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1. Introduction

This is one of a series of notes prepared for a seminar on the toroidal compactifications of
Shimura varieties.

In this note, we explore the proof of the embedding theorem of Borel and Harish-Chandra.
Our main reference is the book [

Hel79
Hel79].

Theorem 1.1. Given any Hermitian symmetric space D = G/K of non-compact type, there
are holomorphic open immersions

D → p+ → Ď .

Here p+ is a complex linear space, the image of D in p+ is a bounded symmetric domain. The
space Ď is the compact dual of D.

The map D → p+ has an explicit formula Corollary 3.20. The image of the embedding
D → p+ is characterized by Hermann’s convexity theorem.

The embedding p+ → Ď realizes p+ as a Zariski open dense subset of Ď.
A typical example to be kept in mind of these embeddings is

∆ = {z ∈ C : |z| < 1} ⊆ C ⊆ P1 .

2. The general theory of Hermitian symmetric spaces

We briefly recall the general theory of Hermitian symmetric spaces. For the details, we refer
to [

Hel79
Hel79, Section VIII].

Definition 2.1. A Hermitian manifold (D, g) is a Hermitian symmetric space if for any x ∈ D,
there is a holomorphic geodesic isometry sx at x: sx : D → D is a holomorphic isometry such
that x is an isolated fixed point of sx.

Equivalently, this is equivalent to assuming the existence of sx at one x ∈ D and the condition
that D is homogeneous with respect to the group of holomorphic isometries.

A Hermitian symmetric space is irreducible if it is not isomorphic to the product of two
non-trivial Hermitian symmetric spaces.

Theorem 2.2. A Hermitian symmetric space can be uniquely decomposed as the product of
irreducible Hermitian symmetric spaces (up to permuting the factors). An irreducible Hermitian
symmetric space falls into one of the following categories:

(1) Euclidean: if it is isomorphic to Cn with the flat metric.
(2) Compact: if it is not Euclidean and has non-negative sectional curvature.
(3) Non-compact: if it is not Euclidean and has non-positive sectional curvature.
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Example 2.3. The following are typical examples:
(1) Euclidean: Cn with the flat metric.
(2) Compact: P1 with the usual metric.
(3) Non-compact: H (the upper half plane) with the Poincaré metric: 1

y2 dx ∧ dy.

We will say a Hermitian symmetric space is of compact type (resp. non-compact type) if all
of its irreducible factors are of compact type (resp. non-compact type).

We will focus on the non-compact type. Let (D, g) be a Hermitian symmetric space of
non-compact type. Fix o ∈ D.

Theorem 2.4. The following are equal
(1) the identity component of the group of holomorphic isometries of (M, g).
(2) the identity component of the isometry group of (M, g) as a Riemannian manifold;
(3) the identity component of the group of biholomorphic isomorphisms of M .

Moreover, this group is adjoint semi-simple ∗.

We write G for this group. Write K for the isotropy group of o ∈ D under the G-action.

Theorem 2.5. K is a maximal compact subgroup. We have a diffeomorphism G/K ≈ D. The
isometry so at o is a Cartan involution of G.

Assume that D is irreducible, then G is simple and the center of K is isomorphism to U(1).

Assume that D is irreducible. Geometrically, K are holomorphic isomorphisms of D fixing
the base point o ∈ D. An element z ∈ U(1) = Z(K) in the center of K corresponds to the
holomorphic isometries of D that fixes o and acts as multiplication by z in the tangent space.

More generally, when D is not necessarily irreducible, we can always find a map u : U(1) → G
sending z ∈ U(1) to u(z) ∈ G fixing o and acts as multiplication by z on the tangent space of
D at o. This map will be called Deligne’s map. Observe that u(−1) = so.

3. The embedding theorems

In this section, we give some details about the structure of Hermitian symmetric spaces
following Helgason.

Let (D, g) be a Hermitian symmetric space of non-compact type. Fix a base point o ∈ D.
Recall that G = Iso(D, g)+ is an adjoint semi-simple real Lie group. Since G is adjoint, there
is a unique algebraic R-group G such that

G(R)+ = Iso(D, g)+ .

3.1. Cartan decomposition and root decomposition. Let g be the Lie algebra of G. Write
K = Ko the isotropy group of o so that D = G/K. The Lie algebra of K is denoted by k. The
geodesic symmetry at o induces a Cartan involution σ on g. In particular, we get the associated
Cartan involution:

g = k ⊕ p .

Recall that by definition, this means that k is the +1-eigenspace of σ and p is the −1-eigenspace.
†

Let c = Z(k) denote the center of k and let h be a Cartan subalgebra of k. Observe that
c ⊆ h

since h is self-normalizing. Observe that c contains the image of du hence non-trivial. In fact,
c is equal to the image of du by [

Hel79
Hel79, Proposition VIII.6.2] if D is irreducible.

We consider the compact dual
u = k + ip

∗An adjoint semi-simple Lie group is a semi-simple Lie group which has trivial center
†Intuitively, k corresponds to infinitesimal holomorphic isometries of D fixing o and p ∈ p = ToD corresponds

to an infinitesimal holomorphic isometry of D that translates D in the p direction.
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of g. Let τ be the conjugation of gC induced by u. The form Bτ : gC × gC → R defined by
Bτ (X,Y ) = −B(X, τY )

is strictly positive definite. Here B denotes the Killing form of gC.

Lemma 3.1. h is also a Cartan subalgebra of g.

Proof. We may assume that D is irreducible.
It suffices to show that h is self-normalizing.
Observe that Zg(c) ⊇ k by definition of c. But we know that Zg(c) ̸= g as otherwise Z(g) = c

will be non-trivial. But we have
Zg(c) ⊇ k .

Hence equality holds by the maximality of k among proper Lie subalgebras of g [
Hel79
Hel79, Propo-

sition VIII.5.1].
In particular, h is maximal abelian. It remains to show that each element x in h is diagonaliz-

able in the adjoint representation of g. But this follows from the fact that adx is skew-symmetric
with respect to Bτ . □

Write ∆ for the set of non-zero roots of gC with respect to hC. In other words, we have the
root space decomposition

{eq:rootgh}{eq:rootgh} (3.1) gC = hC ⊕
⊕
α∈∆

gα .

Observe that the decomposition
gC = kC ⊕ pC

is preserved by hC. It follows that each root α is either compact in the sense gα ⊆ kC or
non-compact in the sense gα ⊆ pC.

Definition 3.2. Let W ⊆ V be two finite dimensional R-vector spaces. Two given linear
ordering on V ∨ and W∨ are said to be compatible if any element in V ∨ that restricts to a
positive element in W∨ is positive.

It is easy to choose compatible linear orderings.
Suppose that we introduce compatible orderings on ic∨ and ih∨. Recall that all roots in ∆

are real-valued on ih by [
Hel79
Hel79, Lemma VI.3.1], so we get a notion of positive roots ∆+. Write

Q+ for the positive roots that do not restrict to 0 on ic. Write
p+ =

⊕
β∈Q+

gβ , p− =
⊕

β∈Q+

g−β .

Proposition 3.3. The spaces p+ and p− are both abelian subalgebras of gC and
pC = p− ⊕ p+ .

Moreover, both p− and p+ are invariant under ad kC. Moreover,
[p+, p−] = kC .

Proof. Consider a compact root α ∈ ∆, then [c, gα] = 0 by definition of c. It follows that
α|cC = 0. It follows that

p ⊇ p− + p+ .

Observe that α+β is clearly positive (negative) when restricted to ic where α is a compact root
and ±β ∈ Q+. So when α is compact, gα preserves p±. It follows that p± are both preserved
by ad kC.

To see that p+ is abelian, take β, γ ∈ Q+. We need to show that
[gβ, gγ ] = 0 .

There is nothing to prove if β + γ is not a root. Otherwise, it is in Q+. But we know that
[gβ, gγ ] ⊆ [p+, p+] ⊆ kC .

It follows that [gβ, gγ ] = 0. A similar argument shows that p− is also abelian.
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Finally, we need to show that pC = p− +p+. We may assume that D is irreducible. We write
g+ = p− + p+ + [p+, p−] .

We claim that g+ is an ideal in gC. But recall that gC is a simple Lie algebra, which implies
that g+ is either 0 or gC. The former is clearly impossible. Thus

p− + p+ + [p+, p−] = gC .

Observe that [p+, p−] ⊆ kC, our desired result thus follows.
It remains to prove the claim. We write q for the orthogonal complement of p− + p+ in pC

with respect to Bτ . Observe that it suffices to show that
[p+, q] = [p−, q] = 0 .

We only prove the former, as the latter can be proved similarly. Take T ∈ kC, X ∈ p+ and
Y ∈ q. But we have τT ∈ kC and τ [X, τT ] ∈ p−. Thus

Bτ ([X,Y ], T ) = −Bτ (Y, τ [X, τT ]) = 0 .
It follows that [p+, q] = 0. □

Corollary 3.4. A root α ∈ ∆ is compact iff its restriction to ic vanishes.

Remark 3.5. In fact, we can make the choice of positive roots more canonical. By choosing the
ordering corresponding to the Weyl chamber du(i) ∈ ih, we may assume that all roots in Q+
are positive and all roots in Q− are negative.

3.2. Maximal split torus. Next we want to choose a special maximal abelian subspace of p.
If Q ⊆ Q+ is non-empty, let

pQ =
∑
γ∈Q

(gγ + g−γ) .

Let β be the lowest root in Q and let Q(β) denote the set of all γ ∈ Q not equal to β while
strongly orthogonal to β (in the sense that γ ± β ̸∈ ∆). For each α ∈ ∆, choose a non-zero
vector Xα ∈ gα. Let s be the R-rank of G, namely, the dimension of any maximal abelian
subspace a of p. Recall that s is equal to the rank of the maximal split torus in G.

lma:centralizerXbpXmb Lemma 3.6. We have
ZpQ(Xβ +X−β) = C(Xβ +X−β) + pQ(β) .

Proof. We only have to prove the ⊆ direction.
Let X ∈ pQ and let Q′ = Q \ {β}. Write

X = cβXβ + c−βX−β +
∑

γ∈Q′

(cγXγ + c−γX−γ) .

We compute [X,Xβ +X−β]. Under the root decomposition (
eq:rootgheq:rootgh
3.1), the hC component is given by

(cβ − c−β)[Xβ, X−β] .
Now we assume further that X ∈ ZpQ(Xβ +X−β). This implies that cβ = c−β and hence∑

γ∈Q′

(cγXγ + c−γX−γ)

commutes with Xβ +X−β. Using the fact that p± are both commutative, we find∑
γ∈Q′

(cγXγ + c−γX−γ) , Xβ +X−β

 =
∑

γ∈Q′

(cγ [Xγ , X−β] + c−γ [X−γ , Xβ]) = 0 .

We claim that this implies that
cγ [Xγ , X−β] = 0 , c−γ [X−γ , Xβ] = 0

for all γ ∈ Q′. It follows that
∑

γ∈Q′ (cγXγ + c−γX−γ) ∈ pQ and we conclude.
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It remains to prove the claim. Assume otherwise, for example cγ [Xγ , X−β] ̸= 0. It follows
that γ − β ∈ ∆. There has to be soe δ ∈ Q′ so that

cγ [Xγ , X−β] + c−δ[X−δ, Xβ] = 0 .

Then α := γ − β = −δ + β ∈ ∆ and γ = α + β, δ = β − α. This contradicts the fact that β is
the lowest root in Q. □

Proposition 3.7. There is a subset γ1, . . . , γs of Q+ consisting of pairwise strongly orthogonal
roots. In particular,

aC =
s∑

i=1
C (Xγi +X−γi)

is a maximal abelian subspace of pC.

Proof. We define a sequence of spaces

pC = p1 ⊇ · · · ⊇ ps+1 = 0 ,

each of the form pi = pQi inductively. For Q1, we take Q1 = Q+ and let γ1 be the lowest
positive root in Q1. Take

p2 = Zp1(gγ1 + g−γ1) .

Take Q2 = Q1(γ1). Denote by γ2 the lowest positive root in Q2 and continue. In the end, we
get the desired sequence γ1, . . . , γs. It remains to prove that if X ∈ p commutes with aC then
X ∈ aC. If not, there is 1 ≤ r ≤ s so that X ∈ pr + aC \ pr+1 + aC. We write X = Y + Z for
Y ∈ pr and Z ∈ aC. As both X and Z commute with Xγr +X−γr , so is Y . By the Lemma 3.6,
Y = c(Xγr +X−γr ) +Y1 for some c ∈ C and Y1 ∈ pr+1. But then Z1 = Z + c(Xγr +X−γr ) ∈ aC
and hence X = Y1 + Z1 ∈ pr+1 + aC, which is a contradiction. □

We want to choose a real form of aC as well.
For each root α ∈ ∆, choose Hα ∈ ih as the dual of α as a form on hC relative to the Killing

form. Let

hα = 2
α(Hα)Hα ∈ ih .

For each α ∈ ∆, choose Xα ∈ gα so that

Xα −X−α, i(Xα +X−α) ∈ u , [Xα, X−α] = hα .

These arrangements are possible, see [
Hel79
Hel79, Lemma VI.3.1]. Define

a =
s∑

i=1
R(Xγi +X−γi) .

Proposition 3.8. We have a = aC ∩ p. In particular, a is a maximal abelian subspace of p.

In particular, there is a maximal split torus A in G so that A(R)+ = exp a.

Proof. In fact, Xγi + X−γi ∈ iu ∩ pC = p. Thus a ⊆ aC ∩ p. On the other hand, take X ∈ aC.
Assume that X ∈ p, then τX = −X and hence all coefficients in front of Xγi + X−γi have to
be real. □

For future use, we introduce

xα = Xα +X−α ∈ a , yα = i(Xα −X−α) ∈ u

for α = γi. We also write xi for xγi . The same applies to other notations like yi, Xi, X−i.
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3.3. Lie groups. Let GC be the simply connected complex Lie group with Lie algebra gC.
Let us write

n+ =
⊕

α∈∆+

gα , n− =
⊕

α∈∆+

g−α .

Let N± (resp. P±) be the analytic groups corresponding to n± (resp p±). Write KC for the
analytic group corresponding to kC. All of these groups are considered as subgroups of GC.

prop:expdiffeo Proposition 3.9. The map exp : p± → P± is a diffeomorphism. Similarly, the map exp :
n± → N± is a diffeomorphism.

Proof. By Engel’s theorem, ad n+ is nilpotent. From the general property of nilpotent Lie
groups [

Hel79
Hel79, Corollary VI.4.4, Lemma VI.4.5], ad n+ is diffeomorphic to AdN+ through the

exponential map. It follows that exp : n+ → N+ is a diffeomorphism. As p+ ⊆ n+, exp : p+ →
P+ is a diffeomorphism. The − part is similar. □

lma:PKPG Lemma 3.10. The map P− × KC × P+ → GC given by (q, k, p) 7→ qkp is a differmorphism
onto an open submanifold of GC containing G.

Similarly, P+ ×KC × P− → GC given by (q, k, p) 7→ qkp is also a diffeomorphism.

We will write n± for the sum of gα for all positive (resp. negative) roots in ∆.

Proof. Step 1. We prove that P−KC ∩ P+ = {1}. If not, take a non-trivial element in the
intersection y. Select Y ∈ p+ with y = expY . Observe that Ad(y)(p−) ⊆ p− as y ∈ P−KC.
Write Y =

∑
α∈Q+ cαXα. Let β be the lowest root in Q+ such that cβ ̸= 0. Then

[Y,X−β] ≡ cβ[Xβ, X−β] mod n+ .

It follows that
Ad(y)(X−β) ≡ X−β + cβ[Xβ, X−β] mod n+ .

But further modulo n−, we find that Ad(y)(X−β) has a non-trivial k-component, contracting
the fact that Ad(y)p− ⊆ p−.

Observe that dually, P− ∩KCP+ = {1}.
Step 2. P− ×KC × P+ → GC is injective. Suppose that

q1k1p1 = q2k2p2 , qi ∈ P−, ki ∈ KC, pi ∈ P+ .

It follows that
k−1

2 q−1
2 q1k2k

−1
2 k1 = p2p

−1
1 .

From Step 1, p2 = p1. Similarly, q2 = q1. Hence k2 = k1.
By [

Hel79
Hel79, Lemma VI.5.2], the map is also regular. It follows that the image is a submanifold

of GC of correct dimension and hence the image is open.
Step 3. We show that the image contains G. From the general theory of symmetric spaces,

GC = (exp p)KC .

Take X ∈ p and write p = exp(X/2). By the complex Iwasawa decomposition, we write p = uan
with u ∈ U = exp u, a ∈ A∗ = exp ih, n ∈ N+ = exp n+. Thus,

τp = p−1 = ua−1τ(n) ,
so

expX = p2 = τ(n−1)a2n ∈ N−A
∗N+ ⊆ P−KCP+ .

□

Lemma 3.11. The group KCP+ is closed in GC. Its Lie algebra is kC ⊕ p+. Similarly, KCP−
is closed in GC with Lie algebra kC ⊕ p−.

Proof. First observe that P+ is closed in N+, which follows from the Lie algebra picture under
taking log. In particular, P+ is closed in GC. The group KC is closed in GC due to the existence
of Cartan decomposition. Now consider a sequence knpn ∈ KCP+ converging to some element
in GC. Applying στ we find that p2

n is convergent and hence pn and kn are both convergent.
Thus KCP+ is closed in GC. By Lemma 3.10, its Lie algebra is kC ⊕ p+. □
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lma:GKPopen Lemma 3.12. The set GKCP+ is open in P−KP+ and G ∩ KCP+ = K. Similarly, the set
GKCP− is open in P+KP− and G ∩KCP− = K.

Proof. Step 1. We prove G ∩KCP+ = K. Suppose that p ∈ P = exp p has the form
p = kp+ , k ∈ KC, p+ ∈ P+ .

Write σ for the conjugation of gC with respect to g. Applying the automorphism στ we thus
get p−1 = kp−1

+ . In particular, p2 = p2
+. Applying τ again, p−2 ∈ P−. Thus, p2

+ ∈ P−. It follows
that p = k = p+ = 1. From G = KP , we conclude.

Step 2. We prove that GKCP+ is open in GC. This will conclude the proof as a consequence
of Lemma 3.10.

Consider the map ψ : G×KCP+ → GC given by
ψ(g, x) = gx .

We need to show that ψ is submersive. Take Y ∈ g, Z ∈ k + p+. Then

ψ(g exp tY, x) = gx exp
(
tAd(x−1)Y

)
, ψ(g, x exp tZ) = gx exp tZ .

It follows that
dψ(g,x)(dLgY,dLxZ) = dLgx(Ad(x−1)Y + Z) .

Here Lg : G → G is the left translation by g, Lx is similar. The image of dψ is thus
dLgx ◦ Ad(x−1)(g + k + p+) = dLgxgC .

□

3.4. The embedding theorem.

Theorem 3.13. There is a holomorphic embedding G/K → p+ onto a bounded symmetric
domain in p+.

Proof. Consider the diagram

{eq:embed}{eq:embed} (3.2)
GKCP−/KCP− P+KCP−/KCP− GC/KCP−

G/K P+ p+

≈ ≈
log

.

All maps in question are the natural ones. The first vertical map is a differmorhism by
Lemma 3.12, the second by Lemma 3.10. The log map is a diffeomorphism by Proposition 3.9.
The map

GKCP−/KCP− → P+KCP−/KCP−

is an open immersion by Lemma 3.12. It follows that the map ψ : G/K → p+ is a diffeomorphism
onto an open subset. By the computations in [

Hel79
Hel79, Lemm 7.12], the image is a bounded

domain.
It remains to check that ψ is holomorphic. It suffices to prove that the map G/K → P+ is

holomorphic. For this purpose, we may assume that D is irreducible. Let J : p+ → p+ be the
map

Jdψ(X) = dψ(JX) , X ∈ p .

Then by definition J commutes with all Ad k, k ∈ K. But the adjoint representation of K on
p+ is irreducible. By Schur’s lemma, J = c with c = ±i. Replacing J by −J if necessary, we
may assume that J = i. Namely,

{eq:dpsi}{eq:dpsi} (3.3) idψ(X) = dψ(JX) , X ∈ p = ToG/K .

Observe that the map G/K → GC/KCP− commutes with the action of G. Observe that
GC/KCP− has a natural complex structure, invariant under the GC-action. Moreover, as the
map P+ → GC/KCP− is holomorphic, it follows that (

eq:dpsieq:dpsi
3.3) also holds for any tangent vector of

G/K. So G/K → P+ is indeed holomorphic. □

Let U = exp u.
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prop:UoverK Proposition 3.14. The map U/K → GC/KCP− is a biholomorphic isomorphism.

Proof. We first prove that U ∩ KCP− = K. Let u be an element in the left-hand side. Then
u−1στ(u) ∈ P−. Applying τ , we thus find στ(u) = u. As U is simply connected, we thus have
u ∈ K.

It follows that the map f : U/K → GC/KCP− is injective. It is also regular and the two
sides have the same dimension. It follows that the image is open. From the compactness, we
conclude that this map is bijective. Observe that f commutes with U , so in order to show that
f is holomorphic, it suffices to prove dfo preserves the almost complex structure, which is easy:
first observe that for any X ∈ p, dfo(iX) = idψ(X), thus,

df0(iJX) = idψ(JX) = −dψ(X) = idf0(iX) .
Here we identify ToU/K ∼= ip. □

In particular, KCP− is a parabolic subgroup of GC. Observe that P− is unipotent, as can be
seen from the Lie algebra. Moreover, KC is reductive as it has a compact real form. It follows
that P− is the unipotent radical of KCP− and KC is a Levi subgroup. Moreover,

KCP− = KC ⋉ P− .

Theorem 3.15. There is a natural holomorphic embedding p+ → Ď = U/K.

Proof. The map P+KCP−/KCP− → GC/KCP− in (
eq:embedeq:embed
3.2) is a holomorphic embedding by

Lemma 3.10. The theorem therefore follows from Proposition 3.14. □

Let us make the following observation.

prop:psiequiv Proposition 3.16. The map ψ : D → p+ is equivariant with respect to the K-action. Here
K acts on D by left multiplication and on p+ by adjoint action. Similarly, the embedding
p+ → GC/KCP− is also invariant under the adjoint action of K.

Proof. Take g ∈ G, decomposed as g = p+k′p−. Then kg can be decomposed as Ad(k)(p+)(kk′)p−.
□

cor:dpsiinva Corollary 3.17. The differential dψ : p → p+ is invariant under the adjoint action of K.

Now we can make the embedding D → p+ very explicit.
Recall the following elementary lemma:

lma:expsl2c Lemma 3.18. Let (X,Y,H) be a sl2-triple in sl(2,C). Consider any Lie group L with Lie
algebra sl(2,C). Then for any t ∈ C with cosh t ̸= 0,
(3.4) exp t(X + Y ) = exp(tanh t)X · exp(− log cosh t)H · exp(tanh t)Y .

Proof. It suffices to prove this for SL(2,C). In this case, we may identify

H =
[
1 0
0 −1

]
, X =

[
0 1
0 0

]
, Y =

[
0 0
1 0

]
.

Then we compute‡

exp t(X + Y ) =
[
cosh t sinh t
sinh t cosh t

]
, exp(tanh t)X =

[
1 tanh t
0 1

]
,

exp(tanh t)Y =
[

1 0
tanh t 1

]
, exp(− log cosh t)H =

[
(cosh t)−1 0

0 cosh t

]
.

The desired formula therefore follows. □

In particular,

‡To make things easier, recall the following well-known result: given A =
[

a b
c −a

]
, let ω be a square root of

a2 + bc. Then exp A = cosh ωI + sinh ω
ω

A.
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Corollary 3.19. Let

Z =
s∑

i=1
tixi ∈ a ,

then
expZ = expX expH expY ,

where

X =
s∑

i=1
tanh tiXγi , Y =

s∑
i=1

tanh tiX−γi , H =
s∑

i=1
log cosh ti[X−γi , Xγi ] .

cor:psiexplicit Corollary 3.20. Under the embedding ψ : D → p+, a point kao with k ∈ K, a = exp(
∑

i aixi) ∈
A = exp a is mapped to Ad(k)

∑
i tanh tiXγi.

Also recall that from Cartan’s decomposition, G = KAK, so KA acts transitively on D, it
follows that this corollary completely determines ψ.

3.5. Hermann convexity theorem. In fact, the image of D in p+ can be characterized more
explicitly.

For any X ∈ p+, define
T (X) : p− → kC , Y 7→ [Y,X] .

Let T (X)∗ : kC → p− be the adjoint of T (X) with respect to Bτ .

Theorem 3.21 (Hermann convexity theorem). We have
D =

{
X ∈ p+ : T (X)∗ ◦ T (X) < 2Idp+

}
.

Here we write Xi for Xγi .
Write A = exp a. By Cartan’s KAK decomposition, KAo = D. So by Proposition 3.16, as

subsets of p+,
D = AdK(Ao) .

We choose the base point corresponding to 1 ∈ G.

Lemma 3.22. We have

Ao =
{

r∑
i=1

aiXi : ai ∈ (−1, 1)
}
.

Proof. In fact, for ti ∈ R,

exp
(∑

i

tixi

)
= exp

(∑
i

tanh tiXγi

)
exp

(
−
∑

i

log(cosh ti)[Xγi , X−γi ]
)

exp
∑

i

tanh tiX−γi .

See [
Hel79
Hel79, Lemma VIII.7.11] for example. The desired result follows. □

It follows that in order to prove the theorem, it suffices to consider X =
∑

i aiXi with ai ∈ R
and show that

T ∗(X) ◦ T (X) < 2Id ⇔ |ai| < 1
or equivalently

∥T (X)∥ <
√

2 ⇔ |ai| < 1 .
For this purpose, we need an explicit computation. Take Y ∈ p−. From the root decomposition
to be considered in the next note, we know that Y admits a decomposition

{eq:Y}{eq:Y} (3.5) Y =
∑

i

biX−i +
∑

i

∑
α∈Pi

bαX−α +
∑
i<j

∑
α∈Pij

cαX−α .

Here Pi (Pij) is the set of positive non-compact roots compatible with 1
2γi (1

2(γi + γj)) (in the
sense that the restriction to a′ =

∑
Rhi are equal). Then

{eq:commXY}{eq:commXY} (3.6) [X,Y ] =
∑

i

aibi[Xi, X−i] +
∑

i

∑
α∈Pi

aibα[Xi, X−α] +
∑
i ̸=j

∑
α∈Pij

aicα[Xi, X−α] .
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From our normalization of Xα, τ(Xα) = −X−α. It follows that for α ̸= β, Bτ (Xα, Xβ) = 0. By
Jacobi identity,

Bτ ([Xi, X−α], [Xi, X−β]) = α(hi)B(X−α, Xβ) .
In particular, the terms in (

eq:Yeq:Y
3.5), (

eq:commXYeq:commXY
3.6) are orthogonal to each other. So the square norms of Y

and [X,Y ] are just square sums of the coefficients. From this, the assertion follows.

3.6. Embedding into the compact dual. The final topic concerns the embedding p+ → Ď.

Theorem 3.23. The embedding p+ → Ď realizes p+ as a Zariski open dense subset of Ď.
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