TRANSCENDENTAL B-DIVISORS

MINGCHEN XIA

ABSTRACT. We study transcendental b-divisors over compact Kahler manifolds. In particular,
we establish their intersection theory, answering a question of Dang—Favre.
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1. INTRODUCTION

In this paper, we study the transcendental b-divisors. In particular, we extend the intersection
theory of algebraic b-divisors developed in | | to the transcendental setting.

Let X be a connected compact Kéhler manifold of dimension n. Recall that an algebraic
b-divisor (class) is an assignment (7: Y — X) + Dy € NS} (Y)g (the real vector space spanned
by the Néron—Severi group of Y'), where 7 runs over all modifications of X. These data are
assumed to be compatible under push-forwards. An example is a so-called Cartier b-divisor,
where we start with a modification 7: ¥ — X and a class a on Y, the value of Dz on any
modification Z — X dominating 7 is the pull-back of o to Z. The Cartier b-divisor is called nef
if & can be taken as nef. In general, an algebraic b-divisor is nef if it can be approximated by
nef Cartier b-divisors.

B-divisors generalize divisors while incorporating bimeromorphic twists. It is of interest to
understand their intersection theory. When X is projective, Dang—Favre | | established an
intersection theory for nef b-divisors, which has been applied in dynamical systems | | and
K-stability | |. Roughly speaking, they proved that in this case, a nef b-divisor can always
be approximated by a decreasing sequence of nef Cartier b-divisors. This result reduces the
general intersection theory to that of Cartier b-divisors, which is essentially the same as the
classical intersection theory as in | ].

In the same paper, Dang—Favre asked the question of whether one can develop a similar theory
for transcendental b-divisors, namely, when X is not necessarily projective and when the Dy ’s
are just classes in H»! (Y, R). We give an affirmative answer in this paper.

The idea of the proof is already contained in the author’s previous papers | ; ]. Let
us content ourselves to the algebraic setting for the moment. In this case, the two papers give
an analytic approach to the Dang—Favre intersection theory. Suppose that Ly, ..., L, are big

line bundles on X. Then for any singular Hermitian metrics hq,...,h, on Lq,..., L,, we can
construct natural algebraic nef b-divisors Dy, ...,D, on X using Siu’s decomposition. A key
result in these papers show that the Dang—Favre intersection number of D1, ...,D,, coincides

with the mixed volume of hq, ..., h,.
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Conversely, up to some technical details, any nef b-divisor essentially arises from Siu’s
decomposition of currents. In the algebraic setting, this was already known since due to | ,
Theorem 6.40] and | , Theorem 1.1], nef b-divisors and the Z-equivalence classes of (non-
divisorial) currents are both in bijection with the same class of homogeneous non-Archimedean
metrics. We prove the transcendental version:

Theorem 1.1. There is a natural map D (via Siu’s decomposition) sending each closed positive
(1,1)-current T on X to a nef b-divisor D(T") over X.

Let a be a modified nef cohomology class on X and D be a nef and big b-divisor over X with
Dx = «, then there is a non-divisorial (namely, the generic Lelong number along any prime
divisor on X wvanishes) closed positive (1,1)-current T in o with D(T) = D.

See Definition 4.2 and Definition 4.6 for the precise definitions of nef and big b-divisors. The
notion of modified nef cohomology classes is recalled in Section 2.1. The precise definition of D
is recalled in Section 4.2.

It is not clear to the author if the same holds when D is just nef but not big.

The current T is far from being unique. The degree of non-uniqueness is given by the
next result. First recall that two closed positive (1,1)-currents T and 7" on X are said to be
Z-equivalent if they have the same Lelong numbers everywhere and the same remains true after
pulling-back to any bimeromorphic modification of X. See Definition 2.10.

Theorem 1.2. Let a be a modified nef cohomology class on X. Two non-divisorial closed
positive (1,1)-currents with positive volumes in « correspond to the same nef b-divisor via D if
and only if they are Z-equivalent.

In other words, there is a natural bijection D between the following sets:

(1) The set of T-equivalence classes of non-divisorial closed positive (1,1)-currents in o with
positive volumes;
(2) the set of nef and big b-divisors D over X with Dx = «.

The above two theorems correspond to Theorem 4.11.

Although Theorem 1.2 bears some resemblance with | , Proposition 3.1], the contents of
these theorems are radically different. In fact, Trusiani worked with b-divisors with possibly
infinitely many components without passing to the numerical classes. It is a key observation
in this paper that the numerical classes suffice to fully determine the singularities of a current
modulo Z-equivalence, explaining the neatness of our theorem. At the same time, these theorems
show that the author’s notion of augmented b-divisors in | | is unnecessary.

As a simple consequence of Theorem 1.2 and Demailly’s approximation theorem, we deduce
an analogue of [ , Theorem A].

Corollary 1.3 (Corollary 4.15). Let D be a nef b-divisor over X. Then there is a decreasing
sequence of nef and big Cartier b-divisors over X with limit D.

Based on Corollary 1.3, one could essentially repeat the arguments of | | to establish an
intersection theory of nef b-divisors — Reducing the general intersection theory of nef b-divisors
to that of Cartier b-divisors, which is essentially known.

But we choose to follow a slightly different approach in Section 5: We define the intersection
number of nef b-divisors as the mixed analytic volume of the corresponding currents. Since the
latter theory is already well-developed nowadays, this seems to be the most efficient way to
establish the properties of the intersection product.

As a consequence, Corollary 1.3 does not play a significant role in this paper, as Demailly’s
approximation is already a built-in feature of the analytic intersection theory of currents.

There is a technical subtlety here: There are at least two candidates for the analytic theory —
The Z-volumes developed in | ; ] and the mixed volumes in the sense of Cao | ]
We will show in Section 3 that these theories agree and satisfy the desired properties.

The idea of extending Dang—Favre’s theory using analytic methods is known to the author
when he wrote | ] in 2020. What hinders the appearance of this paper is the slow development
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of the analytic theory'. The necessary tools were developed over years in | ; ;
; ; ] and systematically summarized and extended in the author’s book [Xia).
Theorem 1.2 sheds light on the algebraic theory as well. The powerful analytic machinery
can be translated back to the algebraic theory, giving new insights even in the purely algebraic
theory. As an example, in Section 6 and Section 7, we will study the two functorial operations of
nef b-divisors: Along a smooth morphism, nef b-divisors can be pulled back; given a subvariety,
a nef b-divisor can be restricted under a mild assumption. Both operations are essentially
known in the algebraic setting via Boucksom—Jonsson’s theory of non-Archimedean metrics.
Our approach gives more straightforward definitions in terms of b-divisors themselves. This is
not just for aesthetic reasons, it seems to the author that this is an essential step for attacking
Collins-Tosatti’s conjecture | .
Finally, all results in this paper hold for manifolds in Fujiki’s class C as well. But for simplicity,
we always restrict our discussion to Kéhler manifolds.

Further directions. For further developments of the intersection theory and applications to
pluripotential theory, we refer to the sequel paper | ].

Our intersection has direct applications in dynamic systems, as the algebraic theory of
Dang-Favre did in | ]

In | |, Dang—Favre suggested that defining the intersection theory may rely on the
transcendental Morse inequality conjectured in | ]. We expect that conversely, our theory
should be helpful for understanding this conjecture. Less ambitiously, our theory should be
helpful when trying to understand a related result regarding the non-Kéhler locus, as conjectured
in [ .

Finally, there is a notion of Okounkov bodies of transcendental nef b-divisors, exactly as the
algebraic case studied in [Xia, Section 11.3]. Over C, the theory is well-understood using the
analytic theory. However, it is not clear how to work out similar results based on the theory of
Dang—Favre or Boucksom—Jonsson over general base fields.

Acknowledgments. The author would like to thank Nicholas McCleerey, Charles Favre and
Antonio Trusiani for their comments on the draft. Part of the work was carried out during
the author’s visit to Yunnan Normal University in 2024, the author would like to thank
Prof. Zhipeng Yang for his hospitality and the support of Yunnan Key Laboratory of Modern
Analytical Mathematics and Applications (No. 202302AN360007). The author was initially
supported by the Knut och Alice Wallenbergs Stiftelse KAW 2024.0273, then by the National
Key R&D Program of China 2025YFA1018200.

2. PRELIMINARIES
Let X be a connected compact Kédhler manifold of dimension n.

2.1. Modifications and cones. In this paper, we use the word modification in a very non-
standard sense.

Definition 2.1. A modification of X is a bimeromorphic morphism 7: Y — X, which is a finite
composition of blow-ups with smooth centers.

We say a modification 7’: Z — X dominates another 7: Y — X if there is a morphism
g: Z — Y making the following diagram commutative:

Z g Y
(2.1) N /
X

Note that 7 is necessarily projective and Y is always a Kéhler manifold.
The modifications of X together with the domination relation form a directed set Modif (X).
Given classes a, 8 € HV(X,R), we say a < 8 if B — « is pseudoeffective.

land France’s notoriously sluggish government, which made the author homeless for the most part of the year 2024
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Proposition 2.2. Let m: Y — X be a blow-up with connected smooth center of codimension at
least 2 with exceptional divisor E. Then there is a natural identification

(2.2) HY(Y,R) = HYY(X,R) @ R{E}.

See | ] for a much more general result. In general, the pseudoeffective cone of Y does
not admit any simple descriptions.

Fix a reference Kihler form w on X. Recall that a class a € HY (X, R) is modified nef if for
any € > 0, we can find a closed (1,1)-current 7" € « such that

(1) T+ ew > 0

(2) v(T + ew, D) = 0 for any prime divisor D on X.
This definition is independent of the choice of w. Here v(e, D) denote the generic Lelong number
along D.

These classes are called nef en codimension 1 in Boucksom’s thesis | |, where they were
introduced for the first time. Modified nef classes form a closed convex cone in H!(X,R). Note
that a modified nef class is necessarily pseudoeffective. A nef class is obviously modified nef.

Recall the multiplicity of a cohomology class as defined in [ , Section 2.1.3].

Definition 2.3. Let a € HY(X, R) be a pseudoeffective class and D be a prime divisor on X.
We define the Lelong number v(a, D) as follows:
(1) When « is big, define v(a, D) = v(T, D) for any closed positive (1,1)-current 7' € o with
minimal singularities (namely, a current in « that is less singular than any current in «).
(2) In general, define
v(a,D) = el—l>%1+ v(a+ e{w}, D).

When « is big, (2) is compatible with (1) and the definition is independent of the choice of w.
By definition, a pseudoeffective class « is modified nef if and only if v(«, D) = 0 for all prime
divisors D on X.

Let us recall the behavior of several cones under modifications.

Proposition 2.4. Let m: Y — X be a proper bimeromorphic morphism from a Kdhler manifold
Y.

(1) For any nef class a € HY (X, R), 7%« is nef.

(2) For any modified nef class § € HY1(Y,R), 1,3 is modified nef.

(3) For any big class o € HY (X, R), n*«a is big. Moreover, vol m*a = vol a.

(4) For any big class f € HY (Y, R), 7.3 is big. Moreover, volm,/3 > vol 3.

Proof. Only (2) requires a proof. Fix a Kéhler class 7. Replacing 8 by  + ey for € € (0,1),
we reduce immediately to the case where (3 is big as well. Let T' (resp. S) be a current with
minimal singularities in 7,3 (resp. in 8) and D be a prime divisor on X, it suffices to show that

v(T, D) = 0,
by Lemma 2.7 below, v(mS, D) = 0, so our assertion follows. O

Let T be a closed positive (1,1)-current on X. Then we define the reqular part RegT of T as
the regular part of T with respect to Siu’s decomposition. In other words, we write

(2.3) T =RegT + Z cil Bl

where F; is a countable collection of prime divisors on X and ¢; = v(T, E;) > 0; the regular part
RegT is a closed positive (1, 1)-current whose generic Lelong number along each prime divisor
on X is 0.

Definition 2.5. We say a closed positive (1, 1)-current 7" on X is non-divisorial (resp. divisorial)
if T'=RegT (resp. RegT = 0).

Note that the cohomology class of a non-divisorial current is always modified nef. Conversely,
a current with minimal singularities in a big and modified nef class is always non-divisorial.
There is a closely related notion introduced in | |:
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Definition 2.6. We say a closed positive (1, 1)-current S on X is non-pluripolar (resp. pluri-
supported) if S = (S) (resp. (S) =0).

Here (S) denotes the non-pluripolar polar part of S, namely the non-pluripolar product of S
itself in the sense of [ ]

Clearly, a divisorial current is necessarily pluri-supported, and a non-pluripolar current is
necessarily non-divisorial. But these notions are not equivalent in general. However, within the
class of Z-good singularities, these notions turn out to be equivalent. Since we are not in need of
the latter result in this paper, we omit the proof.

Lemma 2.7. Let m: Y — X be a proper bimeromorphic morphism from Kdihler manifold Y .
Let T be a non-divisorial current on 'Y, then w1 is non-divisorial.

Conversely, if S is a non-divisorial current on X, 7*S is could have divisorial part. As a
simple example, consider S on P?, whose local potential near 0 € CZ, looks like log(|z[* 4 |w|?).

Proof. Let D be a prime divisor on X. It follows from Zariski’s main theorem (][ ,
Théoreme 1.7]) that D is not contained in the exceptional locus of 7. Let D’ be the strict
transform of D. Thanks to Siu’s semicontinuity theorem, we have

v(mT, D) =v(T,D") = 0.

Hence 7. T is non-divisorial. O

2.2. Quasi-plurisubharmonic functions. We first recall the notions of P and Z-equivalences.
The latter is introduced in | | based on [ ]. The former was introduced in [Xia] based
on [ ].

Definition 2.8. Let ¢, be quasi-plurisubharmonic functions on X. We say ¢ ~p ¢ (resp.
@ =p 1) if there is a closed smooth real (1,1)-form 6 on X such that ¢, v € PSH(X,0)~( and

Pylp] = Py[yp]  (vesp.Pylp] < Pplt)]).

Here PSH(X, 6) denotes the space of #-plurisubharmonic functions on X and PSH(X,0)~
denotes the subset consisting of ¢ € PSH(X, 0) with [y 67 > 0, with 6, = 0 + dd“p. Here and
in the sequel, the Monge-Ampere type product 67 is always understood in the non-pluripolar
sense of | : : |. The envelope P is defined as follows:

Pylg] == sup*(¢p + C) A0,
CeR

where (¢ + C) A0 is the maximal element in PSH(X, #) dominated by both ¢ 4+ C and 0.
Given a closed smooth real (1,1)-form § on X so that ¢, € PSH(X, 6), we also say 6, ~p 6y
(resp. 0, =p 0y) if ¢ ~p 1 (resp. ¢ =p 1). The same convention applies also to the Z-partial
order introduced later.
The main interest of the P-partial order lies in the following monotonicity theorem.

Theorem 2.9. Let 61,...,0, be closed real smooth (1,1)-forms on X. Let p;,1; € PSH(X,6;)
fori=1,...,n. Assume that ; <p ; for eachi=1,...,n. Then

/X 01, Ao Nbp g, < /X Oy Ao N Opap, -

This result is a consequence of the monotonicity theorem of Witt Nystrom | : ].
See [Xia, Proposition 6.1.4] for the proof.

Definition 2.10. Let ¢, be quasi-plurisubharmonic functions on X. We say ¢ ~7 ¢ (resp.
o =2z ) if Z(Ap) = Z(M) (resp. Z(Ap) C Z(Ap)) for all real A > 0.

Here Z denotes the multiplier ideal sheaf in the sense of Nadel.
If 0 is a closed smooth real (1, 1)-form such that ¢, € PSH(X, ), then ¢ =<7 ¢ if and only if

Polylz < Pylv]z,

where
Pylolr =sup{n € PSH(X,0) : n < 0,Z(Ap) 2 Z(\n) for all A > 0}.
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Equivalently, we may replace O by = in this equation.
Another equivalent formulation of Definition 2.10 is that for any prime divisor F over X, we
have

v(p, E) =v(¥, E) resp. v(p, E) 2 v(¢), E).
Here v denotes the generic Lelong number. We refer to [Xia, Section 3.2.1] for the details.
Given any ¢ € PSH(X,#), we have

P —sup < Pylyp] < Pololz.

See | , Proposition 2.18] or [Xia, Proposition 3.2.9].
For later use, let us recall the following:

Lemma 2.11. Let w: Y — X be a proper bimeromorphic morphism from a Kdhler manifold Y .
Given two quasi-plurisubharmonic functions v, on X, then the following are equivalent:

e =7 w;

o Thp <7 Y.

Proof. (1) = (2). Just observe that each prime divisor over Y is also a prime divisor over X.
(2) = (1). This follows from the well-known formula:

™ (wy/x @I0w9)) =I(g), A>0,

where wy, x is the relative dualizing sheaf. See | , Proposition 5.8]. O

The operation Pyle|z is idempotent. We say ¢ € PSH(X, ) is Z-model if Py[p|z = . Similarly,
on the subset PSH(X, 6)~, the operation Py|e] is also idempotent, see [ , Theorem 3.12].
We say ¢ € PSH(X, 0)~¢ is model if Py[p] = p.

Suppose that {6} is big. It is shown in | | that there is a pseudometric dg on
PSH(X, 0) satisfying the following inequality: For any ¢, € PSH(X, ), we have

ds(ip, 1) <— znj (2/ o Aen—j—/ 07 A grI —/ o Aen—j)
(2.4) T+ 1 Uk VYTV x 7 Ve x vV
SCndS((Pa ¢)7

where C,, = 3(n + 1)2"2. Here Vy = max{y € PSH(X,0) : ¢ < 0}. Moreover, ds(y,v) = 0 if
and only if ¢ ~p 1. See [Xia, Proposition 6.2.2]. In particular, the dg-pseudometric descends to

a pseudometric (still denoted by dg) on the space of closed positive (1,1)-currents in {6}.
Given a net of closed positive (1,1)-currents 7; in {6}, and another closed positive (1, 1)-

current T in {#}. It is shown in [ , Section 4] and [Xia, Corollary 6.2.8] that T; s, 7 if
and only if T; + w A5, p + w for any Kéhler form w on X.

In general, given closed positive (1,1)-currents 7; and T on X, we say T; 95, 7 if we can find
Kahler forms w; and w on X such that the T; + w;’s and T 4 w represent the same cohomology
class and T} + w; d—s> T + w. This definition is independent of the choices of the w;’s and w.

We introduce a stronger notion in this paper:

Definition 2.12. Let (7;); be a net of closed positive (1,1)-current on X and T be a closed
positive (1,1)-current on X. We say T; = T if

(1) T “5 T
(2) {Ti} = {T}.

A quasi-plurisubharmonic function ¢ on X is called Z-good if there is a closed smooth real
(1,1)-form 6 on X such that ¢ € PSH(X,0)~¢ and

Pyl = Polelz.

For any closed smooth real (1,1)-form ¢ on X so that 8’ + dd°p > 0, we also say the current 9;
is Z-good. This notion is independent of the choice of 6, as proved in | , Lemma 1.7]. See
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also [Xia, Section 7.1]. As a simple example, an Z-model potential with positive non-pluripolar
mass is always Z-good.
A key result proved in | ; ] is the following:

Theorem 2.13. A closed positive (1,1)-current T on X is Z-good if and only if there is a sequence
of closed positive (1,1)-currents (Tj); on X with analytic singularities such that T; = T.
In fact, (T;); can be taken as any quasi-equisingular approximation of T

Here we say a closed positive (1,1)-current 7" has analytic singularities if locally T' can be
written as dd®f, where f is a plurisubharmonic function of the following form:

clog(|fif? +- -+ |fnl?) + R,

where ¢ € Q>0, f1,..., fn are holomorphic functions on X and R is a bounded function. A few
subtleties of this notion are discussed in | , Remark 2.7]. When we write 7' = 6 + ddp
for some smooth closed real (1,1)-form 6 and ¢ € PSH(X,#), we also say ¢ has analytic
singularities.

As a particular case, if D is an effective Q-divisor on X, we say a closed positive (1, 1)-current
T has log singularities along D if T' — [D] is positive, and has locally bounded potentials. It
is easy to see that T' has analytic singularities. Conversely, if we begin with T with analytic
singularities, there is always a modification 7: Y — X so that #*T has log singularities along
an effective Q-divisor on Y. See [ , Page 104].

Let 6 be a smooth closed real (1,1)-form on X and n € PSH(X, ). We say a sequence (1),
of quasi-plurisubharmonic functions is a quasi-equisingular approximation of n if the following
are satisfied:

(1) for each j, 7’ has analytic singularities;
(2) (17); is decreasing with limit 7;
(3) for each M > X\ > 0, we can find jo > 0 so that for j > jo,

I(N'n?) € Z(Mn);

(4) There is a decreasing sequence (¢;); in R>¢ with limit 0, and a Kéhler form w on X so
that
7’ € PSH (X, 0 + €jw)
for each j > 0.
The existence of quasi-equisingular approximations is guaranteed by [ ]. We also say
(0 4 dd®n?); is a quasi-equisingular approximation of 6 + dd°n.
The class Z-good singularities is closed under many natural operations.

Proposition 2.14. The sum and mazimum of two L-good quasi-plurisubharmonic functions
are still T-good. If 0 is a closed real smooth (1,1)-form on X and (p;); is a non-empty bounded
from above family of Z-good 8-psh functions, then sup*; ; is also Z-good.

See [Xia, Section 7.2] for the proofs.

3. MIXED VOLUMES

Let X be a connected compact Kéhler manifold of dimension n. Let T1,...,7T, be closed
positive (1,1)-currents on X. Let 6y,...,6, be closed real smooth (1,1)-forms on X in the
cohomology classes of T1, ..., T, respectively. Consider ¢; € PSH(X, ;) so that T; = 0; + dd“p;
for each i = 1,...,n. Fix a reference Kéahler form w on X.

3.1. The different definitions. For each i = 1,...,n, let (goz ); be a quasi-equisingular
approximation of ;.

Definition 3.1. The mixed volume of T7,...,T), in the sense of Cao is defined as follows:

<T1> s 7Tn>C = lim « (91 tew ddc‘;pjl) ARERNAN (9n + 6w + ddc@%) )

Jj—00
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where (€;); is a decreasing sequence with limit 0 such that gpg € PSH(X,6; + €;w) for each
i=1,...,nand j > 0.

It is shown in | | Section 2 that this definition is independent of the choices of the 6;’s,
the €;’s, the ¢;’s, the ¢!’s and w.

A different definition relies on the Z-envelope technique studied in | ; ]. Recall
that the volume of a current is defined in [Xia, Definition 3.2.3]:

vol(6 + ddCp) = /X (0 + dd° Py[]z)" .

It depends only on the current # + dd®p, not on the choice of the choices of 6 and ¢. In general,
as shown in | ; 1,

vol(8 + dd°p) > / (0 + ddp)".
X

If furthermore the right-hand side is positive, then the equality holds if and only if ¢ is Z-good.
We refer to [Xia, Section 7.1] for the details.

Definition 3.2. Assume that volT; > 0 for all i = 1,...,n. The mixed volume of T1,...,T, in
the sense of Darvas—Xia is defined as follows:

(3.1) Vol(Ty, ..., T,) = /X (01 + APy, [o1]2) A - A (B + dd° Py, [on]) -

In general, define

(3.2) vol(Ty, ..., Ty) = 6£%1+ vol(T} + ew, ..., T, + ew).

This definition is again independent of the choices of w, the 0;’s and the ¢;’s, using the same
proof as [Xia, Proposition 3.2.7].

The mixed volume can be regarded as generalizations of the movable intersection theory. In
fact, when each T; has minimal singularities, the mixed volume is exactly the movable intersection
of corresponding cohomology classes.

When volT; > 0 for all i = 1,...,n, the definition (3.2) is compatible with (3.1), as from the
Z-goodness of the Py, [¢;]z’s, we have

Py, tew [PGi lpilz] = Py, +ew [pi]z.
Hence (3.2) reduces to (3.1) as a consequence of Theorem 2.9.
When 71 = --- =T, =T, the above definition is compatible with pure case:

Proposition 3.3. We always have
vol(T,...,T) = volT.

Proof. Write T' = 0,. In more concrete terms, we need to show that

lim [ (04 ew + dd° Py, flr)" = / (0 + dd° Py[g]7)".
e—0+ Jx X

We may replace ¢ by Py¢|z and assume that ¢ is Z-model in PSH(X, ). Then we claim that
Y= égg P0+ew[90]I-

From this, our assertion follows from [Xia, Proposition 3.1.9].
The < direction is clear. For the converse, it suffices to show that for each prime divisor F
over X, we have

. B) < v (] Poralils, E)

We simply compute

v (int Povaléls, B) 2 supv (Posealilz, E) = vl B).
€ €
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Proposition 3.4. Both volumes are symmetric. The mized volume in the sense of Cao is
multi-Q>g-linear, while the mized volume in the sense of Darvas—Xia is multi-R>q-linear.

The multi-Q>¢-linearity means two things:

(1) For each A € Qx>¢, we have
T, T, ..., T = NT1, T, . ... T
(2) If T is anther closed positive (1,1)-current, then
(3.3) (T + T}, Ts, ..., Tpye = T\, Ta, ..., Tp)c + (T}, T, ..., ).

Multi-R>o-linearity is defined similarly.

Proof. We first handle the mixed volumes in the sense of Cao. Only the property (3.3) needs a
proof. But this follows from the fact that the sum of two quasi-equisingular approximations is
again a quasi-equisingular approximation. See [Xia, Theorem 6.2.2, Corollary 7.1.2].

Next we handle the case of mixed volumes in the sense of Darvas—Xia. We only need to show
that

(3.4) vol(Ty + T}, Ty, ..., T},) = vol(Ty, T, .. ., Ty)) + vol(T}, T, ..., T},).

Thanks to the definition (3.2), we may assume that volT; > 0 for each i and vol T > 0. Write
T] = 0} + dd°¢}. Then thanks to Proposition 2.14,

Po, lp1lz + Py [i]z ~p Py o1 + #z.
Therefore, (3.4) follows from Theorem 2.9. O

Theorem 3.5. We have

(3.5) (Th,...,Ty)c =vol(Th,...,T,).
In particular, we no longer need the notation (71, ...,T,)c.
Proof. Step 1. We reduce to the case where T} = --- =T,.
Suppose this special case has been proved. Let Aq,..., A\, € Qsg be some numbers. Then
n n n
O AT, ... > NT)e = vol (Z /\T> :
i=1 i=1 i=1

It follows from Proposition 3.4 that both sides are polynomials in the A;’s. Comparing the
coefficients of A; - - - \p,, we conclude (3.5).
From now on, we assume that 71 = --- =T, = T. Write T' = 0.
Step 2. We reduce to the case where T is a Kéhler current. For this purpose, it suffices to
show that
lim (71 + ew, ..., T, +ew)c = (T1,...,Ty)c,
e—0+
which is obvious by definition.
Step 3. Let (¢’); be a quasi-equisingular approximation of ¢ in PSH(X, #). We need to show
that
lim [ (0 +ddp)" = / (0 + dd°Py[¢]7)".
X X

Jj—00

This follows from | , Corollary 3.4], see also [Xia, Corollary 7.1.2].
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3.2. Properties of mixed volumes.

Proposition 3.6. Let Si,...,S, be closed positive (1,1)-currents on X. Assume that for each
1=1,...,n,

(1) T; 21 Si;
(2) {13} = {S:}.
Then
(3.6) vol(Th, ... ,Tn) < VOl(Sl, ooy Sh).

Proof. Let w be a Kéhler form on X. It suffices to show that for each € > 0, we have
vol(Ty + ew, ..., T, + ew) < vol(S1 + ew, ..., S, + ew).

In particular, we reduce to the case where volT; > 0, vol.S; > 0 foreach i =1,...,n.
In this case, (3.6) is a consequence of Theorem 2.9. O

Proposition 3.7. We have

vol(Th, ..., T, ﬁ vol T5) /n,
Proof. We may assume that volT; > 0 for each ; = 1,...,n since there is nothing to prove
otherwise. In this case, we need to show that
/X (01 +dd®Py, [p1]z) A+ -+ A (On + dd°Fy, [on]z ﬁ </ (0; + dd° Py, [%’]I)n>1/n-
This is a special case of the main theorem of | ]._ O

Proposition 3.8. Let m: Y — X be a proper bimeromorphic morphism from a Kdahler manifold
Y to X, then
vol(m*Th, ..., m"T,) = vol(T1,...,T,).

Proof. As in the proof of Proposition 3.6, we may easily reduce to the case where vol T; > 0 for
each i = 1,...,n. By [Xia, Proposition 3.2.5], we know that if we write T; = 0; + dd“p;, then

TPy, [pilz = Preo,[m"¢i1.
In particular,
vol m*T; = vol T} > 0.

Our assertion follows from the obvious bimeromorphic invariance of the non-pluripolar product.
O

Lemma 3.9. Let w be a Kdhler form on X. Then there is a constant C > 0 depending only on
X,w,{01},...,{0n} such that

0 <vol(Ty + ew, ..., T, + ew) — vol(T1,...,T,) < Ce
for any € € [0, 1].
Proof. By linearity, we can write
vol(T} + ew, ..., T, + ew) — vol(Th, ..., T,)

as a linear combination of the mixed volumes between the 7}’s and w with coefficients € for
some j > 1. The mixed volumes are clearly bounded by a constant. U

Proposition 3.10. Let (Tij)jEJ be nets of closed positive (1,1)-currents on X for each i =
1,...,n. Assume that for eachi=1,...,n, we have

T = T
Then

(3.7) lim Tj -AT,{:/ A
jed X
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and

: j i\ _
(3.8) lim vol (Tf,....13) = vol (T4,.., T,).

Recall that = 1is defined in Definition 2.12.

Proof. Let w be a Kéhler form on X. For each ¢ > 0, we can find jy € J so that for j > jo, the
following classes are Kéhler:

(T + 27 e{w} = {T7}, i=1,...,n.
Take a Kihler form w/ in the class {T;} 4+ e{w} — {T7}. Then observe that for i = 1,...,n,
Tij + wf ds, T; + ew.

Since these currents are now in the same cohomology class, it follows from | , Theorem 4.2]
(see also [Xia, Theorem 6.2.1]) that

(3.9) lim/ (T + W) A A (T +wl) :/ (Ti+ew) A A (Th + ew).
jed Jx X
Note that we can find a constant C' > 0 independent of j > jg so that for any j > jg, we have

/(wa{)A---A(Tgw,f;)—/ TI N NTI < Ce,
(3.10) X X
/(T1+ew)/\-~~/\(Tn+ew)—/ Ty N NT, <Ce.
X X

Hence (3.7) follows.
As for (3.8), it suffices to replace (3.10) by Lemma 3.9, and (3.9) by

l.irgvol (Tf —i—w{,...,Tg—i—w%) =vol (T} + ew, ..., T, + ew)
j€

which follows from | , Theorem 4.2, Theorem 4.6] (see also [Xia, Theorem 6.2.1, Theo-
rem 6.2.3]). O

Next we establish a semicontinuity property of the mixed volumes.

Theorem 3.11. Let (gp{)jej (i=1,...,n) be nets in PSH(X,0;). Assume that for each prime
divisor E& over X, we have

limy(cpg,E) =v(pi,E), i=1,...,n.
Jj€J

Then
Ty vol (601 + dd°g], ..., 0+ dd°g]) < vol (61 + dd°pr, ..., O + ddpy)
JjE

Proof. Step 1. We first assume that vol(#; + dd°¢!) > 0 and vol(6; + dd®yp;) > 0 for all
i=1,...,nand j € J. '

Without loss of generality, we may assume that the ¢!’s and the ¢;’s are Z-model for all
i=1,...,nand j € J. Our assertion becomes

(3.11) 51671}/)( (91 +dd0¢{) Ao A (en +dd0¢gl) < /X (61 4+ ddp1) A=+ A (6, + ddpy) .
For each j € J, define .
W) =sup* ok, i=1,...,n.
k>j

Observe that Q,Z)g is Z-good thanks to Proposition 2.14. It follows from [Xia, Corollary 1.4.1] and
our assumption that

: J _ ) C
%H}V(%,E) =v(p,E), i=1,...,n.

For each i = 1,...,n, we define '
; = inf Py [17].
Wi = inf Py, [¢7]
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Due to | , Lemma 2.21] (see also [Xia, Proposition 3.2.12]), 1; is Z-model. Thanks to [Xia,
Proposition 3.1.10], we know

V(¢17E) = V(QpivE)
for any ¢ = 1,...,n and any prime divisor F over X. In other words, 9; ~7 ; fort =1,... n.
But both ¢; and v; are Z-good, therefore,

v ~p i, 1=1,...,n.
By Theorem 2.9, we have
/X(e1 + ) A A (B + ddCep,) = /X(o1 +ddCpr) A A (O + ddopy).
Next by Theorem 2.9 again,

i | (601 +ddp]) A+ A (0 + dd°g),) < %/X (601 + ddp]) A= A (0 + dd0]) .

jeJ
On the other hand, due to | , Proposition 4.8], for each ¢ = 1,...,n, we have
i d
A

We conclude from Proposition 3.10 that
T [ (01 +ddy]) A+ A (6, + dd“y),) = / (01 + ddYy) A -+ A (0, + ddey,).
jeJJX X

Putting these equations together, (3.11) follows.

Step 2. Next we handle the general case.
Fix a Kéhler form w on X. For any € € (0,1], from Step 1, we know that

@Vol («91 + ew + dngD{, e 0 +ew+ dngDiL) <vol (61 + ew + ddp1, ..., 0, + ew + ddpy,) .
je
Using Lemma 3.9, we have
%Vol (91 +ddopd, .0, + dd%pg;)
< lim vol (91 + ew + dd%p{, coy O Few + dd%p%)
jeJ
<vol (01 + ew 4+ ddp1, ..., 0, + cw + ddpy,)
<vol (01 +dd°py,...,0, +dd°p,) + Ce.
But since € is arbitrary, our assertion follows. O

Lemma 3.12. Let w: Y — X be a proper bimeromorphic morphism from a Kdihler manifold Y .
Then for any non-divisorial closed positive (1,1)-current T on 'Y, we have

N
T =T + Z i Fy)
i=1
for finitely many w-exceptional divisors F; and ¢; > 0.
In particular, if S is a closed positive (1,1)-current on X, we can find E; and ¢; as above so

that
N

T(S) = (7°8) + > il Ei).

i=1
Proof. Let E be the exceptional locus of w. Then
T = ]ly\E’ﬂ'*ﬂ'*T.

Therefore,
m'm T —T = 1gr*n,T,
which has the stated form, due to the support theorems, see | , Section 8]. O

It turns out that the mixed volume depends only on the regular parts of the currents.
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Theorem 3.13. We have
vol (11, ...,T,) = vol (RegTh,...,RegT},).
Recall that Reg is defined in (2.3).

Remark 3.14. In general, it is not true that the mixed volume depends only on the non-pluripolar

parts of the currents. This even fails for the pure volume, see | , Example 6.10] for an
example.

Proof. Step 1. We first prove the assertion when 77 = --- =T, =T and volT > 0. We want to
show that

volT = vol Reg T

We decompose T as in (2.3).

We first handle the case where the collection of the E;’s is finite. In this case, it suffices to
prove the following: If S is a closed positive (1,1)-current on X, and F is a prime divisor on
X, then vol(S + [E]) = vol S. For this purpose, we may assume that S is a Kéhler current.
Take a quasi-equisingular approximation (S;); of S, note that (S; + [E]); is a quasi-equisingular
approximation of S+ [E] by [Xia, Theorem 6.2.2, Corollary 7.1.2]. Hence, we may finally assume
that S has analytic singularities. In this case the assertion is obvious.

So we may assume that the index ¢ runs over all positive integers. From the previous argument,
we know that for any N > 0,

N
vol T = vol (T - ZCZ[EZ]> .

i=1
Thanks to Proposition 3.10 and [Xia, Theorem 6.2.2], it suffices to show that

[o.¢]
(3.12) GlB] = > clEi]

i=1 i=1
as N — oo.
Fix a Kéhler form w on X. We can find Ny > 0 so that for any N > Ny, the class of
0
w + Z C; [Ez]
i=N+1

is Kahler. Take a Kéhler form wp in this class. Then the currents
N [e's)

ZCZ[EZ] + wn, ZCZ[EZ] +w

i=1 i=1
all lie in the same cohomology class. So our problem is reduced to

N d 00
Cl[El} + wn LN ch[El} —+ w.
=1 =1

In fact, it suffices to show the convergence of the non-pluripolar masses, due to [Xia, Corol-
lary 6.2.5]. In other words, we need to show that

li no_ n
which follows from the convergence {wy} — {w}.
Step 2. We handle the general case. Fix a Kéhler form w on X, by Step 1, for any
di,...,d, >0 and e > 0, we have

vol (Z d;(T; + ew)) = vol <Z di(Reg T; + ew)> )
i=1 i=1
Since both sides are polynomials in dy, ..., d,, we conclude that

vol(Th + ew, ..., T, + ew) = vol(Reg T} + ew, ...,Reg T, + ew).
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Letting € — 0+, we conclude our assertion. O

Corollary 3.15. Let w: X — Z be a proper bimeromorphic morphism from X to a Kdhler
manifold Z. Then

(3.13) vol(Th, ..., Ty) = vol(m T, ..., mT).

Proof. Observe that we may assume that T; = RegT; for all : = 1,...,n. In fact, clearly the
pushforward of the divisorial part of T is divisorial as well, hence by Theorem 3.13, they do not
contribute to the volumes.

Now by Proposition 3.8, it remains to show that

vol(Th, ..., T,) = vol(m* . 11, ..., mm.T,).

By Lemma 3.12, the difference 7*m,T; — T; is divisorial, hence our desired equality follows from
Theorem 3.13. O

A particular corollary of Corollary 3.15 will be useful later.

Corollary 3.16. Let m: X — Z be a proper bimeromorphic morphism from X to a Kdhler
manifold Z. Assume that T is an Z-good closed positive (1,1)-current on X, then so is mT.

Proof. We may assume that [, 7™ > 0. Then by Corollary 3.15,
volm, T =volT >0

as well. Since T is Z-good, we have

volT = / T".
X

But [ T" = [,(m.T)", so
volm, T = / (m )" > 0.
Z
It follows that T is Z-good. O

Lemma 3.17. Let m: X — Z be a proper bimeromorphic morphism from X to a Kdhler manifold
Z. Consider non-divisorial closed positive (1,1) currents T,S on X in the same cohomology
class. Assume that T <7 S, then w, T <7 m,S.

Proof. We may assume that 7 is a modification thanks to Hironaka’s Chow lemma [ ,
Corollary 2] and Lemma 2.11.
By Lemma 3.12;

N
mm L =T + Z ¢ilEi,
i=1
where ¢; > 0 and the E;’s are m-exceptional divisors. It follows that
N N
T+ Zcz[Ez] <75+ ZCZ[EZ]
i=1 i=1

Replacing T and S by T + SN | ¢;i[F;] and S + SN, ¢i[E;] respectively, we may assume that
T = 7n*m,T. In particular, S and 7*m,S lie in the same cohomology class, and hence S = 7*m,S
(c.f. the proof of Theorem 4.11 below). Our assertion then follows from Lemma 2.11. O

4. TRANSCENDENTAL B-DIVISORS

Let X be a connected compact Kédhler manifold of dimension n.
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4.1. The definitions. The b-divisors defined in this section are sometimes known as b-divisor
classes. We always omit the word classes to save space.

Definition 4.1. A (Weil) b-divisor D over X is an assignment (Dy);.y_x, where 7: Y — X
runs over all modifications of X such that
(1) Dy € HYL(Y,R);
(2) The classes are compatible under push-forwards: If 7': Z — X and 7: Y — X are both
in Modif(X) and 7’ dominates 7 through ¢g: Z — Y (namely, g makes the diagram (2.1)
commutative), then gD, = Dy.
We also write Dy = D, if there is no risk of confusion.
Given two Weil b-divisors D and D' over X, we say D < I if for each m € Modif(X), we have
D, < D/. Recall that by definition, this means the class D, — D, is pseudoeffective.

The class Dy is called the root of . The set of Weil b-divisors over X has the obvious
structure of real vector spaces.

Definition 4.2. The volume of a Weil b-divisor D over X is
volD = lim volDy.
Y —=X

The right-hand side is a decreasing net due to Proposition 2.4, hence the limit always exists.
We say D is big if volID > 0.

Lemma 4.3. Let (D;);er be a net of b-divisors converging to D. Then

(4.1) imvolD; < volD.

el

If the net is decreasing, then
lim volD; = vol D.
iel

Here we say (D;);c; converges to D if for any modification 7: ¥ — X, we have D;y — Dy
with respect to the Euclidean topology.
In general, we cannot expect equality in (4.1), as shown by | , Example 3.3].

Proof. Let m: Y — X be a modification. Then

vol Dy = lim volD; y > lim vol ;.
el el

The inequality (4.1) follows. As for the decreasing case, it suffices to observe that both sides of
(4.1) can be written as
inf inf vollD;y.
i T Y—=X

O

Definition 4.4. A Cartier b-divisor D over X is a Weil b-divisor ID over X such that there exists
a modification 7: Y — X and a class ay € HY1 (Y, R) so that for each 7': Z — X dominating
m, the class Dy is the pull-back of ary. Any such (7, ay) is called a realization of D.

By abuse of language, we also say (Y, ay) is a realization of D. The realization is not unique
in general.

Definition 4.5. A Cartier b-divisor D over X is nef if there exists a realization (7: Y — X, ay)
of D such that ay is nef.

Definition 4.6. A Weil b-divisor D over X is nef if there is a net of nef Cartier b-divisors (ID;);
over X converging to D.

In other words, for each modification 7: ¥ — X, we have ; y — Dy

Note that thanks to Proposition 2.4, each Dy is necessarily modified nef, but it is not nef in
general.

A priori, for a Cartier b-divisor, nefness could mean two different things, either defined
by Definition 4.5 or by Definition 4.6. We will show in Corollary 4.13 that they are actually
equivalent. Before that, by a nef Cartier b-divisor, we always mean in the sense of Definition 4.5.
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Our definition Definition 4.6 amounts defining the set of Weil b-divisors as the closure of
the set of Cartier b-divisors in @W HY1 (Y, R) with respect to the projective limit topology. In
particular, the limit of a converging net of nef b-divisors is still nef.

4.2. The b-divisors of currents. Let T be a closed positive (1,1)-current on X.
Given any modification 7: Y — X, we define

(4.2) D(T)y = {Reg7*T} € H"(Y,R).
The b-divisor ID(T") was firstly explicitly introduced in | ] in 2020. The paper received very
little attention and the same object was re-introduced in [ | and | | later on.

We observe that if 7" is another closed positive (1, 1)-current on X and A > 0, then
D(T +T') = D(T) + D(T'), DAT) = AD(T).

We shall use these identities implicitly in the sequel.
Note that when 7 has analytic singularities, D(T") is Cartier.

Lemma 4.7. Let T be a closed positive (1,1)-current on X. Then D(T) is nef. Moreover,
(4.3) volT = vol D(T).

Proof. Let w be a Kéhler form on X. Then D(w) is the Cartier b-divisor realized by (X, {w}).
We could always approximate D(7") by D(T + ew) = D(T') + eD(w). Moreover, we can find a
constant C' > 0 so that

(4.4) 0 <vol (ID(T') + eD(w)) — vol D(T) < Cl.

Hence we may assume that 7" is a Kéhler current.

Next, we take a closed smooth real (1,1)-form 6 cohomologous to T' and write T = 6, for
some ¢ € PSH(X, 0). Let (¢;); be a quasi-equisingular approximation of ¢ in PSH(X, #). Then
it is easy to see that D(0 + dd®p;) — (6 + dd®p). See | , Theorem 9.6] Step 2 for the
details. As a consequence,

vol (6 + ddp;) — vol D(6 + dd®yp),

thanks to Lemma 4.3.
So we may assume that 7T has analytic singularities. Let w: Y — X be a modification so that

T = [D] + R,

where D is an effective Q-divisor on Y and R is a closed positive (1,1)-current with locally
bounded potentials. Then ID(T') is the nef Cartier b-divisor realized by (7, {R}). Note that (4.3)
is obvious in this case. (]

Remark 4.8. There is a different possibility: Replace Reg by the non-pluripolar part. Given T'
as above, we define

D (T)r = [(7*T)].

But thanks to Lemma 3.12, we have

so there is no new information.
Conversely, we want to realize nef b-divisors as D(7T). We first prove a continuity result.

Proposition 4.9. Let (T;);cr be a net of closed positive (1,1)-currents on X and T be a closed
positive (1,1)-current on X. Assume that T, = T, then

D(T;) — D(T).

Recall that = 1is defined in Definition 2.12.
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Proof. When the cohomology classes {T;} and {T'} are all the same, the proof is the same as

that in the algebraic case, which we omit. See | , Theorem 9.8].
In general, fix a Kédhler form w on X. Then we can find iy € I so that for i > ig, the class
w+A{T} —{T3}

is Kahler, and we can find a Kahler form w; in this class. It follows that
Ti+wy,, THw
are all in the same cohomology class, and hence
D(T; + w;) = D(T + w).

But clearly
D(wi) = D(w),

so our assertion follows. O

Theorem 4.10. FEach big and nef b-divisor D over X can be realized as D(T) for some T € Dx.
Furthermore, we may always assume that T is Z-good.

Note that 7" is not unique. The current 7" is necessarily non-divisorial.

Proof. Fix a big and nef b-divisor D over X.

For each 7: Y — X, we take a current with minimal singularities Ty in Dy. We claim that
D(m.Ty) coincides with D up to the level of Y: For any modification 7’: Z — X dominated by
7w through a morphism g: Y — Z, we have

Dy = D(W*Ty)z.

The notations are summarized in the following commutative diagram:

Y 9 7z
(4.5) X‘ /
X.

After unfolding the definitions, this means

Reg(n*m.Ty) € Dy.

Note that

Reg(n*m.Ty) = Reg(n* 7. g:Ty ).
Due to Proposition 2.4, we know that Dy is modified nef and big. In particular, 7y is non-
divisorial, hence so is g.7y by Lemma 2.7. It follows from Lemma 3.12 that

Reg(n"m.g:Ty) = Reg(g:Ty) = g:Ty € D.
Note that
(4.6) volTy > volD > 0.

Next we claim that the P-singularity types of the net (m.7y )y is decreasing.
To see this, let us fix a diagram as (4.5). We need to show that

1y <p ﬂ'fkTZ.

Since Tz has minimal singularities, it is clear that ¢,7y =<7 Tz. In particular, Lemma 3.17
guarantees that 7,7y <7 7. T7. But thanks to Corollary 3.16, both 7,Ty and 7. Ty are Z-good,
so there is no difference between the P-partial order and the Z-partial order in this case. Our
assertion follows.

Next we claim that the net (7.Ty )y has a dg-limit.

To see, let us take a smooth closed real (1,1)-form 6 in o and write 7.7y as 6 + dd°py for
some 6-psh function ¢y. It suffices to show that the net (py )y has a dg-limit. But as we recalled
earlier, the dg-pseudometric gives 0-distance to P-equivalent potentials, so it suffices to show that
the decreasing net (Py[¢y])y has a dg-limit. This follows from (4.6) and [Xia, Corollary 6.2.6]
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(which is just a reformulation of the completeness theorem of Darvas—Di Nezza—Lu |
Theorem 1.1]).
Take a closed positive (1, 1)-current T' € Dx such that

1y d—s> T.
It follows from Proposition 4.9 that
D(mTy) — D(T).
Therefore, we conclude that
D(T) = D.
Thanks to Lemma 4.7, volT' > 0. Write T' = 6 + dd°yp for some ¢ € PSH(X, ), then
T =0+ dd°Py[e]z
is Z-good, non-divisorial and D(T") = D(T). O

Let a be a modified nef class on X. We write G(«) for the set of closed positive (1, 1)-currents
T on X with T'=RegT € a and volT > 0.

Theorem 4.11. There is a natural bijection from G(«)/ ~z to the set of big and nef b-divisors
D over X with Dx = a.

Proof. Given T € G(«), we associate the b-divisor ID(T"). It is big and nef due to Lemma 4.7.
This map clearly descends to G(a)/ ~7.

This map is surjective by Theorem 4.10. Now we show that it is injective. Let T, 7" € G(«).
Assume that D(T") = D(T”), we want to show that T' ~7 T".

Let E be a prime divisor over X, it suffices to show that
(4.7) v(T,E) =v(T,E).
We may assume that E is not a prime divisor on X, as otherwise both sides vanish.

Choose a sequence of blow-ups with smooth connected centers

Y =X, > X 1> —>Xg=X
so that E is a prime divisor on Y, exceptional with respect to Xz — Xi_1. Denote the
composition by 7: Y — X. Thanks to Proposition 2.2,
HY (X, R) = HYY (X 1, R) @ R{E}},

where E), = F is the exceptional divisor of X — Xj_1.
By induction,

k
H(Y,R) = HYL(X, R) & D R{E},
i=1
where FE; is the exceptional divisor of X; — X; 1. Now by Lemma 3.12,
k
(4.8) Regn*T = 7*T — > v(T, E;)|E;).
i=1

In particular, the cohomology class of Reg 7*T" determines v(T, E). Hence, (4.7) follows. O
Corollary 4.12. The set of nef b-divisors over X can be naturally identified with
hm (G(a +w)/ ~1),

w

where w runs over the directed set of Kahler forms on X (with respect to the partial order of
reverse domination), and given two Kahler forms w < w' the transition map

Gla+w)/ ~z— Gla+w)/ ~1
is induced by the map G(a + w) — Gla+ ') sending T to T + W' — w.

Corollary 4.13. LetD be a Cartier b-divisor over X. Then D is nef in the sense of Definition 4.5
if and only if it is nef in the sense of Definition 4.6.
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This result is the transcendental version of [ , Theorem 2.8].

Proof. We only handle the non-trivial implication. Assume that D is nef in the sense of
Definition 4.6. We want to show that D is nef in the sense of Definition 4.5. We may clearly
assume that D is big. Take a non-divisorial closed positive (1,1)-current 7" on X such that
D =D(T).

Without loss of generality, we may also assume that D is realized by (X, a) for some cohomology
class o € HY (X, R). Now D = D(7T') means that for each modification 7: Y — X, the current
7T is non-divisorial. In particular, T" has vanishing generic Lelong number along each prime
divisor over X, see (4.8). That means, T" has vanishing Lelong number everywhere. It follows
that o = {T'} is nef. O

Corollary 4.14. Let T and T' be non-divisorial closed positive (1,1)-currents on X. Suppose
that {T'} = {T'}, then the following are equivalent:

(1) D(T) < D(T");

(2) T <7 T'.
Proof. This follows from (4.8). O

In particular, we obtain the transcendental analogue of | , Theorem A].

Corollary 4.15. Let D be a nef b-divisor over X. Then there is a decreasing sequence of nef
and big Cartier b-divisors D; over X with limit D.

Proof. Take a Kahler form w on X. By Theorem 4.10, for each ¢ > 0, we can find a non-divisorial
Kihler current T; € Dx + i~ '{w} such that

D(T;) = D+ i 'D(w).

We observe that
Tiy1 ~1 T;.

This follows from applying Corollary 4.14 to T; and Tjyq + (i~ — (i + 1)"!)w. Let (Tl])] be
quasi-equisingular approximations of T; such that

(1) Tij is a Kéhler current in Dy + i~ {w} for j > jo(i), and

(2) the singularity types of (77); is constant.
Note that (2) is possible by the using the Bergman kernel construction of the quasi-equisingular
approximations.

It suffices to take ID; = ]D)(Tiji), where j; is a strictly increasing sequence of positive integers
with j; > jo(4). 0

5. THE INTERSECTION THEORY

Let X be a connected compact Kéhler manifold of dimension n. We will define the intersection
numbers of nef b-divisors and show that they satisfy the same properties as their algebraic
analogues, c.f. [ , Theorem 3.2].

Definition 5.1. Let Dq,...,D,, be big and nef b-divisors over X. Then we define their
intersection as

(Dl, ... 7]Dn> = VOl(Tl,. . .,Tn),

where T1,...,T), are closed positive (1,1)-currents in Dy x,...,D, x respectively such that
D(T;) = Dj.
In general, if the ID;’s are only nef, we define
(D1, Dy) i= lim (Dy + D), ..., By + D),

where w is a Kahler form on X.
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The definition makes sense thanks to Theorem 4.10. It does not depend on the choices of
T1,...,T, since they are uniquely defined up to Z-equivalence, as proved in Theorem 4.11.

When Dy,...,D, are big and nef, the two definitions coincide as follows from Lemma 5.5
below.

We first note that even when the T;’s have vanishing volumes, the two intersection products
still agree.

Proposition 5.2. Let Ty,...,T, be a closed positive (1,1)-currents on X. Then
(D(T1),...,D(T},)) = vol(T1, ..., T),).
This is a trivial consequence of the definitions.
Proposition 5.3. The product in Definition 5.1 is symmetric and multi-R>q-linear.

Proof. The multi-linearity follows immediately from Proposition 3.4. The symmetry is immediate.
O

Proposition 5.4. The product in Definition 5.1 is monotonically increasing in each variable.

Proof. Let Dy,...,D, and D' be nef b-divisors over X so that D; <D’. We want to show that
(D1, ..., Dy) < (I, Dy, ..., Dy).

We can easily reduce to the case where Dy,...,D,, and D' are all big. In this case, take Z-
good non-divisorial closed positive (1, 1)-currents T, ...,T,, and T" so that D(T;) = D; for all
i=1,...,n and D(T’) = D’. Furthermore, we may assume that the T;’s and 7" are Kéhler
currents by the perturbation argument.

Let (T7); be a quasi-equisingular approximation of T; for i = 2,...,n. It follows from
Proposition 3.10 that

/ﬂAmAn:hm/ﬂAgAmAﬂ.
X X

J—00

It suffices to show that for all j > 1,
/TlATQjA---/\T,Zg/T’/\T{/\---ATg.
X X

Therefore, we have reduced to the case where Ts, ..., T, have analytic singularities. After a
resolution, we may assume that they have log singularities along Q-divisors. By Theorem 3.13,
we can further reduce to the case where Ts, ..., T, have bounded local potentials. Perturbing
Ts,...,T, by a Kahler form, we may further assume that {72},...,{7,} are Kéhler classes. By
Proposition 3.6, we finally reduce to the case where T, ..., T, are Kéhler forms. In this case,
our assertion is obvious. U

Lemma 5.5. Let w be a Kihler form on X. Fir a compact set K C HYY(X | R). Let Dy,...,D,
be nef b-divisors over X such that D; x € K for each it =1,...,n. Then there is a constant C
depending only on X, K,{w} such that for any € € [0,1], we have

0 < (D; + eD(w),...,Dp + eD(w)) — (Dy,...,Dy) < Ce.
Proof. This is a simple consequence of the linearity Proposition 5.3. O
We first make a consistency check.
Proposition 5.6. Suppose that D is a nef b-divisor over X, then
(D,...,D) = vol D.

Proof. Using Lemma 5.5 and (4.4), we may easily reduce to the case where D is nef and big. In
this case, take a non-divisorial closed positive (1,1)-current 7" in Dx such that D(T") = D. Then
we need to show that

volD = vol T,

which is proved in Lemma 4.7. U
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Proposition 5.7. Let Dy,...,ID, be nef b-divisors over X. Then

(D1,..., D) > [ (vol D)™

i=1
Proof. We may assume that volD; > 0 for each ¢ = 1,...,n since there is nothing to prove
otherwise. In this case, our assertion follows from Proposition 3.7. U

Proposition 5.8. The product in Definition 5.1 is upper semicontinuous in the following sense.

Suppose that (D)) ey are nets of nef b-divisors over X with limits D; for each i =1,...,n. Then
lim (]D)l,...,]D)n> < (Dy,...,Dy).

Proof. Step 1. We first assume that the D?’s and the D;’s are all big.

Take Z-good non-divisorial closed positive (1,1)-currents 7/ and T; so that D(7Y) = D] and
D(T;) = D;. Note that by our assumption and the proof of Theorem 4.11, for any prime divisor
FE over X, we have ‘

lim v(T7, B) = (T3, E).
jeJ
So our assertion follows from Theorem 3.11.
Step 2. Next we handle the general case.

Take a Kéhler form w on X. Then by Lemma 5.5, for any € € (0, 1], we have
%‘lemj (]D)l, e ,Dn) < EIEH} (]D)l + eD(w), ..., D), + G]D)(w))
< (D1 + eD(w), ..., D, + eD(w))
< (]D)l,.. . ,]Dn) + Ce.
Since € is arbitrary, our assertion follows. O

Proposition 5.9. The product in Definition 5.1 is continuous along decreasing nets in each
variable. In other words, if (D])jes (i =1,...,n) are decreasing nets of nef b-divisors over X
with limits D;. Then

lim (D{,...,Dg) = (D1,...,Dy).

Jj€J
Proof. This is a straightforward consequence of Proposition 5.4 and Proposition 5.8. U
Remark 5.10. As shown in [ ; ], this intersection theory coincides with the Dang—Favre
theory if X is projective and Dy, ...,D,, are algebraic.
To be more precise, these papers handled the case where the cohomology classes Dy x,...,D, x

lie in the Néron-Severi group NS'(X). By scaling, the same holds if they lie in the Q-span of
NSY(X). Finally, by Proposition 5.9, the same holds in general.

6. SMOOTH PULL-BACKS OF B-DIVISORS

Let X be a connected compact Kéhler manifold of dimension n. Consider a smooth morphism
f:Y — X of relative dimension m from another connected compact Kéhler manifold Y. Given
a nef b-divisor D over X, we shall define a functorial pull-back f*ID over Y.

This section is purely of auxiliary purpose. Hence we do not pursue the most general statements.
In fact, it is possible to define a pull-back even when f is not smooth, using the non-Archimedean
theory of | ]. In the next section, we will need a special case of the construction in this
section, where Y is a projective bundle on X.

We first assume that D is big and nef. Thanks to Theorem 4.11, we can find a non-divisorial
closed positive (1,1)-current 7" in Dx such that D(7T") = D. Moreover, T' is unique up to
Z-equivalence.

We can therefore define

D =D(f*T).
Note that thanks to [Xia, Proposition 1.4.5], the Z-equivalence class of f*T" is independent of the
choices of T'. Hence f*D is a well-defined nef b-divisor over Y, independent of the choice of T
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Observe that f*T is non-divisorial since this is the case if f is either a projection or étale. In
particular, (f*D)y = f*Dx.
In general, if D is not necessarily nef, we take a Kéhler form w on X and define

D= lm f*(D+D(w)).

Note that f* (D + eD(w)) is increasing with respect to € > 0, so the limit makes sense. It is clear
that this definition is independent of the choice of w. Observe that

(6.1) (f'D)y = f*Dx.

Proposition 6.1. The pull-back f* defined above is R>q-linear. Moreover, for any closed
positive (1,1)-current T' on X, we have

(6.2) D(f*T) = FD(T).

Proof. The R>p-linearity is obvious.
We prove (6.2). Fix a Kéhler form w on X. It suffices to handle two cases separately: T is
either non-divisorial or divisorial. In the first case, by definition,

JD(T) = lim B (f*(T +ew)) = D(f°T).

Next we assume that T is divisorial, say T' = ", ¢;[F;]. In this case, by (3.12) and Proposition 4.9,
we may assume that 7" has finitely many components. By linearity, we reduce to the case where
T = [E] for some prime divisor F on X. In this case, we have f*T' = [f~1E]. Hence both sides
of (6.2) vanish. O

The pull-back is functorial as expected.

Proposition 6.2. Let g: Z — Y be another smooth morphism from a connected compact Kihler
manifold Z. Then for any nef b-divisor D over X, we have

(6.3) (fog)D=g"fD.

Proof. We may assume that D is big. Then there is a non-divisorial closed positive (1, 1)-current
T € Dx so that D(T) = Dx.
Thanks to Proposition 6.1, both sides of (6.3) are equal to D(g* f*T). O

Proposition 6.3. Let m: X' — X be a modification. Consider the Cartesian diagram,

v L x

(6.4) ”Yi 0 fr
y L x

Then for any nef b-divisor D over X, we have

(6.5) (f D)y = f"Dx.

Thanks to the smoothness of f, my is also a modification, so the left-hand side of (6.5) makes
sense.

Proof. We may assume that D is big. Take a non-divisorial closed positive (1, 1)-current 7" in Dx
so that D = ID(T"). Since f™ preserves non-divisorial currents and divisorial currents, we have
™ Regn*T = Regmy (f*T).

Therefore,
{Reg 7y (f*T)} = f"{Reg 7" T}.
Our assertion follows. O

Proposition 6.4. Let D, be nef b-divisors over X with Dx = D'y. Then the following are
equivalent:

(1) D<D;

(2) f*D < f*D.
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Proof. We may assume that D and D' are both big. Take non-divisorial closed positive (1,1)-
currents T and 7" in Dx such that D = D(T') and D' = D(T").
(1) = (2). Assume (1). It follows from Corollary 4.14 that T <z T". By [Xia, Proposi-
tion 1.4.5], we have f*T <7 f*T’, hence by (6.1) and Corollary 4.14 again, we find f*D < f*I.
(2) = (1). Assume (2). Fix a prime divisor E over X. It suffices to show that

(6.6) v(T,E) > v(T', E).

Take a modification 7: X’ — X so that F is a prime divisor on X’. Form the Cartesian diagram
(6.4). Then by Corollary 4.14,

v(f*T, [ E) > v(f*T', [ E),
which, thanks to [Xia, Proposition 1.4.5], is just (6.6). O

Proposition 6.5. Let 0 be a smooth closed real (1,1)-form on X representing a big cohomology

class. Let (pi)ier be a net in PSH(X,0) and ¢ € PSH(X, 0). Assume that p; s, ©, then
d
froi = Y.
Proof. Since PSH(X,0) is a pseudometric space, we may assume that (¢;); is a sequence.
Replacing 6 by 6 + w for some Kéhler form w on X, we may assume that the non-pluripolar
masses of the ¢;’s are bounded from below by a positive constant. Then it follows from | )
Proposition 4.2] and [Xia, Corollary 6.2.11] that we may assume without loss of generality that
(;)i is either increasing or decreasing.
The increasing case follows from [Xia, Corollary 6.2.3]. We assume that (¢;); is a decreasing
sequence. Fix a Kéhler form Q on Y. By [Xia, Corollary 6.2.5], it remains to argue that
i [ (F70+Q4+ddf )™ = [ (770 + Q4 ddefre)
1— 00 Y Y
After a binomial expansion, it suffices to show that for any a = 0,...,n, we have
lim [ (f*0+ddef*p)* AQrTm = / (f*0 + dd°f*p)* A QrTm—a,
1—00 )Y Y
or equivalently,
lim [ (64 ddSp,)? A furtmee — / (0 + dd°p)? A fLm+ma.
1—00 X X

Since f is smooth, the form f,Q"T™~% is smooth as well. Our assertion then follows from | )
Theorem 1.9]. O

Corollary 6.6. Let (T;);cr be a net of closed positive (1,1)-currents on X and T be a closed
positive (1,1)-current on X. Assume that T; = T, then f*T; = f*T.

Proof. This is an immediate consequence of Proposition 6.5. O

7. THE TRACE OPERATOR OF B-DIVISORS

Let X be a connected compact Kéhler manifold of dimension n and Z be a smooth irreducible
analytic set of dimension m in X. Let D be a nef b-divisor over X.

We will study the problem of restricting nef b-divisors over X to Z in this section. This
problem has been studied in the analytic setting in | ]. We shall follow the slightly different
approach as studied in [Xia, Chapter 8], which is better behaved in the zero mass case.

7.1. The analytic theory. Let T be a closed positive (1,1)-current on X representing a
cohomology class a. Assume that v(7,Z) = 0.

Consider a quasi-equisingular approximation (7}); of T, where the currents 7} are not
necessarily in o. Then v(T}, Z) = 0 and hence T}j|z makes sense. We then define Trz T as any

closed positive (1, 1)-current on Z such that 7}| s, Try T.
One can show that Tryz T is always well-defined modulo P-equivalence and is independent of
the choice of the sequence (Tj);.
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If furthermore, T is a Kéhler current, then Trz T can be represented by Kéhler current in
Oélz.
The details can be found in [Xia, Chapter 8].

7.2. The codimension 1 case. We assume that Z is a divisor so that m =n — 1.

For the moment, let us assume that D is a Cartier nef b-divisor. Let (7: Y — X, ) be a
realization of .

Let Zy denote the strict transform of Z and py: Zy — Z denotes the restriction of 7. The
notations are summarized in the commutative diagram:

Zy‘—)y

(7.1) o y

7 —— X.

After replacing 7 by a further modification, we may assume that Zy is smooth. This follows
from the embedded resolution [ ; |. In this case, we define the trace Trz D of D on Z
as the nef Cartier b-divisor over Z realized by (py, |z, ). Note that we are slightly abusing our
language since py is not a modification in general. To be more precise, here we mean that for
any modification Z’ — Z dominating Zy, Tr; D is defined as the nef Cartier b-divisor over Z
realized by (Z' — Z, 3), where (3 is the pull-back of a|z, .

Lemma 7.1. Assume that D is a Cartier nef b-divisor, then Trz D defined above is independent
of the choice of .

Proof. Given a different realization (7': Y/ — X, ') of D, we want to show that it defines the
same Trz D. We may assume that 7' dominates 7 so that we have a commutative diagram:

Zy/ — Y

O
Py | Ly —— Y |«

[

Z — X.

The notations 7, o, py» have the obvious meanings. We may assume that Zy and Zy- are both
smooth.
Our assertion becomes the following:

7" (alzy) = (0%a) |z,
which is obvious since the upper square in the diagram commutes. O

Proposition 7.2. Let ' be another nef Cartier b-divisor over X. Assume that D' <D and
'« =Dx, then Trz; D' < Try D.

Proof. We take realizations (7: Y — X,a’) and (7, «) of D' and D on the same modification.
Then by assumption o > o/, and « — o is represented by an effective R-divisor not containing
Zy in its support. It follows that |z, > |z, . Therefore, our assertion follows. O

Lemma 7.3. Let T be a closed positive (1,1)-current with analytic singularities Then
(7.2) TryD(T) =D (Trz (T — v(T, Z)[Z])) -
Proof. Let w: Y — X be a modification so that

T = [D] + R,

where D is an effective Q-divisor and R is a closed positive (1, 1)-current with locally bounded
potential. We may assume that the strict transform Zy of Z is smooth. Then by definition,
both sides of (7.2) are Cartier nef b-divisors realized by (Zy,{R}|z, )- O
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In general, when D is nef and big but not necessarily Cartier, take an Z-good non-divisorial
Kahler current T € Dx so that D = D(7"). Consider a quasi-equisingular approximation (7;); of
T in the same cohomology class as T', we define

TrzD = lim Try; D(T;).

1— 00

Thanks to Proposition 7.2, the right-hand side is a decreasing sequence and hence the limit
exists.

Lemma 7.4. The definition of Trz D is independent of the choices we made, and
(7.3) Try;D=D(Trz T).

Proof. Tt suffices to prove (7.3), but this follows from Proposition 4.9 and the dg-continuity of
the trace operator along decreasing sequences. O

More generally, if D is just nef, we take a Kéahler form w on X, and let

Try; D= 613& Trz (D + eD(w)) .
This definition is independent of the choice of w.

Theorem 7.5. Let T be a closed positive (1,1)-current such that Try (T — v(T, Z)[Z]) can be
represented by a closed positive (1,1)-current in {T — v(T, Z)[Z]}|z. Take such a representative.
Then

Try D(T) = D (Try (T — v(T, Z)[Z])).

Proof. Replacing T' by T + ew for some ¢ > 0 and some Kahler form w, we may assume that
D(T) is big.
Replacing T by T'— v(T, Z)[Z], we may assume that v(T', Z) = 0. Then we need to show that
TryD(T) =D (Trz T).
Here Trz T is in {T'}|.
Let (7}); be a quasi-equisingular approximation of 7" in the same cohomology class as T.

Then Tj d—S> T. Hence by Proposition 4.9, we have
D(T;) — D(T).
By definition and Proposition 4.9,
Tr, D(T) = Zlggo Try; D(T;), D(TrzT) = lim D(T;|z).

1—00

Hence our assertion follows from Lemma 7.3.

7.3. The higher codimension case. Now assume that Z has codimension at least 2.
In this case, similar to the analytic theory, we cannot restrict a general nef b-divisor.
We consider the following commutative diagram:

E—— Blz X

(7.4) qJ Jp

7 — X,

where p: Blz X — X is the blow-up of X along Z and F is the exceptional divisor. Note that
q: E — Z can be naturally identified with the projectivized normal bundle of Z in X.
Let D be a nef b-divisor over X such that

(7.5) Dp1, x = p*Dx.
Assume (7.5), then the trace can be defined. To do so, we shall rely on the analytic theory.
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Proposition 7.6. Let D be a nef b-divisor over X satisfying (7.5). Then there is a unique nef
b-divisor Trz D over Z such that
(7.6) ¢ TryD = TrgD,

where D is regarded as a nef b-divisor over Blz X in the obvious way.

The pull-back ¢* is defined in Section 6.
We first recall the following decomposition:
(7.7) H'(E,R) = H"'(Z,R) ® R¢,

where ( is the tautological class of the projective bundle g. See [ , Proposition 3.3] for
example. This decomposition also explains why we need to impose the condition (7.5).

Proof. Thanks to Proposition 6.3, (7.5) and (7.7), the root of Trz D is necessarily the first
component of (Trg D)g with respect to the decomposition (7.7). By Proposition 6.4, the nef
b-divisor Trz D is unique if it exists.

Fix a Kéhler form w on X. It suffices to prove the existence of Trz (D + eD(w)) for any € > 0.
In fact, if we have established these existence, then thanks to Proposition 6.4, we know that
Trz(D + eD(w)) is increasing with respect to €, hence defining

TryD = el—l>%l+ Trz (D + eD(w))
would suffice.
Therefore, we may assume that there is a non-divisorial Kéhler current 7" in Dx such that

D = D(T). Then (7.5) translates into v(T, Z) = 0. In particular, Trz T is defined and can be
represented by a Kéhler current in {T'}|z. We fix such a representative. We claim that in fact

(7.8) TrgD = ¢ D(Trz T).
In fact, due to Proposition 6.1, we know that
¢D(Trz T) =D(¢" Trz T).
Thanks to Theorem 7.5, (7.8) translates into
(7.9) D(¢" Trz T) = D(Trp(p™T)).

Now Corollary 6.6 and Proposition 4.9 allow us to reduce to the case where T has analytic
singularities, and (7.9) finally reduces to

D(¢"(Tlz)) =D(("T)lE),
which follows immediately from the commutativity of (7.4). O

Definition 7.7. Let D be a nef b-divisor over X satisfying (7.5). Then Trz D is defined as the
unique nef b-divisor over Z such that (7.6) holds.

One can easily deduce the basic properties of the trace Trz D from the analytic theory of
trace operators. We omit these transparent translations.

The trace operator of b-divisors has a natural explanation in terms of non-Archimedean
metrics, see | ].
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