗ [𝑊1] − [𝑊 ′1]) |𝑊 ′1

)
+

𝜈𝑊 ′1⊇···⊇𝑊
′
𝑛

(
𝑝 |∗𝑊 ′1

(
(𝜋∗ [𝑌1] − [𝑊1]) |𝑊1

) )
.

This follows from Proposition 10.2.2. □

Theorem 10.2.1 Let 𝜋 : 𝑍 → 𝑋 be a proper bimeromorphic morphism from a
reduced complex space 𝑍 . Then there is a modification𝑊 → 𝑋 dominating 𝑍 → 𝑋

such that 𝑌• admits a lifting to𝑊 .

We remind the readers that in this book, a modification means a finite composition of
blowing-ups with smooth centers.

Proof By Hironaka’s Chow lemma Theorem B.1.2, we may assume that 𝜋 is a
modification.

We begin by setting𝑊0 = 𝑍 . We will construct𝑊𝑖 inductively for each 𝑖. Assume
that for 0 ≤ 𝑖 < 𝑛 a smooth partial flag 𝑊0 ⊇ · · · ⊇ 𝑊𝑖 has been constructed on
a modification 𝜋𝑖 : 𝑍𝑖 → 𝑍 so that 𝜋 ◦ 𝜋𝑖 restricts to bimeromorphic morphisms
𝑊 𝑗 → 𝑌 𝑗 for each 𝑗 = 0, . . . , 𝑖.

By Zariski’s main theorem,𝑊𝑖 → 𝑌𝑖 is an isomorphism outside a codimension 2
subset of 𝑌𝑖 . We let 𝑊𝑖+1 be the strict transform of 𝑌𝑖+1 in 𝑊𝑖 . The problem is that
𝑊𝑖+1 is not necessarily smooth.

We will further modify 𝑍𝑖 and lift𝑊1, . . . ,𝑊𝑖+1 in order to make the flag smooth.
Take the embedded resolution of (𝑊 𝑗 ,𝑊𝑖+1), say𝑊 ′

𝑗
→ 𝑊 𝑗 for each 𝑗 = 0, . . . , 𝑖.

We have canonical embeddings𝑊 ′
𝑖
↩→ 𝑊 ′

𝑖−1 ↩→ · · · ↩→ 𝑊 ′0 making the following
diagram commutative:
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𝑊 ′
𝑖

𝑊 ′
𝑖−1 · · · 𝑊 ′0

𝑊𝑖 𝑊𝑖−1 · · · 𝑊0

...

Let 𝑊 ′
𝑖+1 be the strict transform of 𝑊𝑖+1 in 𝑊 ′

𝑖
. It suffices to define 𝜋𝑖+1 as the

morphism𝑊 ′0 → 𝑍𝑖 → 𝑍 and replace𝑊0 ⊇ · · · ⊇ 𝑊𝑖+1 by𝑊 ′0 ⊇ · · · ⊇ 𝑊
′
𝑖+1. □

Remark 10.2.2 Suppose that 𝑋 is a normal projective variety. Consider a rank 𝑛
(surjective) valuation 𝜈 : C(𝑋)× → Z𝑛 and a closed positive (1, 1)-current 𝑇 on 𝑋 .
Then we can always define 𝜈(𝑇) ∈ R𝑛 as follows: Take a resolution 𝜋 : 𝑌 → 𝑋 such
that there is a smooth flag 𝑌• on 𝑌 and 𝑔 ∈ Aut(Z𝑛lex) such that

𝜈 = 𝜈𝑌•𝑔.

Then we define
𝜈(𝑇) B 𝜈𝑌• (𝜋∗𝑇)𝑔.

This definition does not depend on the choice of 𝜋, as a consequence of Proposi-
tion 10.2.3.

10.3 Algebraic partial Okounkov bodies

Let 𝑋 be a connected smooth complex projective variety of dimension 𝑛 and (𝐿, ℎ)
be a Hermitian big line bundle on 𝑋 .

Let ℎ0 be a smooth Hermitian metric on 𝐿. Let 𝜃 = 𝑐1 (𝐿, ℎ0). Then we can
identify ℎ with a function 𝜑 ∈ PSH(𝑋, 𝜃). We will use interchangeably the notations
(𝜃, 𝜑) and (𝐿, ℎ). We assume that vol 𝜃𝜑 > 0 in this section.

Fix a rank 𝑛 valuation 𝜈 : C(𝑋)× → Z𝑛, which without loss of generality can be
assumed to be surjective.

We will adopt the notations of Section 10.1.

10.3.1 The spaces of sections

Definition 10.3.1 We will write

Γ(𝜃, 𝜑) B
{
(𝜈(𝑠), 𝑘) : 𝑘 ∈ N, 𝑠 ∈ H0 (𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑))×

}
,

Δ𝑘 (𝜃, 𝜑) BConv
{
𝑘−1𝜈(𝑠) : 𝑠 ∈ H0 (𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑))×

}
⊆ R𝑛, 𝑘 ∈ Z>0.

When 𝜃 = 𝑉𝜃 , we simply write Γ(𝐿) and Δ𝑘 (𝐿) instead.

Here and in the sequel, the cross notation means excluding 0. Here Conv denotes the
convex hull. For large enough 𝑘 , Δ𝑘 (𝜃, 𝜑) is non-empty thanks to Theorem 7.4.1.
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Definition 10.3.2 Assume that 𝜑 has analytic singularities. We define

Γ∞ (𝜃, 𝜑) B
{
(𝜈(𝑠), 𝑘) : 𝑘 ∈ N, 𝑠 ∈ H0 (𝑋, 𝐿𝑘 ⊗ I∞ (𝑘𝜑))×

}
. (10.15)

Recall that I∞ is introduced in Definition 1.6.6.
For later use, we introduce a twisted version as well.

Definition 10.3.3 If 𝑇 is a holomorphic line bundle on 𝑋 , we introduce

Δ𝑘,𝑇 (𝜃, 𝜑) BConv
{
𝑘−1𝜈(𝑠) : 𝑠 ∈ H0 (𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑))×

}
⊆ R𝑛,

Δ𝑘,𝑇 (𝐿) BConv
{
𝑘−1𝜈(𝑠) : 𝑠 ∈ H0 (𝑋,𝑇 ⊗ 𝐿𝑘)×

}
⊆ R𝑛

for all 𝑘 ∈ Z>0.

10.3.2 Algebraic Okounkov bodies

Proposition 10.3.1 There is a convex body Δ ∈ K𝑛 such that Γ(𝐿) ∈ S′ (Δ).

Recall that the notations K𝑛 and S′ (Δ) are introduced in Appendix C.

Proof Step 1. We first show that there is Δ ∈ K𝑛 such that Δ𝑘 (𝐿) ⊆ Δ. For this
purpose, using Remark 10.2.1, we may assume that 𝜈 is induced by an admissible
flag 𝑌• on 𝑋 .

Fix 𝑠 ∈ H0 (𝑋, 𝐿𝑘)× for some 𝑘 ∈ Z>0. Assume that 𝑠 ≠ 0. We need to show
that for each 𝑖 = 1, . . . , 𝑛, 𝜈(𝑠)𝑖 ≤ 𝐶𝑘 for some constant 𝐶 > 0, independent of the
choices of 𝑘 and 𝑠.

Fix an ample divisor 𝐻 on 𝑋 . Take a large enough integer 𝑏1 > 0 such that

(𝐿 − 𝑏1𝑌1) · 𝐻𝑛−1 < 0.

Then 𝜈(𝑠)1 ≤ 𝑏1𝑘 . Next take a large enough integer 𝑏2 such that(
(𝐿 − 𝑎𝑌1) |𝑌1 − 𝑏2𝑌2

)
· 𝐻𝑛−2 < 0.

It follows that 𝜈(𝑠)2 ≤ 𝑏2𝑘 . Continue in this manner, we conclude that 𝜈(𝑠)𝑖/𝑘 is
bounded for each 𝑖.

Step 2. Observe that Γ(𝐿) is clearly a semigroup. It remains to show that Γ(𝐿)
generates Z𝑛+1 as an Abelian group.

For this purpose, take two very ample divisors 𝐴 and 𝐵 so that 𝐿 = O𝑋 (𝐴 − 𝐵).
After choosing 𝐴 and 𝐵 ample enough, we may guarantee that there exist sections
𝑠0 ∈ H0 (𝑋, 𝐴), 𝑡𝑖 ∈ H0 (𝑋, 𝐵) for 𝑖 = 0, . . . , 𝑛 such that

𝜈(𝑠0) = 𝜈(𝑡0) = 0
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and 𝜈(𝑡𝑖) is the 𝑖-th unit vector 𝑒𝑖 ∈ R𝑛 for 𝑖 = 1, . . . , 𝑛.
Since 𝐿 is big, we can find 𝑚0 > 0 such that for any 𝑚 ≥ 𝑚0 we can find an

effective divisor 𝐹𝑚 on 𝑋 linearly equivalent to 𝑚𝐿 − 𝐵. Let 𝑓𝑚 = 𝜈( [𝐹𝑚]). Then
we find that

( 𝑓𝑚, 𝑚), ( 𝑓𝑚 + 𝑒1, 𝑚), . . . , ( 𝑓𝑚 + 𝑒𝑛, 𝑚) ∈ Γ(𝐿).

Since (𝑚 + 1)𝐿 is linearly equivalent to 𝐴 + 𝐹𝑚, so

( 𝑓𝑚, 𝑚 + 1) ∈ Γ(𝐿).

It follows that Γ(𝐿) generates Z𝑛+1. □

Thanks to Proposition 10.3.1, we can introduce the next definition.

Definition 10.3.4 We define the Okounkov body of 𝐿 with respect to the valuation 𝜈
as

Δ𝜈 (𝐿) B Δ(Γ(𝐿)).

When 𝜈 is induced by a smooth flag 𝑌• on 𝑋 , we also write Δ𝑌• (𝐿) instead. The same
convention applies to the partial Okounkov bodies studied below as well.

Proposition 10.3.2 The Okounkov body Δ𝜈 (𝐿) depends only on the numerical class
of 𝐿.

See [LM09, Proposition 4.1] for the elegant proof.

Corollary 10.3.1 We have

volΔ𝜈 (𝐿) =
1
𝑛!

vol 𝐿. (10.16)

Proof This follows immediately from Proposition 10.3.1 and Theorem 10.1.1. □

Proposition 10.3.3 Assume that 𝜑 has analytic singularities and 𝜃𝜑 is a Kähler
current. Then we have

Γ∞ (𝜃, 𝜑) ∈ S′ (𝑋, 𝜃)

and
vol Γ∞ (𝜃, 𝜑) = 1

𝑛!

∫
𝑋

𝜃𝑛𝜑 .

Proof Replacing 𝑋 by a modification, we may assume that 𝜑 has log singularities
along an effective Q-divisor 𝐷. See Theorem 1.6.1.

In this case,

Γ∞ (𝜃, 𝜑) =
{
(𝜈(𝑠), 𝑘) : 𝑘 ∈ N, 𝑠 ∈ H0

(
𝑋, 𝐿𝑘 ⊗ O𝑋 (−⌈𝑘𝐷⌉)

)
.

}
Since 𝐿 −𝐷 is ample by Lemma 1.6.1, our assertion follows from the same argument
as Proposition 10.3.1. □
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We first extend Theorem 10.1.1 to the twisted case.

Proposition 10.3.4 For any holomorphic line bundle 𝑇 on 𝑋 , as 𝑘 →∞

Δ𝑘,𝑇 (𝐿)
𝑑Haus−−−−→ Δ𝜈 (𝐿).

Proof As 𝐿 is big, we can take 𝑘0 ∈ Z>0 so that

(1) 𝑇−1 ⊗ 𝐿𝑘0 admits a non-zero global holomorphic section 𝑠0, and
(2) 𝑇 ⊗ 𝐿𝑘0 admits a non-zero global holomorphic section 𝑠1.

Then for 𝑘 ∈ Z>𝑘0 , we have injective linear maps

H0 (𝑋, 𝐿𝑘−𝑘0 ) ×𝑠1−−−→ H0 (𝑋,𝑇 ⊗ 𝐿𝑘) ×𝑠0−−−→ H0 (𝑋, 𝐿𝑘+𝑘0 ).

It follows that

(𝑘 − 𝑘0)Δ𝑘−𝑘0 (𝐿) + 𝜈(𝑠1) ⊆ 𝑘Δ𝑘,𝑇 (𝐿) ⊆ (𝑘 + 𝑘0)Δ𝑘+𝑘0 (𝐿) − 𝜈(𝑠0).

Using Theorem 10.1.1, we conclude. □

Proposition 10.3.5 Let 𝐿′ be another big line bundle on 𝑋 . Then

Δ𝜈 (𝐿) + Δ𝜈 (𝐿′) ⊆ Δ𝜈 (𝐿 ⊗ 𝐿′).

Proof Observe that for each 𝑘 ∈ N, we have

Δ𝑘 (𝐿) + Δ𝑘 (𝐿′) ⊆ Δ𝑘 (𝐿 ⊗ 𝐿′).

So our assertion follows immediately from Theorem 10.1.1. □

Proposition 10.3.6 For any 𝑎 ∈ Z>0, we have

Δ𝜈 (𝐿𝑎) = 𝑎Δ𝜈 (𝐿).

Proof This is an immediate consequence of Theorem 10.1.1. □

10.3.3 Construction of partial Okounkov bodies

Theorem 10.3.1 We have

Γ(𝜃, 𝜑) ∈ S′ (Δ𝜈 (𝐿))>0.

We refer to Definition 10.1.3 for the definition of S′ (Δ𝜈 (𝐿))>0.
This theorem allows us to give the following definition:

Definition 10.3.5 The partial Okounkov body of (𝐿, ℎ) is defined as
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Δ𝜈 (𝐿, ℎ) = Δ𝜈 (𝜃, 𝜑) B Δ (Γ(𝜃, 𝜑)) . (10.17)

When 𝜈 is induced by an admissible flag 𝑌• on 𝑋 (see Definition 10.2.1), we also say
that Δ𝜈 (𝜃, 𝜑) the partial Okounkov body of (𝐿, ℎ) or of (𝜃, 𝜑) with respect to 𝑌•. In
this case, we also write Δ𝑌• instead of Δ𝜈 .

Note that when ℎ has minimal singularities, we have

Δ𝜈 (𝐿, ℎ) = Δ𝜈 (𝐿).

So partial Okounkov bodies generalize Okounkov bodies.

Corollary 10.3.2 We have

volΔ𝜈 (𝜃, 𝜑) =
1
𝑛!

vol 𝜃𝜑 . (10.18)

We will prove Theorem 10.3.1 and Corollary 10.3.2 at the same time. The proof
relies on the pseudometric 𝑑sg introduced in (10.1).

Proof Step 1. We first assume that 𝜑 has analytic singularities and 𝜃𝜑 is a Kähler
current.

We claim that
𝑑sg (Γ∞ (𝜃, 𝜑), Γ(𝜃, 𝜑)) = 0. (10.19)

Observe that for each 𝜖 ∈ Q>0, we have

H0 (𝑋, 𝐿𝑘 ⊗ I∞ (𝑘𝜑)) ⊆ H0 (𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)) ⊆ H0
(
𝑋, 𝐿𝑘 ⊗ I∞ (𝑘 (1 − 𝜖)𝜑)

)
for all large enough 𝑘 . This is a consequence of Lemma 1.6.3. Therefore, it suffices
to show that

lim
Q∋ 𝜖→0+

vol Γ∞ (𝜃, (1 − 𝜖)𝜑) = vol Γ∞ (𝜃, 𝜑).

This follows from the explicit formula in Proposition 10.3.3.
Step 2. We next handle the case where 𝜃𝜑 is a Kähler current.

Let (𝜑 𝑗 ) 𝑗 be a quasi-equisingular approximation of 𝜑 in PSH(𝑋, 𝜃). Then 𝜑 𝑗
𝑑𝑆−−→

𝑃𝜃 [𝜑]I by Corollary 7.1.2.
In this case, it suffices to prove that

Γ(𝜃, 𝜑 𝑗 )
𝑑sg−−→ Γ(𝜃, 𝜑). (10.20)

In fact, by Theorem 7.4.1, we have



264 CHAPTER 10. THE THEORY OF OKOUNKOV BODIES

𝑑sg
(
Γ(𝜃, 𝜑 𝑗 ), Γ(𝜃, 𝜑)

)
= lim
𝑘→∞

𝑘−𝑛
(
ℎ0

(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑 𝑗 )

)
− ℎ0

(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

))
= lim
𝑘→∞

𝑘−𝑛ℎ0
(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑 𝑗 )

)
− lim
𝑘→∞

𝑘−𝑛ℎ0
(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)
=

1
𝑛!

vol 𝜃𝜑 𝑗 −
1
𝑛!

vol 𝜃𝜑 .

Letting 𝑗 →∞, we conclude (10.20) by Theorem 6.2.5.
Step 3. Now we only assume that vol 𝜃𝜑 > 0. We may replace 𝜑 with 𝑃𝜃 [𝜑]I and

then assume that 𝜑 ∈ PSH(𝑋, 𝜃)>0.
Take a potential 𝜓 ∈ PSH(𝑋, 𝜃) such that 𝜓 ≤ 𝜑 and 𝜃𝜓 is a Kähler current. The

existence of 𝜓 is proved in Lemma 2.4.3. For each 𝜖 ∈ (0, 1), let 𝜑𝜖 = (1 − 𝜖)𝜑 + 𝜖𝜓.
It suffices to show that

Γ(𝜃, 𝜑𝜖 )
𝑑sg−−→ Γ(𝜃, 𝜑)

as 𝜖 → 0+. We compute using Theorem 7.4.1:

𝑑sg (Γ(𝜃, 𝜑𝜖 ), Γ(𝜃, 𝜑))

= lim
𝑘→∞

𝑘−𝑛
(
ℎ0

(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)
− ℎ0

(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑𝜖 )

))
= lim
𝑘→∞

𝑘−𝑛ℎ0
(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)
− lim
𝑘→∞

𝑘−𝑛ℎ0
(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑𝜖 )

)
=

1
𝑛!

vol 𝜃𝜑 −
1
𝑛!

vol 𝜃𝜑𝜖

→0

by Theorem 6.2.5, as 𝜖 → 0+. □

Remark 10.3.1 It follows from the proof that if 𝜑 has analytic singularities and 𝜃𝜑 is
a Kähler current, then (10.19) holds.

If we take a modification 𝜋 : 𝑌 → 𝑋 such that 𝜋∗𝜑 has log singularities along an
effective Q-divisor 𝐷 on 𝑌 , then

Δ𝜈 (𝜃, 𝜑) = Δ𝜈 (𝜋∗𝐿 − 𝐷) + 𝜈(𝐷). (10.21)

This is a very special case of Theorem 11.3.1.

10.3.4 Basic properties of partial Okounkov bodies

Proposition 10.3.7 The partial Okounkov body Δ𝜈 (𝐿, ℎ) depends only on ddcℎ, not
on the explicit choices of 𝐿, ℎ0, ℎ.

Thanks to this result, given a closed positive (1, 1)-current 𝑇 ∈ 𝑐1 (𝐿) on 𝑋 with∫
𝑋
𝑇𝑛 > 0, we can write
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Δ𝜈 (𝑇) B Δ𝜈 (𝜃, 𝜑)

if 𝑇 = 𝜃 + ddc𝜑 for some 𝜑 ∈ PSH(𝑋, 𝜃).
Proof There are two different claims to prove, as detailed in the two steps below.

Step 1. Let ℎ′0 be another Hermitian metric on 𝐿. Set 𝜃′ = 𝑐1 (𝐿, ℎ′0). Write
ddc 𝑓 = 𝜃 − 𝜃′. Let 𝜑′ = 𝜑 + 𝑓 ∈ PSH(𝑋, 𝜃′). Then

Δ𝜈 (𝜃, 𝜑) = Δ𝜈 (𝜃′, 𝜑′). (10.22)

This is obvious since Γ(𝜃, 𝜑) = Γ(𝜃′, 𝜑′).
Step 2. Let 𝐿′ be another big line bundle on 𝑋 . By Step 1, we may assume that

the reference Hermitian metric ℎ′0 on 𝐿′ is such that 𝑐1 (𝐿′, ℎ′0) = 𝜃.
Let ℎ′ be a plurisubharmonic metric on 𝐿′ with 𝑐1 (𝐿, ℎ) = 𝑐1 (𝐿′, ℎ′). Then

Δ𝜈 (𝐿, ℎ) = Δ𝜈 (𝐿′, ℎ′).

From our construction, we may assume that 𝑐1 (𝐿, ℎ) has analytic singularities. After
taking a birational resolution, it suffices to deal with the case where 𝑐1 (𝐿, ℎ) has
analytic singularities along an effective Q-divisors 𝐷. By rescaling, we may also
assume that 𝐷 is a divisor. By Remark 10.3.1, we further reduce to the case where
𝑐1 (𝐿, ℎ) is not singular.

In this case, the assertion is proved in Proposition 10.3.2. □

Proposition 10.3.8 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃)>0. Assume that 𝜑 ⪯I 𝜓, then

Δ𝜈 (𝜃, 𝜑) ⊆ Δ𝜈 (𝜃, 𝜓). (10.23)

In particular, we always have

Δ𝜈 (𝜃, 𝜑) ⊆ Δ𝜈 (𝐿).

Proof This follows from Corollary 10.1.2. □

Theorem 10.3.2 The Okounkov body map

Δ𝜈 (𝜃, •) : (PSH(𝑋, 𝜃)>0, 𝑑𝑆) → (K𝑛, 𝑑Haus)

is continuous.

Proof Let 𝜑 𝑗 → 𝜑 be a 𝑑𝑆-convergent sequence in PSH(𝑋, 𝜃)>0. We want to show
that

Δ𝜈 (𝜃, 𝜑 𝑗 )
𝑑Haus−−−−→ Δ𝜈 (𝜃, 𝜑). (10.24)

By Proposition 10.3.8, we may assume that all 𝜑 𝑗 ’s and 𝜑 are model potentials.
By Theorem C.1.1 and Proposition 6.2.3, we may assume that (𝜑 𝑗 ) 𝑗 is either

decreasing or increasing. By Theorem 6.2.3, we may further assume that the 𝜑 𝑗 ’s are
I-model. In both cases, we claim that
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Γ(𝜃, 𝜑 𝑗 )
𝑑sg−−→ Γ(𝜃, 𝜑)

as 𝑗 →∞. In fact, using Theorem 7.4.1, we can compute

𝑑sg
(
Γ(𝜃, 𝜑 𝑗 ), Γ(𝜃, 𝜑)

)
= lim
𝑘→∞

𝑘−𝑛
���ℎ0

(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑 𝑗 )

)
− ℎ0

(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)���
=

1
𝑛!

��vol 𝜃𝜑 𝑗 − vol 𝜃𝜑
�� ,

which converges to 0 by Theorem 6.2.5. □

Proposition 10.3.9 Let 𝜋 : 𝑌 → 𝑋 be a modification. Then

Δ𝜈 (𝜋∗𝐿, 𝜋∗ℎ) = Δ𝜈 (𝐿, ℎ).

Proof Thanks to Proposition 3.2.5, we may assume that 𝜑 is I-model. By Theo-
rem 7.1.1, we can find a sequence (𝜑 𝑗 ) 𝑗 with analytic singularities in PSH(𝑋, 𝜃)
such that 𝜑 𝑗

𝑑𝑆−−→ 𝜑. It is clear that 𝜋∗𝜑 𝑗
𝑑𝑆−−→ 𝜋∗𝜑. By Theorem 10.3.2, we may then

reduce to the case where 𝜑 has analytic singularities. In this case, it suffices to apply
Remark 10.3.1. □

Proposition 10.3.10 Let (𝐿′, ℎ′) be another Hermitian big line bundle on 𝑋 . Then

Δ𝜈 (𝐿, ℎ) + Δ𝜈 (𝐿′, ℎ′) ⊆ Δ𝜈 (𝐿 ⊗ 𝐿′, ℎ ⊗ ℎ′).

Proof Take a Hermitian metric ℎ′0 on 𝐿′ and let 𝜃′ = 𝑐1 (𝐿′, ℎ′0). We identify ℎ′ with
𝜑′ ∈ PSH(𝑋, 𝜃′). Then we need to show

Δ𝜈 (𝜃, 𝜑) + Δ𝜈 (𝜃′, 𝜑′) ⊆ Δ𝜈 (𝜃 + 𝜃′, 𝜑 + 𝜑′). (10.25)

We observe that
𝑃𝜃 [𝜑]I + 𝑃𝜃 [𝜑′]I ∼I 𝜑 + 𝜑′.

Thus, after replacing 𝜑 and 𝜑′ by their I-envelopes, in view of Proposition 10.3.8,
we may assume that 𝜑 and 𝜑′ are I-good.

By Theorem 7.1.1, we can find sequences (𝜑 𝑗 ) 𝑗 and (𝜑′
𝑗
) 𝑗 in PSH(𝑋, 𝜃)>0 and

PSH(𝑋, 𝜃′)>0 respectively such that

(1) 𝜑 𝑗 and 𝜑′
𝑗

both have analytic singularities for all 𝑗 ≥ 1, and

(2) 𝜑 𝑗
𝑑𝑆−−→ 𝜑, 𝜑′

𝑗

𝑑𝑆−−→ 𝜑′.

Then 𝜑 𝑗 + 𝜑′𝑗 ∈ PSH(𝑋, 𝜃 + 𝜃′)>0 and 𝜑 𝑗 + 𝜑′𝑗
𝑑𝑆−−→ 𝜑 + 𝜑′ by Theorem 6.2.2. Thus,

by Theorem 10.3.2, we may assume that 𝜑 and 𝜓 both have analytic singularities.
Taking a birational resolution, we may further assume that they have log singularities.
By Remark 10.3.1, we reduce to the case without singularities, in which case the
result is just Proposition 10.3.5. □

Theorem 10.3.3 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃)>0. Then for any 𝑡 ∈ (0, 1),
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Δ𝜈 (𝜃, 𝑡𝜑 + (1 − 𝑡)𝜓) ⊇ 𝑡Δ𝜈 (𝜃, 𝜑) + (1 − 𝑡)Δ𝜈 (𝜃, 𝜓). (10.26)

Proof We may assume that 𝑡 is rational as a consequence of Theorem 10.3.2. Similarly,
as in the proof of Proposition 10.3.10, we could reduce to the case where both 𝜑 and
𝜓 have analytic singularities. In this case, let 𝑁 > 0 be an integer such that 𝑁𝑡 is an
integer. Then for any 𝑠 ∈ H0 (𝑋, 𝐿𝑘 ⊗ I∞ (𝑘𝜑)) and 𝑟 ∈ H0 (𝑋, 𝐿𝑘 ⊗ I∞ (𝑘𝜓)), we
have

𝑠𝑡𝑁 ⊗ 𝑟𝑁−𝑡𝑁 ∈ H0
(
𝑋, 𝐿𝑘𝑁 ⊗ I∞ (𝑁𝑡𝜑 + (𝑁 − 𝑁𝑡)𝜓)

)
.

By Theorem 10.1.1 and Remark 10.3.1, (10.26) follows. □

Proposition 10.3.11 For any 𝑎 ∈ Z>0,

Δ𝜈 (𝑎𝜃, 𝑎𝜑) = 𝑎Δ𝜈 (𝜃, 𝜑).

Proof As in the proof of Proposition 10.3.10, we may assume that 𝜑 has log
singularities. Using Remark 10.3.1, we reduce to the case without the singularities,
which is proved in Proposition 10.3.6. □

In particular, if 𝑆 is a closed positive (1, 1)-current on 𝑋 with
∫
𝑋
𝑆𝑛 > 0 and such

that
[𝑆] ∈ NS1 (𝑋)Q,

we can define
Δ𝜈 (𝑆) B 𝑎−1Δ𝜈 (𝑎𝑆) (10.27)

for a sufficiently divisible positive integer 𝑎. This definition is independent of the
choice of 𝑎 thanks to Proposition 10.3.11.

We also need the following perturbation. Let 𝐴 be an ample line bundle on 𝑋 . Fix
a Hermitian metric ℎ𝐴 on 𝐴 such that 𝜔 B 𝑐1 (𝐴, ℎ𝐴) is a Kähler form on 𝑋 .

Proposition 10.3.12 As 𝛿↘ 0, the convex bodies Δ𝜈 (𝜃 + 𝛿𝜔 + ddc𝜑) are decreasing
and

Δ𝜈 (𝜃 + 𝛿𝜔 + ddc𝜑) 𝑑Haus−−−−→ Δ𝜈 (𝜃𝜑).

Proof Let 0 ≤ 𝛿 < 𝛿′ be two rational numbers. Take 𝐶 ∈ N>0 divisible enough, so
that 𝐶𝛿 and 𝐶𝛿′ are both integers. Then by Proposition 10.3.10,

Δ𝜈 (𝐶𝜃 + 𝐶𝛿𝜔 + 𝐶ddc𝜑) ⊆ Δ𝜈 (𝐶𝜃 + 𝐶𝛿′𝜔 + 𝐶ddc𝜑).

It follows that
Δ𝜈 (𝜃 + 𝛿𝜔 + ddc𝜑) ⊆ Δ𝜈 (𝜃 + 𝛿′𝜔 + ddc𝜑).

On the other hand,

volΔ𝜈 (𝜃 + 𝛿𝜔 + ddc𝜑) = 1
𝑛!

vol(𝜃 + 𝛿𝜔)𝜑 .

As 𝛿→ 0+, the right-hand side converges to
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volΔ𝜈 (𝜃, 𝜑) =
1
𝑛!

vol 𝜃𝜑 ,

thanks to Proposition 7.3.1. Our assertion therefore follows. □

10.3.5 The Hausdorff convergence property

Let 𝑇 be a holomorphic line bundle on 𝑋 . The goal of this section is to prove the
following:

Theorem 10.3.4 As 𝑘 →∞, we have

Δ𝑘,𝑇 (𝜃, 𝜑)
𝑑Haus−−−−→ Δ𝜈 (𝜃, 𝜑). (10.28)

Recall that Δ𝑘,𝑇 (𝜃, 𝜑) is define in Definition 10.3.3.
Although we are only interested in the untwisted case, the proof given below

requires twisted case.
We first observe that the sequence Δ𝑘,𝑇 (𝜃, 𝜑) is uniformly bounded: This follows

easily from Proposition 10.3.4. So Blaschke’s selection theorem Theorem C.1.1 is
applicable. We will apply this observation without further comments.

Lemma 10.3.1 Assume that 𝜑 has analytic singularities and 𝜃𝜑 is a Kähler current,
then (10.28) holds.

Proof Up to replacing 𝑋 by a modification and twisting𝑇 accordingly, we may assume
that 𝜑 has log singularities along an effective Q-divisor 𝐷, see Proposition 10.3.9
and Theorem 1.6.1.

Take𝜖 ∈ Q ∩ (0, 1). In this case, for large enough 𝑘 ∈ Z>0 we have

H0
(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I∞ (𝑘𝜑)

)
⊆H0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)

)
⊆H0

(
𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I∞ (𝑘 (1 − 𝜖)𝜑)

)
.

Take an integer 𝑁 ∈ Z>0 so that 𝑁𝐷 is a divisor and 𝑁𝜖 is an integer.
Let Δ′ be the limit of a subsequence of (Δ𝑘,𝑇 (𝜃, 𝜑))𝑘 , say the sequence defined by

the indices 𝑘1, 𝑘2, . . .. Thanks to Theorem C.1.1, it suffices to show thatΔ′ = Δ𝜈 (𝜃, 𝜑).
There exists 𝑡 ∈ {0, 1, . . . , 𝑁 − 1} such that 𝑘𝑖 ≡ 𝑡 modulo 𝑁 for infinitely many 𝑖,

up to replacing (𝑘𝑖)𝑖 by a subsequence, we may assume that 𝑘𝑖 ≡ 𝑡 modulo 𝑁 for all
𝑖. Write 𝑘𝑖 = 𝑁𝑔𝑖 + 𝑡. Then for large enough 𝑖, we have

H0
(
𝑋,𝑇 ⊗ 𝐿−𝑁+𝑡 ⊗ 𝐿𝑁 (𝑔𝑖+1) ⊗ I∞ (𝑁 (𝑔𝑖 + 1)𝜑)

)
⊆ H0

(
𝑋,𝑇 ⊗ 𝐿𝑘𝑖 ⊗ I(𝑘𝑖𝜑)

)
⊆ H0

(
𝑋,𝑇 ⊗ 𝐿𝑡 ⊗ 𝐿𝑁𝑔𝑖 ⊗ I∞ (𝑔𝑖𝑁 (1 − 𝜖)𝜑)

)
.

So
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(𝑔𝑖 + 1)Δ𝑔𝑖+1,𝑇⊗𝐿−𝑁+𝑡 (𝑁𝐿 − 𝑁𝐷) + 𝑁 (𝑔𝑖 + 1)𝜈(𝐷) ⊆ (𝑁𝑔𝑖 + 𝑡)Δ𝑘𝑖 ,𝑇 (𝜃, 𝜑)
⊆ 𝑔𝑖Δ𝑔𝑖 ,𝑇⊗𝐿𝑡 (𝑁𝐿 − 𝑁 (1 − 𝜖)𝐷) + 𝑁𝑔𝑖 (1 − 𝜖)𝜈(𝐷).

Letting 𝑖 →∞, by Proposition 10.3.4,

Δ𝜈 (𝐿 − 𝐷) + 𝜈(𝐷) ⊆ Δ′ ⊆ Δ𝜈 (𝐿 − (1 − 𝜖)𝐷) + (1 − 𝜖)𝜈(𝐷).

Letting 𝜖 → 0+, we find that

Δ′ = Δ𝜈 (𝐿 − 𝐷) + 𝜈(𝐷) = Δ𝜈 (𝜃, 𝜑),

where we applied Remark 10.3.1 as well. Our assertion follows. □

Lemma 10.3.2 Assume that 𝜃𝜑 is a Kähler current, then as Q ∋ 𝛽→ 0+, we have

Δ𝜈 ((1 − 𝛽)𝜃, 𝜑)
𝑑Haus−−−−→ Δ𝜈 (𝜃, 𝜑).

Here and in the sequel, Δ𝜈 ((1 − 𝛽)𝜃, 𝜑) = Δ𝜈 ((1 − 𝛽)𝜃 + ddc𝜑) is defined in (10.27).

Proof By Proposition 10.3.10, we have

Δ𝜈 ((1 − 𝛽)𝜃, 𝜑) + 𝛽Δ𝜈 (𝐿) ⊆ Δ𝜈 (𝜃, 𝜑).

In particular, if Δ′ is the Hausdorff limit of a subnet of (Δ((1 − 𝛽)𝜃, 𝜑))𝛽 , then
Δ′ ⊆ Δ𝜈 (𝜃, 𝜑). But

volΔ′ = lim
𝛽→0+

Δ𝜈 ((1 − 𝛽)𝜃, 𝜑) = lim
𝛽→0+

∫
𝑋

(
(1 − 𝛽)𝜃 + ddc𝑃(1−𝛽) 𝜃 [𝜑]I

)𝑛
=

∫
𝑋

(𝜃 + ddc𝑃𝜃 [𝜑]I)𝑛.

Since we have not developed the theory of nef b-divisors yet, we give a direct proof
as well. Take a Kähler form 𝜔 so that 𝜃𝜑 ≥ 𝜔. Let 𝜓 = 𝑃𝜃−𝜔 [𝜑]I . Then 𝜑 ∼I 𝜓. In
order to establish the last equality, we may replace 𝜑 by 𝜓 and hence assuming that 𝜑
is I-good. In this case, the desired equality becomes

lim
𝛽→0+

∫
𝑋

((1 − 𝛽)𝜃 + ddc𝜑)𝑛 =
∫
𝑋

𝜃𝑛𝜑 ,

which is obvious.
It follows that Δ′ = Δ𝜈 (𝜃, 𝜑). We conclude by Theorem C.1.1. □

Proof (Proof of Theorem 10.3.4) Fix a Kähler form 𝜔 ≥ 𝜃 on 𝑋 .
Step 1. We first handle the case where 𝜃𝜑 is a Kähler current, say 𝜃𝜑 ≥ 2𝛿𝜔 for

some 𝛿 ∈ (0, 1). Take a quasi-equisingular approximation (𝜑 𝑗 ) 𝑗 of 𝜑 in PSH(𝑋, 𝜃).
We may assume that 𝜃𝜑 𝑗 ≥ 𝛿𝜔 for all 𝑗 ≥ 1.

Let Δ′ be a limit of a subsequence of (Δ𝑘,𝑇 (𝜃, 𝜑))𝑘 . Let us say the indices of
the subsequence are 𝑘1 < 𝑘2 < · · · . By Theorem C.1.1, it suffices to show that
Δ′ = Δ𝜈 (𝜃, 𝜑).
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Observe that for each 𝑗 ≥ 1, we have Δ′ ⊆ Δ𝜈 (𝜃, 𝜑 𝑗 ) by Lemma 10.3.1. Letting
𝑗 → ∞, we find Δ′ ⊆ Δ𝜈 (𝜃, 𝜑) as a consequence of Theorem 10.3.2. Therefore, it
suffices to prove that

volΔ′ ≥ volΔ𝜈 (𝜃, 𝜑).

Fix an integer𝑁 > 𝛿−1. Observe that for any 𝑗 ≥ 1, we have 𝜑 𝑗 ∈ PSH(𝑋, (1−𝑁−1)𝜃).
Similarly, 𝜑 ∈ PSH(𝑋, (1 − 𝑁−1)𝜃). By Lemma 10.3.2, it suffices to argue that

volΔ′ ≥ volΔ𝜈
(
(1 − 𝑁−1)𝜃, 𝜑

)
. (10.29)

Step 1.1. We first reduce to the case where 𝑁 |𝑘𝑖 for all 𝑖.
We are free to replace (𝑘𝑖)𝑖 by a subsequence, so we may assume that 𝑘𝑖 ≡ 𝑎

modulo 𝑁 for all 𝑖 ≥ 1, where 𝑎 ∈ {0, 1, . . . , 𝑁 − 1}. We write 𝑘𝑖 = 𝑔𝑖𝑁 + 𝑎. Observe
that for each 𝑖 ≥ 1,

H0
(
𝑋,𝑇 ⊗ 𝐿𝑘𝑖 ⊗ I(𝑘𝑖𝜑)

)
⊇ H0

(
𝑋,𝑇 ⊗ 𝐿−𝑁+𝑎 ⊗ 𝐿𝑔𝑖𝑁+𝑁 ⊗ I ((𝑔𝑖𝑁 + 𝑁)𝜑)

)
.

Up to replacing 𝑇 by 𝑇 ⊗ 𝐿−𝑁+𝑎, we may therefore assume that 𝑎 = 0, so that
𝑘𝑖 = 𝑔𝑖𝑁 .

Step 1.2. Write 𝑘𝑖 = 𝑔𝑖𝑁 for all 𝑖. We prove (10.29).
By Lemma 2.4.2, we can find 𝑗 ′ ∈ Z>0 such that for all 𝑗 ≥ 𝑗 ′, there is

𝜓 ∈ PSH(𝑋, 𝜃)>0 satisfying

𝑃𝜃 [𝜑]I ≥ (1 − 𝑁−1)𝜑 𝑗 + 𝑁−1𝜓 𝑗 .

Fix 𝑗 ≥ 𝑗 ′. It suffices to show that

Δ𝜈

(
(1 − 𝑁−1)𝜃, 𝜑 𝑗

)
+ 𝑣′ ⊆ Δ′ (10.30)

for some 𝑣′ ∈ R𝑛. In fact, if this is true, we have

volΔ′ ≥ volΔ𝜈
(
(1 − 𝑁−1)𝜃, 𝜑 𝑗

)
.

Letting 𝑗 →∞ and applying Theorem 10.3.2, we conclude (10.29).
It remains to prove (10.30). As in the proof of Theorem 7.4.1, there is 𝑔0 > 0 such

that for any 𝑔 ≥ 𝑔0, we can find a non-zero section 𝑠𝑔 ∈ H0 (𝑋, 𝐿𝑔 ⊗ I(𝑔𝜓 𝑗 )) such
that we get an injective linear map

H0
(
𝑋,𝑇 ⊗ 𝐿𝑔 (𝑁−1) ⊗ I(𝑔𝑁𝜑 𝑗 )

) ×𝑠𝑔−−−→ H0
(
𝑋,𝑇 ⊗ 𝐿𝑔𝑁 ⊗ I(𝑔𝑁𝜑)

)
.

In particular, when 𝑔 = 𝑔𝑖 for some 𝑖 large enough, we then find

Δ𝑔𝑖 ,𝑇
(
(𝑁 − 1)𝜃, 𝑁𝜑 𝑗

)
+ (𝑔𝑖)−1𝜈(𝑠𝑘𝑖 ) ⊆ 𝑁Δ𝑘𝑖 ,𝑇 (𝜃, 𝜑).
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We observe that the (𝑔𝑖)−1𝜈(𝑠𝑔𝑖 )’s are bounded as both convex bodies appearing in
this equation are bounded when 𝑖 varies. Then by Lemma 10.3.1, there is a vector
𝑣′ ∈ R𝑛 such that (10.30) holds.

Step 2. Next we handle the general case.
Let Δ′ be the Hausdorff limit of a subsequence of (Δ𝑘,𝑇 (𝜃, 𝜑))𝑘 , say the sub-

sequence with indices 𝑘1 < 𝑘2 < · · · . By Theorem C.1.1, it suffices to prove that
Δ′ = Δ𝜈 (𝜃, 𝜑).

Take 𝜓 ∈ PSH(𝑋, 𝜃) such that 𝜃𝜓 is a Kähler current and 𝜓 ≤ 𝜑. The existence of
𝜓 follows from Lemma 2.4.3.

Then for any 𝜖 ∈ Q ∩ (0, 1),

Δ𝑘,𝑇 (𝜃, 𝜑) ⊇ Δ𝑘,𝑇 (𝜃, (1 − 𝜖)𝜑 + 𝜖𝜓)

for all 𝑘 ≥ 1. It follows from Step 1 that

Δ′ ⊇ Δ𝜈 (𝜃, (1 − 𝜖)𝜑 + 𝜖𝜓) .

Letting 𝜖 → 0 and applying Theorem 10.3.2, we have Δ′ ⊇ Δ𝜈 (𝜃, 𝜑). It remains
to establish that

volΔ′ ≤ volΔ𝜈 (𝜃, 𝜑). (10.31)

Fix an integer 𝑁 > 0, it suffices to argue that

volΔ′ ≤ 1
𝑛!

∫
𝑋

(
𝑁−1𝜔 + 𝜃 + ddc𝑃𝑁−1𝜔+𝜃 [𝜑]I

)𝑛
. (10.32)

Assuming this, letting 𝑁 →∞, we conclude (10.31), thanks to Proposition 7.3.1.
Step 2.1. We first reduce to the case 𝑁 |𝑘𝑖 for all 𝑖.
For this purpose, we are free to replace 𝑘1 < 𝑘2 < · · · by a subsequence. We may

then assume that 𝑘𝑖 ≡ 𝑎 modulo 𝑁 for all 𝑖 ≥ 1 for some 𝑎 ∈ {0, 1, . . . , 𝑁 − 1}. We
write 𝑘𝑖 = 𝑔𝑖𝑁 + 𝑎. Observe that

H0
(
𝑋,𝑇 ⊗ 𝐿𝑘𝑖 ⊗ I(𝑘𝑖𝜑)

)
⊆ H0

(
𝑋,𝑇 ⊗ 𝐿𝑎 ⊗ 𝐿𝑔𝑖𝑁 ⊗ I(𝑔𝑖𝑁𝜑)

)
.

Up to replacing 𝑇 by 𝑇 ⊗ 𝐿𝑎, we may assume that 𝑎 = 0.
Step 2.2. We write 𝑘𝑖 = 𝑔𝑖𝑁 for all 𝑖.
Take a very ample line bundle 𝐻 on 𝑋 and fix a Kähler form 𝜔 ∈ 𝑐1 (𝐻), take a

non-zero section 𝑠 ∈ H0 (𝑋, 𝐻).
We have an injective linear map

H0
(
𝑋,𝑇 ⊗ 𝐿𝑔𝑁 ⊗ I(𝑔𝑁𝜑)

) ×𝑠𝑔−−−→ H0
(
𝑋,𝑇 ⊗ 𝐻𝑔 ⊗ 𝐿𝑔𝑁 ⊗ I(𝑔𝑁𝜑)

)
for each 𝑔 ≥ 1. In particular, for each 𝑖 ≥ 1,

𝑘𝑖Δ𝑘𝑖 ,𝑇 (𝜃, 𝜑) + 𝑔𝑖𝜈(𝑠) ⊆ 𝑔𝑖Δ𝑔𝑖 ,𝑇 (𝜔 + 𝑁𝜃, 𝑁𝜑) .

Letting 𝑖 →∞, by Step 1, we have



272 CHAPTER 10. THE THEORY OF OKOUNKOV BODIES

𝑁Δ′ + 𝜈(𝑠) ⊆ Δ𝜈 (𝜔 + 𝑁𝜃, 𝑁𝜑).

So

volΔ′ ≤ volΔ𝜈
(
𝑁−1𝜔 + 𝜃, 𝜑

)
=

1
𝑛!

∫
𝑋

(
𝑁−1𝜔 + 𝜃 + ddc𝑃𝑁−1𝜔+𝜃 [𝜑]I

)𝑛
.

10.3.6 Recover Lelong numbers from partial Okounkov bodies

Theorem 10.3.5 Let 𝐸 be a prime divisor on 𝑋 . Let 𝑌• be an admissible flag with
𝐸 = 𝑌1. Then

𝜈(𝜑, 𝐸) = min
𝑥∈Δ𝑌• (𝜃,𝜑)

𝑥1. (10.33)

Here 𝑥1 denotes the first component of 𝑥.

Proof Replacing 𝜑 by 𝑃𝜃 [𝜑]I , we may assume that 𝜑 is I-good.
Step 1. We first reduce to the case where 𝜑 has analytic singularities.
By Theorem 7.1.1, we can find a sequence (𝜑 𝑗 ) 𝑗 in PSH(𝑋, 𝜃)>0 with analytic

singularities such that 𝜑 𝑗
𝑑𝑆−−→ 𝜑. It follows from Theorem 10.3.2 that

Δ𝑌• (𝜃, 𝜑 𝑗 )
𝑑Haus−−−−→ Δ𝑌• (𝜃, 𝜑).

Therefore,
lim
𝑗→∞

min
𝑥∈Δ𝑌• (𝜃,𝜑 𝑗 )

𝑥1 = min
𝑥∈Δ𝑌• (𝜃,𝜑)

𝑥1.

In view of Theorem 6.2.4, it suffices to prove (10.33) with 𝜑 𝑗 in place of 𝜑.
Step 2. Assume that 𝜑 has analytic singularities. In view of Proposition 10.3.9

and Theorem 1.6.1, after replacing 𝑋 by a modification, we may assume that 𝜑 has
log singularities along an effective Q-divisor 𝐹.

Perturbing 𝐿 by an ample Q-line bundle by Proposition 10.3.12, we may assume
that 𝜃𝜑 is a Kähler current. Therefore, 𝐿 − 𝐹 is ample by Lemma 1.6.1. Finally, by
rescaling, we may assume that 𝐹 is a divisor and 𝐿 is a line bundle.

By Theorem 10.3.4, we know that

min
𝑥∈Δ𝑌• (𝜃,𝜑)

𝑥1 = lim
𝑘→∞

min
𝑥∈Δ𝑘 (𝜃,𝜑)

𝑥1.

By definition,

min
𝑥∈Δ𝑘 (𝜃,𝜑)

𝑥1 = 𝑘−1 ord𝐸 H0
(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)
.

In view of Proposition 1.4.4, it remains to show that

lim
𝑘→∞

𝑘−1 ord𝐸 H0
(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)
= lim
𝑘→∞

𝑘−1 ord𝐸 I(𝑘𝜑). (10.34)
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The ≥ direction is trivial, we prove the converse. Observe that

H0
(
𝑋, 𝐿𝑘 ⊗ I(𝑘𝜑)

)
= H0

(
𝑋, 𝐿𝑘 ⊗ O𝑋 (−𝑘𝐹)

)
, I(𝑘𝜑) = O(−𝑘𝐹).

As 𝐿 − 𝐹 is ample, for large enough 𝑘 , we have

ord𝐸 H0
(
𝑋, 𝐿𝑘 ⊗ O𝑋 (−𝑘𝐹)

)
= ord𝐸 (𝑘𝐹).

Thus, (10.34) follows. □

Corollary 10.3.3 Let 𝜑, 𝜓 ∈ PSH(𝑋, 𝜃)>0. If

Δ𝑊• (𝜋∗𝜃, 𝜋∗𝜑) ⊆ Δ𝑊• (𝜋∗𝜃, 𝜋∗𝜓)

for all modifications 𝜋 : 𝑌 → 𝑋 and all admissible flags𝑊• on 𝑌 , then 𝜑 ⪯I 𝜓.

Proof This follows immediately from Theorem 10.3.5. □

Corollary 10.3.4 Let 𝐸 be a prime divisor over 𝑋 . Then

𝜈(𝑉𝜃 , 𝐸) = lim
𝑘→∞

1
𝑘

ord𝐸 H0 (𝑋, 𝐿𝑘). (10.35)

Proof This follows from Theorem 10.3.5 and the fact that Δ𝑌• (𝜃,𝑉𝜃 ) = Δ𝑌• (𝐿) for
any admissible flag 𝑌• on 𝑋 . □

10.4 Transcendental partial Okounkov bodies

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 > 0. Fix a smooth
flag 𝑌• on 𝑋 . We will extend the theory of partial Okounkov bodies in the previous
section to the transcendental setting.

10.4.1 The traditional approach to the Okounkov body problem

The following definition is essentially due to Ya Deng’s thesis [Den17].

Definition 10.4.1 Let 𝛼 be a big cohomology class on 𝑋 . We define the Okounkov
body of 𝛼 with respect to the flag 𝑌• as

Δ𝑌• (𝛼) B
{
𝜈𝑌• (𝑆) : 𝑆 ∈ Z+ (𝑋, 𝛼), 𝑆 has gentle analytic singularities

}
. (10.36)

See Definition 1.6.5 for the definition of gentle analytic singularities.
The results of [DRWN+23] can be summarized as follows:
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Theorem 10.4.1 For any big cohomology class 𝛼 on 𝑋 , the set Δ𝑌• (𝛼) ⊆ R𝑛 is a
convex body satisfying the following properties:

(1) We have
volΔ𝑌• (𝛼) =

1
𝑛!

vol𝛼;

(2) given another big cohomology class 𝛼′ on 𝑋 , we have

Δ𝑌• (𝛼) + Δ𝑌• (𝛼′) ⊆ Δ𝑌• (𝛼 + 𝛼′);

(3) let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism with 𝑌 being a Kähler
manifold. Assume that (𝑊•, 𝑔) is the lifting of 𝑌• to 𝑌 , then

Δ𝑊• (𝜋∗𝛼) = Δ𝑌• (𝛼)𝑔;

(4) the map 𝛼 ↦→ Δ𝑌• (𝛼) is continuous in the big cone with respect to the Hausdorff
metric;

(5) for any small enough 𝑡 > 0, we have{
𝑦 ∈ R𝑛−1 : (𝑡, 𝑦) ∈ Δ𝑌• (𝛽)

}
= Δ𝑌1⊇···⊇𝑌𝑛

(
(𝛽 − 𝑡 [𝑌1]) |𝑌1

)
.

See Definition 10.2.4 for the notion of lifting. The proof requires some techniques
not covered in the current book. The readers could either read the original paper or
regard this theorem as a black box.

10.4.2 Definitions of partial Okounkov bodies

Let 𝜃 be a closed real smooth (1, 1)-form on 𝑋 representing a big cohomology class
𝛼.

Let 𝑇 = 𝜃𝜑 ∈ Z+ (𝑋, 𝛼). We shall define a convex body Δ𝑌• (𝑇) ⊆ R𝑛, which is
also written as Δ𝑌• (𝜃, 𝜑). This convex body is called the partial Okounkov body of 𝑇
with respect to the flag 𝑌•.

10.4.2.1 The case of analytic singularities

Definition 10.4.2 When 𝑇 is a Kähler current with analytic singularities, we take a
modification 𝜋 : 𝑌 → 𝑋 so that

(1)
𝜋∗𝑇 = [𝐷] + 𝑅, (10.37)

where 𝐷 is an effective Q-divisor on 𝑌 and 𝑅 is a closed positive (1, 1)-current
with bounded potential, and

(2) the lifting (𝑍•, 𝑔) of 𝑌• to 𝑌 exists.
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Define
Δ𝑌• (𝑇) B Δ𝑍• ( [𝑅])𝑔−1 + 𝜈𝑍• ( [𝐷])𝑔−1.

The existence of 𝜋 is guaranteed by Theorem 1.6.1 and Theorem 10.2.1.

Lemma 10.4.1 The convex body Δ𝑌• (𝑇) defined in Definition 10.4.2 is independent
of the choice of 𝜋.

Proof Take another map 𝜋′ : 𝑌 ′ → 𝑋 with the same properties. We want to show
that 𝜋 and 𝜋′ defines the same Δ𝑌• (𝑇). We may assume that 𝜋′ dominates 𝜋 through
𝑝 : 𝑌 ′ → 𝑌 , so that we have a commutative diagram

𝑌 ′ 𝑌

𝑋.

𝑝

𝜋′ 𝜋

We take 𝐷 and 𝑅 as in (10.37). Then

𝜋′∗𝑇 = [𝑝∗𝐷] + 𝑝∗𝑅.

Write (𝑍•, 𝑔) and (𝑍 ′•, 𝑔′) for the liftings of 𝑌• to 𝑌 and 𝑌 ′ respective. We need to
prove that

Δ𝑍• ( [𝑅])𝑔−1 + 𝜈𝑍• ( [𝐷])𝑔−1 = Δ𝑍 ′• ( [𝑝
∗𝑅])𝑔′−1 + 𝜈𝑍 ′• ( [𝑝

∗𝐷])𝑔′−1.

This follows Theorem 10.4.1, Proposition 10.2.3 and Proposition 10.2.4. □

Note that from the above proof, we could describe the bimeromorphic behaviour
of Δ𝑌• (𝑇) as follows:

Lemma 10.4.2 Let 𝑇 ∈ Z+ (𝑋, 𝛼) be a Kähler current with analytic singularities.
Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism and (𝑊•, 𝑔) be the lifting of 𝑌•
to 𝑌 . Then

Δ𝑊• (𝜋∗𝑇) = Δ𝑌• (𝑇)𝑔.

Lemma 10.4.3 Assume that 𝑇, 𝑆 ∈ Z+ (𝑋, 𝛼) are two Kähler currents with analytic
singularities and 𝑇 ⪯ 𝑆, then

Δ𝑌• (𝑇) ⊆ Δ𝑌• (𝑆) ⊆ Δ𝑌• (𝛼).

Moreover,
volΔ𝑌• (𝑇) =

1
𝑛!

∫
𝑋

𝑇𝑛. (10.38)

Proof We first show that
Δ𝑌• (𝑇) ⊆ Δ𝑌• (𝑆).

Using Lemma 10.4.2, we may assume that 𝑇 and 𝑆 have log singularities along
effective Q-divisors 𝐸 and 𝐹 respectively. By assumption, 𝐸 ≥ 𝐹. Replacing 𝑇 and 𝑆
by 𝑇 − [𝐹] and 𝑆 − [𝐹] respectively, we may assume that 𝐹 = 0.
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In this case, we need to show that

Δ𝑌• (𝛼) ⊇ Δ𝑌• (𝛼 − [𝐸]) + 𝜈𝑌• ( [𝐸]),

which is obvious.
Next we prove that

Δ𝑌• (𝑇) ⊆ Δ𝑌• (𝛼).

By Lemma 10.4.2 and Theorem 10.4.1 again, we may assume that 𝑇 has log
singularities. We take 𝐷 and 𝛽 as in (10.37). We need to show that

Δ𝑌• (𝛼 − [𝐷]) + 𝜈𝑌• ( [𝐷]) ⊆ Δ𝑌• (𝛼),

which is again obvious.
Finally, (10.38) follows immediately from Theorem 10.4.1. □

10.4.2.2 The case of Kähler currents

Definition 10.4.3 Let 𝑇 ∈ Z+ (𝑋, 𝛼) be a Kähler current. Take a quasi-equisingular
approximation (𝑇𝑗 ) 𝑗 of 𝑇 inZ+ (𝑋, 𝛼). Then we define

Δ𝑌• (𝑇) B
∞⋂
𝑗=1

Δ𝑌• (𝑇𝑗 ).

Lemma 10.4.4 The convex body Δ𝑌• (𝑇) in Definition 10.4.3 is independent of the
choices of the 𝑇𝑗 ’s.

In particular, if 𝑇 also has analytic singularities, then the Δ𝑌• (𝑇)’s defined in
Definition 10.4.3 and in Definition 10.4.2 coincide.

Proof Let (𝑆 𝑗 ) 𝑗 be another quasi-equisingular approximation of 𝑇 inZ+ (𝑋, 𝛼). By
Proposition 1.6.3, for any small rational 𝜖 > 0, 𝑗 > 0, we can find 𝑘 > 0 so that

𝑆𝑘 ⪯ (1 − 𝜖)𝑇𝑗 .

It is more convenient to use the language of 𝜃-psh functions at this point. Let 𝜓𝑘
(resp. 𝜑𝑘) denote the potentials in PSH(𝑋, 𝜃) corresponding to 𝑆𝑘 (resp. 𝑇𝑘) for each
𝑘 ≥ 1. Note that 𝜓𝑘 and 𝜑𝑘 are unique up to additive constants.

By Lemma 10.4.3,

∞⋂
𝑘=1

Δ𝑌• (𝜃, 𝜓𝑘) ⊆ Δ𝑌• (𝜃, (1 − 𝜖)𝜑 𝑗 ).

On the other hand, observe that⋂
𝜖 ∈Q>0 small enough

Δ𝑌• (𝜃, (1 − 𝜖)𝜑 𝑗 ) = Δ𝑌• (𝜃, 𝜑 𝑗 ).
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In fact, the ⊇ direction follows from Lemma 10.4.3, so it suffices to show that the
two sides have the same volume, which follows from (10.38).

It follows that
∞⋂
𝑘=1

Δ𝑌• (𝜃, 𝜓𝑘) ⊆
∞⋂
𝑗=1

Δ𝑌• (𝜃, 𝜑 𝑗 ).

The other inclusion follows by symmetry. □

The same argument shows that

Corollary 10.4.1 Suppose that 𝑇, 𝑆 ∈ Z+ (𝑋, 𝛼) are two Kähler currents satisfying
𝑇 ⪯I 𝑆. Then

Δ𝑌• (𝑇) ⊆ Δ𝑌• (𝑆) ⊆ Δ𝑌• (𝛼).

Proposition 10.4.1 Let 𝑇 ∈ Z+ (𝑋, 𝛼) be a Kähler current. Then

volΔ𝑌• (𝑇) =
1
𝑛!

vol𝑇. (10.39)

Proof Take a quasi-equisingular approximation (𝑇𝑗 ) 𝑗 of 𝑇 in Z+ (𝑋, 𝛼). Note that
Δ𝑌• (𝑇𝑗 ) is decreasing in 𝑗 , as follows from Lemma 10.4.3. Our assertion follows
from (10.38) and Theorem 6.2.5. □

Lemma 10.4.5 Let 𝑇 ∈ Z+ (𝑋, 𝛼) be a Kähler current and 𝜔 be a Kähler form on 𝑋 .
Then

Δ𝑌• (𝑇) ⊆ Δ𝑌• (𝑇 + 𝜔). (10.40)

Moreover,
Δ𝑌• (𝑇) =

⋂
𝜖 >0

Δ𝑌• (𝑇 + 𝜖𝜔). (10.41)

Proof We first prove (10.40). Taking quasi-equisingular approximations, we reduce
immediately to the case where 𝑇 has analytic singularities. By Lemma 10.4.2, we
may assume that 𝑇 has log singularities. Take 𝐷 and 𝑅 as in (10.37). By definition
again, it suffices to show that

Δ𝑌• ( [𝛽]) ⊆ Δ𝑌• ( [𝛽 + 𝜔]),

which is clear by definition.
Next we prove (10.41). Thanks to (10.40), it remains to prove that both sides have

the same volume:
lim
𝜖→0+

vol(𝑇 + 𝜖𝜔) = vol𝑇.

This is proved in Proposition 7.3.1. □

10.4.2.3 The general case

Definition 10.4.4 Let 𝑇 ∈ Z+ (𝑋, 𝛼). Take a Kähler form 𝜔 on 𝑋 , we define
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Δ𝑌• (𝑇) =
∞⋂
𝑗=1

Δ𝑌• (𝑇 + 𝑗−1𝜔). (10.42)

The same definition makes sense when 𝛼 is only pseudo-effective.

This definition is clearly independent of the choice of 𝜔 by Lemma 10.4.5. Moreover,
it extends Definition 10.4.3 and Definition 10.4.2 as a result of Lemma 10.4.5.

The main properties of Δ𝑌• (𝑇) are summarized as follows:

Theorem 10.4.2 The convex bodies Δ𝑌• (𝑇)’s satisfies the following properties:

(1) Suppose that 𝑇 ∈ Z+ (𝑋, 𝛼)>0, We have

volΔ𝑌• (𝑇) =
1
𝑛!

vol𝑇. (10.43)

(2) For 𝑇, 𝑆 ∈ Z+ (𝑋, 𝛼) satisfying 𝑇 ⪯I 𝑆, we have

Δ𝑌• (𝑇) ⊆ Δ𝑌• (𝑆) ⊆ Δ𝑌• (𝛼).

(3) For any current 𝑇 ∈ Z+ (𝑋, 𝛼) with minimal singularities, we have

Δ𝑌• (𝑇) = Δ𝑌• (𝛼).

(4) The map Z+ (𝑋, 𝛼)>0 → K𝑛 given by 𝑇 ↦→ Δ𝑌• (𝑇) is continuous, where we
endow the 𝑑𝑆-pseudometric onZ+ (𝑋, 𝛼)>0 and the Hausdorff topology on K𝑛.

(5) Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism with 𝑌 being a Kähler
manifold. Assume that the lifting (𝑊•, 𝑔) of 𝑌• to 𝑌 exists, then for any 𝑇 ∈
Z+ (𝑋, 𝛼)>0, we have

Δ𝑊• (𝜋∗𝑇) = Δ𝑌• (𝑇)𝑔.

(6) For 𝑇, 𝑆 ∈ Z+ (𝑋, 𝛼), we have

Δ𝑌• (𝑇) + Δ𝑌• (𝑆) ⊆ Δ𝑌• (𝑇 + 𝑆). (10.44)

Proof (1) By (10.42) and (10.39), for any Kähler form 𝜔 on 𝑋 ,

volΔ𝑌• (𝑇) = lim
𝑗→∞

Δ𝑌• (𝑇 + 𝑗−1𝜔) = 1
𝑛!

lim
𝑗→∞

vol(𝑇 + 𝑗−1𝜔).

The right-hand side is computed in Proposition 7.3.1. Hence, (10.43) follows.
(2) Fix a Kähler form 𝜔 on 𝑋 . By Corollary 10.4.1, for each 𝑗 ≥ 1,

Δ𝑌• (𝑇 + 𝑗−1𝜔) ⊆ Δ𝑌• (𝑆 + 𝑗−1𝜔) ⊆ Δ𝑌• (𝛼 + 𝑗−1 [𝜔]).

It remains to show that

Δ𝑌• (𝛼) =
∞⋂
𝑗=1

Δ𝑌• (𝛼 + 𝑗−1 [𝜔]).
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The ⊆ direction is clear. Comparing the volumes using Theorem 10.4.1, we conclude
that equality holds.

(3) This follows from (1) and (2).
(4) Let (𝑇𝑗 ) 𝑗 be a sequence in Z+ (𝑋, 𝛼)>0 converging to 𝑇 ∈ Z+ (𝑋, 𝛼)>0 with

respect to 𝑑𝑆 . We want to show that Δ𝑌• (𝑇𝑗 )
𝑑Haus−−−−→ Δ𝑌• (𝑇). By Proposition 6.2.3 and

(2), we may assume that the singularity type of 𝑇𝑗 is either increasing or decreasing.
In both cases, the continuity follows from (1).

(5) We may assume that 𝑇 is I-good. It follows from (4) and Theorem 7.1.1 that
we could reduce to the case where 𝑇 has analytic singularities. Our assertion follows
from Lemma 10.4.2.

(6) By (10.42), in order to prove (10.44), we may assume that 𝑇 and 𝑆 are both
Kähler currents. Take quasi-equisingular approximations (𝑇𝑗 ) 𝑗 and (𝑆 𝑗 ) 𝑗 of 𝑇 and 𝑆

respectively. By Theorem 6.2.2, 𝑇𝑗 + 𝑆 𝑗
𝑑𝑆−−→ 𝑇 + 𝑆. By (4), we may therefore assume

that 𝑇 and 𝑆 have analytic singularities. Replacing 𝑋 by a suitable modification, we
may assume that 𝑇 and 𝑆 both have log singularities, say

𝑇 = [𝐷] + 𝑅, 𝑆 = [𝐷′] + 𝑅′,

where 𝐷 and 𝐷′ are Q-divisors on 𝑋 and 𝛽 and 𝛽′ are closed positive (1, 1)-currents
with bounded potentials. We need to show that

Δ𝑌• ( [𝑅]) + Δ𝑌• ( [𝑅′]) + 𝜈𝑌• ( [𝐷]) + 𝜈𝑌• ( [𝐷′]) ⊆ Δ𝑌• ( [𝑅 + 𝑅′]) + 𝜈𝑌• ( [𝐷 + 𝐷′]).

By Proposition 10.2.2, this is equivalent to

Δ𝑌• ( [𝑅]) + Δ𝑌• ( [𝑅′]) ⊆ Δ𝑌• ( [𝑅 + 𝑅′]),

which is already proved in Theorem 10.4.1. □

Corollary 10.4.2 Assume that 𝐿 is a big line bundle on 𝑋 and ℎ is a plurisubharmonic
metric on 𝐿 with positive volume. Then

Δ𝑌• (ddcℎ) = Δ𝑌• (𝐿, ℎ). (10.45)

Similarly, the definition (10.27) is compatible with the definition in Definition 10.4.4.

Proof We may assume that ddcℎ has positive mass and is I-good. By the 𝑑𝑆-
continuity of both sides of (10.45) as proved in Theorem 10.4.2 and Theorem 10.3.2,
together with Theorem 7.1.1, we may assume that ddcℎ has analytic singularities.

In this case, using the birational invariance of both sides of (10.45) as proved in
Proposition 10.3.9 and Theorem 10.4.2, we may assume that ddcℎ has log singularities.
Finally, after all these reductions, the equality (10.45) holds by construction. □
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10.4.3 The valuative characterization

In this section, we will characterize the partial Okounkov bodies using valuations of
currents.

Lemma 10.4.6 Let 𝛽 be a nef class on 𝑋 . Then{
𝑦 ∈ R𝑛−1 : (0, 𝑦) ∈ Δ𝑌• (𝛽)

}
= Δ𝑌1⊇···⊇𝑌𝑛 (𝛽 |𝑌1 ). (10.46)

Proof Step 1. We first reduce to the case where 𝛽 is a Kähler class.
Take a Kähler class 𝛼 on 𝑋 . It follows from the volume formula in Theorem 10.4.1

that

Δ𝑌• (𝛽) =
⋂
𝜖 >0

Δ𝑌• (𝛽 + 𝜖𝛼), Δ𝑌1⊇···⊇𝑌𝑛 (𝛽 |𝑌1 ) =
⋂
𝜖 >0

Δ𝑌1⊇···⊇𝑌𝑛 (𝛽 |𝑌1 + 𝜖𝛼 |𝑌1 ).

So it suffices to prove (10.46) with 𝛽 + 𝜖𝛼 in place of 𝛽.
Step 2. Assume that 𝛼 is a Kähler class. The ⊇ direction in (10.46) follows from

the extension theorem Theorem 1.6.3. To prove the other direction, recall that by
Theorem 10.4.1, for 𝑡 > 0 small enough, we have{

𝑦 ∈ R𝑛−1 : (𝑡, 𝑦) ∈ Δ𝑌• (𝛽)
}
= Δ𝑌1⊇···⊇𝑌𝑛

(
(𝛽 − 𝑡 [𝑌1]) |𝑌1

)
.

As 𝑡 → 0+, the right-hand side converges to Δ𝑌1⊇···⊇𝑌𝑛 (𝛽 |𝑌1 ) with respect to the
Hausdorff metric as a consequence of Theorem 10.4.1, while the left-hand side
converges to {

𝑦 ∈ R𝑛−1 : (0, 𝑦) ∈ Δ𝑌• (𝛽)
}

by Lemma C.1.2. We conclude our assertion. □

Lemma 10.4.7 Let 𝑇 ∈ Z+ (𝑋, 𝛼) be a Kähler current. Assume that 𝜈(𝑇,𝑌1) = 0,
then {

𝑦 ∈ R𝑛−1 : (0, 𝑦) ∈ Δ𝑌• (𝑇)
}
= Δ𝑌1⊇···⊇𝑌𝑛

(
Tr𝛼 |𝑌1
𝑌1
(𝑇)

)
. (10.47)

More generally, if 𝑇 ∈ Z+ (𝑋, 𝛼) and 𝜈(𝑇,𝑌1) = 0, suppose in addition that
Tr𝛼 |𝑌1
𝑌1
(𝑇) is defined, then (10.47) still holds.

See Remark 8.1.1 for the definition of Tr𝛼 |𝑌1
𝑌1
(𝑇). Note that Δ𝑌1⊇···⊇𝑌𝑛

(
Tr𝛼 |𝑌1
𝑌1
(𝑇)

)
is

independent of the choice of the representative Tr𝛼 |𝑌1
𝑌1
(𝑇).

Remark 10.4.1 More generally, the same argument shows the following result: Let
𝑘 = 0, . . . , 𝑛 and 𝑇 ∈ Z+ (𝑋, 𝛼) such that 𝜈(𝑇,𝑌𝑘) = 0. Assume that Tr𝛼 |𝑌𝑘

𝑌𝑘
(𝑇) is

defined, then{
𝑦 ∈ R𝑛−𝑘 : (0, . . . , 0, 𝑦) ∈ Δ𝑌• (𝑇)

}
= Δ𝑌𝑘⊇···⊇𝑌𝑛

(
Tr𝛼 |𝑌𝑘
𝑌𝑘
(𝑇)

)
. (10.48)

Also note that this result extends [Jow10, Theorem 3.4] and hence gives simpler
proofs of [Jow10, Theorem A, Theorem B].
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Proof Let 𝜔 be a Kähler form on 𝑋 . The last assertion follows from the first by
perturbing 𝜃 to 𝜃 + 𝜖𝜔.

Step 1. We first handle the case where 𝑇 has analytic singularities. Let 𝜋 : 𝑍 → 𝑋

be a modification such that

(1) 𝑌• admits a lifting (𝑊•, 𝑔), and
(2) 𝜋∗𝑇 = [𝐷] + 𝑅, where 𝐷 is an effective Q-divisor on 𝑍 and 𝑅 is closed positive
(1, 1)-current with bounded potential.

This is possible by Theorem 1.6.1 and Theorem 10.2.1.
By Lemma 8.2.1,

Π∗ Tr𝑌1 (𝑇) ∼𝑃 Tr𝑊1 (𝜋∗𝑇),

where Π : 𝑊1 → 𝑌1 is the restriction of 𝜋. It follows from Theorem 10.4.2 that

Δ𝑊1⊇···⊇𝑊𝑛 (Tr𝑊1 (𝜋∗𝑇)) =Δ𝑌1⊇···⊇𝑌𝑛 (Tr𝑌1 (𝑇)) cor(𝑌1 ⊇ · · · ⊇ 𝑌𝑛,Π),
Δ𝑊• (𝜋∗𝑇) =Δ𝑌• (𝑇)𝑔.

Taking (10.10) into account, we find that it suffices to show that{
𝑦 ∈ R𝑛−1 : (0, 𝑦) ∈ Δ𝑊• (𝜋∗𝑇)

}
= Δ𝑊1⊇···⊇𝑊𝑛 (Tr𝑊1 (𝜋∗𝑇)).

We may assume that 𝜋 is the identity map. Then we have

𝑇 = [𝐷] + 𝑅, 𝑇 |𝑌1 = [𝐷] |𝑌1 + 𝑅 |𝑌1 .

Note that [𝐷] |𝑌1 is the current of integration along an effective Q-divisor on 𝑌1.
In particular,

Δ𝑌• (𝑇) =Δ𝑌• ( [𝑅]) + 𝜈𝑌• ( [𝐷]),
Δ𝑌1⊇···⊇𝑌𝑛 (𝑇 |𝑌1 ) =Δ𝑌1⊇···⊇𝑌𝑛 ( [𝑅] |𝑌1 ) + 𝜈𝑌1⊇···⊇𝑌𝑛 ( [𝐷] |𝑌1 ).

So it suffices to show that{
𝑦 ∈ R𝑛−1 : (0, 𝑦) ∈ Δ𝑌• ( [𝑅])

}
= Δ𝑌1⊇···⊇𝑌𝑛 ( [𝑅] |𝑌1 ),

which is exactly Lemma 10.4.6.
Step 2. Next we consider the case where 𝑇 is a Kähler current. Take a quasi-

equisingular approximation (𝑇𝑗 ) 𝑗 of 𝑇 inZ+ (𝑋, 𝛼). From Step 1, we know that for
large 𝑗 ≥ 1, {

𝑦 ∈ R𝑛−1 : (0, 𝑦) ∈ Δ𝑌• (𝑇𝑗 )
}
= Δ𝑌1⊇···⊇𝑌𝑛 (Tr𝑌1 (𝑇𝑗 )).

Letting 𝑗 → ∞ and applying Theorem 10.4.2 and Proposition 8.2.2, we conclude
(10.47). □

Theorem 10.4.3 Assume that 𝑇 ∈ Z+ (𝑋, 𝛼)>0 is a Kähler current. We have

min
lex

Δ𝑌• (𝑇) = 𝜈𝑌• (𝑇). (10.49)
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Here the minimum is with respect to the lexicographic order.

Proof We make induction on 𝑛 ≥ 0. The case 𝑛 = 0 is of course trivial. Let us
assume that 𝑛 > 0 and the case 𝑛 − 1 has been proved.

We first observe that by Theorem 10.4.2,

Δ𝑌• (𝑇 − 𝜈(𝑇,𝑌1) [𝑌1]) + (𝜈(𝑇,𝑌1), 0, . . . , 0) ⊆ Δ𝑌• (𝑇).

Comparing the volumes of both sides using Theorem 10.4.2 and Proposition 7.3.1,
we find that equality holds:

Δ𝑌• (𝑇 − 𝜈(𝑇,𝑌1) [𝑌1]) + (𝜈(𝑇,𝑌1), 0, . . . , 0) = Δ𝑌• (𝑇).

Replacing 𝑇 by 𝑇 − 𝜈(𝑇,𝑌1) [𝑌1], we may therefore assume that 𝜈(𝑇,𝑌1) = 0. It
suffices to apply Lemma 10.4.7 and the inductive hypothesis. □

Corollary 10.4.3 For any 𝑇 ∈ Z+ (𝑋, 𝛼),

𝜈𝑌• (𝑇) ∈ Δ𝑌• (𝑇) ⊆ Δ𝑌• (𝛼).

Proof When 𝑇 is a Kähler current, this follows from Theorem 10.4.3.
In general, by definition, 𝜈𝑌• (𝑇) = 𝜈𝑌• (𝑇 + 𝜔) for any Kähler form 𝜔 on 𝑋 . It

follows that
𝜈𝑌• (𝑇) ∈ Δ𝑌• (𝑇 + 𝜔)

for any Kähler form 𝜔. It follows that 𝜈𝑌• (𝑇) ∈ Δ𝑌• (𝑇). □

Theorem 10.4.4 For any 𝑇 ∈ Z+ (𝑋, 𝛼)>0,

Δ𝑌• (𝑇) =
{
𝜈𝑌• (𝑆) : 𝑆 ∈ Z+ (𝑋, 𝛼), 𝑆 ⪯I 𝑇

}
. (10.50)

In particular,2
Δ𝑌• (𝛼) =

{
𝜈𝑌• (𝑆) : 𝑆 ∈ Z+ (𝑋, 𝛼)

}
. (10.51)

Remark 10.4.2 We expect that the closure operation in (10.50) is not necessary. This
problem is closely related to the Dirichlet problem of the trace operator, see Page 388
for more details.

Proof The ⊇ direction in (10.50) follows from Corollary 10.4.3 and Theo-
rem 10.4.2(2).

Let us write

𝐷𝑌• (𝑇) =
{
𝜈𝑌• (𝑆) : 𝑆 ∈ Z+ (𝑋, 𝛼), 𝑆 ⪯I 𝑇

}
2 According to Ya Deng, the definition (10.51) of Δ𝑌• (𝛼) was what Demailly originally proposed
for Deng’s thesis. Due to the lack of the techniques of the trace operators, Deng had to work with
analytic singularities instead. As a consequence, the transcendental analogue of Proposition 10.3.9
is not obvious. This is one of the two main technical difficulties of Theorem 10.4.1. This problem
also led me to finally develop the theory of trace operators, a notion I had in mind for several years.
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for the time being.
Step 1. Assume that 𝑇 has analytic singularities. We have

Δ𝑌• (𝑇) ⊇𝐷𝑌• (𝑇)

⊇
{
𝜈𝑌• (𝑆) : Z+ (𝑋, 𝛼) ∋ 𝑆 has gentle analytic singularities, 𝑆 ⪯ 𝑇

}
.

It follows easily from Theorem 10.4.1 that the volume of the right-hand side is equal
to the volume of Δ𝑌• (𝑇), so (10.50) holds.

Step 2. Assume that𝑇 is a Kähler current. Take a quasi-equisingular approximation
𝑇𝑗 ∈ Z+ (𝑋, 𝛼) of 𝑇 . Next we use the language of psh functions. Let 𝜑 𝑗 , 𝜑 ∈
PSH(𝑋, 𝜃) be the potentials corresponding to 𝑇𝑗 , 𝑇 for each 𝑗 ≥ 1.

Fix an integer 𝑁 > 0. For large enough 𝑗 ≥ 1, we can find 𝜓 ∈ PSH(𝑋, 𝜃)>0 such
that

𝑃𝜃 [𝜑]I ≥ (1 − 𝑁−1)𝜑 𝑗 + 𝑁−1𝜓 𝑗 .

The existence of 𝜓 𝑗 follows from Lemma 2.4.2. It follows that

𝐷𝑌• (𝑇) ⊇𝐷𝑌•
(
𝜃 + ddc

(
(1 − 𝑁−1)𝜑 𝑗 + 𝑁−1𝜓 𝑗

))
⊇(1 − 𝑁−1)𝐷𝑌• (𝑇𝑗 ) + 𝑁−1𝐷𝑌• (𝜃 + ddc𝜓 𝑗 ).

By Theorem C.1.1, up to replacing 𝑇𝑗 by a subsequence, we may guarantee that
𝐷𝑌• (𝜃 + ddc𝜓 𝑗 ) admits a Hausdorff limit contained in Δ𝑌• (𝛼) as 𝑗 →∞. Let 𝑗 →∞
and 𝑁 →∞ then it follows that

𝐷𝑌• (𝑇) ⊇
∞⋂
𝑗=1
𝐷𝑌• (𝑇𝑗 ).

By Lemma C.1.3,

𝐷𝑌• (𝑇) ⊇
∞⋂
𝑗=1
𝐷𝑌• (𝑇𝑗 ) =

∞⋂
𝑗=1
𝐷𝑌• (𝑇𝑗 ).

Therefore, by Step 1, we conclude that

Δ𝑌• (𝑇) =
∞⋂
𝑗=1

Δ𝑌• (𝑇𝑗 ) =
∞⋂
𝑗=1
𝐷𝑌• (𝑇𝑗 ) ⊆ 𝐷𝑌• (𝑇).

The reverse direction is already known.
Step 3. Finally, consider the general case. Take a Kähler current 𝑇 ′ ∈ Z+ (𝑋, 𝛼)

more singular than𝑇 . For each 𝜖 ∈ (0, 1). The existence of𝑇 ′ is proved in Lemma 2.4.3.
We know that

Δ𝑌• ((1 − 𝜖)𝑇 + 𝜖𝑇 ′) = 𝐷𝑌• ((1 − 𝜖)𝑇 + 𝜖𝑇 ′) ⊆ 𝐷𝑌• (𝑇).
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Letting 𝜖 → 0+ and using Proposition 7.3.1, we find that

Δ𝑌• (𝑇) ⊆ 𝐷𝑌• (𝑇).

As the other inclusion is already known, we conclude. □

Corollary 10.4.4 Assume that 𝑇 ∈ Z+ (𝑋, 𝛼)>0. We have

min
lex

Δ𝑌• (𝑇) = 𝜈𝑌• (𝑇). (10.52)

Proof By Theorem 10.4.4, it is clear that

min
lex

Δ𝑌• (𝑇) ≤lex 𝜈𝑌• (𝑇).

On the other hand, we clearly have

Δ𝑌• (𝑇) ⊆ Δ𝑌• (𝑇 + 𝜔)

for any Kähler form 𝜔 on 𝑋 . It follows that

min
lex

Δ𝑌• (𝑇) ≥lex min
lex

Δ𝑌• (𝑇 + 𝜔).

By Theorem 10.4.3, the right-hand side is just 𝜈𝑌• (𝑇 +𝜔) = 𝜈𝑌• (𝑇). We conclude the
proof. □

10.5 Okounkov test curves

Fix 𝑛 ∈ N. Let Δ,Δ′ ⊆ R𝑛 be convex bodies with positive volumes. The standard
Lebesgue measure on R𝑛 is denoted by vol.

Recall that K𝑛 denotes the set of convex bodies in R𝑛 and 𝑑Haus denotes the
Hausdorff metric. We refer to Appendix C for the basic properties of these objects.

We will study the notion of Okounkov test curves in this section, which leads to
the definition of the Duistermaat–Heckman measure of a non-Archimedean metric in
Section 13.3 below. We encourage the readers to skip this section on a first reading.

Definition 10.5.1 An Okounkov test curve relative to Δ consists of

(1) a number Δmax ∈ R and
(2) an assignment (−∞,Δmax) ∋ 𝜏 ↦→ Δ𝜏 ∈ K𝑛 satisfying

a. the assignment 𝜏 ↦→ Δ𝜏 is a decreasing and concave3;
b. we have Δ𝜏

𝑑Haus−−−−→ Δ as 𝜏 → −∞.

3 Here concavity refers to the concavity with respect to the Minkowski sum.
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The set of Okounkov test curves relative to Δ is denoted by TC(Δ).
An Okounkov test curve Δ• relative to Δ is bounded if Δ𝜏 = Δ when 𝜏 is small

enough. The subset of bounded Okounkov test curves is denoted by TC∞ (Δ).
An Okounkov test curve Δ• relative to Δ is said to have finite energy if

E(Δ•) B 𝑛!Δmax volΔ + 𝑛!
∫ Δmax

−∞
(volΔ𝜏 − volΔ) d𝜏 > −∞. (10.53)

The subset of Okounkov test curves with finite energy is denoted by TC1 (Δ).
Given Δ• ∈ TC(Δ) and Δ′• ∈ TC(Δ′), we say Δ• ≤ Δ′• if Δmax ≤ Δ′max and for any

𝜏 < Δmax, we have Δ𝜏 ⊆ Δ′𝜏 .

Sometimes it is convenient to introduce

ΔΔmax =
⋂

𝜏<Δmax

Δ𝜏 ∈ K𝑛. (10.54)

We shall always make this extension in the sequel when we talk about ΔΔmax . Observe
that (−∞,Δmax] ∋ 𝜏 ↦→ Δ𝜏 is still concave.

Proposition 10.5.1 Any Okounkov test curve (Δ𝜏)𝜏<Δmax relative to Δ is continuous
in 𝜏. Moreover, volΔ𝜏 > 0 for all 𝜏 < Δmax.

Proof We first claim that volΔ𝜏′ > 0 for all 𝜏′ < Δmax. By Condition (2b) in
Definition 10.5.1 and Theorem C.1.2, we know that volΔ𝜏′′ > 0 when 𝜏′′ is small
enough. Fix one such 𝜏′′. We may assume that 𝜏′′ ≤ 𝜏′ since otherwise there is nothing
to prove. Next take 𝜏′′′ ∈ (𝜏′,Δmax). Take 𝑡 ∈ (0, 1) such that 𝜏′ = 𝑡𝜏′′′ + (1 − 𝑡)𝜏′′.
It follows that

volΔ𝜏′ ≥ vol (𝑡Δ𝜏′′′ + (1 − 𝑡)Δ𝜏′′ ) ≥ (1 − 𝑡)𝑛 volΔ𝜏′′ > 0.

Next we claim that volΔ𝜏 is continuous for 𝜏 < Δmax. In fact, it follows from
Theorem C.1.4 that (−∞,Δmax) ∋ 𝜏 ↦→ log volΔ𝜏 is concave, but we have already
known that it is finite, hence the continuity follows.

Next we show that
Δ𝜏 =

⋂
𝜏′<𝜏

Δ𝜏′ .

The ⊆ direction is obvious. By the continuity of the volume, both sides have the same
volume and the volume is positive, we therefore obtain the equality.

Similarly, we have
Δ𝜏 =

⋃
𝜏′>𝜏

Δ𝜏′ .

The continuity of Δ𝜏 at 𝜏 < Δmax is proved. □

Definition 10.5.2 A test function on Δ is a function 𝐺 : Δ→ [−∞,∞) such that

(1) 𝐺 is concave,
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(2) 𝐺 is finite on IntΔ, and
(3) 𝐺 is upper semicontinuous.

A test function 𝐺 is bounded if 𝐺 is bounded from below.
A test function 𝐺 has finite energy if

E(𝐺) B 𝑛!
∫
Δ

𝐺 d𝜆 > −∞. (10.55)

Definition 10.5.3 Let Δ• ∈ TC(Δ). We define its Legendre transform as

𝐺 [Δ•] : Δ→ [−∞,∞), 𝑎 ↦→ sup {𝜏 < Δmax : 𝑎 ∈ Δ𝜏} .

Given a test function 𝐺 : Δ→ [−∞,∞), we define its inverse Legendre transform
Δ[𝐺]• as the Okounkov test curve relative to Δ defined as follows:

(1) Δ[𝐺]max = supΔ𝐺, and
(2) for each 𝜏 < supΔ𝐺, we set

Δ[𝐺]𝜏 = {𝑥 ∈ Δ : 𝐺 ≥ 𝜏}.

We observe that

𝐺 [Δ•] (𝑎) = max {𝜏 ≤ Δmax : 𝑎 ∈ Δ𝜏} , if 𝐺 [Δ•] (𝑎) > −∞. (10.56)

Lemma 10.5.1 Let Δ• ∈ TC(Δ). Then 𝐺 [Δ•] defined in Definition 10.5.3 is a test
function.

Similar, if 𝐺 : Δ→ [−∞,∞) is a test function, then Δ[𝐺]• is an Okounkov test
curve.

Proof First suppose that Δ• ∈ TC(Δ). We want to verify that 𝐺 [Δ•] satisfies the
conditions in Definition 10.5.2.

We first verify the concavity. Take 𝑎, 𝑏 ∈ Δ. We want to prove that for any
𝑡 ∈ (0, 1),

𝐺 [Δ•] (𝑡𝑎 + (1 − 𝑡)𝑏) ≥ 𝑡𝐺 [Δ•] (𝑎) + (1 − 𝑡)𝐺 [Δ•] (𝑏). (10.57)

There is nothing to prove if 𝐺 [Δ•] (𝑎) or 𝐺 [Δ•] (𝑏) is −∞. So we assume that both
are finite. In this case, by (10.56),

𝑎 ∈ Δ𝐺 [Δ• ] (𝑎) , 𝑏 ∈ Δ𝐺 [Δ• ] (𝑏) .

Thus,

𝑡𝑎 + (1 − 𝑡)𝑏 ∈ 𝑡Δ𝐺 [Δ• ] (𝑎) + (1 − 𝑡)Δ𝐺 [Δ• ] (𝑏) ⊆ Δ𝑡𝐺 [Δ• ] (𝑎)+(1−𝑡 )𝐺 [Δ• ] (𝑏) .

We deduce that

𝐺 [Δ•] (𝑡𝑎 + (1 − 𝑡)𝑏) ≥ 𝑡𝐺 [Δ•] (𝑎) + (1 − 𝑡)𝐺 [Δ•] (𝑏).
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Therefore, (10.57) follows.
It is clear that 𝐺 [Δ•] is finite on the interior of Δ. It remains to argue that 𝐺 [Δ•]

is upper semicontinuous.
Let (𝑎𝑖)𝑖≥1 be a sequence in Δ with limit 𝑎 ∈ Δ. Define 𝜏𝑖 = 𝐺 [Δ•] (𝑎𝑖). Let

𝜏 = lim𝑖 𝜏𝑖 . We need to show that

𝐺 [Δ•] (𝑎) ≥ 𝜏. (10.58)

There is nothing to prove if 𝜏 = −∞. We assume that it is not this case. Up to
subtracting a subsequence we may assume that 𝜏𝑖 → 𝜏. In particular, we can assume
that 𝜏𝑖 ≠ −∞ for all 𝑖 ≥ 1. It follows from (10.56) that 𝑎𝑖 ∈ Δ𝜏𝑖 for all 𝑖 ≥ 1. Since

Δ𝜏𝑖
𝑑Haus−−−−→ Δ𝜏 . By Theorem C.1.3 it follows that 𝑎 ∈ Δ𝜏 . Thus,(10.58) follows.

Conversely, suppose that 𝐺 : Δ → [−∞,∞) is a test function. We argue that
Δ[𝐺]• is an Okounkov test curve. We verify the conditions in Definition 10.5.1.

Firstly, for each 𝜏 < supΔ𝐺, the set Δ[𝐺] (𝜏) is a convex body as 𝐺 is concave
and usc. Moreover, Δ[𝐺]𝜏 is clearly decreasing in 𝜏.

Secondly, for each 𝑎 ∈ Δ, we can write 𝑎 = lim𝑖 𝑎𝑖 with 𝑎𝑖 ∈ IntΔ. By assumption,
𝐺 is finite at 𝑎𝑖 . Thus,

𝑎 ∈ {𝐺 > −∞} =
⋃

𝜏<supΔ𝐺
Δ[𝐺]𝜏 .

By Theorem C.1.3, Δ[𝐺]𝜏
𝑑Haus−−−−→ Δ as 𝜏 → −∞.

Thirdly, Δ[𝐺] is concave. To see, take 𝜏, 𝜏′ < Δmax, we need to prove that for any
𝑡 ∈ (0, 1),

Δ[𝐺]𝑡 𝜏+(1−𝑡 )𝜏′ ⊇ 𝑡Δ[𝐺]𝜏 + (1 − 𝑡)Δ[𝐺]𝜏′ . (10.59)

Let 𝑎 ∈ Δ[𝐺]𝜏 and 𝑏 ∈ Δ[𝐺]𝜏′ . We have𝐺 (𝑎) ≥ 𝜏 and𝐺 (𝑏) ≥ 𝜏′. As𝐺 is concave,
we have 𝐺 (𝑡𝑎 + (1 − 𝑡)𝑏) ≥ 𝑡𝜏 + (1 − 𝑡)𝜏′. Thus,

𝑡𝑎 + (1 − 𝑡)𝑏 ∈ Δ[𝐺]𝑡 𝜏+(1−𝑡 )𝜏′

and (10.59) follows. □

Theorem 10.5.1 The Legendre transform and inverse Legendre transform are inverse
to each other, defining a bĳection between TC(Δ) and the set of test functions on Δ.

Under this bĳection, TC1 (Δ) corresponds to test functions on Δ with finite energy
and TC∞ (Δ) corresponds to bounded test functions on Δ.

Proof Thanks to Lemma 10.5.1, in order to prove the first assertion, it only remains
to see that the Legendre transform and the inverse Legendre transform are inverse to
each other, which is immediate by definition.

It is obvious that TC∞ (Δ) corresponds to bounded test curves. Moreover, a direct
computation shows that if Δ• ∈ TC(Δ), then

E(Δ•) = E(𝐺 [Δ•]),
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concluding the TC1 (Δ) case. □

Proposition 10.5.2 Let (Δ𝑖)𝑖∈𝐼 be a decreasing net inK𝑛. Consider a decreasing net
(Δ𝑖•)𝑖∈𝐼 with Δ𝑖• ∈ TC(Δ𝑖) for all 𝑖 ∈ 𝐼 such that there is Δ• ∈ TC(Δ) satisfying the
following properties:

(1) Δmax = lim𝑖∈𝐼 Δ𝑖max;
(2) for any 𝜏 < Δmax, we have Δ𝑖𝜏

𝑑Haus−−−−→ Δ𝜏 .

Then for any 𝑎 ∈ Δ, we have

lim
𝑖∈𝐼

𝐺 [Δ𝑖•] (𝑎) = 𝐺 [Δ•] (𝑎). (10.60)

Note that in general,
Δ ⊊

⋂
𝑖∈𝐼

Δ𝑖 .

Proof Fix 𝑎 ∈ Δ. It follows immediately from the definition of 𝐺 that the net
(𝐺 [Δ𝑖•] (𝑎))𝑖∈𝐼 is decreasing and the ≥ direction in (10.60) holds. Let us prove the
reverse inequality. Let 𝜏 denote the left-hand side of (10.60) for the moment. By
definition, for any 𝜖 > 0 and any 𝑖 ∈ 𝐼, we have 𝑎 ∈ Δ𝑖𝜏−𝜖 . It follows that

𝑎 ∈ Δ∞𝜏−𝜖 .

Therefore,
𝜏 ≤ 𝐺 [Δ•] (𝑎).

Similarly, for increasing nets, we have:

Proposition 10.5.3 Let (Δ𝑖)𝑖∈𝐼 be an increasing net inK𝑛 with Hausdorff limitΔ such
that volΔ𝑖 > 0 for all 𝑖 ∈ 𝐼. Consider an increasing net (Δ𝑖•)𝑖∈𝐼 with Δ𝑖• ∈ TC(Δ𝑖)
for all 𝑖 ∈ 𝐼. Let Δmax = lim𝑖∈𝐼 Δ𝑖max. For any 𝜏 < Δmax, let Δ𝜏 be the Hausdorff limit
of Δ𝑖𝜏 . Then Δ• ∈ TC(Δ) and

lim
𝑖∈𝐼

𝐺 [Δ𝑖•] (𝑎) = 𝐺 [Δ•] (𝑎) (10.61)

for any 𝑎 ∈ IntΔ.

Proof It is obvious that Δ• ∈ TC(Δ).
Fix 𝑎 ∈ IntΔ. Then up to replacing 𝐼 by a subnet, we may assume that 𝑎 ∈ Δ𝑖 for

all 𝑖 ∈ 𝐼. By definition, the net (𝐺 [Δ𝑖•] (𝑎))𝑖∈𝐼 is increasing and the ≤ direction in
(10.61) holds. Let us write 𝜏 = 𝐺 [Δ•] (𝑎) for the time being. By definition of 𝐺, for
any 𝜖 > 0, we have

𝑎 ∈ Δ𝜏−𝜖 /2.

The concavity of Δ• guarantees that

𝑎 ∈ IntΔ𝜏−𝜖 .
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It follows that there is a subnet 𝐽 in 𝐼 such that for all 𝑗 ∈ 𝐽,

𝑎 ∈ Δ 𝑗𝜏−𝜖 .

Therefore,
𝜏 − 𝜖 ≤ 𝐺 [Δ 𝑗•] (𝑎).

Taking the limit with respect to 𝑗 and then with respect to 𝜖 , we conclude the desired
inequality. □

Definition 10.5.4 Let Δ• be an Okounkov test curve relative to Δ. We define the
Duistermaat–Heckman measure DH(Δ•) as

DH(Δ•) B 𝐺 [Δ•]∗ (vol).

It is a Radon measure on R.

In other words, DH(Δ•) is the distribution of the random variable 𝐺 [Δ•].
Proposition 10.5.4 Let Δ• ∈ TC(Δ). Let 𝑚 ∈ Z>0. Then the 𝑚-th moment of the
DH(Δ•) is given by∫

R
𝑥𝑚 DH(Δ•) (𝑥) = Δ𝑚max volΔ + 𝑚

∫ Δmax

−∞
𝜏𝑚−1 (volΔ𝜏 − volΔ) d𝜏 (10.62)

and ∫
R

DH(Δ•) = volΔ. (10.63)

Proof In fact, (10.63) follows immediately from the definition, while (10.62) follows
form a straightforward computation:∫

R
𝑥𝑚 DH(Δ•) (𝑥)

=

∫
Δ

𝐺 [Δ•] (𝑎)𝑚 d vol(𝑎)

=

∫
Δ

(
Δ𝑚max −

∫ Δmax

𝐺 [Δ• ] (𝑎)
𝑚𝜏𝑚−1 d𝜏

)
d vol(𝑎)

=Δ𝑚max volΔ − 𝑚
∫
R

∫
Δ

1[𝐺 (Δ• ] (𝑎) ,Δmax ] (𝜏)𝜏𝑚−1 d vol(𝑎) d𝜏

=Δ𝑚max volΔ − 𝑚
∫ Δmax

−∞

∫
Δ\Δ𝜏

𝜏𝑚−1 d vol(𝑎) d𝜏

=Δ𝑚max volΔ − 𝑚
∫ Δmax

−∞
𝜏𝑚−1 (volΔ − volΔ𝜏) d𝜏.

Lemma 10.5.2 Let (Δ𝑖)𝑖∈𝐼 be a decreasing net in K𝑛 with limit Δ. Suppose that
(Δ𝑖•)𝑖∈𝐼 is a decreasing net with Δ𝑖• ∈ TC(Δ𝑖). Suppose that there is Δ• ∈ TC(Δ)
such that



290 CHAPTER 10. THE THEORY OF OKOUNKOV BODIES

(1) Δmax = lim𝑖∈𝐼 Δ𝑖max;
(2) for any 𝜏 < Δmax, we have Δ𝑖𝜏

𝑑Haus−−−−→ Δ𝜏 .

Then DH(Δ𝑖•) ⇀ DH(Δ•).

Proof It follows from Proposition 10.5.2 that

𝐺 [Δ𝑖•] → 𝐺 [Δ•]

pointwisely on Δ. Our assertion then follows from the dominated convergence
theorem. □

Similarly, we have

Lemma 10.5.3 Let (Δ𝑖)𝑖∈𝐼 be an increasing net in K𝑛 with Hausdorff limit Δ such
that volΔ𝑖 > 0 for all 𝑖 ∈ 𝐼. Consider an increasing net (Δ𝑖•)𝑖∈𝐼 with Δ𝑖• ∈ TC(Δ𝑖)
for all 𝑖 ∈ 𝐼. Let Δ• ∈ TC(Δ) be defined as

(1) Δmax = lim𝑖∈𝐼 Δ𝑖max;
(2) for any 𝜏 < Δmax, Δ𝜏 is the Hausdorff limit of Δ𝑖𝜏 .

Then we have
DH(Δ𝑖•) ⇀ DH(Δ•).

Proof It follows from Proposition 10.5.3 that

𝐺 [Δ𝑖•] → 𝐺 [Δ•]

almost everywhere on Δ. Our assertion then follows from the dominated convergence
theorem. □

The main source of Okounkov test curves is the following:

Theorem 10.5.2 Let 𝑋 be a connected compact Kähler manifold and 𝜃 be a closed
smooth real (1, 1)-form on 𝑋 representing a big cohomology class 𝛼. Let 𝑌• be a
smooth flag on 𝑋 and Γ ∈ TC(𝑋, 𝜃)>0. Then the map

(−∞, Γmax) ∋ 𝜏 ↦→ Δ𝑌• (𝜃, Γ)𝜏 B Δ𝑌• (𝜃, Γ𝜏)

defines an Okounkov test curve relative to Δ𝑌• (𝜃, Γ−∞).
If furthermore Γ ∈ TC1 (𝑋, 𝜃; Γ−∞) (resp. TC∞ (𝑋, 𝜃; Γ−∞)), then we have

Δ𝑌• (𝜃, Γ) ∈ TC1 (Δ𝑌• (𝜃, Γ−∞)) (resp. TC∞ (Δ𝑌• (𝜃, Γ−∞))).

See Definition 9.1.1 and Definition 9.1.2 for the relevant definitions.

Proof Consider Γ ∈ TC(𝑋, 𝜃)>0. We need to verify that Δ𝑌• (𝜃, Γ) is an Okounkov
test curve relative to Δ𝑌• (𝜃, Γ−∞).

First observe that 𝜏 ↦→ Δ𝑌• (𝜃, Γ𝜏) is concave and decreasing for 𝜏 < Γmax. This is
a direct consequence of Theorem 10.4.4.

Next we show that as 𝜏 → −∞, we have
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Δ𝑌• (𝜃, Γ𝜏)
𝑑Haus−−−−→ Δ𝑌• (𝜃, Γ−∞).

It suffices to compute

lim
𝜏→−∞

volΔ𝑌• (𝜃, Γ𝜏) =
1
𝑛!

lim
𝜏→−∞

vol(𝜃 + ddcΓ𝜏) =
1
𝑛!

vol(𝜃 + ddcΓ−∞)

= volΔ𝑌• (𝜃, Γ−∞),

where we applied Theorem 10.4.2 and Theorem 6.2.5.
When Γ ∈ TC∞ (𝑋, 𝜃; Γ−∞), it is clear that Δ𝑌• (𝜃, Γ) ∈ TC∞ (Δ𝑌• (𝜃, Γ−∞)).
When Γ ∈ TC1 (𝑋, 𝜃; Γ−∞), by Theorem 10.4.2(1), (9.4) and (10.53), we have

EΓ−∞ (Γ) = E(Δ𝑌• (𝜃, Γ)).

So Γ ∈ TC1 (Δ𝑌• (𝜃, Γ−∞)). □

Remark 10.5.1 As a special case of this construction, suppose that Γ is the test curve
induced by a test configuration as in Example 9.3.1 and Remark 9.3.1, then for any
𝜏 < Γmax, Δ𝑌• (𝜃, Γ𝜏) is the Okounkov body of a graded linear series

∞⊕
𝑘=0
F 𝑘𝜏𝑘 ,

whereF is the filtration induced by the test configuration. See [Xia25b, Theorem 5.28]
for the details. In particular, in this case, our theory of partial Okounkov bodies
recovers the Okounkov bodies of the filtered linear series in the sense of [BC11].





Chapter 11
The theory of b-divisors

The mathematician’s patterns, like the painter’s or the poet’s must
be beautiful; the ideas, like the colors or the words must fit
together in a harmonious way. Beauty is the first test: There is no
permanent place in this world for ugly mathematics.
— Godfrey Harold Hardya

a Godfrey Harold Hardy (1877–1947) was a British mathematician
famous for his work in number theory and mathematical analysis.
Apart from his research, Hardy was a strong advocate for pure
mathematics and believed that mathematics should be pursued for
its own beauty, not just for practical use.

He remained lifelong unmarried and dedicated much of his
life entirely to mathematics, fitting into the common stereotype of
a mathematician.

In this chapter, we study the theory of nef b-divisors. In particular, we establish their
intersection theory. Our main theorem Theorem 11.1.3 says roughly speaking that the
closed positive (1, 1)-currents (modulo I-equivalence), which are analytic objects
by nature are equivalent to the purely cohomological notion of nef b-divisors.

In Section 11.3, we prove that the partial Okounkov bodies constructed in
Chapter 10 have natural interpretations in terms of the b-divisors.

In this section, we shall denote the current of integration associated with a prime
divisor 𝐷 as [𝐷], while the corresponding cohomology class will be denoted by {𝐷}.
This convention is simply to avoid any potential confusions.

11.1 The notions of b-divisors

The b-divisors defined in this section are sometimes known as b-divisor classes. We
always omit the word classes to save space.

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛.
Let us recall the following elementary result regarding how cohomology behaves

under blow-up.

Proposition 11.1.1 Let 𝜋 : 𝑌 → 𝑋 be a blow-up with connected smooth center of
codimension at least 2 with exceptional divisor 𝐸 . Then there is a natural identification

H1,1 (𝑌,R) = H1,1 (𝑋,R) ⊕ R{𝐸}. (11.1)

See [RYY19] for a much more general result.

293
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11.1.1 Nef b-divisors

Definition 11.1.1 A (Weil) b-divisor D over 𝑋 is an assignment (D𝜋)𝜋 : 𝑌→𝑋, where
𝜋 : 𝑌 → 𝑋 runs over all modifications of 𝑋 such that

(1) D𝜋 ∈ H1,1 (𝑌,R);
(2) The classes are compatible under push-forwards: If 𝜋′ : 𝑍 → 𝑋 and 𝜋 : 𝑌 → 𝑋

are both in modifications of 𝑋 and 𝜋′ dominates 𝜋 through 𝑔 : 𝑍 → 𝑌 , then
𝑔∗D𝜋′ = D𝜋 .

We also write D𝑌 = D𝜋 if there is no risk of confusion.
Given two Weil b-divisorsD andD′ over 𝑋 , we sayD ≤ D′ if for each modification

𝜋 of 𝑋 , we have D𝜋 ≤ D′𝜋 . Recall that by definition, this means the class D′𝜋 −D𝜋 is
pseudo-effective.

The classD𝑋 is called the root ofD. The set of Weil b-divisors over 𝑋 has the obvious
structure of real vector spaces.

Definition 11.1.2 The volume of a Weil b-divisor D over 𝑋 is

volD B lim
𝜋 : 𝑌→𝑋

volD𝑌 .

The right-hand side is a decreasing net due to Proposition 3.2.8, hence the limit
always exists.

We say D is big if volD > 0.

Lemma 11.1.1 Let (D𝑖)𝑖∈𝐼 be a net of b-divisors converging to D. Then

lim
𝑖∈𝐼

volD𝑖 ≤ volD. (11.2)

If the net is decreasing, then

lim
𝑖∈𝐼

volD𝑖 = volD.

Here we say (D𝑖)𝑖∈𝐼 converges to D if for any modification 𝜋 : 𝑌 → 𝑋 , we have
D𝑖,𝑌 → D𝑌 with respect to the Euclidean topology.

In general, we cannot expect equality in (11.2), as shown by [DF22, Example 3.3].

Proof Let 𝜋 : 𝑌 → 𝑋 be a modification. Then

volD𝑌 = lim
𝑖∈𝐼

volD𝑖,𝑌 ≥ lim
𝑖∈𝐼

volD𝑖 .

The inequality (11.2) follows. As for the decreasing case, it suffices to observe that
both sides of (11.2) can be written as

inf
𝑖

inf
𝜋 : 𝑌→𝑋

volD𝑖,𝑌 .
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Definition 11.1.3 A Cartier b-divisor D over 𝑋 is a Weil b-divisor D over 𝑋 such
that there exists a modification 𝜋 : 𝑌 → 𝑋 and a class 𝛼𝑌 ∈ H1,1 (𝑌,R) so that for
each 𝜋′ : 𝑍 → 𝑋 dominating 𝜋, the classD𝑍 is the pull-back of 𝛼𝑌 . Any such (𝜋, 𝛼𝑌 )
is called a realization of D.

By abuse of language, we also say (𝑌, 𝛼𝑌 ) is a realization of D. The realization is not
unique in general.

Definition 11.1.4 A Cartier b-divisor D over 𝑋 is nef if there exists a realization
(𝜋 : 𝑌 → 𝑋, 𝛼𝑌 ) of D such that 𝛼𝑌 is nef.

Definition 11.1.5 A Weil b-divisor D over 𝑋 is nef if there is a net of nef Cartier
b-divisors (D𝑖)𝑖 over 𝑋 converging to D.

In other words, for each modification 𝜋 : 𝑌 → 𝑋 , we have D𝑖,𝑌 → D𝑌 .
Note that thanks to Proposition 1.7.1, each D𝑌 is necessarily modified nef, but it is

not nef in general. The notion of modified nef classes is defined in Definition 1.7.9.
A priori, for a Cartier b-divisor, nefness could mean two different things, either

defined by Definition 11.1.4 or by Definition 11.1.5. We will show in Corollary 11.1.5
that they are actually equivalent. Before that, by a nef Cartier b-divisor, we always
mean in the sense of Definition 11.1.4.

Our definition Definition 11.1.5 amounts defining the set of Weil b-divisors as
the closure of the set of Cartier b-divisors in lim←−−𝜋 H1,1 (𝑌,R) with respect to the
projective limit topology. In particular, the limit of a converging net of nef b-divisors
is still nef.

11.1.2 The b-divisors of currents

Let 𝑇 be a closed positive (1, 1)-current on 𝑋 .
Given any modification 𝜋 : 𝑌 → 𝑋 , we define

D(𝑇)𝑌 B {Reg 𝜋∗𝑇} ∈ H1,1 (𝑌,R). (11.3)

We observe that if 𝑇 ′ is another closed positive (1, 1)-current on 𝑋 and 𝜆 ≥ 0,
then

D(𝑇 + 𝑇 ′) = D(𝑇) + D(𝑇 ′), D(𝜆𝑇) = 𝜆D(𝑇).

We shall use these identities implicitly in the sequel.
Note that when 𝑇 has analytic singularities, D(𝑇) is Cartier.

Theorem 11.1.1 Let 𝑇 be a closed positive (1, 1)-current on 𝑋 . Then D(𝑇) is nef.
Moreover,

vol𝑇 = volD(𝑇). (11.4)

Proof Let 𝜔 be a Kähler form on 𝑋 .
Step 1. Reduce to the case where 𝑇 is a Kähler current.
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Note that D(𝜔) is the Cartier b-divisor realized by (𝑋, {𝜔}). We could always
approximate D(𝑇) by D(𝑇 + 𝜖𝜔) = D(𝑇) + 𝜖D(𝜔). Moreover, we can find a constant
𝐶 > 0 so that for any 𝜖 > 0,

0 ≤ vol (D(𝑇) + 𝜖D(𝜔)) − volD(𝑇) ≤ 𝐶𝜖. (11.5)

Hence it suffices to prove our assertion with 𝑇 + 𝜖𝜔 in place of 𝑇 .
Step 2. We prove the assertion under the additional assumption that 𝑇 has analytic

singularities.
Let 𝜋 : 𝑌 → 𝑋 be a modification so that

𝜋∗𝑇 = [𝐷] + 𝑅,

where 𝐷 is an effective Q-divisor on 𝑌 and 𝑅 is a closed positive (1, 1)-current with
locally bounded potentials. See Theorem 1.6.1 for the existence of 𝜋. Then D(𝑇) is
the nef Cartier b-divisor realized by (𝜋, {𝑅}). Note that (11.4) is obvious in this case.

Step 3. We prove the assertion for a general Kähler current 𝑇 . Next, we take a
closed smooth real (1, 1)-form 𝜃 in the cohomology class of 𝑇 and write 𝑇 = 𝜃𝜑
for some 𝜑 ∈ PSH(𝑋, 𝜃). Let (𝜑 𝑗 ) 𝑗 be a quasi-equisingular approximation of 𝜑 in
PSH(𝑋, 𝜃). Then we claim that

D(𝜃 + ddc𝜑 𝑗 ) → D(𝜃 + ddc𝜑). (11.6)

By definition of this convergence, we need to establish the following: Suppose that
𝜋 : 𝑌 → 𝑋 is a modification, then{

Reg 𝜋∗𝜃 + ddc𝜋∗𝜑 𝑗
}
→ {Reg 𝜋∗𝜃 + ddc𝜋∗𝜑} .

This obviously follows from Theorem 6.2.4 if Sing(𝜋∗𝑇) has only finitely many
components.

We want to show that for any 𝜖 > 0, we can find 𝑗0 > 0 so that when 𝑗 ≥ 𝑗0,{
Reg 𝜋∗𝜃 + ddc𝜋∗𝜑 𝑗

}
≤ {Reg 𝜋∗𝜃 + ddc𝜋∗𝜑} + 𝜖𝜔. (11.7)

Write the divisorial part of 𝜋∗𝜃 + ddc𝜋∗𝜑 𝑗 and 𝜋∗𝜃 + ddc𝜋∗𝜑 as

∞∑︁
𝑖=1

𝑎
𝑗

𝑖
[𝐸𝑖],

∞∑︁
𝑖=1

𝑎𝑖 [𝐸𝑖] .

Then 𝑎 𝑗
𝑖
≤ 𝑎𝑖 .

We can find 𝑁 > 0 large enough, so that

∞∑︁
𝑖=1

𝑎𝑖 [𝐸𝑖] ≤
𝑁∑︁
𝑖=1

𝑎𝑖 [𝐸𝑖] +
𝜖

2
𝜔.

By Theorem 6.2.4, we can take 𝑗0 large enough so that for 𝑗 > 𝑗0,
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(𝑎𝑖 − 𝑎 𝑗𝑖 )𝐸𝑖 ≤
𝜖

2𝑁
𝜔, 𝑖 = 1, . . . , 𝑁.

Then (11.7) follows, and (11.6) is established.
As a consequence, D(𝑇) is nef and the volume can be computed using

Lemma 11.1.1:

volD(𝑇) = lim
𝑗→∞

volD
(
𝜃 + ddc𝜑 𝑗

)
= lim
𝑗→∞

vol
(
𝜃 + ddc𝜑 𝑗

)
= vol𝑇.

Hence, (11.4) follows. □

Conversely, we want to realize nef b-divisors as D(𝑇). We first prove a continuity
result.

Proposition 11.1.2 Let 𝜃 be a closed real smooth (1, 1)-form on 𝑋 and (𝜑𝑖)𝑖∈𝐼 be a
net in PSH(𝑋, 𝜃) and 𝜑 ∈ PSH(𝑋, 𝜃). Assume that 𝜑𝑖

𝑑𝑆−−→ 𝜑, then

D
(
𝜃𝜑𝑖

)
→ D

(
𝜃𝜑

)
. (11.8)

Proof Fix a modification 𝜋 : 𝑌 → 𝑋 . It suffices to establish the following:

D
(
𝜃𝜑𝑖

)
𝑌
→ D

(
𝜃𝜑

)
𝑌
. (11.9)

As a map from the pseudometric space PSH(𝑋, 𝜃) to the finite-dimensional Euclidean
space H1,1 (𝑌,R), the continuity of D(•)𝑌 can be tested on sequences. So without
loss of generality, we may assume that (𝜑𝑖)𝑖 is a sequence and 𝐼 = Z>0.

Since 𝜋∗𝜑𝑖
𝑑𝑆−−→ 𝜋∗𝜑, when proving (11.9), we may assume without loss of

generality that 𝜋 is the identity map on 𝑋 . Therefore, we are reduced to the following
assertion: {

Reg 𝜃𝜑𝑖
}
→

{
Reg 𝜃𝜑

}
. (11.10)

After adding a Kähler form to 𝜃, we may also assume that 𝜃𝜑 is a Kähler current. In
proving (11.10), we may freely replace {𝜑𝑖}𝑖 by a subsequence. In particular, with
the help of Proposition 6.2.3, we may further assume that (𝜑𝑖)𝑖 is either increasing or
decreasing.

The decreasing case can be proved verbatim from the proof of (11.7), and the
increasing case is very similar. □

Lemma 11.1.2 Let 𝜋 : 𝑋 → 𝑍 be a proper bimeromorphic morphism from 𝑋 to a
Kähler manifold 𝑍 . Consider non-divisorial closed positive (1, 1) currents 𝑇, 𝑆 on 𝑋
in the same cohomology class. Assume that 𝑇 ⪯I 𝑆, then 𝜋∗𝑇 ⪯I 𝜋∗𝑆.

Proof We may assume that 𝜋 is a modification thanks to Hironaka’s Chow lemma
Theorem B.1.2 and Lemma 6.1.4.

By Lemma 7.3.2,

𝜋∗𝜋∗𝑇 = 𝑇 +
𝑁∑︁
𝑖=1

𝑐𝑖 [𝐸𝑖],



298 CHAPTER 11. THE THEORY OF B-DIVISORS

where 𝑐𝑖 > 0 and the 𝐸𝑖’s are 𝜋-exceptional divisors. It follows that

𝑇 +
𝑁∑︁
𝑖=1

𝑐𝑖 [𝐸𝑖] ⪯I 𝑆 +
𝑁∑︁
𝑖=1

𝑐𝑖 [𝐸𝑖] .

Replacing 𝑇 and 𝑆 by 𝑇 + ∑𝑁
𝑖=1 𝑐𝑖 [𝐸𝑖] and 𝑆 + ∑𝑁

𝑖=1 𝑐𝑖 [𝐸𝑖] respectively, we may
assume that 𝑇 = 𝜋∗𝜋∗𝑇 . In particular, 𝑆 and 𝜋∗𝜋∗𝑆 lie in the same cohomology class,
and hence 𝑆 = 𝜋∗𝜋∗𝑆. Our assertion then follows from Lemma 6.1.4. □

Theorem 11.1.2 Each big and nef b-divisor D over 𝑋 can be realized as D(𝑇) for
some 𝑇 ∈ D𝑋. Furthermore, we may always assume that 𝑇 is I-good.

Note that 𝑇 is not unique. The current 𝑇 is necessarily non-divisorial.

Proof Fix a big and nef b-divisor D over 𝑋 .
For each 𝜋 : 𝑌 → 𝑋 , we take a current with minimal singularities 𝑇𝑌 in D𝑌 . We

claim that D(𝜋∗𝑇𝑌 ) coincides with D up to the level of 𝑌 : For any modification
𝜋′ : 𝑍 → 𝑋 dominated by 𝜋 through a morphism 𝑔 : 𝑌 → 𝑍 , we have

D𝑍 = D(𝜋∗𝑇𝑌 )𝑍 .

The notations are summarized in the following commutative diagram:

𝑌 𝑍

𝑋.

𝑔

𝜋 𝜋′
(11.11)

After unfolding the definitions, this means

Reg(𝜋′∗𝜋∗𝑇𝑌 ) ∈ D𝑍 .

Note that
Reg(𝜋′∗𝜋∗𝑇𝑌 ) = Reg(𝜋′∗𝜋′∗𝑔∗𝑇𝑌 ).

Due to Proposition 1.7.1 and Proposition 3.2.8, we know that D𝑌 is modified nef and
big. In particular, 𝑇𝑌 is non-divisorial, hence so is 𝑔∗𝑇𝑌 by Lemma 1.7.2. It follows
from Lemma 7.3.2 that

Reg(𝜋′∗𝜋′∗𝑔∗𝑇𝑌 ) = Reg(𝑔∗𝑇𝑌 ) = 𝑔∗𝑇𝑌 ∈ D𝑍 .

Note that
vol𝑇𝑌 ≥ volD > 0. (11.12)

Next we claim that the 𝑃-singularity types of the net (𝜋∗𝑇𝑌 )𝑌 is decreasing.
To see this, let us fix a diagram as (11.11). We need to show that

𝜋∗𝑇𝑌 ⪯𝑃 𝜋′∗𝑇𝑍 .
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Since 𝑇𝑍 has minimal singularities, it is clear that 𝑔∗𝑇𝑌 ⪯I 𝑇𝑍 . In particular,
Lemma 11.1.2 guarantees that 𝜋∗𝑇𝑌 ⪯I 𝜋′∗𝑇𝑍 . But thanks to Corollary 7.3.3, both
𝜋∗𝑇𝑌 and 𝜋′∗𝑇𝑍 are I-good, so there is no difference between the 𝑃-partial order and
the I-partial order in this case. Our assertion follows.

Next observe that the net (𝜋∗𝑇𝑌 )𝑌 has a 𝑑𝑆-limit as a consequence of (11.12) and
Corollary 6.2.6. Take a closed positive (1, 1)-current 𝑇 ∈ D𝑋 such that

𝜋∗𝑇𝑌
𝑑𝑆−−→ 𝑇.

It follows from Proposition 11.1.2 that

D(𝜋∗𝑇𝑌 ) → D(𝑇).

Therefore, we conclude that
D(𝑇) = D.

Thanks to Theorem 11.1.1, vol𝑇 > 0. Write 𝑇 = 𝜃 + ddc𝜑 for some 𝜑 ∈ PSH(𝑋, 𝜃),
then

𝑇 ′ B 𝜃 + ddc𝑃𝜃 [𝜑]I
is I-good, non-divisorial and D(𝑇 ′) = D(𝑇). □

Corollary 11.1.1 Let D be a b-divisor over 𝑋 . Then the following are equivalent:

(1) D is nef;
(2) for each modification 𝜋 : 𝑌 → 𝑋 , the class D𝑌 is modified nef.

Proof (1) =⇒ (2). Suppose that (1) holds. Fix a modification 𝜋 : 𝑌 → 𝑋 . Then we
need to show that D𝑌 is modified nef. Since modified nefness is a closed condition,
after approximating D by nef Cartier b-divisors, we may assume that D itself is a nef
Cartier b-divisor. We can then find a modification 𝜋′ : 𝑍 → 𝑋 dominating 𝜋 so that
D is realized by a nef class 𝛼 on 𝑍 . Then D𝑌 is nothing but the pushforward of 𝛼,
and hence modified nef thanks to Proposition 1.7.1.

(2) =⇒ (1). Suppose that (2) holds. We need to show that D is nef. Fix a Kähler
form 𝜔 on 𝑋 . It suffices to show that D+ 𝜖D(𝜔) is nef for each 𝜖 > 0. After replacing
D by the latter, we may further assume thatD𝑌 is big for each modification 𝜋 : 𝑌 → 𝑋 ,
and volD𝑌 has a uniform positive lower bound. In this case, the argument of (11.1.2)
shows that D = D(𝑇) for some closed positive (1, 1)-current in D𝑋. Therefore, D is
nef, thanks to Theorem 11.1.1. □

Let 𝛼 be a modified nef class on 𝑋 . We write G(𝛼) for the set of closed positive
(1, 1)-currents 𝑇 on 𝑋 with 𝑇 = Reg𝑇 ∈ 𝛼 and vol𝑇 > 0.

Theorem 11.1.3 There is a natural bĳection from G(𝛼)/∼I to the set of big and nef
b-divisors D over 𝑋 with D𝑋 = 𝛼.

Proof Given 𝑇 ∈ G(𝛼), we associate the b-divisor D(𝑇). It is big and nef due to
Theorem 11.1.1. This map clearly descends to G(𝛼)/∼I .
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This map is surjective by Theorem 11.1.2. Now we show that it is injective. Let
𝑇,𝑇 ′ ∈ G(𝛼). Assume that D(𝑇) = D(𝑇 ′), we want to show that 𝑇 ∼I 𝑇 ′.

Let 𝐸 be a prime divisor over 𝑋 , it suffices to show that

𝜈(𝑇, 𝐸) = 𝜈(𝑇 ′, 𝐸). (11.13)

We may assume that 𝐸 is not a prime divisor on 𝑋 , as otherwise both sides vanish.
Choose a sequence of blow-ups with smooth connected centers

𝑌 B 𝑋𝑘 → 𝑋𝑘−1 → · · · → 𝑋0 B 𝑋

so that 𝐸 is a prime divisor on 𝑌 , exceptional with respect to 𝑋𝑘 → 𝑋𝑘−1. Denote the
composition by 𝜋 : 𝑌 → 𝑋 . Thanks to Proposition 11.1.1,

H1,1 (𝑋𝑘 ,R) = H1,1 (𝑋𝑘−1,R) ⊕ R{𝐸𝑘},

where 𝐸𝑘 = 𝐸 is the exceptional divisor of 𝑋𝑘 → 𝑋𝑘−1.
By induction,

H1,1 (𝑌,R) = H1,1 (𝑋,R) ⊕
𝑘⊕
𝑖=1
R{𝐸𝑖},

where 𝐸𝑖 is the exceptional divisor of 𝑋𝑖 → 𝑋𝑖−1. Now by Lemma 7.3.2,

Reg 𝜋∗𝑇 = 𝜋∗𝑇 −
𝑘∑︁
𝑖=1

𝜈(𝑇, 𝐸𝑖) [𝐸𝑖] . (11.14)

In particular, the cohomology class of Reg 𝜋∗𝑇 determines 𝜈(𝑇, 𝐸). Hence, (11.13)
follows. □

Corollary 11.1.2 The set of nef b-divisors over 𝑋 with root 𝛼 can be naturally
identified with

lim←−−
𝜔

(G(𝛼 + 𝜔)/∼I) ,

where 𝜔 runs over the directed set of Kähler forms on 𝑋 (with respect to the partial
order of reverse domination), and given two Kähler forms 𝜔 ≤ 𝜔′ the transition map

G(𝛼 + 𝜔)/∼I→ G(𝛼 + 𝜔′)/∼I

is induced by the map G(𝛼 + 𝜔) → G(𝛼 + 𝜔′) sending 𝑇 to 𝑇 + 𝜔′ − 𝜔.

It is tempting to extend these results to more general currents, not necessarily
non-divisorial ones. For this purpose, we introduce the following definition:

Definition 11.1.6 An augmented nef b-divisor over 𝑋 is a pair (D, 𝐷), where

(1) D is a nef b-divisor over 𝑋;
(2) 𝐷 is a formal sum
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𝐷 =
∑︁
𝐸

𝑐𝐸𝐸, 𝑐𝐸 ∈ R≥0,

where 𝐸 runs over the set of prime divisors on 𝑋 ,

such that the following condition is satisfied:∑︁
𝐸

𝑐𝐸{𝐸}

is convergent as a sum in H1,1 (𝑋,R).
The cohomology class of (D, 𝐷) is defined as

D𝑋 +
∑︁
𝐸

𝑐𝐸{𝐸} ∈ H1,1 (𝑋,R).

The volume of (D, 𝐷) is defined as

vol(D, 𝐷) = volD.

Recall that we definedZ+ (𝑋, 𝛼) as the set of closed positive (1, 1)-currents 𝑇 ∈ 𝛼
in Definition 1.7.3. We introduce a further notation here:

Z+ (𝑋, 𝛼)>0 B {𝑇 ∈ Z+ (𝑋, 𝛼) : vol𝑇 > 0} .

Corollary 11.1.3 There is a canonical bĳection between the following sets:

(1) The setZ+ (𝑋, 𝛼)>0/∼I;
(2) the set of augmented nef b-divisors over 𝑋 with positive volume with cohomology

class 𝛼.

More precisely, given a current 𝑇 ∈ Z+ (𝑋, 𝛼)>0, we associate (D, 𝐷) as follows:

D = D(𝑇), 𝐷 =
∑︁
𝐸

𝜈(𝑇, 𝐸)𝐸.

Proof This is a direct consequence of Theorem 11.1.3 and Siu’s decomposition
Lemma 1.7.1. □

In fact, Corollary 11.1.3 can also be reformulated in an elementary manner, without
referring to b-divisors at all. Suppose that we are given a big cohomology class 𝛼
on 𝑋 and a non-negative real number 𝑐𝐸 for each prime divisor 𝐸 over 𝑋 . A natural
question is: When is there a closed positive (1, 1)-current 𝑇 ∈ 𝛼 with positive volume
such that 𝜈(𝑇, 𝐸) = 𝑐𝐸 for every 𝐸? Then Corollary 11.1.3 says that 𝑇 exists if and
only if the following two conditions hold:

(1)
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lim
𝜋 : 𝑌→𝑋

vol

(
𝜋∗𝛼 −

∑︁
𝐸⊆𝑌

𝑐𝐸{𝐸}
)
> 01,

where 𝜋 runs over all modifications of 𝑋;
(2) for each modification 𝜋 : 𝑌 → 𝑋 , the class 𝜋∗𝛼 −∑

𝐸⊆𝑌 𝑐𝐸{𝐸} is modified nef.

Similarly, we have the following generalization of Corollary 11.1.2.

Corollary 11.1.4 There is a canonical bĳection between the following two sets:

(1) The set of
lim←−−
𝜔

(Z+ (𝑋, 𝛼 + 𝜔)>0/∼I) ,

where 𝜔 runs over the directed set of Kähler forms on 𝑋;
(2) the set of augmented nef b-divisors over 𝑋 with cohomology class 𝛼.

Corollary 11.1.5 Let D be a Cartier b-divisor over 𝑋 . Then D is nef in the sense of
Definition 11.1.4 if and only if it is nef in the sense of Definition 11.1.5.

Proof We only handle the non-trivial implication. Assume thatD is nef in the sense of
Definition 11.1.5. We want to show that D is nef in the sense of Definition 11.1.4. We
may clearly assume that D is big. Take a non-divisorial closed positive (1, 1)-current
𝑇 on 𝑋 such that D = D(𝑇).

Without loss of generality, we may also assume that D is realized by (𝑋, 𝛼)
for some cohomology class 𝛼 ∈ H1,1 (𝑋,R). Now D = D(𝑇) means that for each
modification 𝜋 : 𝑌 → 𝑋 , the current 𝜋∗𝑇 is non-divisorial. In particular, 𝑇 has
vanishing generic Lelong number along each prime divisor over 𝑋 , see (11.14). That
means, 𝑇 has vanishing Lelong number everywhere. It follows that 𝛼 = {𝑇} is nef.□

Corollary 11.1.6 Let 𝑇 and 𝑇 ′ be non-divisorial closed positive (1, 1)-currents on
𝑋 . Suppose that {𝑇} = {𝑇 ′}, then the following are equivalent:

(1) D(𝑇) ≤ D(𝑇 ′);
(2) 𝑇 ⪯I 𝑇 ′.

Proof This follows from (11.14). □

Corollary 11.1.7 LetD be a nef b-divisor over 𝑋 . Then there is a decreasing sequence
of nef and big Cartier b-divisors D𝑖 over 𝑋 with limit D.

Proof Take a Kähler form 𝜔 on 𝑋 . By Theorem 11.1.2, for each 𝑖 > 0, we can find a
non-divisorial Kähler current 𝑇𝑖 ∈ D𝑋 + 𝑖−1{𝜔} such that

D(𝑇𝑖) = D + 𝑖−1D(𝜔).

We observe that
𝑇𝑖+1 ∼I 𝑇𝑖 .

This follows from applying Corollary 11.1.6 to 𝑇𝑖 and 𝑇𝑖+1 + (𝑖−1 − (𝑖 + 1)−1)𝜔. Let
(𝑇 𝑗
𝑖
) 𝑗 be quasi-equisingular approximations of 𝑇𝑖 such that

1 In particular, implicitly, the sum
∑
𝐸⊆𝑌 𝑐𝐸 {𝐸 } converges in H1,1 (𝑌, R) .
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(1) 𝑇 𝑗
𝑖

is a Kähler current in D𝑋 + 𝑖−1{𝜔} for 𝑗 ≥ 𝑗0 (𝑖), and
(2) the singularity types of (𝑇 𝑗

𝑖
)𝑖 is constant.

Note that (2) is possible by the using the Bergman kernel construction of the
quasi-equisingular approximations.

It suffices to takeD𝑖 = D(𝑇 𝑗𝑖𝑖 ), where 𝑗𝑖 is a strictly increasing sequence of positive
integers with 𝑗𝑖 ≥ 𝑗0 (𝑖). □

11.2 Properties of the intersection product

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛.

Definition 11.2.1 Let D1, . . . ,D𝑛 be big and nef b-divisors over 𝑋 . Then we define
their intersection as

(D1, . . . ,D𝑛) B vol(𝑇1, . . . , 𝑇𝑛),

where 𝑇1, . . . , 𝑇𝑛 are closed positive (1, 1)-currents in D1,𝑋, . . . ,D𝑛,𝑋 respectively
such that D(𝑇𝑖) = D𝑖 .

In general, if the D𝑖’s are only nef, we define

(D1, . . . ,D𝑛) B lim
𝜖→0+

(D1 + 𝜖D(𝜔), . . . ,D𝑛 + 𝜖D(𝜔)) ,

where 𝜔 is a Kähler form on 𝑋 .

The definition makes sense thanks to Theorem 11.1.2. It does not depend on the
choices of 𝑇1, . . . , 𝑇𝑛 since they are uniquely defined up to I-equivalence, as proved
in Theorem 11.1.3.

When D1, . . . ,D𝑛 are big and nef, the two definitions coincide as follows from
Lemma 11.2.1 below.

We first note that even when the 𝑇𝑖’s have vanishing volumes, the two intersection
products still agree.

Proposition 11.2.1 Let 𝑇1, . . . , 𝑇𝑛 be a closed positive (1, 1)-currents on 𝑋 . Then

(D(𝑇1), . . . ,D(𝑇𝑛)) = vol(𝑇1, . . . , 𝑇𝑛).

This is a trivial consequence of the definitions.

Proposition 11.2.2

(1) The product in Definition 11.2.1 is symmetric in its 𝑛-variable.
(2) Let D1, . . . ,D𝑛,D

′
1 be nef b-divisors over 𝑋 . Then(

D1 + D′1, . . . ,D𝑛
)
= (D1, . . . ,D𝑛) +

(
D′1, . . . ,D𝑛

)
.

(3) Let D1, . . . ,D𝑛 be nef b-divisors over 𝑋 and 𝜆 ≥ 0. Then

(𝜆D1, . . . ,D𝑛) = 𝜆 (D1, . . . ,D𝑛) .
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Proof This follows immediately from Proposition 7.3.1. □

Proposition 11.2.3 The product in Definition 11.2.1 is monotonically increasing in
each variable.

Proof Let D1, . . . ,D𝑛 and D′ be nef b-divisors over 𝑋 so that D1 ≤ D′. We want to
show that

(D1, . . . ,D𝑛) ≤ (D′,D2, . . . ,D𝑛) .

We can easily reduce to the case where D1, . . . ,D𝑛 and D′ are all big. In this case,
take I-good non-divisorial closed positive (1, 1)-currents 𝑇1, . . . , 𝑇𝑛 and 𝑇 ′ so that
D(𝑇𝑖) = D𝑖 for all 𝑖 = 1, . . . , 𝑛 and D(𝑇 ′) = D′. Furthermore, we may assume that
the 𝑇𝑖’s and 𝑇 ′ are Kähler currents by the perturbation argument.

Let (𝑇 𝑗
𝑖
) 𝑗 be a quasi-equisingular approximation of 𝑇𝑖 for 𝑖 = 2, . . . , 𝑛. It follows

from Theorem 6.2.1 that∫
𝑋

𝑇1 ∧ · · · ∧ 𝑇𝑛 = lim
𝑗→∞

∫
𝑋

𝑇1 ∧ 𝑇 𝑗2 ∧ · · · ∧ 𝑇
𝑗
𝑛 .

It suffices to show that for all 𝑗 ≥ 1,∫
𝑋

𝑇1 ∧ 𝑇 𝑗2 ∧ · · · ∧ 𝑇
𝑗
𝑛 ≤

∫
𝑋

𝑇 ′ ∧ 𝑇 𝑗2 ∧ · · · ∧ 𝑇
𝑗
𝑛 .

Therefore, we have reduced to the case where 𝑇2, . . . , 𝑇𝑛 have analytic singularities.
After a resolution, we may assume that they have log singularities along Q-divisors.
By Proposition 7.3.1(5), we can further reduce to the case where 𝑇2, . . . , 𝑇𝑛 have
bounded local potentials. Perturbing 𝑇2, . . . , 𝑇𝑛 by a Kähler form, we may further
assume that {𝑇2}, . . . , {𝑇𝑛} are Kähler classes. By Proposition 7.3.1(4), we finally
reduce to the case where 𝑇2, . . . , 𝑇𝑛 are Kähler forms. In this case, our assertion is
obvious. □

Lemma 11.2.1 Let 𝜔 be a Kähler form on 𝑋 . Fix a compact set 𝐾 ⊆ H1,1 (𝑋,R). Let
D1, . . . ,D𝑛 be nef b-divisors over 𝑋 such that D𝑖,𝑋 ∈ 𝐾 for each 𝑖 = 1, . . . , 𝑛. Then
there is a constant 𝐶 depending only on 𝑋, 𝐾, {𝜔} such that for any 𝜖 ∈ [0, 1], we
have

0 ≤ (D1 + 𝜖D(𝜔), . . . ,D𝑛 + 𝜖D(𝜔)) − (D1, . . . ,D𝑛) ≤ 𝐶𝜖.

Proof This is a simple consequence of the linearity Proposition 11.2.2. □

We first make a consistency check.

Proposition 11.2.4 Suppose that D is a nef b-divisor over 𝑋 , then

(D, . . . ,D) = volD.

Proof Using Lemma 11.2.1 and (11.5), we may easily reduce to the case where D is
nef and big. In this case, take a non-divisorial closed positive (1, 1)-current 𝑇 in D𝑋
such that D(𝑇) = D. Then we need to show that
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volD = vol𝑇,

which is proved in Theorem 11.1.1. □

Proposition 11.2.5 Let D1, . . . ,D𝑛 be nef b-divisors over 𝑋 . Then

(D1, . . . ,D𝑛) ≥
𝑛∏
𝑖=1
(volD𝑖)1/𝑛 .

Proof We may assume that volD𝑖 > 0 for each 𝑖 = 1, . . . , 𝑛 since there is nothing to
prove otherwise. In this case, our assertion follows from Proposition 7.3.2. □

Proposition 11.2.6 The product in Definition 11.2.1 is upper semicontinuous in the
following sense. Suppose that (D 𝑗

𝑖
) 𝑗∈𝐽 are nets of nef b-divisors over 𝑋 with limits

D𝑖 for each 𝑖 = 1, . . . , 𝑛. Then

lim
𝑗∈𝐽

(
D
𝑗

1, . . . ,D
𝑗
𝑛

)
≤ (D1, . . . ,D𝑛) .

Proof Step 1. We first assume that the D 𝑗
𝑖
’s and the D𝑖’s are all big.

Take I-good non-divisorial closed positive (1, 1)-currents 𝑇 𝑗
𝑖

and 𝑇𝑖 so that
D(𝑇 𝑗

𝑖
) = D

𝑗

𝑖
and D(𝑇𝑖) = D𝑖 . Note that by our assumption and the proof of

Theorem 11.1.3, for any prime divisor 𝐸 over 𝑋 , we have

lim
𝑗∈𝐽

𝜈(𝑇 𝑗
𝑖
, 𝐸) = 𝜈(𝑇𝑖 , 𝐸).

So our assertion follows from Theorem 7.3.2.
Step 2. Next we handle the general case.
Take a Kähler form 𝜔 on 𝑋 . Then by Lemma 11.2.1, for any 𝜖 ∈ (0, 1], we have

lim
𝑗∈𝐽

(
D
𝑗

1, . . . ,D
𝑗
𝑛

)
≤ lim
𝑗∈𝐽

(
D
𝑗

1 + 𝜖D(𝜔), . . . ,D
𝑗
𝑛 + 𝜖D(𝜔)

)
≤ (D1 + 𝜖D(𝜔), . . . ,D𝑛 + 𝜖D(𝜔))
≤ (D1, . . . ,D𝑛) + 𝐶𝜖.

Since 𝜖 is arbitrary, our assertion follows. □

Proposition 11.2.7 The product in Definition 11.2.1 is continuous along decreasing
nets in each variable. In other words, if (D 𝑗

𝑖
) 𝑗∈𝐽 (𝑖 = 1, . . . , 𝑛) are decreasing nets of

nef b-divisors over 𝑋 with limits D𝑖 . Then

lim
𝑗∈𝐽

(
D
𝑗

1, . . . ,D
𝑗
𝑛

)
= (D1, . . . ,D𝑛) .

Proof This is a straightforward consequence of Proposition 11.2.3 and Proposi-
tion 11.2.6. □
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Remark 11.2.1 The algebraic nef b-divisors are introduced by Dang–Favre [DF22],
as their intersection theory. It is a straightforward application of the results proved in
this section that our transcendental intersection theory coincides with theirs in the
algebraic setting.

11.3 Okounkov bodies of b-divisors

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛, let 𝑇 be a closed
positive (1, 1)-current on 𝑋 with vol𝑇 > 0.

Fix a smooth flag 𝑌• on 𝑋 .

Theorem 11.3.1 The partial Okounkov body Δ𝑌• (𝑇) admits the following expression:

Δ𝑌• (𝑇) = 𝜈𝑌• (𝑇) + lim
𝜋 : 𝑍→𝑋

Δ𝑌• ({Reg 𝜋∗𝑇}) , (11.15)

where 𝜋 runs over the directed set of projective birational morphisms to 𝑋 with 𝑍
normal.

Here the limit is a Hausdorff limit. Recall that 𝜈𝑌• (𝑇) is defined in Definition 10.2.3.
The notation Δ𝑌• ({Reg 𝜋∗𝑇}) requires an explanation: Take a modification 𝜋′ : 𝑍 ′ →
𝑋 dominating 𝜋 : 𝑍 → 𝑋 through a map ℎ : 𝑍 ′ → 𝑍 , so that 𝑌• admits a lifting
(𝑊•, 𝑔) to 𝑍 ′, such that 𝑍 ′ exists as we proved in Theorem 10.2.1, then we define

Δ𝑌• ({Reg 𝜋∗𝑇}) B Δ𝑊• (ℎ∗{Reg 𝜋∗𝑇}) 𝑔−1.

It follows from Theorem 10.4.1(3) that this definition is independent of the choice of
𝜋′. Similarly, given a current 𝑆 on 𝑍 , we define

𝜈𝑌• (𝑆) B 𝜈𝑊• (ℎ∗𝑆)𝑔−1.

This theorem suggests that we define

Δ𝑌• (D(𝑇)) B lim
𝜋 : 𝑍→𝑋

Δ𝑌• ({Reg 𝜋∗𝑇}) . (11.16)

Then one could rewrite (11.15) as

Δ𝑌• (𝑇) = Δ𝑌• (D(𝑇)) + 𝜈𝑌• (𝑇),

which formally resembles and extends (10.21).

Remark 11.3.1 One should be able to prove the existence of the limits like (11.16) over
other base fields, at least after assuming the existence of resolution of singularities. If
so, one would get an interesting extension of the theory of partial Okounkov bodies.

Lemma 11.3.1 Let 𝑇 be a closed positive (1, 1)-current on 𝑋 . Then we have
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lim
𝜋 : 𝑍→𝑋

𝜈𝑌• (Sing𝑍 (𝜋∗𝑇)) = 𝜈𝑌• (𝑇), (11.17)

where 𝜋 runs over the directed set of projective bimeromorphic morphisms to 𝑋 with
𝑍 normal.

Here Sing𝑍 (𝜋∗𝑇) denotes the divisorial part of 𝜋∗𝑇 in Siu’s decomposition, namely

Sing𝑍 (𝜋∗𝑇) = 𝜋∗𝑇 − Reg(𝜋∗𝑇).

Proof Let us write 𝜈 = 𝜈𝑌• for simplicity. For the purpose of the proof, let us write
D𝑋 for the directed set of projective bimeromorphic morphisms 𝜋 : 𝑍 → 𝑋 with 𝑍
normal.

Given 𝜋 : 𝑍 → 𝑋 , we let𝑊1 denote the strict transform of 𝑌1 in 𝑍 . The restriction
𝜋1 : 𝑊1 → 𝑌1 is necessarily bimeromorphic due to Zariski’s main theorem Theo-
rem B.1.1. Let𝑊1 be the normalization of𝑊1. Let 𝜋1 denote the normalization of 𝜋1
so that we have a commutative diagram

𝑊1 𝑊1 𝑍

𝑌1 𝑌1 𝑋.

𝜋̃1 𝜋1 𝜋

We will argue by induction on 𝑛 ≥ 0. The case 𝑛 = 0 is trivial. Assume that 𝑛 > 0
and the case 𝑛 − 1 is known.

We may clearly assume that 𝜈(𝑇,𝑌1) = 0. By definition, we have

𝜈(𝑇) =
(
0, 𝜇(Tr𝑌1 (𝑇))

)
,

where 𝜇 denotes the valuation induced by the flag 𝑌1 ⊇ 𝑌2 ⊇ · · · ⊇ 𝑌𝑛.
Observe that bimeromorphic morphisms of the form 𝜋1 : 𝑊1 → 𝑌1 are cofinal in

the directed set D𝑌1 . This is obvious since the modifications given by compositions
of blow-ups with smooth centers on 𝑌1 are cofinal, and it suffices to blow-up 𝑋 with
the same centers.2

Therefore, by the inductive hypothesis applied to Tr𝑌1 𝑇 , we find

𝜇
(
Tr𝑌1 (𝑇)

)
= lim
𝜋 : 𝑍→𝑋

𝜇

(
Sing

𝑊1
(𝜋1
∗ Tr𝑌1 𝑇)

)
.

It suffices to argue that for a fixed 𝜋 : 𝑍 → 𝑋 ,

𝜈(Sing𝑍 (𝜋∗𝑇)) =
(
0, 𝜇

(
Sing

𝑊1

(
𝜋1
∗ Tr𝑌1 (𝑇)

) ))
. (11.18)

From Lemma 8.2.1, we know that

2 It is in this inductive step that we are forced to introduce singularities, as 𝑊1 is not smooth in
general.



308 CHAPTER 11. THE THEORY OF B-DIVISORS

𝜋1
∗ Tr𝑌1 (𝑇) ∼𝑃 Tr𝑊1 (𝜋∗𝑇).

So we only need to prove

𝜈(Sing𝑍 (𝜋∗𝑇)) =
(
0, 𝜇(Sing

𝑊1
(Tr𝑊1 (𝜋∗𝑇))

)
,

This is reduced to the following statement:

Tr𝑊1 Sing𝑍 (𝜋∗𝑇) ∼𝑃 Sing
𝑊1
(Tr𝑊1 (𝜋∗𝑇)). (11.19)

In order to prove this, we may add a Kähler form to 𝑇 and assume that 𝑇 is a Kähler
current. Take a quasi-equisingular approximation (𝑇𝑗 ) 𝑗 of 𝑇 . Then (𝜋∗𝑇𝑗 ) 𝑗 is a
quasi-equisingular approximation of 𝜋∗𝑇 . Thanks to Proposition 8.2.2, we have

Tr𝑊1 (𝜋∗𝑇𝑗 )
𝑑𝑆−−→ Tr𝑊1 (𝜋∗𝑇)

Using the same argument as (11.6), we finally reduce to the case where 𝑇 has analytic
singularities.

In this case, arguing as before, we may assume replace 𝜋 by a modification
dominating it so that 𝜋∗𝑇 ∼𝑃 [𝐷] for an effective Q-divisor 𝐷 on 𝑍 , in which case
(11.19) is clear. □

Proof (The proof of Theorem 11.3.1) We shall write 𝜈 = 𝜈𝑌• .
We argue by induction on 𝑛. The case 𝑛 = 0 is of course trivial. Let us assume that

𝑛 > 0 and the result is known in dimension 𝑛 − 1.
We may replace 𝑇 by 𝑇 − 𝜈(𝑇,𝑌1) [𝑌1] and 𝛼 by 𝛼 − 𝜈(𝑇,𝑌1) [𝑌1], so that we may

reduce to the case where 𝜈(𝑇,𝑌1) = 0.
For any projective bimeromorphic morphism 𝜋 : 𝑍 → 𝑋 with 𝑍 normal, it follows

from Theorem 10.4.4 (which also holds for a normal variety, as can be seen after
passing to a resolution) that we have

Δ𝑌• ({Reg 𝜋∗𝑇}) = {𝜈(𝑆) : 𝑆 ∈ {Reg 𝜋∗𝑇}}.

Here 𝑆 is assumed closed and positive.
Therefore,

Δ𝑌• ({Reg 𝜋∗𝑇}) + 𝜈(Sing𝑍 (𝜋∗𝑇)) ⊆
{
𝜈(𝑆) : 𝑆 ∈ {𝑇}, 𝜋∗𝑆 ≥ Sing𝑍 (𝜋∗𝑇)

}
.

We observe that the right-hand side is decreasing with respect to 𝜋, which together
with Lemma 11.3.1 implies that the net of convex bodies Δ𝑌• ({Reg 𝜋∗𝑇}) for various
𝑍 is uniformly bounded. Suppose that Δ is the limit of a subnet. Then we have

Δ + 𝜈(𝑇) ⊆ {𝜈(𝑆) : 𝑆 ∈ {𝑇}, 𝑆 ⪯I 𝑇}.

As shown in Theorem 10.4.4, the right-hand side is exactly Δ𝑌• (𝑇). So

Δ + 𝜈(𝑇) ⊆ Δ𝑌• (𝑇).
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But observe that both sides have the same volume, as computed in Theorem 10.4.2
and Theorem 11.1.1. So equality holds.

It follows from the Blaschke selection theorem Theorem C.1.1 that the limit in
(11.15) exists and (11.15) holds. □





Part III
Applications



In this part, we explain a few applications of the theory developed in this book.
In Chapter 12, we develop the pluripotential theory on big line bundles on toric

varieties. This theory depends crucially on the theory of partial Okounkov bodies
developed in Chapter 10.

In Chapter 13, we develop the transcendental theory of non-Archimedean metrics
based on the theory of test curves developed in Chapter 9.

In Chapter 14, we prove the convergence of partial Bergman measures, which
relies crucially on the Riemann–Roch formula proved in Chapter 7.

The three chapters are independent of each other. Each chapter requires some
prerequisites in a specific domain. More specifically, Chapter 12 requires some
knowledge in toric geometry, the books [CLS11] or [Ful93] should be enough. As for
Chapter 13, some knowledge in Boucksom–Jonsson’s non-Archimedean pluripotential
theory is highly recommended, although not logically compulsory. The long article
[BJ22a] is the best reference so far. The final chapter Chapter 14 requires some
knowledge in the paper [BBWN11].



Chapter 12
Toric pluripotential theory on big line bundles

C’est l’harmonie des diverses parties, leur symétrie, leur heureux
balancement; c’est en un mot tout ce qui y met de l’ordre, tout ce
qui leur donne de l’unité, ce qui nous permet par conséquent d’y
voir clair et d’en comprendre l’ensemble en même temps que les
détails.
— Henri Poincaréa , L’avenir des mathématiques

a Henri Poincaré (1854–1912) was a French mathematician, physi-
cist, and philosopher of science. He is considered one of the
greatest mathematicians of all time and a pioneer of several
modern mathematical fields. He also played a key role in the devel-
opment of special relativity, and was one of the first to understand
the deep connection between mathematics and physics.

In this chapter, we develop the toric pluripotential theory on big line bundles. Our
development here is based on the theory of partial Okounkov bodies developed in
Chapter 10. We will deduce two non-trivial consequences from the general theory:
Corollary 12.2.2 and Theorem 12.2.2.

12.1 Toric setup

Let 𝑇 be a complex torus of dimension 𝑛 with character lattice 𝑀 and cocharacter
lattice 𝑁 . Some basic terminologies are recalled in Section 5.1. Recall that 𝑇𝑐 is the
compact torus contained in 𝑇 (C).

Consider a rational polyhedral fan Σ in 𝑁R corresponding to an 𝑛-dimensional
smooth projective toric variety 𝑋 .

Let
𝐷 =

∑︁
𝜌∈Σ (1)

𝑎𝜌𝐷𝜌

be a 𝑇-invariant big divisor on 𝑋 . Let 𝑃𝐷 ⊆ 𝑀R be the following polytope1

𝑃𝐷 =
{
𝑚 ∈ 𝑀R : ⟨𝑚, 𝑢𝜌⟩ ≥ −𝑎𝜌 ∀𝜌 ∈ Σ(1)

}
. (12.1)

Since we have assumed that 𝐷 is big, 𝑃𝐷 is 𝑛-dimensional.
Let 𝐿 = O𝑋 (𝐷). Note that replacing 𝐷 by a linearly equivalent divisor amounts

to replacing 𝐷 by an integral translation.

1 Note that 𝑃𝐷 is not necessarily a lattice polytope, see [CLS11, Example 10.5.4]. In fact, any
rational polytope with positive volume can be realized in this manner.

313
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Recall that for each 𝜌 ∈ Σ(1), 𝑢𝜌 denotes the ray generator of 𝜌. Let {𝑚𝜎}𝜎∈Σ
denote the Cartier data associated with 𝐷. In other words, for each 𝜎 ∈ Σ, 𝑚𝜎 ∈ 𝑀
satisfies that

⟨𝑚𝜎 , 𝑢𝜌⟩ = −𝑎𝜌, ∀𝜌 ∈ 𝜎(1).

The element 𝑚𝜎 ∈ 𝑀 is well-defined modulo

𝑀 (𝜎) B 𝜎⊥ ∩ 𝑀, (12.2)

where
𝜎⊥ B {𝑚 ∈ 𝑀R : ⟨𝑚, 𝑢⟩ = 0 ∀𝑢 ∈ 𝜎} .

Moreover, if 𝜏 is a face of 𝜎, then

𝑚𝜎 ≡ 𝑚𝜏 mod 𝑀 (𝜏). (12.3)

See [CLS11, Theorem 4.2.8]. In particular, for an 𝑛-dimensional 𝜎 ∈ Σ, the element
𝑚𝜎 is uniquely determined. We remind the readers that in general for a 𝜎 ∈ Σ(𝑛),
𝑚𝜎 ∉ 𝑃𝐷 . In fact, 𝑚𝜎 ∈ 𝑃𝐷 for all 𝜎 ∈ Σ(𝑛) if and only if 𝐷 is base-point free. See
[CLS11, Theorem 6.1.7].

Note that for any 𝑛-dimensional face 𝜎 in Σ and any 𝜌 ∈ 𝜎(1), we have

⟨𝑚 − 𝑚𝜎 , 𝑢𝜌⟩ ≥ 0, ∀𝑚 ∈ 𝑃, (12.4)

as a consequence of (12.4) and (12.1).
Recall that

𝐷 |𝑈𝜎 = div(𝜒−𝑚𝜎 ) |𝑈𝜎 (12.5)

for all 𝜎 ∈ Σ, where𝑈𝜎 is the affine subvariety of 𝑋 corresponding to 𝜎. See [CLS11,
Proposition 4.1.2].

Next consider a 𝑇-invariant irreducible subvariety 𝑌 ⊆ 𝑋 . Since 𝑋 is smooth, so
is 𝑌 . Let 𝜎 be the cone in Σ corresponding to 𝑌 . We observe that 𝜎 corresponds to a
face 𝑄𝜎 of 𝑃𝐷:

𝑄𝜎 =
{
𝑚 ∈ 𝑃𝐷 : ⟨𝑚, 𝑢𝜌⟩ = −𝑎𝜌 ∀𝜌 ∈ 𝜎(1)

}
. (12.6)

The dimension of 𝜎 is not necessarily equal to the codimension of 𝑄 as we will see
in Example 12.1.2.

We have the following characterization of the base locus of 𝐷. This result is
definitely known, but I am unable to find a reference.
Proposition 12.1.1 The base locus Bs(𝐷) (with the reduced complex structure) of 𝐷
is a toric-invariant (possibly reducible) subvariety given by the union of 𝑉 (𝜏), where
𝜏 runs over elements in Σ satisfying the following condition:

𝑎𝜌 + ⟨𝑚, 𝑢𝜌⟩ > 0 for some 𝜌 ∈ 𝜏(1) (12.7)

for each 𝑚 ∈ 𝑀 ∩ 𝑃𝐷 .
Here 𝑉 (𝜏) denotes the toric subvariety of 𝑋 corresponding to 𝜏. In other words,
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𝑉 (𝜏) =
⋂

𝜌∈𝜏 (1)
𝐷𝜌 .

Proof Recall that
H0 (𝑋, 𝐿) �

⊕
𝑚∈𝑀∩𝑃𝐷

C𝜒𝑚.

See [CLS11, Proposition 4.3.3] for example. So we only need to understand the
common zeros of 𝐷 + div 𝜒𝑚 for all 𝑚 ∈ 𝑀 ∩ 𝑃𝐷 . But we know that

𝐷 + div 𝜒𝑚 =
∑︁
𝜌∈Σ (1)

(
𝑎𝜌 + ⟨𝑚, 𝑢𝜌⟩

)
𝐷𝜌 .

Our assertion follows. □

Corollary 12.1.1 The stable base locus (with the reduced complex structure) of 𝐷
is a toric-invariant (possibly reducible) subvariety given by the union of the 𝑉 (𝜏)’s,
where 𝜏 runs over elements in Σ satisfying (12.7) for each 𝑚 ∈ 𝑃𝐷 .

Geometrically, the condition means 𝑄𝜏 = ∅.

Proof It follows from Proposition 12.1.1 that the stable base locus of 𝐷 is given by
the union of 𝑉𝜏 , where 𝜏 runs over elements Σ satisfying (12.7) for all 𝑚 ∈ 𝑀Q ∩ 𝑃𝐷 .
That is,

𝑀Q ∩
{
𝑚 ∈ 𝑃𝐷 : 𝑎𝜌 + ⟨𝑚, 𝑢𝜌⟩ = 0 ∀𝜌 ∈ 𝜏(1)

}
= ∅.

Since the latter part is a rational polytope, this statement is equivalent to{
𝑚 ∈ 𝑃𝐷 : 𝑎𝜌 + ⟨𝑚, 𝑢𝜌⟩ = 0 ∀𝜌 ∈ 𝜏(1)

}
= ∅. (12.8)

Our first assertion follows. □

We will keep two examples in mind.

Example 12.1.1 In this case, Σ is the fan in Fig. 12.1 consisting of three 2-dimensional
cones 𝜎0, 𝜎1 and 𝜎2; three 1-dimensional cones 𝜎4, 𝜎5 and 𝜎6; one 0-dimensional
cone 𝜎0.

The fan Σ is just the fan of 𝑋 = P2. Under the orbit-cone correspondence, we have

𝐷𝜎1 ={[1 : 0 : 0]}, 𝐷𝜎2 = {[0 : 1 : 0]}, 𝐷𝜎3 = {[0 : 0 : 1]},
𝐷𝜎4 ={[0 : 𝑋1 : 𝑋2] : 𝑋1𝑋2 ≠ 0}, 𝐷𝜎5 = {[𝑋0 : 0 : 𝑋2] : 𝑋0𝑋2 ≠ 0},
𝐷𝜎6 ={[𝑋0 : 𝑋1 : 0] : 𝑋0𝑋1 ≠ 0}, 𝐷𝜎0 = P

2.

In particular, Σ(1) = {𝜎4, 𝜎5, 𝜎6}. We shall take

𝐷 = 𝐷𝜎4 .

In other words,
𝑎𝜎5 = 𝑎𝜎6 = 0, 𝑎𝜎4 = 1.
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Fig. 12.1 The fan of P2

Note that the ray generators are given by

𝑢𝜎4 = (−1,−1), 𝑢𝜎5 = (1, 0), 𝑢𝜎6 = (0, 1).

It follows that

𝑃𝐷 = {𝑚 = (𝑚1, 𝑚2) ∈ R2 : 𝑚1 + 𝑚2 ≤ 1, 𝑚1 ≥ 0, 𝑚2 ≥ 0}.

Therefore, 𝑃𝐷 is just the polytope in Fig. 12.2 . In this case, the Cartier data for

Fig. 12.2 The polytope 𝑃𝐷
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2-dimensional cones are given as follows:

𝑚𝜎1 = (0, 0), 𝑚𝜎2 = (1, 0), 𝑚𝜎3 = (0, 1);

while the remaining Cartier data are determined by (12.3).
In this case, 𝐿 = O𝑋 (𝐷) = OP2 (1). Hence the line bundle 𝐿 is ample.
We also observe that

𝑄𝜎1 ={(0, 0)}, 𝑄𝜎2 = {(1, 0)}, 𝑄𝜎3 = {(0, 1)},
𝑄𝜎4 ={(𝑚1, 𝑚2) : 𝑚1 ≥ 0, 𝑚2 ≥ 0, 𝑚1 + 𝑚2 = 1},
𝑄𝜎5 ={0} × [0, 1], 𝑄𝜎6 = [0, 1] × {0},
𝑄𝜎0 =𝑃𝐷 .

Next we give a non-ample example.
Example 12.1.2 Let Σ be the fan shown in Fig. 12.3. Comparing with our previous

Fig. 12.3 The fan of P2 blown-up at the origin

example Fig. 12.1, we have divided 𝜎1 from the middle, giving rise to two additional
2-dimensional cones 𝜎′1 and 𝜎′′1 , and one additional 1-dimensional cone 𝜎7.

The corresponding 𝑋 = Bl0P2 is just the blow-up of P2 at the origin 0 and hence
𝐿 = 𝜋∗OP2 (1). Let 𝜋 : 𝑋 → P2 denote the blow-up morphism. Let

𝐷 = 𝐷𝜎4 .

Then 𝐷 is the pull-back of the divisor 𝐷 in Example 12.1.1. Note that 𝐷 is not ample,
since it has degree 0 on the exceptional divisor.
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In this case, we have
Σ(1) = {𝜎4, 𝜎5, 𝜎6, 𝜎7},

and 𝐷𝜎7 is just the exceptional divisor.
The corresponding ray generators are

𝑢𝜎4 = (−1,−1), 𝑢𝜎5 = (1, 0), 𝑢𝜎6 = (0, 1), 𝑢𝜎7 = (1, 1),

while
𝑚𝜎′1 = 𝑚𝜎

′′
1
= (0, 0), 𝑚𝜎2 = (1, 0), 𝑚𝜎3 = (0, 1).

Therefore, 𝑃𝐷 is the same as in Fig. 12.2.
We also observe that

𝑄𝜎′1 ={(0, 0)}, 𝑄𝜎′′1 = {(0, 0)}, 𝑄𝜎7 = {(0, 0)}
𝑄𝜎2 ={(1, 0)}, 𝑄𝜎3 = {(0, 1)},
𝑄𝜎4 ={(𝑚1, 𝑚2) : 𝑚1 ≥ 0, 𝑚2 ≥ 0, 𝑚1 + 𝑚2 = 1},
𝑄𝜎5 ={0} × [0, 1], 𝑄𝜎6 = [0, 1] × {0},
𝑄𝜎0 =𝑃𝐷 .

12.2 Toric partial Okounkov bodies

We continue to use the notations in Section 12.1.
In order to study the toric-invariant singular plurisubharmonic metrics on 𝐿, we

need to fix a reference toric-invariant smooth Hermitian metric, so that the psh
metrics can be identified with quasi-psh functions. Unlike the ample case studied in
Chapter 5, in the case of big line bundles, there does not seem to be a natural choice
of a smooth Hermitian metric on 𝐿 similar to Guillemin’s metric.

We shall fix a 𝑇𝑐-invariant Hermitian metric ℎ on 𝐿 so that 𝜃 = 𝑐1 (𝐿, ℎ).
The first observation is the following:

Lemma 12.2.1 There is a smooth function 𝐹𝜃 : 𝑁R → R such that

𝜃 = ddc Trop∗ 𝐹𝜃 on 𝑇 (C).

Proof Step 1. We first prove the existence of 𝐹𝜃 for a specific choice of ℎ.
Write 𝐷 as the difference of two toric-invariant ample divisors, say 𝐷1 − 𝐷2. Let

ℎ1 and ℎ2 be the associated Guillemin’s metrics on 𝐷1 and 𝐷2 respectively. We
define ℎ = ℎ1 ⊗ ℎ−1

2 .
In this case, our assertion follows since it holds in the case of Guillemin’s metrics.
Step 2. In general, fix ℎ0 as in Step 1. Then the general ℎ can be written as

ℎ0 exp(−𝑔) for some smooth function 𝑔 on 𝑋 , but 𝑔 is clearly toric-invariant. We
may write 𝑔 = Trop∗ 𝑟 for some smooth function 𝑟 on 𝑁R. Hence it suffices to modify
𝐹𝜃 in Step 1 by 𝑟 to conclude. □
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Note that 𝐹𝜃 is well-defined up to a linear term.
Next, we make an additional requirement on 𝐹𝜃 to fix the linear term. Let 𝑠𝐷 be a

rational section of 𝐿 corresponding to 𝐷. Then 𝑠𝐷 is well-defined up to a non-zero
multiple. By Lelong–Poincaré formula Proposition 1.8.1, we have

ddc
(
Trop∗ 𝐹𝜃 + log |𝑠𝐷 |2ℎ

)
= 0

on 𝑇 (C). Therefore, Trop∗ 𝐹𝜃 + log |𝑠𝐷 |2ℎ is the tropicalization of a linear function.
Hence, after adding a linear function to 𝐹𝜃 , we can guarantee that

Trop∗ 𝐹𝜃 + log |𝑠𝐷 |2ℎ = 0 (12.9)

from now on. Note that a different choice of 𝑠𝐷 means adding a constant to 𝐹𝜃 .
Summarizing the situation, we have chosen the following data in addition to the

fan Σ so far: A divisor 𝐷, a Hermitian metric ℎ on 𝐿 and a rational section 𝑠𝐷 of 𝐿
subject to various conditions.

12.2.1 Newton bodies

Let PSHtor (𝑋, 𝜃) be the set of 𝑇𝑐-invariant functions in PSH(𝑋, 𝜃).

Definition 12.2.1 A function 𝜑 ∈ PSHtor (𝑋, 𝜃) can be written as

𝜑|𝑇 (C) = Trop∗ 𝑓

for some unique function 𝑓 : 𝑁R → [−∞,∞). Then we define 𝐹𝜑 : 𝑁R → R as
follows:

𝐹𝜑 = 𝐹𝜃 + 𝑓 . (12.10)

Observe that 𝐹𝜑 is a convex function and takes finite values by Lemma 5.2.1. In
particular, 𝑓 is also real-valued. Once 𝐷 and ℎ are fixed, 𝐹𝜑 is well-defined up to a
constant since 𝐹𝜃 is.

Definition 12.2.2 Let 𝜑 ∈ PSHtor (𝑋, 𝜃), we define its Newton body as

Δ(𝜃, 𝜑) B ∇𝐹𝜑 (𝑁R) ⊆ 𝑀R.

Note that Δ(𝜃, 𝜑) is independent of the choice of 𝑠𝐷 .
The Newton body Δ(𝜃, 𝜑) depends on the choice of 𝐷, not only on the associated

line bundle 𝐿: A different choice of 𝐷 inducing the same line bundle corresponds to
a translation of Δ(𝜃, 𝜑). We will see in a while (Theorem 12.2.1) that once 𝐷 is fixed
Δ(𝜃, 𝜑) depends only on the current 𝜃𝜑 . Hence, the choice of ℎ is irrelevant.
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For the moment, it is not clear if Δ(𝜃, 𝜑) ⊆ 𝑃𝐷 or not. We shall prove this result
using the theory of partial Okounkov bodies in the next section.

Proposition 12.2.1 Let 𝜑 ∈ PSHtor (𝑋, 𝜃), then

Trop∗
(
𝜃 |𝑇 (C) + ddc𝜑|𝑇 (C)

)𝑛
= MAR

(
𝐹𝜑

)
. (12.11)

In particular, ∫
𝑋

𝜃𝑛𝜑 = 𝑛! volΔ(𝜃, 𝜑) (12.12)

Proof Let 𝐹0 be a smooth convex function on 𝑁R such that ddc Trop∗ 𝐹0 can be
extended to a Kähler form on 𝑋 . For example, Guillemin’s construction (5.5) with
respect to a suitable Delzant polytope gives such an example.

Then for any large enough 𝐶 > 0, 𝜃 + 𝐶𝜔 is a Kähler form. So we conclude from
Proposition 5.2.5 that

Trop∗
(
(𝜃 + 𝐶𝜔) |𝑇 (C) + ddc𝜑 |𝑇 (C)

)𝑛
= MAR (𝐹𝜑 + 𝐶𝐹0).

Since both sides are polynomials in 𝐶, we conclude that the same holds for 𝐶 = 0.
Therefore, (12.11) follows.

(12.12) is a direct consequence of (12.11). □

12.2.2 Partial Okounkov bodies

There are some canonical choices of smooth flags in the toric setting.
Since 𝑋 is smooth and projective, we could choose a full-dimensional cone 𝜎 in

Σ with rays 𝜌1, . . . , 𝜌𝑛 ∈ 𝜎(1) such that 𝑢𝜌1 , . . . , 𝑢𝜌𝑛 form a basis of 𝑁 . Define

𝑌𝑖 = 𝐷𝜌1 ∩ · · · ∩ 𝐷𝜌𝑖 , 𝑖 = 1, . . . , 𝑛.

Then 𝑌• is a smooth flag on 𝑋 . Let

Φ : 𝑀 → Z𝑛, 𝑚 ↦→
(
⟨𝑚 − 𝑚𝜎 , 𝑢𝜌1⟩, . . . , ⟨𝑚 − 𝑚𝜎 , 𝑢𝜌𝑛⟩

)
. (12.13)

Then Φ is an isomorphism of lattices. It induces an Z-affine isomorphism

ΦR : 𝑀R → R𝑛.

Proposition 12.2.2 We have

𝑘−1𝜈𝑌•

(
H0 (𝑋, 𝐿𝑘)×

)
= ΦR

(
𝑃𝐷 ∩ 𝑘−1𝑀

)
(12.14)

for any 𝑘 ∈ Z>0. In particular,

Δ𝑌• (𝐿) = ΦR (𝑃𝐷). (12.15)
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Recall that Δ𝑌• (𝐿) ⊆ R𝑛 is the Okounkov body defined in Definition 10.3.4.

Proof We first reduce to the case where𝐷 |𝑈𝜎 = 0. In fact, replacing𝐷 by𝐷+div 𝜒𝑚𝜎
would result in changing 𝑃𝐷 to 𝑃𝐷 − 𝑚𝜎 . So in view of (12.5), we may assume that
𝐷 |𝑈𝜎 = 0 and hence 𝑚𝜎 = 0.

Fix 𝑘 ∈ Z>0. Let 𝑠 ∈ H0 (𝑋, 𝐿𝑘) be a non-zero toric-invariant section, say 𝜒𝑚 for
some 𝑚 ∈ 𝑘𝑃𝐷 ∩ 𝑀 . The zero-divisor of 𝑠 on𝑈𝜎 is given by

𝑛∑︁
𝑖=1
⟨𝑚, 𝑢𝜌𝑖 ⟩𝐷𝜌𝑖 ,

see [CLS11, Proposition 4.1.2]. Therefore,

𝜈𝑌• (𝑠) =
(
⟨𝑚, 𝑢𝜌1⟩, . . . , ⟨𝑚, 𝑢𝜌𝑛⟩

)
= Φ(𝑚).

So (12.14) follows. □

Example 12.2.1 Let us continue the example of P2 in Example 12.1.1. We use the
same notations. Take 𝜎1 as our reference cone, and 𝜌1 = 𝜎5, 𝜌2 = 𝜎6. Then

𝑌1 = {[𝑋0 : 0 : 𝑋2] : 𝑋0𝑋2 ≠ 0}, 𝑌2 = {[𝑋0 : 0 : 0] : 𝑋0 ≠ 0}.

The map Φ is given by
Φ(𝑚1, 𝑚2) = (𝑚1, 𝑚2).

In this case, we see easily
Δ𝑌• (OP2 (1)) = 𝑃𝐷

is the polytope in Fig. 12.2.

Example 12.2.2 Let us continue the example of Bl0P2 in Example 12.1.2. This time,
let us take 𝜎′1 as our reference cone and 𝜌1 = 𝜎5, 𝜌2 = 𝜎7. Then 𝑌1 is just the strict
transform of the line {[𝑋0 : 0 : 𝑋2] : 𝑋0𝑋2 ≠ 0} in P2, while 𝑌2 is the point 𝑌1 ∩ 𝐸 ,
where 𝐸 is the exceptional divisor.

In this case, the map Φ is given by

Φ(𝑚1, 𝑚2) = (𝑚1, 𝑚1 + 𝑚2).

We find that
Δ𝑌• (Bl0P2, 𝜋∗OP2 (1))

is the polytope in Fig. 12.4.
Note that it differs from the polytope in Example 12.2.1.2

2 Although these examples are almost trivial, they did confuse me a lot at the beginning of 2023,
when Kewei Zhang, Tamás Darvas and I were collaborating on [DRWN+23]. At that time, Kewei
himself already proved the main theorem for a generic flag. I realized that some simple birational
geometry would suffice to prove the same result for general flags. I persuaded myself and Kewei
that the Okounkov bodies are always birationally invariant, and deduced some apparently wrong
conclusions. I got no clue for a couple of weeks, then one day, on the noisy metro line 7 of Paris, I
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Fig. 12.4 The Okounkov body Δ𝑌• (Bl0P2, 𝜋∗OP2 (1) )

Theorem 12.2.1 Let 𝜑 ∈ PSHtor (𝑋, 𝜃)>0, then

ΦR (Δ(𝜃, 𝜑)) = Δ𝑌• (𝜃, 𝜑). (12.16)

In particular,
𝑛! volΔ(𝜃, 𝜑) = vol 𝜃𝜑 . (12.17)

In particular, once 𝐷 is fixed, the Newton body Δ(𝜃, 𝜑) depends only on the current
𝜃𝜑 , not on the specific choices of ℎ, 𝜑 and 𝑠𝐷 . It makes sense to write

Δ
(
𝜃𝜑

)
= Δ(𝜃, 𝜑).

Proof We first reduce to the case where 𝐷 |𝑈𝜎 = 0. In fact, changing 𝐷 to 𝐷+div 𝜒𝑚𝜎
would result in changing 𝐹𝜃 to 𝐹𝜃 −𝑚𝜎 . Hence, 𝐹𝜑 changes to 𝐹𝜑 −𝑚𝜎 . Therefore,
Δ(𝜃, 𝜑) becomes Δ(𝜃, 𝜑) − 𝑚𝜎 . Taking (12.5) into consideration, we may assume
that 𝑚𝜎 = 0.

Step 1. We first reduce to the case where 𝜃𝜑 is a Kähler current.
By Lemma 2.4.3, we can find 𝜓 ∈ PSH(𝑋, 𝜃) such that 𝜓 ≤ 𝜑 and 𝜃𝜓 is a Kähler

current. Taking the average along 𝑇𝑐, we may assume that 𝜓 is 𝑇𝑐-invariant.
For each 𝑡 ∈ (0, 1), we let

𝜑𝑡 = (1 − 𝑡)𝜓 + 𝑡𝜑.

Suppose that Kähler current case is known. Then we get

ΦR (Δ(𝜃, 𝜑𝑡 )) = Δ𝑌• (𝜃, 𝜑𝑡 )

got nothing to do, so I said to myself: Why not compute the simplest toric examples? Then after a
few minutes, all of a sudden, the whole picture became completely clear.
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for any 𝑡 ∈ (0, 1). It follows from Theorem A.4.2 that

ΦR (Δ(𝜃, 𝜑)) ⊇ ΦR (Δ(𝜃, 𝜑𝑡 )) = Δ𝑌• (𝜃, 𝜑𝑡 )

for any 𝑡 ∈ (0, 1). Thanks to Theorem 10.3.2, we have

ΦR (Δ(𝜃, 𝜑)) ⊇ Δ𝑌• (𝜃, 𝜑).

Comparing the volumes of both sides using Proposition 12.2.1 and (10.18), we find
that

𝑛! volΦR (Δ(𝜃, 𝜑)) =
∫
𝑋

𝜃𝑛𝜑 = vol 𝜃𝜑 = 𝑛! volΔ𝑌• (𝜃, 𝜑).

In particular, we conclude (12.16).
Step 2. We handle the case where 𝜃𝜑 is a Kähler current.
Let (𝜑 𝑗 ) 𝑗 be a quasi-equisingular approximation of 𝜑 in PSH(𝑋, 𝜃).
We may assume that 𝜑 𝑗 is 𝑇𝑐-invariant for each 𝑗 ≥ 1 from the construction of

[Dem12a, Theorem 13.21].
Now assume that the result is known for each 𝜑 𝑗 . Then

ΦR
(
Δ(𝜃, 𝜑 𝑗 )

)
= Δ𝑌• (𝜃, 𝜑 𝑗 ).

In particular, by Proposition 12.2.1 again,

ΦR (Δ(𝜃, 𝜑)) ⊆ Δ𝑌• (𝜃, 𝜑 𝑗 )

for each 𝑗 ≥ 1. It follows from Theorem 10.3.2 that

ΦR (Δ(𝜃, 𝜑)) ⊆ Δ𝑌• (𝜃, 𝜑).

Comparing the volumes of both sides using Proposition 12.2.1, (10.18) and Theo-
rem 5.2.2, we conclude (12.16).

Step 3. It remains to handle the case where 𝜑 has analytic singularities and 𝜃𝜑 is a
Kähler current. In fact, we may assume that 𝜑 has the form

𝜑 = log
𝑎∑︁
𝑖=1
|𝑠𝑖 |2ℎ + O(1),

where 𝑠1, . . . , 𝑠𝑎 ∈ H0 (𝑋, 𝐿) are toric invariant. This follows from the proof of Step 2
and the construction of [Dem12a, Theorem 13.21].

Let 𝑚1, . . . , 𝑚𝑎 ∈ 𝑃𝐷 ∩ 𝑀 be the lattice points corresponding to 𝑠1, . . . , 𝑠𝑎.
Observe that

Δ(𝜃, 𝜑) = ∇𝐹𝜑 (𝑁R) =
{
𝑚 ∈ 𝑀R : 𝐹𝜑 (𝑛) − ⟨𝑚, 𝑛⟩ is bounded from below

}
=

{
𝑚 ∈ 𝑀R : log

𝑎∑︁
𝑖=1

e(𝑚𝑖 ,𝑛) − ⟨𝑚, 𝑛⟩ is bounded from below

}
=Conv{𝑚1, . . . , 𝑚𝑎},
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where we have applied (12.9) on the second line and Lemma A.5.2 on the third line.
In particular, by Lemma A.5.1, let 𝑘 ∈ Z>0, given any 𝑚 ∈ 𝑘Δ(𝜃, 𝜑) ∩ 𝑀 , we have

|𝜒𝑚 |2e−𝑘𝜑

is bounded from above on 𝑇 (C). In other words, the section 𝑠 of 𝐿 defined by 𝑚
satisfies

𝑠 ∈ H0
(
𝑋, 𝐿𝑘 ⊗ I∞ (𝑘𝜑)

)
.

Therefore,
𝜈𝑌• (𝑠) = Φ(𝑚) ∈ 𝑘Δ𝑘 (𝜃, 𝜑),

where Δ𝑘 is defined Section 10.3. Hence,

Φ (𝑘Δ(𝜃, 𝜑) ∩ 𝑀) ⊆ 𝑘Δ𝑘 (𝜃, 𝜑).

Letting 𝑘 →∞ and applying Theorem 10.3.4, we find that

ΦR (Δ(𝜃, 𝜑)) ⊆ Δ𝑌• (𝜃, 𝜑).

Comparing the volumes of both sides using Proposition 12.2.1 and (10.18), we
conclude that the equality holds and (12.16) follows. □

The following two consequences are both due to Yi Yao.

Corollary 12.2.1 Let 𝐸 be a 𝑇-invariant prime divisor on 𝑋 corresponding to a ray
𝜌 ∈ Σ(1). Then for any 𝜑 ∈ PSHtor (𝑋, 𝜃)>0, we have

𝜈(𝜑, 𝐸) = inf
{
⟨𝑚 − 𝑚𝜌, 𝑢𝜌⟩ : 𝑚 ∈ Δ(𝜃, 𝜑)

}
.

Proof This follows immediately from Theorem 12.2.1 and Theorem 10.3.5. In fact,
since 𝑋 is projective and smooth, there is always a 𝑇-invariant smooth flag 𝑌• with
𝑌1 = 𝐸 . □

This result seems new even in the ample setting. Intuitively, after taking Theorem 12.2.2
into consideration as well, in the ample case the generic Lelong number 𝜈(𝜑, 𝐸) is
the rescaled "distance" from Δ(𝜃, 𝜑) to the facet of 𝑃𝐷 corresponding to 𝐸 .3

Corollary 12.2.2 For any 𝑇-invariant subvariety 𝑌 ⊆ 𝑋 corresponding to a cone 𝜎
in Σ and any 𝜑 ∈ PSHtor (𝑋, 𝜃)>0. Then the following are equivalent:

(1) 𝜈(𝜑,𝑌 ) = 0;
(2) there is a point 𝑚 ∈ Δ(𝜃, 𝜑) such that (𝑚 − 𝑚𝜌) · 𝑢𝜌 = 0 for any 𝜌 ∈ 𝜎(1);
(3) we have

Δ(𝜃, 𝜑) ∩𝑄𝜎 ≠ ∅.

Recall that 𝑄𝜎 is defined in (12.6).

3 Be cautious! In the big setting, in general, the condition ⟨𝑚 − 𝑚𝜌 , 𝑢𝜌 ⟩ = 0 does not necessarily
define a facet of 𝑃𝐷 . Hence the intuition fails.
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Proof (2) ⇐⇒ (3). This follows from the definition of 𝑄𝜎 in (12.6).
(1) ⇐⇒ (2). Let 𝜌1, . . . , 𝜌𝑟 be the rays of 𝜎. Up to replacing 𝐷 by a translation,

we may assume that 𝑚𝜎 = 0. Hence, we may take 𝑚𝜌𝑖 = 0 for all 𝑖.
Let 𝜋 : 𝑍 → 𝑋 be the blow-up of 𝑋 along 𝑌 . See [CLS11, Page 132] for the

basic properties of the toric blow-up. Take the divisor 𝜋∗𝐷 on 𝑍 . We choose the
pull-back metric 𝜋∗ℎ on 𝜋∗𝐿. Then 𝐹𝜋∗ 𝜃 can be taken as 𝜋∗𝐹𝜃 by (12.9). It follows
Δ(𝜃, 𝜑) = Δ(𝜋∗𝜃, 𝜋∗𝜑). On the other hand, the ray corresponding to the exceptional
divisor 𝐸 is generated by 𝑢𝜌1 + · · · + 𝑢𝜌𝑟 . Since 𝑋 is smooth, this vector is primitive.

Recall that the support function of 𝜋∗𝐷 is the same as the support function of 𝐷,
see [CLS11, Proposition 6.2.7]. In particular, we can take the Cartier datum𝑚𝜌 = 𝑚𝜎
mod 𝑀 (𝜌), where 𝜌 is the ray corresponding to 𝐸 .

It follows from Corollary 12.2.1 and Lemma 1.4.1 that

𝜈(𝜑,𝑌 ) = 𝜈(𝜋∗𝜑, 𝐸) = inf
{
(𝑚 − 𝑚𝜎 , 𝑢𝜌1 + · · · + 𝑢𝜌𝑟 ) : 𝑚 ∈ Δ(𝜃, 𝜑)

}
. (12.18)

Our assertion follows in view of (12.4). □

It follows from (12.18) that

𝜈(𝜑,𝑌 ) ≥
𝑎∑︁
𝑖=1

𝜈(𝜑, 𝐸𝑖),

where the 𝐸𝑖’s are the prime divisors corresponding to the rays of 𝜎. This inequality
seems to be new as well.

The following consequence of Theorem 12.2.1 is the key to the development of
the toric pluripotential theory.

Theorem 12.2.2 We have
𝐹𝑉𝜃 ∈ E∞ (𝑁R, 𝑃𝐷).4 (12.19)

In particular, ∫
𝑋

𝜃𝑛𝑉𝜃 = 𝑛! vol 𝑃𝐷 . (12.20)

Recall that E∞ is defined in Definition A.3.1. The equation (12.19) says

𝐹𝑉𝜃 − Supp𝑃𝐷 is bounded. (12.21)

In particular,
Δ(𝜃,𝑉𝜃 ) = 𝑃𝐷 (12.22)

and hence the Newton bodies Δ(𝜃, 𝜑) are all contained in 𝑃𝐷 .

Proof Take 𝜑 = 𝑉𝜃 in Theorem 12.2.1, we find

ΦR (Δ(𝜃,𝑉𝜃 )) = Δ𝑌• (𝜃,𝑉𝜃 ) = Δ𝑌• (𝐿) = ΦR (𝑃𝐷),

4 Initially I was only able to show 𝐹𝑉𝜃 ∈ E (𝑁R, 𝑃𝐷 ) , the strengthened version was suggested by
Robert Berman.
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where we applied Proposition 12.2.2 in the last equality. Therefore, (12.22) follows.
In particular, (12.20) follows from Proposition 12.2.1.

Next we prove (12.21). Take a smooth function 𝜒 : R→ [0, 1] so that

(1) Supp 𝜒 ⊆ [−2, 2];
(2) 𝜒 | [−1,1] ≡ 1.

Fix a 𝑇𝑐-invariant volume form 𝜇 on 𝑇 (C). Then it follows that (Trop∗ 𝜒)𝜇 can be
regarded as a 𝑇𝑐-invariant volume form on 𝑋 . Take a suitable normalizing constant
𝐶 > 0, there is a unique solution

𝜃𝑛𝜑 = 𝐶 (Trop∗ 𝜒) 𝜇, sup
𝑋

𝜑 = 0, 𝜑 ∈ E∞ (𝑋, 𝜃). (12.23)

This is proved in [BEGZ10]. The uniqueness of 𝜑 further guarantees its 𝑇𝑐-invariance.
Since 𝜑 has minimal singularities, 𝐹𝜑 ∼ 𝐹𝑉𝜃 . Next, using Proposition 12.2.1, the
Monge–Ampère equation (12.23) implies

MAR
(
𝐹𝜑

)
= 𝐶𝜒 Trop∗ 𝜇.

It follows from the regularity theorem [BB13, Theorem 2.19] and (12.22) that
𝐹𝜑 ∼ Supp𝑃𝐷 . Hence, (12.21) follows. □

In particular, thanks to Corollary 12.2.1,

𝜈(𝑉𝜃 , 𝐸) = min
{
⟨𝑚 − 𝑚𝜌, 𝑢𝜌⟩ : 𝑚 ∈ 𝑃𝐷

}
. (12.24)

As an interesting consequence of (12.24), we have a geometric description of the
divisorial Zariski decomposition of [Bou02b] in the toric setting: The negative part
of 𝐷 is given by ∑︁

𝜌∈Σ (1)
min

{
⟨𝑚 − 𝑚𝜌, 𝑢𝜌⟩ : 𝑚 ∈ 𝑃𝐷

}
𝐷𝜌 .

A prime divisor 𝐷𝜌 appears in the negative part if and only if the corresponding
condition

⟨𝑚, 𝑢𝜌⟩ ≥ −𝑎𝜌
is redundant in defining 𝑃𝐷 by (12.1). The modified nef part of 𝐷 is the Q-divisor
obtained after removing these redundancies.

12.3 The pluripotential theory

We continue to use the notations in Section 12.1.
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Theorem 12.3.1 There are canonical bĳections5 between the following sets:

(1) The set of 𝜑 ∈ PSHtor (𝑋, 𝜃);
(2) the set of 𝐹 ∈ P(𝑁R, 𝑃𝐷), and
(3) the set of closed proper convex functions 𝐺 ∈ Conv(𝑀R) satisfying

𝐺 |𝑀R\𝑃𝐷 ≡ ∞.

The set P(𝑁R, 𝑃𝐷) is defined in Definition A.3.1. As before, we write 𝐹𝜑 , 𝐺𝜑 for
the functions determined by this construction.

Proof The proof is similar to that of Theorem 5.2.1, but due to its importance, we
give the details. Again, the correspondence between (2) and (3) follows easily from
Proposition A.2.5.

Given 𝜑, we can construct 𝐹𝜑 in (2) as explained earlier in (12.10). Conversely,
suppose that 𝐹 ∈ P(𝑁R, 𝑃𝐷), then 𝐹 ⪯ 𝐹𝑉𝜃 by Theorem 12.2.2. Then

Trop∗ (𝐹 − 𝐹𝜃 ) ∈ PSH
(
𝑇 (C), 𝜃 |𝑇 (C)

)
by Lemma 5.2.1. Since 𝐹 ⪯ 𝐹𝑉𝜃 , we see that Trop∗ (𝐹−𝐹𝜃 ) is bounded from above. It
follows that Grauert–Remmert’s extension theorem Theorem 1.2.1 is applicable, and
this function extends to a unique 𝜃-psh function 𝜑. The uniqueness of the extension
guarantees that 𝜑 ∈ PSHtor (𝑋, 𝜃).

The two maps are clearly inverse to each other. □

We fix a model potential 𝜙 ∈ PSHtor (𝑋, 𝜃)>0 with Newton body Δ(𝜃, 𝜙).
A similar argument guarantees the following:

Corollary 12.3.1 There is a canonical bĳection between the following sets:

(1) The set of 𝜑 ∈ PSHtor (𝑋, 𝜃; 𝜙),
(2) the set of 𝐹 ∈ P(𝑁R,Δ(𝜃, 𝜙)), and
(3) the set of closed proper convex functions 𝐺 ∈ Conv(𝑀R) satisfying

𝐺 |𝑀R\Δ(𝜃,𝜙) = ∞.

Moreover, under these correspondences, we have the following bĳections:

(1) The set Etor (𝑋, 𝜃; 𝜙),
(2) the set of 𝐹 ∈ E(𝑁R,Δ(𝜃, 𝜙)), and
(3) the set of closed proper convex functions 𝐺 ∈ Conv(𝑀R) satisfying

Int{𝐺 < ∞} = Δ(𝜃, 𝜙).

Here the notations are defined as follows:

5 In the earlier version of this book, I required additional conditions in (2) and (3), namely 𝐹 ⪯ 𝐹𝑉𝜃
and 𝐺 ⪰ 𝐺𝑉𝜃 respectively. These conditions can be removed, since 𝐺𝑉𝜃 is always bounded, as
suggested by Robert Berman. See Theorem 12.2.2.



328 CHAPTER 12. TORIC PLURIPOTENTIAL THEORY ON BIG LINE BUNDLES

PSHtor (𝑋, 𝜃; 𝜙) B{𝜑 ∈ PSHtor (𝑋, 𝜃) : 𝜑 ⪯ 𝜙},
Etor (𝑋, 𝜃; 𝜙) BE(𝑋, 𝜃; 𝜙) ∩ PSHtor (𝑋, 𝜃).

The proofs of the following results are similar to the ample case studied in
Chapter 5. We omit the details.

Proposition 12.3.1 Given 𝜑 ∈ PSHtor (𝑋, 𝜃) and 𝐶 ∈ R. We have

𝐹𝜑+𝐶 = 𝐹𝜑 + 𝐶, 𝐺𝜑+𝐶 = 𝐺𝜑 − 𝐶.

Proposition 12.3.2 Given 𝜑, 𝜓 ∈ PSHtor (𝑋, 𝜃), assume that 𝜑 ∧ 𝜓 . −∞, then
𝜑 ∧ 𝜓 ∈ PSHtor (𝑋, 𝜃) and

𝐹𝜑∧𝜓 = 𝐹𝜑 ∧ 𝐹𝜓 , 𝐺𝜑∧𝜓 = 𝐺𝜑 ∨ 𝐺𝜓 .

Proposition 12.3.3 Let (𝜑𝑖)𝑖∈𝐼 be a family in PSHtor (𝑋, 𝜃) uniformly bounded from
above. Then sup𝑖∈𝐼 ∗𝜑𝑖 ∈ PSHtor (𝑋, 𝜃) and

𝐹sup𝑖∈𝐼 ∗𝜑𝑖 =
∨
𝑖∈𝐼

𝐹𝜑𝑖 , 𝐺sup𝑖∈𝐼 ∗𝜑𝑖 = cl
∧
𝑖∈𝐼

𝐺𝜑𝑖 .

Moreover, if 𝐼 is finite, then

𝐺∨
𝑖∈𝐼 𝜑𝑖 =

∧
𝑖∈𝐼

𝐺𝜑𝑖 .

Similarly, if {𝜑𝑖}𝑖∈𝐼 is a decreasing net in PSHtor (𝑋, 𝜃) such that inf𝑖∈𝐼 𝜑𝑖 . −∞,
then inf𝑖∈𝐼 𝜑𝑖 ∈ PSHtor (𝑋, 𝜃) and

𝐹inf𝑖∈𝐼 𝜑𝑖 =
∧
𝑖∈𝐼

𝐹𝜑𝑖 , 𝐺 inf𝑖∈𝐼 𝜑𝑖 =
∨
𝑖∈𝐼

𝐺𝜑𝑖 .

Proposition 12.3.4 Let 𝜑 ∈ PSHtor (𝑋, 𝜃). Then 𝑃𝜃 [𝜑] ∈ PSHtor (𝑋, 𝜃) and

𝐺𝑃𝜃 [𝜑 ] (𝑥) =
{
𝐺𝑉𝜃 (𝑥), if 𝑥 ∈ Δ(𝜃, 𝜑);

∞, otherwise.
(12.25)

As a consequence, we have

Corollary 12.3.2 Let 𝜑, 𝜓 ∈ PSHtor (𝑋, 𝜃). Then the following are equivalent:

(1) 𝜑 ⪯𝑃 𝜓;
(2) 𝜑 ⪯I 𝜓;
(3) Δ(𝜃, 𝜑) ⊆ Δ(𝜃, 𝜓).
Proof (1) ⇐⇒ (2). This follows from theI-goodness of 𝜑 and 𝜓, see Example 7.4.1.

(1) ⇐⇒ (3). When 𝜑, 𝜓 ∈ PSHtor (𝑋, 𝜃)>0, this follows from Proposition 12.3.4.
In general, fix an ample toric-invariant divisor 𝐻 on 𝑋 and a toric-invariant

Hermitian metric ℎ𝐻 on O𝑋 (𝐻) with 𝜔𝐻 B ddcℎ𝐻 being a Kähler form. We perturb
𝐿 to 𝐿 + 𝑚−1𝐻 for 𝑚 ∈ Z>0, then thanks to Lemma A.3.1, we find that
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Δ(𝜃 + 𝑚−1𝜔𝐻 , 𝜑) B 𝑚−1Δ(𝑚𝜃 + 𝜔𝐻 , 𝑚𝜑) = Δ(𝜃, 𝜑) + 𝑚−1Δ (O𝑋 (𝐻)) .

Then since 𝜑, 𝜓 ∈ PSHtor (𝑋, 𝜃 + 𝑚−1𝜔𝐻 )>0, we know that 𝜑 ⪯𝑃 𝜓 if and only if

Δ(𝜃, 𝜑) + 𝑚−1Δ (O𝑋 (𝐻)) ⊆ Δ(𝜃, 𝜓) + 𝑚−1Δ (O𝑋 (𝐻))

for any 𝑚 ∈ Z>0. The latter condition is equivalent to Δ(𝜃, 𝜑) ⊆ Δ(𝜃, 𝜓). □

Next we handle subgeodesics.

Proposition 12.3.5 Let 𝜑0, 𝜑1 ∈ PSHtor (𝑋, 𝜃). There is a canonical bĳection between
the following sets:

(1) The set of 𝑇𝑐-invariant subgeodesics from 𝜑0 to 𝜑1;
(2) the set of convex functions 𝐹 : 𝑁R × (0, 1) → R such that for each 𝑟 ∈ (0, 1), the

function
𝐹𝑟 : 𝑁R → R, 𝑛 ↦→ 𝐹 (𝑛, 𝑟) (12.26)

satisfies 𝐹𝑟 → 𝐹𝜑1 (resp. 𝐹𝑟 → 𝐹𝜑0 ) everywhere as 𝑟 → 1− (resp. 𝑟 → 0+).

Proof We begin with a subgeodesic (𝜑𝑡 )𝑡∈ (0,1) from 𝜑0 to 𝜑1. Then we define
𝐹 : 𝑁R × (0, 1) → R as follows:

𝐹 (𝑛, 𝑡) = 𝐹𝜑𝑡 (𝑛).

Define 𝐹𝑡 as in (12.26), we have

Trop∗ 𝐹𝑡 − Trop∗ 𝐹𝜃 = 𝜑𝑡 , 𝑡 ∈ (0, 1).

By definition, as 𝑡 → 0+, 𝜑𝑡 → 𝜑0 almost everywhere. By Fubini’s theorem,
𝐹𝑡 → 𝐹0 almost everywhere, hence everywhere by Theorem A.1.2. Similarly,
𝐹𝑡 → 𝐹1 everywhere as 𝑡 → 1−.

Next we show that 𝐹 is convex. Let 𝑝1 : 𝑋 × 𝑆 → 𝑋 be the projection, where

𝑆 B {𝑧 ∈ C : e−1 < |𝑧 |2 < 1}.

Since 𝐹 is a subgeodesic, its complexification Φ is 𝑝∗1𝜃-psh. Recall that Φ is defined
as

Φ(𝑥, 𝑧) = Trop∗
(
𝐹− log |𝑧 |2 − 𝐹𝜃

)
(𝑥). (12.27)

In particular, Ψ : 𝑇 (C) × 𝑆 → R defined by

Ψ(𝑥, 𝑧) B Φ(𝑥, 𝑧) + Trop∗ 𝐹𝜃 (𝑥) = Trop∗ 𝐹− log |𝑧 |2 (𝑥)

is plurisubharmonic and 𝑇𝑐 × 𝑆1-invariant. Fix a small enough 𝜖 > 0, we could
find a decreasing sequence of 𝑇𝑐 × 𝑆1-invariant plurisubharmonic functions Ψ𝑖 on
𝑇 (C) × 𝑆𝜖 converging to Ψ everywhere, where

𝑆𝜖 B {𝑧 ∈ C : e−1+𝜖 < |𝑧 |2 < e−𝜖}.
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Let us write
Ψ𝑖 (𝑥, 𝑧) = Trop∗ 𝐹𝑖,− log |𝑧 |2 (𝑥)

for some 𝐹𝑖 : 𝑋 × 𝑆𝜖 → R.
The same computation as in Lemma 5.2.1 shows that 𝐹𝑖 is convex. It follows that

𝐹, as the decreasing limit of 𝐹𝑖 , is also convex on 𝑋 × (𝜖, 1 − 𝜖). Since 𝜖 > 0 is
arbitrary, we conclude that 𝐹 is convex on 𝑋 × (0, 1).

Conversely, suppose that we are given 𝐹 in (2). We define Φ : 𝑇 (C) × 𝑆 → R
using (12.27). The arguments in the previous part can be reversed to show that Φ is
𝑝∗1𝜃 |𝑇 (C)×𝑆-psh.

By our assumption, for each 𝑡 ∈ (0, 1), we have

𝐹𝑡 ≤ 𝑡𝐹𝜑1 + (1 − 𝑡)𝐹𝜑0 ≤ 𝐹𝑉𝜃 + 𝐶 (12.28)

for some constant𝐶 ∈ R independent of the choice of 𝑡. Therefore, Φ is bounded from
above and hence by Theorem 1.2.1, we conclude that Φ admits a unique extension to
a 𝑝∗1𝜃-psh extension to 𝑋 × 𝑆, which we still denote by Φ. We let

𝜑𝑡 (𝑥) = Φ(𝑥, e−𝑡/2)

for all 𝑡 ∈ (0, 1) and 𝑥 ∈ 𝑋 . We claim that (𝜑𝑡 ) is a subgeodesic from 𝜑0 to 𝜑1.
For this purpose, we only need to show that (𝜑𝑡 )𝑡∈ (0,1) has the correct boundary

value. But from our assumption in (2), we know that as 𝑡 → 0+ (resp. 𝑡 → 1−),
𝜑𝑡 → 𝜑0 (resp. 𝜑𝑡 → 𝜑1) almost everywhere. In particular, sup𝑋 𝜑𝑡 ≥ −𝐶′ for some
large constant 𝐶′ > 0 independent of 𝑡 ∈ (0, 1). Therefore, together with (12.28), we
deduce from Proposition 1.5.1 that {𝜑𝑡 }𝑡∈ (0,1) is a relatively compact family with
respect to the 𝐿1-topology. We need to show that each cluster point 𝜓 as 𝑡 → 0+ is
equal to 𝜑0. But we already know that 𝜓 = 𝜑0 almost everywhere. Hence we deduce

𝜓 = 𝜑0 from Proposition 1.2.6. As 𝑡 → 0+, we have 𝜑𝑡
𝐿1

−−→ 𝜑0. Similarly, as 𝑡 → 1−,

we have 𝜑𝑡
𝐿1

−−→ 𝜑1.
The two constructions are clearly inverse to each other.

Corollary 12.3.3 Let 𝜑0, 𝜑1 ∈ PSHtor (𝑋, 𝜃). Then there is a canonical bĳection
between the following sets:

(1) The set of 𝑇𝑐-invariant subgeodesics from 𝜓0 to 𝜓1, where 𝜓0, 𝜓1 ∈ PSHtor (𝑋, 𝜃)
and 𝜓0 ≤ 𝜑0, 𝜓1 ≤ 𝜑1;

(2) the set of closed proper convex functions Ψ on 𝑀R ×R such that there is a closed
proper convex function 𝐺 ∈ Conv(𝑀R) satisfying

𝐺 (𝑚) + (𝑠 ∨ 0) ≥ Ψ(𝑚, 𝑠) ≥ 𝐺𝜑0 (𝑚) ∨
(
𝐺𝜑1 (𝑚) + 𝑠

)
(12.29)

for all 𝑚 ∈ 𝑀R and 𝑠 ∈ R.

Proof Let us begin with a subgeodesic (𝜓𝑡 )𝑡∈ (0,1) as in (1). Let 𝐹 be the convex
function as in Proposition 12.3.5. We extend 𝐹 to a function 𝐹 : 𝑁R × R → R as
follows: For any 𝑛 ∈ 𝑁R, we define
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𝐹 (𝑛, 𝑡) =


𝐹𝜓0 (𝑛), if 𝑡 = 0,
𝐹𝜓1 (𝑛), if 𝑡 = 1,
∞, if 𝑡 > 1 or 𝑡 < 0.

Then 𝐹 is a proper closed convex function on 𝑁R×R. Let Ψ be the Legendre transform
of 𝐹. Then Ψ is a proper closed convex function on 𝑀R × R by Theorem A.2.1. By
(A.2), for any 𝑚 ∈ 𝑀R and 𝑠 ∈ R, we have

Ψ(𝑚, 𝑠) = sup
𝑛∈𝑁R ,𝑡∈[0,1]

(⟨𝑚, 𝑛⟩ + 𝑡𝑠 − 𝐹 (𝑛, 𝑡))

= sup
𝑡∈[0,1]

(
𝑡𝑠 + 𝐹∗𝑡 (𝑚)

)
.

Therefore, the latter half of (12.29) follows. Next recall that

𝜂 B inf
𝑡∈ (0,1)

𝜓𝑡 ∈ PSHtor (𝑋, 𝜃),

as follows from Proposition 4.1.2. Therefore,

Ψ(𝑚, 𝑠) = sup
𝑛∈𝑁R ,𝑡∈[0,1]

(⟨𝑚, 𝑛⟩ + 𝑡𝑠 − 𝐹 (𝑛, 𝑡))

≤ sup
𝑛∈𝑁R ,𝑡∈[0,1]

(
⟨𝑚, 𝑛⟩ + 𝑡𝑠 − 𝐹𝜂

)
= sup
𝑡∈[0,1]

𝑡𝑠 + 𝐺𝜂 (𝑚)

=(𝑠 ∨ 0) + 𝐺𝜂 (𝑚).

Conversely, let us begin with a function Ψ as in (2). Let 𝐹 be the Legendre
transform of Ψ. We first observe that 𝐹 (𝑛, 𝑡) = ∞ for all 𝑛 ∈ 𝑁R and 𝑡 ∉ [0, 1].

In fact,
𝐹 (𝑛, 𝑡) = sup

𝑚∈𝑀R ,𝑠∈R
(⟨𝑚, 𝑛⟩ + 𝑡𝑠 − Ψ(𝑚, 𝑠))

≤ sup
𝑚∈𝑀R ,𝑠∈R

(
⟨𝑚, 𝑛⟩ + 𝑡𝑠 − 𝐺𝜑0 (𝑚)

)
= sup
𝑠∈R

(
𝑡𝑠 + 𝐹𝜑0 (𝑛)

)
=

{
𝐹𝜑0 (𝑛), if 𝑡 = 0,
∞, otherwise.

Similarly,
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𝐹 (𝑛, 𝑡) = sup
𝑚∈𝑀R ,𝑠∈R

(⟨𝑚, 𝑛⟩ + 𝑡𝑠 − Ψ(𝑚, 𝑠))

≤ sup
𝑚∈𝑀R ,𝑠∈R

(
⟨𝑚, 𝑛⟩ + 𝑡𝑠 − 𝐺𝜑1 (𝑚) − 𝑠

)
= sup
𝑠∈R

(
𝑡𝑠 − 𝑠 + 𝐹𝜑1 (𝑛)

)
=

{
𝐹𝜑0 (𝑛), if 𝑡 = 1,
∞, otherwise.

Therefore, we conclude that

𝐹 (𝑛, 𝑡) ≤ 𝑡𝐹𝜑1 + (1 − 𝑡)𝐹𝜑0

for all 𝑡 ∈ [0, 1] and 𝑛 ∈ 𝑁R. Let (𝜓𝑡 )𝑡∈ (0,1) be the subgeodesic defined by
Proposition 12.3.5, then (𝜓𝑡 )𝑡∈ (0,1) satisfies (1). Next observe that

𝐹 (𝑛, 𝑡) = sup
𝑚∈𝑀R ,𝑠∈R

(⟨𝑚, 𝑛⟩ + 𝑡𝑠 − Ψ(𝑚, 𝑠))

≥ sup
𝑚∈𝑀R ,𝑠∈R

(⟨𝑚, 𝑛⟩ + 𝑡𝑠 − 𝐺 (𝑚) − 𝑠 ∨ 0)

=𝐺∗ (𝑛) + sup
𝑠∈R
(𝑡𝑠 − (𝑠 ∨ 0))

=

{
𝐺∗ (𝑛), if 𝑡 ∈ [0, 1],
∞, otherwise.

The two operations are clearly inverse to each other. □

As an immediate corollary,

Corollary 12.3.4 Let 𝜑0, 𝜑1 ∈ PSHtor (𝑋, 𝜃) ∩ PSH(𝑋, 𝜃)>0. Then the following are
equivalent:

(1) 𝜑0 ∼𝑃 𝜑1;
(2) there is a subgeodesic from 𝜑0 to 𝜑1.

If these conditions are satisfied, let (𝜑𝑡 )𝑡∈ (0,1) be the geodesic from 𝜑0 to 𝜑1. Then
𝜑𝑡 ∈ PSHtor (𝑋, 𝜃) for all 𝑡 ∈ (0, 1) and

𝐺𝜑𝑡 = (1 − 𝑡)𝐺𝜑1 + 𝑡𝐺𝜑0 . (12.30)

Proof The equivalence between (1) and (2) follows from a general fact Theorem 6.1.1.
In the toric case, (2) =⇒ (1) can also be argued more directly.

Assume that these conditions are satisfied. Let (𝜑𝑡 )𝑡∈ (0,1) be the geodesic from 𝜑0
to 𝜑1. It is clear that 𝜑𝑡 ∈ PSHtor (𝑋, 𝜃) for all 𝑡 ∈ (0, 1). Let Ψ′ be the proper convex
function on 𝑀R × R defined by Corollary 12.3.3. Then Ψ′ is the minimum of all Ψ
satisfying (12.29). We claim that

Ψ′ (𝑚, 𝑠) = 𝐺𝜑0 (𝑚) ∨
(
𝐺𝜑1 (𝑚) + 𝑠

)
. (12.31)
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It suffices to show that the right-hand side is proper, namely, 𝐺𝜑0 ∨ 𝐺𝜑1 is not
identically ∞. But recall that by Proposition 4.1.2, we have 𝜑0 ∧ 𝜑1 ∈ PSH(𝑋, 𝜃).
Therefore, by Proposition 12.3.2,

𝐺𝜑0 ∨ 𝐺𝜑1 = 𝐺𝜑0∧𝜑1 . ∞.

In particular, (12.31) follows.
Now by construction,

𝐺𝜑𝑡 (𝑚) = sup
𝑠∈R
(𝑠𝑡 − Ψ′ (𝑚, 𝑠)) = (1 − 𝑡)𝐺𝜑1 (𝑚) + 𝑡𝐺𝜑0 (𝑚)

for all 𝑡 ∈ (0, 1). So (12.30) follows. □

Let 𝜙 ∈ PSHtor (𝑋, 𝜃) ∩ PSH(𝑋, 𝜃)>0 be a model potential. We write

Rtor (𝑋, 𝜃; 𝜙) B {ℓ ∈ R(𝑋, 𝜃; 𝜙) : ℓ𝑡 ∈ PSHtor (𝑋, 𝜃) ∀𝑡 ≥ 0} .

Recall that R(𝑋, 𝜃; 𝜙) is defined in Definition 4.2.2.

Corollary 12.3.5 There is a canonical bĳection between the following sets:

(1) The set of ℓ ∈ Rtor (𝑋, 𝜃; 𝜙);
(2) The set of proper closed convex functions 𝑔 on 𝑀R with Dom 𝑔 = Δ(𝜃, 𝜙).

Moreover, given ℓ ∈ Rtor (𝑋, 𝜃; 𝜙), then

𝐺ℓ𝑡 = 𝐺𝜙 + 𝑡𝑔, ∀𝑡 > 0. (12.32)

Proof First observe that given 𝑔 as in (2), (12.32) indeed induces a geodesic ray in
Rtor (𝑋, 𝜃; 𝜙) thanks to Corollary 12.3.4. Therefore, we have a map from (2) to (1).

Conversely, given ℓ ∈ Rtor (𝑋, 𝜃; 𝜙), it follows from Corollary 12.3.4 that 𝐺ℓ𝑡 is
linear in 𝑡 ≥ 0 after restricted to Int{𝐺𝜙 < ∞}. Let

𝑔′ (𝑚) =
{
𝐺ℓ1 (𝑚) − 𝐺𝜙 (𝑚), 𝑚 ∈ Int{𝐺𝜙 < ∞};
∞, 𝑚 ∈ 𝑀R \ Int{𝐺𝜙 < ∞}.

Note that for 𝑚 ∈ Int{𝐺𝜙 < ∞}, we actually have

𝑔′ (𝑚) = lim
𝑡→∞

𝑡−1𝐺ℓ𝑡 (𝑚).

Hence, 𝑔′ is a proper convex function on 𝑀R. Define 𝑔 = cl 𝑔′. Then 𝑔 is a proper
closed convex function on 𝑀R, and Dom 𝑔 = Δ(𝜃, 𝜙). We have therefore a map from
(1) to (2).

It remains to argue that this map is the converse of the proceeding map from (2) to
(1). The non-trivial point is to verify (12.32) holds for the 𝑔 we just constructed. Fix
𝑡 > 0, we need to show that

𝐺ℓ𝑡 = 𝐺𝜙 + 𝑡𝑔.
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This holds on Int{𝐺𝜙 < ∞} by Corollary 12.3.4 and the definition of 𝑔, but then it
holds everywhere thanks to Proposition A.1.4. Our assertion follows. □

In particular, we can make the corresponding test curve more explicit.

Corollary 12.3.6 Let ℓ ∈ Rtor (𝑋, 𝜃; 𝜙) and 𝑔 be the function as in Corollary 12.3.5,
then

ℓ∗max = − inf
𝑀R
𝑔, (12.33)

and for each 𝜏 < − inf𝑀R 𝑔, the function ℓ∗𝜏 is toric-invariant, and

𝐺ℓ∗𝜏 (𝑚) =
{
𝐺𝜙 (𝑚), if 𝑔(𝑚) ≤ −𝜏;
∞, otherwise.

In particular, for such 𝜏,
Δ

(
𝜃, ℓ∗𝜏

)
= {𝑔 ≤ −𝜏} .

In other words, (
Δ

(
𝜃, ℓ∗𝜏

) )
𝜏<− inf𝑀R 𝑔

is the inverse Legendre transform of −𝑔 using the terminology of Definition 10.5.3.
As a consequence, in the toric setting, the Ross–Witt Nyström correspondence

Theorem 9.2.1 reduces essentially to Theorem 10.5.1.

Proof Fix 𝜏 ∈ R, then
ℓ∗𝜏 = inf

𝑡>0
(ℓ𝑡 − 𝑡𝜏)

is clearly toric-invariant. Therefore,

𝐹ℓ∗𝜏 = inf
𝑡>0

(
𝐹ℓ𝑡 − 𝑡𝜏

)
.

Fix 𝑚 ∈ 𝑀R, we compute

𝐺ℓ∗𝜏 (𝑚) = sup
𝑛∈𝑁R

(
⟨𝑚, 𝑛⟩ − 𝐹ℓ∗𝜏 (𝑛)

)
= sup
𝑡>0

sup
𝑛∈𝑁R

(
⟨𝑚, 𝑛⟩ − 𝐹ℓ𝑡 (𝑛) + 𝑡𝜏

)
= sup
𝑡>0

(
𝐺ℓ𝑡 (𝑚) + 𝑡𝜏

)
=𝐺𝜙 (𝑚) + sup

𝑡>0
𝑡 (𝑔(𝑚) + 𝜏)

=

{
𝐺𝜙 (𝑚), if 𝑔(𝑚) + 𝜏 ≤ 0;
∞, otherwise.

Our assertions follow. □

Next we consider the trace operator studied in Chapter 8. We wish to understand
the trace operator in the toric situation. For this purpose, we will need to fix a
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𝑇-invariant subvariety 𝑌 ⊆ 𝑋 . Let 𝜎 be the corresponding cone in Σ and 𝑄 be the
corresponding face of 𝑃𝐷 . The cocharacter lattice of 𝑌 is given by

𝑁 (𝜎) B 𝑁/𝑁 ∩ ⟨𝜎⟩,

where ⟨𝜎⟩ is the linear span of 𝜎. See [CLS11, (3.2.6)]. In particular, we have a
canonical identification of the character lattice 𝑀 (𝜎) of 𝑌 :

𝑀 (𝜎) = 𝜎⊥ ∩ 𝑀,

which is compatible with our previous notation (12.2). Let 𝑖𝜎 : 𝑀 (𝜎) → 𝑀 be
the inclusion map. Let 𝑇𝑌 be the torus of 𝑌 . Then we have a natural surjection
𝑞𝑇 : 𝑇 → 𝑇𝑌 . In particular, then tropicalization map

Trop: 𝑇 (C) → 𝑁R

descends to the tropicalization map of 𝑌 :

Trop𝑌 : 𝑇𝑌 (C) → 𝑁 (𝜎)R.

We let
𝐷𝑌 =

∑︁
𝜌∈Σ (1)
𝜌⪯̸𝜎

𝑎𝜌𝐷𝜌 |𝑌 ,

where 𝜌 ⪯̸ 𝜎 means that 𝜌 is not a face of 𝜎. Then O𝑌 (𝐷𝑌 ) = 𝐿 |𝑌 .

Theorem 12.3.2 There is a canonical choice of the Cartier datum 𝑚𝜎 ∈ 𝑀 such that
for any 𝜑 ∈ PSHtor (𝑋, 𝜃) with 𝜈(𝜑,𝑌 ) = 0, Tr𝜃

𝑌
(𝜑) is defined and vol(𝜃 |𝑌 ,Tr𝜃

𝑌
(𝜑)) >

06, we have
Δ(𝜃 |𝑌 ,Tr𝜃𝑌 (𝜑)) = Δ(𝜃, 𝜑) ∩𝑄𝜎 − 𝑚𝜎

as subsets of 𝑀 (𝜎)R.

Observe that the condition 𝜈(𝜑,𝑌 ) = 0 means exactly that Δ(𝜃, 𝜑) ∩ 𝑄𝜎 ≠ ∅ by
Corollary 12.2.2.

Since 𝑌 itself is a smooth toric variety, the proceeding constructions of 𝑋 all apply
to 𝑌 . We briefly summarize the situation in Table 12.1.

Recall that Star(𝜎) is the fan in 𝑁 (𝜎)R consisting of 𝜏 for all faces 𝜏 ∈ Σ

containing 𝜎, where 𝜏 is the image of 𝜏 in 𝑁 (𝜎)R. See [CLS11, Proposition 3.2.7].

Proof The idea of the proof is that since we know how the partial Okounkov bodies
behave under restrictions by Lemma 10.4.7 and Remark 10.4.1, and know how to
compare partial Okounkov bodies and Newton bodies Theorem 12.2.1, we should be
able to deduce the behavior of Newton bodies under restriction as well.

First we note that by our assumption, 𝐿 |𝑌 is a big line bundle. In particular, if we
set 𝑟 = dim𝜎, then dim𝑌 = 𝑛 − 𝑟 .

6 Note that Tr𝜃
𝑌
∈ PSHtor (𝑌, 𝜃 |𝑌 ) .
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Notions for 𝑋 Notions for 𝑌
𝑁 𝑁 (𝜎)
𝑀 𝑀 (𝜎)
Σ Star(𝜎)
𝐷 𝐷𝑌
𝐿 𝐿 |𝑌
ℎ ℎ |𝑌
𝜃 𝜃 |𝑌

Trop Trop𝑌
𝑃𝐷 𝑄𝜎
𝑠𝐷 𝑠𝐷𝑌

Table 12.1 The correspondence between 𝑋 and 𝑌

For this purpose, let 𝜎0 be an 𝑛-dimensional face of Σ containing 𝜎. The image
𝜎0 in 𝑁 (𝜎) is then an 𝑟-dimensional face of Star(𝜎). We shall use these faces as the
reference faces while defining the partial Okounkov bodies.

We list the rays in 𝜎0 (1) as follows:

𝜌1, . . . , 𝜌𝑛, (12.34)

where 𝜌1, . . . , 𝜌𝑟 ∈ 𝜎(1) and hence 𝜌𝑟+1, . . . , 𝜌𝑛 ∉ 𝜎(1). In particular, the images

𝜌𝑟+1, . . . , 𝜌𝑛 (12.35)

of the latter give a list of 𝜎0 (1).
We construct the flag 𝑌• on 𝑋 using the rays (12.34) and the flag 𝑍• on 𝑌 using

the rays (12.35). Note that
𝑍𝑖 = 𝑌𝑟+𝑖 ,

where 𝑖 = 1, . . . , 𝑛 − 𝑟 .
Next we compute the Cartier data associated with 𝜎0. By definition, 𝑚𝜎0 ∈ 𝑀 (𝜎)

is the unique element satisfying

𝑚𝜎0 · 𝑢𝜌 𝑗 = −𝑎𝜌 𝑗

for all 𝑗 = 𝑟 + 1, . . . , 𝑛.
Let Φ : 𝑀 → Z𝑛 and Ψ : 𝑀 (𝜎) → Z𝑛−𝑟 be defined as

Φ(𝑚) =
(
⟨𝑚 − 𝑚𝜎0 , 𝑢𝜌1⟩, . . . , ⟨𝑚 − 𝑚𝜎0 , 𝑢𝜌𝑛⟩

)
=

(
⟨𝑚, 𝑢𝜌1⟩, . . . , ⟨𝑚, 𝑢𝜌𝑛⟩

)
+ (𝑎𝜌1 , . . . , 𝑎𝜌𝑛 ),

Ψ(𝑚) =
(
⟨𝑚 − 𝑚𝜎0 , 𝑢𝜌1⟩, . . . , ⟨𝑚 − 𝑚𝜎0 , 𝑢𝜌𝑛−𝑟 ⟩

)
Observe that for 𝑖 = 𝑟 + 1, . . . , 𝑛, we have

𝑢𝜌𝑖 = 𝑢𝜌𝑖 mod 𝑁 ∩ ⟨𝜎⟩,
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so
Ψ(𝑚) =

(
⟨𝑚, 𝑢𝜌𝑟+1⟩, . . . , ⟨𝑚, 𝑢𝜌𝑛⟩

)
+ (𝑎𝜌𝑟+1 , . . . , 𝑎𝜌𝑛 )

for 𝑚 ∈ 𝑀 (𝜎). Therefore, we have a commutative diagram

𝑀R R𝑛

𝑀 (𝜎)R R𝑛−𝑟 ,

ΦR

𝐿

ΨR

where 𝐿 : R𝑛 → R𝑛−𝑟 is the map

(𝑏1, . . . , 𝑏𝑛) ↦→ (𝑏𝑟+1, . . . , 𝑏𝑛).

By Theorem 12.2.1, we have

ΦR (Δ(𝜃, 𝜑)) = Δ𝑌• (𝜃, 𝜑), ΨR

(
Δ(𝜃 |𝑌 ,Tr𝜃𝑌 (𝜑))

)
= Δ𝑍• (𝜃 |𝑌 ,Tr𝜃𝑌 (𝜑)).

The latter can be written as

Δ𝑍• (𝜃 |𝑌 ,Tr𝜃𝑌 (𝜑)) = 𝐿 ◦ΦR
(
Δ(𝜃 |𝑌 ,Tr𝜃𝑌 (𝜑))

)
.

While by Lemma 10.4.7 and Remark 10.4.1,

Δ𝑍• (𝜃 |𝑌 ,Tr𝜃𝑌 (𝜑)) =𝐿
(
Δ𝑌• (𝜃, 𝜑) ∩ ({0}𝑟 × R𝑛−𝑟 )

)
=𝐿 (ΦR (Δ(𝜃), 𝜑) ∩ ({0}𝑟 × R𝑛−𝑟 ))
=𝐿 ◦ΦR (Δ(𝜃, 𝜑) ∩𝑄𝜎) .

Hence,
𝐿 ◦ΦR

(
Δ(𝜃 |𝑌 ,Tr𝜃𝑌 (𝜑))

)
= 𝐿 ◦ΦR (Δ(𝜃, 𝜑) ∩𝑄𝜎) .

It follows that

Δ(𝜃 |𝑌 ,Tr𝜃𝑌 (𝜑)) + 𝑚𝜎0 − 𝑚
𝜎0 = Δ(𝜃, 𝜑) ∩𝑄𝜎 .

Finally, observe that 𝑚𝜎0 − 𝑚
𝜎0 represents 𝑚𝜎 . Our assertion follows. □

Corollary 12.3.7 For any 𝜑 ∈ PSHtor (𝑋, 𝜃) with 𝜈(𝜑,𝑌 ) = 0, we have

vol
(
𝜃 + ddc Tr𝜃𝑌 (𝜑)

)
= (dim𝑌 )! voldim𝑌 (Δ(𝜃, 𝜑) ∩𝑄𝜎) . (12.36)

The left-hand side of (12.36) is understood as 0 if Tr𝜃
𝑌
(𝜑) is not defined. On the

right-hand side, voldim𝑌 is the dim𝑌 -dimensional Lebesgue measure on 𝑀 (𝜎)R
normalized so that the unique cube in 𝑀 (𝜎) has volume 1.

Proof When Tr𝜃
𝑌
(𝜑) is defined and has positive volume, this follows immediately

from Theorem 12.3.2.
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Next we consider the case where Tr𝜃
𝑌
(𝜑) is defined by has 0-volume or is not

defined. Take a toric-invariant ample line bundle 𝐻 on 𝑋 and a toric-invariant Kähler
metric 𝜔 ∈ 𝑐1 (𝐻). Then for any 𝜖 ∈ Q>0, we have

vol
(
𝜃 + 𝜖𝜔 + ddc Tr𝜃+𝜖 𝜔𝑌 (𝜑)

)
= (dim𝑌 )! voldim𝑌 (Δ(𝜃 + 𝜖𝜔, 𝜑) ∩𝑄𝜎) .

Thanks to Example 8.1.6, we have

vol
(
𝜃 + ddc Tr𝜃𝑌 (𝜑)

)
= lim
Q∋ 𝜖→0+

vol
(
𝜃 + 𝜖𝜔 + ddc Tr𝜃+𝜖 𝜔𝑌 (𝜑)

)
= 0.

Combining these equations, we find (12.36). □

As a corollary, we obtain an elegant characterization of the augmented base locus
in the toric setting.

Corollary 12.3.8 The augmented base locus (with the reduced complex structure)
of 𝐷 is a toric-invariant (possible reducible) subvariety given by the union of the
𝑉 (𝜏)’s, where 𝜏 runs over the elements in Σ such that

dim𝑄𝜏 < 𝑛 − dim 𝜏7.

Intuitively, we should think of 𝑛 − dim 𝜏 as the expected dimension of 𝑄𝜏 . This
corollary says that𝑄𝜏 fails to attain the expected dimension if and only if it corresponds
to a subvariety in the augmented base locus.

With the help of some knowledge in convex geometry, we can also deduce this
corollary from Corollary 12.1.1.

Proof We simply apply Corollary 12.3.7 applied to 𝜑 = 𝑉𝜃 . This corollary follows
from Nakamaye’s theorem [ELM+09, Theorem 5.7] and Theorem 8.3.1. □

Example 12.3.1 Let us consider the example Example 12.1.2 again, we consider the
subvariety corresponding to 𝜎7. We have

𝑄𝜎7 = {𝑚 ∈ 𝑃𝐷 : ⟨𝑚, (1, 1)⟩ = 0} .

The situation is explained in Fig. 12.5. We find that dim𝑄𝜎 = 0, but the expected
dimension is 2 − 1 = 1. So the corresponding divisor, namely the exceptional divisor
on Bl0P2 is in the non-Kähler locus. Similarly, we can verify that the non-Kähler
locus consists only of this divisor.

7 Here we understand that dim∅ = −∞.
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Fig. 12.5 The image of 𝑄𝜎7 .





Chapter 13
Non-Archimedean pluripotential theory

A good theorem lasts forever. Once proved, it will always stay
proved, and other mathematicians are free to use it and build on
it as they please, sometimes to great effect.
— John Tatea

a John Torrence Tate Jr. (1925–2019), the grandfather of Dustin
Clausen, was one of the greatest minds in the whole history of
America. However, his aversion to publishing papers arguably
impeded the progress of the development of mathematics to
some extent. For example, his foundational work on rigid non-
Archimedean geometry was written in 1962, but was not available
to the public until 1971.

In this chapter, we will establish the non-Archimedean pluripotential theory using
the theory of I-good singularities and test curves. We show that our theory extends
the algebraic theory à la Boucksom–Jonsson in Section 13.4.

We also construct the Duistermaat–Heckman measure of a non-Archimedean
metric in Section 13.3.

There is also a closely related theory developed by Mesquita-Piccione [MP24],
where a Berkovich like analytification of a compact Kähler manifold is constructed.
We refer to the well-written paper [MP24] for the details and the comparisons with
the theory developed in the current chapter.

13.1 The definition of non-Archimedean metrics

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛. Let Käh(𝑋) be the
set of Kähler forms on 𝑋 with the partial order given as follows: We say 𝜔 ⪯ 𝜔′ if
𝜔 ≥ 𝜔′. Note that the partially ordered set Käh(𝑋) is a directed set.

Let 𝜃 be a closed smooth real (1, 1)-form.

Definition 13.1.1 We define

PSHNA (𝑋, 𝜃) = lim←−−
𝜔∈Käh(𝑋)

PSHNA (𝑋, 𝜃 + 𝜔)>0 1

in the category of sets, where the transition maps are given as follows: Suppose that
𝜔, 𝜔′ ∈ Käh and 𝜔 ≥ 𝜔′, then the transition map is defined in Proposition 9.3.4:

1 The annoying projective limit can be avoided if instead of relying the language of quasi-
plurisubharmonic functions, we use that of augmented nef b-divisors developed in Definition 11.1.6
instead. But given the fact that there two formulations are completely equivalent to each other by
Corollary 11.1.4, we just stick to the slightly more traditional language here.

341
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𝑃𝜃+𝜔 [•]I : PSHNA (𝑋, 𝜃 + 𝜔′)>0 → PSHNA (𝑋, 𝜃 + 𝜔)>0. (13.1)

Recall that PSHNA (𝑋, 𝜃)>0 is defined in Definition 9.3.1.
In general, when we denote an element in PSHNA (𝑋, 𝜃) by Γ, its component in

PSHNA (𝑋, 𝜃 + 𝜔)>0 (𝜔 ∈ Käh(𝑋)) will be written as either Γ𝜔 or 𝑃𝜃+𝜔′ [Γ]I .
Note that Γ𝜔max is independent of the choice of 𝜔 ∈ Käh(𝑋). We denote this

common value by Γmax.

Remark 13.1.1 Thanks to Proposition 9.3.2, for any other 𝜃′ representing [𝜃], we
have a canonical bĳection

PSHNA (𝑋, 𝜃) ∼−→ PSHNA (𝑋, 𝜃′).

Moreover, these bĳections satisfy the cocycle condition. If we view the set of closed
real smooth (1, 1)-forms representing [𝜃] as a category with a unique morphism
between any two objects, then we can define

PSHNA (𝑋, [𝜃]) = lim←−−
𝜃

PSHNA (𝑋, 𝜃).

This definition is independent of the choice of the explicit representative of the
cohomology class [𝜃].

However, given the fact that our notations are already quite heavy, we decide to
stick to the set PSHNA (𝑋, 𝜃). The readers should verify that all constructions below
are independent of the choice of 𝜃 within its cohomology class.

Proposition 13.1.1 Let Γ ∈ PSHNA (𝑋, 𝜃). Then given 𝜔, 𝜔′ ∈ Käh(𝑋) with 𝜔 ≥ 𝜔′,
we have

𝑃𝜃+𝜔
[
Γ𝜃+𝜔

′
−∞

]
= 𝑃𝜃+𝜔

[
Γ𝜃+𝜔

′
−∞

]
I
= Γ𝜃+𝜔−∞ .

Proof Since for any 𝜏 < Γmax, the potential Γ𝜃+𝜔′𝜏 is I-good by Example 7.1.2, it
follows that

𝑃𝜃+𝜔
[
Γ𝜃+𝜔

′
𝜏

]
= 𝑃𝜃+𝜔

[
Γ𝜃+𝜔

′
𝜏

]
I
= Γ𝜃+𝜔𝜏

for all 𝜏 < Γmax. Our assertion follows from Proposition 3.1.11 and Proposi-
tion 3.2.14. □

Proposition 13.1.2 There is a natural injective map

PSHNA (𝑋, 𝜃)>0 ↩→ PSHNA (𝑋, 𝜃), Γ ↦→ (𝑃𝜃+𝜔 [Γ]I)𝜔∈Käh(𝑋) .

In the sequel, we will not distinguish an element in PSHNA (𝑋, 𝜃)>0 with its image
in PSHNA (𝑋, 𝜃). Note that given Γ ∈ PSHNA (𝑋, 𝜃)>0, the value of Γmax does not
depend on if we view it as an element in PSHNA (𝑋, 𝜃)>0 or in PSHNA (𝑋, 𝜃).
Proof It is obvious that this map is well-defined. It suffices to argue its injectivity.
Suppose that Γ, Γ′ ∈ PSHNA (𝑋, 𝜃)>0 and



13.1. THE DEFINITION OF NON-ARCHIMEDEAN METRICS 343

𝑃𝜃+𝜔 [Γ]I = 𝑃𝜃+𝜔 [Γ′]I

for some Kähler form 𝜔 on 𝑋 . Then Γmax = Γ′max and for any 𝜏 < Γmax, we have

Γ𝜏 ∼I Γ′𝜏

by Proposition 6.1.3. It follows again from Proposition 6.1.3 that

Γ𝜏 = Γ′𝜏 .

Definition 13.1.2 Let Γ ∈ PSHNA (𝑋, 𝜃), we define its volume as follows:

vol Γ B lim
𝜔∈Käh(𝑋)

∫
𝑋

(
𝜃 + 𝜔 + ddcΓ𝜃+𝜔−∞

)𝑛
∈ [0,∞).

Observe that the net is decreasing, so the limit exists.

Proposition 13.1.3 Let Γ ∈ PSHNA (𝑋, 𝜃)>0. Then

vol Γ =

∫
𝑋

(𝜃 + ddcΓ−∞)𝑛 .

Proof This follows from Proposition 3.1.10, Corollary 3.1.3 and Proposition 9.1.5.□

Lemma 13.1.1 The image of the canonical injection

PSHNA (𝑋, 𝜃)>0 ↩→ PSHNA (𝑋, 𝜃)

is given by the set of Γ ∈ PSHNA (𝑋, 𝜃) with positive volume.

Proof By Proposition 13.1.3, it is clear that the image of an element in PSHNA (𝑋, 𝜃)>0
has positive volume.

Conversely, take Γ ∈ PSHNA (𝑋, 𝜃) with positive volume. We want to construct
Γ′ ∈ PSHNA (𝑋, 𝜃)>0 representing Γ.

Fix a Kähler form 𝜔 on 𝑋 . Define

Γ′𝜏 B lim
𝑘→∞

Γ𝜃+𝑘
−1𝜔

𝜏 , 𝜏 < Γmax. (13.2)

We claim that it suffices to show

lim
𝑘→∞

∫
𝑋

(
𝜃 + 𝑘−1𝜔 + ddcΓ𝜃+𝑘

−1𝜔
𝜏

)𝑛
> 0 (13.3)

for some 𝜏 < Γmax. If this holds, then the argument of Lemma 9.1.1 implies
that the same holds for all 𝜏 < Γmax. Then Proposition 3.1.10 guarantees that
Γ′ ∈ PSHNA (𝑋, 𝜃)>0 and represents Γ.

It remains to argue (13.3). Let 𝜖 = vol Γ > 0. Take 𝜏 < Γmax so that
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𝑋

(
𝜃 + 𝜔 + ddcΓ𝜃+𝜔−∞

)𝑛
−

∫
𝑋

(
𝜃 + 𝜔 + ddcΓ𝜃+𝜔𝜏

)𝑛
< 𝜖/2.

Expanding the left-hand side using the binomial expansion, in view of Proposi-
tion 9.1.5, we find that for any 𝑘 ≥ 1,∫

𝑋

(
𝜃 + 𝑘−1𝜔 + ddcΓ𝜃+𝑘

−1𝜔
−∞

)𝑛
−

∫
𝑋

(
𝜃 + 𝑘−1𝜔 + ddcΓ𝜃+𝑘

−1𝜔
𝜏

)𝑛
< 𝜖/2.

Therefore, (13.3) follows. □

Example 13.1.1 Given 𝜑 ∈ PSH(𝑋, 𝜃), we can define an associated non-Archimedean
metric Γ𝜑 ∈ PSHNA (𝑋, 𝜃) as follows:

(1) Γ𝜑max = 0;
(2) for any 𝜔 ∈ Käh(𝑋) and any 𝜏 < 0, we set

Γ
𝜑,𝜃+𝜔
𝜏 = 𝑃𝜃+𝜔 [𝜑]I .

Such non-Archimedean metrics are called homogeneous non-Archimedean metrics.
Observe that

vol Γ𝜑 = vol 𝜃𝜑 .

See Proposition 7.3.1 and the footnote there.

Definition 13.1.3 Let 𝜔 be a closed real smooth positive (1, 1)-form on 𝑋 . We define
the map

𝑃𝜃+𝜔 [•]I : PSHNA (𝑋, 𝜃) → PSHNA (𝑋, 𝜃 + 𝜔)

as follows: Given Γ ∈ PSHNA (𝑋, 𝜃), we define 𝑃𝜃+𝜔 [Γ]I as the element such that
for any 𝜔′ ∈ Käh(𝑋), we have

𝑃𝜃+𝜔 [Γ] 𝜃+𝜔+𝜔
′

I = Γ𝜃+𝜔+𝜔
′
.

It is straightforward to check that under the identification of Proposition 13.1.2, the
map 𝑃𝜃+𝜔 [•]I extends the map (13.1).

Proposition 13.1.4 The maps 𝑃𝜃+𝜔 [•]I in Definition 13.1.3 together induce a
bĳection

PSHNA (𝑋, 𝜃) ∼−→ lim←−−
𝜔∈Käh(𝑋)

PSHNA (𝑋, 𝜃 + 𝜔). (13.4)

Proof It is a tautology that the maps 𝑃𝜃+𝜔 [•]I in Definition 13.1.3 are compatible
with the transition maps. So the map (13.4) is well-defined. It is injective by the same
argument as Proposition 13.1.2. We argue the surjectivity.

By unfolding the definitions, an object in the target of (13.4) is an assignment:
With each 𝜔 ∈ Käh(𝑋), we associate a family (Γ𝜔,𝜔′ )𝜔′∈Käh(𝑋) satisfying:

(1) Γ𝜔,𝜔
′ ∈ PSHNA (𝑋, 𝜃 + 𝜔 + 𝜔′)>0 for each 𝜔, 𝜔′ ∈ Käh(𝑋);



13.2. OPERATIONS ON NON-ARCHIMEDEAN METRICS 345

(2) for each 𝜔, 𝜔′, 𝜔′′ ∈ Käh(𝑋) satisfying 𝜔′′ ≥ 𝜔′, we have

𝑃𝜃+𝜔+𝜔′′
[
Γ𝜔,𝜔

′
]
I
= Γ𝜔,𝜔

′′
;

(3) for each 𝜔, 𝜔′, 𝜔′′ ∈ Käh(𝑋) satisfying 𝜔 ≤ 𝜔′, we have

𝑃𝜃+𝜔′+𝜔′′
[
Γ𝜔,𝜔

′′
]
I
= Γ𝜔

′ ,𝜔′′ .

The preimage of such an object is given by the family (Γ𝜔)𝜔∈Käh(𝑋) given by

Γ𝜔 = Γ𝜔/2,𝜔/2.

The fact that the image of Γ is as expected is a tautology, which we leave to the
readers. □

With an almost identical argument involving Proposition 3.1.10, we get

Proposition 13.1.5 The maps 𝑃𝜃+𝜔 [•]I in Definition 13.1.3 and the injective maps
Proposition 13.1.2 together induce bĳections

PSHNA (𝑋, 𝜃) ∼−→ lim←−−
𝜔

PSHNA (𝑋, 𝜃 + 𝜔)>0
∼−→ lim←−−

𝜔

PSHNA (𝑋, 𝜃 + 𝜔), (13.5)

where 𝜔 runs over either the partially ordered set of all smooth closed real positive
(1, 1)-forms with positive volume2 on 𝑋 or Käh(𝑋).

Corollary 13.1.1 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a
compact Kähler manifold 𝑌 . Then 𝜋∗ induces a bĳection

PSHNA (𝑋, 𝜃) ∼−→ PSHNA (𝑌, 𝜋∗𝜃).

Proof This follows immediately from Proposition 13.1.5. □

It is immediate to verify that 𝜋∗ in Corollary 13.1.1 extends the map Proposition 9.3.3.

13.2 Operations on non-Archimedean metrics

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝜃, 𝜃′, 𝜃′′ be closed
real smooth (1, 1)-forms on 𝑋 representing big cohomology classes.

This section relies heavily on Section 9.4. We shall use the notions introduced in
that section without further explanations.

Definition 13.2.1 Let Γ ∈ PSHNA (𝑋, 𝜃), Γ′ ∈ PSHNA (𝑋, 𝜃′). We say Γ ≤ Γ′ if for
some 𝜔 ∈ Käh(𝑋), we have

Γ𝜃+𝜔 ≥ Γ′𝜃+𝜔 .

2 This partially ordered set is not directed.
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This notion is independent of the choice of 𝜔 thanks to Lemma 9.4.1.
Moreover, we have the following:

Proposition 13.2.1 Let Γ, Γ′ ∈ PSHNA (𝑋, 𝜃) and 𝜔 be a closed smooth positive
(1, 1)-form on 𝑋 , then the following are equivalent:

(1) Γ ≤ Γ′;
(2) 𝑃𝜃+𝜔 [Γ]I ≤ 𝑃𝜃+𝜔 [Γ′]I .

Proof This follows immediately from Lemma 9.4.1. □

Observe that this definition coincides with the corresponding definition in Defini-
tion 9.4.1 when Γ, Γ′ ∈ PSHNA (𝑋, 𝜃)>0.

Proposition 13.2.2 Let Γ, Γ′ ∈ PSHNA (𝑋, 𝜃). Assume that Γ ≤ Γ′, then

vol Γ ≤ vol Γ′.

Proof It suffices to show that for any Kähler form 𝜔 on 𝑋 , we have

vol Γ𝜃+𝜔−∞ ≤ vol Γ′ 𝜃+𝜔−∞ ,

which is an immediate consequence of Theorem 2.4.4. □

Definition 13.2.2 Let Γ ∈ PSHNA (𝑋, 𝜃) and Γ′ ∈ PSHNA (𝑋, 𝜃′). Then we define
Γ + Γ′ ∈ PSHNA (𝑋, 𝜃 + 𝜃′) as the unique element such that for any 𝜔 ∈ Käh(𝑋), we
have

(Γ + Γ′) 𝜃+𝜃
′+2𝜔

= Γ𝜃+𝜔 + Γ′𝜃 ′+𝜔 .

This definition yields an element in PSHNA (𝑋, 𝜃 + 𝜃′) by Lemma 9.4.3 and it extends
the definition in Definition 9.4.2 by Lemma 9.4.3 as well.

Proposition 13.2.3 Let Γ ∈ PSHNA (𝑋, 𝜃) and Γ′ ∈ PSHNA (𝑋, 𝜃′). Suppose that
𝜔, 𝜔′ are two smooth closed positive (1, 1)-forms on 𝑋 . Then

𝑃𝜃+𝜔+𝜃 ′+𝜔′ [Γ + Γ′]I = 𝑃𝜃+𝜔 [Γ]I + 𝑃𝜃 ′+𝜔′ [Γ′]I .

Proof This is a direct consequence of Lemma 9.4.3. □

Proposition 13.2.4 The operation + is commutative and associative: For any Γ ∈
PSHNA (𝑋, 𝜃), Γ′ ∈ PSHNA (𝑋, 𝜃′) and Γ′′ ∈ PSHNA (𝑋, 𝜃′′), we have

Γ + Γ′ = Γ′ + Γ, (Γ + Γ′) + Γ′′ = Γ + (Γ′ + Γ′′).

Proof This is a direct consequence of Proposition 9.4.1. □

Definition 13.2.3 Let Γ ∈ PSHNA (𝑋, 𝜃) and𝐶 ∈ R. We define Γ+𝐶 ∈ PSHNA (𝑋, 𝜃)
as the unique element such that for any 𝜔 ∈ Käh(𝑋), we have

(Γ + 𝐶) 𝜃+𝜔 = Γ𝜃+𝜔 + 𝐶.



13.2. OPERATIONS ON NON-ARCHIMEDEAN METRICS 347

It is obvious from Definition 9.4.3 that Γ + 𝐶 ∈ PSHNA (𝑋, 𝜃). It is also obvious that
this definition extends Definition 9.4.3.

Proposition 13.2.5 Let Γ ∈ PSHNA (𝑋, 𝜃) and 𝐶 ∈ R. Suppose that 𝜔 is a smooth
closed positive (1, 1)-form on 𝑋 . Then

𝑃𝜃+𝜔 [Γ]I + 𝐶 = 𝑃𝜃+𝜔 [Γ + 𝐶]I .

Proof This is clear by definition. □

Proposition 13.2.6 Let Γ ∈ PSHNA (𝑋, 𝜃), Γ ∈ PSHNA (𝑋, 𝜃′) and 𝐶,𝐶′ ∈ R, then

(1) (Γ + Γ′) + 𝐶 = Γ + (Γ′ + 𝐶) = (Γ + 𝐶) + Γ′;
(2) Γ + (𝐶 + 𝐶′) = (Γ + 𝐶) + 𝐶′.

Proof This is a direct consequence of Proposition 9.4.2. □

Proposition 13.2.7 Let Γ ∈ PSHNA (𝑋, 𝜃) and 𝐶 ∈ R, then

vol Γ = vol(Γ + 𝐶).

Proof It suffices to show that for each Kähler form 𝜔 on 𝑋 ,

vol Γ𝜃+𝜔−∞ = vol(Γ + 𝐶) 𝜃+𝜔−∞ ,

which is obvious. □

Definition 13.2.4 Let Γ, Γ′ ∈ PSHNA (𝑋, 𝜃), we define Γ∨ Γ′ ∈ PSHNA (𝑋, 𝜃) as the
unique element such that for any 𝜔 ∈ Käh(𝑋), we have

(Γ ∨ Γ′) 𝜃+𝜔 = Γ𝜃+𝜔 ∨ Γ′𝜃+𝜔 .

It follows from Lemma 9.4.5 that Γ ∨ Γ′ ∈ PSHNA (𝑋, 𝜃) and this definition extends
the corresponding definition in Definition 9.4.4.

Proposition 13.2.8 Let Γ, Γ′ ∈ PSHNA (𝑋, 𝜃) and 𝜔 be a closed smooth positive
(1, 1)-form on 𝑋 . Then

𝑃𝜃+𝜔 [Γ ∨ Γ′]I = 𝑃𝜃+𝜔 [Γ]I ∨ 𝑃𝜃+𝜔 [Γ′]I .

Proof This is a direct consequence of Lemma 9.4.5. □

Proposition 13.2.9 The operation ∨ is commutative and associative.

In particular, given a finite non-empty family (Γ𝑖)𝑖∈𝐼 in PSHNA (𝑋, 𝜃), we then define∨
𝑖∈𝐼 Γ

𝑖 in the obvious way.

Proof This is a direct consequence of Corollary 9.4.1. □
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Definition 13.2.5 Let (Γ𝑖)𝑖∈𝐼 be a non-empty family in PSHNA (𝑋, 𝜃). Assume that

sup
𝑖∈𝐼

Γ𝑖max < ∞. (13.6)

Then we define sup𝑖∈𝐼 ∗Γ𝑖 ∈ PSHNA (𝑋, 𝜃) as the unique element such that for any
𝜔 ∈ Käh(𝑋), we have (

sup
𝑖∈𝐼
∗Γ𝑖

) 𝜃+𝜔
= sup
𝑖∈𝐼
∗Γ𝑖, 𝜃+𝜔 .

It follows immediately from Lemma 9.4.7 that sup𝑖∈𝐼 ∗Γ𝑖 ∈ PSHNA (𝑋, 𝜃) and
this definition extends Definition 9.4.6. Moreover, this definition clearly extends
Definition 13.2.4 as well.

Proposition 13.2.10 Let (Γ𝑖)𝑖∈𝐼 be a non-empty in PSHNA (𝑋, 𝜃) satisfying (13.6).
Assume that 𝜔 is a closed smooth positive (1, 1)-form on 𝑋 . Then

𝑃𝜃+𝜔

[
sup
𝑖∈𝐼
∗Γ𝑖

]
I
= sup
𝑖∈𝐼
∗𝑃𝜃+𝜔

[
Γ𝑖

]
I .

Proof This is a direct consequence of Lemma 9.4.7. □

We also have a non-Archimedean version of Choquet’s lemma.

Proposition 13.2.11 Let (Γ𝑖)𝑖∈𝐼 be a non-empty in PSHNA (𝑋, 𝜃) satisfying (13.6).
Then there exists a countable subfamily 𝐼 ′ ⊆ 𝐼 such that

sup
𝑖∈𝐼
∗Γ𝑖 = sup

𝑖∈𝐼 ′
∗Γ𝑖 .

Proof For any fixed 𝜔 ∈ Käh(𝑋), thanks to Proposition 9.4.5, we could find a
countable subfamily 𝐼 ′ ⊆ 𝐼 such that

sup
𝑖∈𝐼
∗𝑃𝜃+𝜔 [Γ𝑖]I = sup

𝑖∈𝐼 ′
∗𝑃𝜃+𝜔 [Γ𝑖]I .

It suffices to show that for any other 𝜔′ ∈ Käh(𝑋), we have

sup
𝑖∈𝐼
∗𝑃𝜃+𝜔′ [Γ𝑖]I = sup

𝑖∈𝐼 ′
∗𝑃𝜃+𝜔′ [Γ𝑖]I .

This is an immediate consequence of Proposition 6.1.6. □

Proposition 13.2.12 Let (Γ𝑖)𝑖∈𝐼 be a non-empty family in PSHNA (𝑋, 𝜃) satisfying
(13.6). Let 𝐶 ∈ R. Then

sup
𝑖∈𝐼
∗ (Γ𝑖 + 𝐶) = sup

𝑖∈𝐼
∗Γ𝑖 + 𝐶.

Suppose that (Γ′𝑖)𝑖∈𝐼 is another family in PSHNA (𝑋, 𝜃′) satisfying (13.6). Suppose
that Γ𝑖 ≤ Γ′𝑖 for all 𝑖 ∈ 𝐼, then
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sup
𝑖∈𝐼
∗Γ𝑖 ≤ sup

𝑖∈𝐼
∗Γ′𝑖 .

Proof This is an immediate consequence of Proposition 9.4.6. □

Proposition 13.2.13 Let (Γ𝑖)𝑖∈𝐼 be an increasing net in PSHNA (𝑋, 𝜃) satisfying
(13.6). Then

vol
(
sup
𝑖∈𝐼
∗Γ𝑖

)
= lim
𝑖∈𝐼

vol Γ𝑖 . (13.7)

Proof The ≥ direction in (13.7) is a direct consequence of Proposition 13.2.2. It
remains to prove the reverse inequality.

Note that (13.7) holds when vol Γ𝑖 > 0 for each 𝑖 ∈ 𝐼, as a consequence of
Proposition 9.4.3, Corollary 6.2.3 and Theorem 6.2.5.

In particular, for each Kähler form 𝜔 on 𝑋 , we have

vol
(
sup
𝑖∈𝐼
∗Γ𝑖, 𝜃+𝜔

)
= lim
𝑖∈𝐼

vol Γ𝑖, 𝜃+𝜔 .

For our purpose, we need to show that for any 𝜖 > 0, we can find 𝜔 so that

sup
𝑖∈𝐼

vol Γ𝑖, 𝜃+𝜔 < sup
𝑖∈𝐼

vol Γ𝑖 + 𝜖 .

We shall show that it is possible to choose 𝜔 so that the stronger statement holds:

vol Γ𝑖, 𝜃+𝜔 < vol Γ𝑖 + 𝜖, ∀𝑖 ∈ 𝐼 .

Equivalently, we need to choose 𝜔 so that for any Kähler form 𝜔′ on 𝑋 dominated by
𝜔, we have

vol Γ𝑖, 𝜃+𝜔−∞ < vol Γ𝑖, 𝜃+𝜔
′

−∞ + 𝜖/2, ∀𝑖 ∈ 𝐼 .

Choose a Kähler form Ω on 𝑋 so that Ω ≥ 𝜃, we compute

vol Γ𝑖, 𝜃+𝜔−∞ − Γ𝑖, 𝜃+𝜔
′

−∞ =

∫
𝑋

(
𝜃 + 𝜔 + ddcΓ𝑖, 𝜃+𝜔

′
−∞

)𝑛
−

∫
𝑋

(
𝜃 + 𝜔′ + ddcΓ𝑖, 𝜃+𝜔

′
−∞

)𝑛
=

𝑛−1∑︁
𝑎=0

(
𝑛

𝑎

) ∫
𝑋

(
𝜃 + ddcΓ𝑖, 𝜃+𝜔

′
−∞

)𝑎
∧ (𝜔𝑛−𝑎 − 𝜔′𝑛−𝑎)

≤
𝑛−1∑︁
𝑎=0

(
𝑛

𝑎

) ∫
𝑋

Ω𝑎 ∧ 𝜔𝑛−𝑎 .

It is clearly possible to choose 𝜔 so that the right-hand side is less than 𝜖/2. Our
assertion then follows. □

Definition 13.2.6 Let (Γ𝑖)𝑖∈𝐼 be a decreasing net in PSHNA (𝑋, 𝜃). Assume that

inf
𝑖∈𝐼

Γ𝑖max > −∞, (13.8)
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then we define inf𝑖∈𝐼 Γ𝑖 ∈ PSHNA (𝑋, 𝜃) as the unique element such that for each
𝜔 ∈ Käh(𝑋), we have (

inf
𝑖∈𝐼

Γ𝑖
) 𝜃+𝜔

= inf
𝑖∈𝐼

Γ𝑖, 𝜃+𝜔 . (13.9)

We observe that (
inf
𝑖∈𝐼

Γ𝑖
) 𝜃+𝜔

∈ PSHNA (𝑋, 𝜃 + 𝜔)>0.

This follows from Proposition 9.4.9. Moreover, by Lemma 9.4.9, we have inf𝑖∈𝐼 Γ𝑖 ∈
PSHNA (𝑋, 𝜃), and this definition extends Definition 9.4.8.

In general,

vol
(
inf
𝑖∈𝐼

Γ𝑖
)
≤ lim
𝑖∈𝐼

vol Γ𝑖

as a consequence of Proposition 13.2.2. But the reverse inequality fails in general.

Proposition 13.2.14 Let (Γ𝑖)𝑖∈𝐼 be a decreasing net in PSHNA (𝑋, 𝜃) satisfying (13.8).
Assume that 𝜔 is a closed smooth positive (1, 1)-form on 𝑋 . Then

𝑃𝜃+𝜔

[
inf
𝑖∈𝐼

Γ𝑖
]
I
= inf
𝑖∈𝐼
𝑃𝜃+𝜔

[
Γ𝑖

]
I .

Proof This follows from Lemma 9.4.9. □

Proposition 13.2.15 Let (Γ𝑖)𝑖∈𝐼 be a decreasing net in PSHNA (𝑋, 𝜃) satisfying
(13.8). Let 𝐶 ∈ R. Then

inf
𝑖∈𝐼
(Γ𝑖 + 𝐶) = inf

𝑖∈𝐼
Γ𝑖 + 𝐶.

Suppose that (Γ′𝑖)𝑖∈𝐼 is another decreasing net in PSHNA (𝑋, 𝜃′) satisfying (13.8).
Suppose that Γ𝑖 ≤ Γ′𝑖 for all 𝑖 ∈ 𝐼, then

inf
𝑖∈𝐼

Γ𝑖 ≤ inf
𝑖∈𝐼

Γ′𝑖 .

Proof This is clear by definition. □

Definition 13.2.7 Let Γ ∈ PSHNA (𝑋, 𝜃) and 𝜆 ∈ R>0, then we define 𝜆Γ ∈
PSHNA (𝑋, 𝜆𝜃) as the unique element such that for any 𝜔 ∈ Käh(𝑋), we have

(𝜆Γ)𝜆𝜃+𝜔 = 𝜆Γ𝜃+𝜆
−1𝜔 .

It follows immediately from Lemma 9.4.8 that 𝜆Γ ∈ PSHNA (𝑋, 𝜆𝜃) and this definition
extends Definition 9.4.7.

Proposition 13.2.16 Let Γ ∈ PSHNA (𝑋, 𝜃) and 𝜆 ∈ R>0. Then for any closed smooth
positive (1, 1)-form 𝜔 on 𝑋 , we have

𝑃𝜆𝜃+𝜔 [𝜆Γ]I = 𝜆𝑃𝜃+𝜆−1𝜔 [Γ]I .
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Proof This follows immediately from Lemma 9.4.8. □

Proposition 13.2.17 Let Γ ∈ PSHNA (𝑋, 𝜃), Γ′ ∈ PSHNA (𝑋, 𝜃′), 𝐶 ∈ R and 𝜆, 𝜆′ >
0, we have

𝜆(Γ + Γ′) =𝜆Γ + 𝜆Γ′,
(𝜆𝜆′)Γ =𝜆(𝜆′Γ),

𝜆(Γ + 𝐶) =𝜆Γ + 𝜆𝐶.

Suppose that (Γ𝑖)𝑖∈𝐼 is a non-empty family in PSHNA (𝑋, 𝜃) satisfying (13.6), then

𝜆

(
sup
𝑖∈𝐼
∗Γ𝑖

)
= sup
𝑖∈𝐼
∗ (𝜆Γ𝑖).

If (Γ𝑖)𝑖∈𝐼 is a decreasing net in PSHNA (𝑋, 𝜃) satisfying (13.8), then

𝜆

(
inf
𝑖∈𝐼

Γ𝑖
)
= inf
𝑖∈𝐼
(𝜆Γ𝑖).

Proof Everything except the last assertion follows from Proposition 9.4.8. The last
assertion is obvious by definition. □

Proposition 13.2.18 Let Γ ∈ PSHNA (𝑋, 𝜃) and 𝜆 ∈ R>0, then

vol (𝜆Γ) = 𝜆 vol Γ.

Proof This is clearly by definition. □

Definition 13.2.8 Let Γ ∈ PSHNA (𝑋, 𝜃). Let𝑌 ⊆ 𝑋 be an irreducible analytic subset.
We say that the trace operator of Γ along 𝑌 is well-defined if

𝜈

(
Γ𝜃+𝜔𝜏 , 𝑌

)
= 0

for small enough 𝜏 and any 𝜔 ∈ Käh(𝑋). We define

(Tr𝑌 (Γ))max B sup
{
𝜏 < Γmax : 𝜈

(
Γ𝜃+𝜔𝜏 , 𝑌

)
= 0

}
.

In this case, we define Tr𝑌 (Γ) ∈ PSHNA (𝑌, 𝜃 |𝑌̃ ) 3 as the unique element such that
for any 𝜔 ∈ Käh(𝑌 ), the component

Tr𝑌 (Γ) 𝜃 |𝑌̃+𝜔 ∈ PSHNA (𝑌, 𝜃 |𝑌̃ + 𝜔)>0 (13.10)

is defined as follows:

(1) We let (
Tr𝑌 (Γ) 𝜃 |𝑌̃+𝜔

)
max

= (Tr𝑌 (Γ))max ; (13.11)

3 Here 𝑌̃ → 𝑌 is the normalization of 𝑌 .



352 CHAPTER 13. NON-ARCHIMEDEAN PLURIPOTENTIAL THEORY

(2) for each 𝜏 ∈ R less than (Tr𝑌 (Γ))max, we define

Tr𝑌 (Γ)
𝜃 |𝑌̃+𝜔
𝜏 B 𝑃𝜃 |𝑌̃+𝜔

[
Tr𝜃+𝜔̃𝑌

(
Γ𝜃+𝜔̃𝜏

)]
,

where 𝜔̃ is an arbitrary Kähler form on 𝑋 such that 𝜔 ≥ 𝜔̃ |𝑌̃ .

It follows from [GK20, Proposition 3.5] that 𝑌 is a normal Kähler space and
hence 𝜔̃ exists. We observe that the choice of the trace operator Tr𝜃+𝜔̃

𝑌

(
Γ𝜃+𝜔̃𝜏

)
is

irrelevant since two different choice are I-equivalent. Moreover, (13.10) holds as
a consequence of Proposition 8.1.2 and Proposition 8.2.1. It is therefore clear that
Tr𝑌 (Γ) ∈ PSHNA (𝑋, 𝜃).

Proposition 13.2.19 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism from a
compact Kähler manifold 𝑌 . Then all definitions in this section are invariant under
pulling-back to 𝑌 .

The meaning is clear in most cases. In the case of the trace operator, this means
the following: Suppose that 𝑍 ⊆ 𝑋 is an analytic subset and Γ ∈ PSHNA (𝑋, 𝜃) has
non-trivial restriction to 𝑍 . Suppose that 𝑍 is not contained in the non-isomorphism
locus of 𝜋 so that the strict transform𝑊 of 𝑍 is defined. If we write Π : 𝑊 → 𝑍 for
the restriction of 𝜋 and Π̃ : 𝑊̃ → 𝑍̃ the strict transform of Π, then we have

Π̃∗ Tr𝑍 (Γ) = Tr𝑊 (𝜋∗Γ).

The relevant notations are summarized in the following diagram:

𝑊̃ 𝑊 𝑌

𝑍̃ 𝑍 𝑋.

Π̃ Π 𝜋

Proof We only prove the assertion for the trace operator, as the other proofs are
similar.

We shall use the notations above. Observe that for any closed positive smooth
(1, 1)-form 𝜔 on 𝑋 with positive mass, we have(

Π̃∗ Tr𝑍 (Γ)
)

max = (Tr𝑍 (Γ))max = sup
{
𝜏 < Γmax : 𝜈

(
Γ𝜃+𝜔𝜏 , 𝑍

)
= 0

}
,

and
(Tr𝑊 (𝜋∗Γ))max = sup

{
𝜏 < Γmax : 𝜈

(
(𝜋∗Γ𝜏) 𝜋

∗ 𝜃+𝜋∗𝜔 ,𝑊
)
= 0

}
= sup

{
𝜏 < Γmax : 𝜈

(
𝜋∗Γ𝜃+𝜔𝜏 ,𝑊

)
= 0

}
= sup

{
𝜏 < Γmax : 𝜈

(
Γ𝜃+𝜔𝜏 , 𝑍

)
= 0

}
.

Here we applied implicitly Proposition 13.1.5. Therefore,
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Π̃∗ Tr𝑍 (Γ)

)
max = (Tr𝑊 (𝜋∗Γ))max .

Let 𝜏 ∈ R be less than this common value. Take a Kähler form 𝜔𝑍̃ (resp. 𝜔𝑊̃ ) on 𝑍̃
(resp. 𝑊̃). Take a Kähler form 𝜔𝑌 on 𝑌 (resp. 𝜔𝑋 on 𝑋) such that

𝜔𝑊̃ ≥ 𝜔𝑋 |𝑊̃ , 𝜔𝑍̃ ≥ 𝜔𝑌 | 𝑍̃ , 𝜔𝑌 ≥ 𝜋∗𝜔𝑋 .

We want to show that(
Π̃∗ Tr𝑍 (Γ)

) 𝜃 |𝑍̃+𝜔𝑍̃
𝜏

∼𝑃 (Tr𝑊 (𝜋∗Γ))
(𝜋∗ 𝜃 ) |𝑊̃+𝜔𝑊̃
𝜏 .

Unfolding the definitions, we reduce to

Π̃∗ Tr𝜃+𝜔𝑋
𝑍

[
Γ𝜃+𝜔𝑋𝜏

]
∼𝑃 Tr𝜋

∗ 𝜃+𝜔𝑌
𝑊

(
(𝜋∗Γ) 𝜋

∗ 𝜃+𝜔𝑌
𝜏

)
.

Using Proposition 8.2.1, this is equivalent to

Π̃∗ Tr𝑍
[
Γ𝜃+𝜔𝑋𝜏

]
∼𝑃 Tr𝑊

(
(𝜋∗Γ) 𝜋

∗ 𝜃+𝜋∗𝜔𝑋
𝜏

)
.

This is a consequence of Lemma 8.2.1. □

13.3 Duistermaat–Heckman measures

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝜃 be a closed real
smooth (1, 1)-form on 𝑋 representing a big cohomology class.

Definition 13.3.1 Assume that 𝑋 admits a smooth flag 𝑌•. Let Γ ∈ PSHNA (𝑋, 𝜃)>0.
The Duistermaat–Heckman measure DH(Γ) of Γ is defined as

DH(Γ) B 𝑛! · DH
(
Δ𝑌• (𝜃, Γ)

)
.

Recall that Δ𝑌• (𝜃, Γ) ∈ TC(Δ𝑌• (𝜃, Γ−∞)) is the Okounkov test curve defined in
Theorem 10.5.2. See Definition 10.5.4 for the definition of the Duistermaat–Heckman
measure of an Okounkov test curve.

Theorem 13.3.1 Assume that 𝑋 admits a smooth flag 𝑌•. The Duistermaat–Heckman
measure DH(Γ) of Γ ∈ PSHNA (𝑋, 𝜃)>0 in Definition 13.3.1 is independent of the
choice of the smooth flag 𝑌•. Furthermore, for any 𝑚 ∈ Z>0, the 𝑚-th moment of
DH(Γ) is given by∫

R
𝑥𝑚 DH(Γ) (𝑥) = Γ𝑚max vol Γ + 𝑚

∫ Γmax

−∞
𝜏𝑚−1 (vol(𝜃 + ddcΓ𝜏) − vol Γ) d𝜏,

(13.12)
and ∫

R
DH(Γ) = vol Γ. (13.13)
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Proof We observe that the moments of the random variable𝐺 [Δ𝑌• (𝜃, Γ)] as computed
in Proposition 10.5.4 are independent of the choice of the flag: In fact, they are given
by (13.12) and (13.13) thanks to Theorem 10.4.2(1).

Assume first that Γ is bounded. Since the Duistermaat–Heckman measure has
bounded support in this case (c.f. Theorem 10.5.1), we conclude that DH(Γ) is
uniquely determined.

In general, we may assume that Γmax = 0. For each 𝜖 > 0, we define Γ𝜖 ∈
PSHNA (𝑋, 𝜃)>0 as follows:

(1) Let Γ𝜖max = 0, and
(2) we set

Γ𝜖𝜏 =


𝜙, if 𝜏 ≤ −𝜖−1,

𝑃𝜃 [(1 + 𝜖𝜏)Γ𝜏 − 𝜖𝜏𝜙] , if 𝜏 ∈
(
−𝜖−1, 0

)
.

Then it follows from the argument of Theorem 9.2.1 Step 3.3 that Δ𝑌• (Γ)𝜏 is the
decreasing limit of Δ𝑌• (Γ𝜖 )𝜏 for any 𝜏 < Γmax as 𝜖 → 0+. So DH(Γ𝜖 ) ⇀ DH(Γ)
by Lemma 10.5.2. It follows that DH(Γ) is independent of the choice of the flag. □

More generally, when 𝑋 does not admit a smooth flag, we could make a modification
𝜋 : 𝑌 → 𝑋 so that 𝑌 admits a flag. We define

DH(Γ) B DH(𝜋∗Γ). (13.14)

It follows from Theorem 10.4.2(5) that this measure is independent of the choice of 𝜋.

Proposition 13.3.1 Let (Γ𝑖)𝑖∈𝐼 be a net in PSHNA (𝑋, 𝜃)>0 and Γ ∈ PSHNA (𝑋, 𝜃)>0.
Assume one of the following conditions holds:

(1) The net (Γ𝑖)𝑖∈𝐼 is decreasing and Γ = inf𝑖∈𝐼 Γ𝑖 . Assume that

vol Γ = lim
𝑖∈𝐼

vol Γ𝑖 . (13.15)

(2) The net (Γ𝑖)𝑖∈𝐼 is increasing and Γ = sup𝑖∈𝐼 ∗Γ𝑖 .

Then
DH(Γ𝑖) ⇀ DH(Γ). (13.16)

Proof We may assume that 𝑋 admits a smooth flag 𝑌•.
Assume (1). Note that (13.15) implies that

Γ−∞ = inf
𝑖∈𝐼

Γ𝑖−∞.

We want to derive (13.16) from Lemma 10.5.2. It boils down to prove the following:
For any 𝜏 < Γmax, we have

Δ𝑌• (𝜃, Γ𝑖𝜏)
𝑑Haus−−−−→ Δ𝑌• (𝜃, Γ𝜏).

This follows immediately from Theorem 10.4.2(1) and Proposition 3.1.10.
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The proof under the assumption (2) is similar. We only need to apply Lemma 10.5.3
instead of Lemma 10.5.2. □

Definition 13.3.2 When [𝜃] is a Hodge class and Γ is induced by a test configuration
as in Example 9.3.1 and Remark 9.3.1, our Duistermaat–Heckman measure coincides
with the more traditional definition of [BHJ17, Section 3.2]. This is explained in
[Xia25b, Remark 7.17].

13.4 Comparison with Boucksom–Jonsson’s theory

13.4.1 A brief recap of Boucksom–Jonsson’s theory

In this section, we briefly recall the non-Archimedean global pluripotential theory à
la Boucksom–Jonsson [BJ22a]. As our presentation is far from being complete, the
readers are strongly recommended to read their original paper before reading the
current section.

13.4.1.1 Valuations

Let 𝑋 be an irreducible reduced variety over C of dimension 𝑛. We recall the notion
of Berkovich analytification 𝑋An of 𝑋 with respect to the trivial valuation on C.

Definition 13.4.1 A (real-valued) valuation on 𝑋 (or a valuation of C(𝑋)) is a map
𝑣 : C(𝑋) → (−∞,∞] satisfying the following conditions:

(1) For 𝑓 ∈ C(𝑋), 𝑣( 𝑓 ) = ∞ if and only if 𝑓 = 0;
(2) For 𝑓 , 𝑔 ∈ C(𝑋), 𝑣( 𝑓 𝑔) = 𝑣( 𝑓 ) + 𝑣(𝑔);
(3) For 𝑓 , 𝑔 ∈ C(𝑋), 𝑣( 𝑓 + 𝑔) ≥ 𝑣( 𝑓 ) ∧ 𝑣(𝑔).

The set of valuations on 𝑋 is denoted by 𝑋val. The center of a valuation 𝑣 is the
scheme-theoretic point 𝑐 = 𝑐(𝑣) of 𝑋 such that 𝑣 ≥ 0 on O𝑋,𝑐 and 𝑣 > 0 on the
maximal ideal 𝔪𝑋,𝑐 of O𝑋,𝑐. The center is unique if exists. It exists if 𝑋 is proper.

In the remaining of this section, we assume that 𝑋 is projective.
As a set, 𝑋An is the set of semi-valuations on 𝑋 , in other words, real-valued

valuations 𝑣 on irreducible reduced subvarieties 𝑌 in 𝑋 that is trivial on C. We call 𝑌
the support of the semi-valuation 𝑣. In other words,

𝑋An =
∐
𝑌

𝑌val.

We will write 𝑣triv ∈ 𝑋An for the trivial valuation on 𝑋: 𝑣triv ( 𝑓 ) = 0 for any
𝑓 ∈ C(𝑋)× .

We endow 𝑋An with the coarsest topology such that
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(1) for any Zariski open subset 𝑈 ⊆ 𝑋 , the subset 𝑈An of 𝑋An consisting of
semi-valuations whose supports meet𝑈 is open;

(2) for each Zariski open subset 𝑈 ⊆ 𝑋 and each 𝑓 ∈ H0 (𝑈,O𝑋) (here O𝑋 is the
sheaf of regular functions), the map | 𝑓 | : 𝑈An → R sending 𝑣 to exp(−𝑣( 𝑓 )) is
continuous.

See [Ber93] for more details.
We will be most interested in divisorial valuations. Recall that a divisorial valuation

on 𝑋 is a valuation of the form 𝑡 ord𝐸 , where 𝑡 ∈ Q>0 and 𝐸 is a prime divisor over
𝑋 . The set of divisorial valuations on 𝑋 is denoted by 𝑋div. When Q>0 is replaced by
R>0, we can similarly define a space 𝑋div

R .
Given any coherent ideal 𝔞 on 𝑋 and any 𝑣 ∈ 𝑋An, we define

𝑣(𝔞) B min{𝑣( 𝑓 ) : 𝑓 ∈ 𝔞𝑐 (𝑣) } ∈ [0,∞], (13.17)

where 𝑐(𝑣) is the center of the valuation 𝑣 on 𝑋 .
Given any valuation 𝑣 on 𝑋 , the Gauss extension of 𝑣 is a valuation 𝜎(𝑣) on

𝑋 × A1:

𝜎(𝑣)
(∑︁
𝑖

𝑓𝑖𝑡
𝑖

)
B min

𝑖
(𝑣( 𝑓𝑖) + 𝑖). (13.18)

Here 𝑡 is the standard coordinate on A1 = SpecC[𝑡]. The key property is that when 𝑣
is a divisorial valuation, then so it 𝜎(𝑣). See [BHJ17, Lemma 4.2].

13.4.1.2 Non-Archimedean plurisubharmonic functions

Let 𝑋 be an irreducible complex projective variety of dimension 𝑛 and 𝐿 be a
holomorphic pseudo-effective Q-line bundle on 𝑋 . Through the GAGA morphism
𝑋An → 𝑋 of ringed spaces, 𝐿 can be pulled-back to an analytic line bundle 𝐿An on
𝑋 . The purpose of this section is to study the psh metrics on 𝐿An. We will follow the
approach of [BJ22a], which avoids the direct treatment of 𝐿An itself.

Following [BJ22a, Definition 2.18], we define Hgf
Q
(𝐿An), the set of (rational)

generically finite Fubini–Study functions 𝜙 : 𝑋An → [−∞,∞), that are of the follow-
ing form:

𝜙 =
1
𝑚

max
𝑗
{log |𝑠 𝑗 | + 𝜆 𝑗 }. (13.19)

Here𝑚 ∈ Z>0 is an integer such that 𝐿𝑚 is a line bundle, the 𝑠 𝑗 ’s are a finite collection
of non-vanishing sections in H0 (𝑋, 𝐿𝑚), and 𝜆 𝑗 ∈ Q. We followed the convention of
Boucksom–Jonsson by writing log |𝑠 𝑗 | (𝑣) = −𝑣(𝑠 𝑗 ).

Definition 13.4.2 ([BJ22a, Definition 4.1]) A plurisubharmonic metric (or psh
metric for short) on 𝐿An is a function 𝜙 : 𝑋An → [−∞,∞) that is not identically −∞,
and is the pointwise limit of a decreasing net (𝜙𝑖)𝑖∈𝐼 , where 𝜙𝑖 ∈ Hgf

Q
(𝐿An
𝑖
) for some

Q-line bundles 𝐿𝑖 on 𝑋 satisfying 𝑐1 (𝐿𝑖) → 𝑐1 (𝐿) in NS1 (𝑋)R.
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The set of psh metrics on 𝐿An is denoted by PSH(𝐿An). We endow PSH(𝐿An)
with the topology of pointwise convergence on 𝑋div. This topology is Hausdorff as
functions in PSH(𝐿An) are completely determined by their restriction on 𝑋div:

Theorem 13.4.1 ([BJ22a, Theorem 4.22]) Let 𝜙 ∈ PSH(𝐿An) and 𝜓 : 𝑋An →
[−∞,∞) be an usc function. Assume that 𝜙 ≤ 𝜓 on 𝑋div, then the same holds on
𝑋An.

Proposition 13.4.1 ([BJ22a, Theorem 4.7]) Let 𝜙, 𝜙′ ∈ PSH(𝐿An), then so is their
pointwise maximum 𝜙 ∨ 𝜙′.

Proposition 13.4.2 Let 𝐻 be an ample line bundle on 𝑋 . Consider 𝜙 ∈ PSH((𝐿 +
𝐻)An). Assume that for each 𝑚 ∈ Z>0, we have 𝜙 ∈ PSH((𝐿 + 𝑚−1𝐻)An), then
𝜙 ∈ PSH(𝐿An).

This is a special case of [BJ22a, (PSH2)] on Page 45.
Next we note that we may use sequences instead of nets in the definition of

PSH(𝐿An):
Theorem 13.4.2 ([BJ22a, Corollary 12.18]) Let 𝑆 be an ample line bundle on 𝑋 .
Let 𝜙 ∈ PSH(𝐿An). Then there is a sequence of rational numbers 𝜀𝑖 ↘ 0 and a
decreasing sequence 𝜙𝑖 ∈ Hgf

Q
((𝐿 + 𝜀𝑖𝑆)An) such that 𝜙 is the pointwise limit of 𝜙𝑖 ,

as 𝑖 →∞.

The space PSH(𝐿An) inherits most of the expected properties of (Archimedean)
psh functions ([BJ22a, Theorem 4.7]). However, the following compactness result is
not known:

Conjecture 13.4.1 ([BJ22a, §5]) Assume that 𝑋 is unibranch, then every bounded
from above increasing net of elements in PSH(𝐿An) converges in PSH(𝐿An).
This prediction is equivalent to so-called envelope conjecture [BJ22a, Conjecture 5.14]:
the regularized supremum of a bounded from above family of functions in PSH(𝐿An)
lies in PSH(𝐿An). See [BJ22a, Theorem 5.11] for the proof of the equivalence. This
conjecture is proved when 𝑋 is smooth and 𝐿 is nef in [BJ22a]. More recently, in
[BJ22b], Boucksom–Jonsson further established the case when 𝑋 is smooth and 𝐿 is
pseudo-effective.

13.4.2 The analytifications

Let 𝑋 be a connected projective manifold of dimension 𝑛. Let 𝜃 be a closed smooth
real (1, 1)-form on 𝑋 representing a pseudo-effective cohomology class.

13.4.2.1 The transcendental setting

Definition 13.4.3 For 𝜑 ∈ PSH(𝑋, 𝜃), we define the analytification 𝜑An : 𝑋An →
[−∞, 0] as follows:
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𝜑An (𝑣) B −𝑣(𝜑) = − lim
𝑘→∞

1
𝑘
𝑣 (I(𝑘𝜑)) . (13.20)

By Theorem 1.4.2 and Fekete’s lemma, the limit in (13.20) exists.
Note that we can also write

𝜑An (𝑣) = inf
𝑘∈Z>0

−2−𝑘𝑣
(
I(2𝑘𝜑)

)
. (13.21)

When 𝑣 = 𝑡 ord𝐸 for some prime divisor 𝐸 over 𝑋 , 𝜑An (𝑣) = −𝑡𝜈(𝜑, 𝐸) by
Proposition 1.4.4.

Definition 13.4.4 Let Γ ∈ PSHNA (𝑋, 𝜃). We define the analytification ΓAn : 𝑋div →
[−∞,∞) of Γ as follows: For any 𝜔 ∈ Käh(𝑋), we define

ΓAn (𝑣) B sup
𝜏≤Γmax

(
Γ𝜔,An
𝜏 (𝑣) + 𝜏

)
. (13.22)

Clearly, (13.22) is independent of the choice of 𝜔.
Note that (13.22) can be equivalently written as

ΓAn (𝑣) = sup
𝜏≤Γmax

(
Γ𝜔,An
𝜏 (𝑣) + 𝜏

)
= sup
𝜏∈R

(
Γ𝜔,An
𝜏 (𝑣) + 𝜏

)
with (−∞)An (𝑣) = −∞ understood.

Proposition 13.4.3 Let Γ ∈ PSHNA (𝑋, 𝜃)>0 with Γmax ≤ 0. Let Ψ be the complexifi-
cation of Γ∗. Then

ΓAn (𝑣) = −𝜎(𝑣) (Ψ) ∀𝑣 ∈ 𝑋div. (13.23)

See Definition 4.1.2 for the definition of the complexification Ψ ∈ QPSH(𝑋 × Δ).
Note that since Γmax ≤ 0, by Corollary 9.2.3 and Theorem 1.2.1, Ψ extends uniquely
to a quasi-psh function on 𝑋 × Δ.

Proof Recall that

Ψ(𝑥, 𝛿) = sup
𝜏≤Γmax

(𝜓𝜏 (𝑥) − log |𝛿 |2𝜏) for 𝑥 ∈ 𝑋, 𝛿 ∈ Δ∗.

By (13.18), we have 𝜎(𝑣) (log |𝛿 |2) = 1 and 𝜎(𝑣) (Γ𝜏) = 𝑣(Γ𝜏) for all 𝜏 ≤ Γmax. So
we have that

𝜎(𝑣) (Γ𝜏 (𝑥) − log |𝛿 |2𝜏) = 𝑣(Γ𝜏) − 𝜏.

Lastly, since 𝜎(𝑣) is a divisorial valuation on 𝑋 ×Δ, by Corollary 1.4.1, we conclude
(13.23). □

Definition 13.4.5 Let 𝑁 ∈ N, and 𝐴0, . . . , 𝐴𝑁 be a finite collection of elements
in PSH(𝑋, 𝜃), and 𝜏0 > 𝜏1 > · · · > 𝜏𝑁 be finitely many real numbers. Then the
piecewise linear curve 𝐴 = (𝐴𝜏)𝜏∈R in PSH(𝑋, 𝜃) ∪ {−∞} associated with these
data is the affine interpolation of these data:
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(1) 𝐴𝜏𝑖 = 𝐴𝑖 for 𝑖 = 0, . . . , 𝑁;
(2) 𝐴𝜏 = 𝐴𝜏𝑁 for 𝜏 ≤ 𝜏𝑁 ;
(3) for 𝑡 ∈ (0, 1) and 𝑖 = 0, . . . , 𝑁 − 1, we have

𝐴(1−𝑡 )𝜏𝑖+𝑡 𝜏𝑖+1 = (1 − 𝑡)𝐴𝜏𝑖 + 𝑡𝐴𝜏𝑖+1 ;

(4) 𝐴𝜏 ≡ −∞ for 𝜏 > 𝜏0.

The analytification of 𝐴 is the function 𝐴An : 𝑋An → [−∞,∞) defined as follows:

𝐴An (𝑣) B sup
𝜏≤𝜏0

(𝐴An (𝑣) + 𝜏) = max
𝑖=0,...,𝑁

(
𝐴An
𝜏𝑖
(𝑣) + 𝜏𝑖

)
∀𝑣 ∈ 𝑋An. (13.24)

We also say 𝐴 = (𝐴𝜏)𝜏≤𝜏0 is a piecewise linear curve in PSH(𝑋, 𝜃).

Remark 13.4.1 Note that 𝜏 ↦→ 𝐴𝜏 is upper semicontinuous, but not necessarily
concave. Let (𝐴′𝜏)𝜏∈R be the upper concave envelope of 𝜏 ↦→ 𝐴𝜏 . Then it can be
inductively constructed as follows:

(1) For 𝜏 ∈ (𝜏0,∞), we let 𝐴′𝜏 ≡ −∞;
(2) we set 𝐴′𝜏0

= 𝐴𝜏0 ;
(3) define inductively for 𝑗 = 0, . . . , 𝑁 − 1 the following: For 𝜏 ∈ [𝜏𝑗+1, 𝜏𝑗 ), we set

𝐴′𝜏 = max
𝑖= 𝑗+1,...,𝑁

(
𝜏𝑗 − 𝜏
𝜏𝑗 − 𝜏𝑖

𝐴𝜏𝑖 +
𝜏𝑗 − 𝜏
𝜏𝑗 − 𝜏𝑖

𝐴′𝜏 𝑗

)
∨ 𝐴′𝜏 𝑗 ;

(4) for 𝜏 ∈ (−∞, 𝜏𝑁 ), we set 𝐴′𝜏 = 𝐴𝜏𝑁 .

This construction is just a reformulation of the general formula Proposition A.1.2.
In particular, 𝐴′𝜏 ∈ PSH(𝑋, 𝜃) for all 𝜏 ≤ 𝜏0.
Note that 𝐴′ is not necessarily piecewise linear.

Lemma 13.4.1 Let 𝐴 be a piecewise linear curve in PSH(𝑋, 𝜃). Let (𝐴′𝜏)𝜏∈R be the
upper concave envelope of 𝜏 ↦→ 𝐴𝜏 . Then 𝐴̃ B (𝑃𝜃 [𝐴′𝜏]I)𝜏<𝜏0 ∈ PSHNA (𝑋, 𝜃).
Moreover,

𝐴An = 𝐴̃An on 𝑋div. (13.25)

Here 𝜏0 is as in Definition 13.4.5.

Proof We continue to use the notations in Definition 13.4.5. The fact that 𝐴̃ ∈
PSHNA (𝑋, 𝜃) follows from Remark 13.4.1. In order to prove (13.25), we fix 𝑣 ∈ 𝑋div.
By Remark 13.4.1,

𝜏 ↦→
(
𝑃𝜃 [𝐴′𝜏]I

)An (𝑣) =
(
𝐴′𝜏

)An (𝑣)

is just the upper concave envelope of

𝜏 ↦→ 𝐴An
𝜏 (𝑣).

Therefore, (13.25) follows. □
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13.4.2.2 The algebraic setting

Let 𝐿 be a Q-line bundle on 𝑋 and ℎ be a Hermitian metric on 𝐿 with 𝜃 = 𝑐1 (𝐿, 𝜃).

Lemma 13.4.2 For any 𝜑 ∈ PSH(𝑋, 𝜃) we have that 𝜑An ∈ PSH(𝐿An).

Proof After replacing 𝐿 with a sufficiently high power, we may assume that 𝐿 is a line
bundle. Take a very ample line bundle 𝐻 on 𝑋 . By Siu’s uniform global generation
theorem [Siu98], [Dem12a, Theorem 6.27] there exists 𝑏 > 0 large enough so that
𝐻𝑏 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑) is globally generated for all 𝑘 > 0. Let {𝑠𝑖}𝑖 be a finite set of
global sections that generate the sheaf 𝐻𝑏 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑). Then

𝑣(I(𝑘𝜑)) = min
𝑖
𝑣(𝑠𝑖).

It follows that 𝑣 ↦→ −𝑘−1𝑣 (I(𝑘𝜑)) lies in Hgf
Q
((𝐿 + 𝑏

𝑘
𝐻)An). Using (13.21), we

conclude that 𝜑An ∈ PSH(𝐿An). □

Lemma 13.4.3 Let Γ be a piecewise linear curve in PSH(𝑋, 𝜃). Then ΓAn ∈
PSH(𝐿An).

Proof The result follows from (13.24), Proposition 13.4.1 and Lemma 13.4.2. □

Lemma 13.4.4 Let 𝑅 be a commutative C-algebra of finite type and 𝐼 be an ideal of
𝑅[𝑡]. If for any 𝑎 ∈ 𝑆1, 𝑎∗𝐼 ⊆ 𝐼, then 𝐼 is stable under the C∗-action. Moreover, there
are ideals 𝐼0 ⊆ 𝐼1 ⊆ · · · ⊆ 𝐼𝑚 in 𝑅 so that

𝐼 = 𝐼0 + 𝐼1𝑡 + · · · + 𝐼𝑚 (𝑡𝑚), (13.26)

Proof It suffices to argue that 𝐼 can be expanded as in (13.26). To see this, assume
that 𝑎 ∈ 𝐼. We can write 𝑎 = 𝑎0 + 𝑎1𝑡 + · · · + 𝑎𝑚𝑡𝑚 with 𝑎𝑖 ∈ 𝑅. Then our assumption
implies that

∑
𝑖 𝑎𝑖𝜌

𝑖𝑡𝑖 ∈ 𝐼 as well for all 𝜌 ∈ 𝑆1. So by the Lagrange interpolation
formula, 𝑎𝑖𝑡𝑖 ∈ 𝐼 for all 𝑖. Therefore, we can write 𝐼 as 𝐼0 + 𝐼1𝑡 + 𝐼2𝑡2 + . . . for some
ideals 𝐼0 ⊆ 𝐼1 ⊆ . . . in 𝑅. But as 𝑅 is noetherian, there is 𝑚 ≥ 0 so that 𝐼𝑚′ = 𝐼𝑚 for
𝑚′ > 𝑚. (13.26) follows. □

Lemma 13.4.5 Let 𝑋 be a complex projective variety and 𝑝 : 𝑋 × C → 𝑋 be the
natural projection. Assume that I is an analytic coherent ideal sheaf on 𝑋 × C.
Assume that I|𝑋×C∗ = 𝑝∗J for some coherent ideal sheaf J on 𝑋 . Then I is the
analytification of an algebraic coherent ideal sheaf.

Proof Let 𝑞 : 𝑋 × (P1 \ {0}) → 𝑋 be the natural projection. As C∗ ⊂ P1 \ {0} we
can glue 𝑞∗J with I to get an analytic coherent ideal sheaf on 𝑋 × P1. By the GAGA
principle, this ideal sheaf is necessarily algebraic, hence so is its restriction to 𝑋 ×C.□

Next we point out a version of Siu’s uniform global generatedness lemma [Siu88]
that we will need in the proof of our next theorem:
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Lemma 13.4.6 Let 𝐿 be a big line bundle on 𝑋 such that 𝑐1 (𝐿) = {𝜃} and Φ ∈
PSH(𝑋 ×Δ, 𝑝∗1𝜃), where Δ is the unit disk. Let 𝐺 be an ample line bundle on 𝑋 . Then
there exists 𝑘 > 0, only dependent on 𝑋 and 𝐺 such that 𝑝∗1 (𝐺

𝑘 ⊗ 𝐿𝑚) ⊗ I(𝑚Φ) is
globally generated for all 𝑚 ∈ N.

Proof The argument for this is exactly the same as the one in [BBJ21, Lemma 5.6]
with Nadal’s vanishing replaced by the family version proved by Matsumura in
[Mat22, Theorem 1.7]. □

Proposition 13.4.4 Let 𝜙 ∈ PSH(𝑋, 𝜃)>0 be a model potential and ℓ ∈ R(𝑋, 𝜃; 𝜙)
with sup𝑋 ℓ1 ≤ 0. Let Φ be the complexification of ℓ. Then the function

𝑣 ↦→ −𝜎(𝑣) (Φ) for 𝑣 ∈ 𝑋div

admits a unique extension to an element in PSH(𝐿An).

Proof We may assume that 𝐿 is a line bundle. Observe that the extension is unique if
it exists by Theorem 13.4.1.

Let 𝑝1 : 𝑋×C→ 𝑋 be the projection. Thanks to Proposition 1.4.5 and Lemma 8.5.3,
for each 𝑚 ∈ Z>0, we have

I(𝑚Φ) |𝑋×Δ∗ = 𝑝∗1I(𝑚𝜙) |𝑋×Δ∗ .

In particular, I(𝑚Φ) admits a C∗-invariant extension to a coherent ideal sheaf on
𝑋 × C, namely I(𝑚𝑝∗1𝜙).

From Lemma 13.4.4 and Lemma 13.4.5, we get that

I(𝑚Φ) = 𝔞0 + 𝔞1𝑡 + · · · + 𝔞𝑁−1𝑡
𝑁−1 + 𝔞𝑁 (𝑡𝑁 ) , (13.27)

where the 𝔞𝑖’s are coherent ideal sheaves on 𝑋 .
Using Lemma 13.4.6, there exists an ample line bundle 𝑇 over 𝑋 such that

𝑝∗1𝑇 ⊗ 𝐿
𝑚 ⊗ I(𝑚Φ) is globally generated, which is equivalent to 𝑇 ⊗ 𝐿𝑚 ⊗ 𝔞𝑖 being

globally generated for all 𝑖.4
We define

𝜑𝑚 (𝑣) B −
1
𝑚
𝜎(𝑣) (I(𝑚Φ)) = − 1

𝑚
min
𝑖
(𝑣(𝔞𝑖) + 𝑖), 𝑣 ∈ 𝑋div.

From the right-hand side of the formula, 𝜑𝑚 can be extended to an element in
Hgf
Q
((𝐿 + 𝑚−1𝑇)An), which we denote by the same symbol.

For 𝑣 ∈ 𝑋div,

−𝜎(𝑣) (Φ) = lim
𝑚→∞

− 1
2𝑚
𝜎(𝑣) (I(2𝑚Φ)) = lim

𝑚→∞
𝜑2𝑚 (𝑣)

and the right-hand side defines an element in PSH(𝐿An) by definition, since {𝜑2𝑚 }𝑚
is decreasing. □

4 In contrast with the case where 𝜙 is bounded, explored in [BBJ21], 𝔞𝑁 ≠ O𝑋 in general.
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Corollary 13.4.1 Let Γ ∈ PSHNA (𝑋, 𝜃). Then ΓAn defined in Definition 13.4.4 admits
a unique extension to PSH(𝐿An).

The extension will be denoted by the same notation ΓAn.

Proof Observe that the extension is unique if it exists by Theorem 13.4.1. We may
assume that Γmax = 0 without loss of generality.

When Γ ∈ PSHNA (𝑋, 𝜃)>0, our assertion follows from Proposition 13.4.4 and
Proposition 13.4.3.

In general, fix an ample line bundle 𝐻 on 𝑋 and a Kähler form 𝜔 ∈ 𝑐1 (𝐻). Then
we know that

ΓAn =

(
Γ𝑚

−1𝜔
)An
∈ PSH((𝐿 + 𝑚−1𝐻)An)

for any 𝑚 ∈ Z>0. Therefore, ΓAn ∈ PSH(𝐿An) by Proposition 13.4.2. □

13.4.3 The comparison theorem

Let 𝑋 be a connected projective manifold of dimension 𝑛. Let 𝐿 be a pseudo-effective
Q-line bundle on 𝑋 and ℎ be a Hermitian metric on 𝐿 with 𝜃 = 𝑐1 (𝐿, ℎ).

Thanks to Corollary 13.4.1, we already have a map

PSHNA (𝑋, 𝜃) → PSH(𝐿An), Γ ↦→ ΓAn. (13.28)

We observe that for Γ ∈ PSHNA (𝑋, 𝜃) and a Kähler form 𝜔 on 𝑋 , we have(
𝑃𝜃+𝜔 [Γ]I

)An
= ΓAn.

Also observe that
Γmax = ΓAn (𝑣triv), (13.29)

Lemma 13.4.7 The map (13.28) is order preserving. Moreover, suppose that Γ, Γ′ ∈
PSHNA (𝑋, 𝜃) satisfies that ΓAn ≤ Γ′An, then Γ ≤ Γ′.

In particular, the map (13.28) is injective.

Proof The map (13.28) is order preserving by definition. Let us take Γ, Γ′ ∈
PSHNA (𝑋, 𝜃) with ΓAn ≤ Γ′An. Fix a Kähler form 𝜔 on 𝑋 .

Let 𝑣 ∈ 𝑋div and 𝑡 ∈ Q>0. Then, using (13.22) we notice that

𝑡ΓAn
(
𝑡−1𝑣

)
= sup
𝜏∈R

( (
Γ𝜔𝜏

)An (𝑣) + 𝑡𝜏
)
. (13.30)

A similar equality holds for Γ′. Therefore, by Corollary A.2.1, we have(
Γ𝜔𝜏

)An ≤
(
Γ′𝜔𝜏

)An

for all 𝜏 ∈ R. It follows that
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Γ𝜔𝜏 ≤ Γ′𝜔𝜏

for all 𝜏 ∈ R. Our assertion follows. □

Lemma 13.4.8 Let 𝜙 ∈ Hgf
Q
(𝐿An). Then there is a piecewise linear curve 𝐴 in

PSH(𝑋, 𝜃) with 𝜙 = 𝐴An. In particular, 𝜙 is in the image of (13.28).

Note that from the proof below, the test curve Γ corresponding to 𝜙 satisfies the
following: For any 𝜏 ≤ Γmax, Γ𝜏 is elementary. See Definition 6.1.3 for the definition
of elementary metrics.

Proof Let us write

𝜙 =
1
𝑚

max
𝑖=1,...,𝑀

(log |𝑠𝑖 | + 𝜆𝑖) , (13.31)

where𝑚 ∈ Z>0, 𝑠1, . . . , 𝑠𝑀 are a finite number of sections of 𝐿𝑚 and 𝜆1, . . . , 𝜆𝑀 ∈ Q.
Write 𝐼𝜆 for the set of 𝑖 such that 𝜆𝑖 = 𝜆. We denote the finitely many 𝜆 so that 𝐼𝜆

is non-empty as 𝜏0 > · · · > 𝜏𝑁 . For each 𝑖 = 0, . . . , 𝑁 , we write

𝐴𝜏𝑖 =
1
𝑚

max
𝑗∈𝐼𝜏𝑖

(
log |𝑠 𝑗 |2ℎ𝑚 + 𝜏𝑖

)
.

We define 𝐴 as the piecewise linear curve associated with the 𝐴𝜏𝑖 ’s and the 𝜏𝑖’s. Then
clearly 𝜙 = 𝐴An.

The final assertion follows from Lemma 13.4.1. □

Proposition 13.4.5 Let (Γ𝑖)𝑖∈𝐼 be a decreasing net in PSHNA (𝑋, 𝜃). Assume that
(13.8) is satisfied. Then (

inf
𝑖∈𝐼

Γ𝑖

)An
= inf
𝑖∈𝐼

ΓAn
𝑖 .

Proof Take a Kähler form 𝜔 on 𝑋 . We need to show that(
inf
𝑖∈𝐼

Γ𝑖,𝜔

)An
= inf
𝑖∈𝐼

ΓAn
𝑖 .

Therefore, after replacing 𝜃 by 𝜃 + 𝜔, we may assume that Γ𝑖 ∈ PSH(𝑋, 𝜃)>0 for all
𝑖 ∈ 𝐼 and inf𝑖∈𝐼 Γ𝑖 ∈ PSH(𝑋, 𝜃)>0. Fix 𝑣 ∈ 𝑋div. By Theorem 13.4.1, it suffices to
prove that

sup
𝜏∈R

((
inf
𝑖∈𝐼

Γ𝑖,𝜏

)An
(𝑣) + 𝜏

)
= inf
𝑖∈𝐼

sup
𝜏∈R

(
ΓAn
𝑖,𝜏 (𝑣) + 𝜏

)
. (13.32)

But thanks to Proposition 3.1.10, we have(
inf
𝑖∈𝐼

Γ𝑖,𝜏

)An
(𝑣) = inf

𝑖∈𝐼
ΓAn
𝑖,𝜏 (𝑣),

so (13.32) is a consequence of Proposition A.2.3. □

Theorem 13.4.3 The map (13.28) is an order preserving bĳection.
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Proof The map (13.28) is an order preserving injection by Lemma 13.4.7. It remains to
prove that it is surjective. Let 𝜙 ∈ PSH(𝐿NA). We want to construct Γ ∈ PSHNA (𝑋, 𝜃)
with ΓAn = 𝜙.

Let 𝐻 be an ample line bundle and (𝜖𝑖)𝑖 be a decreasing sequence of rational
numbers with limit 0, 𝜙𝑖 ∈ Hgf

Q
((𝐿 + 𝜖𝑖𝐻)An) such that

𝜙 = inf
𝑖>0

𝜙𝑖 .

The existence of these data is guaranteed by Theorem 13.4.2. Fix a Kähler form
𝜔 ∈ 𝑐1 (𝐻),

Thanks to Lemma 13.4.8, we can find Γ𝑖 ∈ PSHNA (𝑋, 𝜃 + 𝜖𝑖𝜔) with (Γ𝑖)An = 𝜙𝑖 .
It follows from Lemma 13.4.7 that

Γ𝑖 ≥ 𝑃𝜃+𝜖𝑖𝜔
[
Γ𝑖+1

]
I ≥ Γ𝑖+1.

Therefore, for any 𝜔′ ∈ Käh(𝑋), the sequence (𝑃𝜃+𝜔′
[
Γ𝑖

]
I)𝑖 is decreasing. We let

Γ𝜔
′
= inf
𝑖>0

𝑃𝜃+𝜔′
[
Γ𝑖

]
I ∈ PSHNA (𝑋, 𝜃 + 𝜔′).

Note that the infimum is defined thanks to (13.29). It follows from Proposition 13.4.5
that (

Γ𝜔
′
)An

= 𝜙.

From this, it is clear that for 𝜔′, 𝜔′′ ∈ Käh(𝑋) with 𝜔′ ≤ 𝜔′′, we have

𝑃𝜃+𝜔′′
[
Γ𝜔

′
]
I
= Γ𝜔

′′
.

It follows that (Γ𝜔′ )𝜔′∈Käh(𝑋) defines an element Γ in PSHNA (𝑋, 𝜃) and ΓAn = 𝜙.□

Theorem 13.4.4 Under the bĳection Lemma 13.4.7, the operations on PSHNA (𝑋, 𝜃)
defined in Section 13.2 all correspond to the corresponding operations on PSH(𝐿An)
in Boucksom–Jonsson’s theory.

The meaning should be clear for all operations except for the trace operator, and the
proofs are elementary, as we have seen in Proposition 13.4.5 in the case of infimum
operator. We shall only restate and prove the case of trace operators, and leave the
remaining arguments to the readers.5

Theorem 13.4.5 Let 𝑌 ⊆ 𝑋 be an irreducible analytic subset. Consider an element
Γ ∈ PSHNA (𝑋, 𝜃) with well-defined restriction to 𝑌 . Then

Tr𝑌 (Γ)An |𝑌div = ΓAn |𝑌div . (13.33)

Observe that there is a canonical identification 𝑌div = 𝑌div. Recall that a generalized
Fubini–Study metric is defined in Definition 1.8.7.

5 In case you find any of the arguments non-trivial, please refer to [Xia25a] for the full details.
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Proof We may assume that Γ ∈ PSHNA (𝑋, 𝜃)>0. Let 𝜙 = ΓAn ∈ PSH(𝐿An). By
Lemma 13.4.9, 𝜙(𝑣𝑌,triv) ≠ −∞.

Take an ample line bundle 𝑆 on 𝑋 , a Kähler form 𝜔 in 𝑐1 (𝑆). Write 𝜙 as
the decreasing limit of a sequence 𝜙𝑖 of elements in Hgf

Q
((𝐿 + 𝑖−1𝑆)An) as in

Theorem 13.4.2.
Take Γ𝑖 ∈ PSHNA (𝑋, 𝜃 + 𝑖−1𝜔) such that Γ𝑖,An = 𝜙𝑖 . Note that by Lemma 13.1.1,

Γ𝑖 ∈ PSHNA (𝑋, 𝜃 + 𝑖−1𝜔)>0.
It follows from Proposition 13.4.5 (applied to the images of Γ𝑖 in PSHNA (𝑋, 𝜃+𝜔))

that for any 𝜏 < Γmax, we have

inf
𝑖→∞

Γ𝑖𝜏 = Γ𝜏 .

In particular, Γ𝑖𝜏
𝑑𝑆,𝜃+𝜔−−−−−→ Γ𝜏 for all 𝜏 < Γmax.

By Lemma 13.4.9 again, each Γ𝑖 has non-trivial restriction to 𝐸 . By Proposi-
tion 8.2.2, for any Kähler form 𝜔′ on 𝑌 satisfying 𝜔′ ≥ 𝜔 |𝑌̃ we have

Tr𝑌
(
Γ
𝑖, 𝜃 |𝑌̃+𝜔′
𝜏

)
𝑑𝑆−−→ Tr𝑌

(
Γ
𝜃 |𝑌̃+𝜔′
𝜏

)
for any 𝜏 < (Tr𝑌 (Γ))max. Thanks to Theorem 6.2.4,

Tr𝑌 (Γ)An (𝑐 ord𝐹) = inf
𝑖≥1

Tr𝑌 (Γ)𝑖,An (𝑐 ord𝐹)

for any 𝑐 ord𝐹 ∈ 𝑌div. In particular, it suffices to prove (13.33) with Γ𝑖 in place of Γ.
In other words, we have reduced to the case where 𝜙 ∈ Hgf

Q
(𝐿) and 𝐿 is big.

Let Γ ∈ PSH(𝑋, 𝜃)>0 with ΓAn = 𝜙. By Lemma 13.4.8, we can find a concave
curve (Γ′𝜏)𝜏≤Γmax with Γ′𝜏 being a generalized Fubini–Study metric for each 𝜏 ≤ Γmax
and that

Γ𝜏 = 𝑃𝜃 [Γ′𝜏] .

It follows that for any 𝑐 ord𝐹 ∈ 𝐸div,

𝜙|𝑌An (𝑐 ord𝐹) = sup
𝜏<Γmax

(
Γ′𝜏

An (𝑐 ord𝐹) + 𝜏
)

= sup
𝜏<Γmax

( (
Γ′𝜏 |𝑌̃

)An (𝑐 ord𝐹) + 𝜏
)

= sup
𝜏<Γmax

(
Tr𝑌 (Γ′𝜏)An (𝑐 ord𝐹) + 𝜏

)
= sup
𝜏<Γmax

(
Tr𝑌 (Γ𝜏)An (𝑐 ord𝐹) + 𝜏

)
=Tr𝑌 (Γ)An (𝑐 ord𝐹).

The third equality follows from Proposition 8.2.1. It remains to justify the second line.
Namely, we want to show that for any generalized Fubini–Study metric 𝜑, we have
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𝜑An (𝑐 ord𝐹) =
(
𝜑 |𝑌̃

)
(𝑐 ord𝐹). (13.34)

We could immediately reduce to the case where 𝜑 is a Fubini–Study metric, and then
to the case

𝜑 = log |𝑠 |2ℎ0
,

where 𝑠 is a holomorphic section of 𝐿, not vanishing identically on 𝑌 , in which case
(13.34) is obvious. □

Lemma 13.4.9 Let Γ ∈ PSHNA (𝑋, 𝜃) and 𝑌 ⊆ 𝑋 be an irreducible analytic subset.
Then the following are equivalent:

(1) ΓAn (𝑣𝑌,triv) ≠ −∞;
(2) ΓAn |𝑌An . −∞;
(3) Γ has a well-defined restriction to 𝑌 .

Here 𝑣𝑌,triv denotes the trivial valuation of C(𝑌 ).

Proof The equivalence between (1) and (2) is a simple consequence of the maximum
principle [BJ22a, Lemma 1.4(i)].

To see the equivalence between (1) and (3), it suffices to observe that for any
𝜑 ∈ PSH(𝑋, 𝜃),

𝜑An (𝑣𝑌,triv) =
{
−∞, if 𝜈(𝜑,𝑌 ) > 0;

0, if 𝜈(𝜑,𝑌 ) = 0.



Chapter 14
Partial Bergman kernels

I speak twelve languages: English is the bestest.
— Stefan Bergmana

a Stefan Bergman (1895–1977), bearing a very Scandinavian
name, was a Polish-American mathematician best known for his
work in complex analysis, especially in several complex variables.
He introduced the Bergman kernel, a fundamental concept in
complex analysis that has influenced many areas of mathematics
and theoretical physics.

Bergman was born in Poland (then part of the Russian Empire),
and studied in Berlin. He fled Europe during World War II and
eventually settled in the United States.

In this chapter, we prove the convergence of the partial Bergman kernels under very
mild assumptions. The partial Bergman kernels are simply the Bergman kernels
defined the 𝐿2-integrable holomorphic sections of a line bundle with respect to a
given psh weight. Our main result is Theorem 14.2.1, extending the celebrated result
[BBWN11]. We strongly recommend that the readers read the well-written paper
[BBWN11] before starting this chapter.

14.1 Partial envelopes

In this section, let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and
𝐾 ⊆ 𝑋 be a closed non-pluripolar set. Let 𝜃 be a smooth closed real (1, 1)-form on
𝑋 representing a pseudo-effective cohomology class. Fix 𝜑 ∈ PSH(𝑋, 𝜃).

Definition 14.1.1 Given a function 𝑣 : 𝐾 → [−∞,∞), we introduce the relative
𝑃-envelope of 𝜑 (with respect to 𝐾, 𝑣, 𝜃) as

𝑃𝜃,𝐾 [𝜑] (𝑣) B sup∗ {𝜂 ∈ PSH(𝑋, 𝜃) : 𝜂 |𝐾 ≤ 𝑣 and 𝜂 ⪯ 𝜑} . (14.1)

Similarly, we define the relative I-envelope of 𝜑 (with respect to 𝐾, 𝑣, 𝜃) as

𝑃𝜃,𝐾 [𝜑]I (𝑣) B sup∗ {𝜂 ∈ PSH(𝑋, 𝜃) : 𝜂 |𝐾 ≤ 𝑣 and 𝜂 ⪯I 𝜑} . (14.2)

Observe that when 𝑣 is bounded, neither envelope is identically −∞. When 𝐾 = 𝑋

and 𝑣 = 0, these definitions reduce to the usual 𝑃-envelope and I-envelope of 𝜑
studied in Chapter 3.

It would be helpful to consider the following auxiliary functions:

367
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𝑃′𝜃,𝐾 [𝜑] (𝑣) B sup {𝜂 ∈ PSH(𝑋, 𝜃) : 𝜂 |𝐾 ≤ 𝑣 and 𝜂 ⪯ 𝜑} ,
𝑃′𝜃,𝐾 [𝜑]I (𝑣) B sup {𝜂 ∈ PSH(𝑋, 𝜃) : 𝜂 |𝐾 ≤ 𝑣 and 𝜂 ⪯I 𝜑} .

We note the following maximum principles, that follow from the above definitions:

Lemma 14.1.1 Let 𝑣 ∈ 𝐶0 (𝐾). Let 𝜂 ∈ PSH(𝑋, 𝜃). Assume that 𝜂 ⪯ 𝜑, then

sup
𝐾

(𝜂 − 𝑣) = sup
{𝜂≠−∞}

(𝜂 − 𝑃′𝜃,𝐾 [𝜑] (𝑣)) = sup
{𝑃′
𝜃,𝐾
[𝜑 ] (𝑣)≠−∞}

(
𝜂 − 𝑃′𝜃,𝐾 [𝜑] (𝑣)

)
.

(14.3)

Proof We prove the first equality at first. We write 𝑆 = {𝜂 = −∞}.
By definition, 𝑃′

𝜃,𝐾
[𝜑] (𝑣) |𝐾 ≤ 𝑣, so(
ℎ − 𝑃′𝜃,𝐾 [𝜑] (𝑣)

)���
𝐾\𝑆
≥ 𝜂 |𝐾\𝑆 − 𝑣 |𝐾\𝑆 .

This implies that
sup
𝐾

(𝜂 − 𝑣) ≤ sup
𝑋\𝑆
(𝜂 − 𝑃′𝜃,𝐾 [𝜑] (𝑣)).

Conversely, observe that sup𝐾 (𝜂 − 𝑣) > −∞ as 𝐾 is non-pluripolar. Let 𝜂′ B
𝜂 − sup𝐾 (𝜂 − 𝑣), then 𝜂′ is a candidate in the definition of 𝑃′

𝜃,𝐾
[𝜑] (𝑣), hence

𝜂′ ≤ 𝑃′
𝜃,𝐾
[𝜑] (𝑣), namely,

𝜂 − sup
𝐾

(𝜂 − 𝑣) ≤ 𝑃′𝜃,𝐾 [𝜑] (𝑣),

the latter implies that

sup
𝐾

(𝜂 − 𝑣) ≥ sup
𝑋\𝑆
(𝜂 − 𝑃′𝜃,𝐾 [𝜑] (𝑣)),

finishing the proof of the first identity.
We have {𝑃′

𝜃,𝐾
[𝜑] (𝑣) = −∞} ⊆ 𝑆, and we notice that points in 𝑆\{𝑃′

𝜃,𝐾
[𝜑] (𝑣) =

−∞} do not contribute to the supremum of 𝜂−𝑃′
𝜃,𝐾
[𝜑] (𝑣) on 𝑋\{𝑃′

𝜃,𝐾
[𝜑] (𝑣) = −∞},

hence the last equality of (14.3) also follows. □

Next, we make the following observations about the singularity types of our
envelopes:

Lemma 14.1.2 For any 𝑣 ∈ 𝐶0 (𝐾) we have

𝑃𝜃,𝐾 [𝜑] (𝑣) ∼ 𝑃𝜃 [𝜑], 𝑃𝜃,𝐾 [𝜑]I (𝑣) ∼ 𝑃𝜃 [𝜑]I .

If 𝜑 has analytic singularities, we have

𝑃𝜃,𝐾 [𝜑] (𝑣) = 𝑃𝜃,𝐾 [𝜑]I (𝑣). (14.4)
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Proof Let 𝐶 > 0 such that −𝐶 ≤ 𝑣 ≤ 𝐶. Then

𝑃𝜃 [𝜑] − 𝐶 ≤ 𝑃𝜃,𝐾 [𝜑] (𝑣).

Since 𝐾 is non-pluripolar, for 𝜂 ∈ PSH(𝑋, 𝜃) the condition 𝜂 |𝐾 ≤ 𝑣 ≤ 𝐶 implies that
𝜂 ≤ 𝐶̃ on 𝑋 for some 𝐶̃ B 𝐶̃ (𝐶, 𝐾) > 0 by Remark 1.5.2. This implies that

𝑃𝜃,𝐾 [𝜑] (𝑣) ≤ 𝑃𝜃 [𝜑] + 𝐶̃,

giving
𝑃𝜃,𝐾 [𝜑] (𝑣) ∼ 𝑃𝜃 [𝜑] .

The exact same argument applies in case of the relative I-envelope.
Next assume that 𝜑 has analytic singularities, then we have that

𝜑 ∼ 𝑃𝜃 [𝜑]I

by Proposition 3.2.10. In particular, for 𝜂 ∈ PSH(𝑋, 𝜃), 𝜂 ⪯ 𝜑 if and only if
𝜂 ⪯ 𝑃𝜃 [𝜑]I . So (14.4) follows. □

Corollary 14.1.1 Let 𝑣 ∈ 𝐶0 (𝑋). Then

𝑃𝜃,𝐾 [𝜑]I (𝑣) = 𝑃𝜃,𝑋
[
𝑃𝜃,𝐾 [𝜑]I (𝑣)

]
I (𝑣).

Proof By definition, we have

𝑃𝜃,𝑋 [𝑃𝜃,𝐾 [𝜑]I (𝑣)]I (𝑣)
= sup∗

{
𝜂 ∈ PSH(𝑋, 𝜃) : 𝜂 |𝐾 ≤ 𝑣, 𝜂 ⪯I 𝑃𝜃,𝐾 [𝜑]I (𝑣)

}
= sup∗ {𝜂 ∈ PSH(𝑋, 𝜃) : 𝜂 |𝐾 ≤ 𝑣, 𝜂 ⪯I 𝜑}

=𝑃𝜃,𝐾 [𝜑]I (𝑣),

where we applied Lemma 14.1.2 on the third line. □

Lemma 14.1.3 Assume that 𝜑 ∈ PSH(𝑋, 𝜃)>0. Let 𝑣 ∈ 𝐶0 (𝐾). Let 𝑆 ⊆ 𝑋 be a
pluripolar set and 𝜂 ∈ PSH(𝑋, 𝜃)>0 with 𝜂 ⪯ 𝜑. Assume that 𝜂 |𝐾\𝑆 ≤ 𝑣 |𝐾\𝑆 , then
𝜂 ≤ 𝑃𝜃,𝐾 [𝜑] (𝑣).

Proof By Theorem 1.1.5, there is 𝜒 ∈ PSH(𝑋, 𝜃), such that 𝜒 |𝑆 ≡ −∞. We claim
that we can choose 𝜒 so that

𝜒 ≤ 𝜂.

In fact, since
∫
𝑋
𝜃𝑛𝜂 > 0, fixing some 𝜒 and 𝜖 ∈ (0, 1) small enough, we have∫

𝑋

𝜃𝑛
𝜖 𝜒+(1−𝜖 )𝑉𝜃 +

∫
𝑋

𝜃𝑛𝜂 >

∫
𝑋

𝜃𝑛𝑉𝜃 .

Thus, by Proposition 3.1.5, we have
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(𝜖 𝜒 + (1 − 𝜖)𝑉𝜃 ) ∧ 𝜂 ∈ PSH(𝑋, 𝜃).

It suffices to replace 𝜒 by (𝜖 𝜒 + (1 − 𝜖)𝑉𝜃 ) ∧ 𝜂.
Fix 𝜒 ≤ 𝜂 as above. For any 𝛿 ∈ (0, 1), we have

(1 − 𝛿)𝜂 |𝐾 + 𝛿𝜒 |𝐾 ≤ 𝑣, (1 − 𝛿)𝜂 + 𝛿𝜒 ⪯ 𝜑.

Hence,
(1 − 𝛿)𝜂 + 𝛿𝜒 ≤ 𝑃𝜃,𝐾 [𝜑] (𝑣).

Letting 𝛿→ 0+, we conclude that 𝜂 ≤ 𝑃𝜃,𝐾 [𝜑] (𝑣). □

Corollary 14.1.2 Assume that 𝜑 ∈ PSH(𝑋, 𝜃)>0. Let 𝑣 ∈ 𝐶0 (𝐾). Then

𝑃𝜃,𝐾 [𝜑] (𝑣) = 𝑃𝜃,𝑋 [𝜑]
(
𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣)

)
.

Proof It is clear that

𝑃𝜃,𝐾 [𝜑] (𝑣) ≤ 𝑃𝜃,𝑋 [𝜑]
(
𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣)

)
.

For the reverse direction, it suffices to prove that any 𝜂 ∈ PSH(𝑋, 𝜃) such that

𝜂 ⪯ 𝜑, 𝜂 ≤ 𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣),

we have
𝜂 ≤ 𝑃𝜃,𝐾 [𝜑] (𝑣). (14.5)

As 𝜑 has positive mass, we can assume that 𝜂 has positive mass as well. Let

𝑆 =
{
𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣) > 𝑃′𝜃,𝐾 [𝑉𝜃 ] (𝑣)

}
.

By Proposition 1.2.5, 𝑆 is a pluripolar set. Observe that

𝜂 |𝐾\𝑆 ≤ 𝑣 |𝐾\𝑆 .

Hence, (14.5) follows from Lemma 14.1.3. □

The next result motivates our terminology to call the measures 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ] (𝑣) the

partial equilibrium measures of our context:

Lemma 14.1.4 Let 𝑣 ∈ 𝐶0 (𝐾). Then∫
𝑋\𝐾

𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ] (𝑣) = 0.

Moreover, 𝑃𝜃,𝐾 [𝜑] (𝑣) |𝐾 = 𝑣 almost everywhere with respect to 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ] (𝑣) . More

precisely, we have

𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ] (𝑣) ≤ 1𝐾∩{𝑃𝜃,𝐾 [𝜑 ] (𝑣)=𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣)=𝑣} 𝜃

𝑛
𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣) . (14.6)
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Proof Step 1. We address the case where 𝜑 = 𝑉𝜃 .
Let 𝑆 ⊆ 𝑋 be a closed pluripolar set, such that𝑉𝜃 is locally bounded on 𝑋 \ 𝑆. This

is possible because we can always find a Kähler current with analytic singularities in
the cohomology class [𝜃], as a consequence of Theorem 1.6.2.

For the first assertion, it suffices to show that 𝜃𝑛
𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣) does not charge any

open ball 𝐵 ⋐ 𝑋 \ (𝑆 ∪ 𝐾).
By Proposition 1.2.2, we can take an increasing sequence (𝜂 𝑗 ) 𝑗 in PSH(𝑋, 𝜃) such

that
𝜂 𝑗 → 𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣) almost everywhere, 𝜂 𝑗 |𝐾 ≤ 𝑣 for all 𝑗 ≥ 1.

By [BT82, Proposition 9.1], for each 𝑗 ≥ 1, we can find 𝛾 𝑗 ∈ PSH(𝑋, 𝜃), such
that (𝜃 + ddc𝛾 𝑗 |𝐵)𝑛 = 0 and 𝑤 𝑗 agrees with 𝜂 𝑗 outside 𝐵. Note that (𝛾 𝑗 ) 𝑗 is clearly
increasing and

𝛾 𝑗 ≥ 𝜂 𝑗 , 𝛾 𝑗 |𝐾 ≤ 𝑣.

for all 𝑗 ≥ 1.
It follows that 𝛾 𝑗 converges to 𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣) almost everywhere as well. By

Theorem 2.4.3, we find that 𝜃𝑛
𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣) does not charge 𝐵, as desired.

For the second assertion, let 𝑥 ∈ (𝑋 \𝑆)∩𝐾 be a point such that 𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣) (𝑥) <
𝑣(𝑥) − 𝜖 for some 𝜖 > 0. Let 𝐵 be a ball centered at 𝑥, small enough so that 𝜃 has a
local potential on 𝐵, allowing us to identify 𝜃-psh functions with psh functions (on
𝐵). By shrinking 𝐵, we can further guarantee

(1) 𝐵 ⊆ 𝑋 \ 𝑆.
(2) 𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣) |𝐵 < 𝑣(𝑥) − 𝜖 .
(3) 𝑣 |

𝐵∩𝐾 > 𝑣(𝑥) − 𝜖 .

Construct the sequences 𝜂 𝑗 , 𝛾 𝑗 as above. On 𝐵, by choosing a local potential of 𝜃, we
may identify 𝜂 𝑗 , 𝛾 𝑗 with the corresponding psh functions in a neighborhood of 𝐵. By
(2), we have 𝛾 𝑗 ≤ 𝑣(𝑥) −𝜖 on 𝜕𝐵, hence by the comparison principle, 𝛾 𝑗 |𝐵 ≤ 𝑣(𝑥) −𝜖 .
By (3), we have 𝛾 𝑗 |𝐵∩𝐾 ≤ 𝑣 |𝐵∩𝐾 . Thus, we conclude that 𝜃𝑛

𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣) does not
charge 𝐵, as in the previous paragraph.

Step 2. We handle the general case. We can assume 𝜑 ∈ PSH(𝑋, 𝜃)>0. Indeed,
due to Lemma 14.1.2 and Theorem 2.4.4, we have that∫

𝑋

𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ] (𝑣) =

∫
𝑋

𝜃𝑛𝜑 .

Hence, there is nothing to prove if
∫
𝑋
𝜃𝑛𝜑 = 0.

By Corollary 14.1.2,

𝑃𝜃,𝐾 [𝜑] (𝑣) = 𝑃𝜃,𝑋 [𝜑] (𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣)).

Now Corollary 3.1.1 gives

𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ] (𝑣) ≤1{𝑃𝜃,𝐾 [𝜑 ] (𝑣)=𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣) }𝜃

𝑛
𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣)

≤1{𝑃𝜃,𝐾 [𝜑 ] (𝑣)=𝑣}𝜃𝑛𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣) ,
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where in the second inequality we have used Step 1. □

Corollary 14.1.3 Let 𝑣 ∈ 𝐶0 (𝐾). Then∫
(𝑋\𝐾 )∪{𝑃𝜃,𝐾 [𝜑 ] (𝑣)<𝑣}

𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ] (𝑣) =0,∫

(𝑋\𝐾 )∪{𝑃𝜃,𝐾 [𝜑 ]I (𝑣)<𝑣}
𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ]I (𝑣) =0.

(14.7)

Proof The first equation in (14.7) follows from Lemma 14.1.4. For the second, we
can assume that ∫

𝑋

𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ]I (𝑣) > 0, (14.8)

otherwise there is nothing to prove. By definition, we have

𝑃𝜃,𝐾 [𝜑]I (𝑣) = 𝑃𝜃,𝐾 [𝑃𝜃 [𝜑]I]I (𝑣).

Next we show that

𝑃𝜃,𝐾 [𝑃𝜃 [𝜑]I]I (𝑣) = 𝑃𝜃,𝐾 [𝑃𝜃 [𝜑]I] (𝑣).

The ≥ direction is trivial. It remains to prove the reverse inequality. By Lemma 14.1.2,
we get that

𝑃𝜃,𝐾 [𝑃𝜃 [𝜑]I]I (𝑣) ∼ 𝑃𝜃 [𝜑]I .

Due to Proposition 1.2.5, we get that

𝑃𝜃,𝐾 [𝑃𝜃 [𝜑]I]I (𝑣) ≤ 𝑣

on 𝐾 \ 𝑆, where 𝑆 ⊆ 𝑋 is a pluripolar set. As a result, due to (14.8), Lemma 14.1.3
allows to conclude that

𝑃𝜃,𝐾 [𝑃𝜃 [𝜑]I]I (𝑣) ≤ 𝑃𝜃,𝐾 [𝑃𝜃 [𝜑]I] (𝑣).

Since
𝑃𝜃,𝐾 [𝑃𝜃 [𝜑]I]I (𝑣) = 𝑃𝜃,𝐾 [𝜑]I (𝑣),

we get that the second equation in (14.7), using the first. □

Proposition 14.1.1 Assume that 𝜑 ∈ PSH(𝑋, 𝜃)>0. Let 𝑣 ∈ 𝐶0 (𝐾). Then

𝑃𝜃,𝐾 [𝜑] (𝑣) = 𝑃𝜃,𝐾 [𝑃𝜃 [𝜑]] (𝑣). (14.9)

In particular,
𝑃𝜃,𝐾 [𝜑] (𝑣) = 𝑃𝜃,𝐾 [𝑃𝜃,𝐾 [𝜑] (𝑣)] (𝑣).

Proof The ≤ direction in (14.9) is obvious. We to prove the reverse inequality. As
𝑃𝜃,𝐾 [𝜑] (𝑣) and 𝑃𝜃,𝐾 [𝑃𝜃 [𝜑]] (𝑣) have the same singularity types by Lemma 14.1.2,
by the domination principle Theorem 2.4.6, it suffices to show that
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𝑃𝜃,𝐾 [𝜑] (𝑣) ≥ 𝑃𝜃,𝐾 [𝑃𝜃 [𝜑]] (𝑣) almost everywhere with respect to 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ] (𝑣) .

(14.10)
By (14.6),

𝑃𝜃,𝐾 [𝜑] (𝑣) = 𝑃𝜃,𝐾 [𝑉𝜃 ] (𝑣) = 𝑣

almost everywhere with respect to 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ] (𝑣) . Hence,

𝑃𝜃,𝐾 [𝑃𝜃 [𝜑]] (𝑣) = 𝑣

almost everywhere with respect to 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ] (𝑣) . We conclude that

𝑃𝜃,𝐾 [𝜑] (𝑣) = 𝑃𝜃,𝐾 [𝑃𝜃 [𝜑]] (𝑣).

Finally, (14.10) follows from Lemma 14.1.2 and (14.9). □

Definition 14.1.2 Given 𝜑 ∈ PSH(𝑋, 𝜃)>0, the partial equilibrium energy functional
E 𝜃[𝜑 ],𝐾 : 𝐶0 (𝐾) → R of 𝑣 ∈ 𝐶0 (𝐾) as follows

E𝜑
𝜃,𝐾
(𝑣) B 𝐸

𝑃𝜃 [𝜑 ]I
𝜃

(𝑃𝜃,𝐾 [𝜑]I (𝑣)). (14.11)

Recall that the energy 𝐸𝑃𝜃 [𝜑 ]I
𝜃

functional is defined in Definition 3.1.5.
Note that by Lemma 14.1.2, we have

𝑃𝜃,𝐾 [𝜑]I (𝑣) ∈ E∞ (𝑋, 𝜃; 𝑃𝜃 [𝜑]I),

so E𝜑
𝜃,𝐾
(𝑣) ∈ R.

Proposition 14.1.2 Let 𝐾 ⊆ 𝑋 be a closed non-pluripolar set, 𝑣, 𝑓 ∈ 𝐶0 (𝐾) and
𝜑 ∈ PSH(𝑋, 𝜃)>0. Then R ∋ 𝑡 ↦→ E𝜑

𝜃,𝐾
(𝑣 + 𝑡 𝑓 ) is differentiable and

d
d𝑡
E𝜑
𝜃,𝐾
(𝑣 + 𝑡 𝑓 ) =

∫
𝐾

𝑓 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ]I (𝑣+𝑡 𝑓 ) (14.12)

for all 𝑡 ∈ R.

Proof We may assume that 𝜑 is I-model by replacing 𝜑 by 𝑃𝜃 [𝜑]I .
Note that it suffices to prove (14.12) at 𝑡 = 0, which is equivalent to

lim
𝑡→0

𝐸
𝜑

𝜃
(𝑃𝜃,𝐾 [𝜑]I (𝑣 + 𝑡 𝑓 )) − 𝐸 𝜑𝜃 (𝑃𝜃,𝐾 [𝜑]I (𝑣))

𝑡
=

∫
𝐾

𝑓 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ]I (𝑣) . (14.13)

By switching 𝑓 to − 𝑓 , we may assume that 𝑡 > 0 in the above limit.
By the comparison principle (3.24) and Proposition 3.1.15, we find
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𝐸
𝜑

𝜃
(𝑃𝜃,𝐾 [𝜑]I (𝑣 + 𝑡 𝑓 )) − 𝐸 𝜑𝜃 (𝑃𝜃,𝐾 [𝜑]I (𝑣))

=
1

𝑛 + 1

𝑛∑︁
𝑖=0

∫
𝑋

(𝑃𝜃,𝐾 [𝜑]I (𝑣 + 𝑡 𝑓 ) − 𝑃𝜃,𝐾 [𝜑]I (𝑣)) 𝜃𝑖𝑃𝜃,𝐾 [𝜑 ]I (𝑣+𝑡 𝑓 ) ∧ 𝜃
𝑛−𝑖
𝑃𝜃,𝐾 [𝜑 ]I (𝑣)

≤
∫
𝑋

(𝑃𝜃,𝐾 [𝜑]I (𝑣 + 𝑡 𝑓 ) − 𝑃𝜃,𝐾 [𝜑]I (𝑣)) 𝜃𝑛𝑃𝜃,𝐾 [𝜑 ]I (𝑣) .

By Lemma 14.1.4,∫
𝑋

(𝑃𝜃,𝐾 [𝜑]I (𝑣 + 𝑡 𝑓 ) − 𝑃𝜃,𝐾 [𝜑]I (𝑣)) 𝜃𝑛𝑃𝜃,𝐾 [𝜑 ]I (𝑣) ≤ 𝑡
∫
𝐾

𝑓 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ]I (𝑣) .

Thus, we get the inequality,

lim
𝑡→0+

𝐸
𝜑

𝜃
(𝑃𝜃,𝐾 [𝜑]I (𝑣 + 𝑡 𝑓 )) − 𝐸 𝜑𝜃 (𝑃𝜃,𝐾 [𝜑]I (𝑣))

𝑡
≤

∫
𝐾

𝑓 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ]I (𝑣) .

Similarly, we have

𝐸
𝜑

𝜃
(𝑃𝜃,𝐾 [𝜑]I (𝑣 + 𝑡 𝑓 )) − 𝐸 𝜑𝜃 (𝑃𝜃,𝐾 [𝜑]I (𝑣))

≥
∫
𝑋

(𝑃𝜃,𝐾 [𝜑]I (𝑣 + 𝑡 𝑓 ) − 𝑃𝜃,𝐾 [𝜑] (𝑣)) 𝜃𝑛𝑃𝜃,𝐾 [𝜑 ]I (𝑣+𝑡 𝑓 )

≥𝑡
∫
𝐾

𝑓 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ]I (𝑣+𝑡 𝑓 ) .

Together with the above, this implies (14.13). □

Lemma 14.1.5 Fix a Kähler form 𝜔 on 𝑋 . For 𝑣 ∈ 𝐶0 (𝐾) there exists an increasing
bounded sequence (𝑣−

𝑗
) 𝑗 in 𝐶∞ (𝑋) and a decreasing bounded sequence (𝑣+

𝑗
) 𝑗 in

𝐶∞ (𝑋), such that for all 𝜑 ∈ PSH(𝑋, 𝜃)>0 and 𝛿 ∈ [0, 1] we have

(1) 𝑃𝜃+𝛿𝜔,𝑋 [𝜑] (𝑣+𝑗 ) ↘ 𝑃𝜃+𝛿𝜔,𝐾 [𝜑] (𝑣),
(2) 𝑃𝜃+𝛿𝜔,𝑋 [𝜑] (𝑣−𝑗 ) ↗ 𝑃𝜃+𝛿𝜔,𝐾 [𝜑] (𝑣) almost everywhere,
(3) sup𝑋 |𝑣−𝑗 | ≤ 𝐶, sup𝑋 |𝑣+𝑗 | ≤ 𝐶 for some constant 𝐶 depending only on ∥𝑣∥𝐶0 (𝐾 ) ,

𝐾 and 𝜃 + 𝜔, and
(4)

lim
𝑗→∞
E𝜑
𝜃,𝐾
(𝑣−𝑗 ) = E

𝜑

𝜃,𝐾
(𝑣), lim

𝑗→∞
E𝜑
𝜃,𝐾
(𝑣+𝑗 ) = E

𝜑

𝜃,𝐾
(𝑣).

Proof We fix 𝛿 ∈ [0, 1]. First we prove the existence of (𝑣−
𝑗
) 𝑗 . Let

𝐶𝐾,𝑣 B sup
{
sup
𝑋

𝜂 : 𝜂 ∈ PSH(𝑋, 𝜃 + 𝜔), 𝜂 |𝐾 ≤ 𝑣
}
.

Since 𝐾 is non-pluripolar, we have that 𝐶𝐾,𝑣 ∈ R. Now define 𝑣̃ : 𝑋 → R as

𝑣̃(𝑥) =
{

𝑣(𝑥), 𝑥 ∈ 𝐾;
𝐶𝑘,𝑣 + 1, 𝑥 ∈ 𝑋 \ 𝐾.
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Since 𝑣̃ is lower semicontinuous, there exists an increasing and uniformly bounded
sequence (𝑣−

𝑗
) 𝑗 in 𝐶∞ (𝑋), such that 𝑣−

𝑗
↗ 𝑣̃.

Observe that 𝑃𝜃+𝛿𝜔,𝑋 [𝜑] (𝑣−𝑗 ) is increasing in 𝑗 ≥ 1, and

𝑃𝜃+𝛿𝜔,𝑋 [𝜑] (𝑣−𝑗 ) ≤ 𝑃𝜃+𝛿𝜔,𝐾 [𝜑] (𝑣).

To prove that
𝑃𝜃+𝛿𝜔,𝑋 [𝜑] (𝑣−𝑗 ) ↗ 𝑃𝜃+𝛿𝜔,𝐾 [𝜑] (𝑣)

almost everywhere, let 𝜂 be a candidate for 𝑃𝜃+𝛿𝜔,𝐾 [𝜑] (𝑣) such that sup𝐾 (𝜂−𝑣) < 0.
Then, since 𝜂 is upper semicontinuous and 𝜂 < 𝑣̃, by Dini’s lemma there exists 𝑗0 > 0
such that 𝜂 < 𝑣−

𝑗
for 𝑗 ≥ 𝑗0, i.e.

𝜂 ≤ 𝑃𝜃+𝛿𝜔,𝑋 [𝜑] (𝑣−𝑗 ),

proving existence of (𝑣−
𝑗
) 𝑗 .

Next, we prove the existence of (𝑣+
𝑗
) 𝑗 . Since

ℎ B 𝑃𝜃+𝜔,𝐾 [𝑉𝜃+𝜔] (𝑣) ∨ (inf
𝐾
𝑣 − 1)

is usc, there exists a decreasing and uniformly bounded sequence (𝑣+
𝑗
) 𝑗 in 𝐶∞ (𝑋),

such that 𝑣+
𝑗
↘ ℎ. Trivially,

𝜒 B lim
𝑗→∞

𝑃𝜃+𝛿𝜔,𝑋 [𝜑] (𝑣+𝑗 ) ≥ 𝑃𝜃+𝛿𝜔,𝐾 [𝜑] (𝑣).

In particular, 𝜒 has positive mass, since it has the same singularity types as
𝑃𝜃+𝛿𝜔,𝐾 [𝜑] (𝑣) by Lemma 14.1.2. We introduce

𝑆 B
{
𝑃′𝜃+𝜔,𝐾 [𝑉𝜃+𝜔] (𝑣) < 𝑃𝜃+𝜔,𝐾 [𝑉𝜃+𝜔] (𝑣)

}
.

By Proposition 1.2.5, 𝑆 is a pluripolar set. Observe that

𝑃𝜃+𝛿𝜔,𝑋 [𝜑] (𝑣+𝑗 ) ≤ 𝑣+𝑗

for all 𝑗 ≥ 1. Thus, 𝜒 ≤ ℎ. On the other hand, ℎ ≤ 𝑣 on 𝐾 \ 𝑆. So in particular,
𝜒 |𝐾\𝑆 ≤ 𝑣 |𝐾\𝑆 . By Lemma 14.1.2 we also have that 𝜒 ∼ 𝑃𝜃+𝛿𝜔,𝐾 [𝜑] (𝑣). Hence, by
Lemma 14.1.3,

𝜒 ≤ 𝑃𝜃+𝛿𝜔,𝐾 [𝑃𝜃+𝛿𝜔,𝐾 [𝜑] (𝑣)] (𝑣) = 𝑃𝜃+𝛿𝜔,𝐾 [𝜑] (𝑣),

where we also used the last statement of Proposition 14.1.1.
Finally observe that (4) follows from Lemma 14.1.2, Lemma 14.1.5 and Theo-

rem 2.4.3. □

Proposition 14.1.3 Let 𝐾 ⊆ 𝑋 be a compact and non-pluripolar subset. Let 𝑣 ∈
𝐶0 (𝐾). Let 𝜑 𝑗 , 𝜑 ∈ PSH(𝑋, 𝜃)>0 ( 𝑗 ≥ 1) with 𝜑 𝑗

𝑑𝑆−−→ 𝜑. Then the following hold:
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(1) If 𝜑 𝑗 ↘ 𝜑, then 𝑃𝜃,𝐾 [𝜑 𝑗 ]I (𝑣) ↘ 𝑃𝜃,𝐾 [𝜑]I (𝑣) and 𝑃𝜃,𝐾 [𝜑 𝑗 ] (𝑣) ↘
𝑃𝜃,𝐾 [𝑢] (𝑣).

(2) If 𝜑 𝑗 ↗ 𝜑 almost everywhere then 𝑃𝜃,𝐾 [𝜑 𝑗 ]I (𝑣) ↗ 𝑃𝜃,𝐾 [𝜑]I (𝑣) almost
everywhere, and 𝑃𝜃,𝐾 [𝜑 𝑗 ] (𝑣) ↗ 𝑃𝜃,𝐾 [𝜑] (𝑣) almost everywhere.

Proof (1) By Theorem 6.2.1, we have

lim
𝑗→∞

∫
𝑋

𝜃𝑛𝜑 𝑗 =

∫
𝑋

𝜃𝑛𝜑 .

It follows from Lemma 2.4.2 that there is a decreasing sequence 𝜖 𝑗 ↘ 0 with
𝜖 𝑗 ∈ (0, 1) and 𝜂 𝑗 ∈ PSH(𝑋, 𝜃) such that

(1 − 𝜖 𝑗 )𝜑 𝑗 + 𝜖 𝑗𝜂 𝑗 ≤ 𝜑.

By the concavity similar to Proposition 3.2.11, we get

(1 − 𝜖 𝑗 )𝑃𝜃,𝐾 [𝜑 𝑗 ]I (𝑣) + 𝜖 𝑗𝑃𝜃,𝐾 [𝜂 𝑗 ]I (𝑣) ≤𝑃𝜃,𝐾 [(1 − 𝜖 𝑗 )𝜑 𝑗 + 𝜖 𝑗𝜂 𝑗 ]I (𝑣)
≤𝑃𝜃,𝐾 [𝜑]I (𝑣).

Since (𝜑 𝑗 ) 𝑗 is decreasing, so is (𝑃𝜃,𝐾 [𝜑 𝑗 ]I (𝑣)) 𝑗 , hence

𝜓 B lim
𝑗→∞

𝑃𝜃 [𝜑 𝑗 ]I (𝑣) ≥ 𝑃𝜃,𝐾 [𝜑]I (𝑣)

exists. Since 𝜖 𝑗 → 0 and sup𝑋 𝑃𝜃,𝐾 [𝜂 𝑗 ]I (𝑣) is bounded, we can let 𝑗 → ∞ in the
above estimate to conclude that

𝜓 = 𝑃𝜃,𝐾 [𝜑]I (𝑣).

The same ideas yield that

𝑃𝜃,𝐾 [𝜑 𝑗 ] (𝑣) ↘ 𝑃𝜃,𝐾 [𝜑] (𝑣).

The proof of (2) is similar and is left to the readers. □

14.2 Quantization of partial equilibrium measures

Let 𝑋 be a connected compact Kähler manifold of dimension 𝑛 and 𝐿 be a pseudo-
effective line bundle on 𝑋 . Let ℎ be a Hermitian metric on 𝐿 and set 𝜃 = 𝑐1 (𝐿, ℎ).
Let (𝑇, ℎ𝑇 ) be a Hermitian line bundle on 𝑋 . Take a Kähler form 𝜔 on 𝑋 so that∫

𝑋

𝜔𝑛 = 1.
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14.2.1 Bernstein–Markov measures

Let 𝐾 ⊆ 𝑋 be a closed non-pluripolar subset. Let 𝑣 be a measurable function on 𝐾
and let 𝜇 be a positive Borel probability measure on 𝐾 . We introduce the following
functions on H0 (𝑋, 𝐿𝑘 ⊗ 𝑇) (𝑘 ≥ 1), with values possibly equaling∞:

𝑁 𝑘𝑣,𝜐 (𝑠) B
(∫
𝐾

ℎ𝑘 ⊗ ℎ𝑇 (𝑠, 𝑠)e−𝑘𝑣 d𝜐
)1/2

,

𝑁 𝑘𝑣,𝐾 (𝑠) B sup
𝐾\{𝑣=−∞}

(
ℎ𝑘 ⊗ ℎ𝑇 (𝑠, 𝑠)e−𝑘𝑣

)1/2
.

We start with the following elementary observation:

Lemma 14.2.1 Let 𝑣1 ≤ 𝑣2 be two measurable functions on 𝑋 . Assume that {𝑣1 =

−∞} = {𝑣2 = −∞}. Then for any 𝑠 ∈ H0 (𝑋, 𝐿𝑘 ⊗ 𝑇) (𝑘 ≥ 1), we have

𝑁 𝑘𝑣1 ,𝐾
(𝑠) ≥ 𝑁 𝑘𝑣2 ,𝐾

(𝑠).

If 𝜐 puts no mass on {𝑣 = −∞} then we always have

𝑁 𝑘𝑣,𝜐 (𝑠) ≤ 𝑁 𝑘𝑣,𝐾 (𝑠). (14.14)

Definition 14.2.1 A weighted subset of 𝑋 is a pair (𝐾, 𝑣) consisting of a closed
non-pluripolar subset 𝐾 ⊆ 𝑋 and a function 𝑣 ∈ 𝐶0 (𝐾).

Definition 14.2.2 Let (𝐾, 𝑣) be a weighted subset of 𝑋 . A positive Borel probability
measure 𝜐 on 𝐾 is Bernstein–Markov with respect to (𝐾, 𝑣) if for each 𝜖 > 0, there is
a constant 𝐶𝜖 > 0 such that

𝑁 𝑘𝑣,𝐾 (𝑠) ≤ 𝐶𝜖 e𝜖 𝑘𝑁 𝑘𝑣,𝜐 (𝑠) (14.15)

for any 𝑠 ∈ H0 (𝑋, 𝐿𝑘 ⊗ 𝑇) and any 𝑘 ∈ N. We write BM(𝐾, 𝑣) for the set of
Bernstein–Markov measures with respect to (𝐾, 𝑣).

As pointed out in [BBWN11], any volume form on 𝑋 is Bernstein–Markov with
respect to (𝑋, 𝑣), with 𝑣 ∈ 𝐶∞ (𝑋).

Proposition 14.2.1 Assume that (𝐾, 𝑣) is a weighted subset of 𝑋 , then

(1) 𝑁 𝑘
𝑣,𝐾

is a norm on H0 (𝑋, 𝐿𝑘 ⊗ 𝑇).
(2) For any 𝜐 ∈ BM(𝐾, 𝑣), 𝑁 𝑘𝑣,𝜐 is a norm on H0 (𝑋, 𝐿𝑘 ⊗ 𝑇).

Proof (1) As 𝑣 is bounded, 𝑁 𝑘
𝑣,𝐾

is clearly finite on H0 (𝑋, 𝐿𝑘 ⊗ 𝑇). In order to show
that it is a norm, it suffices to show that for any 𝑠 ∈ H0 (𝑋, 𝐿𝑘 ⊗ 𝑇), 𝑁 𝑘

𝑣,𝐾
(𝑠) = 0

implies that 𝑠 = 0. In fact, we have 𝑠 |𝐾 = 0, hence 𝑠 = 0 by the connectedness of 𝑋 .
(2) As 𝑣 is bounded, clearly 𝑁 𝑘𝑣,𝜐 is finite and satisfies the triangle inequality.

Non-degeneracy follows from the fact that 𝑁 𝑘
𝑣,𝐾

is a norm and (14.15). □
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14.2.2 Partial Bergman kernels

In this section, we fix a weighted subset (𝐾, 𝑣) of 𝑋 and 𝜐 ∈ BM(𝐾, 𝑣).

Definition 14.2.3 For any 𝜑 ∈ PSH(𝑋, 𝜃), we introduce the partial Bergman kernels
of 𝜑 (with respect to (𝐾, 𝑣)) as follows: For any 𝑘 ≥ 0, we introduce

𝐵𝑘𝑣,𝜑,𝜐 (𝑥) B sup
{
ℎ𝑘 ⊗ ℎ𝑇 (𝑠, 𝑠)e−𝑘𝑣 (𝑥) : 𝑁 𝑘𝑣,𝜐 (𝑠, 𝑠) ≤ 1,

𝑠 ∈ H0 (𝑋, 𝐿𝑘 ⊗ 𝑇 ⊗ I(𝑘𝜑))
}
, 𝑥 ∈ 𝐾.

(14.16)

We extend 𝐵𝑘𝑣,𝜑,𝜐 to the whole 𝑋 by setting it to be 0 outside 𝐾 .
The partial Bergman measures of 𝜑 (with respect to (𝐾, 𝑣)) are defined as

𝛽𝑘𝑣,𝜑,𝜐 B
𝑛!
𝑘𝑛
𝐵𝑘𝑣,𝜑,𝜐 d𝜐 (14.17)

for each 𝑘 ≥ 0.

Observe that ∫
𝐾

𝛽𝑘𝑣,𝜑,𝜐 =
𝑛!
𝑘𝑛
ℎ0 (𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)). (14.18)

The goal of this section is to prove the following theorem:

Theorem 14.2.1 Suppose that 𝜑 ∈ PSH(𝑋, 𝜃)>0. Let (𝐾, 𝑣) be a weighed subset of
𝑋 , let 𝜐 ∈ BM(𝐾, 𝑣). Then

𝛽𝑘𝑣,𝜑,𝜐 ⇀ 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ]I (𝑣) (14.19)

as 𝑘 →∞.

Proposition 14.2.2 Let 𝜑 ∈ PSH(𝑋, 𝜃) be a potential with analytic singularities such
that 𝜃𝜑 is a Kähler current. If 𝑣 ∈ 𝐶∞ (𝑋), then

𝛽𝑘𝑣,𝜑,𝜔𝑛 ⇀ 𝜃𝑛
𝑃𝜃,𝑋 [𝜑 ]I (𝑣) = 𝜃

𝑛
𝑃𝜃,𝑋 [𝜑 ] (𝑣) (14.20)

as 𝑘 →∞.

Proof The equality part in (14.20) follows from Lemma 14.1.2. We start with noticing
that as 𝑘 →∞,

𝛽𝑘𝑣,𝜑,𝜔𝑛 ≤ 𝛽𝑘𝑣,𝑉𝜃 ,𝜔𝑛 ⇀ 𝜃𝑛
𝑃𝜃,𝑋 [𝑉𝜃 ] (𝑣) = 1{𝑣=𝑃𝜃,𝑋 [𝑉𝜃 ] (𝑣) }𝜃

𝑛
𝑣 ,

where the convergence follows from [Ber09, Theorem 1.2], and the last identity is
due to [DNT21, Corollary 3.4]. Let 𝜇 be the weak limit of a subsequence of 𝛽𝑘𝑣,𝜑,𝜔𝑛 ,
then we obtain that

𝜇 ≤ 1{𝑣=𝑃𝜃,𝑋 [𝑉𝜃 ] (𝑣) }𝜃𝑛𝑣 . (14.21)

Let 𝑘 ≥ 0, 𝑠 ∈ H0 (𝑋, 𝐿𝑘 ⊗ 𝑇 ⊗ I(𝑘𝜑)) be a section such that 𝑁 𝑘𝑣,𝜔𝑛 (𝑠, 𝑠) ≤ 1. Then
by [Ber09, Lemma 4.1], there exists 𝐶 > 0 such that
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ℎ𝑘 ⊗ ℎ𝑇 (𝑠, 𝑠)e−𝑘𝑣 ≤ 𝐵𝑘𝑣,𝜑,𝜔𝑛 ≤ 𝐵𝑘𝑣,𝑉𝜃 ,𝜔𝑛 ≤ 𝑘
𝑛𝐶.

This implies that

1
𝑘

log ℎ𝑘 ⊗ ℎ𝑇 (𝑠, 𝑠) ≤ 𝑣 +
log𝐶
𝑘
+ 𝑛 log 𝑘

𝑘
.

We define 𝜑𝑘 as in Proposition 1.8.2. Take 𝛼𝑘 ↗ 1 as in Proposition 1.8.2. Then

1
𝑘

log ℎ𝑘 ⊗ ℎ𝑇 (𝑠, 𝑠) ⪯ 𝜑𝑘 ⪯ 𝛼𝑘𝜑.

Let 𝜖 > 0. We notice that 1
𝑘

log ℎ𝑘 ⊗ ℎ𝑇 (𝑠, 𝑠) ∈ PSH(𝑋, 𝜃 + 𝜖𝜔) for all 𝑘 ≥ 𝑘0 (𝜖).
In particular,

1
𝑘

log ℎ𝑘 ⊗ ℎ𝑇 (𝑠, 𝑠) −
log𝐶
𝑘
− 𝑛 log 𝑘

𝑘
≤ 𝑃𝜃+𝜖 𝜔,𝑋 [𝛼𝑘𝜑] (𝑣).

Now taking supremum over all candidates 𝑠, we obtain that

𝐵𝑘𝑣,𝜑,𝜔𝑛 ≤ 𝐶𝑘𝑛e𝑘 (𝑃𝜃+𝜖 𝜔,𝑋 [𝛼𝑘𝜑 ] (𝑣)−𝑣) , 𝑘 ≥ 𝑘0. (14.22)

We claim that 𝜇 does not put mass on {𝑃𝜃+𝜖 𝜔,𝑋 [𝜑] (𝑣) < 𝑣} for any 𝜖 > 0. Since

𝑃𝜃+𝜖 𝜔,𝑋 [𝛼𝑘𝜑] (𝑣) ↘ 𝑃𝜃+𝜖 𝜔,𝑋 [𝜑] (𝑣)

by Proposition 14.1.3, we get that

{𝑃𝜃+𝜖 𝜔,𝑋 [𝛼𝑘𝜑] (𝑣) < 𝑣} ↗ {𝑃𝜃+𝜖 𝜔,𝑋 [𝜑] (𝑣) < 𝑣}.

As a result, to argue the claim, it suffices to show that 𝜇 does not put mass on the
set {𝑃𝜃+𝜖 𝜔,𝑋 [𝛼𝑘𝜑] (𝑣) < 𝑣} for any 𝑘 . Note that the latter set is open, hence (14.22)
implies our claim.

Since 𝜑 has analytic singularities, we have that

𝑃𝜃+𝜖 𝜔,𝑋 [𝜑] (𝑣) ∼ 𝜑

for all 𝜖 ≥ 0 by Lemma 14.1.2 and Proposition 3.2.10. As a result,

𝑃𝜃+𝜖 𝜔,𝑋 [𝜑] (𝑣) ↘ 𝑃𝜃,𝑋 [𝜑] (𝑣),

and we can let 𝜖 ↘ 0 to conclude that 𝜇 does not put mass on {𝑃𝜃,𝑋 [𝜑] (𝑣) < 𝑣} =⋃
𝜖 >0{𝑃𝜃+𝜖 𝜔,𝑋 [𝜑] (𝑣) < 𝑣}. Putting this together with (14.21), we obtain that

𝜇 ≤ 1{𝑃𝜃,𝑋 [𝜑 ] (𝑣)=𝑣}𝜃𝑛𝑣 = 𝜃𝑛𝑃𝜃,𝑋 [𝜑 ] (𝑣) ,

where the last equality is due to [DNT21, Corollary 3.4]. Comparing total masses via
(14.18) and Theorem 7.4.1, we conclude that 𝜇 = 𝜃𝑛

𝑃𝜃,𝑋 [𝜑 ] (𝑣) . As 𝜇 is an arbitrary
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cluster point of 𝛽𝑘𝑣,𝜑,𝜔𝑛 , we conclude that 𝛽𝑘𝑣,𝜑,𝜔𝑛 converges weakly to 𝜃𝑛
𝑃𝜃,𝑋 [𝜑 ] (𝑣) ,

as 𝑘 →∞. □

Definition 14.2.4 Take 𝑘 ≥ 0 and 𝜑 ∈ PSH(𝑋, 𝜃), let Norm(H0 (𝑋, 𝐿𝑘⊗𝑇⊗I(𝑘𝜑)))
be the space of Hermitian norms on the vector space H0 (𝑋, 𝐿𝑘 ⊗ 𝑇 ⊗ I(𝑘𝜑)).

Let L𝑘,𝜑 : Norm(H0 (𝑋, 𝐿𝑘 ⊗ 𝑇 ⊗ I(𝑘𝜑))) → R be the partial Donaldson
functional:

L𝑘,𝜑 (𝐻) =
𝑛!
𝑘𝑛+1

log
vol{𝑠 : 𝐻 (𝑠) ≤ 1}

vol{𝑠 : 𝑁 𝑘0,𝜔𝑛 (𝑠) ≤ 1}
, (14.23)

where vol is simply the Euclidean volume.

Proposition 14.2.3 Let 𝑤, 𝑤′ ∈ 𝐶0 (𝑋) and 𝜑 ∈ PSH(𝑋, 𝜃) be a potential with
analytic singularities such that 𝜃𝜑 is a Kähler current, then

lim
𝑘→∞

(
L𝑘,𝜑 (𝑁 𝑘𝑤,𝜔𝑛 ) − L𝑘,𝜑 (𝑁 𝑘𝑤′ ,𝜔𝑛 )

)
= E𝜑

𝜃,𝑋
(𝑤) − E𝜑

𝜃,𝑋
(𝑤′). (14.24)

In particular,
lim
𝑘→∞
L𝑘,𝜑 (𝑁 𝑘𝑤,𝜔𝑛 ) = E

𝜑

𝜃,𝑋
(𝑤) . (14.25)

Proof First observe that by Proposition 14.2.1, for any 𝑘 ≥ 0, 𝑁 𝑘𝑤,𝜔𝑛 and 𝑁 𝑘
𝑤′ ,𝜔𝑛

are both norms, hence the expressions inside the limit in (14.24) make sense.
To start, we make the following observation:

L𝑘,𝜑 (𝑁 𝑘𝑤,𝜔𝑛 ) − L𝑘,𝜑 (𝑁 𝑘𝑤′ ,𝜔𝑛 ) =
∫ 1

0

d
d𝑡
L𝑘,𝜑 (𝑁 𝑘𝑤+𝑡 (𝑤′−𝑤) ,𝜔𝑛 ) d𝑡

=

∫ 1

0

∫
𝑋

(𝑤′ − 𝑤) 𝛽𝑘
𝑤+𝑡 (𝑤′−𝑤) ,𝜑,𝜔𝑛 d𝑡.

By Proposition 14.2.2, we have

lim
𝑘→∞

∫
𝑋

(𝑤′ − 𝑤) 𝛽𝑘
𝑤+𝑡 (𝑤′−𝑤) ,𝜑,𝜔𝑛 =

∫
𝑋

(𝑤′ − 𝑤) 𝜃𝑛
𝑃𝜃,𝑋 [𝜑 ] (𝑤+𝑡 (𝑤′−𝑤) ) .

By Theorem 7.4.1, we have |
∫
𝑋
(𝑤′ −𝑤)𝛽𝑘

𝑤+𝑡 (𝑤′−𝑤) ,𝑢,𝜔𝑛 | ≤ 𝐶 sup𝑋 |𝑤−𝑤′ |. Hence,
by the dominated convergence theorem we obtain that

lim
𝑘→∞

(
L𝑘,𝜑 (𝑁 𝑘𝑤,𝜔𝑛 ) − L𝑘,𝜑 (𝑁 𝑘𝑤′ ,𝜔𝑛 )

)
=

∫ 1

0

∫
𝑋

(𝑤′ − 𝑤) 𝜃𝑛
𝑃𝜃,𝑋 [𝜑 ] (𝑤+𝑡 (𝑤′−𝑤) ) d𝑡

= E𝜑
𝜃,𝑋
(𝑤) − E𝜑

𝜃,𝑋
(𝑤′),

where in the last line we have used Proposition 14.1.2.
Finally, (14.25) is just a special case of (14.24) with 𝑤′ = 0. □

Lemma 14.2.2 Let 𝜑 ∈ PSH(𝑋, 𝜃). Let (𝐾, 𝑣) be a weighted subset of 𝑋 . Let
𝜐 ∈ BM(𝐾, 𝑣). Then
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lim
𝑘→∞

(
L𝑘,𝜑 (𝑁 𝑘𝑣,𝐾 ) − L𝑘,𝜑 (𝑁 𝑘𝑣,𝜐)

)
= 0 . (14.26)

Proof This is a direct consequence of the definition of Bernstein–Markov measures
(14.15). □

Corollary 14.2.1 Let 𝑤 ∈ 𝐶0 (𝑋), 𝜑 ∈ PSH(𝑋, 𝜃) be a potential with analytic
singularities such that 𝜃𝜑 is a Kähler current. Then

lim
𝑘→∞
L𝑘,𝜑 (𝑁 𝑘𝑤,𝑋) = E

𝜑

𝜃,𝑋
(𝑤).

Proof This follows from Lemma 14.2.2 and Proposition 14.2.3 and the fact that
𝜔𝑛 ∈ BM(𝑋, 0). □

Proposition 14.2.4 Let 𝜑 ∈ PSH(𝑋, 𝜃) be a potential with analytic singularities such
that 𝜃𝜑 is a Kähler current. Let (𝐾, 𝑣), (𝐾 ′, 𝑣′) be two weighted subsets of 𝑋 . Then

lim
𝑘→∞

(
L𝑘,𝜑 (𝑁 𝑘𝑣,𝐾 ) − L𝑘,𝜑 (𝑁 𝑘𝑣′ ,𝐾 ′ )

)
= E𝜑

𝜃,𝐾
(𝑣) − E𝜑

𝜃,𝐾 ′ (𝑣
′). (14.27)

In particular,
lim
𝑘→∞
L𝑘,𝜑 (𝑁 𝑘𝑣,𝐾 ) = E

𝜑

𝜃,𝐾
(𝑣). (14.28)

Proof First observe that by Proposition 14.2.1, for any 𝑘 > 0, 𝑁 𝑘
𝑣,𝐾

and 𝑁 𝑘
𝑣′ ,𝐾 ′ are

both norms, hence the expressions inside the limit in (14.27) make sense. Moreover,
(14.28) is just a special case of (14.27) for 𝐾 ′ = 𝑋 and 𝑣′ = 0.

To prove (14.27) it is enough to show that for any fixed 𝑤 ∈ 𝐶∞ (𝑋) we have

lim
𝑘→∞

(
L𝑘,𝜑 (𝑁 𝑘𝑣,𝐾 ) − L𝑘,𝜑 (𝑁 𝑘𝑤,𝜔𝑛 )

)
= E𝜑

𝜃,𝐾
(𝑣) − E𝜑

𝜃,𝑋
(𝑤) . (14.29)

For 𝜖 ∈ (0, 1) small enough we have that 𝜃 (1−𝜖 )𝜑 is still a Kähler current. Let us
fix such 𝜖 , along with an arbitrary 𝜖 ′ ∈ (0, 1).

Let (𝑣−
𝑗
) 𝑗 , (𝑣+𝑗 ) 𝑗 be the sequences of smooth functions constructed in Lemma 14.1.5

for the data (𝐾, 𝑣).
By Proposition 1.8.2 there exists 𝑘0 (𝜖, 𝜖 ′) ∈ N such that

1
𝑘

log ℎ𝑘 ⊗ ℎ𝑇 (𝑠, 𝑠) ⪯ (1 − 𝜖)𝑢,

and 1
𝑘

log ℎ𝑘 ⊗ ℎ𝑇 (𝑠, 𝑠) ∈ PSH(𝑋, 𝜃 + 𝜖 ′𝜔) for any 𝑠 ∈ H0 (𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)), as
long as 𝑘 ≥ 𝑘0 (𝜖, 𝜖 ′).

In particular, Lemma 14.1.1 gives that

𝑁 𝑘
𝑃′
𝜃+𝜖 ′𝜔,𝐾 [ (1−𝜖 )𝜑 ] (𝑣) ,𝑋

(𝑠) =𝑁 𝑘𝑣,𝐾 (𝑠),

𝑁 𝑘
𝑃′
𝜃+𝜖 ′𝜔,𝑋 [ (1−𝜖 )𝜑 ] (𝑣

−
𝑗
) ,𝑋 (𝑠) =𝑁

𝑘
𝑣−
𝑗
,𝑋 (𝑠),

𝑁 𝑘
𝑃′
𝜃+𝜖 ′𝜔,𝑋 [ (1−𝜖 )𝜑 ] (𝑣

+
𝑗
) ,𝑋 (𝑠) =𝑁

𝑘
𝑣+
𝑗
,𝑋
(𝑠).
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As

𝑃′𝜃+𝜖 ′𝜔,𝑋 [(1 − 𝜖)𝜑] (𝑣−𝑗 ) ≤ 𝑃′𝜃+𝜖 ′𝜔,𝐾 [(1 − 𝜖)𝜑] (𝑣) ≤ 𝑃′𝜃+𝜖 ′𝜔,𝑋 [(1 − 𝜖)𝜑] (𝑣+𝑗 ),

by Lemma 14.2.1 we have

𝑁 𝑘
𝑣+
𝑗
,𝑋
(𝑠) ≤ 𝑁 𝑘𝑣,𝐾 (𝑠) ≤ 𝑁 𝑘𝑣−

𝑗
,𝑋 (𝑠), 𝑠 ∈ H0 (𝑋,𝑇 ⊗ 𝐿𝑘 ⊗ I(𝑘𝜑)), 𝑘 ≥ 𝑘0 (𝜖, 𝜖 ′).

Composing with L𝑘,𝜑 we arrive at

L𝑘,𝜑 (𝑁 𝑘𝑣−
𝑗
,𝑋) ≤ L𝑘,𝜑 (𝑁 𝑘𝑣,𝐾 ) ≤ L𝑘,𝜑 (𝑁 𝑘𝑣+

𝑗
,𝑋
) , 𝑘 ≥ 𝑘0 (𝜖, 𝜖 ′).

For any 𝑗 > 0, by Corollary 14.2.1 we get

E𝜑
𝜃,𝑋
(𝑣−𝑗 ) − E

𝜑

𝜃,𝑋
(𝑤) = lim

𝑘→∞

(
L𝑘,𝜑 (𝑁 𝑘𝑣+

𝑗
,𝑋
) − L𝑘,𝜑 (𝑁 𝑘𝑤,𝑋)

)
≤ lim
𝑘→∞

(
L𝑘,𝜑 (𝑁 𝑘𝑣,𝐾 ) − L𝑘,𝜑 (𝑁 𝑘𝑤,𝑋)

)
≤ lim
𝑘→∞

(
L𝑘,𝜑 (𝑁 𝑘𝑣,𝐾 ) − L𝑘,𝜑 (𝑁 𝑘𝑤,𝑋)

)
≤ lim
𝑘→∞

(
L𝑘,𝜑 (𝑁 𝑘𝑣−

𝑗
,𝑋) − L𝑘,𝜑 (𝑁 𝑘𝑤,𝑋)

)
=E𝜑

𝜃,𝑋
(𝑣+𝑗 ) − E

𝜑

𝜃,𝑋
(𝑤) .

Using Lemma 14.1.5, we can let 𝑗 →∞ to arrive at

E𝜑
𝜃,𝐾
(𝑣) − E𝜑

𝜃,𝐾
(𝑤) ≤ lim

𝑘→∞

(
L𝑘,𝜑 (𝑁 𝑘𝑣,𝐾 ) − L𝑘,𝜑 (𝑁 𝑘𝑤,𝑋)

)
≤ lim
𝑘→∞

(
L𝑘,𝜑 (𝑁 𝑘𝑣,𝐾 ) − L𝑘,𝜑 (𝑁 𝑘𝑤,𝑋)

)
≤ E𝜑

𝜃,𝐾
(𝑣) − E𝜑

𝜃,𝐾
(𝑤) .

Hence, (14.29) follows. □

Corollary 14.2.2 Let 𝜑 ∈ PSH(𝑋, 𝜃) be a potential with analytic singularities such
that 𝜃𝜑 is a Kähler current. Let (𝐾, 𝑣) be a weighted subset of 𝑋 . Assume that
𝜐 ∈ BM(𝐾, 𝑣). Then

lim
𝑘→∞
L𝑘,𝜑 (𝑁 𝑘𝑣,𝜐) = E

𝜑

𝜃,𝐾
(𝑣).

Proof Our claim follows from Proposition 14.2.4 and Lemma 14.2.2. □

Proposition 14.2.5 Suppose that 𝜑 ∈ PSH(𝑋, 𝜃) be a potential with analytic singu-
larities such that 𝜃𝜑 is a Kähler current. Let (𝐾, 𝑣) be a weighted subset of 𝑋 . Let
𝜐 ∈ BM(𝐾, 𝑣). Then

𝛽𝑘𝑣,𝜑,𝜐 ⇀ 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ]I (𝑣) = 𝜃

𝑛
𝑃𝜃,𝐾 [𝜑 ] (𝑣)

weakly as 𝑘 →∞.
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Proof For 𝑤 ∈ 𝐶0 (𝑋), let

𝑓𝑘 (𝑡) B L𝑘,𝜑 (𝑁 𝑘𝑣+𝑡𝑤,𝜐), 𝑔(𝑡) B E𝜑
𝜃,𝐾
(𝑣 + 𝑡𝑤).

By Corollary 14.2.2 lim
𝑘→∞ 𝑓𝑘 (𝑡) = 𝑔(𝑡). Note that 𝑓𝑘 is concave by Hölder’s inequal-

ity (see [BBWN11, Proposition 2.4]), so by [BB10, Lemma 7.6], lim𝑘→∞ 𝑓 ′𝑘 (0) =
𝑔′ (0), which is equivalent to 𝛽𝑘𝑣,𝜑,𝜐 ⇀ 𝜃𝑛

𝑃𝜃,𝐾 [𝜑 ] (𝑣) , by Proposition 14.1.2. □

Proposition 14.2.6 Suppose that 𝜑 ∈ PSH(𝑋, 𝜃) such that 𝜃𝜑 is a Kähler current.
Let (𝐾, 𝑣) be a weighted subset of 𝑋 and 𝜐 ∈ BM(𝐾, 𝑣). Then

𝛽𝑘𝑣,𝜑,𝜐 ⇀ 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ]I (𝑣) (14.30)

as 𝑘 →∞.

Proof Let 𝜇 be the weak limit of a subsequence of 𝛽𝑘𝑣,𝜑,𝜐 . We claim that

𝜇 ≤ 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ]I (𝑣) . (14.31)

Observe that this claim implies the conclusion. In fact, by Theorem 7.4.1, we have
equality of the total masses, so equality holds in (14.31). As 𝜇 is an arbitrary cluster
point of the sequence (𝛽𝑘𝑣,𝜑,𝜐)𝑘 , we get (14.30).

It remains to prove (14.31). Let (𝜑 𝑗 ) be a quasi-equisingular approximation of
𝜑 in PSH(𝑋, 𝜃). We may assume that 𝜃𝜑 𝑗 is a Kähler current for all 𝑗 ≥ 1. By
Lemma 14.1.2, Corollary 7.1.2, we know that

𝜑 𝑗
𝑑𝑆−−→ 𝑃𝜃,𝐾 [𝜑]I (𝑣).

In particular,

lim
𝑗→∞

∫
𝑋

𝜃𝑛
𝑃𝜃,𝐾 [𝜑 𝑗 ]I (𝑣) =

∫
𝑋

𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ]I (𝑣) . (14.32)

Observe that
𝛽𝑘𝑣,𝜑,𝜐 ≤ 𝛽𝑘𝑣,𝜑 𝑗 ,𝜐

for any 𝑘 ≥ 1. As 𝜐 ∈ BM(𝐾, 𝑣), by Proposition 14.2.5,

𝜇 ≤ 𝜃𝑛
𝑃𝜃,𝐾 [𝜑 𝑗 ]I (𝑣) ,

for any 𝑗 ≥ 1 fixed. By Proposition 14.1.3,

𝑃𝜃,𝐾 [𝜑 𝑗 ]I (𝑣) ↘ 𝑃𝜃,𝐾 [𝜑]I (𝑣)

as 𝑗 →∞. Hence, by (14.32) and Theorem 2.4.3, (14.31) follows. □

Proof (Proof of Theorem 14.2.1) By Lemma 14.1.2, we have that
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H0
(
𝑋, 𝐿𝑘 ⊗ 𝑇 ⊗ I(𝑘𝜑)

)
= H0

(
𝑋, 𝐿𝑘 ⊗ 𝑇 ⊗ I(𝑘𝑃𝜃 [𝜑]I)

)
= H0

(
𝑋, 𝐿𝑘 ⊗ 𝑇 ⊗ I(𝑘𝑃𝜃,𝐾 [𝜑]I (𝑣))

)
.

This allows us to replace 𝜑 with 𝑃𝜃,𝐾 [𝜑]I (𝑣).
By Lemma 2.4.3, there exists 𝜑 𝑗 ∈ PSH(𝑋, 𝜃), such that 𝜑 𝑗 ↗ 𝜑 a.e. and 𝜃𝜑 𝑗 is a

Kähler current for each 𝑗 ≥ 1. This gives

𝛽𝑘𝑣,𝜑 𝑗 ,𝜐 ≤ 𝛽
𝑘
𝑣,𝜑,𝜐 .

Let 𝜇 be the weak limit of a subsequence of (𝛽𝑘𝑣,𝜑,𝜐)𝑘 . Then by Proposition 14.2.6,

𝜃𝑛
𝑃𝜃,𝐾 [𝜑 𝑗 ]I (𝑣) ≤ 𝜇.

By Proposition 14.1.3 and Theorem 2.4.3 we have that

𝜃𝑛
𝑃𝜃,𝐾 [𝜑 𝑗 ]I (𝑣) ↗ 𝜃𝑛

𝑃𝜃,𝐾 [𝜑 ]I (𝑣) .

Hence,
𝜃𝑛
𝑃𝜃,𝐾 [𝜑 ]I (𝑣) ≤ 𝜇. (14.33)

A comparison of total masses using (14.18) and Theorem 7.4.1 gives that equality
holds in (14.33). As 𝜇 is an arbitrary cluster limit of the weak compact sequence
(𝛽𝑘𝑣,𝜑,𝜇)𝑘 , we obtain (14.19). □

Remark 14.2.1 The results in this chapter could also be reformulated as the large
deviation principle of a determinantal point process on 𝑋 using the Gärtner–Ellis
theorem exactly as in [Ber14]. We leave the details to the readers.
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A brief history

Here we recall the origin of various results.
Chapter 1.
The notion of plurisubharmonic functions was introduced by Lelong [Lel45],

based on F. Riesz’s theory of subharmonic functions [Rie26]. See [Bre72] for an
excellent introduction to the early history of the subject. We refer to [Bre65] for the
foundations of potential theory and [GZ17] for the pluripotential theory.

The global Josefson theorem Theorem 1.1.5 was due to Vu [Vu19]. In the projective
setting, it was due to Dinh–Sibony [DS06] and in the Kähler setting, it was established
by Guedj–Zeriahi [GZ05].

The extension theorem Theorem 1.2.1 was proved in [GR56]. In fact, they proved
a more general version for complex spaces, see Theorem B.2.2. For some related
important extension theorems, see [Shi72, Wan24].

Proposition 1.2.8 was due to Kiselman [Kis78].
The plurifine topology was introduced by Fuglede during the Séminaire d’analyse

de Lelong–Dolbeault–Skoda of the year 1983/1984 [LDS86] based on H. Cartan’s
works on the fine topology. The key result Theorem 1.3.2 was claimed in Bedford–
Taylor’s work [BT87, Theorem 2.3] without proof. The first rigorous proof was given
by El Marzguioui–Wiegerinck [EMW06]. A weaker result was proved earlier in
[Kli91, Theorem 4.8.7].

Results in Section 1.3.2 are certainly well-known and are already implicitly used
in the literature. I could not find the proofs in the literature and hence all details are
presented.

The semicontinuity theorem Theorem 1.4.1 was due to Siu [Siu74].
The idea of Theorem 1.4.3 first appeared in the ground-breaking work of Boucksom–

Favre–Jonsson [BFJ08].
The strong openness Theorem 1.4.4 was first established by Guan–Zhou [GZ15].

A more elegant proof was due to Hiep [Hie14].
Lemma 1.6.3 was due to [Dem15, Proposition 4.1.6].
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Chapter 2
The Monge–Ampère operators for bound plurisubharmonic functions were in-

troduced by Bedford–Taylor [BT76, BT82]. The non-pluripolar product is due to
Bedford–Taylor [BT87], Guedj–Zeriahi [GZ07] and Boucksom–Eyssidieux–Guedj–
Zeriahi [BEGZ10].

The key lemma Lemma 2.4.2 was proved in [DDNL21b]. Theorem 2.4.5 was due
to [DDNL23].

Chapter 3
Lemma 3.1.1 was proved in [DDNL18b, Lemma 3.7].
The notion of the 𝑃-envelope is due to Ross–Witt Nyström [RWN14] based on

the ideas of Rashkovskii–Sigurdsson [RS05].
Theorem 3.1.1 is due to [DDNL18b, Theorem 3.8]. The diamond inequality

Theorem 3.1.3 and Proposition 3.1.5 are due to [DDNL21b, Theorem 5.4]. Most
results in Section 3.1.3 are simple generalizations of the corresponding results in
[DDNL18a, DDNL18c].

The I-envelope was introduced by Darvas–Xia [DX22], inspired by the works of
Dano Kim [Kim15] and Boucksom–Favre–Jonsson [BFJ08]. The notion of I-model
singularities was first formulated in the explicit way in [DX22] in 2020, although it
was already essentially known in Boucksom–Jonsson’s work. In fact, they correspond
exactly to the homogeneous non-Archimedean potentials assuming that the relevant
masses do not vanish. A less explicit equivalent formulation of I-model potentials
also appeared in [Dem15]. A few months later, the same notion was rediscovered by
Trusiani [Tru22].

Chapter 4
The notion of weak geodesics was studied in detail by Darvas [Dar17] in the

Kähler case.
The case of general big classes was partly handled in [DDNL18c], [DDNL18a].

However, the key fact that the geodesics between two full mass potentials have the
correct limit at the end points does not seem to have been proved in any references.
We give a proof in Proposition 4.2.1. We also extend the relevant results to the relative
setting.

Previously, Proposition 4.2.2 and Proposition 4.2.4 were only known in the Kähler
case.

Most results in Section 4.3 are simple extensions of [DDNL18a].
Chapter 5
The toric framework was first written down by Berman–Berndtsson [BB13] and

Coman–Guedj–Sahin–Zeriahi in [CGSZ19].
The beautiful theorem Theorem 5.2.2 was first proved by Yi Yao, who did not

publish the result. Later on, a new proof was found by Botero–Burgos Gil–Holmes–de
Jong [BBGHdJ22]. We chose to present the approach of Yao, which integrates
naturally with our framework.

Chapter 6
The notion of 𝑃-partial order is new, as well as most results in Section 6.1.
The 𝑑𝑆-pseudometric was introduced in [DDNL21b]. The basic properties are

proved in [DDNL21b] and [Xia25b].



Comments 387

Example 6.1.3 was due to Berman–Boucksom–Jonsson [BBJ21].
Theorem 6.2.4 is proved in [Xia22b]. Theorem 6.2.6 and Theorem 6.2.5 appear to

be new. These results appeared previously in the form of lecture notes.
Chapter 7
The notion of I-good singularities was due to [DX24b]. The name I-good was

chosen in [Xia22b].
Theorem 7.1.1 and Theorem 7.4.1 are due to [DX24b, DX22].
There are some further examples ofI-good singularities provided by [BBGHdJ22]

with applications in the theory of modular forms in [BBGHdJ24].
Chapter 8
The trace operator was introduced in [DX24a]. Here we present a different point

of view. Theorem 8.4.1 was proved in [DX24a].
The analytic Bertini theorem Theorem 8.5.1 was proved in [Xia22a], based on the

works of Matsumura–Fujino [FM21] and [Fuj23]. A weaker result was established
by Meng–Zhou [MZ23].

Chapter 9
The technique of test curves originates from [RWN14]. It was generalized by

Darvas–Di Nezza–Lu [DDNL18a], [DX24b], [DZ24] and [DXZ25]. We give the full
details of the proofs.

Test curves in Definition 9.1.1 are called maximal test curves in the literature, a
terminology which I do not like. I prefer to call the usual notion of test curves in the
literature sub-test curves.

Proposition 9.2.2 was first proved by He–Testorf–Wang in [HTW23]. Proposi-
tion 9.2.3 was due to Hisamoto [His16].

Remark 9.3.2 was a folklore result. I am unaware of any written proof in the
literature before our paper [DX22]. Finski [Fin22b] also gave a different proof with
different techniques later on.

Definition 9.3.3 was not the original definition of maximal geodesic rays of
Berman–Boucksom–Jonsson in [BBJ21]. One of the first major applications of our
theory was this pluripotential-theoretical characterization of maximal geodesic rays,
as proved in our very first paper [DX22].

Results in Section 9.4 are easy generalizations of the results proved in [Xia25a].
Chapter 10
The algebraic theory of partial Okounkov bodies was developed in [Xia25b]. The

transcendental Okounkov body was first defined by Deng [Den17] as suggested by
Demailly. The volume identity was proved in [DRWN+23]. The transcendental theory
of partial Okounkov bodies is new. Results in Section 11.3 are also new.

Chapter 11
The applications of b-divisors in pluripotential theory began with [BFJ09]. The

intersection theory of nef b-divisors was introduced by Dang–Favre [DF22]. The
technique of singularity b-divisors was introduced in [Xia23b] in 2020. The general
form first appeared in [Xia22b]. One year later, a special case was rediscovered in
[BBGHdJ22].

The current chapter reproduces a large part of [Xia25c].
Chapter 12
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The whole chapter appears to be new. The study of toric pluripotential theory on
big line bundles was made possible by the development of partial Okounkov bodies.
The key result is Theorem 12.2.2.

Most results in this chapter resulted from discussions with Yi Yao.
Chapter 13
Most results from this chapter are from [Xia25a]. Results from Section 13.3 are

new, although the main idea was already contained in [Xia25b].
Theorem 13.4.3 is due to [DXZ25]. An alternative approach to the transcendental

theory is due to Mesquita-Piccione [MP24].
Special cases of the results in this section have been applied to study K-stability,

see [Xia23b], [DZ24], [DXZ25] and [DR22]. In [DX22], we established the bĳective
correspondence between a class of I-model test curves with the maximal geodesic
rays in the sense of [BBJ21].

Chapter 14
The special case of Theorem 14.2.1 without the prescribed singularity 𝜑 was due

to Berman–Boucksom–Witt Nyström, see [BB10], [BBWN11]. The general case is
due to [DX24b].

Open problems

We give a list of important open problem in this theory.
We do not repeat the conjectures mentioned in the main text.

Conjecture 14.2.1 Let 𝑋 be a connected compact Kähler manifold and 𝑌 be a
submanifold. Fix a Kähler class 𝛼 on 𝑋 . For each Kähler current 𝑆 ∈ 𝛼 |𝑌 , we can
find a Kähler current 𝑇 ∈ 𝛼 such that

Tr𝑌 (𝑇) ∼I 𝑆.

If we formally view Tr𝑌 as an analogue of the trace operator in the theory of Sobolev
spaces, then this conjecture corresponds exactly to the Dirichlet problem.

Using Proposition 8.2.2, one could also reduce this conjecture to a strong version
of the extension theorem Theorem 1.6.3.

Conjecture 14.2.2 Let 𝑋 be a connected compact Kähler manifold and 𝑌 be a
submanifold. Fix a Kähler class 𝛼 on 𝑋 . Consider Kähler currents 𝑅 ∈ 𝛼, 𝑆 ∈ 𝛼 |𝑌
with gentle analytic singularities such that 𝑆 ⪯ 𝑅 |𝑌 . Then there is a Kähler current
𝑇 ∈ 𝛼 with analytic singularities such that

Tr𝑌 (𝑇) ∼I 𝑆, 𝑇 ⪯ 𝑅.

This conjecture was also proposed by Darvas for different purposes.

Conjecture 14.2.3 Let 𝑋 be a connected smooth projective variety of dimension 𝑛.
Assume that (𝐿𝑖 , ℎ𝑖) is a Hermitian big line bundle on 𝑋 for each 𝑖 = 1, . . . , 𝑛 with
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the ℎ𝑖’s being I-good. Then∫
𝑋

𝑐1 (𝐿1, ℎ1) ∧ · · · ∧ 𝑐1 (𝐿𝑛, ℎ𝑛) = sup
𝜈

vol (Δ𝜈 (𝐿1, ℎ1), . . . ,Δ𝜈 (𝐿𝑛, ℎ𝑛)) ,

where 𝜈 : C(𝑋)× → Z𝑛 runs over all (surjective) valuation of rank 𝑛.

See [Sch93, Section 5.1] for the notion of mixed volumes.
This conjecture seems reasonable in view of Corollary 10.3.3 and Corollary 10.3.2.
Even when ℎ1, . . . , ℎ𝑛 have minimal singularities, this conjecture remains open:

Conjecture 14.2.4 Let 𝑋 be a connected smooth projective variety of dimension 𝑛.
Assume that 𝐿1, . . . , 𝐿𝑛 are big line bundles on 𝑋 . Then

⟨𝐿1, . . . , 𝐿𝑛⟩ = sup
𝜈

vol (Δ𝜈 (𝐿1), . . . ,Δ𝜈 (𝐿𝑛)) , (14.34)

where 𝜈 : C(𝑋)× → Z𝑛 runs over all (surjective) valuation of rank 𝑛.

Here on the left-hand side, we are using the movable intersection theory [BDPP13].
In [Wil25], Wilms proved the ≤ direction of (14.34).

Problem 14.2.1 Is it possible to extend the definition of the trace operator Tr𝑌 to the
case where the ambient variety is only unibranch?

The difficulty lies in the lack of Demailly type regularization theorems.

Problem 14.2.2 Is there a natural definition of the transcendental Okounkov body of
a closed positive (1, 1)-current 𝑇 with 0-mass so that its dimension is equal to the
numerical dimension of 𝑇?

See [Cao14] for the definition of the numerical dimension of a current.
The following two problems are proposed by Witt Nyström.

Problem 14.2.3 Consider a compact Kähler manifold 𝑋 and a connected subman-
ifold 𝑌 . We have defined the trace operator Tr𝑌 from a subset of QPSH(𝑋)/∼I
to QPSH(𝑌 )/∼I . Is it possible to refine this operator to one from a subset of
QPSH(𝑋)/∼𝑃 to QPSH(𝑌 )/∼𝑃?

Problem 14.2.4 Consider a connected compact Kähler manifold 𝑋 of dimension
𝑛 and a smooth flag 𝑌• on 𝑋 . Consider closed smooth real (1, 1)-form 𝜃 on 𝑋

representing a big cohomology class and 𝜑 ∈ PSH(𝑋, 𝜃) with
∫
𝑋
𝜃𝑛𝜑 > 0.

Can one define a refined notion of partial Okounkov bodiesΔ′
𝑌•
(𝜃+ddc𝜑) contained

in Δ𝑌• (𝜃 + ddc𝜑) with volume given by 1
𝑛!

∫
𝑋
𝜃𝑛𝜑?

Note that a satisfactory solution to the latter problem is not very likely, as can be
easily seen from examples on P1.

We also look for generalizations of our theory to more general settings.

Problem 14.2.5 To what extent can the results in the current book be generalized to
the non-Kähler setting?
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The non-pluripolar products in the non-Kähler setting was recently studied by
Boucksom–Guedj–Lu in [BGL24]. See also the references therein.

Problem 14.2.6 To what extent can the results in the current book about closed
positive (1, 1)-currents be generalized to closed positive currents of higher bidegree?

A fundamental issue is the lack of a strong enough Demailly type approximation
for general currents. The regularization theorem of Dinh–Sibony [DS04] seems too
weak for our purposes.



Appendix A
Convex functions and convex bodies

We recall some basic facts about convex functions in this section. Our basic reference
is [Roc70]. The results in this appendix can be applied to concave functions after
considering their negatives.

A.1 The notion of convex functions

Let 𝑁 be a real vector space of finite dimension.

Definition A.1.1 Let 𝐹 : 𝑁 → [−∞,∞] be a function. The epigraph of 𝐹 is defined
as the following set

epi 𝐹 B {(𝑛, 𝑟) ∈ 𝑁 × R : 𝑟 ≥ 𝐹 (𝑛)} .

Definition A.1.2 A convex function on 𝑁 is a function 𝐹 : 𝑁 → [−∞,∞] such that
the epigraph epi 𝐹 is a convex subset of 𝑁 × R.

The effective domain of 𝐹 is the set

Dom 𝐹 B {𝑛 ∈ 𝑁 : 𝐹 (𝑛) < ∞} .

A convex function 𝐹 on 𝑁 such that Dom 𝐹 ≠ ∅ and 𝐹 (𝑛) ≠ −∞ for all 𝑛 ∈ 𝑁 is
said to be proper.

The set of convex functions on 𝑁 is denoted by Conv(𝑁). The subset set of proper
convex functions is denoted by Convprop (𝑁).

The following characterization of convex functions is well-known.

Lemma A.1.1 Let 𝐹 : 𝑁 → [−∞,∞]. Then 𝐹 is convex if and only if the following
condition holds: suppose that 𝑛, 𝑟 ∈ 𝑁 and 𝑎, 𝑏 ∈ R such that 𝑎 > 𝐹 (𝑛), 𝑏 > 𝐹 (𝑟),
then for any 𝑡 ∈ (0, 1), we have

𝐹 (𝑡𝑛 + (1 − 𝑡)𝑟) < 𝑡𝑎 + (1 − 𝑡)𝑏.
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See [Roc70, Theorem 4.2] for the proof.

Example A.1.1 Let 𝐴 ⊆ 𝑁 be a convex subset. Then the characteristic function
𝜒𝐴 : 𝑁 → {0,∞} of 𝐴 is defined by

𝜒𝐴(𝑛) B
{

0, 𝑛 ∈ 𝐴;
∞, 𝑛 ∉ 𝐴.

The function 𝜒𝐴 lies in Conv(𝑁).

Example A.1.2 Let 𝑀 be the dual vector space of 𝑁 and 𝑃 ⊆ 𝑀 be a convex subset.
The support function Supp𝑃 ∈ Conv(𝑁) of 𝑃 is defined as follows:

Supp𝑃 (𝑛) B sup{⟨𝑚, 𝑛⟩ : 𝑚 ∈ 𝑃}.

It is well-known that convexity is preserved by a number of natural operations.
We recall a few to fix the notation.

Definition A.1.3 Let 𝐹1, . . . , 𝐹𝑚 ∈ Convprop (𝑁) (𝑚 ∈ Z>0). We define their infimal
convolution 𝐹1□ · · ·□𝐹𝑚 ∈ Conv(𝑁) as follows:

𝐹1□ · · ·□𝐹𝑚 (𝑛) B inf

{
𝑚∑︁
𝑖=1

𝐹𝑖 (𝑛𝑖) : 𝑛𝑖 ∈ 𝑁,
𝑚∑︁
𝑖=1

𝑛𝑖 = 𝑛

}
.

The fact 𝐹1□ · · ·□𝐹𝑚 ∈ Conv(𝑁) is proved in [Roc70, Theorem 5.4]. One should
note that 𝐹1□ · · ·□𝐹𝑚 is not always proper.

Proposition A.1.1 Let {𝐹𝑖}𝑖∈𝐼 be a non-empty family in Conv(𝑁). Then sup𝑖∈𝐼 𝐹𝑖 ∈
Conv(𝑁).

This follows from [Roc70, Theorem 5.5]. In particular, this allows us to introduce

Definition A.1.4 Let 𝑓 : 𝑁 → [−∞,∞]. The lower convex envelope of 𝑓 is defined
as

CE 𝑓 B sup{𝐹 ∈ Conv(𝑁) : 𝐹 ≤ 𝑓 }.

It follows from Proposition A.1.1 that CE 𝑓 ∈ Conv(𝑁).

Definition A.1.5 Given a non-empty family {𝐹𝑖}𝑖∈𝐼 in Conv(𝑁), we define∧
𝑖∈𝐼

𝐹𝑖 B CE
(
inf
𝑖∈𝐼
𝐹𝑖

)
.

When the family 𝐼 is finite, say 𝐼 = {1, . . . , 𝑚}, we also write

𝐹1 ∧ · · · ∧ 𝐹𝑚 =
∧
𝑖∈𝐼

𝐹𝑖 .
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Definition A.1.6 Given a non-empty family {𝐹𝑖}𝑖∈𝐼 in Conv(𝑁), we define∨
𝑖∈𝐼

𝐹𝑖 B sup
𝑖∈𝐼

𝐹𝑖 .

When the family 𝐼 is finite, say 𝐼 = {1, . . . , 𝑚}, we also write

𝐹1 ∨ · · · ∨ 𝐹𝑚 =
∨
𝑖∈𝐼

𝐹𝑖 .

Recall that
∨
𝑖∈𝐼 𝐹𝑖 ∈ Conv(𝑁) by Proposition A.1.1.

Proposition A.1.2 Let 𝐹1, . . . , 𝐹𝑚 ∈ Convprop (𝑁), then

𝐹1 ∧ · · · ∧ 𝐹𝑚 (𝑥) = inf

{
𝑚∑︁
𝑖=1

𝜆𝑖𝐹𝑖 (𝑥𝑖) : 𝑥𝑖 ∈ Dom(𝐹𝑖),

𝜆𝑖 ∈ [0, 1],
𝑚∑︁
𝑖=1

𝜆𝑖 = 1,
𝑚∑︁
𝑖=1

𝜆𝑖𝑥𝑖 = 𝑥

}
.

See [Roc70, Theorem 5.6] for the more general result.

Lemma A.1.2 Let {𝐹𝑖}𝑖∈𝐼 be a decreasing net in Conv(𝑁). Then inf𝑖∈𝐼 𝐹𝑖 ∈
Conv(𝑁).

Proof Write 𝐹 = inf𝑖∈𝐼 𝐹𝑖 . We shall apply the characterization in Lemma A.1.1.
Take 𝑛, 𝑟 ∈ 𝑁 , 𝑎, 𝑏 ∈ R such that 𝑎 > 𝐹 (𝑛), 𝑏 > 𝐹 (𝑟) and 𝑡 ∈ (0, 1). We need to
show that

𝐹 (𝑡𝑛 + (1 − 𝑡)𝑟) < 𝑡𝑎 + (1 − 𝑡)𝑏. (A.1)

By definition, there exists 𝑗 ∈ 𝐼 such that for any 𝑖 ≥ 𝐼 with 𝑖 ≥ 𝑗 , we have

𝑎 > 𝐹𝑖 (𝑛), 𝑏 > 𝐹𝑖 (𝑟).

It follows from Lemma A.1.1 that

𝐹𝑖 (𝑡𝑛 + (1 − 𝑡)𝑟) < 𝑡𝑎 + (1 − 𝑡)𝑏

for any 𝑖 ≥ 𝑗 . Since 𝐹𝑖 is decreasing in 𝑖, we conclude (A.1). □

Definition A.1.7 Let 𝐹 ∈ Conv(𝑁). The closure cl 𝐹 ∈ Conv(𝑁) of 𝐹 is defined as
follows: If 𝐹 (𝑛) = −∞ for some 𝑛 ∈ 𝑁 , then cl 𝐹 B −∞. Otherwise, we define cl 𝐹
as the lower semicontinuity regularization of 𝐹.

A convex function 𝐹 ∈ Conv(𝑁) is closed if 𝐹 = cl 𝐹. In other words, 𝐹 ∈
Conv(𝑁) if one of the following conditions hold:

(1) 𝐹 ≡ −∞;
(2) 𝐹 ≡ ∞;
(3) 𝐹 is proper and lower semi-continuous.
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Proposition A.1.3 Let 𝐹 ∈ Conv(𝑁) be a closed convex function. Then 𝐹 is the
supremum of all affine functions lying below 𝐹.

See [Roc70, Theorem 12.1].

Theorem A.1.1 Let 𝐹 ∈ Convprop (𝑁). Then cl 𝐹 is a closed proper convex function.
Moreover, cl 𝐹 agrees with 𝐹 except possibly on the relative boundary of Dom 𝐹.

See [Roc70, Theorem 7.4].

Proposition A.1.4 Let 𝐹, 𝐹′ ∈ Conv(𝑁) be closed convex functions. Assume that

(1) RelInt Dom 𝐹 = RelInt Dom 𝐹′, and
(2) 𝐹 = 𝐹′ on RelInt Dom 𝐹.

Then 𝐹 = 𝐹′.

This is a special case of [Roc70, Corollary 7.3.4].

Definition A.1.8 Given 𝐹, 𝐹′ ∈ Conv(𝑁), we write 𝐹 ⪯ 𝐹′ if there is 𝐶 ∈ R such
that

𝐹 ≤ 𝐹′ + 𝐶.

We say 𝐹 ∼ 𝐹′ if 𝐹 ⪯ 𝐹′ and 𝐹′ ⪯ 𝐹 both hold.

Theorem A.1.2 Let 𝐶 ⊆ 𝑁 be an open subset. Let ( 𝑓𝑖)𝑖>0 be a sequence of real-
valued convex functions on 𝐶. Suppose that the sequence converges on a dense subset
of 𝐶 and the limit is finite, then the limit

𝑓 (𝑥) B lim
𝑖→∞

𝑓𝑖 (𝑥)

exists for all 𝑥 ∈ 𝐶 and is convex on 𝐶. Moreover, the sequence ( 𝑓𝑖)𝑖 converges
uniformly to 𝑓 on each compact subset of 𝐶.

This is a special case of [Roc70, Theorem 10.8].

A.2 Legendre transform

Let 𝑁 be a real vector space of finite dimension and 𝑀 be the dual vector space. The
pairing 𝑀 × 𝑁 → R will be denoted by ⟨•, •⟩.

Definition A.2.1 Let 𝐹 ∈ Conv(𝑁) be a convex function. We define the Legendre
transform of 𝐹 as the function 𝐹∗ ∈ Conv(𝑀):

𝐹∗ (𝑚) B sup
𝑛∈𝑁
(⟨𝑚, 𝑛⟩ − 𝐹 (𝑛)) = sup

𝑛∈RelInt Dom𝐹
(⟨𝑚, 𝑛⟩ − 𝐹 (𝑛)) . (A.2)

The latter equality follows from [Roc70, Corollary 12.2.2].
Recall the well-known Legendre–Fenchel duality [Roc70, Theorem 12.2].
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Theorem A.2.1 Let 𝐹 ∈ Conv(𝑁). Then 𝐹∗ is a closed convex function. The function
𝐹∗ is proper if and only if 𝐹 is.

Moreover, we have (cl 𝐹)∗ = 𝐹∗ and

𝐹∗∗ = cl 𝐹.

Example A.2.1 Let 𝑃 ⊆ 𝑀 be a closed convex subset. Then

Supp∗𝑃 = 𝜒𝑃 , 𝜒∗𝑃 = Supp𝑃 .

See [Roc70, Theorem 13.2].

The following special case will be useful to us in the sequel.

Corollary A.2.1 Let 𝐹 : (0,∞) → [−∞,∞) be a convex function. If we define
𝐺 : R→ (−∞,∞] by

𝐺 (𝜏) = sup
𝑡>0
(𝑡𝜏 − 𝐹 (𝑡)) ,

then 𝐺 is a convex function and

𝐹 (𝑡) = 𝐺∗ (𝑡), ∀𝑡 > 0. (A.3)

Moreover,
𝐺 (𝜏) = sup

𝑡∈Q>0

(𝑡𝜏 − 𝐹 (𝑡)) . (A.4)

Proof We distinguish two cases.
First suppose that 𝐹 (𝑡) = −∞ for some 𝑡 > 0. Then 𝐹 (𝑡) = −∞ for all 𝑡 > 0 by

the convexity of 𝐹. Our assertions are clear in this case.
Next assume that 𝐹 (𝑡) ≠ −∞ for all 𝑡 > 0. In this case, Theorem A.1.1 guarantees

that 𝐹 admits a closed proper extension 𝐹̃ ∈ Conv(R) with

𝐹̃ (𝑡) = ∞, ∀𝑡 < 0.

It follows from (A.2) that

𝐺 (𝜏) = 𝐹̃∗ (𝜏), ∀𝜏 ∈ R.

Now Theorem A.2.1 implies (A.3). Finally (A.4) follows from the continuity of 𝐹.□

Proposition A.2.1 Let 𝐹 : 𝑁 → [−∞,∞], then the function 𝐹∗ : 𝑀 → [−∞,∞]
defined by

𝐹∗ (𝑚) B sup
𝑛∈𝑁
(⟨𝑚, 𝑛⟩ − 𝐹 (𝑛)) .

Then
𝐹∗ = (cl CE 𝑓 )∗.

See [Roc70, Corollary 12.1.1].
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Definition A.2.2 Let 𝐹 ∈ Conv(𝑁) and 𝑛 ∈ 𝑁 . An element 𝑚 ∈ 𝑀 is a subgradient
of 𝐹 at 𝑛 if

𝐹 (𝑛′) ≥ 𝐹 (𝑛) + ⟨𝑛′ − 𝑛, 𝑚⟩, ∀𝑛′ ∈ 𝑁. (A.5)

The set of subgradients of 𝐹 at 𝑛 is denoted by ∇𝐹 (𝑛).
More generally, for any subset 𝐸 ⊆ 𝑁 , we write

∇𝐹 (𝐸) =
⋃
𝑛∈𝐸
∇𝐹 (𝑛).

Definition A.2.3 Given 𝐹, 𝐹′ ∈ Conv(𝑁), we write 𝐹 ⪯𝑃 𝐹′ if

∇𝐹 (𝑁) ⊆ ∇𝐹′ (𝑁).

We write 𝐹 ∼𝑃 𝐹′ if 𝐹 ⪯𝑃 𝐹′ and 𝐹′ ⪯𝑃 𝐹.

Theorem A.2.2 Suppose that 𝐹 ∈ Convprop (𝑁). Then the following hold:

(1) For any 𝑛 ∉ Dom 𝐹, ∇𝐹 (𝑛) = ∅;
(2) for any 𝑛 ∈ RelInt Dom 𝐹, ∇𝐹 (𝑛) ≠ ∅; Moreover, for any 𝑛′ ∈ 𝑁 , we have

𝜕𝑛′𝐹 (𝑛) = sup {⟨𝑛′, 𝑚⟩ : 𝑚 ∈ ∇𝐹 (𝑛)} ;

(3) for 𝑛 ∈ 𝑁 , the set ∇𝐹 (𝑛) is bounded if and only if 𝑛 ∈ Int Dom 𝐹.

For the proof, we refer to [Roc70, Theorem 23.4].

Proposition A.2.2 Let 𝐹 ∈ Convprop (𝑁). Then

∇𝐹 (𝑁) ⊆ Dom 𝐹∗.

If moreover 𝐹 is closed, we have

RelInt Dom 𝐹∗ ⊆ ∇𝐹 (𝑁). (A.6)

In particular, if 𝐹 is a proper closed convex function on 𝑁 , then

∇𝐹 (𝑁) = Dom 𝐹∗.

Proof Suppose that 𝑚 ∈ ∇𝐹 (𝑛) for some 𝑛 ∈ 𝑁 , it follows that (A.5) holds. In
particular,

⟨𝑚, 𝑛′⟩ − 𝐹 (𝑛′) ≤ ⟨𝑚, 𝑛⟩ − 𝐹 (𝑛).

It follows that
𝐹∗ (𝑚) ≤ ⟨𝑚, 𝑛⟩ − 𝐹 (𝑛) < ∞.

(A.6) is proved in [Roc70, Corollary 23.5.1]. For the last assertion, it suffices to
observe that RelInt Dom 𝐹∗ = Dom 𝐹∗. □

Proposition A.2.3 Let {𝐹𝑖}𝑖∈𝐼 be a non-empty family in Convprop (𝑁). Then
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𝑖∈𝐼

𝐹𝑖

)∗
=

∨
𝑖∈𝐼

𝐹∗𝑖 ,

(∨
𝑖∈𝐼

cl 𝐹𝑖

)∗
= cl

∧
𝑖∈𝐼

𝐹∗𝑖 .

If 𝐼 is finite and Dom 𝐹𝑖 is independent of the choice of 𝑖 ∈ 𝐼, then(∨
𝑖∈𝐼

𝐹𝑖

)∗
=

∧
𝑖∈𝐼

𝐹∗𝑖 .

Recall that ∧ is defined in Definition A.1.5 and ∨ in Definition A.1.6. See [Roc70,
Theorem 16.5] for the proof.

Proposition A.2.4 Let 𝐹1, . . . , 𝐹𝑟 ∈ Convprop (𝑁) (𝑟 ∈ Z>0). Assume that

𝑟⋂
𝑖=1

RelInt Dom(𝐹𝑖) ≠ ∅,

then for any 𝑚 ∈ 𝑀 ,(
𝑟∑︁
𝑖=1

𝐹𝑖

)∗
(𝑚) = inf

{
𝑟∑︁
𝑖=1

𝐹∗𝑖 (𝑚𝑖) : 𝑚1, . . . , 𝑚𝑟 ∈ 𝑀,
𝑟∑︁
𝑖=1

𝑚𝑖 = 𝑚

}
.

Proposition A.2.5 Let 𝑃 ⊆ 𝑀 be a convex body1 and 𝐹 ∈ Convprop (𝑁). The
following are equivalent:

(1) 𝐹 ⪯ Supp𝑃;
(2) Dom 𝐹 = 𝑁 and 𝐹∗ |𝑀\𝑃 ≡ ∞;
(3) Dom 𝐹 = 𝑁 and ∇𝐹 (𝑁) ⊆ 𝑃.

Moreover, under these conditions,

𝐹 (𝑛) − Supp𝑃 (𝑛) ≤ 𝐹 (0), ∀𝑛 ∈ 𝑁. (A.7)

Proof (1) =⇒ (2). It is clear that Dom 𝐹 = 𝑁 since Dom Supp𝑃 = 𝑁 . From
𝐹 ⪯ Supp𝑃 and Example A.2.1, we know that

𝜒𝑃 = Supp∗𝑃 ⪯ 𝐹∗.

So ii follows.
(2) =⇒ (3). This follows from Proposition A.2.2.
(3) =⇒ (1). Taken 𝑛 ∈ 𝑁 , we know that 𝐹 is locally Lipschitz [Roc70,

Theorem 10.4], so we can compute

1 Here a convex body refers to a non-empty closed convex subset, not necessarily having non-empty
interior.
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𝐹 (𝑛) − 𝐹 (0) =
∫ 1

0

d
d𝑡

����
𝑡=0

𝐹 (𝑡𝑛) d𝑡 =
∫ 1

0
⟨∇𝐹 (𝑡𝑛), 𝑛⟩ d𝑡

≤
∫ 1

0
Supp𝑃 (𝑛) d𝑡 = Supp𝑃 (𝑛).

In particular, (A.7) also follows. □

A.3 Classes of convex functions

Let 𝑁 be a real vector space of finite dimension and 𝑀 be the dual vector space.
We shall fix a convex body 𝑃 ⊆ 𝑀 .
The following classes are introduced in [BB13].

Definition A.3.1 We define the set P(𝑁, 𝑃) as the set of proper convex functions
𝐹 ∈ Conv(𝑁) such that 𝐹 ⪯ Supp𝑃 .

We define the set E∞ (𝑁, 𝑃) as the set of closed convex functions 𝐹 ∈ Conv(𝑁)
such that 𝐹 ∼ Supp𝑃 .

We define the set E(𝑁, 𝑃) as follows: Suppose that Int 𝑃 = ∅, then E(𝑁, 𝑃) B
P(𝑁, 𝑃); otherwise, let

E(𝑁, 𝑃) =
{
𝐹 ∈ P(𝑁, 𝑃) : 𝑃 = ∇𝐹 (𝑁)

}
.

We define the set E1 (𝑁, 𝑃) as the subset of E(𝑁, 𝑃) consisting of 𝐹 ∈ E(𝑁, 𝑃) with∫
𝑃

𝐹∗ d vol < ∞,

where d vol is any Lebesgue measure on 𝑁 .

Observe that for any 𝐹 ∈ P(𝑁, 𝑃), we have Dom 𝐹 = 𝑁 and 𝐹 is necessarily closed.

Proposition A.3.1 We have

E∞ (𝑁, 𝑃) ⊆ E1 (𝑁, 𝑃) ⊆ E(𝑁, 𝑃) ⊆ P(𝑁, 𝑃).

Proof When Int 𝑃 = ∅, the assertion is clear. We assume that Int 𝑃 ≠ ∅. The
second inclusion follows from definition. We only hand the first inequality. Take
𝐹 ∈ E∞ (𝑁, 𝑃). By definition, 𝐹 ∼ Supp𝑃 and hence 𝐹∗ ∼ 𝜒𝑃 . It follows that
𝑃 = Dom 𝐹∗.

By Proposition A.2.5, we already know that

∇𝐹 (𝑁) ⊆ 𝑃 = Dom 𝐹∗.

On the other hand, by Proposition A.2.2, we have

Int 𝑃 ⊆ ∇𝐹 (𝑁).
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So it follows that
𝑃 = ∇𝐹 (𝑁).

It is clear that 𝐹∗ ∼ 𝜒𝑃 is integrable. □

Proposition A.3.2 For any 𝐹 ∈ E∞ (𝑁, 𝑃), we have 𝐹∗ |𝑀\𝑃 ≡ ∞ and 𝐹∗ is bounded
on 𝑃.

Proof From 𝐹 ∼ Supp𝑃 , we take the Legendre transform to get 𝐹∗ ∼ Supp∗𝑃 = 𝜒𝑃 ,
where we applied Example A.2.1. □

Definition A.3.2 We endow the topology of pointwise convergence on P(𝑁, 𝑃). Note
that this topology coincides with the compact-open topology.

Proposition A.3.3 Let 𝐹 ∈ P(𝑁, 𝑃). Then there is a decreasing sequence 𝐹𝑗 ∈
E∞ (𝑁, 𝑃) ∩ 𝐶∞ (𝑁) converging to 𝐹.

See [BB13, Lemma 2.2].
We observe that the point 0 ∈ 𝑁 plays a special role since it does in the definition

of the support function.

Proposition A.3.4 For any 𝐹 ∈ Conv(𝑁, 𝑃), we have

max
𝑁
(𝐹 − Supp𝑃) = 𝐹 (0).

Proof It follows from (A.7) that

sup
𝑁

(𝐹 − Supp𝑃) ≤ 𝐹 (0).

The equality is clearly obtained at 0 ∈ 𝑁 . □

Lemma A.3.1 Let 𝑃′ ⊆ 𝑀 be another convex body. Then for any 𝐹 ∈ P(𝑁, 𝑃) and
𝐹′ ∈ P(𝑁, 𝑃′), we have

𝐹 + 𝐹′ ∈ P(𝑁, 𝑃 + 𝑃′).

Similarly, if 𝐹 ∈ E(𝑁, 𝑃) and 𝐹′ ∈ E(𝑁, 𝑃′), we have

𝐹 + 𝐹′ ∈ E(𝑁, 𝑃 + 𝑃′).

Proof The former assertion follows immediately from the observation

Supp𝑃+𝑃′ = Supp𝑃 +Supp𝑃′ .

As for the latter, it suffices to prove the following more general statement:

∇𝐹 + ∇𝐹′ = ∇(𝐹 + 𝐹′)

for any real-valued convex functions 𝐹 and 𝐹′ on 𝑁 with Dom 𝐹∗ bounded. In view
of Proposition A.2.2, this means
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Dom(𝐹 + 𝐹′)∗ = Dom 𝐹∗ + Dom 𝐹′∗. (A.8)

It follows from Proposition A.2.4 that

Dom(𝐹 + 𝐹′)∗ = Dom 𝐹∗ + Dom 𝐹′∗.

Since Dom 𝐹∗ is compact, (A.8) follows2. □

A.4 Monge–Ampère measures

Let 𝑁 be a free Abelian group of finite rank (i.e. a lattice) and 𝑀 be its dual lattice.
There is a canonical Lebesgue type measure on 𝑀R, denoted by d vol, normalized so
that the smallest cubes in 𝑀 have volume 1. Similarly, the canonical measure on 𝑁R
is normalized in the same way and is denoted by d vol as well.

We will write
𝑁R = 𝑁 ⊗Z R, 𝑀R = 𝑀 ⊗Z R.

Definition A.4.1 Let 𝐹 ∈ Conv(𝑁R), we define the real Monge–Ampère measure
MAR 𝐹 as the Borel measure on 𝑁R given as follows: for each Borel measurable set
𝐸 ⊆ 𝑁R, define

MAR 𝐹 (𝐸) B 𝑛!
∫
∇𝐹 (𝐸 )

d vol .

Proposition A.4.1 Suppose that 𝐹 ∈ 𝐶1,1 (𝑁R) ∩ Conv(𝑁R), fix an identification
𝑁 = Z𝑛, then

MAR 𝐹 = 𝑛! · det∇2𝐹 d vol .

See [Fig17, Example 2.2].

Proposition A.4.2 Let 𝑃 ∈ 𝑀R be a convex body and 𝐹 ∈ P(𝑁R, 𝑃). Then 𝐹 ∈
E(𝑁R, 𝑃) if and only if ∫

𝑀R

MAR 𝐹 = 𝑛! vol 𝑃. (A.9)

Proof By definition of MAR, (A.9) is equivalent to

vol∇𝐹 (𝑁R) = vol 𝑃.

We first handle the case where Int 𝑃 ≠ ∅. By Proposition A.2.5, the latter is
equivalent to

∇𝐹 (𝑁R) = 𝑃.

Now assume that Int 𝑃 = ∅, then vol∇𝐹 (𝑁) = vol 𝑃 = 0 by Proposition A.2.5.
The assertion is clear. □

2 In general, the Minkowski sum does not commute with the closure.
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Theorem A.4.1 Let 𝐹, 𝐹𝑗 ∈ P(𝑁R, 𝑃) ( 𝑗 ∈ Z>0). Assume that 𝐹𝑗 → 𝐹, then
MAR (𝐹𝑗 ) converges to MAR (𝐹) weakly.

See [Fig17, Proposition 2.6].
There is a well-known comparison principle.

Theorem A.4.2 Let 𝐹, 𝐹′ ∈ P(𝑁R, 𝑃). Assume that 𝐹 ⪯ 𝐹′, then

∇𝐹 (𝑁R) ⊆ ∇𝐹′ (𝑁R),
∫
𝑁R

MAR (𝐹) ≤
∫
𝑁R

MAR (𝐹′).

Proof It suffices to observe that 𝐺′∗ ⪯ 𝐺∗, and hence the first assertion follows from
Proposition A.2.2. The second assertion follows from the first. □

A.5 Separation lemmata

Lemma A.5.1 Let𝛼, 𝛽1, . . . , 𝛽𝑚 ∈ Z𝑛. LetΔ be the polytope generated by 𝛽1, . . . , 𝛽𝑚.
Then the following are equivalent:

(1)

|𝑧𝛼 |2
(
𝑚∑︁
𝑖=1
|𝑧𝛽𝑖 |2

)−1

(A.10)

is a bounded function on C∗𝑛.
(2) 𝛼 ∈ Δ.

Proof (2) =⇒ (1). Write 𝛼 =
∑
𝑖 𝑡𝑖𝛽𝑖 , where 𝑡𝑖 ∈ [0, 1],

∑
𝑖 𝑡𝑖 = 1. Then

|𝑧𝛼 |2
(
𝑚∑︁
𝑖=1
|𝑧𝛽𝑖 |2

)−1

=
∏
𝑖

|𝑧𝛽𝑖 |2𝑡𝑖
(
𝑚∑︁
𝑖=1
|𝑧𝛽𝑖 |2

)−1

≤
∏
𝑖

∑︁
𝑗

|𝑧𝛽 𝑗 |2𝑡𝑖
(
𝑚∑︁
𝑖=1
|𝑧𝛽𝑖 |2

)−1

≤ 1.

(1) =⇒ (2). Assume that 𝛼 ∉ Δ. Let 𝐻 be a hyperplane that separates 𝛼 and Δ.
Say 𝐻 is defined by 𝑎1𝑥1 + · · · + 𝑎𝑛𝑥𝑛 = 𝐶. Set

𝑧(𝑡) B (𝑡𝑎1 , . . . , 𝑡𝑎𝑛 ).

Then clearly (A.10) evaluated at 𝑧(𝑡) is not bounded. □

Lemma A.5.2 Let 𝛽1, . . . , 𝛽𝑚 ∈ N𝑛 and 𝛽 ∈ R𝑛. Then the following are equivalent

(1) log
∑𝑚
𝑖=1 e𝑥 ·𝛽𝑖 − (𝑥, 𝛽) is bounded from below.

(2) 𝛽 is in the convex hull of the 𝛽𝑖’s.

Proof The proof follows the same pattern as Lemma A.5.1. □





Appendix B
Pluripotential theory on unibranch spaces

In this appendix, we extend the theory in the book to compact unibranch Kähler
spaces.

B.1 Complex spaces

A complex space is assumed to be reduced, Hausdorff and paracompact in the whole
book.

Definition B.1.1 A prime divisor over an irreducible complex space 𝑍 is a connected
smooth hypersurface 𝐸 ⊆ 𝑋 ′, where 𝑋 ′ → 𝑍 is a proper bimeromorphic morphism
with 𝑋 ′ smooth. Such a morphism 𝑋 ′ → 𝑍 is also called a resolution of 𝑍 . The
center of the prime divisor is defined as the image of 𝐸 in 𝑍 .

Two prime divisors 𝐸1 ⊆ 𝑋 ′1 and 𝐸2 ⊆ 𝑋 ′2 over 𝑍 are equivalent if there is
a common resolution 𝑋 ′′ → 𝑋 dominating both 𝑋 ′1 and 𝑋 ′2 such that the strict
transforms of 𝐸1 and 𝐸2 coincide.

The set 𝑍div is the set of pairs (𝑐, 𝐸), where 𝑐 ∈ Q>0 and 𝐸 is an equivalence
class of a prime divisor over 𝑍 . For simplicity, we will denote the pair (𝑐, 𝐸) by
𝑐 ord𝐸 , although one should not really think of this object as a valuation unless 𝑍 is
projective and irreducible.

Note that a prime divisor on 𝑍 does not always define a prime divisor over 𝑍 if 𝑍 is
singular.

Definition B.1.2 A complex space 𝑋 is unibranch if for all 𝑥 ∈ 𝑋 , the local ring
O𝑋,𝑥 is unibranch.

It is shown in the arXiv version of [Xia23a, Remark 2.7] that when 𝑋 is a pro-
jective variety, this notion coincides with the corresponding algebraic notion of
unibranchness.

403
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Theorem B.1.1 (Zariski’s main theorem) Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromor-
phic morphism between complex spaces. Assume that 𝑋 is unibranch, then 𝜋 has
connected fibers.

We refer to [Dem85, Proof of Théorème 1.7].

Definition B.1.3 A modification of a compact complex space 𝑋 is a finite composition
of blow-ups with smooth centers.

We say a modification 𝜋′ : 𝑍 → 𝑋 dominates another 𝜋 : 𝑌 → 𝑋 if there is a
morphism 𝑔 : 𝑍 → 𝑌 making the following diagram commutative:

𝑍 𝑌

𝑋.

𝑔

𝜋′ 𝜋
(B.1)

The modifications of 𝑋 together with the domination relation form a directed set.

Theorem B.1.2 (Hironaka’s Chow lemma) Suppose that 𝑋 is a compact complex
space. Then every proper bimeromorphic morphism to 𝑋 can be dominated by a
modification.

This follows from the proof of [Hir75, Corollary 2].

Theorem B.1.3 Let 𝑋 be a compact complex space. Then there is a modification
𝜋 : 𝑌 → 𝑋 such that 𝑌 is smooth.

See [BM97, Wł09].

Corollary B.1.1 Let 𝑋 be a compact complex space and 𝐸 be a prime divisor over 𝑋 .
Then there is a modification 𝜋 : 𝑌 → 𝑋 such that 𝑌 is smooth and 𝐸 can be realized
as a prime divisor on 𝑌 .

B.2 Plurisubharmonic functions

Let 𝑋 be a complex space.

Definition B.2.1 A function 𝜑 : 𝑋 → [−∞,∞) is plurisubharmonic if

(1) 𝜑 is not identically −∞ on any irreducible component of 𝑋 , and
(2) for any 𝑥 ∈ 𝑋 , there is an open neighbourhood 𝑉 of 𝑥 in 𝑋 , a domain Ω ⊆ C𝑁 , a

closed immersion 𝑉 ↩→ Ω and a plurisubharmonic function 𝜑̃ ∈ PSH(Ω) such
that 𝜑|Ω∩𝑉 = 𝜑̃|Ω∩𝑉 .

The set of plurisubharmonic functions on 𝑋 is denoted by PSH(𝑋).
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Similarly, if 𝜃 is a smooth closed1 real (1, 1)-form on 𝑋 , then a function 𝜑 : 𝑋 →
[−∞,∞) is 𝜃-plurisubharmonic if for any 𝑥 ∈ 𝑋 , there is an open neighbourhood 𝑉
of 𝑥 in 𝑋 , a domain Ω ⊆ C𝑁 , a closed immersion 𝑉 ↩→ Ω and a smooth function 𝑔
on Ω such that 𝜃 = (ddc𝑔) |𝑉∩Ω and 𝑔 + 𝜑 |𝑉 ∈ PSH(𝑉).

Theorem B.2.1 (Fornaess–Narasimhan) Let 𝜑 : 𝑋 → [−∞,∞) be a function.
Assume that 𝜑 is not identically −∞ on any irreducible component of 𝑋 , then the
following are equivalent:

(1) 𝜑 is psh;
(2) 𝜑 is usc and for any morphism 𝑓 : Δ→ 𝑋 from the open unit disk Δ in C to 𝑋

such that 𝑓 ∗𝜑 is not identically −∞, the pull-back 𝑓 ∗𝜑 is psh.

See [FsN80].

Theorem B.2.2 (Grauert–Remmert) Let 𝑋 be a unibranch2 complex space and
𝑍 be an analytic subset in 𝑋 and 𝜑 ∈ PSH(𝑋 \ 𝑍). Then the function 𝜑 admits an
extension to PSH(𝑋) in the following two cases:

(1) The set 𝑍 has codimension at least 2 everywhere.
(2) The set 𝑍 has codimension at least 1 everywhere and is locally bounded from

above on an open neighborhood of 𝑍 .

In both cases, the extension is unique and is given by

𝜑(𝑥) = lim
𝑋\𝑍∋𝑦→𝑥

𝜑(𝑦), 𝑥 ∈ 𝑋. (B.2)

The proof given below combines [Dem85, Théorème 1.7] and [GR56]. 3

Proof We first prove the uniqueness, which is a local problem on 𝑋 . Let 𝜓 denote the
function defined by the right-hand side of (B.2). Since any extension 𝜑 has to be upper
semicontinuous, we know that 𝜑 ≥ 𝜓. Conversely, take 𝑧 ∈ 𝑍 , we take a holomorphic
map 𝑓 : Δ→ 𝑋 such that 𝑓 (0) = 𝑧 and 𝑓 (Δ) ⊄ 𝑍 . From the subharmonicity of 𝑓 ∗𝜑
and (1.2), we find that

1 Here closed means that locally 𝜃 is defined by a closed form under a local embedding.
2 Unibranchness is very important here. Otherwise, consider the case where 𝑋 is the union of two
copies of C intersecting only at their origins, 𝑍 is the common origin. If we set 𝜑 ≡ 0 on one
punctured plane and 𝜑 ≡ 1 on the other, then it is clear that 𝜑 cannot be extended to 𝑋. This leads
to a few misleading statements in the modern literature. The problem is that in the early German
literature, komplexer Raum is assumed to be either normal or unibranch!
3 This theorem has a quite entangled history. The corresponding results for subharmonic functions
are generally attributed to Brelot. In [GR56], they cited a paper of Brelot written in 1934, which I
cannot find. But in 1949, on the very first issue of Annales de l’Institut Fourier, Brelot published
a paper [Bre49] with a very similar title, studying the behavior of a subharmonic function on the
punctured neighborhood of a point. The general theorem was due to Grauert and Remmert, see
[GR56]. Their original proof was quite complicated, due to the fact that resolution of singularities
was not available at that time. Later on, in 1985, Demailly published the influential paper [Dem85]
and gave a simpler proof. Oddly enough, Demailly did not cite either Grauert–Remmert or Brelot. He
did not even mention that this result was already proved by Grauert–Remmert. The paper [Dem85]
is so influential that in France few people know the existence of [GR56].
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𝜑(𝑧) = 𝑓 ∗𝜑(0) = lim
Δ∗∋𝑤→0

𝑓 ∗𝜑(𝑤) ≤ lim
𝑋\𝑍∋𝑦→𝑥

𝜑(𝑦).

So (B.2) follows.
Having established the uniqueness of the extension, the existence also becomes a

local problem. So we are going to use the same descriptions as in the first paragraph
above.

(2) Let 𝜋 : 𝑌 → 𝑋 be a resolution of singularities. By Theorem 1.2.1, we know
that 𝜋∗𝜑 admits a unique extension to a psh function on 𝑌 , which we denote by 𝜂.
Note that all fibers of 𝜋 are connected since 𝑋 is unibranch. Hence 𝜂 is constant along
the fibers of 𝜋. It therefore descends to an upper semicontinuous function 𝜂 on 𝑋 .

We verify that 𝜑 is plurisubharmonic using Theorem B.2.1. Let 𝑓 : Δ → 𝑋 be
a holomorphic map. We assume that 𝑓 ∗𝜑 . −∞. It suffices to show that 𝑓 ∗𝜑 it is
subharmonic at 0 ∈ Δ. The germ of 𝑓 lifts to𝑌 , say represented by 𝑓 ′ : Δ→ 𝑌 so that

𝑓 (𝑡𝑘) = 𝜋( 𝑓 ′ (𝑡))

for all 𝑡 close to 0, where 𝑘 is an integer. Therefore, 𝜓( 𝑓 (𝑡𝑘)) = 𝜂( 𝑓 (𝑡)) near 0. It
follows that 𝑓 ∗𝜑 is subharmonic near 0.

(1) By the local description of complex spaces [GR84, Section 3.4], we may
assume that there is a domain Ω ⊆ C𝑛, a finite 𝑠-sheet branched covering Φ : 𝑋 → Ω

with branched locus contained in a proper analytic subset 𝑉 ⊆ Ω. We may assume
that 𝑋 is connected, 𝑛 ≥ 1 and 𝑍 ⊆ Φ−1 (𝑉).

If suffices to show that 𝜑 is locally bounded from above near 𝑍 . Suppose that
this fails. Then by (2) we can find 𝑧 ∈ 𝑍 and 𝑥𝑖 ∈ 𝑋 \ (Φ−1 (Φ(𝑍) ∪ 𝑉)) (𝑖 ≥ 1)
converging to 𝑧 such that

lim
𝑖→∞

𝜑(𝑥𝑖) = ∞.

Let 𝐿 be a complex line passing through Φ(𝑧) intersecting (Φ(𝑍) ∪𝑉) ∩ 𝐵̄ only at
Φ(𝑧), where 𝐵 ⋐ 𝐵′ are two small open balls centered atΦ(𝑧). We can find a sequence
of lines 𝐿𝑖 passing through Φ(𝑥𝑖) converging to 𝐿 such that 𝐿𝑖 ∩ (𝐵′ ∩Φ(𝑍)) = ∅4

while 𝐿𝑖 ∩ (𝐵′ ∩𝑉) is discrete. Then Φ restricts to a branched covering over 𝐵′ ∩ 𝐿𝑖
for all 𝑖 ≥ 1. Adding a constant to 𝜑, we may assume that 𝜑 |Φ−1 (𝐿∩𝜕𝐵) < 0. We can
then find an open neighborhood𝑈 of Φ−1 (𝐿 ∩ 𝜕𝐵) so that 𝜑|𝑈 < 0. For large 𝑖 we
have Φ−1 (𝐿𝑖 ∩ 𝜕𝐵) ⊆ 𝑈, it follows from the maximum principle that 𝜑(𝑥𝑖) ≤ 0,
which is a contradiction. □

Corollary B.2.1 Let 𝜋 : 𝑌 → 𝑋 be a proper bimeromorphic morphism between
compact Kähler spaces. Let 𝜃 be a smooth closed real (1, 1)-form on 𝑋 . Assume that
𝑋 is unibranch, then the pull-back induces a bĳection

𝜋∗ : PSH(𝑋, 𝜃) ∼−→ PSH(𝑌, 𝜋∗𝜃).

4 Here we need the assumption that 𝑍 has codimension at least 2.
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B.3 Extensions of the results in the smooth setting

Let 𝑋 be an irreducible unibranch compact Kähler space of dimension 𝑛. Let 𝜃 be a
closed real smooth (1, 1)-form on 𝑋 . We say the cohomology class [𝜃] is big if for
any proper bimeromorphic morphism 𝜋 : 𝑌 → 𝑋 from a compact Kähler manifold 𝑌 ,
[𝜋∗𝜃] is big.

The non-pluripolar products can be defined exactly as in Chapter 2 and the results
in that chapter hold mutadis mutandis.

The results in Chapter 3 can be also be easily extended. The definition of the
𝑃-envelope remains unchanged. As for the I-envelope, we define

Definition B.3.1 Given 𝜑 ∈ PSH(𝑋, 𝜃), we define 𝑃𝜃 [𝜑]I ∈ PSH(𝑋, 𝜃) as the
unique element with the following property: If 𝜋 : 𝑌 → 𝑋 is a proper bimeromorphic
morphism from a compact Kähler manifold 𝑌 , then

𝜋∗𝑃𝜃 [𝜑]I = 𝑃𝜋∗ 𝜃 [𝜋∗𝜑]I .

It follows from Corollary B.2.1 and Proposition 3.2.5 that 𝑃𝜃 [𝜑]I is independent of
the choice of 𝜋 and is well-defined. The other results can be easily extended.

Chapter 4 and Chapter 6 can be extended without big changes. The only exception
is Theorem 6.2.6, where we do not have the notion of multiplier ideal sheaves. So we
do not know how to extend this theorem.

Chapter 7 can be extended except for Section 7.4 for the same reason as above.
The trace operator defined in Chapter 8 can be extended as long as 𝑌 is not

contained in 𝑋Sing using the embedded resolution. In general, due to the lack of
Demailly regularization, we do not know how to define the trace operator.

Chapter 9 can be easily extended.
Chapter 10 is easy to extend since the partial Okounkov bodies are bimeromorphi-

cally invariant in the sense of Theorem 10.4.2.
Chapter 11 is unchanged, since we always take projective limits with respect to all

models in that section.
Chapter 13 can be extended except for the parts involving the trace operator.
Chapter 14 can be easily extended by considering a resolution.
I do not know how to extend the results in Chapter 5 and Chapter 12 to the singular

setting.





Appendix C
Almost semigroups

We introduce and study almost semigroups. In particular, we will define the Okounkov
bodies of almost semigroups.

C.1 Convex bodies

Fix 𝑛 ∈ N.

Definition C.1.1 A convex body in R𝑛 is a non-empty compact convex set.

We allow a convex body to have empty interior.
We write K𝑛 for the set of convex bodies in R𝑛.

Definition C.1.2 The Hausdorff metric between 𝐾1, 𝐾2 ∈ K𝑛 is given by

𝑑Haus (𝐾1, 𝐾2) B max
{

sup
𝑥1∈𝐾1

inf
𝑥2∈𝐾2

|𝑥1 − 𝑥2 |, sup
𝑥2∈𝐾2

inf
𝑥1∈𝐾1

|𝑥1 − 𝑥2 |
}
.

It is well-known that the metric space (K𝑛, 𝑑Haus) is complete. We will need the
following fundamental theorem:

Theorem C.1.1 (Blaschke selection theorem) The metric space (K𝑛, 𝑑Haus) is
locally compact.

We refer to [Sch93, Theorem 1.8.7] for details.

Theorem C.1.2 The Lebesgue volume vol : K𝑛 → R≥0 is continuous.

See [Sch93, Theorem 1.8.20].

Theorem C.1.3 Let 𝐾𝑖 , 𝐾 ∈ K𝑛 (𝑖 ∈ N). Then 𝐾𝑖
𝑑Haus−−−−→ 𝐾 if and only if the following

conditions hold:

(1) each point 𝑥 ∈ 𝐾 is the limit of a sequence 𝑥𝑖 ∈ 𝐾𝑖 , and

409
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(2) the limit of any convergent sequence (𝑥𝑖 𝑗 ) 𝑗∈N with 𝑥𝑖 𝑗 ∈ 𝐾𝑖 𝑗 lies in 𝐾 , where 𝑖 𝑗
is a strictly increasing sequence in Z>0.

See [Sch93, Theorem 1.8.8].

Lemma C.1.1 Let 𝐾 ∈ K𝑛 be a convex body with positive volume and 𝐾 ′ ∈ K𝑛.
Assume that for some large enough 𝑘 ∈ Z>0, 𝐾 ′ contains 𝐾 ∩ (𝑘−1Z)𝑛, then
𝐾 ′ ⊇ 𝐾𝑛1/2𝑘−1 .

Proof Let 𝑥 ∈ 𝐾𝑛1/2𝑘−1 , by assumption, the closed ball 𝐵 with center 𝑥 and radius
𝑛1/2𝑘−1 is contained in 𝐾. Observe that 𝑥 can be written as a convex combination
of points in 𝐵 ∩ (𝑘−1Z)𝑛, which are contained in 𝐾 ′ by assumption. It follows that
𝑥 ∈ 𝐾 ′. □

Given a sequence of convex bodies 𝐾𝑖 (𝑖 ∈ N), we set

lim
𝑖→∞

𝐾𝑖 =

∞⋃
𝑖=0

⋂
𝑗≥𝑖
𝐾 𝑗 .

Suppose 𝐾 is the limit of a subsequence of 𝐾𝑖 , we have

lim
𝑖→∞

𝐾𝑖 ⊆ 𝐾. (C.1)

This is a simple consequence of Theorem C.1.3.

Lemma C.1.2 Let 𝐾 ⊆ R𝑛 be a convex body. Let

𝑡min B min{𝑡 ∈ R : {𝑥1 = 𝑡} ∩ 𝐾 ≠ ∅}, 𝑡max B max{𝑡 ∈ R : {𝑥1 = 𝑡} ∩ 𝐾 ≠ ∅}.

Then for 𝑡 ∈ [𝑡min, 𝑡max], the map

𝑡 ↦→ {𝑥1 = 𝑡} ∩ 𝐾

is continuous with respect to the Hausdorff metric.

Here 𝑥1 denotes the first coordinate in R𝑛.

Proof We may assume that 𝑡min < 𝑡max as otherwise there is nothing to prove.
For each 𝑡 ∈ [𝑡min, 𝑡max], we write 𝐾𝑡 = {𝑥1 = 𝑡} ∩ 𝐾 . Let 𝑡 𝑗 → 𝑡 be a convergent

sequence in [𝑡min, 𝑡max], we want to show that 𝐾𝑡 𝑗 converges to 𝐾𝑡 with respect to the
Hausdorff metric. Recall that this amounts to the following two assertions:

(1) For each convergent sequence 𝑥 𝑗 ∈ 𝐾𝑡 𝑗 with limit 𝑥, we have 𝑥 ∈ 𝐾𝑡 ;
(2) Given any 𝑥 ∈ 𝐾𝑡 , up to replacing 𝑡 𝑗 by a subsequence, we can find 𝑥 𝑗 ∈ 𝐾𝑡 𝑗

converging to 𝑥. □

The first assertion is obvious. Let us prove the second. Take 𝑥 = (𝑡, 𝑥′) ∈ 𝐾𝑡 . Up to
replacing 𝑡 𝑗 by a subsequence and taking the symmetry into account, we may assume
that 𝑡 𝑗 > 𝑡 for all 𝑡. In particular, 𝑡 < 𝑡max.
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We can find a point 𝑦 = (𝑦1, 𝑦′) ∈ 𝐾 such that 𝑦1 > 𝑡 (for example, there is always
such a point with 𝑦1 = 𝑡max). Replacing 𝑡 𝑗 by a subsequence, we may assume that
𝑡 𝑗 ∈ (𝑡, 𝑦1) for all 𝑗 . Then it suffices to take

𝑥 𝑗 =
𝑦1 − 𝑡 𝑗
𝑦1 − 𝑡

𝑥 +
𝑡 𝑗 − 𝑡
𝑦1 − 𝑡

𝑦.

Lemma C.1.3 Let 𝐷 𝑗 ⊆ R𝑛 ( 𝑗 ≥ 1) be a decreasing sequence of convex sets. Assume
that vol

⋂
𝑗 𝐷 𝑗 > 0, then

∞⋂
𝑗=1
𝐷 𝑗 =

∞⋂
𝑗=1
𝐷 𝑗 .

Proof The ⊆ direction is clear. By convexity, it suffices to show that both sides have
the same positive volume. As the boundary of convex sets has zero Lebesgue measure,
it follows that the volumes of both sides are equal to lim 𝑗→∞ vol𝐷 𝑗 . □

Definition C.1.3 Let 𝐾, 𝐾 ′ ∈ K𝑛, their Minkowski sum is given by

𝐾 + 𝐾 ′ B {𝑥 + 𝑥′ : 𝑥 ∈ 𝐾, 𝑥′ ∈ 𝐾 ′}.

Proposition C.1.1 The Minkowski sum K𝑛 × K𝑛 → K𝑛 is continuous.

See [Sch93, Page 139].

Theorem C.1.4 (Brunn–Minkowski) Let 𝐾, 𝐾 ′ ∈ K𝑛, then for any 𝑡 ∈ (0, 1), we
have

vol((1 − 𝑡)𝐾 ′ + 𝑡𝐾) ≥ (vol𝐾 ′) (1−𝑡 ) (vol𝐾)𝑡 .

In other words, the volume is log concave. See [Sch93, Page 372].

C.2 The Okounkov bodies of almost semigroups

Fix an integer 𝑛 ≥ 0. Fix a closed convex cone 𝐶 ⊆ R𝑛 × R≥0 such that 𝐶 ∩ {𝑥𝑛+1 =

0} = {0}. Here 𝑥𝑛+1 is the last coordinate of R𝑛+1.

C.2.1 Generalities on semigroups

Write Ŝ(𝐶) for the set of subsets of 𝐶 ∩Z𝑛+1 and S(𝐶) for the set of sub-semigroups
𝑆 ⊆ 𝐶 ∩ Z𝑛+1. For each 𝑘 ∈ N and 𝑆 ∈ Ŝ(𝐶), we write

𝑆𝑘 B {𝑥 ∈ Z𝑛 : (𝑥, 𝑘) ∈ 𝑆} .

Note that 𝑆𝑘 is a finite set by our assumption on 𝐶.
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We introduce a pseudometric on Ŝ(𝐶) as follows:

𝑑sg (𝑆, 𝑆′) B lim
𝑘→∞

𝑘−𝑛
(
|𝑆𝑘 | + |𝑆′𝑘 | − 2| (𝑆 ∩ 𝑆′)𝑘 |

)
. (C.2)

Here | • | denotes the cardinality of a finite set.

Lemma C.2.1 The above defined 𝑑sg is a pseudometric on Ŝ(𝐶).

Proof Only the triangle inequality needs to be argued. Take 𝑆, 𝑆′, 𝑆′′ ∈ Ŝ(𝐶). We
claim that for any 𝑘 ∈ N,

|𝑆𝑘 | + |𝑆′𝑘 | − 2|𝑆𝑘 ∩ 𝑆′𝑘 | + |𝑆
′′
𝑘 | + |𝑆

′
𝑘 | − 2|𝑆′′𝑘 ∩ 𝑆

′
𝑘 | ≥ |𝑆𝑘 | + |𝑆

′′
𝑘 | − 2|𝑆𝑘 ∩ 𝑆′′𝑘 |.

From this the triangle inequality follows. To argue the claim, we rearrange it to the
following form:

|𝑆′𝑘 | − |𝑆𝑘 ∩ 𝑆
′
𝑘 | ≥ |𝑆

′
𝑘 ∩ 𝑆

′′
𝑘 | − |𝑆𝑘 ∩ 𝑆

′′
𝑘 |,

which is obvious. □

Given 𝑆, 𝑆′ ∈ Ŝ(𝐶), we say 𝑆 is equivalent to 𝑆′ and write 𝑆 ∼ 𝑆′ if 𝑑sg (𝑆, 𝑆′) = 0.
This is an equivalence relation by Lemma C.2.1.

Lemma C.2.2 Given 𝑆, 𝑆′, 𝑆′′ ∈ Ŝ(𝐶), we have

𝑑sg (𝑆 ∩ 𝑆′′, 𝑆′ ∩ 𝑆′′) ≤ 𝑑sg (𝑆, 𝑆′).

In particular, if 𝑆𝑖 , 𝑆′𝑖 ∈ Ŝ(𝐶) (𝑖 ∈ N) and 𝑆𝑖 → 𝑆, 𝑆′𝑖 → 𝑆′, then

𝑆𝑖 ∩ 𝑆′𝑖 → 𝑆 ∩ 𝑆′.

Proof Observe that for any 𝑘 ∈ N,

|𝑆𝑘 ∩ 𝑆′′𝑘 | − |𝑆𝑘 ∩ 𝑆
′
𝑘 ∩ 𝑆

′′
𝑘 | ≤ |𝑆𝑘 | − |𝑆𝑘 ∩ 𝑆

′
𝑘 |.

The same holds if we interchange 𝑆 with 𝑆′. It follows that

|𝑆𝑘 ∩ 𝑆′′𝑘 | + |𝑆
′
𝑘 ∩ 𝑆

′′
𝑘 | − 2|𝑆𝑘 ∩ 𝑆′𝑘 ∩ 𝑆

′′
𝑘 | ≤ |𝑆𝑘 | + |𝑆

′
𝑘 | − 2|𝑆𝑘 ∩ 𝑆′𝑘 |.

The first assertion follows.
Next we compute

𝑑sg (𝑆𝑖 ∩ 𝑆′𝑖 , 𝑆 ∩ 𝑆′) ≤𝑑sg (𝑆𝑖 ∩ 𝑆′𝑖 , 𝑆𝑖 ∩ 𝑆′) + 𝑑sg (𝑆𝑖 ∩ 𝑆′, 𝑆 ∩ 𝑆′)
≤𝑑sg (𝑆′𝑖 , 𝑆′) + 𝑑sg (𝑆𝑖 , 𝑆)

and the second assertion follows. □

The volume of 𝑆 ∈ S(𝐶) is defined as

vol 𝑆 B lim
𝑘→∞
(𝑘𝑎)−𝑛 |𝑆𝑘𝑎 | = lim

𝑘→∞
𝑘−𝑛 |𝑆𝑘 |,
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where 𝑎 is a sufficiently divisible positive integer. The existence of the limit and its
independence from 𝑎 both follow from the more precise result [KK12, Theorem 2].

Lemma C.2.3 Let 𝑆, 𝑆′ ∈ S(𝐶), then

| vol 𝑆 − vol 𝑆′ | ≤ 𝑑sg (𝑆, 𝑆′).

Proof By definition, we have

𝑑sg (𝑆, 𝑆′) ≥ vol 𝑆 + vol 𝑆′ − 2 vol(𝑆 ∩ 𝑆′).

It follows that vol 𝑆 − vol 𝑆′ ≤ 𝑑sg (𝑆, 𝑆′) and vol 𝑆′ − vol 𝑆 ≤ 𝑑sg (𝑆, 𝑆′). □

We define S(𝐶) as the closure of S(𝐶) in Ŝ(𝐶) with respect to the topology defined
by the pseudometric 𝑑. By Lemma C.2.3, vol : S(𝐶) → R admits a unique 1-Lipschitz
extension to

vol : S(𝐶) → R. (C.3)

Lemma C.2.4 Suppose that 𝑆, 𝑆′ ∈ S(𝐶) and 𝑆 ⊆ 𝑆′. Then

vol 𝑆 ≤ vol 𝑆′.

Proof Take sequences 𝑆 𝑗 , 𝑆′ 𝑗 inS(𝐶) such that 𝑆 𝑗 → 𝑆, 𝑆′ 𝑗 → 𝑆′. By Lemma C.2.2,
after replacing 𝑆 𝑗 by 𝑆 𝑗 ∩ 𝑆′ 𝑗 , we may assume that 𝑆 𝑗 ⊆ 𝑆′ 𝑗 for each 𝑗 . Then our
assertion follows easily. □

C.2.2 Okounkov bodies of semigroups

Given 𝑆 ∈ Ŝ(𝐶), we will write 𝐶 (𝑆) ⊆ 𝐶 for the closed convex cone generated by
𝑆 ∪ {0}. Moreover, for each 𝑘 ∈ Z>0, we define

Δ𝑘 (𝑆) B Conv
{
𝑘−1𝑥 ∈ R𝑛 : 𝑥 ∈ 𝑆𝑘

}
⊆ R𝑛.

Here Conv denotes the convex hull.

Definition C.2.1 Let S′ (𝐶) be the subset of S(𝐶) consisting of semigroups 𝑆 such
that 𝑆 generates Z𝑛+1 (as an Abelian group).

Note that for any 𝑆 ∈ S′ (𝐶), the cone 𝐶 (𝑆) has full dimension (i.e. the topological
interior is non-empty). Given a full-dimensional subcone 𝐶′ ⊆ 𝐶, it is clear that
𝐶′ ∩ Z𝑛+1 ∈ S′ (𝐶).

This class behaves well under intersections:

Lemma C.2.5 Let 𝑆, 𝑆′ ∈ S′ (𝐶). Assume that vol(𝑆 ∩ 𝑆′) > 0, then 𝑆 ∩ 𝑆′ ∈ S′ (𝐶).

The lemma obviously fails if vol(𝑆 ∩ 𝑆′) = 0.
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Proof We first observe that the cone𝐶 (𝑆) ∩𝐶 (𝑆′) has full dimension since otherwise
vol(𝑆 ∩ 𝑆′) = 0. Take a full-dimensional subcone 𝐶′ in 𝐶 (𝑆) ∩ 𝐶 (𝑆′) such that 𝐶′
intersects the boundary of𝐶 (𝑆) ∩𝐶 (𝑆′) only at 0. It follows from [KK12, Theorem 1]
that there is an integer 𝑁 > 0 such that for any 𝑥 ∈ Z𝑛+1 ∩ 𝐶′ with Euclidean norm
no less than 𝑁 lies in 𝑆 ∩ 𝑆′. Therefore, 𝑆 ∩ 𝑆′ ∈ S′ (𝐶). □

We recall the following definition from [KK12].

Definition C.2.2 Given 𝑆 ∈ S′ (𝐶), its Okounkov body is defined as follows

Δ(𝑆) B {𝑥 ∈ R𝑛 : (𝑥, 1) ∈ 𝐶 (𝑆)} .

Theorem C.2.1 For each 𝑆 ∈ S′ (𝐶), we have

vol 𝑆 = lim
𝑘→∞

𝑘−𝑛 |𝑆𝑘 | = volΔ(𝑆) > 0. (C.4)

Moreover, as 𝑘 →∞,
Δ𝑘 (𝑆)

𝑑Haus−−−−→ Δ(𝑆). (C.5)

This is essentially proved in [WN14, Lemma 4.8], which itself follows from a theorem
of Khovanskii [Kho92]. We remind the readers that (C.4) fails for a general𝑊 ∈ S(𝐶),
see [KK12, Theorem 2].

Proof The equalities (C.4) follow from the general theorem [KK12, Theorem 2].
It remains to prove (C.5). By the argument of [WN14, Lemma 4.8], for any

compact set 𝐾 ⊆ IntΔ(𝑆), there is 𝑘0 > 0 such that for any 𝑘 ≥ 𝑘0, 𝛼 ∈ 𝐾 ∩ (𝑘−1Z)𝑛
implies that 𝛼 ∈ Δ𝑘 (𝑆).

In particular, taking 𝐾 = Δ(𝑆) 𝛿 for any 𝛿 > 0 and applying Lemma C.1.1, we find

𝑑Haus (Δ(𝑆),Δ𝑘 (𝑆)) ≤ 𝑛1/2𝑘−1 + 𝛿

when 𝑘 is large enough. This implies (C.5). □

Corollary C.2.1 Let 𝑆, 𝑆′ ∈ S′ (𝐶). Assume that vol(𝑆 ∩ 𝑆′) > 0, then we have

𝑑sg (𝑆, 𝑆′) = vol(𝑆) + vol(𝑆′) − 2 vol(𝑆 ∩ 𝑆′).

Proof This is a direct consequence of Lemma C.2.5 and (C.4). □

Lemma C.2.6 Given 𝑆 ∈ S′ (𝐶), we have 𝑆 ∼ Reg(𝑆).

Recall that the regularization Reg(𝑆) of 𝑆 is defined as 𝐶 (𝑆) ∩ Z𝑛+1.

Proof Since 𝑆 and Reg(𝑆) have the same Okounkov body, we have vol 𝑆 = vol Reg(𝑆)
by Theorem C.2.1. By Corollary C.2.1 again,

𝑑sg (Reg(𝑆), 𝑆) = vol Reg(𝑆) − vol 𝑆 = 0.

Lemma C.2.7 Let 𝑆, 𝑆′ ∈ S′ (𝐶). Assume that 𝑑sg (𝑆, 𝑆′) = 0, then Δ(𝑆) = Δ(𝑆′).
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Proof Observe that vol(𝑆 ∩ 𝑆′) > 0, as otherwise

𝑑sg (𝑆, 𝑆′) ≥ vol 𝑆 + vol 𝑆′ > 0,

which is a contradiction.
It follows from Lemma C.2.5 that 𝑆 ∩ 𝑆′ ∈ S′ (𝐶). It suffices to show that Δ(𝑆) =

Δ(𝑆∩𝑆′). In fact, suppose that this holds, since volΔ(𝑆′) = vol 𝑆′ = vol 𝑆 = volΔ(𝑆),
the inclusion Δ(𝑆′) ⊇ Δ(𝑆 ∩ 𝑆′) = Δ(𝑆) is an equality.

By Lemma C.2.2, we can therefore replace 𝑆′ by 𝑆 ∩ 𝑆′ and assume that 𝑆 ⊇ 𝑆′.
Then clearly Δ(𝑆) ⊇ Δ(𝑆′). By (C.4),

volΔ(𝑆) = volΔ(𝑆′) > 0.

Thus, Δ(𝑆) = Δ(𝑆′). □

Lemma C.2.8 Suppose that 𝑆𝑖 ∈ S′ (𝐶) is a decreasing sequence such that

lim
𝑖→∞

vol 𝑆𝑖 > 0.

Then there is 𝑆 ∈ S′ (𝐶) such that 𝑆𝑖 → 𝑆.

In general, one cannot simply take 𝑆 =
⋂
𝑖 𝑆
𝑖 . For example, consider the sequence

𝑆𝑖 = 𝑆1 ∩ {𝑥𝑛+1 ≥ 𝑖}.

Proof By Lemma C.2.6, we may replace 𝑆𝑖 by its regularization and assume that
𝑆𝑖 = 𝐶 (𝑆𝑖) ∩ Z𝑛+1. We define

𝑆 =

( ∞⋂
𝑖=1
𝐶 (𝑆𝑖)

)
∩ Z𝑛+1.

Since
⋂∞
𝑖=1 𝐶 (𝑆𝑖) is a full-dimensional cone by assumption, we have 𝑆 ∈ S′ (𝐶). By

Corollary C.2.1 and Theorem C.2.1, we can compute the distance

𝑑sg (𝑆, 𝑆𝑖) = vol 𝑆𝑖 − vol 𝑆 = volΔ(𝑆𝑖) − volΔ(𝑆),

which tends to 0 by construction. □

C.2.3 Okounkov bodies of almost semigroups

Definition C.2.3 We define S′ (𝐶)>0 as elements in the closure of S′ (𝐶) in Ŝ(𝐶)
with positive volume. An element in S′ (𝐶)>0 is called an almost semigroup in 𝐶.

Recall that the volume here is defined in (C.3).
Our goal is to prove the following theorem:
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Theorem C.2.2 The Okounkov body map Δ : S′ (𝐶) → K𝑛 as defined in Defini-
tion C.2.2 admits a unique continuous extension

Δ : S′ (𝐶)>0 → K𝑛. (C.6)

Moreover, for any 𝑆 ∈ S′ (𝐶)>0, we have

vol 𝑆 = volΔ(𝑆). (C.7)

Proof The uniqueness of the extension is clear as long as it exists. Moreover, (C.7)
follows easily from Theorem C.2.1 and Theorem C.1.2 by continuity. It remains to
argue the existence of the continuous extension. We first construct an extension and
prove its continuity.

Step 1. We construct the desired map (C.6). Let 𝑆 ∈ S′ (𝐶)>0. We wish to construct
a convex body Δ(𝑆) ∈ K𝑛.

Let 𝑆𝑖 ∈ S′ (𝐶) be a sequence that converges to 𝑆 such that

𝑑sg (𝑆𝑖 , 𝑆𝑖+1) ≤ 2−𝑖 .

For each 𝑖, 𝑗 ≥ 0, we introduce

𝑆𝑖, 𝑗 = 𝑆𝑖 ∩ 𝑆𝑖+1 · · · ∩ 𝑆𝑖+ 𝑗 .

Then by Lemma C.2.2,
𝑑sg (𝑆𝑖, 𝑗 , 𝑆𝑖, 𝑗+1) ≤ 2−𝑖− 𝑗 .

Take 𝑖0 > 0 large enough so that for 𝑖 ≥ 𝑖0, vol 𝑆𝑖 > 2−1 vol 𝑆 and 22−𝑖 < vol 𝑆 and
hence

vol 𝑆𝑖 − vol 𝑆𝑖, 𝑗 ≤ 𝑑sg (𝑆𝑖,0, 𝑆𝑖,1) + 𝑑sg (𝑆𝑖,1, 𝑆𝑖,2) + · · · + 𝑑sg (𝑆𝑖, 𝑗−1, 𝑆𝑖, 𝑗 ) ≤ 21−𝑖 .

It follows that vol 𝑆𝑖, 𝑗 > 2−1 vol 𝑆 − 21−𝑖 > 0 whenever 𝑖 ≥ 𝑖0. In particular, by
Lemma C.2.5, 𝑆𝑖, 𝑗 ∈ S′ (𝐶) for 𝑖 ≥ 𝑖0.

By Lemma C.2.8, for 𝑖 ≥ 𝑖0, there exists 𝑇 𝑖 ∈ S′ (𝐶) such that 𝑆𝑖, 𝑗 → 𝑇 𝑖 as
𝑗 →∞. Moreover,

𝑑sg (𝑇 𝑖 , 𝑆) = lim
𝑗→∞

𝑑sg (𝑆𝑖, 𝑗 , 𝑆) ≤ lim
𝑗→∞

𝑑sg (𝑆𝑖, 𝑗 , 𝑆𝑖) + 𝑑sg (𝑆𝑖 , 𝑆) ≤ 21−𝑖 + 𝑑sg (𝑆𝑖 , 𝑆).

Therefore, 𝑇 𝑖 → 𝑆. We then define

Δ(𝑆) B
∞⋃
𝑖=𝑖0

Δ(𝑇 𝑖).

In other words, we have defined

Δ(𝑆) B lim
𝑖→∞

Δ(𝑆𝑖).
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This is an honest limit: if Δ is the limit of a subsequence of Δ(𝑆𝑖), then Δ(𝑆) ⊆ Δ by
(C.1). Comparing the volumes, we find that equality holds. So by Theorem C.1.1,

Δ(𝑆) = lim
𝑖→∞

Δ(𝑆𝑖). (C.8)

Next we claim that Δ(𝑆) as defined above does not depend on the choice of the
sequence 𝑆𝑖 . In fact, suppose that 𝑆′𝑖 ∈ S′ (𝐶) is another sequence satisfying the
same conditions as 𝑆𝑖 . The same holds for 𝑅𝑖 B 𝑆𝑖+1 ∩ 𝑆′𝑖+1. It follows that

lim
𝑖→∞

Δ(𝑅𝑖) ⊆ lim
𝑖→∞

Δ(𝑆𝑖).

Comparing the volumes, we find that equality holds. The same is true with 𝑆′𝑖 in
place of 𝑆𝑖 . So we conclude that Δ(𝑆) as in (C.8) does not depend on the choices we
made.

Step 2. It remains to prove the continuity of Δ defined in Step 1. Suppose that
𝑆𝑖 ∈ S′ (𝐶)>0 is a sequence with limit 𝑆 ∈ S′ (𝐶)>0. We want to show that

Δ(𝑆𝑖) 𝑑Haus−−−−→ Δ(𝑆). (C.9)

We first reduce to the case where 𝑆𝑖 ∈ S′ (𝐶). By (C.8), for each 𝑖, we can choose
𝑇 𝑖 ∈ S′ (𝐶) such that 𝑑sg (𝑆𝑖 , 𝑇 𝑖) < 2−𝑖 and 𝑑Haus (Δ(𝑆𝑖),Δ(𝑇 𝑖)) < 2−𝑖 . If we have

shown Δ(𝑇 𝑖) 𝑑Haus−−−−→ Δ(𝑆), then (C.9) follows immediately.
Next we reduce to the case where 𝑑sg (𝑆𝑖 , 𝑆𝑖+1) ≤ 2−𝑖 . In fact, thanks to Theo-

rem C.1.1, in order to prove (C.9), it suffices to show that each subsequence of Δ(𝑆𝑖)
admits a subsequence that converges to Δ(𝑆). Hence, we easily reduce to the required
case.

After these reductions, (C.9) is nothing but (C.8). □

Remark C.2.1 As the readers can easily verify from the proof, for any 𝑆 ∈ S′ (𝐶)>0,
there is 𝑆′ ∈ S′ (𝐶) such that 𝑆 ∼ 𝑆′.

Corollary C.2.2 Suppose that 𝑆, 𝑆′ ∈ S′ (𝐶)>0 with 𝑆 ⊆ 𝑆′, then

Δ(𝑆) ⊆ Δ(𝑆′). (C.10)

Proof Let 𝑆 𝑗 , 𝑆′ 𝑗 ∈ S′ (𝐶) be elements such that 𝑆 𝑗 → 𝑆, 𝑆′ 𝑗 → 𝑆′. Then it follows
from Lemma C.2.2 that 𝑆 𝑗 ∩ 𝑆′ 𝑗 → 𝑆. Since vol is continuous, for large 𝑗 , 𝑆 𝑗 ∩ 𝑆′ 𝑗
has positive volume and hence lies in S′ (𝐶) by Lemma C.2.5. We may therefore
replace 𝑆 𝑗 by 𝑆 𝑗 ∩ 𝑆′ 𝑗 and assume that 𝑆 𝑗 ⊆ 𝑆′ 𝑗 . Hence, (C.10) follows from the
continuity of Δ proved in Theorem C.2.2. □

Remark C.2.2 As the readers can easily verify, the construction of Δ is independent of
the choice of 𝐶 in the following sense: Suppose that 𝐶′ is another cone satisfying the
same assumptions as𝐶 and𝐶′ ⊇ 𝐶, then the Okounkov body mapΔ : S′ (𝐶′)>0 → K𝑛
is an extension of the corresponding map (C.6). We will constantly use this fact
without further explanations.
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realization

realization of a Cartier b-divisor 295
restriction ideal 25
rooftop metric space 111
rooftop operator 61
rooftop structure 111
root

root of a b-divisor 294
Ross–Witt Nyström correspondence 227

S

set
co-pluripolar set 7
non-pluripolar set 7
pluripolar set 7

singularities
analytic singularities 27

gentle analytic singularities 29
neat analytic singularities 27

log singularities 28
singularity type 32
smooth flag 255
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constant subgeodesic 98
subgeodesic ray 101
subharmonic function 3

T

test curve 217
bounded test curve 219
I-model test curve 234
Okounkov test curve 284
test curve with finite energy 219

test function 285
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trace operator 196

V

valuation 255, 355
volume 92
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volume of a non-Archimedean metric 343
volume of a pseudo-effective class 93
volume of a pseudo-effective line bundle
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