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1. INTRODUCTION

This is one of a series of notes prepared for a seminar on the toroidal compactifications of
Shimura varieties.

In this part, we study the standard boundary components. In the next part, we will prove
that the information of standard boundary components actually implies the information of all
boundary components.

2. SUMMARY OF RESULTS FROM PREVIOUS LECTURES

Consider an irreducible bounded symmetric domain D = G/K, where G = G(R)" for some
semisimple adjoint R-algebraic group G, K is a maximal compact subgroup corresponding to
o € D. We have a corresponding Cartan decomposition

g=tdp.
Choose a Cartan subalgebra b and a suitable ordering on ih", we get a further decomposition

gc=tcDpyr Dp_.

A root v € & = P(gc, he) is compact (resp. positive, negative) if g* is in € (resp. p4, p—). We
choose a maximal set of strongly orthogonal positive roots v1,...,7. and X; € g7, X_; € g7,
h; € ih such that

Xi— X pi(Xs+ X)) et+ip, [ Xy, Xyl =h;.
Let
v=Xi+ X, yi=1i(X;—X_).
Set

r
a = ZR:L',L .
i=1

Then a is a maximal Abelian subspace of p and it is the Lie algebra of a maximal split torus in

g.
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Let f31,..., [ be the basis of a¥ dual to x1/2,...,z,/2. We take the lexicographic ordering
on a¥ defined by the basis Xi,..., X, (so that 31 > --- > ). Then the simple R-roots in
]R(D = R(I)(gv Cl) is

1 .
Oéz:§<52_6z+l) (Zzlv"'ar_l)ﬂa’l‘a

where o, = v, if g® has type C, and «; = %’y Bﬁ%&%q’ has type BC,.. This numbering of simple
roots is known as the canonical numbering in ﬂ ’’’’ ].
We summarize the situation in the following proposition:

Proposition 2.1. Under the assumptions above, the set of simple roots is
C, In this case,

1 .
{ai= 30— i) fori =1 = Lo =5,
BC,. In this case,

{ai:;(ﬁi_ﬁi+l) fOTi:L'--,T—l;ar:;@"} :

The full set of roots g® is
C, In this case,

1 . .
{iz(ﬂi:l:ﬁj) for1 <i<j<r;£p; fori= 1,...,r} .
BC,. In this case,
1 1
{:l:z(ﬁi:tﬂj) for1<i<j<r;£p8; fori= 1,...,r;:l:§6i fori= 1,...,7"} .
We will refer to these explicit roots for concrete computations.

3. PARABOLIC SUBGROUPS OF REDUCTIVE GROUPS

We will work in the fairly general setting here. Let k£ be an arbitrary field, of any character-
istic. Recall that a connected smooth algebraic group G over k is reductive if R, (Gga) is trivial,
where k% is an algebraic closure of k.

3.1. Standard parabolic subgroups. Fix a reductive group G over k.

We will recall the basic facts regarding parabolic subgroups of G. When there exists a Borel
subgroup, the whole theory is well-known, covered by any standard textbooks. We will need a
more general case.

Theorem 3.1. All mazimal split k-tori are G(k)-conjugate. All minimal parabolic k-subgroups
of G are G(k)-conjugate.

Any parabolic subgroup P of G contains a maximal split torus and these mazimal split tori
are all P(k)-conjugate.

All parabolic subgroups are self-normalizing and connected.

Let S be a fixed maximal split torus of G. We will try to classify parabolic subgroups
containing S.

Theorem 3.2. There is a bijection between the set of minimal parabolic subgroups of G con-
taining S and the set of positive systems of roots in ® = 1 ®(G,S). More explicitly, given a
minimal parabolic subgroup P, the corresponding positive system is just ®(P,S).

Definition 3.3. A subset ¥ of a root system & is paraboic if

(1) W is closed: if a,b € ¥, a+be P, thena+be V.
(2) YU (V) = 9.

Theorem 3.4. Fix a maximal split torus S in G. Let ® = ®(G,S). There is a bijection between
the set of parabolic subgroups of G containing S and the set of parabolic subsets of ®. More
explicitly, given a parabolic subgroup P, the corresponding positive system is just ®(P,S).
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Next we fix a minimal parabolic subgroup Py of G containing Py. We say a parabolic subgroup
of G is standard (with respect to Pp) if it contains Py. This notion is useful because

Theorem 3.5. Every G(k)-conjugacy class of parabolic subgroups of G contains a unique mem-
ber containing Py.

Corollary 3.6. There is a bijection between the set of standard parabolic subgroups of G with
respect to Py and parabolic subsets of ® containing ®* := ®(Py, S).

Let A be the simple roots associated to the positive system ®T. Then the set of parabolic
subsets of ® containing ®T is in bijection with subsets of I C A. More explicitly, given I, the
parabolic subset if

dTU(PNZ-I).

3.2. Dypamic theory. We review the dynamic theory of general algebraic groups. Our refer-
ence is [VIIIT7, Section 13.d].

Let G be a smooth algebraic group over a field k£ and A : G,,, — G a cocharacter (1-parameter
subgroup) of G. Let

Po(N)(R) = {g € G(R) : lim M1)gA (1) exists}

for any (small) k-algebra R. Then Pg(A) is an algebraic subgroup of G.
Define Zg(\) = Zg(AG,,). Then in fact,
Zg(A) = Pg(A) N Pg(=A).
Define
U (R) = {g € POO(R) s lmg M(gA(®) ' = 1

Then Ug(N) is represented by a normal subgroup of Pg(\).
When G is connected, Zg(\), Ug(\) and Pg(A) are all connected. We will assume that G is
smooth from now on. We have the decomposition

(3.1) Pg(A) = Zg(A) x Ug(X).
We decompose
g=EP o

neZ
according to the weights of AdoA. Then

(3.2) LiePg(A) = @ an, Lielg(\) =P an, LieZg(A) =go.

n>0 n>0

3.3. Iwasawa and Langlands decompositions. We will consider the following situation: let
G be a semi-simple adjoint R-algebraic group, P be a minimal parabolic subgroup of G and A
be a maximal split torus contained in P. Write N' = R,P. Let G = G(R)* and N = N (R).
Take K to be the maximal compact torus of G orthogonal to A = A(R). We have the Twasawa
decomposition

G =KAN.

Definition 3.7. A parabolic subgroup of the real Lie group G is a subgroup of GG of the form
G NP'(R) for some parabolic subgroup P’ of G.

Write P = P(R) N G the parabolic subgroup of G defined by P. Let M = Zg(A), then we
have the Langlands decomposition

P=MAN.

It is well-known that Zg(A) = M A. One can also restate the Langlands decomposition in terms
of algebraic groups.

4. LIE ALGEBRA COMPUTATIONS

Now we come back to our notations in Section 2. In particular, We write a1, ..., q, € a” for
the simple roots with the canonical ordering.
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4.1. Standard maximal parabolic subgroups. Let A be the maximal split torus of G with
Lie algebra a. Take a minimal parabolic subgroup P of G containing A such that

rO(P,A) = &N (é Na) .
i=1

Also recall that we have the root decomposition,
g=Zy(a)® P o*.
acr®
Observe that Zy(a) = m@a, where m is the Lie algebra of the anisotropic part in the Langlands
decomposition.

Definition 4.1. For b = 1,...,7, let a; C a be the one-dimensional subspace on which all
simple R-roots but ¢ vanishes:

ap:={ac€a:aia)=0fori=1,...,r0#b}.
Proposition 4.2. In both C, and BC, cases, if b < s,

ay ={B1 =" = By; Bpr1 ="+ = Br =0}.
If b = s,
ab:{ﬁlz"'zﬁr}~
In other words, for anyb=1,...,r,
(4.1) ab:R(xl—i—---—i—xb).

From now on, we fix b = 1,...,r. Let A be the algebraic subgroup of A generated by ay.
We let wy € a; be the element corresponding to 1 + - -+ + .

We will construct a family of standard maximal parabolic subgroups P, exhausting all G(R)-
conjugacy classes.

From the dynamic theory,

(4.2) Py = Pg(wy) .

More explicitly,
Py = Zg(Ap) - N .

Proposition 4.3. Py,..., P, are all maximal standard parabolic subgroups of G.

Proof. Observe that

{wb > O} =oN (@ZO&Z @Nab) - X*(A) .

i#b
From Corollary 3.6, it is obvious that P, ..., P, are all standard maximal parabolic subgroups.
From Theorem 3.5, they are not conjugate to each other. On the other hand, there are exactly
r-different standard maximal parabolic subgroups, it follows that we have all of them. O

Let

Wy = Ru(Pp) C N.
Then
(4.3) Pb = Zg(.Ab) X Wb.
From the dynamic theory,
Wb = Z/{g (wb) .
Proposition 4.4. The set {w, > 0} is
G 1 1
SBi£By) forisb<j; S(Bi+fy) fori<j<b.
BC,

S fori b < S(Bi ) fori<isbi B fori<h.
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eq:LiePUZ
The sum of the corresponding root spaces is to, by (IS.Z i
Similarly,

Proposition 4.5. The Lie algebra py can be described as
(4.4)

1 1 1 1
{i2(i5iiﬁj) f07“b<i§j§7“;i2ﬁif07“b<i§7“;2(ﬁiiﬂj)f07“1Siéb,lﬁjST;Qﬁifm“lSiSb}

in both the C, case and the BC; case.
:LiePUZ
Both propositions follow from (|Ie3.5 )1 5

4.2. The weight filtration. The following lemma is quite obvious:

Lemma 4.6. We have
2%, 1 <b,

The weights of each kind of root o € r® with respect to dwy are:
(1) o= £3(Bi + Bj), i,j < b, weight £2.
(2) o= +L(Bi — Bj), i,j < b, weight 0.
(3) a=+1B;, i <b, weight +1.
(4) a=+L(8;+B)), i <b, j > b, weight +1.
(5) a = :l:%(ﬁi —Bj), 1 < b, j > b, weight £1.
(6) o = i%ﬁi, i > b, weight 0.
(7) a = 5(£B; £ 5)), i,5 > b, weight 0.
In particular, if we write W, for the weight filtration on g defined by wp, the only possible
weights are —2,—1,0,1,2. We write g* = Grgv(g).
Observe that
pp=g ‘®g '@y,

2 —1
oy =9 @ g )
(4.5) Ly
Z(rop) =g~ =,
Zg(ﬂb) :90~

:Pbd
4.3. A refinement of the decomposition. In this section, we refine the decomposition (IZIGB ; e
Py = Zg(Ap) x W

by further decomposition the Lie algebra Zy(ap) of Zg(Ap). We will do the same thing at the
level of algebraic groups in the next section.

Write
(4.6) [p = > 9% +[g% 9" = > 0% +[g% 9.
acpPa=Y",_, aia; acp®a=Y",_, aifi
Similarly,
[, = > g% + g% 9.

O‘ER@@:ZKb A%

From the strong orthogonality of 3;, we easily see that the [,’s are ideals in Zy(ay).
We observe that [g*, g7 %] € Zg(ay) = m @ a. From Proposition 3.2 of the previous part,
X; € [g*, g~ %]. In fact, from the same proposition,

(g%, 9" “]Na=RXj;.
With respect to the root decomposition (g, a),
(4.7) Zy(ap) =mp B ap 1y,

where my = mN Zg(ayp).
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:LiePUZ
It follows from (IZeZ.Z i that

(4.8) Po = Zg(ap) Brop=mp @ ap Dl B[, B 1.
Finally, observe that
Proposition 4.7. [, is semi-simple.
Proof. 1t suffices to show that [ly, [;] = . The only non-trivial part is
g7 C 1y, 1)

whenever i > b. But we know that z; € [g%, g~ %], so any X € g% can be written as

1

O

We observe that [, is a direct sum of Lie subalgebras of type (a), (b), (c) and (e). In
particular, [, is stable under the adjoint action of Deligne’s map u. So (Ig,u(—1),u(i)) is a
Hermitian symmetric Lie algebra.

Remark 4.8. EV?{ lﬁnlng We have said in this section makes sense for a general subset S C
{1,...,7}, asin . Our case just corresponds to S = {1,...,b}.

5. STANDARD BOUNDARY COMPONENTS

We keep the notations of the previous section. In particular,

[h = > g% +[g%97% = > g% + (8%, 97%],
aGRQ,a:Zi a; o aERCD,a:Zi a;iB;
(51) / >b . . . >b
fh, = > g% + (g%, 97%].

aeRq)’a:Zi<b i

We will regard D = G/K as a bounded domain in p; using Harish-Chandra embedding. The
goal of this section is to study some components of 9D.

Write Ly, (vesp. L) for the subgroup of Zg(Ap) with Lie algebra [, (resp. [}).

Define

Dy = Lb/(LbﬁK) .
Proposition 5.1. The set Dy is a bounded symmetric domain containing in D.

Proof. We already know that Dy is a Hermitian symmetric space. It admits a natural embedding

into D induced by Ly — G. It follows that Dj does not have any compact factors. O
Proposition 5.2. [, does not have compact factors.

AMRT
Proof. T do not understand the arguments in [ANT , Page 124]. O

Proposition 5.3. L;, commutes with [[°_; SL(2,R) C G modulo Z(G).
Proof. This is clear by considering Lie algebras. (]

We find natural embeddings

Abx D, — D

L,

CP X pyy RN

I |

BY x Dy —25 D
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Here p, p = p4 Nlyc. The map fo is just the inclusion of

b

PCXi@pis—ps.
=1

Now we introduce the standard boundary components
Fy:=fo((1,...,1) x Dy) COD Cpy.
Similarly, we write
B=fs ((1,...,1) xDb) ch.

We also regard Dy, (resp. Dj) as a subset of D (resp. D).
Let us recall the notion of Harish-Chandra map:

Theorem 5.4. There is a morphism HC : Uy x SL(2,R)" — G such that
(1) p(z,h%(2),...,h5(2)) = u(z)%.
(2) The map

.
dHC:R@® P sl(2,R) - g.
i=1
restricted to the second component is given by

ai b]. Qr bT‘ s . b+c ‘ b—C. ‘
({01 —aJ Y [cr —arD ~ ;am T YT ths
(3) The restriction of HC to SL(2,R)" — G is algebraic.
Recall that u : U — G is the Deligne map and

SL, igy _ | cos@ sind
(") = {—sin@ COSH]‘

It will be more convenient to notice that u? in fact comes from an algebraic homomorphism
ho : S — G, where S is the Deligne torus. More generally, for each x € D, we can write
he : S — G for the unique morphism fixing = and h,(z) acts on T, D as multiplication by 2.

In our setting, we introduce version of Harish-Chandra map with respect to a standard
boundary component now. We set

(5.2) HC,: U; x SL(2,R) = G, (z,2) = HC(z;z,...,2,h5%(2),...,h%(2)),

where = occurs b-times.
From the lecture of Yuanyang, we know that HC; induces symmetric embeddings, uniquely
determined by the condition that i is mapped to the base point o € D,

H-—" D

Lo

LI 5
Proposition 5.5. The image of oo under f; is Zle X, €py.

In terms of the Cayley transform we introduce below,

b
Z Xi = Cb(O) .
i=1
Proof. Observe that

o0 = limexptB O}-i.

t—o0 -1
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So the image of oo is given by

b b
tlggloexptzgci -0 = ZXi
=1 =1
from the explicit formula in Part I. O

We have shown that f;(c0) € Fp.
Similarly,

Proposition 5.6. The image of 0 under f, is — 25’:1 X, €py.

Next we consider the partial Cayley transform:

¢, = HCy (1; % E _11]> e Ge.

The mysterious matrix can be explained by the following simple computation: Write

O N ) N [ Bt

for z € U;. So the explicit matrix is nothing but a matrix diagonalizing the hS“(z)’s at the
same time.

Lemma 5.7. We have
Cb(Db) = Fb, Cb(Db) = Fb.
Here Dy, is identified with Ly - o.

Proof. We only have to handle the components i < b. Take any ¢ € Ly, then
£-0= Z a; X;
i>b
So we are reduced to compute the Py KcP_ decomposition of ¢. This follows from an explicit

computation. To be added. O

We define a cocharacter wy, : G,, — G by

wy(t) = HC, (1, [8 tﬂD .

Proposition 5.8. wy is a well-defined cocharacter of G. Moreover, dwy : R — g is given by

b

(5.4) dwb(l) = Z ZTj .

i=1
Proof. That wp defines an algebraic cogmacter follows from Theorem 5.4 (from the part of
theorem which is not written down in % . The differential of wy is computed using
Theorem 5.4. [l

:wb :ab
Comparing (E.E[Wi with (IZ[e. I ai, we find that wy, € X.(G)r lies in ap.
We have already defined and studied the parabolic subgroup P, = Pg(wp). Its Lie algebra is
computed in Proposition 4.5.

6. NORMALIZERS AND CENTRALIZERS OF STANDARD BOUNDARY COMPONENTS

We use the same notations as above. But D is a general bounded symmetric domain, not
necessarily irreducible.
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6.1. Normalizers. Let b =1,...,r and F} as before denotes the image of
(1,...,1) x Dy CCP x pyy
in py. It is a standard boundary component of D.

Definition 6.1. The normalizer of F, is the stabilizer N'(Fp) of F, in G. In particular, it is an
R-algebraic subgroup of G.

We want to study the structure of N'(F}) in this section.

Theorem 6.2. We have
Py, =N(F) .

It follows that N (F}) is in fact connected, which is not a priori obvious.
Before the proof, recall that ¢, induces bijections Lemma 5.7:

Dy = Fy, Db AN Fb .
In particular, ¢,(0) € Fy.

Proof. We may assume that D is irreducible.
Step 1. We show that
Py CN(F) .

It suffices to verify on R-points. Take g € P,. From the lecture of Zhixiang, we know that
gF} is a boundary component. Two boundary components are either identical or disjoint. So it
suffices to show that g - ¢;(0) € cb(Db) =F,, as FyNnD = cp(Dy) and hence gFy, C Fy.

We are reduced to show that ¢, 'gcy(0) € Dy, or equivalently

(6.1) ¢, 'gep(0) € Ly - K¢ - P-.

The right-hand side is nothing but the stabilizer of Db in Ge.
We will in fact prove more generally the following holds

(6.2) ¢, ' Py(C)ep € Ly - Ke - P-.

Observe that ¢, P, (C)cy, are the C-points of Pg,. (w}), where wj = ¢, 'wycy € X4(G)c. From this
description, we know that Pg,(w}) is parabolic and hence ¢, *P;(C)c, is connected (in complex
topology as well as in Zariski topologye. :Iré dBarticular it suffices to prove the corresponding
result fgr Lie algebras of both sides of ({65 ; Bt we know how to compute these Lie algebras
, the remaining of the argument is just a long and tedious computation. We refer to
[AM: | Page 131 for the details.
Step 2. We already know that P, is a maximal parabolic subgroup, it remains to show that
N (Fp) is not equal to G, but this is quite obvious, for example cb_1 does not stabilize Fj. T O

Let us present a different point of view. Consider again our cocharacter wy : G,, — G. It
induces a filtration W, on g. Moreover, the Deligne’s map h, : S — G defines a decreasing
filtration F* on g.

Theorem 6.3. (g, We, F*®) is a R-MHS.

This follows from a more general theorem of Deligne. From the general theory of Caylay
filtrations, WG can be defined and shown to be equal to N (F}).
As wy splits the weight filtration, we can write

g=g a9 'og’ag ®g’
with g* = Grl g. 0q:PZU

From the general theory (I3.l ;, we know that
(6.3) N(Fy) = Z(uy) x W(E),

AMRT
fThe arguments in [Fﬁf | Page 132 are unnecessary, given the fact that all parabolic subgroups are

connected.
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where
(6.4) W(F,) = Ug(wp) = Ru(N(F)) -
This can be easily rewritten using the general theory as
WoG = Z(wp) x W_1G.
eq:LiePUZ

We observe that the Lie algebra of Z(wy) is nothing but g° by (5-2). .
We want to have some further information about the decomposition (6.
The unipotent part is easy: observe that W_3G is in fact trivial. We let U(F,) = W_»G.

Then U(F}) is just the center of W(F;,) and

V(Fy) = W(F)JU(F,) = G, G
is commutative. We have a short exact sequence

0= U(Fy) = W(F,) = V(F,) — 0.

:NdecomZW

Both U(F}y) and V(Fp) are commutative and unipotent, so they are just direct sums of G, [Fq ,
Proposition 14.32]. So we can more or less say that the structure of W(F}) is well-understood.
Finally, observe that the Lie algebra of W(F,) is g2 @ g~ L.
Next we handle the Levi part Z(wp) = g°. We observe that Let gep be the orthogonal
complement of [, in g° = 3(w;). A direct computation shows that
gep = 3g(ap) b g%
a=+3(8i—p;),1<i<j<b
Using our earlier notations,
gg,b:mb@abGB[Z.
In fact
e = 07,077
Then we have

eq:Zgab
This is the same as (IZI 7).

We can also lift the decomposition to an isogeny

Ly x Ge(Fy) = Z(wp) -

" =1, D gy

6.2. Centralizers. Next we want to define the centralizer of a boundary component:

Definition 6.4. The centralizer of Fy, is the unique R-algebraic subgroup Z(F}) of G such that
Z(F)(C)={gcG(C):gx =aVr € F,} .}
Remark 6.5. The group Z(F}) is not necessarily connected. In general, Z(Fp) is not the same
as Z(wp).
Theorem 6.6. We have
Z(F)° = Go(Fy) x W(F) .

Proof. We first check that Gy, acts identically on Fy,. By definition, Gyj and Ly, are commuting
subgroups of Z(wy), while L; acts transitively on Fj, by the construction of Fy. It follows that
we only need to verify g € Gy,(C) acts trivially on a single point. We take our favorite special
point ¢(0) € Fp. Then we need to show that cgl gcp fixes 0. Namely,

Adcp(ges) Ctc @ p-.
For this, one just needs a direct computation.
AMRT

IThe definition in [F [S ] Page 134 does not seem to be correct, as they require only conditions for
R-points.
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Next we check that W(F}) acts trivially on F,. As F(F}) is normal in N'(F}), it is in particular
normalized by L; as well. So again, we only need to show that any g € W(F;)(C) fixes ¢;(0).
In terms of Lie algebras:

Adcy(ro(Fy)) Ctc Dp_.
This again follows from a direct computation.
We have shown that

(65) Z(Fb)o D) gg(Fb) X W(Fb) .

Next observe that N'(Fp)/(Ge(Fy) X W(Fp)) is nothing but Ly/(Ly N G¢(Fp)), the latter is just

ZE? ?Q’I}Q‘f{% eb[y its center, which acts faithfully on Fj. This readily implies that the equality in
.D) holds: O

Another important aspect of Gy(Fp) is the following:
Proposition 6.7. G/(F}) fizes f(0).

Proof. Let s, : D — D be the geodesic symmetry with respect to 0. Let g € Ge(Fp)(C), then
9f6(0) = gso(fo(00)) = 500 (g)(f5(0)) = so(fo(c0)) = f5(0) -
Here o denotes the Cartan involution of G¢. O
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