NOTE ON L2-METHODS IN GLOBAL PLURIPOTENTIAL
THEORY

MINGCHEN XIA

ABSTRACT. In this note, we collect the proofs of various fundamental
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theory proved using L?-methods.
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1. INTRODUCTION

In this note, we collect the proofs of various fundamental results related to
Nadel’s multiplier ideal sheaves in global pluripotential theory proved using
L?-methods. Most proofs are just reproduction of the known proofs in the
literature, apart from fixing typos and miscalculations.

Some results in this note are more general than one find in the literature.
To be more precise, in Theorem 7.1, we prove the positivity of direct images
for proper morphisms instead of projective ones. In Theorem 8.1, we prove the
relative version of Bertini theorem without requiring the base be projective.
Corollary 8.6 seems to be new.

Some of the proofs are not self-contained. I intend to include more details
in the future and make all arguments self-contained.

Some comments on the terminologies: All complex analytic spaces are
assumed to be reduced.

Given a general complex analytic space X, when we want to talk about a
small part in the Zariski topology, we avoid saying that a subset is a proper
closed analytic subset, as people usually do in the literature. Instead, we say
a subset is a nowhere dense closed analytic subset. The reason is that when
X has more than one connected components, the former does not exclude
sets like a whole connected component!

Date: September 3, 2022.
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The notation A denotes the open unit disk in C.

2. PRELIMINARIES

2.1. Complex analytic spaces. Recall that all complex analytic spaces
are assumed to be reduced.

Recall the following generic flatness theorem.

BS76
Theorem 2.1 (ﬁ"" , Theorem V.4.10]). Let f : X — Y be a morphism of

complex analytic spaces. Let F be a coherent Ox-module. Let A C X be the
non-flat locus of F. Then A is an analytic subset of X. Moreover, if

(1) X is o-compact, then f(A) is non-where dense.
(2) f is proper, then f(A) is a nowhere dense proper closed analytic
subset in'Y .

We also have the cohomology and base change theorem.

BS76
Theorem 2.2 ([F’" , Theorem II1.3.4, Corollary II1.3.7]). Let f: X =Y

be a proper morphism of complex analytic spaces. Let F be an f-flat coherent
Ox-module. Let ¢ = 0 be an integer and y € Y. Assume that the canonical
map

(2.1) bq(y) : R fu(Fy @0y, (y) = HY(Xy, Fx,)
is surjective. Then ¢4 is an isomorphism in a neighbourhood of y. Moreover,
the following are equivalent:

(1) ¢pq—1(y) is surjective.
(2) Rif(F)y is a free Oy,y-module.

Corollary 2.3. Let f : X — Y be a proper morphism of complex analytic
spaces and F be a coherent Ox-module. Then there is a nowhere dense
proper analytic subset Z of Y such that
(1) ]:|f—1(Y\Z) 18 f—ﬂat.
(2) Rf«(F)ly\z is locally free for all ¢ > 0.
(3) For anyy € Y \ Z, the canonical morphism ¢q(y) is an isomorphism
for all g > 0.

We say F has the base change property with respect to f on Y \ Z if (1),
(2) and (3) are all satisfied.

Proof. The problem is local on Y, so we may assume that the dimension
of the fibers of f are bounded by a constant N. By Theorem 2.1, we may
further assume that F is f-flat. Recall that the R'f.(F)’s fori =0,...,N
are all coherent, so up to subtracting a closed analytic subset from Y, we
may further assume that all of these sheaves are locally free. Observe that for
any y € Y, ¢n+1(y) is surjective, so we can apply Theorem 2.2 to conclude
that ¢;(y) is surjective for all i = N, N — 1,...,0. Applying Theorem 2.2

again, we conclude that (3) is also both satisfied. O
Recall the theorem of generic flatness:
FBB?& PEQE?
Theorem 2.4 (] , Theorem I1.1.22], | , Corollary 2.1]). Let f :

X =Y be a proper morphism of complex analytic spaces. Then the set N
of y € Y such that X, is not a manifold is a closed negligible subset of Y.
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Assume furthermore that X is smooth and Y is irreducible. Then N is a
proper closed analytic subset of Y.

2.2. Kahler morphisms.

Definition 2.5. Let f: X — Y be a morphism of complex analytic spaces.
A smooth function ¢ defined on X is strictly f-plurisubharmonic if for each
x € X, we can find a neighbourhood U C X of z, a neighbourhood V of
f(x) satisfying f(U) C V and a smooth strictly plurisubharmonic function
1 on V such that ¢ + f*i is smooth and strictly plurisubharmonic on U.

Definition 2.6. A morphism f : X — Y of complex analytic spaces is Kahler
if there is an open covering {U, }o of X, smooth strictly f-psh functions ¢,
defined on U, such that for each «, 8, po — ¢g is pluriharmonic on U, — Ug.

Definition 2.7. A complex analytic space X is weakly 1-complete if there is
a smooth psh exhaustion 3 on X.

A holomorphically convex space is always weakly 1-complete. A weakly
1-complete Kéhler manifold carries a complete Kéahler metric.

2.3. Singular Hermitian line bundles. Let X be a complex manifold.
Recall that a singular Hermitian metric on a one-dimensional vector space
V' is either the quadratic form of a Hermitian inner product on V or the
map that maps V> to oo and 0 to 0. A singular Hermitian metric on a line
bundle is a collection of singular Hermitian metrics on each fiber.

Definition 2.8. A singular Hermitian line bundle on X is a pair (L, h)
consisting of a holomorphic line bundle L on X and a singular Hermitian
metric h on L, such that if locally take a smooth Hermitian metric hg on L
and identify h with hgexp(—¢), then ¢ takes value in [—o0, 00), is locally
integrable and usc.

A (smooth) Hermitian line bundle on X is a singular Hermitian line bundle
(L, h) in which h is smooth.

A singular Hermitian line bundle (L, h) is called a Hermitian psef line
bundle (resp. Hermitian quasi-psef line bundle) if dd°h > ~ for some smooth
real closed (1,1)-form v on X in the sense of currents.

Given a local section f of L over U C X, we write |f|? for the map
U —[0,00]: ©+> hy(fz, fz). When h, = oo, f, =0, the right-hand side is
understood as 0. According to our normalization

[fI7 = 1flhe™.

Be careful, we do not put 2 in front of ¢.
Next we recall the definition of several basic invariants of a singular
Hermitian line bundle.

Definition 2.9. Let (L, h) be a Hermitian quasi-psef line bundle on X. The
multiplier ideal sheaf of h in the sense of Nadel is the sheaf of ideals Z(h) on
X, locally generated by sections f of h satisfying |f|2 is locally integrable.

By a theorem of Nadel, Z(h) is a coherent ideal sheaf.



4 MINGCHEN XIA

Definition 2.10. Given two Hermitian quasi-psef line bundles (L, h) and
(L, h') with the same underlying line bundle, we say h ~z h' if Z(kh) = Z(kh')
for all real k£ > 0.

Definition 2.11. Assume that X is compact and Kéhler. Let w be a Kahler
form on X. Let (L, h) be a Hermitian psef line bundle on X. Take a quasi-
equisingular approximation h* of h as in Theorem 2.14. For each a = 0,...,n,
define the mized mass in the sense of Cao as
(dd°h* A" = lim [ (ddh)* Aw™T9,
1—00 J X

where on the right-hand side, the product is taken in the non-pluripolar
sense. It is easy to see that (dd“h® A w"™?) is independent of the choice of
the approximation h'.

We define the numerical dimension nd(L, h) of (L, h) as the maximum of
a such that (dd°A® A w™™%) > 0.

Definition 2.12. Assume that Assume that X is compact and Kéhler. The
volume of a Hermitian psef line bundle (L, h) is defined as

|
vol(L,h) = lim —hO(X, L¥ @ T(kh)).

k—oo k™

. o .. . PDX21, szzz
The existence of the limit is a non-trivial result, proved in | ;

2.4. Equisingular approximations.

DPSO01
Theorem 2.13. [AL 777777 J] Let X be a complex manifold. Let w be a smooth

closed positive real (1,1)-form on X and v be a smooth real (1,1)-form on X.
Let (L, h) be a singular Hermitian line bundle on X . Assume that T := dd°h
satisfies T = . Then for any relative compact open subset U € X, there
are currents Ty (k € Zsg) defined on U satisfying Ty, — T is exact on a
neighbourhood of U and a decreasing sequence €, of positive real numbers
converging to 0 satisfying

(1) Each Ty, has a smooth potential outside a proper subvariety Zy, of U.

(2) Ty is more singular than Ty on K when k" > k'. Any T}, is less

singular than T on U.

(3) Z(T)|x = Z(Ti)|u for all k.

(4) Ty = v — exgw on U.
Moreover, if wy is a complete positive real (1,1)-form on U (instead of on

X ), we may assume that (d) holds for wg.

PS01
Theorem 2.14. [[JF5 J] Let X be a compact Kaihler manifold and 6 be

a closed smooth real (1,1)-form on X. Consider ¢ € PSH(X,0). For any
open set U € X, there is a decreasing sequence of quasi-psh functions @7 on
U satisfying

(1) ¢’ has analytic singularities.

(2) ¢’ is decreasing in j and converges to ¢ everywhere.

(3) There is a sequence T; — 0 so that

0
(4) Z((1+2/4)¢?) = Z().

i Z —Tjw.
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2.5. Bochner—Kodaira—Nakano identities.

Proposition 2.15. Let X be a complex manifold and w be a complete Kihler
form on X. Let (L,h) be a singular Hermitian line bundle on X such that
ddh > —Ciw for some constant C1. Let ® be a smooth function on X such
that

sup |d®|, < oo, dd‘® > —Chw

X

for some constant Co. Then for any

u € Dom 9}, ,, N Dom d C Lgf (X, L) s

we have
(2.2)
I/n(0+0®)ul; ,

where n = exp(P),

= ||V1(Djy—(09) )ullf o +27 (n(dd°h + dd°@) Ay, u)y,

Here we clarify some definitions: for any L-valued forms u, v of the same
bi-degree
1
(w0 = =
The notation Dj, denotes the (1,0)-part of the Chern connect of (L, h) and

D;;‘ is its formal adjoint. We deﬁne A as the adjoint of wA.

(U, 0)pw™ .
X

¥Boc
We observe that when ¢ = 0, (2 5 vi“leauces to the usual Bochner’s formula
(23)  lOulli o + 10k wullh o = IDF ullf o + 2m(ddh A Ay, u)y,, -

In order to render this formula useful, we need the following simple
computation:

Lemma 2.16. Let X be a complex manifold of pure dimension n and w be
a complete Kihler form on X. Let (L,h) be a smooth Hermitian line bundle
on X. We denote the eigenvalues of dd®h with respect to w by A1 < -+ < Ay
Then for any smooth (p,q)-form w with valued in L on X, we have

(24)  ([ddh, AuJu,u)y g = M+ X = Anprt — - = A)lulf -
In particular, when p =n,
(2.5) ([dd®h, AJu, w)y gy = (A + -+ Ag)lulf -

Proof. The problem is local on X, so we may replace X be a small coordinate
chart so that

n n
w=1Y dzAdz;, dd°h=1) Ajdz Adz;.
j=1 J=1

Also, we may assume that L admits a nowhere vanishing holomorphic section
e. Expand the form u as

U= Z Uapdzq Ndzg @ e,

loe|=p,|8l=q

where u,g are smooth functions on X. Then

([dd°h, AyJu, )y, = > (Z)\ +D N —Zx)mﬁﬁ.

la|=p,|8]=¢ \j€a JjeB
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X leq:thetalambdalower
For this formula, (2.7) follows. O

2.6. Cech Cocycles. Let X be a complex manifold of pure dimension n, w
be a Kéhler form on X. Let (L, h) be a singular Hermitian line bundle on
X such that dd°h +w > 0. Let U = {B;};cr be a locally finite Stein cover of
X such that B; € X for each 7 € I.

For each compact subset K € By,...;,, we define a seminorm on éq(u ,Wx ®

L&I(h) by
1 . 1/2
80ieia = (7 [ Boifos™)

Observe that this seminorm is independent of the choice of w.

Lemma 2.17. The set C9(U,wx @ LRL(h)) and Z9(U,wx @ LROL(h)) are
both Fréchet spaces with respect to the family of semi-norms || e ||k iq....,- The
Cech coboundary

7: CIU,wx ® LRIL(h)) = CTH U, wx @ LR IL(R))

is bounded.
If X is holomorphically convex, then so is B1(U,wx ® L @ Z(h)).

Proof. The first Fll)%rl‘%is just some well-known complex analysis. For the latter
statement, see [VaT18a, Lemma 2.14]. In a later version, I plan to include
the proof. O

Lemma 2.18. Assume that X is holomorphically convex. Let 5 € Flp(u, wx®
L ® Z(h)). Fiz a smooth metric k' on L. Assume that there ezists
Bl e é’p(u,wx ® LRZL(h)) in the cohomology class of B satisfying

(2.6) jlggo/K 182 il =10
for any compact subset K C Us,...;,. Then 3 =0 in HP(U,wx @ LR L(R)).
Proof. Observe that the coboundary map

P CPU,wx @ LRL(p)) — 2P U, wx @ LR L(p))

is continuous and has closed images by Lemma 2.17. It follows that the
natural quotient map

ZPU,wx @ L@ L(p)) — HP(U,wx @ L L(p))

is continuous. Our assumption guarantees that 5, — 0 in AL U,wx @ LD

Z(p)). Tt follows that the corresponding classes in HP(U,wx ® L @ Z(¢))
also converge to 0. But by our assumption, these classes are all equal to S,
so B =0. O

Next we assume that Z is a nowhere dense closed analytic subset of X

and Y = X \ Z. Assume that there is a Ké&hler form @ on Y such that

(1) ®>wonY.
(2) @ has locally bounded potentials on X (not Y).
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Theorem 2.19. There are continuous maps
frkerd in Ly (F)pg — kerd? in CU(U,wx ® L@ I(h))
and

g :kerd? in CIU,wx @ LR I(h)) — kerd in L?z’()z,loc(F)h@

inducing isomorphisms f, g on the level of cohomology. Moreover, f and §
are inverse to each other.

Here 0 is tpgt(i]bosed operator defined in Definition 3.4. We omit the proof
and refer to [VIatl8a, Proposition 2.16].

Corollary 2.20. Assume furthermore that X is holomorphically conver,
then Tm O is a closed subspace of L?Q")l roe Fho-

Proposition 2.21. Assume furthermore that X is holomorphically convex,
then the natural map

ker 0 in LY, L)ns — ker9/Im 0 in L”’?

(2) ( Y? L)h,tb

Joc(

18 compact.

F@M "
See | , Proposition 2.19].

2.7. Uniform integrability. The following is usually known as the com-
parision of integral technique.

Lemma 2.22. Let X be a compact Kihler manifold of pure dimension n,
w be a Kahler form on X. Let (7v;)icr and (p;)icr be families of quasi-psh
functions on X satisfying

(1) There is a Kihler form o' on X so that '+ dd®y; > 0.

(2) sup;ersupx i < 0.
Let (L, h) be a smooth Hermitian line bundle on X and f be a smooth (n,q)-
form with value in L on an open subset U C X, then for any s; > 0, there
exists s > 0 such that there is a constant C = C(s1, 8, || f| oo (hw), (Vi)i) such
that

(2.7) / [flhwe™ P < C (/ |f|3 e (IFsn)eiyn
U U ’
Proof. By uniform Skoda estimate, we can find a > 0 so that

sup/ e Y L Oy
el JX

>1/(1+31)

for some Cy > 0. For any given s; > 0, take s > 0 small enough so that
s(1+ s1)/s1 < a. Then by Holder’s inequality

1/(1+s s sl
/ |f|}2L e NPT </ |f|}21 e~ (1+s1)epi Wn) o </ ‘f|}2l e_S(1+51)/51> R
U ,w U w U o

1/(14s
<C (/ |l e (o0 w”) e
U )
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3. L2-METHODS

We fix a complex manifold X of pure dimension n.

3.1. L?-spaces of differential forms. Let (L,h) be a singular Hermitian
line bundle on X and w be a smooth positive real (1, 1)-form on X.

Definition 3.1. For any smooth L-valued (p,q)-forms v and v at x € X,
we introduce the inner product (u,v)p, as follows: take a holomorphic
coordinate z1,..., 2, on X and a nowhere vanishing holomorphic section e
of L near x, write

U= Z U pdze Ndzg @ e,
lo|=p,|Bl=q

v = Z Vo,pdza NdZg ® €.
la|=p,|Bl=¢

Then we define

Uy V)py 1= Ue. 320, Va.sdza | h(e,e).
b 75 7/3

la|=p,|8]=q la|=p,|8]=¢

Here the bracket (e, e),, is the usual inner product induced by the Hermitian
metric associated with w.

We write
1/2
Julpw = (uyu))/2

When (L, h) is trivial, we usually omit h from the notations. When we
want to emphasize X, we will replace the subindex h,w by h,w, X. The
same convention applies to all later definitions.

Definition 3.2. Define the space LI(DS(X, L)p, as the space of L-valued

(p, q)-forms u with measurable coefficients such that

/ (U, u)ppww" < o00.
X

Similarly, define Lfég 1oe (X, L)h e as the space of F-valued (p, ¢)-forms u with
measurable coefficients such that

/ (U, ) w™ < 00
K

for any compact subset K C X.
Define C%4(X, L) as the space of smooth L-valued (p, ¢)-forms.

Definition 3.3. Given L-valued (p, ¢)-forms v and v on X, we define the
inner product

<U,V>p ::/ (U, V) W™
X
Of course, (u,v)p,, is only defined almost everywhere.

Next we introduce the d-operator.
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Definition 3.4. The operator 0 : Lz()é%(X, L)pw — L’é‘i“(X, L)pw is a

densely defined operator with

Dom d := {u € LI(X, L)ne : Ou € LT (X, L)

where 0 on the right-hand side means d in the sense of distribution. We
then define the unbounded operator 0 on Dom 0 as the d in the sense of
distribution.

It is obvious that O is closed”. Similarly, when h is smooth, we introduce

the densely defined operator

k) 1’
Diey + L) (X, D)o = L) (X, L

which is the (1,0)-part of the Chern connection of (L, h).
Let % : C24(X, L) — CILP" (X, L) be the Hodge star normalized by

1
E(u,v)h’w w" = (uA¥0)y,

where on the right-hand side (e);, means that we contract the indices in L
with h.

Hollf\geocall the following density lemma of Andreotti—Vesentini. We refer to
%”*” , Lemma 5.2.1] for a proof.

Lemma 3.5. Assume that w is complete and h is smooth. The set of
compactly supported smooth (p, q)-forms with value in L is dense in Dom 8,*17w,
Dom 9, Dom 5,";#0 N Dom O respectively with respect to the graph norm of 0,
o + 100l

the graph norm of 5;;7‘“ and the norm u — ||ul[pe + Hé,’;wu]
Here é,’;’w denotes the Hilbert space adjoint of 0.

Corollary 3.6. Assume that w is complete and h is smooth. On the space of
smooth forms with compact supports, a;*;,w coincides with the formal adjoint

5;;441 =—%x0x%.
When h is smooth, we let D}’ denote the formal adjoints of Dj,
D;:w = — % D;Lw*

defined on the space of smooth forms.
For any smooth (s,t)-form 6, § acts on C%4(X, L) by wedge product on
the left, its pointwise adjoint is given by

0 = (—1)PT9(s+t+1)%0x .
We introduce the Lefschetz operators:
A, : CPYX, L) — CE7M1(X L)
is the pointwise adjoint of w A e.
Lemma 3.7. If w is a Kdhler form (i.e. if w is closed), then

(1) 6* = i[h, Ay for any smooth (1,0)-form 6.
(2) 6 = —i[0, ] for any smooth (0,1)-form 6.

*Matsumura talks about maximal extensions, but an unbounded operator not defining on
the whole space never has a maximal extension.
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(3) If h is smooth, for any smooth function ® on X,
[0, (0®)*] + [D' 1,0, 0D] = 27[ddC, A,,] .
All equalities are in the sense of operators on smooth forms with value in L.

Lemma 3.8. Let w' and w be smooth positive real (1,1)-forms such that
W' > w. Then there is a constant C' > 0 so that |0*u|, < C|0|u|ul, for all
smooth forms 6 and w. Moreover,

(1) |u|o < |ulw for smooth forms .
(2) |u|ww™ < |ulew™ for smooth (n,q)-forms u.
(3) |u|wyw™ = |u|,w™ for smooth (n,0)-forms w.

Similarly, when h is smooth, the same holds for forms with value in L.

Both results follow from simple computations, which we omit.

3.2. Adjoint operators on domains with boundaries. Let (L, h) be a
smooth Hermitian line bundle on X, w be a Hermitian form on X and & be
a smooth function on X. For each ¢ € R, we write X, := {x € X : &(z) < c}.
When X, € X and d® does not vanish on 0.X,, we define an inner product

<U, V>}0.0X, ::/ (U, V) hw dSw
0X¢

for smooth L-valued (p, q)-forms u, v defined in a neighbourhood of 0X..
Here dS,, is the volume form on dX. defined by dS,, = ﬁ x d®. Then

lcu" =dd AdS,.
n!

We reformulate Stokes formula as follows:

Proposition 3.9. Let u (resp. v) be a smooth L-valued (p,q—1)-form (resp.
(p,q)-form) on X. Given c as above, we have

<0u, V> x, = <U, é}t,wv>h,w,XC + <u, (5‘I>)*U>h,w,axc .
More generally,

Proposition 3.10. Let Y be the complement of a nowhere dense closed
analytic subset of X. Assume that there is a complete positive (1,1)-form '
onY. Letu (resp. v) be a smooth L-valued (p,q—1)-form (resp. (p,q)-form)
on'Y satisfying

ullhrs 0]l 10l hwr s 105 vl wr < 00

Take ¢ as above. Then there is a sufficiently small positive number ¢ > 0
such that

(1) d® does not vanish on 0Xg4 for every d € (¢ —¢€,c+€).
(2) For almost every d € (¢ —€,c+€),

(3.1) <5u, VOhw! Xy = <U 5,’;7wv>h7w,xd + <u, (5®)*U>h,w,8Xd .
F@ame
[

The proof involves a simple cutoff argument, we refer to , Propo-

sition 2.5] for the details.
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3.3. L[%-estimates.

Proposition 3.11. Let X be a connected compact Kdhler manifold of di-
mension n, w be a Kdihler form on X. Let (L,h) be a singular Hermitian
line bundle on X satisfying the following conditions:

(1) h is smooth outside a proper closed analytic subset Z of X.
(2) dd°h > —ew for some e >0 on X \ Z.

Let f be a holomorphic (n,q)-form with value in L satisfying

/X|f|i7ww” < 0.

Let \y < -+ < A\, be the eigenvalues of dd°h and set 5\,, =\ +2¢. Then
there exist a (n,q — 1)-form u with L?-coefficients with value in L and a
(n, q)-form v with L?-coefficients with value in L such that

(3.2) f=0u+v

1
) [ e+ [ e k[ i
63) [l g [ < 50 [ s e

Proof. AsY := X \ Z is weakly 1-complete, we can fix a complete Kéhler
metric w’ on Y. For any § > 0, set ws = w + dw’. Our assumption on f
implies that f € L?Z’SJ(Y, L)pws- We also observe that L&’S](Y, L), gets
smaller as § decreases to 0. -

For any s € Dom 8,’;7%, we decompose it as s; + s, where s1 € ker 9 and

=1 =
52 € (ker 8) < ker 8}‘ W5 " leq:Bochunt q thetalambdalowerpeqn
By Bochner’s formula (2:3) and (25

10511130, + 15 w5113, = 27T/Y (Ao B = 26) [s1f3 0,

By assumption, f € ker 9, so

2 _ 2
) , -
‘<f S>hw5| |<f751>hw5’

1
< w (AL +- s 2ww")
</m1+ W )(Y Lt Al

2 —1 9% 2
< (/Y )\1+—‘f‘hw5 ?) (2p6H31Hh,w5 + (2m) Hah,w31||h,z.u5)

1 1 2 % 2
<% (/Y m’f\hW5 ) (47TP€H5Hh,w5 + ||ah,w5Hh,w5) .

By Hahn-Banach theorem applied to

L?Q’SI(Y, L)h,wg X L? ?(Y L)h,w(;

and the subspace Dom 5}:7%5 (embedded into the former space by s +—

((47Tpe)1/28,5,’:7w8)), we can find L?-forms us,vs on Y with value in L of
appropriate degrees so that

(3.4) <[y 8> hws = <US, O s S>hyws + <Us, S>hws
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and

1 1 1
2 2
+ — < — —|f .
||u(5Hh,w5 Lne v , 2 (/ A )\ ‘ |hw5 >

Fix ¢’ > 0. Take a sequence d; — 0 of positive numbers so that us, (resp.
vs,) converges weakly to some u (resp. v) in L?;)] (Y, L), - It follows that

1 1 1
2 2 2 n
- gi ~ _  ~ !/
[0y + o s <37 (/Y T Ap|f|h,%,w(s>
1 / 1 )
<— — W .
Let ' — 0+, we find
1 1 1
b+ g IR < 5 (/ M)

. . eq:uvestimate, leq ftodupvleq fsdecomp
which is exactly (b 3} [t remains to prove (U 7). By (3.4) and the fact that
the maximal extension of 8h ws coincides with the Hilbert space adjoint of

0 (which follows from the density lemma, applicable as w; is complete), we
have

f= 5U5 + vs
in the sense of currents. Let 6 — 0 along §;, we have
f=0u+v
X . eq:uvestimate
as currents on Y. Using the estimate (|3 E3i we.may extend u and v to the
whole X as forms with L2-coefficients and (|3 2; Tollows. O

In the proof of Proposition 3.11, we take an arbitrary complete Kéhler
metric on Y. We can make this more explicit:

Proposition 3.12. Let X be a Kihler manifold and w be a complete Kihler
form on X. Let Z be a nowhere dense closed analytic subset of X. Write
Y =X\ Z. Assume there is a larger Kahler manifold X' such that X € X',
a nowhere dense closed analytic subset Z' of X' such that Z'NX = Z. Then
there is a complete Kdihler metric W' on'Y satisfying

(1) W' 2w onY.

(2) The local potentials of W' on X (not on'Y ) are locally bounded.

Proof. Fix a quasi-psh function 1 on X which has log poles along Z and
smooth outside Z. From out assumption about X’ and Z’, we may assume
that ¢ is bounded from above on X, say ¥ < —e on X. Set

~ 1
Y=,
log(—)
which is a quasi-psh function on X with ¢ < 1. Take a positive constant o

such that )
aw +dd®yp > 0

on Y. Then we claim that

W = w + (aw + dd%))
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is the Kahler form we need. All we need to show is that this Kéhler form is
complete on Y. This follows from the inequality

(35) W > o-0loglog(~)) A loglog(~v))

on Yy as long as o is large enough and the fact that loglog(—1) tends to 0o
(35) itse

on Z. The equation ollows from a direct computation, which we
leave to the readers. O

4. THE OHSAWA—TAKEGOSHI EXTENSION THEOREM

Caol? GZ15b
We need the following theorem due to Cao [% ] and Guan-Zhou ﬁ |

Theorem 4.1. Let f : X — B™ be a proper Kdhler morphism from a
connected complexr manifold X of pure dimension n to B™, the unit ball in
C™. Let (L,h) be a Hermitian psef line bundle on X such that X¢ is smooth
of pure codimension m and the restriction of h to Xg is not identically oo
on any connected component of Xg.

We also assume that there is a proper Kihler morphism f': X' — B™(r)
(r > 1) extending f such that (L, h) extends to a Hermitian psef line bundle
on X'. T Then for any o € Hwx, ® L ® Z(h|x,)), there is a section
s€ HY(X,wx ® L) such that a = s|x, and

1 ] Bm i
(4.1) nhﬁbAﬂhééﬁq$héJaAMh

Here p is the Lebesgue measure, so u(B™) = 7" /ml.
We will prove the following stronger result.

Theorem 4.2. Let X be a connected weakly 1-complete Kdhler manifold
of dimension n and w be a complete Kihler metric on X. Assume that X
admits a finite covering by domains biholomorphic to pseudoconver domains
in C* *. Let (E,hg) be a smooth Hermitian holomorphic vector bundle or
rank r on X. Fiz a non-zero holomorphic section v of E. We assume that
the zero locus Z of v is smooth of pure codimension r and \U]%LTE < 1. Set
U :=log|v]}" . Assume that dd°¥ > 0.

Let (L, h) be a Hermitian psef line bundle on X. We assume that there is
a sequence of increasing analytic approximations h* of h satisfying

ddh* > —ew

with € — 04.
Then for any f € H*(Z,wx|z ® L]z @ Z(h|z)) and any § > 0, there is
F e H(X,wx ® LR ZL(h)) extending f and

1 _ 1456 ) o
4.2 ~ | |FAF|, < —° ATd n—r
@2 [ PR < o [

Caol7
TThis condition is omitted in [Pif ]. It seems necessary to include it in order to apply
Theorem 4.2. Otherwise, s can ?‘gg 1l}e defined, but only over a smaller polydisk.

IThis 259WppLion is omitted in |
o in (Lo CEOREbEL

[7]. We include it because we need a uniform constant
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where A"(dv) is define by
G

= — lim "
(n—r)! /Z |A™(dv)|? z ~ nlmooo {—m—1<log [v[2" <—m} |U‘

for any smooth function G on X.

This theorem clear implies Theorem 4.1.
We introduce a few notations that will be used in the proof. For each
m > 1, we define

In particular, 0 < b,,, < 1.

Proof of Theorem 4.2. Fix a smooth metric hy on L and identify h with
¢ € PSH(X, 0), where 8 = dd°hy.
Step 1. We claim that there is a smooth section f of Kx ® L such that
(1) flz=f
(2) 0flz =0.
(3) There is a constant o > 0 such that

3 £12
/ ’8f|h0,w e (1+g C/ n r )
x [olj), (log [v]n)? Ar(dv)? *

Taking a finite Stein cover {U;} such that each Uj; is biholomorphic to a
pseudo-convex domain in C™ of X and a partition of unity y; subordinate to
{U;}. Locally on each U;, by strong openness, we can find o > 0 so that

(4.3) [ BP0 <2 [ 1 A fluwn
u,Nnz Z

i

Dem12
By the usual version of the Ohsawa—Takegoshi theorem [Fem , Theo-

rem 12.6], we can find holomorphic sections f; of Kx ® L on U; extending
such that

: e VTPt L C/ — |
/Ui vl (log v]n)? vinz |AT(dv)[2 7
It suffices to take f = i Xifi .
Step 2. Set g, = 9((1 — by, 0 ¥) f). We claim that there is a sequence

of positive integers a,, — oo satisfying m/a,, — 0 and L-valued locally
L?-forms 7y, Bm of appropriate degrees such that

(4'4) 57m + (m/am)lmﬁm = dm
and
(4.5)

— (1 1 |f13,
i - m2 n C/ m2 —-& n> < / w
5, (o f b € [Vl ™) < 55 [ e

Moreover,

(4'6) 'Ym’Z =0.

’T'L

T



NOTE ON L2-METHODS IN GLOBAL PLURIPOTENTIAL THEORY 15

Up to passing to a subsequence, we assume that 7, — (1 — by, o ¥) f
converges weakly to some F' in L?Q’()) (L) g w- caot
The proof of the claim is a long and tedious calculation, we refer to [PL’
Lemma 2.1] for the details. 0q: 05t2
(e S:l‘ge:g 3. We verify that F satisfies the desired properties. By (1.5)and

4}, we conclude that

Y

5(7m —(1=bmo \I’)f) = _(m/GM)l/Qﬁm

converges weakly to 0 in L?Q’)I(L)ham exp(—®)w- AS

0 Lis) (X, L)y — L3y (X, L)y

is a closed operator, it follows that F' is holomorphic.
Next we show that I extends f. Fix the Stein covering {U;} as before.

We need to show that F|y,nz = f. We solve the 0-equation: dw,, = (3, on
U, such that

[ twml, e <C [ 1alt, e < C.
U-L' Ui

:est2
Here the second inequality follows from (IZIe.5ei N
It follows that
Fpyi=(1—=bpoU)f —vm — (m/am)*wm
is a holomorphic function on Ué. ) %ﬁreg er, I, converges to F' weakly
in L?Q’())(Ui,L)ham exp(—®),w- By (Iq&)i, Folv.nz = flu,nz, so it follows that
F|Uir"|Z = f|U¢ﬂZ as well.

eq:est3 eq:est2
It remains to establish the estimate (1.2). By (II%) and the monotonicity
of hy, we have

lim 1/ |y |2 w" < 1 / |f’%’w w|y "
mooo n! Jx TS ) g (AT (dw) 2T

for any fixed £ > 0. By Fatou’s lemma, we find

am exp(_cb)vw

1 1 /IR
- Ia 2 n < W n—r
n! /X‘ o &7 < (n—r)Jz \Ar(dv)PwZ
:est3
Let k — oo, we conclude (IZIe.Zei.s O

5. NADEL-CAO VANISHING THEOREM

In this section, we fix a compact Kéahler manifold X of pure dimension n.
We will prove Nadel-Cao vanishing theorem.

Cao14
Theorem 5.1 ([Fao*’ ). Let (L,h) be a Hermitian psef line bundle on X.

Then
HY (X, wx @ LRZL(h))=0 forp>n—nd(L,h).

Here and in the whole paper, we use the caligraphic font £ to denote
Ox(L). The same convention applies to other line bundles as well.

The proof of Theorem 5.1 relies on Lemma 2.18. We want to represent a
general element 8 in HY(X,wy ® Ox(L) ® Z(h)) by suitable Cech cocycles
v/ so that the local norms of v/ tend to 0. Under the Cech to de Rham
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isomorphism, this amounts to choosing holomorphic forms representing 3
with small norms, which can be carried out by L?-estimates.

The problem is that in order to apply L?-estimates as in Proposition 3.11,
we need some regularity of the metric. So we need to carry out a suit-
able approximation preserving Z(h) at first, such approximations are called
equisingular approximations:

Lemma 5.2. Let (L,h) be a Hermitian psef line bundle on X and p >
n— nd(L,A h). Fiz a Kdhler metric w on X. Then there is a sequence of
metrics h? with analytic singularities on L with the following properties:

(1) Z(h') = Z(h). Moreover, take a smooth metric hg on L and write h
with ho exp(—¢), then for any small enough s; > 0, there exists s > 0
such that for any smooth bounded (n,q)-form on an open subset U
of X, we have

1/(14s1)
6:1) [ 1B < Ol m) ([ Rgue 007 )

(2) We write Z; for the singular locus of b/ Let M <M< <M be
the eigenvalues of dd°h? with respect to w, defined on X \ Z;. Then
there is a sequence of positive numbers €; — 0 such that

i 1
(5.2) N+ > 36 on X\ Z;.

(8) We can choose > 0 and « € (0,1) such that for all j > 1, there is
an open subset U; C X \ Z; satisfying

lim w" =0
J—00 U,

and
)\%—{-26]- =>e€; on X\ (U;UZj).
(4) There is a smooth metric H on L such that H < h/ for all j.

Let us deduce Theorem 5.1 from this lemma.

Proof of Theorem 5.1. Let hy be a smooth metric on L and let 8 = ¢1(L, hg).
We will identify h with ¢ € PSH(X, 6) through h = hgexp(—¢).
Let h; be the approximations constructed in Lemma 5.2. Let f be a

holomorphic (n, p)-for representing a class a € HP(X,wx @ L Q@ Z(p)).
(ET% hold

Take s1,s > 0 so that olds.” We assume that s; is small enough so
that Z((1 4 s1)¢) = Z(¢). B
By L?-estimates Proposition 3.11, we can write f = Ou;j + v; such that

(5.3)
1 1

1
2 n 2 n 2 n
Ui . / Vs X w < — — f . w'.
/x| j|h]’“’ 4mpe; X| ]|h]’°’ Soor X/\j1+"'+)\g7| |h]vw

Here )\;{; = )\;{; + 2¢;.
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=

We estimate the right-hand side using Lemma 5.2. By Lemma 5.2(2),
A{ = c1¢; for some ¢; > 0 independent of j, so

1 1 1
ﬁfg (Un:/ ff2 wn+/ ﬁfQ w"
/xvﬁ---w' o = [, g e o e

1 1
<C/ —f13, w”+C/ = f13 W,
e [ Sl
It follows that
2 2 1— 2
Jleitwer < [ e+ 067 [ 1ot

As the volume of U; tends to )it g)cﬁl{s term tends to 0 as j — oo. The
(-1,

second term tends to 0 as by x i w™ is uniformly bounded. It
follows that

4 li 13 W =0.
(5:4) jggo/xlvglh],ww 0

Now take a Stein covering U = {U;}ier of X. Represent vj by a Cech
cocycle

vj € CP(U,wx @ LRL(W)) = CP(U,wx @ LOL(p)).

The components of this cocycle satisfy

2 2
/U |Uj,i0“‘ip|hj,w w" < C/X |Uj|hj,w w".

igeerip
L. . eq:1im120
It follows from this inequality and (b: a
hm ”Uj,io...ip‘}zlj w wn =0.
J— 0 UiO.A.ip ’

In particular,

: 2 n __
lim |Vjig-ip |1 w"™ = 0.
J—0 Ui()"'ip

By Lemma 2.18 we conclude that the cohomology class of f is trivial. [

Proof of Lemma 5.2. Fix a smooth metric hg on L. Let 0 = ¢1(L, ho). Fix
a Kihler form w on X. We identify h with ¢ € PSH(X,#). Let ¢’ be a
quasi-equisingular approximation of ¢ as in Theorem 2.14. To be more
precise, we require the following properties:

(1) ¢’ has analytic singularities.

(2) ¢’ is decreasing in j and converges to ¢ everywhere.

(3) There is a sequence 7; — 0 so that

6

(4) Z((1 +2/5)¢”) = Z().
Take C7 > 0 so that 6 < Cjw.
Step 1. Construction of the metric h7.
For each j, choose a log resolution m; : X; — X of ©l. Write

dd°mj¢’ = [Ej] + f;,

oI Z —Tjw.
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where Ej; is a nc Q-divisor on X; and f; is smooth. Fix a smooth metric
hj on (’)X (—Ej) so that m*w + (5dd°h is a Kéhler form on X; for all 6 > 0
small enough We write s; for the canonlcal section of O(Ej}).

Take two sequences ¢; — 0, €; — 0 of positive numbers so that

(1) m*w + 6;dd°h; is a Kéhler form on X;.
(2) (€j — 1j)m*w + 0;dd°h; is a Kéhler form on Xj.

(3)
1 2C4
5.5 —€; — 31, — —— > 0.
( ) 92 J J g

We consider the following Monge-Ampere type equation on X; with respect

to ﬂ)j!
(5.6)
(105 + e57"w + 8,00 +Ad°;)" =Cye~ PR (4 4+ §;dd°h,)",

Su}l{)(ﬂ @’ +¢3+5 108;‘33’11 1)(2) =0.
ze

Here C' is a constant making the two sides having same masses. By Yau’s
theorem, this equation has a unique smooth solution ;. We introduce

v = 7T*<pj +1; 4 0;log |sj|hj_1.
Observe that by definition of nd(L, k), C; is bounded away from 0. We
get immediately from the definition that

70,5 + 6;dd°h; + ddyY; > —;mw.
By Lelong—Poincaré formula,
dd®log |sj|hj_1 = [E;] +dd°h; .
So
(5.7) 70 + dd®y; > —emiw.

In particular, v; descends to a € + €jw-psh function on X, which we still
denote by ~;.
Now we can define

(5.8) = (14257 = s)@’ + 57

for some small enough s > 0. The exact condition of s will be clear from the
next step. We will regard 7’ as a metric on 77 L, namely, 77 hq exp(— n’) is a
metric on 7 L.

We can easily compute the curvature current of this metric:

70, =m0 + (1 + 2571 — )" dd®¢’ + sdd®y;
9 ,
>(1— S)W*HW + —m"ddy’ — se;miw
J
> (—sej —(1+257 Y7 - 2C’1j_1) ™ w
2 (e =320

leg:pistarthetalower
for some constant C' > 0 independent of j. Here we used (5.7). It follows

that 1’ descends to a quasi-psh function on X, still denoted by 77. We then
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have

(5.9) Oy > (—¢; — 37 — 2017 ) w.

We can also regard n/ as a metric hY on L, namely by considering
ho exp(—n7).

Step 2. Verification of the properties.

(1) Fix s; > 0 so that

(5.10) Z(p) = Z((1 + s1)p) -

We first observe that by Lemma 2.22, for any smooth (n,p)-form with value
in L on an open subset U of X, when s > 0 is small enough,

18w < Ol [ 178 pe™ 0507
fi or all large j. Here C is independent of j. Using the fact ¢/ > ¢, we obtain

It is by now clear that Z(¢) C Z(n;). By construction, 7; is more singular
than (1 +2j71)¢/, so Z(n;) € Z(p). We complete the proof of the property

(1).
leq: lambdaest leq:etajl temp2

(2) b (eq‘z )atnélloavevss irom (quf a?ﬂd()%%)_p’em S
(3) Let A/ := A 4 2¢;. Observe that by ([5 5)3

) 1/(1+4s1)

H)\] et ndL:h) on X\ Zj,

where ¢ > 0 is a constant independent of j. Choose o € (0,1) so that
n—nd(L,h) < ap. Let Uj = {z € X\ Z; : M(z) < €} }.
Observe that
/ — [ (AddB) 4O = [ (ddW,w) "+ C <O,
X\Z; = 1 X\Z; X\Z;

where C' > 0 is independent of j. It follows that

7 4=1
But on Uj,
n n—nd(L,h)
II Mzl
i=p+1 Ej
Therefore,
n nnd(L,n)\ V/(np)
Y ANz ]éT :
i=p+1 J
We find that

/U- e;?

i J
for a different M, still independent of j. As n —d < ap, we find that

/ w™ < Mef
U.

J

n—nd(L,h)\ 1/(n—p)
€ n
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for some > 0. We complete the proof of (3).

:etajdef
4) This ws directly from our definition e. y z:n eour normalization
is | y
(X6

of v; in O

6. KOLLAR'S INJECTIVITY THEOREM

Mat16
Theorem 6.1 ([Fii' ). Let f: X — Y be a surjective proper Kihler

morphism from a complex manifold X of pure dimension n to a complex
analytic space Y. Let (L, h) be a Hermitian psef line bundle on X. Then for
any section s € HY(X, L™) (m € Zq) satisfying

(1) s is not identically O on each connected component of X.

(2) supg |s|pm < oo for each compact subset K C X.

Then the multiplication by s map induces an injection
(6.1) Rif(wx ® LOI(h)) = Rif.(wx ® LR I(R™T))
for all ¢ > 0.

Observe that our problem is local on Y, so we may assume that Y iS 8 5o
Stein space and a fortiori X is holomorphically convex. In this case, (E I ;
reduces to the map

(6.2) HY(X,wx ® LRL(h)) = H(X,wx @ L. L(h"™))

induced by tensoring with s. So Theorem 6.1 is equivalent to the following
theorem:

Theorem 6.2. Let X be a holomorphically convex Kdhler manifold. Let
(L,h) be a Hermitian psef line bundle on X. Then for any section s €
HOY(X,L™) (m € Zxo) satisfying

(1) s is not identically O on each connected component of X.

(2) supg |s|pm < oo for each cgmgact subset K C X.
Then for all ¢ > 0, the map (6.2 induced by multiplication by s is injective.

Let us observe that the above reduction procedure gives more: by consid-
ering a smaller relatively compact Stein space Y’ in Y and replacing X by
F71Y’. We will repeatedly use this kind of simplifications in the following
proof.

Proof. We may assume that X € X, where X satisfies the same conditions
as X. Similarly, we may assume that L, h, s are all defined on X and the
assumptions in the theorem are met on X.

It follows that

sup [s|pm < 00.
X

Fix a complete Kéhler metric w on X. Fix a smooth psh exhaustion function
® on X satisfying
sup® < oo.
X L
eq:Rqinj2
Let a be a cohomology class in the kernel of (bb; W& need to show that
a=0.
Step 1. We construct suitable Kahler metrics in this step.
Take an equisingular approximation of h. The existence of such approxi-
mations is guaranteed by Theorem 2.13. More precisely, we take singular
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metrics hy (k € Z) on L and a decreasing sequence of positive numbers ¢
converging to 0 with the following properties:
(1) hy is smooth outside some nowhere dense closed analytic subset Z
of X.
(2) h = hgr > hy for K < k”.
(3) Z(h) = Z(hy).
(4) dd°hy, > —ew.
Here we are using the tricks at the beginning the proof again to embed X
into a bigger space to achieve these properties.
Welet Vi, = X \ .
Step 1.1 By Proposition 3.12, we can construct complete Kéhler metrics
wp on Yy satisfying
(1) wg > w on Y.
(2) The local potentials of wy on X (not on Yj) are locally bounded.
We will consider the following Kéhler forms
(6.3) Wi = w+ Owp,
on Y}, for all 0 < d < g0, where dj, o is a suitable positive real number such
that 00 < €. Then we have
(1) wgs is a complete Kéhler form on Y.
(2) wrs > w on Y.
(3) For any = € X, there is an open neighbourhood U of x, bounded

functions Wy s on U such that dd°¥y s = wy, 5 and lims_,04 ¥y 5 exists
and is a local potential of w.

We may assume that our psh exhaustion function ® on X satisfies
(6.4) sup [d®|,, ;, < C
X

for some constant C' independent of k and § < dj, .
In fact, we may assume that

sup |d®| < C
X

for some Kéhler form «’ on X. As w is complete on X, we may assume that
w > w’ up to a rescaling of w’. Then as w. s > w > ', we have

sup |[d®|y, ; < sup |d®|, < C
X X

by Lemma 3.8. In particular, the Bochner formula Proposition 2.15 applies
to w5 on Yy.
Step 2. We represent « by suitable harmonic forms.
We first represent a by a closed (n,q) form u with locally L?-coefficients.
Step 2.1
Fix an increasing convex function x : R — R such that

HuHhexp(—xOQ),w < 00.
We let
H :=hexp(—xo®), Hjy:=hgexp(—xo®).

Moreover, let || o [|xs := || ® || i, w, 5- Then by Lemma 3.8,

(6.5) lullkoyi < Nullw, s < llullmew < oo



22 MINGCHEN XIA

Step 2.2 Consider the space
L? SI(L)k § = L(Q) (Yk> L)Hk,wk,(s :

:uunifbdd
Then we find that u € L(Q) (L)k,s as a consequence of (%observe
that
Lisy (L)ks 2 Lisy (L) By s 2 Lisy (L) H
and

Ly (L)ks 2 Lisy (L)ky 2 Ly (L)

for any 0 < 0’ < & < dy,0. Here we omit the canonical embeddings.
Recall the general orthogonal decomposition

L(Ls = 1md & Hf(L) & Im 3.

where . )
HZ::SI( ) {’U e L(2)( )kﬁ N a’U = 82,60 e O}
and 5}; 5 is the formal adjoint of 9. As u lies in the kernel of 5, its orthogonal

projection to Im g}; s vanishes (this follows from Corollary 3.6). So we find a
decomposition

(6.6) u = wg s+ ups for some wys € Imd and uy 5 € Hys(L).

Step 2.3
We claim that there exists a decreasing sequence ¢ > 0 converging to 0
and of € L’é’g (L) H,  with the following properties:

(1) For any k > 1, ¢’ € (0,00%), as v — 00, uy v converges to o weakly

in Lqé’sl(L)k#;/ .

(2) For any k > 1, we have

(6.7) HakHHk,w< Jim, 1o 6 < dm flugse llkge < lluflme -

We first observe that for any k > 1, 5 € (0 do.%), any d € (0,0"), we have

< lullre -

< ukslles <

Therefore, there is a decreasing sequence 6*9 — 0 such that Uy, 50,5/ CONVErges
Weakly to some oz(;, in L(z)( k5. We take My, € Z~q large enough so that
M, L« do,k- By repeatedly choosing subsequence of 6v9" and using a simple

diagonal argument, we may guarantee that for 0’ = 1/M (M € Z-( large
enough), we have a decreasing sequence of positive numbers §¥ — 0 satisfying

vk
Uk ov — Qg
in L(”)I(L)k,(;/. Observe that of, is independent of § as L&) (D)o —

(2’)( )ksv is bounded when &' < §”. We will write o for this common

value. Then
k

ukygu N «
in L(Q’SI( )k,or- Part (1) of the claim follows.
As for the estimate, for any k > 1, 0’ = 1/M € (0,0¢ ) for some integer
M,

¥k < hm ug, 50|k < hm 50 llk,s0 < lullmw -
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By Fatou’s lemma,

1

k k k

oM o =y [, 10 o™ €t [ b e = i ol
—00

This proves (E. [ %olel/ﬁgﬁ 0’ in the second term has the form 1/M. But the

general case follows as ||a*||; s is decreasing in &'
Step 2.4. Fix ky > 0, for sufficiently large k, we have

¥ 0 < N o < Nl

There is therefore a sequence k, — oo such that o* converges weakly to
some a € L?Q’sl(L)Hko w-

Assume that ¢ = 0, then we claim that o = 0.

Note that this is just a slightly more complicated version of Lemma 2.18.

To prove the claim, take ¢’ > 0 of the form 1/M with M being a sufficiently
large integer, consider the de Rham to Cech isomorphism

ker0/Im d of Ly (L)gs — HI (X, wx@LOL(hy)) = HI(X,wx @LIL(h))

constructed in Theorem 2.19. By Corollary 2.20, Im 9 is closed in Ly’ o L (Do
Now for § € (0,9"), we have

u—ups € Imd in LY (L)ps CImd in L3 (L)s C Ima in LyR (D =Tmd in Ly (L)gs
Take limit in § along §¥, we find
u—af €Imd in Ly (L)gy CImd in Lyl (L)py = Imd in LyE (L) -

Write ¢; : kerd in L?Q’;I(L)k 5 — kerd/Imd in L(Q)( ko~ Then qi(u —
af) = 0.
We will need the following basic fact: each element U of kerd in
(2) i) Lo admits a canonical extension to an element of ker 9 in L( ) HrL) Hyg -
See [ , Lemme 6.9]. On the other hand, by Proposition 2.21,
o : kerd in LY S (L) Hyyw — ker 9/Imo in Lyl (L), is compact. In

(2) (2),loc
particular,

kv)

UlLIgoqg(u—a =q(u—a) = qu).

Under the canonical identifications

kerd/Im d in L?ﬁ?loc(L)k:5’ = HY(X,wx®LRL(h)) = kerd/Tm d in L( ’) toe (L) Hyy s

we have g1 (u — o) corresponds to ga(u — o®). Tt follows that go(u) = 0. In
other words, u € Im 9 in L?Q’SI (L) Hy, - Using the canonical identifications

ker 9/ Im d in L( ’) e (D) Hyy o = HY(X,wx®LIL(R)) = kerd/Im d in L ")IIOC(L)H,COM

and the fact that u € kerd in L?Q’SI(L)HM, we find that v € Imd in
L%{IOC(L) Hy,w- The claim is then proved.
Therefore, it remains to show that a = 0.

Step 3. We make a further reduction in this step.
Fix ko > 0. Define Y} := {y € Yi, : |s[ay (y) > 1/j}. Write X, for the
0

set {® < ¢}. Observe that ijo is an open subset of Yy, .
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We will show that if

(6.8) lim lim [|supslksx. =0
k—o00 6—0+

for all ¢ < supx ®, then a = 0 hence completing the proof.

Recall that a** converges weakly to a in L?z")](L) Hy, w» therefore, ofv|
c kO

converges weakly to aly . in Lg’;}(XC N ijo, L),y - 1t follows that
c kO

||a||Hk0,w,Xch,j0 < Uh_%lo ||aku||Hk0,w,Xch,jO < Uh_%o HakUHHk,w,Xcﬂijo‘
Similarly,

||ak||k,5',xcny,go < Uh_%lo ||“’f75”||k,5',xcmygo < Uh_%lo ||“’f15”||k,5v,xcny,go'
By Fatou’s lemma,

[l |’Hk,w,Xch,gO < 5%& v ”k,a/,XmY,gO < vl%lo Hukﬁ“”k,av,xcmygo'

Putting these estimates together, we find

< lim lim [Juge s

| j .
ettt 80, XY}

HaHHkO w, XNV}
On the other hand, 1/j < ]s]h% < |slpgr on Y7, s0
||“k“,6””k,&v,Xcmf,gO < jHSUk”,é”Hk,zSu,Xch,jO < Jllsure 50 [l k60,xc

We therefore conclude that v = 0 on X. N ijo As ¢,j are arbitrary, we
conclude that a = 0.

. . . eq:doubleliminf
Now it remains to establish (5.8).

Step 4. Next we carry out and J-estimate. -
We will prove the following claim: there is a solution to the d-equation

Wy = U — U gv

with uniformly bounded local L?-norm:

(6.9) lim ||wg k50, x. < Ce
V— 00

for any ¢ < supy @, where C, is independent to k.
We omit the complicated proof and just refer to , Proposition 3.9].
We will need the following consequence: for any ¢ < supy @, there is

View € ngfl(mﬂ)w such that

(1) %ﬂj = SUf,6v-
(2) limy—o0 || Viwllk,6v,x. < Ce, where C, is independent to k.

[F’La 16

Recall that we have assumed that s« is exact, so there exists w with Ow = su

and ||w|| gpm w,x, < 00. It su ices to take Vi, = w — swy,.
Step 5. We will establish (6:8). Fix ¢ < ¢ < supy ® so that d® does not

vanish on 0X.. Such ¢ exists by Sard’s theorem. We consider Vj, as in
Step 4, with ¢ in place of c. We take regularizations of Vj ,, say Vi, ; so

that as j — oo, Vi — Vi, and 5Vk,w- — 5Vk’v, both in L?é;(Lm+1)k,§v7

as follows from Lemma 3.5.
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For a generic d’ > d, we have
(6.10)

lm lim |[[suggslk,sx.
k—o00 § =0+

< lim Hm ([sugsllrs x,
k—00 0—0+

= lim lim lim <Suk75,évk7v7j>k,5,xd
k—o00 v—+00 ] 700
= lim lim (lim <5; §uSUE 5v, Vi i >k6v, X, + lim <(5<I>)*suk75u, Vk,v,j>k,§“,6Xd) .
’ Jj—o0

k—soo V—00 \J—00

Here we applied the general Stokes’ formula Proposition 3.10.
Next we will show that both terms vanish.
Step 5.1 Define
ks = 2 <dd®Hj, A Akygukyg, U 5.6 -

We claim that
2mq
(6.11) 9rs > == lukslis -

In fact, for any = € X, we can pick up a local coordinates in a neighbourhood
of x, say z1,..., 2z, so that

. n
i _
2rdd°Hy, = 3 ; Nidz; A dz;
and
i n
= — dz; Adz; .
Wk,s 9 ; Zi Zq
Here A\{ < Ay < --- < A\, are the eigenvalues of 2rdd®H;, with respect to
wy,s- Locally write

Uk s = Z uzﬁdzl A Ndzp AdZy .
[vl=q

Jk,s = Z (Z AJ)IuZ,aI%k :

Ivl=q j€Y

Then

On the other hand,

1 1
ddCHk = ddchk + ddCX od > —%w > —%CU]{;,(S .
om eq:glowerbound
So Ay > Tk and ( ’ 6q  glowerbound

As a consequence of (6.1T),

1 2mq

Z Jk,s Wi s = T
(6.12) " /{vEYiigrs(y)<0} !k J{yeviigr s (y)<0}
27‘(’(] 27’[‘q

_THUI%‘,JH%,& 2 —T”UH%LQ; .

s l7 5 Wit s

>

Step 5.2 We prove the following preliminary result:

(6.13) klggo 5§+ IDi ks

ks =0.
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Moreover,
(6.14) lim lim || D ssupsllrs =0
k—o00 6—0+
and
(6.15) lim Tim |0}
k—o00 6—0+
e ochuntw
By Bochner’s formula (|2L3§ applied to uy 5, we have
Ik W5 -
Yy
So
1 2mq ., 9
Iks Whs = —— s Wi < - ullre -
{y€Yk:gx,5(y) 20} e J{y€Yygr,s(y)<0}
Dpstarkdeltatoo
Therefore, (Ib 13) tollows.
We obtain moreover that
lim lim GksWrs=0.

k=00 6—=0+ J{yeYy:gk,s (y)>0}
eq:Bochuntw
Next, we apply Bochner formula (IZLEE to suy,s to obtain

- 1
10k ssursllzs = 1Dk ssursllig + = | I8lhmgrswis-
) ) ) ) n! Yk k ’
Observe that
/ M%g@gkﬁwﬁa </ \3|hm9kéwk5 SUPfs\hm/ gkﬁwg,é'
Y {y€Yk:igr,520} {y€Yk:gk,6 >0}

On the other hand,

| Dy ssursllks = |sDy stnsllr,s < sup |8|m || DF 50,5 |5 -

leq:Dpstarkd| i)bsﬂtarkdeltat002
From these estimates (6.14) and (6.14) follow.

As a consequence, we have

(6.16) kl;n;o 62%1+]1l)1210<8k 55Uk, Vi,5,j>ks,x, = 0.

Recall that d € (¢,supy @) is a general element.
By Cauchy—Schwarz inequality, it suffices to estimate two norms. From
the construction of vy s, we know that

kl—>rgo6—1>I(§l+ji>m | Vis.511k,6,x, < 00

On the other hand,

lim lim ||0 =0
Jim T (197 g5t 5.5, =

leq:Dpst arkd,ﬁ%)tm@ﬁrkdeltat 004

by (6. 1), 90 )thg%lows We have completed the estimate of the first
term in ( X eq:limlimsplittwo
Step 5.3 We estimate the second term in (k) U;. Namely

lim lim lim <(0®)* SUL vy Viw i >k,6v,0X, -
k—s 00 V—+00 J 00
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Applying Cauchy—Schwarz inequality, we find that it suffices to prove the
following two statements:

(6.17) lim lim lim [[Viyjllk6v,0x, <00
k— 00 V—00 ] =00

and

(6.18) lim lim [|(0®)*suygv||k6v0x, = 0.

k—o0 v—00

Recall that we use the measure dS := *d®/|d®|, ; on the boundary 9.Xy,
so that wy 5. /n! = d® A dS.
) : t1
We first prove (|66. oF lBy Fubini’s theorem,

c+a 1

/ (Viwi> Viw,jksv,0x, dPdd = —
X4

n
| / |Vi,.5lk,5v W, v
n: J{c'—a<®<c'+a}

c—a

By Fatou’s lemma, we have

c+a
. . . . . 2
/ / lim lim lm (Vi Viwj)keseox, d®dd < lim lim [Jogsellks.x o
d—a JOXy k—o0 v—00 j—00 k—s00 V—00 ¢ra

The right-hand side is finite by assuyt :giqr%tqnd hence for a general d, the
integrand is also finite. eh:iss proyes 7(%11)'75)7 -

It remains to prove (é . As (0P)*sup,5v = s(0P)*uy v, it suffices to
prove

(6.19) m m ”(5(1))*11,&51;”]6,51]73)@ =0.

k—o00 V—00
Applying Stokes formula Proposition 3.9, we have
<O(OD) uk,s), k5> k5.5, = <(OP) k5, Of stk ,5>k,0.x, + <(OP) g5, (OP) up 5> p5.0x,
= <(09) up,s, (0P)*up 5>1.5.0%, -
So we are reduced to prove

(6.20) lim lim <(§((5<I>)*uk’5v), Uk, 59 >k,6,Xg = 0.

k—o00 v—00

We observe that
ups =0, 0P Augs=0, dd°®Aups=0.
It follows from the twisted Kéhler identity Lemma 3.7 that

<5((5‘I’)*uk,5), Uk §>k,6,X, = —<6<I>/\D§:5uk’5, uk,a>k75,Xd+27T<ddc(1)/\Ak75uk75, Uk, 5> k,8,X g -
leq: DpstarkdeltatoOQﬂ X . .
By (6.17) and Cauchy—Schwarz inequality, the first term tends to 0 if § — 0

along d".
So it remains to establish

(6.21) lim lim <dd® A Ay su,s, uks>ksx, = 0.

k—o0 v—00
Here we need the twisted version of Bochner’s formula Proposition 2.15:
Iva(0@)ur sll7 s = lv/n(Dis—(02)* Yk sll7 5+ 2m<n(dd® Hy+dd°®) Ay, suug s, w5 >h,5,X, -

. eq:glowerbound
Using (6.1T), we fin

(6.22)
IVn(0®)ursl1%.s = V(D s—(0) Yunsllf 5=k~ Cllun,sllf s+2m <ndd @AMk stk 5, s 5>k,5,X,
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By Cauchy—Schwarz inequality,

IVA(Dis = (0®) Vursllz 5 > —2llv/nDisunslisllv/n(02)* n(0®)*

where C' > 0 is independent of £ and §. From the twisted Kéhler identity,
we have

I/n(0®) ur 5117 5 = IV/n(0P)ur 517 s -

Therefore,
IV/(D5s—(09) Yur 6175 = —2[ly/1D5 sun,slrs1/7(0P)*

X X etapartPhi
Substltutlng back to (IG 525 we find

n(0P) up,s ||, 5+k*10||u||Hw > 27T<77ddcq)/\Ak SUE. 5, Uk 5> k.5, Xy -
Dpstarkdeltat
The term H\ka sUk5||k,5 converges to 0 by (b 13) and the term l\/n(0P)*

is bounded from above by the elementary estimate |(O®)*uys|k.s <
%‘L&gk 5|k |k, which is uniformly bounded. On the other hand, by

Discussion after (4.8)], we have (dd°® A Ay suks, uks)es = 0.
Woget}}eg with the fact that n is bounded away from 0 on Xy, we conclude

1(0P)

O
As a consequence, we have the torsion-free theorem.

Corollary 6.3. Let f : X — Y be a surjective proper Kdhler morphism from
a complex manifold X of pure dimension n to a complex analytic space Y .
Let (L, h) be a Hermitian psef line bundle on X. Then for any q > 0, the
sheaf R1f.(wx ® L ®Z(h)) is torsion-free.

Proof. 1t suffices to apply the m = 0 case of Theorem 6.1 to holomorphic
functions on X of the form f*g, where g is a holomorphic function on an
open subset V' of Y, not identically 0 on each connected component of V. [

Corollary 6.4. Let f : X — Y be a surjective proper Kihler morphism from
a complex manifold X of pure dimension n to a complex analytic space Y .
Let (L, h) be a Hermitian psef line bundle on X. Assume that a general fiber
of f has dimension at most N. Then

Rif(wx ®L&®ZI(h))=0, g>N.

Proof. By Corollary 2.3, Rif,(wx ® L ® Z(h)) = 0 is supported on a non-
where dense proper closed analytic subspace of Y. This contradicts the fact

that this sheaf is torsion-free Corollary 6.3. O
7. POSITIVITY OF DIRECT IMAGES
P‘ESJ,& . ..
Theorem 7.1 (] ). Let f: X — Y be a proper surjective Kihler mor-

phism from between complex manifolds X and Y. Let (L, h) be a Hermitian
pseudo-effective line bundle on X. Then there is a canonical Griffiths positive
metric on the torsion-free sheaf fi(wx/y ® L@ Z(h)).

Observe that f.(wx/y ® L&Z(h)) is always torsion-free as the push-forward
of a torsion-free sheaf. We will call the metric constructed in this theorem
the Hodge metric.

The general idea is to construct the metric on a Zariski open subset of Y,
prove the positivity there and extend. Conditions guaranteeing t@@sgmstence
of extensions of psh metrics on line bundles is well-known, see The
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case of Griffiths positive metrics on vector bundles follows from the bijective
correspondence between Griffiths positive metrics and Finsler metrics. The
case of torsion-free sheaves follows trivially from the case of vector bundles.

Proof. By considering each connected component of Y separately, we may
assume that Y is a connected manifold of dimension m. We can then assume
that X is connected and of dimension n. Write

F = fulwxyy ® LOZL(R)).

For any y € Y, we write X, for the fiber of f over y. Similarly, we write
Ly = L‘ny ,Cy = ﬁ’)(y and hy = h‘Ly-

Step 1. We construct the metric H on F outside a proper closed analytic
subset Z C Y.

Choose a proper closed analytic subset Z C Y such that

(1) f is smooth outside Z. This is possible by Theorem 2.4.

(2) Both F and fi(wx/y ® L)/F are locally free on Y\ Z. Here we use
the properness of f.

(3) wx/y @ L has the base change property with respect to f on Y\ Z.
Here we use Corollary 2.3.

Let F' be the vector bundle on Y\ Z so that Oy z(F) = Fly\z. Then we
find

(7.1) E, C H(Xy,wx, ® Ly).
By the Ohsawa—Takegoshi extension theorem,
H(Xy,wx, ® Ly @ Z(hy)) C Ey.

Next we define a singular Hermitian inner product H, on E, for y € Y \Z cubho
given a € By, we can regard « as an element in H°(X,,wx, ® Ly) by (7.1).
We then define
2 ~12
g, == lanal,, € [0,00].
Xy

We observe that {« € E, : |a|g, =0} =0, so H, is everywhere finite.

Step 2. We want to prove that H is Griffiths positive.

Take an open set U C Y and a section g € H(U, F¥). We want to show
that

¥ = log gl : U\ Z = [0, 0)

is psh and has a psh extension to U. This amounts to three different claims,
as proved in each of the following substeps.

Step 2.1. We prove that 1) is locally bounded from above near Z.

Choose open sets Vi € Vo € U so that for any x € Vi, there is an
embedding ¢ : B™ < V5 with ¢(0) = x.

Fix y € V1 \ Z, we want to find an upper bound of ¢(y). Of course, we may
assume that ¢(y) > —oo. Choose a € Eyy with |a|p, =1 and |g[my = [g()].
So that

Y(y) = loglg(a)|.

Choose an embedding ¢ : B™ — V3 with ¢(0) = y. We will omit ¢ from our
notations and regard B™ as an open subset of Va. By the Ohsawa—Takegoshi
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extension theorem Theorem 4.1, we can find s € H°(B™, F) with 5(0) = «
and

/Bm\Z s/ dp < p(B™),

where dpu is the Lebesgue measure on B™. It follows that g(s) on B™ is
bounded from above by a constant depending only on Cj.

Step 2.2 We show that ¢ is usc on Y\ Z. This problem is local, so we
may assume that Y = B™ and Z = (). We show that ) is usc at y = 0:

T () < (0)

for any sequence y; — 0 in B™. We may assume that ¥ (y) # —oo for all k
and the limsup is an actual limit. Take oy, € E,, such that ¢(y) = log|g(a)|
and |ay|m, = 1. Extend oy to a holomorphic section sy, € H°(B™, F) so that
Jgm sk A Skla dp < p(B™) by the Ohsawa-Takegoshi theorem Theorem 4.1.
By compactness, there is sequence k; — oo such that s, converges to some s
with respect to the compact-open topology. It follows that g(sg,) converges
to g(s) with respect to the compact-open topology. By definition of the
dual metric, ¥ > log|g(s)| — log|s|m, so what we need to show is that
|s(0)|m, < 1. As f: X — B™ is smooth, by Ehresmann’s fibration theorem,
X is diffeomorphic to Xy ® B™. Choose a Kéhler metric wg on Xy, then we
can find a lsc and locally integrable function F': Xy x B™ — [0, co] such that

wm—n
(7.2) \sk/\§k/\dt1/\---/\dtm|i:Fkﬁ.
In particular,
wm—n
’sk‘%[yk - /XO Fk(.ay> (mo_ TL)' :

Similarly define F': Xy x B™ — [0, 00] using s instead of si. As the local
weights of h is usc and s converges to s uniformly on compact sets, we have
F(.v 0) < 117111 Fki(.)ykl) .

1—>00
The desired inequality then follows from Fatou’s lemma.

Step 2.3. We show that 1 is plurisubharmonic on Y \ Z. By Fornaess—
Narasimhan theorem, we may assume replace Y by a disk A and assume
that Z = 0.

We will verify the mean-value inequality:

(7.3) b(0) < /A v dy.

s

Of course, we may assume that (0) is not —oo. Choose a € Ey with
lalg, = 1 and ¥(0) = log|g(c)]. By the Ohsawa-Takegoshi extension
theorem Theorem 4.1, we may extend « to a holomorphic section s €
HY(A, E) such that s(0) = « and

/ |2 dp < .
A
By definition of the dual metric,
¥ = loglg(s)| —log|s|m
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for any holomorphic function g on A with ¢g(0) = g(a). It follows that

(7.4)
2 1 1 1
2 [ wdn= = [ roglo(s)P di— [ togsfh dp > 26(0)-log (W /. |s|%fdu) > 20(0).

This proves the desired result. O

As an immediate consequence of our construction, we have the following
explicit description of the Hodge metric.

Corollary 7.2. Under the assumptions of Theorem 7.1, there is a nowhere
dense closed analytic subset Z CY such that the following are satisfied
(1) f is smooth outside Z.
(2) felwx)y ® L®ZI(h)) is locally free on Y \ Z. We write F for the
vector bundle on 'Y \ Z associated with this sheaf.
(3) Foranyy € Y \ Z, any o € Fy, we have

(7.5) ol :/ o A @,
X

Y

where we identify o with an element in HO(Xy,wa ® Ly).

(4)
HY(Xy,wx, ® L, ®L(hy)) C F, C H'(X,,wx, ® Ly).

8. BERTINI TYPE THEOREMS

between complex manifolds X and Y. Let (L,h) be a Hermitian psef line
bundle on X. Then for quasi-every y € Y, the fiber X is smooth and

(8.1) (khy) = Z(kh)\x,
for all real k > 0.

Remark 8.2. Due to the lack of Chow’s lemma in the complex analytic setting
(which fails unless the proper morphism is bimeromorphic), it is not clear if
Theorem 8.1 holds for a proper morphism f.

On the other hand, for a general proper surjective morphism f: X — Y
f eorzrhz{ahcomplex manifold X to a complex analytic space Y, it is obvious that
(. olds almost everywhere. Here properness guarantees that outside a
null subset of Y, the fibers of f are smooth.

Proof. We take Z C Y as in Corollary 7.2. We use the notation F as in
Corollary 7.2. For any y € Y \ Z, we have

(8.2) HY(Xy,wx, ® L, @ I(hy)) C F, C H'(Xy,wx, ® Ly).

. . 0 .
Observe that an element a € Fy lies in H”(Xy,wx, ® Ly ® Z(hy)) if and
only if [|af/g, < oo. It follows that if the first inclusion of (B:Z) is strict,
then H, is singular and a fortiori det H is singular at y. But we already
know that the Hodge metric H is Griffiths positive TheorEem: fds S0 det H is

positively curved. It follows that the first inclusion in (K'Z) is an equality
almost everywhere. On the other hand, by Corollary 2.3, outside a nowhere
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dense closed analytic subset of Y\ Z, F, = HY(X,,wx, ® Ly ® Z(h)|x,). It
follows that

H(X,,wx, ® Ly ® Z(h)|x,) = H*(Xy,wx, ® Ly ® Z(h|x,))
for every y € Y \ 3(L, h, f), where (L, h, f) is a pluripolar subset of Y.

Now we need to use the projectivity of f (instead of proper Kéhler) for
the first time. As our problem is local in Y, we may assume that Y is Stein.
Take an f-ample line bundle S on X with associated invertible sheaf §. Take
a smooth positively curved metric hg on S.

Assume that the cokernel J of the inclusion Z(h|x,) — Z(h)|x, is non-zero
for some y € Y\ Ugez., 2(L ® SC h® hg, f). Then there is a large integer
C such that

HY(Xywx, ® Ly @ SYY® J) #0
and
H'(Xy,wx, ® Ly ® S @ I(h|x,)) = 0.
It then follows from the exact sequence
0= H(Xy,wx, ® Ly ® S$° @ I(h|x,)) = H(Xy,wx, ® Ly ® S§° ® I(h)|x,)
— HY(X,,wx, ® Ly, ® S @ @J) = 0
that
HO(Xya wx, ® Ly ® S?SQC ®I(h|Xy)) # HO(Xyany Q@ Ly ® 53;8)0 ®I(h)|Xy) )
which contradicts our choice of y. It follows that Z(h)|x, = Z(h|x,) outside
the pluripolar set oz  S(L @ SC hah§, f).

Next we prove (IS [ %, Ey strong openness theorem, we only need to consider
countably many k € Qs¢. As Lountable unions of pluripolar sets are still
pluripolar, it suffices to prove (l8 [) for a single k € Qs¢. It suffices to regard
kh,, as a positively curved metric on L ® S¢ for a large enough C' and apply

what we have proved. O

Mat18
Corollary 8.3 ([Fati' ). Let f: X — Y be a proper Kihler morphism

from a connected complex manifold X to a connected complex analytic space
Y. Let (L,h) be a Hermitian psef line bundle on X. Then for almost all
y €Y, Xy is smooth and nd(Ly, hy) is independent of the choice of y.

If moreover f is projective and Y is smooth, then for quasi-every y € Y,
Xy is smooth and nd(Ly, hy) is independent of the choice of y.

Proof. The problem is local on Y, so we may assume that Y is Stein. In fact,
by further localization, we may assume that Y € Y’ for some Y’ and X’
satisfying the same assumptions. In particular, we may assume that there is
a quasi-equisingular approximation h’ of h on X. Fix a Kéhler form w on
X. Up to removing a nowhere dense closed analytic subset from Y, we may
assume that f is smooth of pure relative dimension 7.

We only prove the latter statement, as the first is similar using Remark 8.2
instead of Theorem 8.1.

By Theorem 8.1, h' restricts to a quasi-equisingular approximation of
hy for quasi-every y. Take a log resolution m; : X; — X of h' and write
dd°mrh? = [E;] + oy, where «; is smooth and Ej is a nc divisor on X;. Up to
removing a nowhere dense closed analytic subset from Y, we may assume
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that the restriction of m; to all fibers X, are still log resolutions of h’|x, and
71 (X,) is not contained in F;. Observe that

/Xy (adnily,)" nwlf, :/W;l(xy)(P A FPOT)

The right-hand side, as a closed fiber integration, is constant outside a
nowhere dense closed analytic subset. It follows that the left-hand side is also
constant outside a nowhere dense closed analytic subset. But h{| X, is a quasi-
equisingular approximation of h|x, for quasi-every y € Y, so we conclude
that Cao’s mixed mass ((ddh|x,)* Aw"™?|x,) is constant quasi-everywhere.
In particular, nd(L,, hy) is constant quasi-everywhere. O

Definition 8.4. Let f : X — Y be a proper Kahler morphism from a
connected complex manifold X to a connected complex analytic space Y.
Let (L, h) be a Hermitian psef line bundle on X. Take a null set ¥ C Y
so that for y € Y \ ¥, X, is smooth nd(Ly, hy) is constant. We define the
numerical dimension ndf(L, h) of f as this constant value.

We can now state the relative version of Theorem 5.1.

Corollary 8.5. Let f : X — Y be a proper Kdihler morphism from a
connected complex manifold X to a connected complex analytic space Y. Let
(L, h) be a Hermitian psef line bundle on X.

Rif(wx ® L&I(R)) =0 forp>dimX —dimY —nd(L,h).

Proof. This is a simple consequence of the torsion-free theorem Corollary 6.3
and Corollary 8.3. U

Corollary 8.6. Let X be a complex manifold, f : X — A* be a projective
surjective morphism. Let (L,h), (L,h’') be Hermitian pseudo-effective line
bundles on X with the same underlying line bundle. Assume that there is
a biholomorphic S*-action on (X, L) making f equivariant and such that h
and h' are invariant under this action. Assume that for quasi-every z € A*,
X, is smooth and h|x, ~z hl'y_, then h ~z I'.

Proof. We need to show that Z(kh) = Z(kh') for all positive integer k. Clearly,
it suffices to prove the case k = 1. We will therefore prove Z(h) = Z(h').
First observe that it suffices to prove that

(8-3) f*(KX ® L ®I(h)) = f*(KX ® L ®I(h,))

eq:fstarcoin
as subsheaves of f.(Kyx ® L). In fact, esu_%E&??cE}%ﬁt (|8L3; holds. Let H be a

f-ample invertible sheaf on X, then (B3] also holds with L ® H™ in place
oI It follows from Grauert— Remmert s version of Serre vanishing theorem

[%f ; Theorem 2.1(A)] that T(h) = Z(h'). .
It remains to prove (8. Serve that both sides of (IS 5 ; Sare Clgcrz;lly free
as they are clearly torsion—free, we claim that it suffices to show that

(8.4) foKx ® L&®ZI(h)). = f(Kx ® LRI(I)).

for one z € A*. In fact, this impli s that, the ;same holds outside a countable
subset of A*. But the set where ( al TS has to be S'- invariant, it has to

be empty.
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. eq:fstarcoin2
In fact, we will prove (lshi for quasi-every z € A*. By cohomology and
base change together with Theorem 8.1, for quasi-every z € A*, we have

fi(Kx ® L®I(h)). = H(X.,Kx|x. ® L|x. ® Z(h|x.)),
[o(Kx® LRI(N)), = H(X., Kx|x, ® L|x, ® Z(K|x.)).

. / .
But we assumed th(‘g for quasi-every z, h|x, ~z hlx_, it follows that for
ISEI'% holds. 1

quasi-every z € A*, he proof is complete. O

It is of interest to understand more general types of analytic Bertini
theorems. In particular, we ask the following question: given a morphism
of complex manifolds f : X — Y with smooth fibers and two quasi-psh
functions ¢,¢ on X. Assume that |y, ~7 ¥[x, for all y € Y, then is it
true that ¢ ~7 1.
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