Relative pluripotential theory '

Mingchen Xia

IFirst three chapters of an unfinished book.






Contents

[Symbols and Abbreviations|

|Conventions and special notations|

|Chapter 1.  Preliminaries|
II.L1. The space of pluri-subharmonic functions|
II.2. Local theory on hyperconvex domains|
IL.3." Special currents|

[L.4.  Non-pluripolar measures|
[[.5. The envelope operator]

|Chapter 2. Non-pluripolar products|
III.1. Definition and basic properties of the non-pluripolar products|
III.2. Semicontinuity of non-pluripolar products|
ILI.3. " Monotonicity of Monge-Ampere masses|

|[I.4.  Comparison principles|
[[T5. Tntegration by parts|

II1.6.  Inequalities of the Monge—Ampere operators|

|Chapter 3. Absolute pluripotential theory]
IITI.1.  Basic energy functionals|
ILII.2. Monge-Ampere capacity|
ILII.3. Monge-Ampere equation I. Existence and regularity]
[LII.4.  "The rooftop operators|
[[TT.5. Monge Ampere equation 1I. Uniqueness|
I11.6. Compactness in £
ILII.7. Finite energy classes|

Bibliography






Symbols and Abbreviations

psh: pluri-subharmonic. [J]






Conventions and special notations

(1) Let X be a manifold. Let f : X — [—o00,00] be a function, we write f*
for the usc regularization of f, namely,

F@) =T fl), e X.

(2) Let X be a manifold. Let f; : X — [—o00,00] (j € J) be a family of
functions, we write

"
sup* f; = <sup fj> .
jeJ jeJ

(3) For n € Z~o, B" denotes the unit ball in C™. A™ denotes the unit polydisk
in C™.

(4) <, denotes convergence in capacity.

(5) Let X be a complex manifold, p € Z>g. Then D'PP(X) denotes the space
of (p, p)-currents on X, D'2”(X) denotes the space of closed positive (p, p)-
currents on X.

(6) Let X be a compact Kéahler manifold. Let [#] be a big cohomology
class, where 0 is a closed smooth representative form. We write Vj
for the supreme of elements in PSH(X, ) that are less than 0. For
p, € PSH(X,0), we write ¢ A ¢ for the rooftop operator instead of
the more common Py(p, 1)), we write ¢ V ¢ for the maximum of ¢ and .
We write [¢] A ¢ instead of the more common Pg](v)).

(7) Let X be a locally compact Hausdorff space. We write M(X) for the
space of signed Radon measures on X. We write M (X) for the space
of positive Radon measures on X. They are equipped with the weak
star topology. We denote the weak star convergence of measures by —.
Be careful, the same notation is used for the weak star convergence of
currents. For measures, they are not equivalent if X is not compact. We
make distinction by writing weak convergence as currents for the latter
notion when necessary.

(8) Let X be a compact Kahler manifold. Let [f] be a big cohomology class,
where 6 is a closed smooth representative form. Let ¢; € PSH(X,0)
(j € Z=o). The notations lim ¢;, limp, are not the usual limsup and
liminf. They are defined in Definition [[1.9] When we need the latter, we
write limsup ¢;, liminf ¢; instead.

(9) Kébhler locus, ample locus of a big cohomology class mean the same thing.

(10) We always follow the convention:

cii /)
dd f27T83.
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CONVENTIONS AND SPECIAL NOTATIONS

(11) For two singular types [¢], [¢], we write [p] =< [¢] for the relation: ¢ is
more singular than v instead of the converse.

(12) Let M be a compact Kihler manifold. Then M (X) € M, (X) denotes
the set of non-pluripolar measures on X.



CHAPTER 1
Preliminaries

I.1. The space of pluri-subharmonic functions

In this section, we let X be a K&hler manifold of dimension n. Let 6 be a
smooth closed real (1, 1)-form on X.

I.1.1. The space of quasi-psh functions. Recall the following standard
notations, 9 and 9 denote the standard Dolbeault operators on X, induced by the
given complex structure on X. In terms of local holomorphic coordinates (z; =
T; +1iy;)j—1, we have

= 1 0 0 1 0 0
0= —dz; AN | 7— —i— 0= -dg; AN =— +im— ) .
2 “ (8.%‘] layj> ’ 2 “ <(9.1'J +18yj)
The operator dd is defined as
i -
dd® := —0a0.
o 00
We write D'PP(X) for the space of (p,p)-currents on X and D'%?(X) for the space

of closed positive (p,p)-currents on X. We refer to |GZ17, Section 2.2] for their
definitions.

DEFINITION I.1.1. A O-pluri-subharmonic function (or 6‘ function for short)
on X is a quasi-plurisubharmonic function ¢ : X — [—00, 00), such that
0+ dd°p € D'V (X).
The set of f-psh functions on X is denoted as PSH(X, 6). Write
PSH(X, 0) = PSH(X,0) U{—cc}.
When 0 = 0, we omit it from the notations and write PSH(X) and PSH(X).

ProPOSITION L.1.1. Let ¢, € PSH(X,6).

(1)
limsup p(y) = p(z), Vre X.

Yy—x

(2) ¢ € LY (X) for any p € [1,00).
(3) If o = a.e., then @ = 1.
(4) The subspace topology on PSH(X,0) induced by the following embeddings

are the same:

PSH(X,0) C LP (X), PSH(X,0) C D'(X),

loc

where p € [1,00) is arbitrary.

Here LY (X) means the L

loe-SPace with respect to the Hausdorff measure H".
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10 1. PRELIMINARIES

REMARK I.1.1. It is important to remember that a #-psh function is not an
equivalence class of functions up to values on a null set, but is indeed a definite
function. The natural map PSH(X, ) — Li. (X) is injective by Proposition
(3), so we can write

PSH(X,0) C L? (X).

loc

For the proof, see |GZ17, Corollary 1.38, Proposition 1.40, Theorem 1.46, The-
orem 1.48].

We shall always endow PSH(X, 8) with the topology defined in Proposition
(4).

THEOREM 1.1.2. When X is compact, the following set is compact in PSH(X, 6):

{go € PSH(X,0) : C; <supp < C’g} ,
X
where C1,Cy € R are constants with C; < Cs.
For a proof, see [GZ17, Theorem 1.46].
1.1.2. Pluripolar sets.

DEFINITION 1.1.2. A subset F C X is called complete pluripolar in X if there
is ¢ € PSH(X), such that
E={p=—o0}.
A subset E C X is called pluripolar if for any x € FE, there is a neighbourhood
U C X of  and ¢ € PSH(U), such that

ENUC{p=—o0}.

DEFINITION 1.1.3. A function ¢ € PSH(X,#) is said to have small unbounded
locus if there is a pluripolar closed set A C X, such that ¢ € L{ (X — A).

loc

1.1.3. Singular types. Now assume that X is compact Kéhler and that the
cohomology class o := [§] € HV'(X,R) is big. In particular, PSH(X, ) is non-
empty. Let Z be the non-Kéahler locus of a ([Bou04]), then Z is a proper analytic
subset of X.

DEFINITION 1.1.4. Let ¢,9 € PSH(X, ), we say that ¢ is more singular than
Y if p <) + C for some constant C € R. We write ¢ < 1.

If

ey, P=p,
we say that ¢ and ¢ have equivalent singularities and write [¢] = [¢)]. This defines
an equivalence relation on PSH(X, #). The equivalence classes containing ¢ is called
the singularity type of ¢ and is denoted as [p]. The relation < induces a partial
order (still denoted by <) on the set of singularity types ST(X, 6) (or ST for short).
Write o
ST := STU{[—o0]}.

The partial order extends to ST by setting [—oo] as a least element.

Define Vy € PSH(X, 0):

Vo :=sup{y € PSH(X,0): ¢ <0} .

Then [Vp] is the greatest element in ST. In fact, V; is obviously #-psh and V; <0,
so Vp = V' is 0-psh.
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DEeFINITION L.1.5. We write
£%(X,0) = { € PSH(X,0) : [¢] = [Vi] }
We say an element ¢ € PSH(X, 6) has minimal singularities if ¢ € £>°(X,6).
ProprosITION 1.1.3.

(1) Vy is locally bounded on X — Z.
(2) Let ¢ € £°(X,0), then ¢ has small unbounded locus.

PRrROOF. (1) As shown in [Bou04, Theorem 3.17], there exists ¢ € PSH(X, 6)
with analytic singularities, ¢ < 0, such that the polar set {1) = —oo} is exactly Z,
so we conclude that Vjy is locally bounded from below on X — Z.

(2) This follows immediately from (1). O

1.1.4. Operators. Assume that X is a compact Kéhler manifold of dimension
n and that the cohomology class o := [§] € H! (X, R) is big.
There are several natural operations on PSH(X, 6).

DEFINITION 1.1.6. Let 1, ps € PSH(X, 6). Define
(1)

(2)

01 A P2 ::sup*{wEPSH(X,H):w§<p1,¢§<p2} )

©1 V2 = max{p1, p2} € PSH(X,0).
The first one is known as the rooftop envelope.

REMARK [.1.2. It is easy to see

©1 A2 :=sup{ty) € PSH(X,0) : ¢ < 1,1 < pa}.
It can happen that for 1,02 € PSH(X, 0), we have ¢1 A p2 = —o0.

DEFINITION L.1.7. Let [¢)] € ST(X,0), ¢ € PSH(X,0). Define [¢)] A ¢ €
PSH(X, 6) as

[V Ao =sup*(v + C) A .
>0

It is easy to see that this definition does not depend on the choice of . We extend
the operator to the case where [1)] = [—o0] by setting

[—oo] A = —o0, Ve € PSH(X,0).
DEFINITION 1.1.8. A potential ¥ € PSH(X, 0) is called a model potential if

[Y] A Ve = 1.
A singularity type [¢)] € ST(X, ) is called a model singularity type if
(W] A Vo] = [3].

PROPOSITION 1.1.4. Let ¢, 1, @2, ps3, ¥ € PSH(X, 0).
(1) N and V are both associative, idempotent and commutative.

2)
(V)N =1
(3)
(1 Ap2) Vb < (o1 V) A (p2 V ).
(4)

(p1Vp2) ANb > (p1 A) V (2 A ).
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DEFINITION 1.1.9. Let ¢; € PSH(X,6) (j € Z~¢). Let ¢ € PSH(X, ). Assume
that

(1.1) p<p; <C

for some constant C' > 0 independent of j.
Then we define

(1)

lim ;= sup® inf @; Apjpr1 A A @)tk
j—ro00 €L~ FEL>0

(2)

lim p; := infsup*o; V-V ik
j—o0 J k

The condition (L.I)) just makes sure that limp;,limp; € PSH(X,6) are well-
defined. These definitions are independent of the choice of ¢.

1.2. Local theory on hyperconvex domains

1.2.1. Bedford—Taylor capacity. Let 2 C C" be a strictly pseudoconvex
domain with smooth boundary.

DEFINITION 1.2.10. Let £ C Q be a Borel subset. The Bedford—Taylor capacity
of F relative to 2 is defined as

(1.2) Cap(E, Q) := sup { /E(ddcgp)" cp €PSH(Q), -1 < p < O} .

The theory of Bedford-Taylor capacity is studied in detail in |GZ17, Sec-
tion 4.1.3].

DEFINITION 1.2.11. Let f :  — [—00, 00] be a function. The function f is said
to be quasi-continuous if for any ¢ > 0 and all compact subset K C €, there is an
open set G C Q with Cap(G, Q) < ¢, such that f|x_¢ is continuous.

By |GZ17, Proposition 4.18], quasi-continuity is a local property, hence we can
define this notion on a general manifold.

DEFINITION 1.2.12. Let X be a complex manifold. A function f : X —
[—00, 0] is said to be quasi-continuous if for any strictly pseudoconvex open subset
Q C X with smooth boundary, the restriction of f to {2 is quasi-continuous.

DEFINITION 1.2.13. Let f;,f : @ — [—00,00] (j € N) be Borel measurable
functions. Assume that f; — f is well-defined outside a set of zero capacity. We say
f; converges to f in capacity if for any 6 > 0 and any compact set K C (2,

jILH;OCap(Kﬁ{Ifj—fI >6},Q)=0.

We write f; N f in this case.

DEFINITION 1.2.14. Let X be a complex manifold. Let f;, f : X — [—00, ]
(4 € N) be Borel measurable functions. Assume that f; — f is well-defined outside a
set of zero capacity (namely, of zero capacity on each strictly pseudoconvex domain
with smooth boundary). We say f; converges to f in capacity if for any strictly
pseudoconvex open subset @ C X with smooth boundary, f;la <, flo- In this

case, we write f; =N f.
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THEOREM 1.2.5. Let f*, f : B® — R be uniformly bounded and quasi-continuous
functions. Let go?, @; € PSH(B") be uniformly bounded functions. Assume that

R A Y
as k — oo. Then
fEddcph Ao AddCek — fddépr Ao AddSp,, k= o0
as currents.

See |GZ17, Theorem 4.26] for a proof.

1.2.2. Canonical approximations. Let 2 C C” be an open bounded set.
Let d\ be the standard Lebesgue measure on C® = R?". Let u € M (). Take a
cube I containing Q. For each k > 1, divide I into 3%*” congruent semiopen cubes
I,Z (j=1,...,3%%"), We may assume that p puts no mass on the boundary of each
I,z up to a small perturbating of the partition. Let

k_ZMIJ IJ

JEI

where [ is the set of indices j such that Ij C Q. We call py, the canonical approx-
imations of p. EI

PROPOSITION 1.2.6. When Q has smooth boundary and p(0Q2) = 0, we have
Wi — 1 oas k — oo.

PROOF. Let f be a non-negative bounded Lipschitz continuous function on €2,

then
(1.3) ‘/Qfduk/ﬂfdu‘ > /f Z /fdu

where Jj, is the set of indices j such that I i N O is non-empty. Since f is uniformly
continuous, for each € > 0, we can take k large enough, such that for all j,

+Z/ fldu,

JE€EJk

sup f —inf f <e.

r L,

Then it is easy to see that the first term on right-hand side of ([1.3]) is bounded by

ep(Q2).
As for the second term, since f is bounded, it suffices to estimate

> u(I).
J€Jk
This term is obviously bounded by the p-measure of the set of points with a distance

at most C37F to 9Q. As 9Q is smooth, as k — oo, the intersection of all these sets
is just the boundary of Q. By assumption, p(9Q) = 0, we conclude. O

REMARK 1.2.3. The assumptions of Proposition are satisfied if Q = B"
and if y is non-pluripolar.

1Here and in the sequel we follow the unfortunate terminology of Kotodziej and Dinew,
although puy’s are by no means canonical.
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Now given ¢ € PSH(B")NL>(B"). Let f, be a decreasing sequence of smooth
functions on IB™, converging to ¢|gpn. We solve the following Dirichlet problem
for any k > 1:

©F € PSH(B") N C°(B™),
(1.4) (dd°p™)™ = (dd°p)p,
©"|ogn = fr.

Here we have denoted the canonical approximations of (ddp)™ by (dd®p)}. We
call ¢* the canonical approximations of .

PROPOSITION 1.2.7. Let @1, ..., ¢, € PSH(B") N L>®(B"). Let o (k> 1) be
canonical approzimations of ¢;, then

p; = <limsup<p§) .
k—o0

Then % — @; in L'. Moreover,
dde@h A - ddeF — ddpy A ---ddC,, k— o0
in B™.
For a proof, see [Din09, Proposition 3.1].

1.3. Special currents

Let X be a compact Kéhler manifold of dimension n. Let © € D7 "1 (X).
Let U C X be an open subset.

PROPOSITION 1.3.8. Let ¢, € PSH(U)NLY.(U). Then the following currents
on U are of order 0:
(1) dp Ad°p A ©.
(2) d°p A O :=d° (¢0O).
(8) dYpAd PO := 3 (d(e + 1) Ad (e +¥) ANO —dp Adp AO — dip Ad°Y A O).
(4) d(¥d°p A O).
Moreover,
(1.5) d(@d°eAO)=dyp Ad°eANO +¢dd°p A O
as currents on U.
PROOF. Since the problem is local, we may shrink U if necessary. In particular,
we may assume that ¢, ¢ € L*°(U). We can add a constant to ¢ so that ¢ > 0.

(1) Recall that ¢? is also psh, it follows from the definition itself (|GZ17, Defi-
nition 3.2])

1 1
dp Ad°p A O := 5doﬁp? ANO — §<pdd°g0 AO

and Bedford-Taylor’s theorem ([GZ17, Proposition 3.3]) that dp A d°¢p A O is of
order 0.

(2) We want to show that for each compact set K C U, there is a constant
C = C(K) such that for each smooth 1-form T on X with support in K, we have

(1.6)

0,K >

/ T/\dcgo/\@‘ < |1
U
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where the semi-norm || - [|o,x is the zeroth order seminorm of a positive current,
defined as in |GZ17, Proposition 2.18]. Let x : U — [0,1] be a smooth function
on U with compact support, x =1 on K. We have the following Cauchy—Schwarz

inequality
_ 1/2 1/2
/T/\d%p/\@‘< </ XT/\T/\@) (/ ngo/\dcgo/\@) .
U U U

This is the usual Cauchy—Schwarz inequality when ¢ is smooth. The general case
follows from Demailly approximation on ¢. The convergence or right-hand side
along Demailly approximations follow from |GZ17, Proposition 3.3]. The second
bracket on the right-hand side of is finite by (1), hence follows.

(3) This follows from (1).

(4) This follows from and (3). Let us prove (L.5). First notice that we
may always assume that v is smooth. In fact, let 1, be smooth psh functions on
U decreasing to ¢. Then 1y d°p A © converges to 1 d°p A © as currents by (2) and
the dominated convergence theorem. So

(1.7)

d(rdSp AO) = d(1pdp AO), k — oco.

The right-hand side of (1.5)) is also continuous along i, by |[GZ17, Proposition 3.3].
Similarly, one may assume that ¢ is smooth. In this case, (1.5] is obvious. O

REMARK 1.3.4. The proof of (|1.7)) explains how to apply the Cauchy—Schwarz
type inequality in general. In the sequel, we usually omit the detailed arguments
of this type and just refer to the Cauchy—-Schwarz inequality.

LEMMA 1.3.9. Let 1,2 be qpsh functions on X. Assume that u := @1 — @9 €
L>(X). Let U C X be an open subset such that 1 € LS (U). Then

loc
(1.8) / du Ad°u N O < oo.
U

Here du A d°u A © is defined in the obvious way by linearity. For a proof see
[BEGZ10, Lemma 1.15].

ProroSITION 1.3.10. Let @1, pa, 1,02 be qpsh functions on X, assume that
u =@ — 9,0 =1 — Py € L®(X). Let U C X be an open set on which ¢y is
locally bounded. The the following currents on U are of order 0:
(1) d°u A ©.
(2) dv Ad°u A ©.
(3) d(vd®u A ©).

Moreover on U, we have
(1.9) dwdun®)=dvAduAO +vdd°unO.

ProoF. (1) It follows from Proposition that d°u A © is a current of order
0.

(2) This follows from Cauchy-Schwarz inequality and Lemma [[.3.9]

(3) This follows from (1.9), which itself follows from (1.5]). O
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I1.4. Non-pluripolar measures

DEFINITION 1.4.15. Let p € M (X). We say that u is non-pluripolar if for
any pluripolar set A C X, we have u(A) = (% In this case, we write € M (X).

Let p be a non-pluripolar measure on X. We define a sequence of good measures
that converges to 1 as follows: Cover X by open sets {2;, each being biholomorphic
to the unit ball in C". Let X\ be a Friedrichs kernel. Let p; be a partition of unity
subordinate to ;. We define

(1.10) =k Y Pk * o,
J

where ¢, is a constant making sure that ux(X) = p(X). Obviously pur — p. Note
that px has L°° density.
We shall refer to ux as a Friedrichs approzimation of .

I.5. The envelope operator

DEFINITION 1.5.16. Let u € USC(X). We define
(1.11) P(u) :=sup* {p € PSH(X,0) : p < u} .
REMARK 1.5.5. In fact,
P(u) =sup{p € PSH(X,0): p<u}.
This is because P(u) is itself a candidate in (L.11]).

PROPOSITION [.5.11.
(1) P is concave, increasing on USC(X).
(2) Let uj,u € USC(X). Assume that u; decreases to u pointwisely. Then

P(u;) also decreases to P(u) pointwisely.
(8) For any C € R, v € USC(X),

P(u+C) =P(u) +C.
(4) For u,v € USC(X), then
sup [P(u) — P(v)| < sup |u —v].
X X

(5) Let u € C°(X), then

X

PROOF. (1) This is obvious.

(2) From (1), we know that P(u;) is decreasing. Let v be the pointwise limit
of P(u;). Then v € PSH(X, ). It follows from (1) that v > P(u). On the other
hand,

v= lim P(u;) < lim u; = u.
J—00 J—00

So v < P(u). Hence v = P(u).

(3) This follows from definition.

(4) We may assume that supy |u—v| < co. Then this follows immediately from
(3) and (1).

2Stlrictly speaking, A is not necessarily measurable. We are in fact identifying p with its
completion measure.
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(5) This follows from the standard balayage argument. (]

1.5.1. Miscellaneous. Let X be a compact Kéhler manifold of dimension n.
Let a be a big cohomology class with a smooth representative 6.

THEOREM 1.5.12. We have
(1.12) 9% < 1yy—0y o" .
For a proof, see [DDNL18, Theorem 2.6].






CHAPTER 2

Non-pluripolar products

I1.1. Definition and basic properties of the non-pluripolar products

Let X be a complex manifold of dimension n, not necessarily compact. Let
p < n be a non-negative integer. Let ui,...,u, € PSH(X). We want to define a
closed positive (p, p)-current
(dduq A --- Addup) € D'f_”p(X)
satisfying with the following extra assumptions:

(1) When ug,...,up, € L{S(X), the product coincides with the Bedford—
Taylor product.

(2) The product is local in the plurifine topology.

(3) The product puts no weight on pluripolar sets.

Note that these conditions fix the definition of (dd“us A- - - Add“u,) completely,
if it ever exists. In fact, let

p
Ok == ({u; > —k}, k€ Zso.

j=1

By (1) and (2),

P
(2.1) Lo, (dd®us A -+ Addup) = 1o, /\ dd® max{u;, —k}.
j=1
Note that )
X — UOk: U{uj:—oo}
k>0 j=1
is a pluripolar set, so the definition of (dd®uj A --- A dd°u,) is completely fixed.
DEFINITION IL.1.1. Let uq, ..., u, € PSH(X). We say that (dd“u; A---Add“u,)

is well-defined if for each open subset U C X such that there is a Kéhler form w
on U, each compact subset K C U, we have

p
(2.2) sup/ /\ dd® max{u;, —k} Aw" P < 0.
k>0 JKNO, \ jy

U
In this case, we deﬁneﬂ (ddur A--- Add®up) by (2.1) on Uy Ok and make a

zero-extension to X.

REMARK II.1.1. The condition (2.2) is clearly independent of the choice of U
and w.

1Here we use implicitly the fact the Bedford—Taylor product is local in the plurifine topology

19



20 2. NON-PLURIPOLAR PRODUCTS

REMARK I1.1.2. Let uq,...,u, € PSH(X). Let 0 € S,. By definition, (dd“u; A
- Add®up) is well-defined iff (dd®uy (1) A~ Add®uq(p)) is. Moreover, in this case,

(ddui A -+~ Add®up) = (ddugry A+ A dd Uy (p))-

In particular, we may use the following notation for either product:

<Z\1 ddcuj> .

Let us verify that our product indeed satisfies all requirements. We need a few
lemmata.

LEMMA IL.1.1. Let uq,...,u, € PSH(X). Assume that (dd“us A--- Adduy) is
well-defined. Let Ey, C Oy (k > 0) be Borel sets such that X — U Ey, is pluripolar.
Let Q be a (n—p, n—p)-form with measurable coefficients. Assume that the following
conditions are satisfied:

(1) Supp$? is compact.
(2) For each open subset U C X, each Kdhler form w on U, there is a constant
C > 0 such that

—Cw" P <A< CWP
holds on SuppQNU.

P P
lim / 1g dd® max{u;, —k /\Q:/ ddu; ) A Q.
ks X k]i\l {J } X<j£\1 J>

In particular,

Then

P P
1g, /\ dd® max{u;j, —k} — </\ ddcuj>7 k— oo

j=1 j=1

as currents and the convergence is strong on each compact subset of X.

PROOF. Since the problem is local, we may assume that Supp 2 C U, where
U C X is an open subset with a Kéhler form w. Take C' > 0 so that

—Cw" P <O < CwP,
Then observe that

P P
0< / 1o, /\ dd® max{u;, —k} AQ — / 1g, /\ dd® max{u;, —k} A Q
X j=1 X j=1

p
g/ (1—11Ek)</\ ddcu]—>/\Q.
Supp 2

j=1
The RHS tends to 0 by dominated convergence theorem. So it suffices to prove

the theorem for Ey = Oy. In this case, the theorem again follows from dominated
convergence theorem. O

LEMMA I1.1.2. Let v € PSH(X), u < 0. Let x : R — R be a smooth, convez,
increasing function satisfying

x(1)=1, x()=0, t<

DN | =
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Let 9 : R — [0, 1] be a smooth increasing function such that

9(0) =0, 9(t) =1, tz%.

For each k > 1, let wi : X — R be defined by
Wy, = X <e“/k) .

Note that wy, are uniformly bounded positive psh functions.
Then as k — oo,

(1) Y(wy) is increasing and

ﬂ(wk) < ]l{u>7k}7

Moreover,
ﬁ(wk) —1
outside {u = —oco} pointwisely.
(2) ¥ (wy) vanishes outside {u > —k} and
ﬂ'(wk) — 0
outside {u = —oo} pointwisely.

The lemma follows directly by writing down all definitions.

ProproOSITION I1.1.3. Let uq,...,u, € PSH(X).
(1) The product (dd“uq A --- A ddup) is local in plurifine topology. In the

following sense: let O C X be a plurifine open subset, let vq,...,v, €
PSH(X), assume that
UjIO:Uj|O7 j=1...,p.

Assume that

<A ddcuj>, </\ ddcvj>

are both well-defined, then

(23) < A ddcuj> - < A ddcvj>

o o
If O is open in the usual topology, then the product

p
< A ddcuj|o>
j=1

on O is well-defined and

(24) </P\ ddcu]‘> = <;\ ddCUj|O> .

6]
Let U be an open covering of X. Then (dd“ui A---Adduy) is well-defined
iff each of the following product is well-defined

p
</\ ddcuj|U> ., Uel.
j=1
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(2) The current (dd°ui A---Add®u,) and the fact that it is well-defined depend
only on the currents dd“u;, not on specific ;.

(3) When uq,...,up € LS. (X), (dd°us A -+ A dduwp) is well-defined and is
equal to the Bedford—Taylor product.

(4) Assume that (dd“us A---Addup) is well-defined, then (dd®ui A---Adduy)
puts not mass on pluripolar sets.

(5) Assume that (dd°us A --- Addu,) is well-defined, then

p
</\ ddcuj> € DPP(X).
j=1
(6) The product is multi-linear: let v € PSH(X), then
(2.5)
P P P
<dd°(u1 +o) AN\ ddcuj> = <dd°u1 WA ddCuj> + <dd°vl WA ddcuj>
j=2 j=2 j=2

in the sense that LHS is well-defined iff both terms on RHS are well-
defined, and the equality holds in that case.

PRrROOF. (1) For any k > 0, let

p
By = ({u; > —k,v; > —k}.
j=1

By plurilocality of the Bedford—Taylor product,

P P
lone, /\ dd® max{u;, —k} = long, /\ dd® max{v;, —k}.
j=1 j=1

By Lemma let k& — oo, follows.

When O is open in the usual topology, follows from the corresponding
property of the Bedford—Taylor product.

The last statement is obvious.

(2) By (1), we may assume that there is a Kéhler form w on X. Let w;
(j =1,...,p) be pluriharmonic functions on X. Assume that (dd“u; A--- Addu,)
is well-defined. We want to prove that (dd®(wy + u1) A -+ A dd®(wp, + up)) is also
well-defined and

P p

(2.6) </\ ddcuj> = </\ dd®(w; + uj)> .

j=1 j=1
By further shrinking X, we may assume that w; are bounded from above on X,
say

w; <O, j=1,...,p.
Then for any k > 0, on the pluriopen set
P

Vi = ﬂ{uj +w; > —]{7}7

Jj=1
we have u; > —k — C, so by (1),
max{u; + wj, —k} = max{u;, —k — C} + w;.
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Let K C X be a compact subset, then

P P

/ 1o, /\ dd® max{u;+w;, —k}Aw" 7P = / Lo, /\ dd® max{u;, —k—C}Aw""P.
K i1 K =1

The RHS is bounded by assumption. So the RHS of is well-defined and

follows.

(3) By (1) and the locality of the Bedford—Taylor product, the problem is local,
so we may assume that u; are bounded on X. In this case, (3) follows directly from
definition.

(4) The problem is again local, by reduction to the local setting, it follows from

Lemma [T1.11

(5) It follows directly from definition that (dd®u; A --- A dduw,) is positive, so
it suffices to prove that it is closed. We may assume that p < n. Since the problem
is local, we may assume that X is the unit polydisk in C". Take a closed positive
(n—p—1,n—p—1)-form p on X with constant coefficients. By (3), we may assume
that u; < 0. Let

P
O = /\ dd® max{u;, —k} A p.
j=1

By Lemma we have

p
10,0 — </\ ddcuj> Ap, k— .

j=1
Hence
p
d(10,0)) —d < A ddcuj> Ap, k— oo.
j=1
So it suffices to prove
d (]lok@k) — 0, k — oo.

We now apply the construction of Lemma [[1.1.2| with v = Z?Zl u;, we shall use
the same notations. Then

P
0< (1o, —9(wi)) O < (1 —I(wy)) </\ ddcuj> A p.
j=1
RHS converges weakly to 0 as k — oo by dominated convergence theorem and by
Lemma [IT.1.2] So it remains to prove
It follows from the chain rule ([BEGZ10| Lemma 1.9) that
d (ﬁ(wk)(%k) = ﬁ'(wk) dwy A O,

where by definition
dwp ANOg :=d (wk@k)
is a closed current of order 0 by Bedford—Taylor theory.
Now take an arbitrary smooth 1-form ¢ on X with compact support, we need
to prove

(27) lim 19’(wk) dwg A O A = 0.
k—o00 X
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Let 7 : X — [0,1] be a smooth function with compact support, 7 = 1 in a
neighbourhood of Supp ¥. Then we have the following Cauchy—Schwarz inequality:

<27 (/ ﬁ’(wk)QGk/\w/\zﬁ) (/ wak/\dcwk/\(ak>.
X X

In fact, when wy is smooth, this follows from the standard Cauchy—Schwarz in-
equality, it holds even without 7 on RHS, for a general wy, it suffices to apply
the Demailly approximation, the extra 7 ensures the convergence of RHS under
Demailly approximation.

For the first bracket, by Lemma [[T.T.1]

2

’/ ﬁ'(wk) dwg A O AU
X

P
0< /X 9 (we)?Or A A < /X 9 (wy)? <j/_\1 ddcuj> Ap A A,

Again by dominated convergence theorem and by Lemma the right-most
term tends to 0.
As for the second bracket,

2/ 7 dwg Adwg A O < / 7dd“w? A Oy :/ wi dd°T A Oy = / wi dd°T A Oy
X b'e X O,

Note that w;, are uniformly bounded. Also, it follows from Lemma that the
masses of dd°T A Oy, are uniformly bounded. So the second bracket is bounded.
This concludes the proof of (2.7]).

(6) The problem is local, so we may assume that there is a global Kéhler form w
on X. Moreover, by (2) we may assume that u; < 0,v; < 0 after possibly shrinking
X. Note that for any k > 0, on {u; +v; > —k}, we have
(2.8) dd® max{u; + v1, —k} = dd° max{u;, —k} + dd° max{v;, —k}.

Also note that
{us +v1 > =k} C{u; > -k} U{v1 > —k}.

Assume that both terms on the RHS of (2.5)) are well-defined. Let K C X be

a compact subset, then for any k£ > 0,

P
/ ]l{ul+Ul>_k}]lﬂ§:2{uj>_k}ddc max{u; + v, —k} A /\ max{u;, —k} Aw"™P
K .
j=2

P
:/ ]l{uﬁ_q,l>_k}]ln;7:2{uj>_k}ddc max{ui, —k} A /\ max{u;, —k} Aw" P
K /
j=2

P
+ / ]1{u1+v1>—k}]10?_2{uj>_k}ddc max{uy, —k} A /\ max{u;, —k} Aw" P
K = /
Jj=2

p
< /K ]l{u1>,k}]lm§=2{uj>_k}ddc max{uy, —k} A /\ max{u;, —k} Aw" P
j=2

P
+ / ]l{v1>7k}1m§72{u7‘>—k}ddc maX{ul, —k‘} A\ /\ maX{uj, —k}} Awn P,
X —2 U,

Jj=2

The RHS is bounded for all k by assumption. So the LHS of ({2.5)) is well-defined.
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Conversely, assume that the LHS of (2.5)) is well-defined. Let K C X be a
compact subset, then for any k£ > 0,

p
/K ]l{u1>fk}1n§:2{uj>—k}ddc maX{ul, —k‘} AN /\ maX{uj, —k}} AW P

Jj=2

P
< /K ]l{ul>,k}]lm§:2{uj>,k}ddc max{u; + vy, —k} A /\ max{u;, —k} Aw" P
j=2

P
§/ ]1{u1+'u1>7k71}]1ﬂ;':2{uj>7k}ddc max{uy + vy, —k} A /\ max{u;, —k} Aw" P,
K /
Jj=2
where the third line follows from the fact that on {u; + v; < —k}, we have
dd®max{u; + v1,—k} = 0. Now the RHS is bounded for various k& by assump-
tion. So the first term on RHS of (2.5)) is well-defined. By symmetry, the same is
true for the other term.

Now assume that both sides of (2.5) are well-defined, we prove (2.5)). Let
p

Br = {uy > —k/2} n{vr > —k/2} 0 ({u; > —k}.
j=2
Then
P
E, C {u1 + v > —/{i} N ﬂ{uj > —ki}
j=2
Moreover,
X - JEk
k=1

is pluripolar. So by Lemma [[T.1.1]
p P
1g,dd° max{u; + v1,—k} A /\ dd® max{u;, —k} — </\ ddcuj> .

j=2
By (2.8),

j=1

p
1, dd° max{uy + vy, —k} A /\ dd® max{u;, —k}

=2

P
=1g,dd° max{us, —k} A /\ dd® max{u;, —k}

Jj=2

P
+ 1g,dd° max{vy, —k} A /\ dd® max{u;, —k}.

j=2
Again by Lemmalll.1.1] we find that the RHS converges weakly to the RHS of (2.5))
as k — oo. This concludes the proof. O

DEFINITION IL1.2. Let T1,...,T, € D' (X). We say that (T A--- A T}) is
well-defined if there exists an open covering U of X, such that on each U € U, we
can find uf € PSH(U) (j = 1,...,p) such that

dduf =T, j=1,....p
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and such that (dduf’ A --- A dd°ul)) is well-defined. In this case, we define (T} A
L AT)) € DPP(X) by

(2.9) (Ty A+ ATy |o = (dd°uf A--- Addu]), Uel.

REMARK I1.1.3. Tt follows from Proposition [II.1.3[ that (2.9)) defines a unique
well-defined current in D’7"P(X) and that the well-defineness of (Th A --- AT,) and
its exact value are bot independent of the choice of ¢ and ugj

PROPOSITION IL.1.4. Let Ty,...,T, € D' (X).
(1) The product (Th A --- NT)p) is local in plurifine topology. In the following

sense: let O C X be a plurifine open subset, let S1,...,S, € Di’l(X),
assume that

Tjlo = Sijlo, j=1,...,p.
Assume that

(TiAN---ANTp), (S1A---ASp).
are both well-defined, then
(2.10) (VN ANTp)p = (St A ANSp)lo -
If O is open in the usual topology, then the product
(T A~ ATylo)
on O is well-defined and
(2.11) (Ty N ANTp)| o = (TL A - NTplo).

Let U be an open covering of X. Then (I1 A --- ANT,) is well-defined iff
each of the following product is well-defined

<T1/\-~-/\1})‘U>7 Uecl.

(2) Assume that (Iy A--- NT,) is well-defined, then the product (Th A---NT)p)
puts not mass on pluripolar sets.
(8) Assume that (Th A --- NT)p) is well-defined, then

(Ty A ANTp) € DPP(X).

(4) The product (T1A---NT) is symmetric (the meaning is as in Remark(Il.1.9).
(5) The product is multi-linear: let T € Df&’l(X), then

(T +THOANToN- AT,y = (T NTo A+~ ANTp) + (T ATy A+ NT)

in the sense that LHS is well-defined iff both terms on RHS are well-
defined, and the equality holds in that case.

PRrOOF. All statements follow immediately from the corresponding statements
in Proposition [[.1.3] O

Let us observe that we have the following log concavity property.

TueoreM IL15. Let Tv,...,T, € DVN(X). Let p € My (X) be a non-
pluripolar measure. Let f; (7 = 1,...,n) be non-negative measurable functions
on X. Assume that the following currents are well-defined:

(T7), (TiA---AT,), j=1,...,n.
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Assume that

(2.12) (T > fip, j=1,....m.
Then
(2.13) (Ty A AT > (freee fu) ™

PROOF. This result has a local nature, so we may assume that X is the unit
ball in B” C C". Then we write T; = ddp;, where ¢; € PSH(B"). By possibly
shrinking X, we may assume that ; € PSH(B").

Step 1. We show that it suffices to prove under the assumption that ¢;
are all bounded.

In fact, by Proposition and , we have for any k£ > 0,
(dd*(p1 V (=K))" = 1o, fin-
Hence if the theorem holds in the bounded case, we have
Ad(1 V (=) A=+ Add(pn V (=R)) 2 o, (fi -+ fu) /" .
Again by Proposition we get
(ddpy A~ Addpn) 2 Lo, (1o fa) " o

Let k — oo, we conclude since p does not charge the pluripolar set X —J, O.
Step 2. Reduce to the case where u = A. Here )\ denotes the Lebesgue
measure. Assume that the theorem holds for Lebesgue measure.
Let ¢ (k > 1) be the canonical approximations of ¢, constructed in Sec-
tion We shall use the notations in Section Then

(H?Zl fl,‘j (ddcgp;?)n) 1/n

LN Cok > o
dd@f A Addogl > > T L2 A
a€ly
" 1/n
- Z (Hj:1 f[;; i dﬂ) .
acly A(IZ) *
1/n
f[d (H?:I fj) dp
> k a
D
acly

where the first inequality follows from our assumption, the second follows from
, the third is just the Holder inequality.

Let k — oo, it follows from Proposition[[.2.6] Remark|[[.2.3]and Proposition|[[.2.7]
that holds.

Step 3. Reduce to smooth ¢;. Assume that the theorem is known when ¢
are smooth. We may assume that ¢; are defined and is psh in a neighbourhood of
B™.

Let x. be the Friedrichs kernels.

A direct calculation shows that

(dd®(; * xe))" > fj % xe
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So
1/n

dd®(p1 * xe) A - Add®(on * Xxe) > H fi* xe A

Let £ — 0 and use Theorem [[.2.5] we are done.
Step 4 When ¢; are smooth, i = A. The result follows from the concavity of
H — logdet H, where H is an n X n positive Hermitian matrix. O

Finally we concentrate on the most important case.

PropPoOSITION I1.1.6. Let X be a compact Kéhler manifold. Let T4,...,T, €
’Df&’l(X). Then
(Tu AN NTp)
is well-defined.

PrROOF. Fix a Kéhler form w on X. In this case, write T; = (T; + Cw) — Cw
for C' > 0 large enough and apply Proposition [II.1.4] (5), we may assume that T is
in a Kahler class. So we can write

Tj = (Uj + ddctpj,

where w; is a Kéhler form and ¢; is wj-psh. Let U be an open subset on which we
can write

Wj = ddc’(/}j
with psh functions ¢; <0 on U. Now on U, for each k£ > 0,
{vj+ v > -k} S{p; > -k},
so for each compact subset K C U,

/]lma i+ >— k}/\dd max{ijr(p], —k} AW
j=1

S R — A\ (@ +ddS mac{ioy, k) A w7
j=1

p
/\ (w; + dd® max{y;, —k}) Aw" P

| IN
\ \
u >~a \

From now on, we will omit the angle brackets from our notations.

I1.2. Semicontinuity of non-pluripolar products

Let X be a compact Kéahler manifold of dimension n. Let m € N. Let
at,...,an, € HHY(X,R) be big cohomology classes. Let 6; € a; (i = 1
j=1,...,n) be smooth representatives.

PR
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LEMMA I1.2.7. Let U C X be an open set. Let 0° (i = 1,...,m) be smooth
(1,1)-forms onU. Let goj,cp;? € PSH(X,0;) (ke N, j=1,...,n). Let p"* ik ol ¢t €
PSH(U,0") (k€ N,i=1,...,m). Letx > 0 be a bounded quasi-continuous function
on X with Suppx C U. Assume the following:

(1) There is a closed pluripolar set S C X such that ¢¥,¢; € Lo (X — S)
(keN,j=1,...,n).
(2) Foranyj=1,...,n,i=1,...,m, as k — oo,

cp?ggoj, on X

and

Then we have

(2.14)
an Xel k/\/\en,kz/ XGI,SO /\..-/\en#;”.
R e ey
PrROOF. For each e > 0,i=1,...,m, k € N, define the following functions on
U,
A Uik R . (' =) VO
= e

T (=gt vote’ (' =) vOo+e

Then fiF and f! are quasi-continuous and take value in [0,1]. We then have as

k — oo,
.7k C .
o= 1

By Theorem [[.2.5] as k — oo, we have

m m
- 4
XHfs“ 01 ot Ao ANy — XHf;gL% AN,
i=1 i=1

as currents on U — S. Since S is pluripolar, we get

m m
/XHf; Oripr Ao N, < lim [ X [T F2%0) g6 Ave A Oy
U k—ooJU ;4

< lim X0 e Ao A O

= m o . n,ek
koo J(T {ptk>ypik}

where the second inequality follows the following inequality on U
ik
;’ < 1{Lpi,k>wi,k}

and the fact that Suppx CU.
Observe that as e — 04, f! increases pointwisely to 1. Let € — 0+ and
apply the monotone convergence theorem, we conclude (2.14)). (Il

REMARK I1.2.4. Here convergence in capacity (resp. quasi-continuity) means
convergence (resp. quasi-continuity) in local Bedford-Taylor capacity as in Defi-
nition (resp. Definition . As we will show later in Theorem
and Theorem this is equivalent to convergence (resp. quasi-continuity) in
global Monge-Ampeére capacity.
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THEOREM I1.2.8. Let U C X be an open set. Let 0° (i = 1,...,m) be
smooth (1,1)-forms on U. Let cpj,cpf € PSH(X,0;) (k € Z~o, j =1,...,n). Let
@R apBF pt 4t € PSH(U,0Y) (k €N, i=1,...,m). Let x >0 be a bounded quasi-
continuous function on X with Suppx C U. Assume that for any j = 1,...,n,
i=1,...,m, as k — oo,

Lpf N vj, onX

and
C

Then we have

(2.15)
lim XOp ok AN ANy on 2/ XO01,00 N NOp o,
R e CInesey T
PROOF. Let

Then by definition, Vp, (j =1,...,n) is locally bounded on . For each C > 0, let
gof’c = gof v (Ve—-0C), ap;-c =p; V(Vp-0C).

Then as k — oo

Then by Lemma [[T.27]

/ - " X010 Ao N,
e >0 {#;>Ve, ~C}

= X 9 c A+ A 0 c

- - v v " Ly L2
m1:1{¢1>¢l}mmj:1{¢j>v9j -C} !

< lim Xelsak‘C/\"'/\enlpk«C
e T (g A O e U S ok

= lim B A NG,
oo /L e ' " P npk
koo ni:l{Saz’k>w1"k}mnj:1{‘9_;'k>v9j -C} !

< lim XOy ok A AO,

— = m . . 0 n,k
k—oo ni=l{¢,k>¢1,k} 7

Let C' — 0o, we conclude by monotone convergence theorem. d

COROLLARY 11.2.9. Let ¢;, % € PSH(X,0;) (k € Z>o, j=1,...,n). Let x >
0 be a bounded quasi-continuous function on X. Assume that for any j =1,....n,
i=1,...,m, as k — 00,
r C
PPy
Then for any open set U C X, we have
(2.16) lim XHLS@’f N Ny o > /Ux017¢1 N NOp o, -

k—oo JU
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COROLLARY 11.2.10. Assume in addition that

(2.17) Hm [ 0y gk A NG, g S/Xel’“’l/\”'/\e"’*""'

k—oo [x

Then
91#,;{ ARERW N 9”’% =01 AN AN, -

REMARK I1.2.5. (2.17) is automatically satisfied if any of the following case is
true. 1. @? ' j, a.e. as k — co. (Corollary [[1.3.23)) 2. <p§,<pj € £(X,0;).

THEOREM I1.2.11. Let p < n. Let oy, ..., o, be big classes on X with smooth
representatives O, . .., 0.

Let W C X be an open subset. Let x € CO(W), x > 0. Let © € D' """ P(W).

Let <p],<pj € PSH(W,0;) (7 =0,...,p and k € Z~g). Let %, € PSH(W o).

Assume that there is a closed pluripolar set S, such that

(1) @?,1/1’% are uniformly bounded on each compact subset of Suppx — S.
(2) <p§ (resp. W) decrease to p; (resp. ) for any j.

(3) @k —¢* are uniformly bounded on Supp x — S.

(4)

X]lx,sewf /\"'/\‘gp,wﬁ ANO = xIx 5010, N Nbp oy, NO, k — 0.
Then as k — oo,
X(95 — V) Ux g0y gx Ao A Opot NO = X(00 = P)Lx—5 01,0, A+ Ay, NO.
PROOF. Let
wF = xlx_g 01’% ARERWA Gp,gog NO, pi=xlx_s01, NNy, NO.
Let p € CO(W). It suffices to prove

lim p(w’é—w’“)u’“Z/Xp(w—w) .

k—oo Jyr
By assumption, ¥ — 1, so
lim p*(W) = p(W).
k—o0
Fix € > 0. Take open sets U € V € W — S such that
wW-U)<e
Let 7€ CO(V),1>7>0,7=1o0nU.

Notice that
lim p*(U) > u(U).

k—o0

So
Jim pE(W —U) < (W =U) <e.
— 00

By assumption, on V, X(gp’é — k), gof are all bounded, so we can apply the
local result in Bedford-Taylor theory (|GZ17] Theorem 3.18) to get

x(of — )k — x(po — ¥)p-
So
/ 7px(po — ) p = lim / Tox(ef — ¥F) b
174 - Jy
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So
E_ kY, k_ _ <C —_ k) _
. pleg — ") . plpo =) p| < Cet| | pr(pg —¥7) p pT(po — )
Hence
Jim / plps — ) p* f/ p(po w)u‘ < Ce
Let ¢ — 04, we conclude. (I
THEOREM I1.2.12. Let a,...,a, be big classes on X with smooth representa-

tives 01,...,0,. Let @?,goj € PSH(X,0;) (j=1,...,n and k € Z=o). Let f*, f are
bounded quasi-continuous function on X. Assume that f* are uniformly bounded
and that f* =N f. Assume that there is a closed pluripolar set S, such that

(1) <p§ are uniformly bounded on each compact subset of X — S.

(2) @é?gﬂpj as k — oo.

(3)

Ok A At = O1 Ao A, k= o0
Then
FEOL gk N Ny = [O1 o) Ao Ny, k= 00
PROOF. The proof is almost identical to that of Theorem [T.2.11] O

REMARK I1.2.6. One can also state Theorem in a local way as Theo-
rem (L2171

I1.3. Monotonicity of Monge—Ampeére masses

I1.3.1. Notations. Let X be a compact Kéhler manifold of dimension n. Let
a be a big class with smooth representative 6. Let Z be the complement of the
ample locus of a.. For each N > 1, define

Yy ={ac RZZVO el <1},

where || is the sum of components of «.
For each N > 1, we fix a basis Zy, ..., Zx of H'(PY,0(1)). Let
H=Hy :={Zy =0} C PV,
On PN — H, define
Zq
2 =2 ecT(PN-H0), a=1,...,N.
Zy

We will identify PV — H with CV via (21,..., 2n).
Let wy be the Fubini-Study form on P?, normalized so that

/ w%:l.
PN

By abuse of notation, we denote the metric induced by wy on O(1) by wy. Observe
that on PN — H,

(2.18) wy = —dd®log|Zy
For each N > 1, let

|Z’N.

Xy =X x PV,
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Let 7V, 7} be the natural projections:

N
.
XN42>]P>N

N
lﬂ-l

X
For simplicity, we denote 7Tév *Zaby Za (A=0,...,N), similar convention is used
for z1,...,zxn. Similarly, we omit 7iV* from our notations from time to time.

Let
On = (ﬂ'{v)*9+ (wév)*wN.
Note that [fx] is a big class on X .
Fix n € PSH(X, #) such that
1) 5 € C®(X - Z).
(2) n<o.
We may even assume that 7 has analytic singularity by [Bou04] Theorem 3.17.

I1.3.2. Quadratic optimization. Let N > 1. We study the following func-
tion fn : RV — R:

i N2

fn(x) = aréuzr;](x a)”.

Let II : RN — ¥y be the closest point projection. It is well-defined since Xy is
convex and closed. Let e = (1,1,...,1) € RV,

Let F be the set of faces of Xy as a simplex. By a face, we mean the interior
of the face. The extremal points of ¥ are also considered as faces in F. So

Yy = HF.

FeF
Observe that if II(z) € F € F, then so is II(z + ce) for small enough ¢ > 0. Let

Ap =II"'F, then
RY = T Ar.

FeF
Now observe that on each A, II is affine.

Define gy : RV — R:
gn(x) = fn(z) —2®.
Then we have

gn(2) = (z — Tz)? — 22,
PROPOSITION 11.3.13. Forz € RY,
gn(z +te) — gn(x) = tLy(z) + O(t?), t— 0+,

where the O-constant depends only on N, Ly (x) is a bounded continuous piecewise
linear function whose coefficients depend only on N.
When z € ¥n, Ly(z) = —2|z|.

PrOOF. All statements are obvious except that Ly (z) is bounded and contin-
uous. To see that Ly is bounded, it suffices to show that gy (x + te) — gn(z) is
bounded for a fixed ¢ > 0. More generally, let 2,y € RV, then

gn(z) —gn(y) > min ((z —a)? =2 = (y —@)? +4*) = min 2a-(y —z).
aEXN aEXN
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A similar inequality hold if we interchange x and y. So
lgn(z) —gn(y)| < C.

To see Ly is continuous, observe that
gn(z +te) — gn ()

is a quadratic function in ¢ for any . And since Ly (x) is nothing but the coefficient
of t, it suffices to show that gy (z + te) — gn(z) is continuous in z for three value
of t. So the result follows from the obvious continuity of gy . O

PROPOSITION 11.3.14. The function gy € CLH(RN).

loc
PROOF. It follows from general facts that
x> (z — Ix)?
isin C1'1. See [BL10] Section 3.3 Exercise 12(d) and Section 2.1 Exercise 8(c.iii). O

Now we extend the domain of definition of gy, we will get a symmetric function
gn 1 [-00,00)Y — R. The definition is by induction on N, when N = 1, we simply
define

g1(—o0) = 0.
For N > 1, define
IN(T1s s XM, T, -, TN) = gu (T, T,
where xpr41,...,28y = —o0 and x1,...,x € R. We formally set go = 0. We get

a full definition of gy by requiring that it is symmetric in the N-arguments. It is
not hard to see that gy is continuous.

PROPOSITION 11.3.15. The function gy : [~00,00)N — R is decreasing in each
of its arguments.

PrOOF. It suffices to prove this on RY. By definition, it suffices to show that
for each o € ¥, the function
(x —a)? — 22
is decreasing in each argument. This reduces immediately to the case N =1 and
the result is obvious. O

11.3.3. Witt Nystrom construction. Let W C X be an open subset. Let
¢ be a 6-psh function on W. We define ®y[¢] € PSH(W x PV, 6x) by
(2.19)

N
Pwlp] := sup* ((1 —lal)(n +1log|Zo[2,) + lale + > aalog|Zal2, — ch) :
aEXN a=1

Define &, = aq[p] : (W — Z) x C¥ — [~00,00) (a =1,...,N) by

(2.20) g = W#.
Observe that ¢, is usc.
We define & : (W — Z) x CV — [—o0,00)V by
(2.21) a=(a1,...,ay).
PROPOSITION 11.3.16. Let W C X be an open subset. Let ¢ € PSH(W, ).
Then
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(1) ®np] is increasing in ¢.

(2)

(2.22)
N
Oxfe] = sup ((1 —la)(n+1log | Zol2,,) + lale + ) aalog|Zals, — 012)
acXN a=1
on (W — Z) x (PN — H). Moreover, on this set,
(2.23) ®ylp] =log|Zo[Z, + 1 — gn o dlgl,

where gn is the function defined in Section [II.3.2

PRrOOF. (1) follows directly from definition.

(2) In order to prove (2.22), it suffices to show that the RHS of is usc
on (W —2Z) x (PN — H).

Since log \ZO|E)N is obviously continuous, it suffices to prove that the following
function is usc on (W — Z) x CV:

N N
e mp (0=l ol + 3 oo - 3ot

acXy a=1 a=1
=n—gnod
by completing the square.

Since &, is usc and gy is continuous and decreasing (Proposition [I1.3.15)), we
conclude that I is usc. Moreover, (2.23) is implied by our calculation. ([l

COROLLARY I1.3.17. Let ¢j,¢ (j € Zso) be 0-psh functions on W. If ¢,
converges to ¢ outside a pluripolar set, then ® x[¢;| also converges to @ n[p] outside
a pluripolar set. The sequence ®n[p;] is decreasing if @; is.

COROLLARY 11.3.18. Let ¢ € PSH(X, 0), then
D] > n+log|Zo|2 -
11.3.4. Witt Nystrom’s theorem.

THEOREM I1.3.19. Let W C X be an open subset. Let o € PSH(W,0), N > 1.
Assume that both 0, and 911\\;';7; (o] OTe well-defined. Then we have

N+n !
NgN+4n  _ N-1
(2.24) TON G o = ( . )N/o O iyt L.
REMARK I1.3.7. We can evaluate the integral on the RHS, this is an example
of the so called S-integral, the result is

n

N+n L. B Ntn—1-j\1_,
(2.25) < )N/O 00 _tynsipt 1dt:Z< >9;Ae¢ 7.

—j i
n =0 n—7 J:

PROOF. Observe that 0(;_y, 14, is well-defined for any ¢ € [0, 1] by Proposi-
tion IL.T.4l

Since the problem is local in nature, we may assume that W is the unit disk in
C™. Moreover, since locally we may absorb 6 into the potentials and set 8 = 0, so
that ¢ is psh. In the following, we keep 6 only to make the notations less messy.
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Step 1. Let us show that we can always reduce to the case where ¢ is bounded.
In fact, for each C' > 0, let ©© := ¢V (—=C). If we have proved the special case, we
get

N+n !
N gN+n _ n N—-1
7T1*0N,¢N[<pc] = ( n )N/O 9(1—t)n+t<pct dt

Hence

N+n !
N pgN+ _ n N-1
]1{W>_C}7T1*9N,d>?v[<pc] = 1{¢>_C}< n >N/O 9(1—t)n+t<pct dt.
Observe that
N gN+n _ N N+n
Le>-cymabn gy pe) = T (1{¢>*C}9N,¢>N[w01) ’

since ® 5 [p°] = ®n[¢] on the plurifine open set {¢ > —C} C W x PV,
So we get

N+n !
N N+n n N—
(2.26)  my, (1{¢>—C}9N;N[¢]> = ]1{¢>—c}< n )N/o (otynrept dt.

When C' — oo, by dominated convergence theorem, we have

N +n . N1 N+n . N-1
]l{sa>—0}< n )N/o mp— d¢ — n N/o 01—ttt dt,

Similarly, as C' = oo,

N4n . pN+n
]l{w>—0}9N,J<rI>N[w] QNE’N[W]'

Since 71V is continuous,

N N+n - NpgN+n
e (]1{80>—C}0N,-E'N[Lp]) 71—1"‘01\77—~'21>N[<P]'

Hence let C — oo in (2.26)), we conclude (2.24)).

Step 2. Let us show that we can further reduce to the case where ¢ is smooth.
Assume that the theorem holds when ¢ is smooth. Let ¢* (k € Z~() be a decreasing
sequence of smooth psh functions on W converging to .

Then we get

N+n !
N gN+n _ n N—-1
(2.27) 71—1*9N,<I>N[<pk] == < n >N/O (1—t)?’]+t</2kt dt.

By Corollary [[1.3.17, ® x[¢*] decrease to ® y[p] outside a pluripolar set, hence
to ®n[p] everywhere (|GZ17] Corollary 1.38). In particular, by Bedford—Taylor
theory

N+ . gN+
O onier) = ONanlpy K00
on W x CV. As follows from Step 3, the support of 9%;’; (4] is contained in W
times a fixed bounded subset of CV, so
N N+ . NgN+
TN n i) MO e B 00

The RHS of (2.24]) can be written as

" (N+n1j

(2.28) y

™

1 . i
)jlﬂ%/\% 7
=0

See (2.25).
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But we know that
) nei . pj .
0{7/\9¢,€ 0y NOG, k= o0

from Bedford—Taylor’s theory. Hence

N +n n N-1 N+n L. N-1
< n )N\/O 0(1 t)n-i—ttp t dt — n N . (1—t)7’]+t§0t dt, k — OQ.

Letk%oom,weget-

Step 3. Let us show that we can further reduce to the case where 7 is smooth
as well. First observe that neither side of charges the closed set Z, so we
may assume that W N Z = (.

Replacing W be a smaller set, we may assume that 7 is bounded on W.

Take a Demailly approximation as in Step 2, the remaining argument is similar
as that in Step 2.

Step 4. We prove the theorem under the assumption that ¢, 77 are both smooth.
Locally, we may set § = 0 as before. We still keep 6 in our notations, but with
6 = 0 understood.

Since GN';” () does not charge

N

W x | J{Z. =0},

a=0

we may restrict ®x[p] to W x C*N when proving In this case, by -

and Proposition [I1.3.14] we have ®y[p] € CLH(W x (C*N)

loc

Let Log : C*V — R¥ defined by

(z1,...,2n) — (log|z1]?, ..., log |zn|?).

By abuse of notation, we also write Log for the map W x CN — W x R defined
by (Id, Log).
We identify ®x[p] with a map on W x RV:

(229)  @nlgl(e,y) = sup ((1—|a|>< + lalp(e +Zaaya Za)-

acX N
Let
Vi = alp] 1(En) S W x CN.
For each x € W, let
Vne=VnN ({2} xCN).
Let puy : Log[Vy] = W x Yy be the following map:

(x,y) = (2, Vy@n[pl(z,y)) = (2, a[p]),

where by abuse of notation, we have denoted the function on Log[Vy] induced by
& by the same notation.
Now we claim that OVy is has zero Lebesgue measure. In fact, by definition,

OV C alp] 105 N).

It suffices to show that the inverse image of each face of ¥y has zero measure.
In particular, by Fubini theorem, it suffices to prove the following: Let (b,) €
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[0,1]Y —{(0,...,0)}. Then for any constant C' > 0,

N
{(afvy) €W xRV ) ba(ya + p(z) —n(z)) = C}

a=1
has zero measure. Again by Fubini theorem, it suffices to prove that for almost all
x € W, the set

N
{y e RY Zba(ya + o(x) —n(x)) = C’}
a=1
is null, which is obvious.
As @ [¢] has C11-regularity, O3

charge Viy. So

N. q)” (] is absolutely continuous, hence does not

N+n — N+n N+n
On Bnle] T Ly Oy N[0 + 1y on e VNQN ®n[e]”
Note that then

0%4;; (0] = MAR(®n(¢]),

where @ y[¢] on RHS is understood as a function on W x RY. The convention here
for the real Monge—Ampére operator is the same as in |[CGSZ19, Lemma 2.2].

We also notice that by , Dy [p](z,-) is the Legendre transform of the
following function ¥ : RV — R:

(o) {a“’ — (1= lahn(@) - |alo(), a€ 3w,

00, a¢dn.

Log,

So @] is not strictly convex outside Vi, we find

N+n
]IWXCN VN0N<I>N[¢] 0.

On the other hand, on Vy, by Proposition [[1.3.16 (3) and the explicit expression of
gn, we have

Onlp] = log|Zol3,, +n+ale]*.
In particular,

N
wy +dd° P fp] = (1 - |afe]]) dd°n + |ale]|dd e + Y _ ddale] A dda[e].

a=1
Obviously,
N N+1
<Z dé‘a[@] A dcda[@]) =0.
a=1
So we get
(2.30)

N
mn N+n A C C cA
ON o) = ( . )ﬂVN((l—Ia[w]l)ddnHa Jlddy (Zdaa Adaam> -

Let us evaluate the RHS. It is obvious that in evaluating dé,[¢] and d°&,[p], we
only have to consider differentials in variables in CV. Then

N
n N+n A C
ON S ) = ( ; )HVN<<1—|a[so1|>dd°n+|a[ Jldd<) (Zdlog|zamdlog|za|> .

a=1
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Pushing forward both sides by py o Log, we get
n N J’» n C (& n
(v o L0063 30y = V1 (V) (0 - fal) dd + alade)” o aa),

as measures on W x 3 ~, where d\ is the standard Lebesgue measure on ¥ N-
Pushing-forward both sides to W, we get

. N+n c ¢ \n
Ao = (V") [ e+ jolaae)” axo)

N 1
= N( + n) / (1 —t)dd®n + tddp)" tN 1 dt.
n 0

O

COROLLARY 11.3.20. Let W C X be an open subset. Let ¢ € PSH(W,6),

assume that 03 and 9%';” (o] are well-defined for all N > 1, then

|
(2.31) ;nwl*aNM b O N 00

in total variation.

I11.3.5. Witt Nystrom’s monotonicity theorem. Let X be a fixed com-
pact Kihler manifold of dimension n. Let a,...,a, € H"*(X,R) be big cohomol-
ogy classes. Let 6; € o; be a smooth representative.

THEOREM IL1.3.21. Let p;,v; € PSH(X, 6;). Assume that [¢;] = [¢;] for every

7, then
/ <017LP1 Neee 077/7‘Pn> Z / <01,¢1 AN 0n71/)n>'
X X

We begin with a special case.

LEMMA I1.3.22. Let ¢, € PSH(X,0). Assume that [¢] = [¢], then

/9” /%

Proor. Step 1. We shall prove this lemma under the additional assumption
that ¢ and 1 both have small unbounded loci. In this case, it is more convenient
to prove more generally for ¢;,1; € PSH(X, 0) with [¢;] = [¢;] that

/ <9W1 AREERA 0‘10n> / <0¢'1 ASERRA 9¢n>
X X

In turn, it suffices to prove the following: let ¢,v¢ € PSH(X,¥0), [¢] < [¢], let
0 € Diﬁl’"fl(X), let A be a closed pluripolar set outside which ¢ is locally

bounded, then
/ 0, NO < / Oy N\ O,
X—A X—A

We may assume that 1) > . Let 1 be a qpsh function that equals —oo exactly on
A. Adding en to ¢ and let € — 0+ in the end, we may assume that ¢ — ¢ — —o0.
Define ¢, = pV (p—k) for k > 0. Then 9, coincides with ¥ —k in a neighbourhood
of A. Then by Stokes theorem

/ dd“Y A O = dd“yp A ©
X—A X-A
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On the other hand, as ¥y, is decreasing, on X — A, we have
dd°Yp AO = dd°pANO, k— oo

as currents by Bedford—Taylor theory. Taking the integral on X — A, the result
follows.
Step 2. We shall reduce the general case the case in Step 1.

By Step 1,
9N+n _ / 9N+n )
/)(N Nvth[‘P] XN Na‘i’N[w]

The desired result follows from Corollary [[1.3.20] a

Proor or THEOREM [[I.3.27] For each t > 0, set
Y5 = (o —t) V.

Then 1/1§ <, ;. So by Theorem [I1.2.8} it suffices to prove that

/ g A Ay = / Orgs A A B,
X X

Obviously, [¢f] = [p;]. So we reduce to prove the theorem in case [p;] = [¢)].

This follows from Lemma by polarization. More precisely, for each ¢ € RZ,

define
Cr=> tipj, b= tiy, b= t;6;

Then both [, 07, and Ix 07, are homogeneous polynomials in ¢ of degree n.
Lemma [[[.3.22] identifies their coefficients. O

COROLLARY 11.3.23. Let ¢;, (p? € PSH(X, §;) for k € Z~y. Assume that gp? Ve
©j, a.e. as k — 0o. Let x be a bounded quasi-continuous function on X. Then

X<91,<p'f Ao A ewp = X1, A ANOp).
I1.3.6. Full mass class.
DEFINITION I1.3.3. We say ¢ € PSH(X,0) has full mass if

/93:/9%.
X X

The set of ¢ € PSH(X, 6) having full masses is denoted by (X, 6).
Notice that by Theorem we always have the following inequality:

[ [
X X

Again by Theorem we have
(2.32) EX(X,0) CE(X,0).

PROPOSITION 11.3.24. Let p € PSH(X,0). Assume that % (p+Vp) € E(X,0),
then ¢ € £(X,0).
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PROOF. Let

1
U:§(<P+V9)~

For any j > 0, let

uj=uVVo—73), wj=¢V(Ve—7j).

Then
1
“j:§(<ﬁ2j+V9)-
Hence
1
0“.7‘ z 599021"
So

/ Lip<v,—253 05, < 2”/ Liu<v,—j3 O, -
X X
We conclude that

lim ]l{ga§V9—2j} 032.7' — 0.
X

j—o0
([
PRrROPOSITION I1.3.25. Let ¢ € PSH(X,0). Then
/ 03 = / HEZP]AVG'
X X
PROOF. By definition, [¢] < [¢] A Vj, so Theorem [[1.3.21| implies that
/XHZ < /XQ[T‘L/’]/\VS'
On the other hand,
[p] = [(¢ + C) A Vo],
so again by Theorem [[I.3.21}
/XHZ = /XH?WC)AV@'
Take the limit C' — oo, according to Theorem [[T.2.8]
/XGZ = AQ&]AVG‘
We conclude. 0

COROLLARY 11.3.26. Let ¢ € PSH(X,0). Then ¢ € £(X,0) if [p] A Vy = V.

REMARK I1.3.8. We will see in Theorem [[11.4.66| that the converse is also true.
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I1.4. Comparison principles

Let X be a compact Kédhler manifold of dimension n. Let «,aq,...,q, €
H'(X,R) be big cohomology classes. Let 6 € a, §; € a; (j =1,...,n) be smooth
representatives.

THEOREM 11.4.27 (Comparison principle. I). Let ¢, € PSH(X,6). Assume
that [p] < [@] A Vp. Then

(2.33) / o < / o,
O Y I S
Proor. Step 1. We reduce to the case where ¢ < 1.
Let n =9 V.

e”:/ o, / 9”:/ o
/{w«z}} U S " Sy ¢ Jipeny ¥

So (2.33) is equivalent to the corresponding statement with 1) replaced by 7.
Step 2. We assume that ¢ < .

Now Proposition [[1.3.25] and Theorem [I.3.21] imply
Jon=[ on=] o

Pe = (90 + 5) V.
Again by Proposition [[1.3.25] and Theorem [[T.3:21]

/9;:/9;},5.
X X

For any € > 0, let

So
0 >/ 9”—1—/ 0
e = ¥
/x {ote>v} © Jiote<w)
=/ o —/ o +/ 0.
/X ’ {pt+e<y} ’ {pte<v} v
Hence
o >/ 0.
= P
/{wregw} 7T Spte<u)
Let ¢ — 04, we conclude by monotone convergence theorem. (I

THEOREM I1.4.28 (Comparison principle I1.). Assume that ¢, v € (X, 0), then

on < / o
/{¢<w} Y7 Jipeny ¥

The proof is almost identical to that of Theorem and is left to the reader.

REMARK I1.4.9. As we will see later, Theorem follows directly from
Theorem [[1.4.27

COROLLARY 11.4.29. Let ¢, € PSH(X,6).

(1) Assume that o < 1) and that p € £(X,0), then v € E£(X,0). Moreover, in
this case, for any C > 0,

(2.34) /X ]l{w<V9—C’} 917) < 2™ /X ]l{Lp<V9—C/2} 9:; .
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(2) Assume that o, € E(X,0), then L(p +v) € (X, 0).
In particular, £(X,0) is conver.

PrROOF. We may assume that ¢,¢ < —2.
(1) By Proposition [I1.3.24] it suffices to show that

V= %(¢+V9) € &£(X,0).
For each j > 1, let
vii=oV (Vo—=j), ¢j=¢V(Ve—Jj)
Now we have
{v<Vh—j} C{pe <vj —j+1} S{o<Vp—j}

So by Theorem [[T.4:28]

/ Liv<v,—j) egj S/ ]1{992]‘<Uj*j+1} egj S/ ]l{¢2j<vj*j+1} 932]- S/ Lip<vy—j} 922;"
X X X X

Hence
/]l{w>Ve—j}9$§/ T30y -
X b'e

Let 7 — oo, we conclude that v € £(X, 0).
As for (2.34]), observe that

(b <Vo—C}C{p<v+CJ2} C{p<Vy—CJ2}.
So by Theorem [[T.4:28]

/ Liy<v,-cy 0y S/ Lip<vrcyay 0y < 2"/ Lip<vicyay 0y
X X X

< 2"/)(1{w<u+0/2} 0, < 2"/)(]1{«:<v970/2} O -
(2) By Proposition [II.3.24] it suffices to prove that

w;:i(wwmvg) € £(X,0).

We may assume that ¢ < —2, ¢ < —2. For any j > 1, let
wi=wV (Vog—3), wi=¢VVe—13), vj=vVVe—7j).
Observe that
{o < Vo —2j} S{wg <w; —j+1} S{p < Vo —j}
Hence
/ Lip<vo—253 0y, < / Lip<vo—iy g, < / Lip<ve—iy ;-
X X X
Let j — oo, we find
/ Lip<vy—25y Oy, = 0.
X
By symmetry, the same holds for 1 in place of ¢. As
{v < Vo —34} CH{p < Vo =25} U{y <V — 24},
we conclude
/ ]]'{vae—j} 9:}] — 0.
X
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Hence v € £(X, 0). O
COROLLARY 11.4.30. Let ¢1,...,p, € E(X,0). Then

/0¢1A~~~A0¢n:/ V-
X X

PROOF. Let t1,...,t, € Rxo be such that 377 ¢; = 1. Then by Corol-

lary [[T.4.29 .
> tip; € E(X,0).

j=1
Hence
n
n
[ (Swee) = [ o
x \j4 X
Comparing the coefficients for various ¢;, we conclude. ([

For later use, we also need a polarized version.

THEOREM I1.4.31 (Comparison principle IIL.). Let ok, ¢ € PSH(X,0x) for
k=1,...,4, where j <n. Let u,v, € PSH(X, 0). Assume

(1)
[ul 2 1], (W] 2 er], (0] 2 o).
(2)

/ 0777 Ny gy A~ ABjy, :/ 057 N1y AN, :/ 67 N1y A NBis
X X *
Then
/ 007 AN Orpy Ao A0y, < / 00 NGy, A N by,
{u<v} {u<v}
PRrOOF. By Theorem [[T.3:21]

/Xez‘j ANOvyy N Ny, = /Xeﬁ_j AO1py A Ay,

S/ 93\7,3 /\91#,1 /\-~-/\9j7wj S/ ez_j /\91#,1 /\"'/\ej,wj.
X X

Hence equality holds everywhere. Now by Proposition
/ Ozt N O A= Ny,
X

Z/ QZ_jA917w1 /\'“/\Qjﬂ/’j +/ Gﬁ_j /\01’11,1 /\"'/\gijj
{u>v} {v>u}

2/ O NO1yy A Ay, +/ 0077 NO1yy A Ay, */ O NO1yy Ao Ay,
X {v>u} {u<v}

2/ vt AN O, A Ny, +/ 007 ANO1yy A Ay, —/ O N Oy A A B,
X {v>u} {u<v}
So

/ 93—]’ /\91,1111 /\"'/\9,7',1/;] < / 93‘7/\9171;;1 /\"'/\Qjﬂlfj'
{u<v} {usv}
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Replace u by u+¢ and let € — 0+, we conclude by monotone convergence theorem.
O

COROLLARY I1.4.32. Let @, v, o, 1 € E(X,0) for k=1,...,7, where j < n.
Then

/ Hz_j N RTAARERWA ejﬂpj < / eg—j NO1apy Ao A 9]}11’3"
{p<ip} {p<i}

ProoOF. This follows directly from Corollary and Theorem ]
COROLLARY I1.4.33. Let p,9 € £(X,0). Assume that ¢ < 1), then

i [ =)0l noy
X
is decreasing in j =0,...,n.

Proor. We write

(v — )& NOLTT :/ dt/ 67 NOTTI,
/X P ¥ 0 (>t} P ®
It follows from Corollary [[T.4.32] that

j N

gty © 7
is decreasing in j =0,...,n. |
LEMMA 11.4.34. Let p,v,n € PSH(X,0). Assume that
W] =], ] =[]

Assume that
¢ < ) GZ —a.c.,
then v < ¢ Oy-a.e..

PRrROOF. We may assume that n < ¢. For € € (0,1), we have
{p<(l-e)p+ent Clp <y}

So by Theorem [[T.4.27]
e"/ w' < 5”/ 9,’}
{e<(1—e)y+en} {p<(1—e)p+en}
S / nlfs 15
(o<(locypbeny . OVEE
< 0"

j€¢<0—dw+aﬂ ’

g/ o0,
o<y} ©

Let € — 04, we conclude. O

THEOREM I1.4.35 (Domination principle I.). Let ¢ € £%°(X, ), ¢» € PSH(X, 0).
Assume that

¢§<Pa ez_a“e'7

then ¢ < .
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PrOOF. Take n € PSH(X,0) such that 6, > w for a Kahler form w on X. By
Lemma 1 < ¢ w™-a.e., hence by Proposition P < . O

We note that the proof actually implies the following general lemma.

I1.5. Integration by parts

In this section, we prove two different versions of integration by parts formulae.
Let X be a fixed compact Kéhler manifold of dimension n. Let o, ag, a1, ..., o
be big cohomology classes. We fix a smooth representative of each, say 6,0, 61,...,6,.

I1.5.1. Potentials with small unbounded loci.

THEOREM I1.5.36. Let © € D'} """ 1(X). Let g1,z € PSH(X, ), 11,19 €
PSH(X, 6,). Assume that
(1)
[p1] = [pa],  [¥1] = [a].
(2) p1,%1 have small unbounded loci.

Write
U=p1— @2, V=11 — P
Then
(2.35) /uddcv/\@:/vddcu/\@:—/dv/\dcu/\@.
X X X

REMARK I1.5.10. Here we explain the meanings of first two integrals in .

Let A C X be a closed pluripolar set such that ¢i,91 € Lo (X — A). Then
on X — A, the Bedford-Taylor products ,, A © (j = 1,2) are well-defined finite
measures on X — A, which we identify with their zero extension to X. So we can
define

dd°v A © ::9¢1 /\@*9@52 AN O

as a signed measure on X. Hence the first integral in makes sense. It is not
hard to see that the integral is independent of the choice of ¥; and ¢; once u,v are
held fixed. Since the Bedford—Taylor product puts no mass on pluripolar sets, the
definition is independent of the choice of A, hence explaining our notations. This
explains the first two integrals in .

We refer to Section [-3] for the definitions of various currents appearing in the
proof.

PrROOF. Let A C X be a closed pluripolar set such that 1,91 € L2 (X — A).
We claim that

(2.36) d(lx_avdunO)=1x_ad(vdunO).

Assume that (2.36]) holds for the time being. It follows from Stokes theorem and
(1.9) that

0:/ d(vd%/\@)z/ dv/\d%/\@—i—/ vddu A ©.
X—A X—A X—A

Hence (2.35) follows by symmetry.

Now we prove ([2.36). Note that holds on X — A, so it suffices to prove
it in a small neighbourhood U of a fixed point a € A. Take a psh function 7 < 0
on U such that A C {7 = —oo}. Fix a smooth increasing convex function y on R
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such that x(¢) = 0 for t <1/2 and x(1) = 1. Let w(t) := x(e™/*). Take a smooth
increasing function 6 : R — [0, 1] such that # = 0 near 0 and # = 1 near 1. Then
O(wg) = 0 near A and §(wy,) increases pointwisely to 1 on U — A. Hence

O(wr)vduNO = Tx_avdunO, Owg)d(vduNO)— Lx_ad(vduAB).
By [BEGZ10] Lemma 1.9, it remains to prove
0 (wi)vd®u A © — 0.

In fact, let x be a smooth positive function on U with compact support, then

2
< </ x dwy, A d°wy, A @> (/ X0 (wi)?v3du A du A 6)) .
U U

2/dekAdekA@§/decwiA@:/wgddch@
U U U

is bounded. Hence it suffices to prove

/ X0 (wg)vd®u A ©
U

Now

/ X0 (wy,)*v?du A du A © — 0.
U

Observe that 0’ (wg) — 0. So this follows from dominated convergence theorem. O

11.5.2. Notations. In the remaining of this section, we use the notations of
Section In addition, we introduce a few other notations.

We introduce two variables a, b € [0,1] with b = 1—a. For an expression f(a,b),
we write

[f(av b)h = 8a|a:0f(a'a 1- a)’

where the derivative means the right derivative. When writing such an expression,
we mean implicitly that the derivative exists.

Let W C X — Z be an open subset. Let 1,9, be 8-psh functions on W. For
each N > 1, define

AN[a, b] = @N[awl + b"}’} - (I)N[CH/JQ + b’}/]

We do not mention 1, 19,7, W in the notation explicitly, but they will always be
clear from the context.

PROPOSITION I1.5.37. Let W C X — Z be an open subset. Let 11,1,y be 6-psh
functions on W. Assume that

vi=th =y € Lg (W), vy <¢1, 7< o
(1) On W x CN,
ANla,b] = —gn o &lagr + 7] + g 0 faghs + br).
(2) Fora€[0,1),1—a>e>0, ona ' (RY), we have

AN [ate, b—e]=AN[a,b] = = (v=1) Loalavi+b1] 5 (7—tz) Lodlats+by]+O(?),

where L : RN — R is the piecewise linear bounded function defined in
Appendiz[IT.3:9 The O-constant depends only on N.
(3) Fora € [0,1], on &~ Y(RY),

(2.37) AN[a,b) = =L o]+ O(a?),

where the O-constant depends only on N.
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(4)
|AN[a,b]| < alv].

PRrROOF. (1) This follows from Proposition [II.3.16
(2) Observe that

alavy + ] = al(a+ ) + (b — el = S(v = v)e,

where e = (1,...,1). By assumption, v — ¢; < 0, so (2) follows from Proposi-
tion [L3.13l

(3) Note that (2.37)) is a special case of (2).
(4) This follows directly from definition. d

COROLLARY 11.5.38. Let 41, 19,v € PSH(X,0). Assume that
(1] =[], v <1, v < o

As a — 0+, AN[a,b] converges to 0 in capacity.

PROOF. Let v = ¥1 — 1.
We need to show that for each £ > 0,

li AN =0.

a_1>%1+Cap{‘ [a,b]| >} =0

By Proposition [[1.5.37, we can take C'= C'(N) such that
‘AN[a,b} + %Lod[fy]’ < Ca?.

Take a small enough, we can thus assume that Ca? < £/2, then

{|AN[a,b] > €|} C {‘v—;LOd[ﬂ‘ > %}

Take a constant Cy so that |L| < Cy, then

{|AV[a,b] > €|} € {av| > Cfl}

But since v is the difference of two #-psh functions,

€
lim Cap{ |v| > =— 7 =0.
Jim Cap {lof> |
Here the capacity is still the capacity on Xy instead of on X, we have omitted the
pull-back notations. O

I1.5.3. Integral estimates.

LEMMA I1.5.39. Let W C X — Z be an open set. Let v,v¢,p,v; € PSH(X,0)
(5 =1,2). Assume that

OSQZJ*"YGL%)C(W), V= 7/11*1/1261/%)@(”/)-
Take x € C2(W), x > 0.
Define

I b] = ANa,b] 7N 0, AONETL
w.n[a; b] /chNX [a,b] 710, N, @y [ap+br]



I1.5. INTEGRATION BY PARTS 49
Then

N -1
IW,N[a,b]za( o
n—1

1
)Aﬁ/ ﬂv/aXUHWA(Ox—ﬂ9n+t&Q"_1dt
0 w
+0(a?).

(2.38)

Notice that 7,11, appear in the definition of AV [a,b]. Also notice that the
coefficient of a in ([2.38) is independent of the choice of .

REMARK I1.5.11. An easy calculation shows that the coefficient of a in (2.38))
can be written as

n—1
N+r—1\N+r 1
(2.39) ( ) / X0, ANOT NG

PROOF. Since the problem is local, we may shrink W when necessary. Let
Y =19'[a,b] = ap + by.
Then
(2.40) Y —y=a®-7) 20

Step 1. We claim that we may assume that 11, 19,, 1 are smooth.

To be more precise, take an open subset W/ € W containing Supp x.

We start with 11, 5. Take sequences of smooth #-psh functions on W, say 1/1;?
(k>1,7 =1,2) that decreases to 1; as k — 0o, we may assume that

o1 — 5]
are uniformly bounded on W' as well.
Let
A [a,b] == @n[av] + by] — P [arhs + b7]
According to Corollary [[1.3.17] ® N[cm/);-c + by] decreases to ®n[ary; + by] outside a
pluripolar set, hence everywhere. By Proposition [[T.5.37]

|A§€V[a,b}| < Ca.

By dominated convergence theorem, we have
E o N Nx N+n—1
Iy nla, b] .—/ XAy [a,b] 70, /\HN’EJ;VW]
W xCN

converges to Iy, n[a,b]. Similar reasoning applies to the coefficient of a in .
The O-constant in can be taken to be independent of k as we will see in Step
3, so we conclude that we may assume that both 1, ¥y are smooth.

Now we deal with ¢,v. At first, we notice that we can reduce to the case
where 1), v are bounded exactly as in the proof of Theorem Step 1. Then
we can take smooth #-psh functions ¥ (resp. ~*) decreasing to 1, 7, keeping
|¥ — ~*| uniformly bounded on W. As will follow from Step 2, the currents
V0, A O%EZ‘V_[;MMW] are supported on W x B, where B C C¥ is a bounded set
independent of k. It follows that

/W cN xA"[a, bl 716, A 911:7,;7111_[iw’“+b7’“] = Iw.vla,b].
X
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Similarly,

! 1
/ tN/ X0 (1= 1)6, +10,4)" " dt / tN/ XU OLA((1— )8, +16,)" " dt.
0 w 0 w

As will be proved in Step 3, the big O-constant in does not depend on
k, so let k — oo, we are done.

Now ®x[y'] is C1'1 on W x C¥ by Proposition [I1.3.14{ and (2.23)).

Step 2. We claim that the measure

N+n—1
9N,<I> AN 9N,¢N[’Y’]

is supported on Vi for any local 8x-psh function ® on W x CV.
Here

Vn = aly] 'Sy CW x CV,
Note that Vi depends on a,b.
Since the problem is local on W x CV, we may take 6 = 0 by adding to ® x[7']
and ® a smooth function. We may focus on an open subset A C W x C on which
@ [7'] is bounded.

For k > 0 large enough, let Oy = {® > —k}. Then by definition of the
non-pluripolar product, it suffices to prove that

10,dd*(® V (—k)) A (dd“Bn[y/]|o, )V "~

supports on V. Hence we may assume that ¢ is bounded. By continuity of the
Bedford-Taylor product, we may then assume that ® is smooth.
In this case, it is well-known that

(N +n)dd°® A (dd°@n[Y])V T = (Adqacan @) (dd°@n[y]) V.

As shown in the proof of Theorem [[1.3.19] (dd°®y[y/])V*" is supported on Vy.
This proves our claim.
Step 3. By Step 2,

Twiwlat) = | XAV [0, 8]0, A BN
V(W xCN)

We have omitted 7¥* from our notation.
We calculate its value now. Note that

A

aly'] = aly + %(w —7)e,

where e = (1,...,1) € RV, By Section [I1.3.3] the piecewise linear function L has
the same coefficients at &[] and &[y]. So

|Loal[y] = Lodaly]| < Calyp -,

where C' depends only on V.
It follows that

(2.41) / xv|Lo&[y']— Lod&ly]| 6, A 9%;”_[1/] <Ca
V(W xCN) N

for a constant C' independent of a.
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So by Proposition [[T.5.37]
a

Iw.nla,b] = — 7/ xvL oY) 0, AOYEY L, + Oa?)
2 Jvynwxcn) N

(2.42)

:_ﬁ/ xvL o a[y']6, /\0%};” [,1/]4—(9(@2).
2 Jvynwxcn)

By Proposition [[I.3:13] on Vy, we have
1 . R
—sleal]=lal]l.
Hence
Iafatl=a [ \0 6l ]| 0, NONEITL + O(a?).
VaN(W xCN)

Now one can calculate the RHS exactly as in the proof of Theorem one gets

fwafat)=a(Y ) [ @) [ g, Gl

(00 A (1= 116, + 1816,)" ") (@) + O(a?).

We can push-forward the integral to {z} x R™ by the log map and pushing
forward further to {z} x Xy by the gradient of ®y[y](x, k) as a function of k € RY
as in [WN19|, we get

N _
I wla. ] ( e )N' [ xo [ 1alaa, (= abs, + lale,) ! + o)
XN
N _
=( +n1 )N/ O [ o, (=08, + 0, e+ Ofa?)
o

N -1
:a( n ) /tN/ X0 0, A ((1=1)8, +10,)" " dt + O(a?),

n—1
where the last line follows from O
LEMMA I1.5.40. Let W C X — Z be an open set. Let v,¢;,v; € PSH(X,0)
(7 =1,2). Let
U= — 2, V=11 — .
Assume that
v € L. (W).

Take x € C2(W), x > 0. Define

NERT (n—1)! c N+n 1
Iy = A}gnoo = /Wx(CN xAN[a, 0] ddu A O} i

Then [-]1 here exists and the limit exists and
Iy = / dedcu/\ﬁffl.
w

PROOF. We apply Lemma [I1.5.39| with ¢» = «. The result follows from ([2.39).
O

LEMMA I1.5.41. Let v,¢;,%; € PSH(X,0) (j =1,2). Let u = 1 — @2, v =
Y1 — . Assume the following:
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(1)
[p1] = [p2],  [n] = [tha] = 7]
(2)
v < 2 <Py
(3) ¢1 has small unbounded locus.
Then

c net_ oy (n—=1)! N Nx 31c¢ N+n—1
(2.43) /Xuddv/\¢97 —]\}gnoo Nl [/ A% a, bl my T ddu A Oy ]

REMARK I1.5.12. As we will see in the proof of Theorem [[1.5.42] assumption
(3) can be omitted.

PrOOF. By Lemma [[1.5.40} the limit on the RHS of (2.43)) exists.
Notice that

Playy + by] > Plarps + by,
so AN[a,b] > 0.
Define

I:/ uddcv/\fo—l.
X
Then
1
T= | [ o+ 00, i, + 10,
nlJx
By Corollary [[1.3.20]

1 . N+n) " N« N+n N+n
Izn]\}gnoo< n ) {/XNM <9N¢>N[a¢1+b'y] 0N,<I>N[aw2+b—y]) )

Here we have made use of the fact that the integral on RHS is polynomial in a and
b of bounded degree to change the order of limit and [-];. Then

(2.44)

N+TL —1 [N+n—1
— i c AN N+n—1—r
nl = ngnoo< ; ) [ Z /X N dd AN a0 A (O o 0] A O o +w)]

N+’I’L —1 [N4+n—1

s N c_Nx n—1—r

_]Vh_l;Iéo < n ) E A a b] dd ™ u N (HN @ [arhr +by] /\QN ¢N[a¢2+b7])] 5
1

where on the second line, we perform the integration by parts. This is allowed by
our assumption and by Theorem
Forr=0,...,N +n —1, define

1

1

L N Nx N+4+n—1—r
J’r‘ [a, b] = « A [a, b] 9 /\ 9}"\7 q>N[a'¢'1+b"/] A\ GN:FI’N[awerb’y] .
N

Observe that J,. is decreasing with respect to r. In fact,

N+n—1—r
la,b] = / dt/ANab]>t} Ty N ON o 1) N ON o -

So it suffices to prove that the inner integral is decreasing with respect to r. Then
since ®n[ary; + by] (j = 1,2) have the same singularity type, we can apply Theo-
rem [[L4.37] to conclude.
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We claim that

(2.45) Jrla,b] — ; AN{a, b} 70, A 0%;’;_[,1] =o(a), a—0+.

By monotonicity in r, it suffices to prove this for r = 0 and r = n+ N — 1.
Since the two cases are parallel, we can assume r = 0. In fact, by Lemma [[T.5.39]
(2.46)

/X ANTa, B} Oy AN i) — /X ANa, 0] 70, A OY T = O(a?).
N N

So our claim holds. Hence

(7o b]], = [ AVl b, A G%E’Lﬁ]}
N 1

The same argument holds with ¢; replaced by @2, so (2.44) implies that

N —1
nl = Jim < +n) (N +n) U ANla, b dd°m ] u A 0%;&—&]
XN ’ 1

N—oc0 n

and ([2.43) follows. O

I1.5.4. Integration by parts for non-pluripolar products.

THEOREM I1.5.42. Let a; (j =0,...,n) be big cohomology classes on X. Let 0;
(7 =0,...,n) be smooth representatives in «;. Let~y; € PSH(X,0;) (j =2,...,n).
Let ©p1, P2 € PSH(X790), '1/11,’(/J2 € PSH(X,01) Let u = Y1 — P2, V = wl — ¢2.
Assume that

[p1] = [pa],  [¥1] = [¥a].
Then

(2.47) /uddcv/\92m/\~~/\~~~/\0n,7n:/vddcu/\ﬂgm/\-~/\-~/\0n,yn.
X X

PROOF. Step 1. By polarization, we may assume that 6; = ... = 6, = 6.
Similarly, by another polarization, we may assume that vy = --- = y,-1 = . Then
we want to prove
(2.48) / uddv A0t = / vddu gl

X X
By a further polarization, we may assume that [¢)1] = [v]. In fact, if the theorem

holds in this case, for any a,b € [0,1], a + b = 1, we have

/X wdd® ((athy +b) — (s + b9)AGLTL, . = /X (a1 + by) — (atba + b)) dd“urg™s 1,

Hence for a > 0,

/ uddv A O = / vddu Gyt
X X
Since both sides are polynomials in a, equality for all ¢ > 0 implies immediately
equality at a = 0. That is,
/ udd®v A 9271 = / vddu A 0271.
X X

We may assume that
v < 2 <.



54 2. NON-PLURIPOLAR PRODUCTS

Step 2. Let us prove under the additional assumption that ¢, has small
unbounded locus.

In this case, we can apply Lemma [[T.5.4T] and Lemma [[T.5.40] to conclude.

Step 3. We prove holds in general. It suffices to show that Lemmall1.5.41]
holds without assumption (3). In this case, we repeat the same proof of Lemmalll.5.41
with the following differences:

(1) Integration by parts in (2.44)) is now due to Step 2.

(2) The RHS of (2.46) is replaced by o(a).
To prove this, by Proposition it suffices to prove

(2.49)
N Ntn—1 A N+n—1
/ vLod&ly] b, /\GN:;;;[Wﬁbﬂ —/ vLod&[y] 0, /\HN:;’;VM =o(l), a—0+.
XN XN
Note that vL o &[] is quasi-continuous outside a closed pluripolar set:
v and &[y] are quasi-continuous (outside a closed pluripolar set). Since
L is continuous, L o &[y] is quasi-continuous as well. Now ([2.49) follows

from Theorem and Corollary
O

I1.6. Inequalities of the Monge—Ampeére operators

Let X be a compact Kihler manifold of dimension n. Let o € H»'(X,R) be a
big cohomology class. Let 6 € o be a smooth representative.

LEMMA 11.6.43. Let p,v € PSH(X,0). Let p € M4 (X). Assume that
0, >p, Oy >up,
then
eng 2> e
PRrROOF. By the locality of non-pluripolar product
Oovy 2 Lipzyyh-

So this lemma is true in case u{p =¥} =0.
We claim that the set

I={teR:u{p=1v+1t} >0}
In fact, this set of t is exactly the set of discontinuity of
t p{ep <9+t

which is an increasing function.
Now we take t; increasing to 0 such that ¢; € I, so we have

e?thrti)qu Z H-
By Corollary and Remark as i — 00,

(ortave) — Oovy:
We conclude. O
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PROPOSITION 11.6.44. Let ¢; € PSH(X,6) for j € Z~o. Assume that ¢; < 0.
Let p € M4 (X) so that

621‘ Z p

Then
9:111)* ©; Z M.
PRrROOF. For each j € Z~, let
=PV Vg

It follows from Lemma [1.6.43] that

0, 2 p.
So we may assume that ¢; is increasing.

Now the desired result follows from Corollary and Remark O

THEOREM I1.6.45. Let p € M (X) be a non-pluripolar measure. Let p; €
PSH(X, ) (j > 0), such that

07 > fim, 0< f; € LNX, p).
Assume that f; — f € LY(X, ) and that p; — ¢ € PSH(X,0) in L*. Then
05 > fp.
Proor. We may assume that f; — f, y-a.e. by taking a subsequence. Let

1/’;' = sup* Pk -
k>j

Then 1); decreases to ¢. By Proposition [I1.6.44]

o> : .
05, 2 (;ggfg) 1

In particular, for each ¢t > 0,

0 v (Vo—t) = L{p>vo—t} (jﬂzlﬁ fj) pe
Now by Corollary and Remark let & — oo, we find
HZV(ngt) > ]l{<p>V9—t}f:u'
Hence
]1{<p>v97t}93 > ]1{<p>vg—t}fﬂ~
Let t — oo and use the fact that p is non-pluripolar, we are done. O

COROLLARY I1.6.46. Let ¢;,¢ € PSH(X,0) (j € Zso). Let p € M4(X).
Assume that

0 2 SDJ 2 1/}3 0(/7_7‘ Z N; j 6 Z>O'
Then

L
lim

PROPOSITION 11.6.47 (Demailly’s estimate). Let p,¢ € PSH(X, ). Then
(2:50) Oovi 2 Lip210p + Liy >y 04

> p.
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PRrROOF. Step 1. We reduce to the case where ¢, both have minimial singu-
larities. Assume that the proposition holds in this case.
For each k > 0, let

Y=V (Vo —k), or:i=0V (Vy—k).
Then
ggk\/wk 2 ]l{sokzwk}egk + ]l{"/)k>¥7k}0;r;k'
Hence by plurilocality,
Liosvy—k,p>ve—k10pvy = Liosvy—ku>vo—ke>0} 0 + Lo ve—kwsVe—kp>0) 04 -

Let k — 0o, we conclude .
Step 2. We assume that ¢ and v have minimal singularities. Note that the
non-Kahler locus is pluripolar, so it suffices to prove in the ample locus.
Now the problem is local, so it suffices to prove the following: if ¢, €
PSH(B™) N L>°(B"™), then

(dd(p V)" 2 Ty (dd°e)" + Tpysey (dd)™
We may assume that ¢, are defined and is psh in a neighbourhood of B,
—-1<p<0, 1<y <0.

By symmetry, it suffices to prove this inequality on the set {¢ > ¢}, namely,
it suffices to prove

(2.51) (dd®(p V)" 2 Loy (dde)”
Fix a compact subset K C {¢ > 1}. Let x. be the Friedrichs kernels. Let
Ve =P *Xe, Ve =1 xXe.
Recall that ¢, are quasi-continuous. So given § > 0, we can take an open set
G C B"™ with capacity less than 9, such that ¢, are both continuous on B" — G.
Then we know that as ¢ — 0,
Pe =@, Ve Y

uniformly on compact subsets of B® — G. Thus for any ¢’ > 0, we can take a
neighborhood U of K such that

Ye + 8 > .
on U — G for € small enough. Hence
/ (dd°p)" < lim [ (dd°p.)" < &+ lim (dd°p.)" = §+ lim (dd°((pe+0")Vepe))"
K e—=>0+JU e—=>0+JU-G e—=0+JU-G

Let § — 0+, we find
[ @y < [ @@ +5) v
We can take U arbitrarily small, so
[y < [ @aora)v o,
K K

Let &' — 0+, we get

J @y < [ @astev oy



CHAPTER 3

Absolute pluripotential theory

In this chapter, X is a compact Kéhler manifold of dimension n. Let a be a
big cohomology class on X. Let 6 be a smooth representative of .

IT1.1. Basic energy functionals

In this section, we define and study several energy functionals. Recall that we
have defined the full mass class £(X, 0) and the class £%°(X, 6) in Definition [I1.3.3
and Definition [[T.5

IT1.1.1. Definitions and first properties.

DEFINITION IIL.1.1. Let ¢, ¢ € PSH(X,#). Assume that [¢] < [¢)]. We define
E1(p,¢) € (—o0, 0] as follows:
(1) When [p] = [¢], define

n

1 , .
(31) Bie) =g 2 [ W9 ne er

=0

(2) In general, define
(32) El(%d’) = Sup El(nﬂ/})a
n

where the sup is taken over 7 € PSH(X, 6) such that ¢ < n and [n] = [¢].
When ¢ = Vjy, we write
E(p) = —Er(p, Vo).
The functional E : PSH(X, 0) — [—00,00) is known as the Monge—Ampére energy.

REMARK III.1.1. Eq(p,v) > —oo. To see, it suffices to observe that for any
C € R, the function n¢ := (n — C) V ¢ is a candidate for the sup in (3.2)).

DEFINITION II1.1.2. The space £1(X, ) is defined as
(3.3) EYX,0) := {p € PSH(X,0) : E(p) > —oc}.

The topology on £!(X,0) is the coarsest refinement of the subspace topology in-
duced from PSH(X, 6) that makes F : £1(X,6) — R continuous.
For each C € R, let

(3.4) EL(X,0) == {p € PSH(X, 0) : supp < 0, E(p) > —C}.
X
Observe that
EL(X,0) CEY(X,0).

57
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PrROPOSITION IIL.1.1. Let ¢,v,v € PSH(X,0). Assume that [p] = [¢] = [v],
then

(35) E1(<P,1/J) +E1(,¢},’7) = El(‘pv’}/)a
where by E1, we mean the functional defined in (3.1)).

PRrROOF. We have
(n+1) (E1(e,7) — E1(p,¥) — E1(¥,7))

:Z/ (v =) (9@/\03_1' _9%‘/\9:;—3') +Z/ (¥ =) (92‘//\9:—3' —%MZZ‘J')
j=07X /x

= > (n—j)/X(w—@(e;wfbﬂmg—a;mgw@“)

jta+b=n—1

7,a,b>0
+ > (n—j)/ (6 =) (85 02+ N0 — 0% 102 A 6L
jta+b=n—1 X
J,a,b>0
where the second equality follows from Theorem O

COROLLARY II1.1.2. Let ¢,v,v € PSH(X,0). Assume that [¢] = [¢] = [7].
(1) If 9 <, then
Ei(p,7) 2 Ei(¢,7).
Here by E1, we mean E1 defined in .
(2) If v <, then
Ei(p,7) = Bi(e, 9).
Here by E1, we mean Ey defined in ,
In particular, when [¢] = [¢], E1(p, ) defined in and in coincide.
ProrosiTION II1.1.3. Let ¢, 1,y € PSH(X, 0). Assume that ¢ <, [¢] < [v],
then
Ei(p,7) 2 Ev(¢, 7).

PRrROPOSITION I11.1.4. Let p,¢ € PSH(X,0), [¢] <X [¢]. For any C € R,
(3.6) Ex(p,9+C) = Ei(p, ) +0/X 0L, Erp+Co) = Er(ph) —c/X o

ProoOF. When [¢] = [¢], (3.6 follows from Proposition [[II.1.1] The general

case follows by definition. O

ProprosITION III.1.5. Let ¢,v € PSH(X,9).
(1) Let p; € PSH(X,0) (j € Zso). Assume that o; is decreasing with limit
@, [er] = [¥], then

(2) Let ; € PSH(X,0) (j € Zso). Assume that 1; is increasing with a.e.
limit ¥, [¢] = [U1] = [¢], then
(3-8) Jlgglo Ei(p,v5) = Ex(p,¥).
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PrROOF. (1) Note that the limit on LHS of (3.7 exists since Ey(¢;,) is in-
creasing by Proposition [[I.1.3] Moreover,
(3.9) Jim En(pg,9) < Ealp, ).

It suffices to prove the reverse inequality. We may assume that ¢; < 1) by Propo-
sition [IL.T4l

When [¢] = [¢]. The reverse inequality follows from Theorem[[1.2.8] In general,
let 7 € PSH(X, 6) be such that [] = [¢] and that ¢ < 5, then by Proposition[[IL.1.3]

Ei(n,¥) = jlgrglo Ei(p; Va,y) < jlirgo E1(pj, ).

Take sup with respect to 7, we conclude (3.7)).
(2) By Corollary [[II.1.2] the limit in (3.8]) exists and

jhiﬂlo E1(p, 1) < Ev(p,9).

For the reverse inequality, when ¢ < ¢1, it follows from Theorem [[1.2.8] In general,
there is C' > 0 such that ¢ < ) + C, then we have

Jlgglo Ei(p, 1 +C) = Ei(p, ¢ + C).

By Proposition [[II.1.4] we then have

Jim (Em,wj) o f e:,;.) ~Ei(e ) +C [
But it follows from Theorem [[I.2.8] that
lm [ o7 = / or.
P T
So we conclude (3.8). O

COROLLARY II1.1.6. Let p,¢,v € PSH(X,0). Assume that [p] 2 [¥] = [7],
then

(3.10) Ei(p,¥) + Er(v,7) = E1(p, 7).
PRroOF. This follows from Proposition and Proposition [[IT.1.5 O

PROPOSITION II1.1.7. Let p, 1,y € PSH(X,0). Assume that ¢ <, [¢] 2 [v].
Then

(3.11) Ei(e,¢) + E1(¥,7) < E1(p,7).
In particular, if v > ¥ > ¢, we have

El (90’ ¢) < El(@a ’Y)

PrOOF. By Proposition [[II.1.5] we may assume that [¢] = [¢}].
Then

Ei(p,7) = Jim Ei(pV (v = C),)
= Jim (By(pV (y=C), 0V (v=C) + Ei(¥V (v = C),7))
=dim Ei(p V(v =C), 4 V(v =) + Ea(¥,7),

where the first line follows from definition, the second follows from Corollary [[TT.1.6]
the third follows from Proposition [[TT.T.5]
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We claim that

Jim Ei(p V(v =0C) 9 V(y=0C)) 2 Eile,9).

To see, by monotonicity of E; in the first variable, we may assume that [p] = [¢].
Then this follows Theorem [L.2.8
Hence (3.11)) follows. O

PrROPOSITION II1.1.8. Let ¢g, 1,9 € PSH(X,0). Assume that [po] = [p1] =
[¢)]. Then
d

(3.12) n

Eu(tor + (1 — )00, 1b) = — / (1 — o) 67
t=0+ X

Proor. For 0 <t <1,
(n+1) (Er(ter + (1 — t)o, ) — Er(po, ¥))

> ([ w=tor- 1= 9o 8 Ay~ [ 0 - e 8 n 0
= \x X

=ty I; + O(t%),
j=0
where
I = (n—j)/ (¢ — o) (0, —9¢0)A9;Aeg;f—1+/ (0o — 1) 0, A O
X X

Here the first term is understood as 0 when j = n.

By Theorem

I; :(”—j)/)((ﬁﬁl—¢0)9i+1/\9$;j71—(n—j+1)/X(%01—wo)%/\egna;j-

Here the first term is understood as 0 when j = n.
Hence

SLi=-(n+ 1)/ (o1 — o) O,
=0 X
Hence (3.12)) follows. O

DEFINITION I11.1.3. Let ¢,1 € PSH(X, ). Assume that ¢ < 1. We define

Fi(p,v) = | (v —9)b3,
(3.13) /X

e L
X
LEmMA I11.1.9. Let p, ¢ € E(X,0), ¢ <, then for any k > 0,

Fl(QO\/ (‘/9 - k)ad}) S Fl(%l/f)
PRrOOF. For k > 0, let
o =9V (Vo —k).
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Then
Jw-eoon =  w-ee s [ w-we
b'e {p<yp—k} {p>¢—k}
o [ e[ @
{e<eor} {e>y—k}
= N T
{e<y—k} {e>y—k}
<[ w-we
X
where on the third line, we have applied Theorem [T.4.28] O

PROPOSITION II1.1.10. Let p,v € EY(X,0). Assume that ¢ < ). Then
(3.14)

Gl(@vdj) < El(@vdj) < Fl(@ﬂ/’) < Fl(@ﬂ/’) +nG1(@a¢) < (TL+ 1)E1(%1/1) < 00.

PROOF. When [¢] = [¢], (3.14) is a direct consequences of Corollary [I1.4.33
In general, for each j > 1, let p; = (¥ — ) V .

By Lemma [[TI.T.9]
Fl(gokaw) < F1(307w)
So

Ei(p,9) = lim Ey(gg, ) < lim Fi(gx, ) < Fi(e, ).
k—o00 k—o00
By Fatou’s lemma,

Gl(@ﬂ/’) S m Gl((pkaw) S kILH;o El(@kaw) = El(%?/))

k—o00

For any 57 > 1,

/X (4 — ;) 07+ nCh(p, ) = lim (4 — ;) 0+ nGi(p, 1)

k—o0 {§0>V9—k7}

< lim </ (W — or) 05, + nGl(‘Pkﬂ/’))
k— o0 {o>Vy—k}
<(n+1) lim By (g, 1)
k—s o0

Let j — 0o, by monotone convergence theorem,

Finally, let us prove that F(p, 1) < co. Take a constant Cy > 0 such that

P < Vo +Ch.

In fact,

[@-00< [ @rvi-pusore [ G-pa=crone-cw),
X X X
But from what we have established,

Filp—C1, Vo) < —(n+1)E(p — C1) < 0.
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COROLLARY IIL.1.11. Let @q,...,p, € EY(X,0). Then
(3.15) /(Vg—gpo)%l/\-n/\ﬁw<oo.
X
PrOOF. Let
1 n
Y= n Z ¥j -
7=1
Then there is a constant € > 0 such that

00 > e, A A0, .

So we may assume that p; = --- = ¢, = ¢ and we need to show
/ (Vo — 0) 0, < 0.
b'e
It suffices to write
[w-aoi= [ Ga-orop+ [ (-
X b'e X
Both terms on RHS are finite by Proposition [IT.T.10] O

II1.1.2. Monge—Ampeére energy.
PROPOSITION II1.1.12. Let g, 1 € £%(X,0). Then

d
(3.10 Sl Ete+ =000 = [ (01— p0) 8,
dt|,_o4 X
PROOF. This is a special case of Proposition [[IL.1.8] 4

ProOPOSITION II1.1.13. The Monge—Ampére energy E : PSH(X,0) — [—00, c0)
satisfies the following:

(1) For any C € R, ¢ € PSH(X,6),

E(p+C)=E(p) +C/Xvola.

(2) E is increasing, concave and usc.
(3) Let p,v € EY(X,0). Assume that ¢ < 1), then we have

(3.17) E(Y) — E(¢) > Er(p,¥).
(4) For v € PSH(X,0),
E(p) < VOlOle}l(ng.

PROOF. (1) This follows from Proposition [[II.1.4
(2) E is increasing by definition. For the concavity of E, it suffices to prove

that E is concave on £° (X, 0). By (1), we may assume ¢p < 1. Let 0 <t < s <1,
by Proposition it suffices to prove

/X(<P1 — o) 9f¢1+(17t)¢0 2 /X(@l — o) 9?¢1+(175)¢0 :

We may assume that ¢t = 0, s = 1, then we need to prove

/ (1 — o) 0, < / (1 — o) 0, -
X X
This follows from Theorem [1.4.27]
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Now we prove that E is usc. Let ¢;,¢ € PSH(X,0) (j € Z>o). Assume that
¢j — ¢ in L', then

Y = sup* gy
k>j

decreases to ¢. Hence by Proposition and Proposition [[T[.1.3]
E(p) = lim E(¢;) > lim E(p;).
j—o0 j—o0
(3) This follows from Proposition [III.1.
(4) By (1) and (2),
E(p) < E(p —supp) + volasup ¢ < volasupg.
X X X

O

COROLLARY IIL.1.14. For each C € R, the set EL(X,0) C PSH(X, 0) is convex
and compact in the subspace topology.

PROOF. The set £L(X,0) is convex as E is convex (Proposition [[11.1.13)).
By Proposition [[II.1.13} E is usc, hence £L(X,0) C PSH(X, 0) is a closed set.
As E(p) < supy ¢ by definition, we have

EL(X,0) C {p € PSH(X,0) : —C < supy < 0}.
X

Hence it is compact by Theorem [.1.2] O
COROLLARY II1.1.15. Let p,1 € EY(X,0). Then

(3.18) E() - E(g) < /X (0 — ) 8.

PrOOF. Step 1. We prove (3.18) under the additional assumption that @ €
E>(X,0).
In this case, by Corollary [[TI.1.6}
E()) — E(p) = E1(p, ).
But by Proposition

Bilp.v) < [ (=)0
Step 2. In general, for any C' > 0, let
Ve =V (Vy—C).
Then by Step 1,
BC) - () < [ (67 = )03.

Let C — oo, by Proposition [[II.1.5] Proposition and dominated convergence
theorem, we conclude (3.18)). O

PRrROPOSITION II1.1.16. Let @;,¢ € £(X,0) (5 € N). Assume one of the follow-
ing conditions is satisfied:
(1) @; decreases to .
(2) @; increases a.e. to .
(3) @; converges uniformly ¢.
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Then
(3.19) lim E(p;) = E(p).

]‘)OO

PRrOOF. (1) This follows from Proposition [[II.1.5

(2) We may assume that ¢ < Vj.

When ¢; € £2°(X,0), (3.19) follows from Theorem [II.2.12] In general, for any
C >0, let

¢ =iV (Vo —0).
by Corollary [[IL.T.15] for any C' > 0,

0< B(oS) — E(g;) < /X (S — gy 0. = /C ar /X 1y, <vo—ny b,

2 / dt/ ]1{901<V9—t/2}9gp1 =2 +1/ (901/ - (Pl) 0501 )
c X X
where the last but one step follows from Corollary [[1.4.:29] By Proposition [[IL.1.10]

/ (Vo — 1) 072, < oo,
X

so by dominated convergence theorem, we find that E(p] & — E(p;) as C — o0
uniformly in j. Hence (3.19) follows.
(3) This follows from Theorem 11.2.8 O

COROLLARY I11.1.17. Let ¢ € PSH(X,0). Then the following are equivalent:
(1) p € EY(X,0).
(2) p € £(X,0) and

(3.20) /X(Vg —) 0, <oo.
(8) The following holds:

(3.21 / dt/ 0"y < 00.
) 0 fo=voty 270

Proor. (1) implies (2). This follows from Proposition

(2) implies (1). We may further assume that ¢ < V. Then by Lemma
Fi(¢ V (Vy—¢)) is bounded for all C' > 0. Hence by Proposition E(pV
(Vo—c)) is also bounded. By Proposition E(yp) is thus finite.

Now in order to relate (2) and (3), observe the following general relation:

(3.22)

dt/ —/ dt Vola—/ 0@—/ 0] .
/ {e=Vo—1) Povcvs=n ( fo<vo-ty  Jesve-y ©

(2) implies (3). By (3.22)), since ¢ has full mass,

at / — / dt / o / on
/ {p=Vo—t} Povvo—n <{«><vst} 7 Jpeviy
:/<ve—so>+eg—/<vo—so>+eeg.
X X

The first term is finite by assumption. To see the second is also finite, we may
assume that ¢ < Vp, then it follows from Corollary [.4:33] that it is also finite.
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(3) implies (2). By assumption, the integral in (3.22)) is finite. Hence we can
take t; — oo (j € N), such that

volaf/ 0{}97/ 0, — 0.
{o<Vo—t;} {p>Vo—t;}

/ 05, = vol(a).
X
Insert this back to (3.22)), we find (3.20). O

I11.1.3. Berman—Boucksom differentiablity theorem.

THEOREM II1.1.18. Let ¢ € EY(X,0). Let v € C°(X). Then E(P(p + tv)) is
differentiable at t =0 and

d
— E(P(<p+tv)):/ v .
dt|,_, X

PRrROOF. By Proposition [[II.1.13| and Proposition [[.5.11} for any ¢ € [0, 1],
E(P(SDHU)) > E(p) = tlvllcox) > —oo.
Observe that ) for all v € C°(X) is equivalent to

Namely,

(3.23)

(3.24) E(P(p+v)) / / VOB ey dt, v E Co(X).
We prove the following more general result: for any u € USC(X),

By similar argument as above, for any ¢ € [0 1
EP(u+tv)) > —o0.
Step 1. Assume that (3.25) holds when u € C°(X), we prove (3.25) for general

U.
Let u; € C%X) (j € N) be a sequence decreasing to u. Then P(u; + tv)
decreases to P(u + tv) for any ¢t € [0,1] by Proposition [L.5.11] Hence by Proposi-

tion
(3.26) EP(u+tv)) = jhﬁrgo E(P(u; +tv)), te][0,1].

Recall that by Proposition [[.5.11} P(u + tv) € £(X, 0), so by Theorem [[1.2.8

/X VOB (yypp) = lim VOB 10y tE[0,1].

‘]*)OO X

’/X v QP(uj-&-tv)

so by dominated convergence theorem,

1 1
3.27 S dt = lim/ /09" , dt.
( ) A A P(u+tv) Jraresy 0 " P(uj+tv)

By assumption, we know that (3.25) holds for u; in place of u. Let j — oo and

apply (3.26) and (3.27)), we conclude (3.25).

From now on, we assume that u € C%(X).

Observe that

< ||U||00(X)/ o7,
X
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Step 2. Assume that (3.25)) holds when v € C*°(X), we prove (3.25) in general.
Let v; € C*(X) (j € N) be a sequence converging uniformly to v. By Proposi-

tion [[.5.11} P(u+tv;) — P(u+tv) (¢ € [0, 1]) uniformly. So by Proposition [II1.1.16]
(3.28) lim E(P(u+tv;)) = E(P(u+tv)), te][0,1].
j—oo

On the other hand,

0 O —/uenu . :/ — v_—i—/v N S
/XJP(HJ) ~ P(u+tv) X(J P(u+tv;) . (P(th,) P(+t))

The first term tends to 0 as j — oo since v; — v uniformly. By Theorem [[T.2.§]
the second term tends to 0 as j — oo. So for each ¢,

Jlig.lo ij Gg(u-&-tvj) :Lveg(u+tv)'

By dominated convergence theorem,

1 1
3.29 lim/ /vﬂ”u o dt:/ /v@”u ) dt.
( ) i Jo Jx J VP (u+ttvy) o Jx P(u+tv)

By assumption, (3.25) holds for v; in place of v. Let j — oo and apply (3.28) and

(13-29), we conclude ([3.25)).
From now on we assume that v € C*°(X). It remains to prove (3.25]), which in

turn is equivalent to the following:

d
(3.30) — E(P(u+tv)):/ VOB (-
dt|,_oy X
Step 3. We claim that
d d
3.31 — E(Pu+tv)) = — / P(u+tv) — P(u)) 65, -
B3) Gl B = g [ (P - P) o,

Observe that RHS makes sense since P(u+tv) is concave in ¢t by Proposition [[.5.11

By Proposition [[TI.T.13] and Proposition [[TT.1.12}
E(P(u+tv)) < E(P(u)) +/ (P(u+tv) —P(u)) O, -
X

Hence in (3.31]), LHS is not greater than RHS. We prove the reverse inequality. For
each € > 0 small enough, we can take 6 > 0 small enough, so that
(3.32)

d

P —-P LON —

| (Pludv) () p(w_é(dt
By Proposition [[IL.T.12]

/ (P(u+tv) = P(u)) 05, — 5) .
X

t=0+

d n
P s E((1-t)P(u)+tP(u+dv)) = /X (P(u+6v) — P(u)) 05, -
So for small enough ¢ > 0 (depending on § and ¢),
(3.33)
E((1-t)P(u) +tP(u+dv)) — E(P(u)) > t/X (P(u+6v) — P(u)) 05, —tde

By Proposition and Proposition we have
(3.34) E (P(u+t6v)) > E ((1 — t)P(u) + tP(u + 6v)).
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From (3.32)), (3.33)) and (3.34)), we get
E (P(u+tév)) — E(P(u)) > td 4 / (P(u+tv) — P(u)) 05, — 2ted.
dt t=04J X
Let t — 0+, then let ¢ — 0+, (3.31)) follows.
Step 4. It remains to prove
(335 I, ::/ (P(u+ tv) — P(u)) Oy — t/ VOR = olt), t—0+.
X X

By Proposition [.5.17]
Plu+tv) Su+ttv="P(u)+tv, 65, —ae.

Hence

I, = / (P(u+tv) — P(u) — tv) 08,
{P(uttv)<P(u)+tv}

By Proposition [.5.17]
sup |P(u + tv) — P(u) — tv| = O(t).
e

Hence

1, = o) / 0
{P(u+tv)<P(u)+tv}

(3.36) lim on .y = 0.
t—0+ {P(u+tv)<P(u)+tv} P(w)

Since the class a is big, we can take ¢y € PSH(X,#) such that 6,, is strictly
positive. Then ¢y + ev € PSH(X, 6) for £ > 0 small enough.
For ¢ > 0 small enough (depending on &),

P(u) + tv + tyo , P(u + tv) + tog € PSH(X, (1 +¢)0).
By Proposition [.5.17]
P(u) 4+ tv + tog > P(u + tv) + two — 2t||v][cocx) -
By Theorem [[T.4:27]

So it suffices to prove

(Opu) + t001)" < / (Op (uttv) +04)" -

/{P(u+tv)<P(u)+t'u} {P(uttv)<P(u)+tv}

On the other hand, by Proposition [.5.11}

/ (HP(qutv) + w%)n < / eg(qutv) +0(t) =0(t).
{P(u+tv)<P(u)+tv} {P(u+tv)<u+tv}

Hence (3.36)) follows. O

COROLLARY II1.1.19. The functional EoP : C°(X) — R is Fréchet differntiable
and

Proor. By (3.25), E o P is Gateaux differentiable with Gateaux derivative
05 - Notice that

is continuous. Hence E o P is Fréchet differentiable. O
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II1.1.4. Free energy type functionals.
DEFINITION TI1.1.4. Let u € M, (X). Define L, : PSH(X, ) — [—o00,00) by

(3.37) Lue) = [ (o= V) d
LEMMA I11.1.20. Let p,9 € £*°(X,0). Then
(3.38) ’/ Vo —1°) 0 / (Vo —yC) o7, | < 2nsup|g0 Vy|volar.

PROOF.

/(ve—wez:/<v9—w>evmz—1+/<go—ve>9vmz—1
X X X

—/X«o—va)ewez—l-

Hence

/(va—wwz—/ (Vo — ) by, A 02
X X

We iterate this procedure n-times and find

(3.39) ’/ (Vo — / (Vo — ) 07,

< 2sup|p — Vy|vola.
X

< 2nsup |p — V| vola.
X

PROPOSITION I11.1.21. Let i € My (X). Then
(1) For any C € R, ¢ € PSH(X, 0), then L, (¢ + C) = L,(¢) + Cu(X).
(2) L, :PSH(X,8) — [—00,00) is usc.
(8) Assume that L, is finite on PSH(X,0), u# 0. There is a constant C > 0,
such that for any ¢ € PSH(X,0),

1
3.40 supp — C < ——1L <supp.
(3.40) we— 0= o u(p) <supg
(4) When there exists o € E'(X,0) such that p = 07, then L, is finite on
EYNX,0).

PRrROOF. (1) This is obvious.
(2) This is a direct consequence of Hartogs’ lemma.

(3) This follows from Proposition [[TI.1.23
(4) This follows from Corollary [IT1.1.11 O

PROPOSITION II1.1.22. Assume that ¢ € (X, 0), then Loy is finite on PSH(X, 0).

PrOOF. Let ¢ € PSH(X,#), we want to show that

(3.41) Loy () = [ (Vo =)0 < 0.

By Proposition [[TI.T.2T] we may assume that ¢ < 0.

Step 1. We prove @D for ¢ = V. In this case, 6y, is absolutely continuous
by Theorem [[.5.12] Hence (3.41]) follows.

Step 2. We prove (3.41)) in general.
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For a general ¢, C' > 0, let 1/ := 1)V (V5 —C) be the canonical approximations
of 1. By Lemma

[ o= ve)02 < msuple ~ Valvola + [ (Vo v©) e,
X X X
Let C' — oo and use monotone convergence theorem, we conclude
[ =062 < 2nswple ~ Vil vola+ [ (Vo - )65,
X X X
Hence we conclude (3.41)) by Step 1. O

PROPOSITION I11.1.23. Let € M (X), u(X) > 0. Assume that L, is finite
on PSH(X,0). Then

{ga € PSH(X,0) : /

(o= Vo)dp = 0} C PSH(X, 6)
X

is relatively compact.
In particular, there is a constant C = C(u) > 0, such that

1
3.42 —C—i—sup(pSi/ o—Vy)du <supep.
(3.42) u ) X( ) u

PRrROOF. Let ¢; € PSH(X,0) (j € N),
/ (pj = Vo)dpu=0.
X
Let
Yj 1= p; —supp; .
X
It suffices to prove that there is a constant C' > 0, such that
(3.43) [ vio-vpan<c.
X
since then
p(X)sup @; = / (Vo — @) dp+ p(X) sup p; = / (Vo — ;) du
X X X X

is also bounded hence we conclude by Theorem [[.1.2]
Assume that (3.43)) fails, after extracting a subsequence, we may assume that

/ (Vo — ;) dp > 27
X
Let -
=Y 279y; € PSH(X,0).

j=1
By monotone convergence theorem,

OO>A(VO_w)dM:;2_jA(%—wj)dﬂzoo.

O

THEOREM II1.1.24. Let € M (X). Let K C PSH(X, 0) be a compact convex
subset such that L, is finite on IC. Then (1) implies (2) implies (3):
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(1) The map T : K — L*(u) given by o — @ — Vy is continuous.
(2) The set K is uniformly integrable with respect to u:

(3.44) lim sup/ pfo < Vg —thdt=0.
k

k—oo peEK
(3) L, : K — R is continuous.

REMARK III.1.2. The converse is not true. ADD A COUNTEREXAMPLE
LATER.

PROOF. (1) implies (2): We claim that T(K) C L(u) is closed and convex.
In fact, it is obviously convex. To see this set is closed, let ¢; € K (j € N) be a
sequence such that T'(p;) — f € L'(u). By compactness of K, after substracting
a subsequence, we may assume that ¢; — ¢ € PSH(X, ). Since K is closed by
assumption, ¢ € K. Now as T is continuous, we find T'(¢) = f. This proves
that T'(K) is closed. Now by Hahn-Banach theorem, T'(K) is closed in weak star
topology. Hence by Dunford—Pettis theorem, K is uniformly integrable.

(2) implies (3): Assume that K is uniformly integrable. Let ¢;,p € K (j € N).
Assume that p; — ¢ in L'-topology. We want to show that

lim Lu(‘ﬂj) =L, (¢)-
j—o00

By Dunford—Pettis theorem, T'(K) C L'(u) is weakly compact, hence bounded.
Hence after extracting a subsequence, we may assume that L,(y;) converges with
limit L € R. Let K be the closed convex hull of ¢y, (k > j). Then T'(K;) is weakly
compact and decreasing in j. Take

(o)
fe(NK;.
j=1

In particular, we can take a finite convex combination ; of ¢y (k > j), such that
T(¢;) — fin L*(p). It is easy to see that f = T'(¢). By construction, L, (¢y,) — L.
Hence L,(f) = L. O

DEFINITION II1.1.5. Let p € M, (X). Define the free energy functional F, :
EYNX,0) = (—o0, ] by
Fo=E—1L,.
Define the pluricomplex energy E* : M (X) — (—00, 00] by

E*(u):= sup F,.
£1(X,9)

PROPOSITION IIL1.1.25. Let p € M (X). Assume that u(X) = vola.. Then for
any C € R, p € EY(X,0),
FH(‘F"' C) = Flt((p) .

PROPOSITION I11.1.26. Let o € EY(X,0). Let € Mo (X), u(X) = vola. The
following are equivalent:

(1) Fu(p) = E*(n).
(2) p="0;.
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PROOF. (2) implies (1). Assume that = 6. Then by Corollary [[11.1.15

E(so)+/x(w—ve>ezZE(wH/X(sa—ve)ez, beEV(X.0).

In other words,
Fu(¥) < Fu(p).
(1) implies (2). Assume that ¢ is a maximizer of F,. Let v € C°(X). Consider
the following function

olt) = B(P(o+ t0) = L(o) —¢ [ vau.

where t € R. As P(p + tv) < ¢ + tv, we find

LR+ 1) < L)+ [ vdu.

So
g(t) < E(P(p+tv)) — Lu(P(e + tv)) = F(P(p + tv)) < g(0).

By Theorem [[TI.1.18]
0:g/(0):/ v@ﬁ—/vdu.
X X

Hence (2) holds. O
DEFINITION II1.1.6. We define J : £1(X,0) — [0,00) as

(3.45) J = Loy —E.

Define I : £1(X,0) — [0,00) as

(3.46) I(p) = /X (0 — Vo) (6%, —67).

PROPOSITION I11.1.27. Let ¢ € £Y(X, 0).

(1) J(p+ C) = J(p) for any constant C € R.
(2) The image of J lies in [0,00).
(3) For each C > 0, the set

(3.47) {p e (X,0):supp=0,J(p) < C} CEYX,0)
X

is relatively compact in the subspace topology induced from PSH(X,6).

PrOOF. (1) This is obvious.
(2) By (1), we may assume that ¢ < Vj. Then this follows from Proposi-

tion [L11.1.10

(3) By Proposition [[II.1.21]and Proposition [[I1.1.22] there is a constant Cy > 0,
such that for any ¢ € £1(X, ),

1

supp —C1 < ——L <supep.

e =G s e ulp) < up
Hence
{pe&l(X,0):supp=0,J(p) <C} C{pe&(X,0):supp =0, E(p) < —u(X)C:1~C}.

X X
Hence the result follows from Corollary [IT.1.74] O
PROPOSITION I11.1.28. Let ¢ € £Y(X,0). Then
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(1) For any C € R,
I+ C)=1(y).
(2)

(3.48) L

n+1

PrOOF. (1) This is obvious.
(2) By (1) and Proposition [[II.1.27} we may assume that ¢ < Vj. Then by
definition,

J(‘)O) = _Gl((pv %) + El(@v ‘/9) ) I(SO) = _G1(<P7 VQ) + F1(<pa V9) .
Hence the inequality follows from Proposition [[TI.T.10} O
PROPOSITION I11.1.29. Let ¢ € EY(X,0). Let t € [0,1]. Then
(3.49) I(tp + (1 —t)Vp) < nt?I(yp).

I(p) < J(p) < I(yp).

PrROOF. We may assume that ¢ < Vj.

By Corollary
n n n - n j n—j j n—j
o= =00 [ o= varog + 3 (T)ea -0 [ - viyel ey
X X = N X

n

>1-0 [ e-wo+ 3 ()ea-o0m [ e-voe

Jj=1

-0 [ o=V, + (1= (-0 [ (o= V6.
X b's
Consequently,
It + (L =1)Vp) <t(1—(1—-1)")I(p).
Hence follows. O
PropoSITION I11.1.30. Let L : PSH(X,6) — [—00,00) be a convez, increasing

function satisfying L(v + ¢) = L(¢) + cvola for any ¢ € R, ¢ € PSH(X, 0).

(1) Let K C PSH(X,0) be a compact convex set. Assume that L is finite on

IC, then L is bounded on K.

(2) If L is finite on EY(X,0), then

(3.50) sup |[L| = O(CY?), C — .
£,

PROOF. (1) An upper bound of L is immediate: there is a constant C; > 0
such that
sup(p — Vo) <C1, ¢pek.
X

So
L(p) < L(Ve) + C1 < o0.
For the lower bound, assume that there ia a sequence ¢; € K so that
L(pj) < =27,
Let

P = Z 2_j<pj .
j=1
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By assumption, ¢ € K. Note that for each N € N,

N

<Y 27+ 27N,
j=1

So

N
L(p) <> 277L(pj) + 27 VL(Vp) < —N + 27V Ly,.
j=1

Let N — o0, we find a contradiction.
(2) Assume that

sup |Z| = O(C*?)
£c

fails, we may take ¢; € £'(X,0), so that

Sup 9 = 0, tj:=|E(g)| =0, t;L(p;) = —0o.

On the other hand, we claim that there is Cy > 0, so that
(3.51) E(te; + (1 —1t)Vp) > —Co.
In particular,
tipj + (L—t;)Vo € &, -
So
th(ng) + (1 — tj)L(Vg) > gllf L.
Co
This is a contradiction.
It remains to prove the claim. By (1) and Proposition [[I1.1.22] there is a
constant C' > 0 such that for all ¢ € PSH(X,0), supy ¢ = 0, we have

| @-voer, = —c.
X
In particular, this applies to t¢; + (1 — t)Vp and ¢;, hence we find
Ete+(1-t)Vy) =—J(te+ (1 —t)Vy) + O(1)
>—(n+1)I(te+ (1 -t)Vp) + O(1)
> = (n+ Unt*T(p;) + O1)
> — (n+ Dnt?J(p;) + O(1)

>(n+ Dnf2E(g;) + O(1)

>0(1),
where the first and the third inequalities follow from Proposition the second
follows from Proposition O

COROLLARY T11.1.31. Let € M (X), u(X) = volav. Assume that L, is finite
on EY(X,0). Then there are positive constants ¢ >0, A > 0 such that

(3.52) F,<—-eJ+A.
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PROOF. By Proposition [[II.1.25] and Proposition [IL.1.27] it suffices to prove
(3.52)) for potentials p € £1(X, 6) with supy ¢ = 0.
In this case, by Proposition [[IT.1.21 and Proposition [[TT.1.22]
Loy = 0(1).

Hence (3.52)) follows from
ignlfLM >—-(1-¢)C+0(1), C—oo.

c

This follows from Proposition (Il

PROPOSITION 111.1.32. Let ¢ € EY(X,0). Then for any C € R, the functional
Lg; is continuous on ¢ € EY(X,0) with respect to the subspace topology inherited
from PSH(X, 0).

ProoOF. TO be add later O

COROLLARY II1.1.33 (Global uniform Skoda theorem). Let ¢ € £Y(X,0). Then
for any C € R,

sup L, < oco.
£,

ProOF. This follows from Corollary [[I.1.14) and Proposition O
DEFINITION II1.1.7. Let u € My (X), A > 0. Define the A-free energy func-
tional F, » : EY(X,0) — R by

zuA«m:=zﬂw>—/geru.

REMARK IIL.1.3. F},  is finite on £*(X, ). In fact,
0< / e dp < e supx fu(X).
X

PROPOSITION TI1.1.34. Let € My (X), A > 0. Let o € EY(X,0). Assume
that

(3.53) Fux(p)= sup Fj.
E1(X,0)

Then

(3.54) 05 = e dp.

PROOF. Let v € CY(X). For t € R, let

g(t) == E(P(p + tv)) — /X AeHt) gy

Observe that
ngEww+w»jL“%m”wzﬂmww+w»smxwzmm.

By Theorem [[II.1.18] g(¢) is differentiable at ¢ = 0, hence

/v@@z/vewdu.
X X

Hence (3.54)) follows. O
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IT11.2. Monge—Ampére capacity
I11.2.1. Extremal functions.

DEeFINITION II1.2.8. Let £ C X be a Borel set.
(1) The global extremal function of E is defined as

(3.55) Vg g :=sup™{p € PSH(X,0) : ¢[r < 0}.
(2) The extremal function of E is defined as
(3.56) h g :=sup*{p € PSH(X,0) : ¢ <0,¢|p < —1}.

ProrosiTiON 111.2.35. Let E C X be a non-pluripolar Borel set. Then
(1) Vig € E>X(X,0).
(2) 9”5 , s supported on E.

PRrROOF. (1) To see that Vj , € PSH(X, 0), it suffices to prove that
sup Vi g < 00.
e

If this is not true, by Choquet’s lemma, we can take an increasing sequence ¢; €
PSH(X, ) (j € N), such that

@il <0, Vg =sup*y;, SUp ;> 27,
J

Let -
V=5 — SUPPj 5 b= 2774,
j=1
Then by Theorem 1 € PSH(X, 6). Moreover,
K C{y =—-oc0}.

Hence K is pluripolar, this is a contradiction.
Now by definition,
(3.57) Vo <Vgy.

Hence Vg ¢ has minimal singularity.
(2) Tt suffices to prove that for any x € Amp(a) N (X — E), there is a neigh-
bourhood B of x, such that

7&5,9 |B =0.
By Choquet’s lemma, take an increasing sequence ¢; € PSH(X,0) (5 € N), such
that
Vo= SI;p* @i, @il <0.

We take the neighbourhood B C Amp(a) N (X — E) of = as a small enough ball
in a coordinate neighbourhood. We solve the following Dirichlet problems of i, €
PSH(B, 6):
91’/3], =0, in B,
{ ’l/)j = (pj , on aB .
(add ref)
Then we get an increasing sequence ¢; > ¢; converging to Vi , a.e.. So

6}?,9|B =0.
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d

PROPOSITION 111.2.36. Let E'C X be a Borel set. Then hy, , € PSH(X, 0) and
9,’;;3,0 is supported on {hf , = 0} U E. Moreover,
Vi—1<hyy<Vp.

PROOF. The proof is similar to that of Proposition and we leave it to
the readers. O

I11.2.2. Monge—Ampeére capacity.

DEFINITION II1.2.9. Let £ C X be a Borel set. We define the Monge—Ampére
capacity of £ as

(3.58) Capy(E) := sup{/ 0 : ¢ € PSH(X,0),Vp - 1< ¢ < Vg} .
E
LEMMA 111.2.37. Let E C X be a Borel subset. Then
(3.59) Capy(E) = sup {Capy(K) : K C E,K is compact} .

PrOOF. By definition,
Capy(E) > Capy(K)

for any compact subset K C E. Conversely, for any £ > 0, we take ¢ € PSH(X, 6),
Vo —1 < ¢ < Vp, such that

/E 0 > Capy(E) — €.

Take a compact subset K C F, such that

/9;2/ 0, — e > Capy(E) — 2¢.
K E

Take sup with respect to ¢, then Capy(K) > Capy(E) — 2. Let ¢ — 0+ to
conclude. g

PRrROPOSITION II1.2.38. Let E C X be a Borel set. Then

(3.60) Cano(B) = [ 03, < [ (Vo=hio)op,
Moreover. when E is either compact or open, we have
(3.61) Cano(E) = [ (Vo= hi) 03, .
PROOF. Since h}; 4 is a candidate in the sup of (3.58), we have
(3.62) Capy(E) > / . .
E E.0

Let A = {hgo < h},}. Then A is a pluripolar set by Bedford-Taylor’s
theorem. By Proposition

(3.63) Wyolo-a=Ve—1.
Let ¢ € PSH(X,0), Vg — 1 < p < Vp. For any ¢ € (0,1), let
e =(l—e)p+eVy.
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Then by (3.63),
E—-AC {h*E,O <Sﬁs}'

Hence by Theorem and Proposition

(1—6)”/0”§/ 0”23/ on. :/ o
E v {h*E,9<505} v {hE79<LP6} hE,B E hE,G

Let € — 04, we find
fo o= ),

Take sup with respect to ¢, we find

Capy(E) < / O -
o

Hence together with , we conclude the equality part of . The inequality
follows immediately from Proposition [[T1.2.36]and (3.63).

When E is compact, follows immediately from the first part, Proposi-
tion [[T1.2.36 and (3.63)).

Now assume that F is an open set. Let K; (j € N) be an increasing sequences
of compact sets with

E =

T

K;
1

J

and such that K; C ID{]‘+1.

Then we claim that hj. , decreases to hp 4. It is immediate that hj. , is
decreasing and is always greater than hy ,. Hence it suffices to show that h}jﬂ
decreases to h; 5 a.e.. Again, by Bedford-Taylor’s theorem, it suffices to show that

sup*{p € PSH(X,0) : 0 <0,¢|k, < —1}
decreases a.e. to

which is obvious.
We already know that

Capo(F) = [ (Vo= Hie, ),
By Lemma [[TT.2.37 and our assumption on K, we know that
Capy(F) = lim Capy(Kj).
]400

On the other hand, by Theorem

. _ * n _ _ * n
Jlggo X(Ve Wi, 0) Pic o —/X(Ve 7.0) Ry

Hence we conclude (3.61) in the case where E is open. O

THEOREM II1.2.39. Capy is a reqular Choquet capacity, namely an increasing,
subadditive map from the Borel algebra to [0,00), such that

(1) Capy(0) = 0.
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(2) Let E; C X (j € N) be an increasing sequence of Borel sets. Let E =

U; Ej, then
(3.64) Capg(E) = lim Capy(Ej).
j—o0
(8) Let K; C X be a decreasing sequence of compact sets. Let K = N,;Kj,
then
(3.65) Capy(K) = lim Capy(K;).
Jj—o0

In particular, for each compact K C X, we have
(3.66) Capy(K) = inf {Capy(U) : K CU,U C X s open} .

PROOF. By definition, Capy is increasing, subadditive and (1) is satisfied. Now
we verify (2). We only have to prove that

Capy(E) < .lim Capy(Ej)
In fact, for any € > 0, take ¢ € PSH(X, 0), Vp — 1 < ¢ < Vp, such that

Capy(E / 0, +¢.

By dominated convergence theorem, we can take jy large enough, so that
/ 05 < / 0, +e.
2 Ejqy

Capy(E )<Cap9( i)+ 2.

Let 5 — oo then let ¢ — 0+, we conclude .
Let us verify (3). In fact, it is not hard to verify that h}‘(jﬁ increases to hj g

e.. (add details) By Proposition [[I1.2.38]
Cona(K) = [ (Vo= Hic o) O3,
Let j — oo and apply Theorem we find
Jim Cany(K,) = [ (Vo= Hic) b1,

Again by Proposition [[T1.2.38] we conclude (3.65]).
Finally, (3.66) holds for general regular capacity. ]

Then for any j > jo,

I11.2.3. Capacity and finite energy class.
ProprOSITION I11.2.40. Let ¢ € PSH(X,0). Assume that

(3.67) / t" Capg{p < Vp —t} dt < c0.
0

Then ¢ € EY(X, 0).
PROOF. For each C' > 1, let
¢C =9V (Vs -0)
be the canonical approximations of ¢. Then

Yo =C7l% + (1-C7Vy
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is a candidate for the sup term in (3.58)), hence for any Borel set £ C X,
C™"05c(E) <0y, (E) < Capy(E).

Hence by (3.67)),
/ dt/ ezc < 0.
0 {p<Vp—t}
It follows from Corollary [[I1.1.17| that ¢ € £1(X, 0). O

ProrosiTiON II1.2.41. For each C > 0,

sup / t Capy{p < Vg —t}dt < c0.
peel(x,0) Jo

ProoF. Fix ¢ € £L(X,0).
Pick ¢ € PSH(X, 6), so that Vp — 1 < < Vj. For t > 1,

{e<Vo-2} C{tTlo+ (1 -t Vo< -1} C{p<Vo—t}.
So by Theorem [[T.4:28] we have

0” S/ 9”71 1— —1 V4
/{¢<V9_2t} ¥ (o<Vo—t} tTle+(1-t=1)Vp

<(1- t’l)/ oy, +Cit ! Z/ AN
{p<Vp—t}

j=17{e<Ve—t}

where C1 is a constant independent of the choice of ¢. Hence

n

tCapy({o < Vo -2t} <t o401y | AL
{p<Vp—t} j=1 {p<Vp—t}
So
(o] o0
j n—j 1 2 nn
| tCapgfp < Vo —thdt < Cy Y (Vo — ) 6] A6}, t3 X(Ve — )"0y, .
j=1

Since E(p) > —C, we know that there is a constant Cy > 0 independent of ¢, such
that

- 1
/ tcape{<ﬂ<V9—t}dt§02+§/(Ve_@)z o
0 X

By Theorem 07, has bounded density. So it follows from uniform version of
Skoda’s integrability theorem that RHS is uniformly bounded. O

PROPOSITION I11.2.42. Let ¢ € £(X,0);. Lett >0, § € (0,1), we have

1
(3.68) Capg{p < Vp—t -9} < 5 0
{p<Vo—t}

PRrROOF. Take ) € PSH(X,6), Vo —1 < ¢ < Vjp, then
{o<Vo—t—6tC{o<dp+(1-06)Vy—t} C{po<Vy—t}
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So by Theorem [[T.4:28]

to<vit-sr ' Jp<sprasye—ny VTN

J %
{p<éyp+(1—6)Vo—t}

< / o
{o<Vo—t}

Take sup with respect to ¢, we conclude (3.68|). O

<

PROPOSITION I11.2.43. Let pp € M (X) be a non-pluripolar measure. Then
there exists a probability measure v, such that

n<<y, v<Cap.
PRrROOF. Consider the following set
L:={veP(X):v<Cap}.

We shall prove that L is closed.
By regularity of both v € P(X) and Cap, it suffices to prove that if v, € L,
v, = v € P(X), the for any open set U C X,

v(U) < Cap(U).
This is the so called Portmanteau theorem.

Now L is closed and is obviously convex, we could apply Theorem ?77 so
decompose

p=fr+r,
where f € L'(v), 7 L L. Since p is non-pluripolar, we conclude that 7 = 0. (I

I11.2.4. Alexander—Taylor capacity.

DEFINITION II1.2.10. Let £ C X be a Borel set. The Alexander—Taylor capacity
of E is defined as e M¢(E) where

(3.69) My(E) :=sup Vg .
X

PRrROPOSITION II1.2.44. There is a constant A > 0, such that for any Borel set
E C X, when My(E) > 1,

3.70 wola N\ A
(3:70) (Cape(E)) < Mo(B) < Capy(E) -
If My(F) <1, then

(3.71) Capy(E) =vola.

PROOF. By LemmallII.2.37] it suffices to consider the case where E is compact.
Let M := My(E).
Assume that M < 1. Then V3, — 1 is a candidate in defining Cap,(FE) in

EF). So

Capy(E) > /EH"E*YQ = /)(9@139 =vola,
where the second equality follows from Proposition [[TT.2.35
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Assume that M > 1. Then
1

VefléM

1
Vi 1-— | Vp—-1<V
E,9+< M> 0 < Ve,

So by Proposition

Capy (E) = /Eaﬁvéﬁ(l—ﬁ)ve =3 /E@Vae =i /X"v,;,e = 3 ol
The left-hand part of (3.70) follows.
Now we prove the other part. By Proposition [[IT.2.36]

)
M

1, 1
<MVE79+ <1 - M> Vo — 1> e < -1

on F — A, where A C X is a pluripolar set. So
hEZMVE,0+ 1—M Vo — 1.
Hence by Proposition [[T[.2:38]
* n 1 * n
Capy(E) = /X(VH —hp)Oiy, < 57 /X(VG — Ve +M)0y. .

Hence by Lemma and Theorem there is a constant A > 0, such that

1
Vi 1—— | Ve —1<V,
E,9+( M) 0 <Vy

and

MCapa(E)S/(%*VE,aJrM) 68+As/<wfvg,e+M>w+A,
X X

Now
sup (Vo + Vi — M) <0,
X

So
U

ProrosiTiON 111.2.45. Let E C X be a Borel set. Then the following are
equivalent:

(1) E is a pluripolar set.
(2) Capy(E) = 0.
(8) My(E) = 0.

PROOF. (1) implies (2). This follows immediately from definition.

(2) implies (1). Assume that Cap,(E) = 0.

Step 1. Assume that # = w is a Kédhler form. This result is a classical theorem
in Bedford—Taylor theory. To be added later.

Step 2. In the general case, Fix a Kéahler form w > 6 on X. If F is non-
pluripolar, by Step 1, Cap,(E) > 0. By Lemma there is a compact set
K C FE, such that Cap,,(K) > 0. In particular, K is non-pluripolar.

Since 0 < w, we have

PSH(X, 0) C PSH(X,w).
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So there is a constant C' > 1 such that
Vo < Vfge < V;g,w <Vyp+C.
Then

1 1
)= (1 - C> Vo + 5Vico — 1 € PSH(X,0)

is a candidate in the sup term of (3.58). Hence by Proposition [[I1.2.35

1 1 1
C E)>C K)> 0y > — 0y =— [ 0y« = ——vol 0.
apy(E) > Capy( )_/K v = O"/K o C"/X Vio = om VO o>

This is a contradiction.
(1) implies (3). This is obvious.
(3) implies (2). This follows from Proposition [II1.2.44 |

THEOREM II1.2.46. Let a1, a9 be two big classes with smooth representatives
01,05. Then there is a constant C(61,63) > 0, such that
(3.72) C~ ! Capy, < Capy, < C’Cap;{"
Proor. Take a Kéhler form w > 0. Then
PSH(X,6,) C PSH(X,w).

By Lemma [[I1.2.37] it suffices to prove (3.72)) for a compact set K C X. Take
¥ € PSH(X, 2) with analytic singularity with

X —Ampas = {¢p = —o0}
and such that
Oy > cw, supyp =0
X
for some € > 0, the existence is guaranteed by Boucksom’s theorem (ADD REF).
Let U := {¢) > —1}. Then U is non-empty and open. Define
o =19 +eVy i € PSH(X, 0s).

By Proposition [[I1.2.35] ¢ < 0 on E — A, where A C X is a pluripolar set. So by
(3-55),

$<Ve -
Taking sup of this expression on U, we find

Mo, (E) > supp > esup Vg, 5 — 1.
U U ’

On the other hand, Vj, p —supy Vg, p <0 on U, so
Vore =S Vo, 5 < Vo
So
]\492 (E) Z E(Mgl (E) — M91,U) —1.
It follows from Proposition [[IT.2.44] that
Capy, (E) < C Capy, (E)"/™.
This proves one part of (3.72]), the other follows by symmetry. ([

PROPOSITION II1.2.47. Let pu € ./\;lJr(X). Assume that one of the following
condition holds:

(1) p is absolutely continuous with bounded density.
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(2) p =0y for some ) € EY(X, ).
Assume that Ly, is finite on PSH(X, ). Let 0 < f € LP(X,u) (p > 1). Then
(3.73) fu < CCapy,

where
C=-1)""CillflLrx.)
where C; = C1(0, 1) > 0 is a constant.

Proor. By Lemma it suffices to prove that for each non-pluripolar
compact set K C X,
(3.74) / fdp < CCapy(K)?.

K
We claim that there is a constant v = v(0, u),C = C(6, ) > 0, independent of K,
such that
/ exp(—v Vi o) < Cexp(—v~ " My(K)).
X

In Case (1), we apply the uniform Skoda theorem. In Case (2), we apply Corol-
lary just notice that Viz y > Vi g, hence E(Vy 4) > 0 by Proposition

t follows from Proposition and Bedford—Taylor’s theorem that Vico =
0 on K up to a pluripolar set, so

p(K) < Cexp(—v~ My(K)).

So by Hoélder’s inequality,

/ fdp <exp (—p_lMe(K)> ~
K vp

We may assume that My(K) > 1. Otherwise the proof of Proposition [[II.2.44
implies that Capy(K) = vol a. The result is trivial. By Proposition [IT1.2.44} (3.74)
follows. O

ITI1.2.5. Comparison with Bedford—Taylor capacity. Let (U;);=1,.. .~ be
a finite open covering of X by strictly pseudoconvex domains with smooth bound-
aries contained in a coordinate chart. Let p; be a smooth strictly psh function
defined in a neighbourhood of U; with U; = {p < 0}. Fix § > 0. Let

6

Let x; be a partition of unity subordinate to U;. For each Borel subset £ C X, we
define

N
Cap(E) =Y Cap(ENU},Uj).
j=1

By |GZ17] Proposition 4.18, for two different choices of § and U, the resulting
Cap will bound each other by a constant multiple.

THEOREM 1I1.2.48. Let w be a Kahler form on X. There is a constant C' > 1
such that

C~! Cap(E) < Cap,,(E) < C Cap(E).
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PROOF. It suffices to prove that for any j = 1,..., N and for each Borel set

ECUY,
C~! Cap(E, U) < Cap,,(E) < C Cap(E,U).
Since we work in a fixed U;, we omit j from the subindex. After passing to a
finer covering, we may assume that w = dd“) for a psh function ¢ defined in a
neighbourhood of U. Let C; > 1 be a constant such that
-C1 <Yl <.
Now take ¢ € PSH(X,w), —1 < ¢ < 0. Then
¢ :=(2C1) M (¢ + ¢ — C1) € PSH(U)
and —1§1§§0. So
Cap,(E) < (2C1)" Cap(E,U) .

For the reverse inequality, let x € C°°(X) N PSH(X,w) be a non-positive function

that vanishes outside U and strictly negative on U. Fix ¢ > 0 so that x < —¢ on
U°. Let n € PSH(U), —1 <1 < 0. Define

n(w) +1—(z) + C4

-1 g

5120, , reU°’,
p@)=13 (n@)+1—2)+C1 2 e
( 57120, 1)V EX(x) , veU-U",
0, reX-U.

One can verify that ¢ € PSH(X,2e~'w). Hence
1 n n
7/ (dd°n)™ < / ((2C1 +2) tw + dd%) " < / (267w +dd°)" < 277" Cap,, (E).
(2C1+2)" /g E B
Take sup with respect to 7, we find
Cap(E,U) < 2™(2Cy +2)"e~" Cap,,(F) .

IT1.3. Monge—Ampeére equation I. Existence and regularity

THEOREM I11.3.49. Let pn € My (X) with u(X) = vola. Then the followings
are equivalent:
(1) p =0y for some ¢ € EN(X,0).
(2) E*(p) < oo.

PRrROOF. (1) implies (2). By Proposition [[II.1.26
B () = ()~ [ (0=10)03.

The RHS is finite by Proposition [[IL.1.10]

(2) implies (1).

Step 1. We prove the theorem under the assumption that p < ACap, for
some A > 0.

In this case, we claim that L, : £'(X,0) — R and L,, is continuous.

In fact, by our assumption and Proposition [[II.2:41] for any C > 0,

oo
sup / tu{p < Vo —t}dt < o0.
pEEL(X,0)J0
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This implies immediately that L,, is finite on £L (X, #). It also follows that £E4(X, 0)
is uniformly integrable in the sense of Theoreml@l and hence L, is continuous
on E4(X,0).

Let p; € E1(X,0) (j € N) be a sequence such that

Fu(p;) = E*(1), SUp 9 = 0.

We may assume that
v; — ¢ € PSH(X,9).
Since L,, is continuous and since F is usc (Proposition , we find F,(p) =
E*(p). Hence p = 07, by Proposition
Step 2. Now we deal with the general case.
By Proposition we may write u = fv, where v € M (X), v < Cap,,
feLYv).
For any k € Z~g, set
pr = ¢ min{ f, k}v,
where ¢, > 1 is a normalization constant so that RHS has total mass vol a. Note
that for k large, we may assume that ¢, < 2, then

. < 2k Capy .
By the Step 1, there exists ¢ € (X, 6) such that
prk =05, S;p(pk =0.
Hence L, is finite on EY(X,0) by Proposition [[I1.1.21} By Proposition [I11.1.3()
there is a constant A > 0, such that

sup |L,, | < A+ ACY/?
£4(X,0)

for any C' > 0. Since pg < 2u, we thus find

sup |L,| <24 +2ACY2.
£L(X,0)

Hence there is a constant C' > 0, such that
E(ue) < C.

Now we claim that there is a constant C' > 0, such that
J(pr) < C.

In fact, by Proposition [[TL.1.26]

E* () = E(pi) — /X (o0 — Vo) 07 .

It follows from Proposition that
nE* () 2 J(pr) .-

Now by Proposition [[IL.1.27] after extracting a subsequence, we may assume that
©r — @ in L'-topology with ¢ € £1.
It follows from Theorem and the mass condition that p = 67. O

THEOREM II1.3.50. Let p € My (X), u(X) = vola. Then there exists ¢ €
E(X,0), such that p = 07.
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ProoOF. By Proposition [II1.2.43] we may write 4 = fv, where v € /\;l+(X),
v < Capy, f € L'(v). For each j > 0, let ¢; be the constant such that

/ ¢; min{ f, —j}v = vola.
X
For j large enough, we may assume that 1 < ¢; < 2. Note that ¢; — 1 as j — oo.
By Theorem [[11.3.49 Step 2, we can take ¢; € £'(X, ) such that
05, = c¢;min{f, —j}tv, s;pgpj =0.

By extracting a subsequence, we may assume that ¢; — ¢ € PSH(X,0). By
Theorem and the mass condition, we conclude that p = 6. (]

LEmMMA II1.3.51. Let f : (0,00) — (0,00) be a decreasing, right continuous
function. Assume that there is a constant C > 0 such that

C
f+8) < S02,
foranyt >0, 6 € (0,1). Assume furthermore that

1
flto) < Bl
for some ty > 0. Then

flto+4C) =0.

For a proof, see [EGZ09] Lemma 2.4, Remark 2.5.

o

THEOREM II1.3.52 (Kolodziej estimate). Let up € My (X). Let a € [0,1),
A>0. Let 0 < fe LP(X,p) (1 <p<o0). Let p € E(X,0). Assume that

(3.75) 492 < fu+ a&@e .
Assume one of the following conditions holds

(1) p= o0 and p =0y for somen € (X, 0).

(2) w is absolutely continuous with bounded density.
Then there is a constant C = C(0, p,a), such that

(3.76) p—supyp >V = Ol fllzex ) -

PrOOF. We may assume that supy ¢ = 0. For ¢t > 0, let

g(t) == (Capy{ep < Vo — t})"/" .

It suffices to prove that g(¢t) = 0 for t < —C for some C as in the statement of
the theorem. Since it will then follow from Proposition [III.2.45| that (3.76]) holds
outside a pluripolar set. Hence it holds everywhere.

By (3.75) and Theorem [[1.4.28] for any ¢ > 0,

/ o< | Jdu+a / o,
{p<Vo—t} {p<Vo—t} {p<Vo—t}

< / fdu+ a/ 0 -
{p<Vp—t} {p<Vo—t}

1
/ o7 < / fdu.
{p<Vo—t} L—a Jipavo—t}

So
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By Proposition [[T1.2:42]
1

(3.77) gt +0) <51 o < 7/ Fdu.
to<vo—ty ©~ 6(1=a) Jipcv,—1y

By Proposition [I11.2.47} there is a constant Cy(0, i, a) > 0 such that
C
g(t+0) < 2g(t)*, 6€(01).

For ty > 0,

Vo—o 1 1/p 1/q
/ fdus/ fdu§</ f”du) (/Mso)qdu) ,
{p<Vo—to} {e<Vo—to} 10 to \Jx X

where ¢ is the conjugate index of p. We take ¢y large enough, such that
1—-a

fdv < .

/{w<Veto} (2Co)"

Note that ty can be taken to be of the form

to = Col fllzr(x ) »

where Cj depends only on 6, i, a. It suffices to control

/X(Ve —¢)?dp

from above in terms of 6, u,a. In case (1), we have ¢ = 1, so this follows from
Proposition [[T1.1.23|and Proposition [I11.1.22] In case (2), this follows from uniform
Skoda theorem (ADD DETAILS). By (3.77),

glto+1) < (2Co) 7"

By Lemma [[11.3.51] (3.76) follows. O
COROLLARY I11.3.53. Let p€ Mo (X). Let 0 < f € LP(X,p) (p > 1). Assume
that
/ fdp =vola.
b's

Let p € £(X,0) be a solution to
(3.78) 05 = fu.
Assume one of the following conditions holds
(1) p =00 and p =0y for somen € £°(X,0).
(2) w is absolutely continuous with bounded density.
Then

(3.79) o —supp > Vo — Ol f]1"

where C = C(0, u,p) > 0 is a constant.
In particular, ¢ € £ (X, 0).

Now we consider the Aubin—Yau equation.
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THEOREM I11.3.54. Let pn € Mo (X), u(X) > 0. Let A > 0. Then there is a
unique ¢ € EY(X,0) such that

(3.80) 0 = e .

Moreover, if p is absolutely continuous with LP-density (p > 1), then there is a
constant C = C(0,du,p) > 0 such that

p—supp>Vy—C.
X
REMARK I11.3.4. If (3.80) holds for ¢ € £(X, ). Then
/ (Vo — )01 < 7/ e dp.
b's b's
As —ze® is bounded from above when z is bounded from above, we conclude that
/ Vo — ) 0, < oo.
b's
Hence by Corollary [[I11.1.17} » € £1(X, ).
PROOF. Let ¢; € £1(X,0) (j € N) be a sequence such that
(3.81) lim F, z(¢j) = sup Fy.
j—oo £1(X,0)

The value lies in (—o0, 00| by Remark [[II.1.3
We claim that supy ¢; is bounded from above. Otherwise, by extracting a

subsequence, we may assume that

sup ¢; — 00.
X

By further extracting a subsequence, by Theorem [.T.2] we may assume that ¢; —
supy ¢; — ¥ € PSH(X, ). Since p is non-pluripolar and has positive mass, we

find
5::/ eMdp > 0.
X

/ e i dp > eeSUPx Pi
X

On the other hand, by Proposition [[IL.1.13]

Hence

E(yp;) < volasup ;.
X

Hence
Fua(ps) < VOlOle}l(p g — Xy g

This is a contradiction.

Now by extracting a subsequence, we may assume that ¢; = ¢ € PSH(X, ).
Since ¢ — [ €*? dyu is continuous (ADD PROOF) and E is usc (Proposition,
we conclude that ¢ € £Y(X, ) and that

FM,A(%@): sup Fyx.
EN(X,0)

)

We conclude (3.80)) by Proposition [[11.1.34
The finial claim follows from Corollary [I.3.53] O
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PROPOSITION II1.3.55. Let 1 € M4 (X). Let A > 0. Let ¢ € £°(X,0),
Y e E(X,0). Assume that

(3.82) 05 < e, 0y, > My
Then
p=9.

REMARK IIL.3.5. In Corollary [IT.Z.65 we will prove that one can weaken the
assumption ¢ € £%°(X, ) with ¢ € £(X,0).

ProOF. By Corollary [I1.4.32] and (3.82)),

/ e)”bdug/ %S/ GZS/ e)“odug/ e)‘wd,u.
{p<y} {p<y} {e<y} {p<v} {e<y}

So equality holds. In particular, from the last two terms, we find ¢ > ¥ p-a.e.,
hence 03-a.e.. Hence ¢ > ¢ by Theorem O

LEMMA II1.3.56. Let A > 0 be a constant. Let @, € £%°(X,0). Then there is
v € E%(X,0), such that

(3.83) 0r = X072 gn 4 A0V 7
PRroOF. For each j > 1, consider the canonical approximations
Pj = ma’X{@’ _.]} ’ wj = ma‘X{w7 _.]} .
Let
Wi = e Mi 05 + e i Oy -
Then 11;(X) > 0. By Theorem [[I1.3.54] there exists v; € (X, 6), such that
(3.84) 0n = eNip .
Note that by Proposition [TL.1.21]
PSH(X,0) C L'(X, ;).
Hence by Corollary [[11.3.53] ¢; € £%°(X). Take a constant C' > 0 so that

o — 9 <2C.

Let
nz#—C—nlogQ.

Then n € £*°(X,0) and

977; Z e’\",uj .
by Proposition v; = n and v, is decreasing in j, let

v = lim ;.

J—0o0

Then v > 1, hence v € £°(X, 0). Now (3.83)) follows from (3.84) by letting j — oo
using Theorem [[T.2.8) and the dominated convergence theorem. O
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II1.4. The rooftop operators
THEOREM I11.4.57. Let ¢, € PSH(X, ). Assume that ¢ N1 # —oo, then
(3.85) 0ory < Lipnv=p10 + Lignu=y} 0y -

PROOF. Step 1. Assume that (3.85]) holds when ¢, € £ (X, 0).
For each k > 0, define

M=o Nk, N=9pAY.
Then
97772 = ]l{nkzipk} ng + 1{nk:wk} 917% :
Then for kK > C > 0,
]]'{77>V9_C} agk\/(VQ—C) :]1{77>V9_C} 0:}7‘k
<Lin>ve—kyn{me=en) egk + 1> ve—kyn{ne=vi} %k
=L vo—kyntm=ent 0o + Lin>vo—kpnim=vi} 04
<eAl—ek) 93 + eAlm—r) 017} ,
where A > 0 is an arbitrary constant. Note that 7, decreases to 7. Let k — oo and
apply Theorem [[T.2.8] and dominated convergence theorem,
Li>vi—cy Onvivy—cy < €179 05 + A0V g
Let C' — oo, we find
n A(n— n A(n—v) gn
97] <e (m ¢)9w+e n )gw.
Let A — 0, we conclude ([3.85)) by monotone convergence theorem.
Step 2. We prove the theorem assuming that ¢, 9 € £*°(X,0).
We may assume that ¢, < 0.
By Lemma [III.3.56] there exists n; € £%°(X,0) (j € N), such that
(3.86) 0y = el (=) o + eI (=) 07 .
It follows from Proposition that 7; is increasing and 7; < ¢, n; < ¥. Let
Moo € PSH(X, 0) the a.e. limit of 7;, then 1, € £(X,6). Hence
Noo S PAY.
We claim that equality indeed holds. Fix € > 0, then by (3.86]),

/ sz S/ 9% < 2volae ¢,
{Nee <Np—e} {nj<end—e}

Let j — oo, by Corollary [[T.2.9]

[ o
{Noe <(pAY)—e}

" =0.
j{m«K@M)} e

Hence 7o = ¢ A9 by Theorem
Now (3.85) follows by letting j — oo in (3.86) and applying Theorem [I1.2.8

and monotone convergence theorem. ([l

Let € — 04, we find
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COROLLARY II1.4.58. Let U C X be a plurifine open subset. Let @, €
PSH(X,0). Assume that ¢ A # —oo. Let pp € My (X). Assume that

Lbg <p, Lyby <p.
Then
]IUGZ/VZ} S .

PrOOF. Replacing p by 1x_pu, where P = {¢ = ¢ = —c0}, we may assume
that u(P) = 0. Now the function r — u{p < ¢ + r} is increasing and bounded, so
there are at most countable 7 so that

e=v+r}>0.
So we can take a sequence ¢; > 0 (i € N) decreasing to 0, such that
o =1 —e}=0.
By Theorem [[IT.4.57]
LyOpn(p—e) < -

Let i — oo, by Corollary [T.2.9]
]IUQZ/W/’ S .
(]

CoroLLARY II1.4.59. Let U C X be a plurifine open subset. Let ¢,¢; €
PSH(X,0) (j € N). Assume that there is C > 0 so that |¢p — ¢;| < C. Let
€ My (X). Assume that

(3.87) ILUGZJ, <pu.
Then
Ly Ofim , < Lv p
PRrOOF. For j,k € N, let
Pjk = PjN N Pk -

Then by Corollary
]IUQZJ,’ L S
Let ¢; = infy, ¢; . Then by Corollary
]lUGZj <p.
Let ¢ = sup™ ¢;, again by Corollary
]lUGZ <.

THEOREM I11.4.60. Let ¢, € PSH(X,0). Assume that [¢] < [¢]. Then

Oioine < Lilplnp=y) 03 -
PROOF. We may assume that ¢, < 0. By Theorem for any t > 0,

Oortiny < Lortymp=ptty O + Litortynp=y} 05 -
Observe that
{le+t)n=p+t} C{o+t<Vp}.
So as t — oo, the first term vanishes. Now we can apply Corollary [[1.2.9] and
dominated convergence theorem to conclude. [



92 3. ABSOLUTE PLURIPOTENTIAL THEORY

COROLLARY I11.4.61. Let ¢ € PSH(X,0), then

(3.88) Oloiav, < Lijplavy=0y 0" -
PRrOOF. This follows from Theorem [[11.4.60l and Theorem |

LEMMA T11.4.62. Let ¢ € PSH(X,0), [ 07 > 0. Let B C X be a Borel set
with positive Lebesque measure. Then there is ¢v € PSH(X,0), such that

M=M,L%>a

PROOF. Let w be a Kéhler form on X. By Theorem and Corol-
lary [IT1.3.53] there exists n € £°(X,0), such that

n 1
o = Jpwn

]len.

For each C > 0, let
=0V (Vo —C).
Note that [¢“] = [¢]. By Theorem [[11.4.57

O <Lipo=prcy g + Lige=v,-cy 0

n 1 n
S]l{di-‘rC'STI} H«p + f o ]l{ApC:ngC}ﬁBw .
B

on S/ o .
/X,B * = Jpzn-cy

As C — oo, the RHS tends to 0. In particular, we can achieve that

o </¢9" ,
/XfB #° XLPO

since by Theorem and our assumption, RHS is positive. Thus

0" >0.
fy e

THEOREM I11.4.63 (Domination principle. II). Let ¢, ¢ € PSH(X,6). Assume
that [¢)] < [¢] and that [y 0} > 0. Assume that

(3.89) Yv<y, 0,-ae.,

Hence

O

then ¢ < .

PRrOOF. It suffices to prove A := {¢ < 9} has zero Lebesgue measure by

Proposition [.T.1}
Assume that A has positive Lebesgue measure. Then by Lemma there
exists n € PSH(X, 6), such that

M:M7A%>U

It follows from LemmallI.4.34/and (3.89) that [, 6] = 0. This is a contradiction. [J
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THEOREM II1.4.64 (Domination principle. III). Let ¢,v € £(X,0). Assume
that

(3.90) Yv<¢p, O,-ae,
then ¥ < .
PrROOF. Step 1. We prove the theorem under the additional assumption that

o] = [¥].
Let A = {¢ > ¢}. Let n € PSH(X,0), [n] = [¢]. By Lemma [[I.4.62} it suffices

to prove

(3.91) /A or = 0.

We may assume that n < ¢, 7 < 1. We claim that for any e € (0,1), (1—&)yp+en €
E(X,60). In fact, by assumption in this step,

[o] 2 [(1 =)y +en].
We have
{ep<(l—-e)p+ent CA.

By Theorem [[T.4:28]

en 9“§/ o . g/ ang/m:o.
/{w<(1—6)w+617} "7 Jipcteaypreny CEUTIVE T o cmapremy © T Ja f

Let € — 04, we conclude (3.91)).

Step 2. In general,
0} = / 02 =0.
/{w<¢vw} v {p<ab} ’

Hence by Step 1, ¢ = ¢ V 4. Similarly, ¥ = ¢ V 1. We conclude ¢ = 1. O

COROLLARY I11.4.65. Let u € M (X). Let A\ > 0. Let o, € £(X,0). Assume
that

(3.92) OZ <My, 0y > My
Then
p=9.
PRroor. The proof is the same as that of Proposition One just has to
replace Theorem [[T.4.35] by Theorem [[TT.4.64] O

THEOREM I11.4.66. Take ¢ € PSH(X,0). Then the followings are equivalent:
(1) p € E(X,0).
(2) [p] N Vo =Vy.
Assume that these conditions holds, then for any ¢ € £(X,0),
(3.93) [l Ap =1
Proor. (1) implies (2). Let ¢ € PSH(X,0), ¢» < 0. By Corollary [I11.4.61
/ [T;]/\Ve S/
{lelAVe<y} {le]AVe=0}n{[p]A Ve <}
By Theorem

0" =0.

Y <[p] A Vp.
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So [p] AV = V.

(2) implies (1). This follows from Corollary [I1.3.26
It remains to prove (3.93). By definition

[p] AP <.
For the reverse inequality, note that by Theorem [[IT.4.60]

o =0.
/[90]/\¢<¢ elny

By Theorem [[11.4.64} it follows that [p] A ¢ > 9.

IT11.5. Monge—Ampere equation II. Uniqueness

THEOREM IIL.5.67. Let ¢,¢ € £(X,0). Assume that
(3.94) 05 =0y, .
Then ¢ — 1 is a constant.

PrOOF. Let p=07.

We claim that there is ¢ € R, such that ¢ = ¢ + t, p-a.e.. Then we can apply

Theorem [[11.4.64! to conclude.

Assume that the claim were not true. Then for any ¢t € R, u{p = ¢ +¢} < 1.

Hence there is t5 € R, so that
0<pufe<typ+to} <1

The set of ¢t € R such that pu{¢ =1 +t} > 0 is exactly the set of discontinuity of
t — u{p < 1+ t}, hence countable. So we may assume after a small perturbation

that
plo =1 +t} =0.
Replacing % by ¥ + tg, we may set tg = 0. Take ¢ > 1 so that
'uU) =1,
where U = {¢ < ¢}

According to Theorem [[I1.3.50, we may take n € £(X,#), so that

0, =c"lyp, supn=1.
X

For ¢t € (0,1), set
Uy ={(1-t)po+tVy < (1 —-t)+1tn}.

Observe that Uy increases to U — {n = —oo} as t — 0+. By Theorem [II.1.5

(3.95) 02 N0y >clyp, 65 NOLTF > g,

for any k =0, ...,n. By Theorem we indeed have
AYNETS

By Corollary

. 05" AN —typtin < /U 051 NG —typrev, -

This holds for all ¢ € (0,1), hence comparing the coefficients of ¢, we find

/ 02" A6y g/ 02" A by, .
U{, Ut
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By (99,

Let t — 0+,
en(U) < / 92_1 A by, .
U

Similar argument applies to V = {¢ > ¢}, we find

bu(V) < /Veg—l Ay, ,

where
bt u(V)y=1.
So
0 < min{b, ¢} < / 92_1 ANOy, =1.
X
But b, ¢ > 1, this is a contradiction. O

II1.6. Compactness in &£!

In this section, let X be a compact Kéhler manifold of dimension n. Let a be
a big cohomology class on X with smooth representative 6.

IT1.7. Finite energy classes
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