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1. INTRODUCTION

This is one of a series of notes prepared for a seminar on the toroidal compactifications of
Shimura varieties.

In this note, we explore the p%[%?.fgof the embedding theorem of Borel and Harish-Chandra.
Our main reference is the book [[Tel70)].

Theorem 1.1. Given any Hermitian symmetric space D = G /K of non-compact type, there
are holomorphic open immersions

D—p,—D.
Here py is a complex linear space, the image of D in py is a bounded symmetric domain. The
space D is the compact dual of D.

The map D — p4 has an explicit formula Corollary 3.20. The image of the embedding
D — p, is characterized by Hermann’s convexity theorem.

The embedding p, — D realizes py as a Zariski open dense subset of D.

A typical example to be kept in mind of these embeddings is

A={zeC:|z]<1}CCCP.
2. THE GENERAL THEORY OF HERMITIAN SYMMETRIC SPACES

\%@el%ieﬂy recall the general theory of Hermitian symmetric spaces. For the details, we refer
to [[Hel79, Section VIII].

Definition 2.1. A Hermitian manifold (D, g) is a Hermitian symmetric space if for any z € D,
there is a holomorphic geodesic isometry s, at x: s, : D — D is a holomorphic isometry such
that x is an isolated fixed point of s,.

Equivalently, this is equivalent to assuming the existence of s, at one x € D and the condition
that D is homogeneous with respect to the group of holomorphic isometries.

A Hermitian symmetric space is irreducible if it is not isomorphic to the product of two
non-trivial Hermitian symmetric spaces.

Theorem 2.2. A Hermitian symmetric space can be uniquely decomposed as the product of
irreducible Hermitian symmetric spaces (up to permuting the factors). An irreducible Hermitian
symmetric space falls into one of the following categories:

(1) Euclidean: if it is isomorphic to C™ with the flat metric.

(2) Compact: if it is not Euclidean and has non-negative sectional curvature.

(8) Non-compact: if it is not Euclidean and has non-positive sectional curvature.
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Example 2.3. The following are typical examples:

(1) Euclidean: C™ with the flat metric.
(2) Compact: P! with the usual metric.
(3) Non-compact: H (the upper half plane) with the Poincaré metric: y%dx A dy.

We will say a Hermitian symmetric space is of compact type (resp. non-compact type) if all
of its irreducible factors are of compact type (resp. non-compact type).

We will focus on the non-compact type. Let (D,g) be a Hermitian symmetric space of
non-compact type. Fix o € D.

Theorem 2.4. The following are equal

(1) the identity component of the group of holomorphic isometries of (M, g).
(2) the identity component of the isometry group of (M,g) as a Riemannian manifold;
(8) the identity component of the group of biholomorphic isomorphisms of M.

Moreover, this group is adjoint semi-simple *.
We write G for this group. Write K for the isotropy group of o € D under the G-action.

Theorem 2.5. K is a mazimal compact subgroup. We have a diffeomorphism G/K ~ D. The
isometry s, at o is a Cartan involution of G.
Assume that D is irreducible, then G is simple and the center of K is isomorphism to U(1).

Assume that D is irreducible. Geometrically, K are holomorphic isomorphisms of D fixing
the base point 0 € D. An element z € U(l) = Z(K) in the center of K corresponds to the
holomorphic isometries of D that fixes 0 and acts as multiplication by z in the tangent space.

More generally, when D is not necessarily irreducible, we can always find a map u : U(1) - G
sending z € U(1) to u(z) € G fixing o and acts as multiplication by z on the tangent space of
D at o. This map will be called Deligne’s map. Observe that u(—1) = s,.

3. THE EMBEDDING THEOREMS

In this section, we give some details about the structure of Hermitian symmetric spaces
following Helgason.

Let (D, g) be a Hermitian symmetric space of non-compact type. Fix a base point o € D.
Recall that G = Iso(D,g)™" is an adjoint semi-simple real Lie group. Since G is adjoint, there
is a unique algebraic R-group G such that

G(R)T =TIso(D,g)".

3.1. Cartan decomposition and root decomposition. Let g be the Lie algebra of G. Write
K = K, the isotropy group of o so that D = G/K. The Lie algebra of K is denoted by €. The
geodesic symmetry at o induces a Cartan involution ¢ on g. In particular, we get the associated
Cartan involution:

g=tPp.
Fecall that by definition, this means that € is the +1-eigenspace of o and p is the —1-eigenspace.

Let ¢ = Z(¢) denote the center of £ and let h be a Cartan subalgebra of £. Observe that
¢cCh

since b is self-normalizing. Obserﬁfgﬁgat ¢ contains the image of du hence non-trivial. In fact,
¢ is equal to the image of du by [#f’ 9, Proposition VIIL.6.2] if D is irreducible.
We consider the compact dual

u=¢t+ip

*An adjoint semi-simple Lie group is a semi-simple Lie group which has trivial center

TIntuitively, £ corresponds to infinitesimal holomorphic isometries of D fixing o and p € p = T, D corresponds
to an infinitesimal holomorphic isometry of D that translates D in the p direction.
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of g. Let 7 be the conjugation of g¢ induced by u. The form B; : gc X gc — R defined by
B.(X,Y)=-B(X,7Y)

is strictly positive definite. Here B denotes the Killing form of gc.

Lemma 3.1. § is also a Cartan subalgebra of g.

Proof. We may assume that D is irreducible.

It suffices to show that b is self-normalizing.

Observe that Z(c) O € by definition of ¢. But we know that Zy(c) # g as otherwise Z(g) = ¢
will be non-trivial. But we have

Zole) 2 ¢, Hel79

Hence equality holds by the maximality of £ among proper Lie subalgebras of g [#f’ !
sition VIIL.5.1].

In particular, § is maximal abelian. It remains to show that each element x in b is diagonaliz-
able in the adjoint representation of g. But this follows from the fact that ad x is skew-symmetric
with respect to B:. O

, Propo-

Write A for the set of non-zero roots of g¢ with respect to he. In other words, we have the
root space decomposition

(3.1) gc=bhece P g*.
aEA
Observe that the decomposition
gc =tc ®pc
is preserved by hc. It follows that each root « is either compact in the sense g C fc or
non-compact in the sense g¢ C pc.

Definition 3.2. Let W C V be two finite dimensional R-vector spaces. Two given linear
ordering on Vv and WV are said to be compatible if any element in V'V that restricts to a
positive element in WV is positive.

It is easy to choose compatible linear orderings.

Suppose that we introgéll% compatible orderings on ic¥ and ihY. Recall that all roots in A
are real-valued on ih by ﬁ*f’ 9, Lemma VI1.3.1], so we get a notion of positive roots A™T. Write
Q@+ for the positive roots that do not restrict to 0 on ic. Write

pr=P ", =P o’

BEQ+ BEQ+
Proposition 3.3. The spaces p4 and p_ are both abelian subalgebras of gc and
Pc=p-Dps+.
Moreover, both p_ and py are invariant under ad tc. Moreover,
[ p-] =tc.

Proof. Consider a compact root « € A, then [¢c,g*] = 0 by definition of ¢. It follows that
ale. = 0. It follows that

p2p-+py.
Observe that a4+ 3 is clearly positive (negative) when restricted to ic where « is a compact root
and £6 € Q1. So when « is compact, g% preserves pr. It follows that p1 are both preserved
by ad tc.
To see that p, is abelian, take 5,7 € Q1. We need to show that
[o%, "] = 0.
There is nothing to prove if 5 + v is not a root. Otherwise, it is in Q4. But we know that
67,671 € [p+.p4] C Ec.

It follows that [g°, g?] = 0. A similar argument shows that p_ is also abelian.
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Finally, we need to show that pc = p_ +p. We may assume that D is irreducible. We write

g+ =p- +p++[p4,p-].
We claim that g is an ideal in gc. But recall that g¢ is a simple Lie algebra, which implies
that g is either 0 or gc. The former is clearly impossible. Thus

p—+ps+[psp-]=gc.

Observe that [p4,p_] C €, our desired result thus follows.
It remains to prove the claim. We write q for the orthogonal complement of p_ 4+ p in pc
with respect to Br. Observe that it suffices to show that

[p-l-vq] = [p—aq] =0.

We only prove the former, as the latter can be proved similarly. Take T € ¢c, X € p4 and
Y € q. But we have 77T € ¢¢ and 7[X,77T] € p_. Thus

B, ([X,Y],T)=—-B.(Y,7[X,7T]) = 0.
It follows that [p,q] = 0. O
Corollary 3.4. A root o € A is compact iff its restriction to ic vanishes.

Remark 3.5. In fact, we can make the choice of positive roots more canonical. By choosing the
ordering corresponding to the Weyl chamber du(i) € i, we may assume that all roots in Q4
are positive and all roots in (J_ are negative.

3.2. Maximal split torus. Next we want to choose a special maximal abelian subspace of p.
If @ C @+ is non-empty, let
po= (a7 +g7).

yeQ
Let 8 be the lowest root in @ and let Q(S) denote the set of all ¥ € @ not equal to 5 while
strongly orthogonal to 8 (in the sense that v+ 8 ¢ A). For each o € A, choose a non-zero
vector X, € g% Let s be the R-rank of G, namely, the dimension of any maximal abelian
subspace a of p. Recall that s is equal to the rank of the maximal split torus in G.

Lemma 3.6. We have
ZpQ(Xg + X—ﬁ) = (C(XB + X_/B) + pQ(ﬁ) .
Proof. We only have to prove the C direction.
Let X € pg and let Q' = Q \ {5}. Write
X = CﬁXﬁ + C,/gX,ﬁ + Z (C,YAX,y =+ C—VX—’Y) .
veQ’ N
:root
We compute [X, X3+ X_g]. Under the root decomposition (IZeZ.I E,o ofﬁe hc component is given by
(cg — c—p)[Xp, X_g].
Now we assume further that X € Z,,(Xg + X_g). This implies that cg = c_g and hence
Z (v Xy +c7X5)
yeQ’

commutes with X 4+ X_3. Using the fact that p4 are both commutative, we find

Z (e Xy ey X ), Xpg+ X 5| = Z (ey[ Xy, X_gl + c4[X—, X3]) = 0.
=% =%

We claim that this implies that
[ Xy, Xl =0, c4[Xy, X5 =0
for all v € Q. Tt follows that >veq (v Xy + ey X_y) € pg and we conclude.



NOTES ON SHIMURA VARIETIES I. BOUNDED SYMMETRIC DOMAINS 5

It remains to prove the claim. Assume otherwise, for example ¢,[X,, X_g] # 0. It follows
that v — 8 € A. There has to be soe § € Q’ so that

ey [ Xy, X gl +cs[X 5, Xp] =0.

Then a:=y—=-0+€ Aand vy=a+ F, § = — a. This contradicts the fact that 5 is
the lowest root in Q. O

Proposition 3.7. There is a subset v1,...,7s of Q4+ consisting of pairwise strongly orthogonal
roots. In particular,

ac = Z(C (X’Yz‘ + X*'Yi)
i=1

s a mazximal abelian subspace of pc.

Proof. We define a sequence of spaces

pc=p12 - 2ps+1 =0,

each of the form p; = pg, inductively. For @1, we take @1 = Q4+ and let v; be the lowest
positive root in 1. Take

p2=Zp(g" +o ).

Take Q2 = Q1(71). Denote by v the lowest positive root in Q2 and continue. In the end, we
get the desired sequence i, ...,7s. It remains to prove that if X € p commutes with ac then
X € ac. If not, there is 1 < r < s so that X € p, + ac \ pr+1 + ac. We write X =Y + Z for
Y € pr and Z € ac. As both X and Z commute with X, + X_, ,sois Y. By the Lemma 3.6,
Y =c¢(X,, +X_,)+Y for some c € Cand Y] € p,41. But then Z1 = Z+¢(X,, + X_,,) € ac
and hence X =Y + Z1 € p,41 + ac, which is a contradiction. O

We want to choose a real form of ac as well.
For each root a € A, choose H,, € ih as the dual of « as a form on h¢ relative to the Killing
form. Let

2
ho = ——H, €ibh.
o(Hy) €ibh

For each o € A, choose X, € g* so that
Xo— X 0,il(Xa+X_n)eu, [Xo,X_o|=hq.

179
These arrangements are possible, see [Fig 0, Lemma VI.3.1]. Define

S
a= ZR(X% + X*%) .
i=1
Proposition 3.8. We have a = ac Np. In particular, a is a mazximal abelian subspace of p.

In particular, there is a maximal split torus A in G so that A(R)* = expa.

Proof. In fact, X,, + X_,, € iuNpc = p. Thus a € ac Np. On the other hand, take X € ac.
Assume that X € p, then 7X = —X and hence all coefficients in front of X, + X_,, have to
be real. U

For future use, we introduce
To=Xa+X a€a, yas=i(Xa—X_0n)EuU

for o = ;. We also write z; for z.,. The same applies to other notations like y;, X;, X ;.
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3.3. Lie groups. Let G¢ be the simply connected complex Lie group with Lie algebra gc.

Let us write
=P g n=E g
acAt acAt
Let Ny (resp. Pi) be the analytic groups corresponding to ny (resp py). Write K¢ for the
analytic group corresponding to €c. All of these groups are considered as subgroups of Gc.

Proposition 3.9. The map exp : p+ — Py is a diffeomorphism. Similarly, the map exp :
ny — Ny is a diffeomorphism.

Proof. ]?%l];tpgel’s theorem, adny is nilpotent. From the general property of nilpotent Lie
groups [[1el79, Corollary VI.4.4, Lemma VI.4.5], adny is diffeomorphic to Ad N4 through the
exponential map. It follows that exp : np — N, is a diffeomorphism. As py Cny, exp: py —
P, is a diffeomorphism. The — part is similar. U

Lemma 3.10. The map P- x K¢ x Py — G¢ given by (q,k,p) — qkp is a differmorphism
onto an open submanifold of G¢ containing G.
Similarly, Py x K¢ x P_ — Gg given by (q,k,p) — qkp is also a diffeomorphism.

We will write ny for the sum of g* for all positive (resp. negative) roots in A.

Proof. Step 1. We prove that P_Kc N Py = {1}. If not, take a non-trivial element in the
intersection y. Select Y € p; with y = expY. Observe that Ad(y)(p—) C p_ as y € P_Kc.
Write Y =3 co, caXa- Let 3 be the lowest root in Q4 such that cg # 0. Then

D/, X_ﬂ] = C[B[Xﬁ,X_/g} mod ny.
It follows that
Ad(y)(X_/g) =X g+ Cﬁ[Xﬂ,X_ﬁ] mod ny .
But further modulo n_, we find that Ad(y)(X_g) has a non-trivial £-component, contracting
the fact that Ad(y)p— Cp_.
Observe that dually, P N Kc Py = {1}.
Step 2. P_ x K¢ x P — G is injective. Suppose that
qikipr = qekop2,  qi € P_. ki € Kc,pi € Py
It follows that
ky 'y qikaky ey = papy !
From %i;eelggl, p2 = p1. Similarly, go = ¢q1. Hence ko = k1.
By [[1e179, Lemma VI.5.2], the map is also regular. It follows that the image is a submanifold
of G¢ of correct dimension and hence the image is open.
Step 3. We show that the image contains G. From the general theory of symmetric spaces,
Gc = (expp)Kc.
Take X € p and write p = exp(X/2). By the complex Iwasawa decomposition, we write p = uan
with u € U = expu, a € A* = expih, n € Ny = expny. Thus,
p=p ' =ua'7(n),
SO
expX =p* =7(n"1)a*n € N_A*N, C P_KcP; .
O

Lemma 3.11. The group Kc Py is closed in G¢. Its Lie algebra is tc & po. Similarly, KcP-
is closed in G¢ with Lie algebra tc @ p_.

Proof. First observe that Py is closed in V., which follows from the Lie algebra picture under
taking log. In particular, P, is closed in G¢. The group K¢ is closed in G¢ due to the existence
of Cartan decomposition. Now consider a sequence k,p, € K¢ Py converging to some element
in G¢. Applying o7 we find that p? is convergent and hence p, and k, are both convergent.
Thus K¢ Py is closed in Ge. By Lemma 3.10, its Lie algebra is ¢ & p4-. (]
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Lemma 3.12. The set GKc Py is open in P_.KPy and G N KcPy = K. Similarly, the set
GKcP- is open in PLKP_ and GN KcP- =K.
Proof. Step 1. We prove G N KcP+ = K. Suppose that p € P = expp has the form
p=kp+, ke Kc,py €P;.
Write o for the conjugation of gc with respect to g. Applying the automorphism o7 we thus
get p~ !l = kpjrl. In particular, p? = pi. Applying 7 again, p~2 € P_. Thus, pi € P_. It follows
that p =k =py = 1. From G = K P, we conclude.
Step 2. We prove that GK¢ Py is open in G¢. This will conclude the proof as a consequence
of Lemma 3.10.
Consider the map ¢ : G x KcPy — Gg given by
¥(g, ) = gx.
We need to show that 1 is submersive. Take Y € g, Z € £+ p;. Then
Y(gexptY,x) = gx exp(t Ad(a:fl)Y> , Y(g,rexptZ) = grexptZ.
It follows that
dY(g.)(ALgY,d Ly Z) = dLgp(Ad(z™")Y + Z).
Here L, : G — G is the left translation by g, L, is similar. The image of di is thus

dLgs 0 Ad(a™") (g + &+ ps) = dLgagc.

3.4. The embedding theorem.

Theorem 3.13. There is a holomorphic embedding G/K — py onto a bounded symmetric
domain in p4.

Proof. Consider the diagram
GKCP_/KCP_ E— P+K(cP_/K(cP_ — Gc/K(cP_

(3.2) J% J“
G/K - > Py log P

All maps in question are the natural ones. The first vertical map is a differmorhism by
Lemma 3.12, the second by Lemma 3.10. The log map is a diffeomorphism by Proposition 3.9.
The map

GK(Cp_/K(Cp_ — P_f_K(Cp_/K(Cp_
is an open immersion by Lemma 3.12. It follows th?gl‘c.}be map ¢ : G/K — py is a diffeomorphism
onto an open subset. By the computations in [[Te[70, Lemm 7.12], the image is a bounded
domain.

It remains to check that ¢ is holomorphic. It suffices to prove that the map G/K — Py is
holomorphic. For this purpose, we may assume that D is irreducible. Let J : p4 — py4 be the
map

Jdp(X)=dy(JX), Xe€p.
Then by definition J commutes with all Adk, k € K. But the adjoint representation of K on
py is irreducible. By Schur’s lemma, J = ¢ with ¢ = £i. Replacing J by —J if necessary, we
may assume that J = i. Namely,

(3.3) dp(X) =dyp(JX), Xep=T,G/K.

Observe that the map G/K — G¢/KcP- commutes with the action of G. Observe that
Gc/KcP- has a natural complex structure, invariant élqgleé"ithe Gc-action. Moreover, as the
map P — G¢/KcP- is holomorphic, it follows that (E%T%Fso holds for any tangent vector of
G/K. So G/K — Py is indeed holomorphic. O

Let U = expu.
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Proposition 3.14. The map U/K — G¢/KcP- is a biholomorphic isomorphism.

Proof. We first prove that U N KcP- = K. Let u be an element in the left-hand side. Then
u~tor(u) € P_. Applying 7, we thus find o7(u) = u. As U is simply connected, we thus have
u € K.

It follows that the map f : U/K — G¢/KcP- is injective. It is also regular and the two
sides have the same dimension. It follows that the image is open. From the compactness, we
conclude that this map is bijective. Observe that f commutes with U, so in order to show that
f is holomorphic, it suffices to prove df, preserves the almost complex structure, which is easy:

first observe that for any X € p, df,(iX) = idy(X), thus,
dfo(iJX) =idy(JX) = —dy(X) = idfo(iX) .
Here we identify T,U/K = ip. O
In particular, K¢ P_ is a parabolic subgroup of G¢. Observe that P_ is unipotent, as can be

seen from the Lie algebra. Moreover, K¢ is reductive as it has a compact real form. It follows
that P_ is the unipotent radical of KcP_ and K¢ is a Levi subgroup. Moreover,

K@P_ = K(C X P_.
Theorem 3.15. There is a natural holomorphic embedding p+ — D= U/K.

eq:embed
Proof. The map PyKcP-/KcP- — Gg¢/KcP- in (|3.25 is a holomorphic embedding by
Lemma 3.10. The theorem therefore follows from Proposition 3.14. O

Let us make the following observation.

Proposition 3.16. The map v : D — py is equivariant with respect to the K-action. Here
K acts on D by left multiplication and on py by adjoint action. Similarly, the embedding
p+ — Gc/KcP- is also invariant under the adjoint action of K.

Proof. Take g € G, decomposed as g = pk'p_. Then kg can be decomposed as Ad(k)(p+)(kk")p—.
O

Corollary 3.17. The differential dy : p — py is invariant under the adjoint action of K.

Now we can make the embedding D — p very explicit.
Recall the following elementary lemma:

Lemma 3.18. Let (X,Y, H) be a sly-triple in sl(2,C). Consider any Lie group L with Lie
algebra s1(2,C). Then for any t € C with cosht # 0,

(3.4) expt(X +Y) = exp(tanht)X - exp(—logcosht)H - exp(tanht)Y .

Proof. Tt suffices to prove this for SL(2,C). In this case, we may identify

SRS IR

Then we compute

cosht sinht

sinht cosht

expt(X +Y) = { 0 1

} , exp(tanht)X = [1 tanht} ,

71 0 ~ [(cosht)™ 0
exp(tanht)Y = {tanht J , exp(—logcosht)H = { 0 cosh J
The desired formula therefore follows. O

In particular,

1To make things easier, recall the following well-known result: given A = |:(cl _ba} , let w be a square root of

a? 4 be. Then exp A = coshwl + %A
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Corollary 3.19. Let

S
7 = Ztixi ca,
i=1
then
expZ =expXexpHexpY,
where

S S S
X = Ztanh X, Y= ZtanhtiX_% , H= Zlog cosht;[X_+,, X.,.] .
i=1 i=1 i=1
Corollary 3.20. Under the embedding 1 : D — p, a point kao with k € K, a = exp(>_; a;x;) €
A = expa is mapped to Ad(k) Y, tanht; X, .

Also recall that from Cartan’s decomposition, G = KAK, so KA acts transitively on D, it
follows that this corollary completely determines 1.

3.5. Hermann convexity theorem. In fact, the image of D in p; can be characterized more
explicitly.
For any X € p,, define
T(X):p_ —tc, Y[V X].
Let T(X)* : tc — p— be the adjoint of T'(X) with respect to B;.
Theorem 3.21 (Hermann convexity theorem). We have
D={Xep; :T(X) oT(X)<20dy,} .

Here we write X; for X,,.
Write A = expa. By Cartan’s KAK decomposition, K Ao = D. So by Proposition 3.16, as
subsets of p,
D = Ad K(Ao).

We choose the base point corresponding to 1 € G.
Lemma 3.22. We have

AO—{ZGZ ita; € (=1 1)}

Proof. In fact, for t; € R,

exp (Z tixi> = exp (Z tanh tiX%.> exp (— Z log(cosht;)[X~,, X_%.]> exp Z tanh; X_, .

ﬁﬂ? 9

See | , Lemma VIIL.7.11] for example. The desired result follows. U

It follows that in order to prove the theorem, it suffices to consider X = )", a; X; with a; € R
and show that
T*(X)oT(X) <2ld & |a;| < 1
or equivalently
IT(X)|| < V2 ai| <1.
For this purpose, we need an explicit computation. Take Y € p_. From the root decomposition
to be considered in the next note, we know that ¥ admits a decomposition

(3.5) Y = ZbX_erZZbX >0 X a.

i a€P; 1<j acP;;

Here P; (P;;) is the set of positive non-compact roots compatible with £v; (5(v +7;)) (in the
sense that the restriction to a’ = > Rh; are equal). Then

(3.6) Zal (X, X+ >0 > abalXi, Xoal + > Y aicalXi, Xl

7 OfeP ’L;éj aePij
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From our normalization of X,, 7(X,) = —X_,. It follows that for o # 8, B; (X, X3) = 0. By

Jacobi identity,

B, (X

iy X ool [Xo X)) = a(hi) B(X—a, Xp) .

. e ico
In particular, the terms in (3:5), (t%.ﬁii are orthogonal to each other. So the square norms of Y
and [X,Y] are just square sums of the coefficients. From this, the assertion follows.

3.6. Embedding into the compact dual. The final topic concerns the embedding p — D.
Theorem 3.23. The embedding py — D realizes P+ as a Zariski open dense subset of D.
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