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Abstract. We study transcendental b-divisors over compact Kähler manifolds. In particular,
we establish their intersection theory, answering a question of Dang–Favre.
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1. Introduction

In this paper, we study the transcendental b-divisors. In particular, we extend the intersection
theory of algebraic b-divisors developed in [DF22] to the transcendental setting.

Let X be a connected compact Kähler manifold of dimension n. Recall that an algebraic
b-divisor (class) is an assignment (π : Y → X) 7→ DY ∈ NS1(Y )R (the real vector space spanned
by the Néron–Severi group of Y ), where π runs over all modifications of X. These data are
assumed to be compatible under push-forwards. An example is a so-called Cartier b-divisor,
where we start with a modification π : Y → X and a class α on Y , the value of DZ on any
modification Z → X dominating π is the pull-back of α to Z. The Cartier b-divisor is called nef
if α can be taken as nef. In general, an algebraic b-divisor is nef if it can be approximated by
nef Cartier b-divisors.

B-divisors generalize divisors while incorporating bimeromorphic twists. It is of interest to
understand their intersection theory. When X is projective, Dang–Favre [DF22] established an
intersection theory for nef b-divisors, which has been applied in dynamical systems [DF21] and
K-stability [Xia22]. Roughly speaking, they proved that in this case, a nef b-divisor can always
be approximated by a decreasing sequence of nef Cartier b-divisors. This result reduces the
general intersection theory to that of Cartier b-divisors, which is essentially the same as the
classical intersection theory as in [Ful98].

In the same paper, Dang–Favre asked the question of whether one can develop a similar theory
for transcendental b-divisors, namely, when X is not necessarily projective and when the DY ’s
are just classes in H1,1(Y,R). We give an affirmative answer in this paper.

The idea of the proof is already contained in the author’s previous papers [Xia22; Xia24]. Let
us content ourselves to the algebraic setting for the moment. In this case, the two papers give
an analytic approach to the Dang–Favre intersection theory. Suppose that L1, . . . , Ln are big
line bundles on X. Then for any singular Hermitian metrics h1, . . . , hn on L1, . . . , Ln, we can
construct natural algebraic nef b-divisors D1, . . . ,Dn on X using Siu’s decomposition. A key
result in these papers show that the Dang–Favre intersection number of D1, . . . ,Dn coincides
with the mixed volume of h1, . . . , hn.
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Conversely, up to some technical details, any nef b-divisor essentially arises from Siu’s
decomposition of currents. In the algebraic setting, this was already known since due to [BJ22,
Theorem 6.40] and [DXZ25, Theorem 1.1], nef b-divisors and the I-equivalence classes of (non-
divisorial) currents are both in bijection with the same class of homogeneous non-Archimedean
metrics. We prove the transcendental version:

Theorem 1.1. There is a natural map D (via Siu’s decomposition) sending each closed positive
(1, 1)-current T on X to a nef b-divisor D(T ) over X.

Let α be a modified nef cohomology class on X and D be a nef and big b-divisor over X with
DX = α, then there is a non-divisorial (namely, the generic Lelong number along any prime
divisor on X vanishes) closed positive (1, 1)-current T in α with D(T ) = D.

See Definition 4.2 and Definition 4.6 for the precise definitions of nef and big b-divisors. The
notion of modified nef cohomology classes is recalled in Section 2.1. The precise definition of D
is recalled in Section 4.2.

It is not clear to the author if the same holds when D is just nef but not big.
The current T is far from being unique. The degree of non-uniqueness is given by the

next result. First recall that two closed positive (1, 1)-currents T and T ′ on X are said to be
I-equivalent if they have the same Lelong numbers everywhere and the same remains true after
pulling-back to any bimeromorphic modification of X. See Definition 2.10.

Theorem 1.2. Let α be a modified nef cohomology class on X. Two non-divisorial closed
positive (1, 1)-currents with positive volumes in α correspond to the same nef b-divisor via D if
and only if they are I-equivalent.

In other words, there is a natural bijection D between the following sets:
(1) The set of I-equivalence classes of non-divisorial closed positive (1, 1)-currents in α with

positive volumes;
(2) the set of nef and big b-divisors D over X with DX = α.

The above two theorems correspond to Theorem 4.11.
Although Theorem 1.2 bears some resemblance with [Tru24, Proposition 3.1], the contents of

these theorems are radically different. In fact, Trusiani worked with b-divisors with possibly
infinitely many components without passing to the numerical classes. It is a key observation
in this paper that the numerical classes suffice to fully determine the singularities of a current
modulo I-equivalence, explaining the neatness of our theorem. At the same time, these theorems
show that the author’s notion of augmented b-divisors in [Xia24] is unnecessary.

As a simple consequence of Theorem 1.2 and Demailly’s approximation theorem, we deduce
an analogue of [DF22, Theorem A].

Corollary 1.3 (Corollary 4.15). Let D be a nef b-divisor over X. Then there is a decreasing
sequence of nef and big Cartier b-divisors over X with limit D.

Based on Corollary 1.3, one could essentially repeat the arguments of [DF22] to establish an
intersection theory of nef b-divisors — Reducing the general intersection theory of nef b-divisors
to that of Cartier b-divisors, which is essentially known.

But we choose to follow a slightly different approach in Section 5: We define the intersection
number of nef b-divisors as the mixed analytic volume of the corresponding currents. Since the
latter theory is already well-developed nowadays, this seems to be the most efficient way to
establish the properties of the intersection product.

As a consequence, Corollary 1.3 does not play a significant role in this paper, as Demailly’s
approximation is already a built-in feature of the analytic intersection theory of currents.

There is a technical subtlety here: There are at least two candidates for the analytic theory —
The I-volumes developed in [DX24b; DX22] and the mixed volumes in the sense of Cao [Cao14].
We will show in Section 3 that these theories agree and satisfy the desired properties.

The idea of extending Dang–Favre’s theory using analytic methods is known to the author
when he wrote [Xia22] in 2020. What hinders the appearance of this paper is the slow development
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of the analytic theory1. The necessary tools were developed over years in [DDNL21b; DX22;
DX24b; Xia24; Xia21] and systematically summarized and extended in the author’s book [Xia].

Theorem 1.2 sheds light on the algebraic theory as well. The powerful analytic machinery
can be translated back to the algebraic theory, giving new insights even in the purely algebraic
theory. As an example, in Section 6 and Section 7, we will study the two functorial operations of
nef b-divisors: Along a smooth morphism, nef b-divisors can be pulled back; given a subvariety,
a nef b-divisor can be restricted under a mild assumption. Both operations are essentially
known in the algebraic setting via Boucksom–Jonsson’s theory of non-Archimedean metrics.
Our approach gives more straightforward definitions in terms of b-divisors themselves. This is
not just for aesthetic reasons, it seems to the author that this is an essential step for attacking
Collins–Tosatti’s conjecture [CT22].

Finally, all results in this paper hold for manifolds in Fujiki’s class C as well. But for simplicity,
we always restrict our discussion to Kähler manifolds.

Further directions. For further developments of the intersection theory and applications to
pluripotential theory, we refer to the sequel paper [Xia25b].

Our intersection has direct applications in dynamic systems, as the algebraic theory of
Dang–Favre did in [DF21].

In [DF22], Dang–Favre suggested that defining the intersection theory may rely on the
transcendental Morse inequality conjectured in [BDPP13]. We expect that conversely, our theory
should be helpful for understanding this conjecture. Less ambitiously, our theory should be
helpful when trying to understand a related result regarding the non-Kähler locus, as conjectured
in [CT22].

Finally, there is a notion of Okounkov bodies of transcendental nef b-divisors, exactly as the
algebraic case studied in [Xia, Section 11.3]. Over C, the theory is well-understood using the
analytic theory. However, it is not clear how to work out similar results based on the theory of
Dang–Favre or Boucksom–Jonsson over general base fields.

Acknowledgments. The author would like to thank Nicholas McCleerey, Charles Favre and
Antonio Trusiani for their comments on the draft. Part of the work was carried out during
the author’s visit to Yunnan Normal University in 2024, the author would like to thank
Prof. Zhipeng Yang for his hospitality and the support of Yunnan Key Laboratory of Modern
Analytical Mathematics and Applications (No. 202302AN360007). The author was initially
supported by the Knut och Alice Wallenbergs Stiftelse KAW 2024.0273, then by the National
Key R&D Program of China 2025YFA1018200.

2. Preliminaries

Let X be a connected compact Kähler manifold of dimension n.

2.1. Modifications and cones. In this paper, we use the word modification in a very non-
standard sense.

Definition 2.1. A modification of X is a bimeromorphic morphism π : Y → X, which is a finite
composition of blow-ups with smooth centers.

We say a modification π′ : Z → X dominates another π : Y → X if there is a morphism
g : Z → Y making the following diagram commutative:

(2.1)
Z Y

X.

g

π′ π

Note that π is necessarily projective and Y is always a Kähler manifold.
The modifications of X together with the domination relation form a directed set Modif(X).
Given classes α, β ∈ H1,1(X,R), we say α ≤ β if β − α is pseudoeffective.

1and France’s notoriously sluggish government, which made the author homeless for the most part of the year 2024
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Proposition 2.2. Let π : Y → X be a blow-up with connected smooth center of codimension at
least 2 with exceptional divisor E. Then there is a natural identification
(2.2) H1,1(Y,R) = H1,1(X,R)⊕ R{E}.

See [RYY19] for a much more general result. In general, the pseudoeffective cone of Y does
not admit any simple descriptions.

Fix a reference Kähler form ω on X. Recall that a class α ∈ H1,1(X,R) is modified nef if for
any ϵ > 0, we can find a closed (1, 1)-current T ∈ α such that

(1) T + ϵω ≥ 0;
(2) ν(T + ϵω,D) = 0 for any prime divisor D on X.

This definition is independent of the choice of ω. Here ν(•, D) denote the generic Lelong number
along D.

These classes are called nef en codimension 1 in Boucksom’s thesis [Bou02], where they were
introduced for the first time. Modified nef classes form a closed convex cone in H1,1(X,R). Note
that a modified nef class is necessarily pseudoeffective. A nef class is obviously modified nef.

Recall the multiplicity of a cohomology class as defined in [Bou02, Section 2.1.3].
Definition 2.3. Let α ∈ H1,1(X,R) be a pseudoeffective class and D be a prime divisor on X.
We define the Lelong number ν(α,D) as follows:

(1) When α is big, define ν(α,D) = ν(T,D) for any closed positive (1, 1)-current T ∈ α with
minimal singularities (namely, a current in α that is less singular than any current in α).

(2) In general, define
ν(α,D) := lim

ϵ→0+
ν(α+ ϵ{ω}, D).

When α is big, (2) is compatible with (1) and the definition is independent of the choice of ω.
By definition, a pseudoeffective class α is modified nef if and only if ν(α,D) = 0 for all prime
divisors D on X.

Let us recall the behavior of several cones under modifications.
Proposition 2.4. Let π : Y → X be a proper bimeromorphic morphism from a Kähler manifold
Y .

(1) For any nef class α ∈ H1,1(X,R), π∗α is nef.
(2) For any modified nef class β ∈ H1,1(Y,R), π∗β is modified nef.
(3) For any big class α ∈ H1,1(X,R), π∗α is big. Moreover, vol π∗α = volα.
(4) For any big class β ∈ H1,1(Y,R), π∗β is big. Moreover, vol π∗β ≥ vol β.

Proof. Only (2) requires a proof. Fix a Kähler class γ. Replacing β by β + ϵγ for ϵ ∈ (0, 1),
we reduce immediately to the case where β is big as well. Let T (resp. S) be a current with
minimal singularities in π∗β (resp. in β) and D be a prime divisor on X, it suffices to show that

ν(T,D) = 0,
by Lemma 2.7 below, ν(π∗S,D) = 0, so our assertion follows. □

Let T be a closed positive (1, 1)-current on X. Then we define the regular part Reg T of T as
the regular part of T with respect to Siu’s decomposition. In other words, we write
(2.3) T = Reg T +

∑
i

ci[Ei],

where Ei is a countable collection of prime divisors on X and ci = ν(T,Ei) > 0; the regular part
Reg T is a closed positive (1, 1)-current whose generic Lelong number along each prime divisor
on X is 0.
Definition 2.5. We say a closed positive (1, 1)-current T on X is non-divisorial (resp. divisorial)
if T = Reg T (resp. Reg T = 0).

Note that the cohomology class of a non-divisorial current is always modified nef. Conversely,
a current with minimal singularities in a big and modified nef class is always non-divisorial.

There is a closely related notion introduced in [McC21]:
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Definition 2.6. We say a closed positive (1, 1)-current S on X is non-pluripolar (resp. pluri-
supported) if S = ⟨S⟩ (resp. ⟨S⟩ = 0).

Here ⟨S⟩ denotes the non-pluripolar polar part of S, namely the non-pluripolar product of S
itself in the sense of [BEGZ10].

Clearly, a divisorial current is necessarily pluri-supported, and a non-pluripolar current is
necessarily non-divisorial. But these notions are not equivalent in general. However, within the
class of I-good singularities, these notions turn out to be equivalent. Since we are not in need of
the latter result in this paper, we omit the proof.
Lemma 2.7. Let π : Y → X be a proper bimeromorphic morphism from Kähler manifold Y .
Let T be a non-divisorial current on Y , then π∗T is non-divisorial.

Conversely, if S is a non-divisorial current on X, π∗S is could have divisorial part. As a
simple example, consider S on P2, whose local potential near 0 ∈ C2

z,w looks like log
(
|z|2 + |w|2

)
.

Proof. Let D be a prime divisor on X. It follows from Zariski’s main theorem ([Dem85,
Théorème 1.7]) that D is not contained in the exceptional locus of π. Let D′ be the strict
transform of D. Thanks to Siu’s semicontinuity theorem, we have

ν(π∗T,D) = ν(T,D′) = 0.
Hence π∗T is non-divisorial. □

2.2. Quasi-plurisubharmonic functions. We first recall the notions of P and I-equivalences.
The latter is introduced in [DX22] based on [BFJ08]. The former was introduced in [Xia] based
on [RWN14].
Definition 2.8. Let φ,ψ be quasi-plurisubharmonic functions on X. We say φ ∼P ψ (resp.
φ ⪯P ψ) if there is a closed smooth real (1, 1)-form θ on X such that φ,ψ ∈ PSH(X, θ)>0 and

Pθ[φ] = Pθ[ψ] (resp.Pθ[φ] ≤ Pθ[ψ]).
Here PSH(X, θ) denotes the space of θ-plurisubharmonic functions on X and PSH(X, θ)>0

denotes the subset consisting of φ ∈ PSH(X, θ) with
∫
X θ

n
φ > 0, with θφ = θ + ddcφ. Here and

in the sequel, the Monge–Ampère type product θnφ is always understood in the non-pluripolar
sense of [BT87; GZ07; BEGZ10]. The envelope Pθ is defined as follows:

Pθ[φ] := sup*
C∈R

(φ+ C) ∧ 0,

where (φ+ C) ∧ 0 is the maximal element in PSH(X, θ) dominated by both φ+ C and 0.
Given a closed smooth real (1, 1)-form θ on X so that φ,ψ ∈ PSH(X, θ), we also say θφ ∼P θψ

(resp. θφ ⪯P θψ) if φ ∼P ψ (resp. φ ⪯P ψ). The same convention applies also to the I-partial
order introduced later.

The main interest of the P -partial order lies in the following monotonicity theorem.
Theorem 2.9. Let θ1, . . . , θn be closed real smooth (1, 1)-forms on X. Let φi, ψi ∈ PSH(X, θi)
for i = 1, . . . , n. Assume that φi ⪯P ψi for each i = 1, . . . , n. Then∫

X
θ1,φ1 ∧ · · · ∧ θn,φn ≤

∫
X
θ1,ψ1 ∧ · · · ∧ θn,ψn .

This result is a consequence of the monotonicity theorem of Witt Nyström [WN19; DDNL18].
See [Xia, Proposition 6.1.4] for the proof.
Definition 2.10. Let φ,ψ be quasi-plurisubharmonic functions on X. We say φ ∼I ψ (resp.
φ ⪯I ψ) if I(λφ) = I(λψ) (resp. I(λφ) ⊆ I(λψ)) for all real λ > 0.

Here I denotes the multiplier ideal sheaf in the sense of Nadel.
If θ is a closed smooth real (1, 1)-form such that φ,ψ ∈ PSH(X, θ), then φ ⪯I ψ if and only if

Pθ[φ]I ≤ Pθ[ψ]I ,
where

Pθ[φ]I = sup {η ∈ PSH(X, θ) : η ≤ 0, I(λφ) ⊇ I(λη) for all λ > 0} .
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Equivalently, we may replace ⊇ by = in this equation.
Another equivalent formulation of Definition 2.10 is that for any prime divisor E over X, we

have
ν(φ,E) = ν(ψ,E) resp. ν(φ,E) ≥ ν(ψ,E).

Here ν denotes the generic Lelong number. We refer to [Xia, Section 3.2.1] for the details.
Given any φ ∈ PSH(X, θ), we have

φ− sup
X
φ ≤ Pθ[φ] ≤ Pθ[φ]I .

See [DX22, Proposition 2.18] or [Xia, Proposition 3.2.9].
For later use, let us recall the following:

Lemma 2.11. Let π : Y → X be a proper bimeromorphic morphism from a Kähler manifold Y .
Given two quasi-plurisubharmonic functions φ,ψ on X, then the following are equivalent:

• φ ⪯I ψ;
• π∗φ ⪯I π

∗ψ.

Proof. (1) =⇒ (2). Just observe that each prime divisor over Y is also a prime divisor over X.
(2) =⇒ (1). This follows from the well-known formula:

π∗
(
ωY/X ⊗ I(λπ∗φ)

)
= I(λφ), λ > 0,

where ωY/X is the relative dualizing sheaf. See [Dem12b, Proposition 5.8]. □

The operation Pθ[•]I is idempotent. We say φ ∈ PSH(X, θ) is I-model if Pθ[φ]I = φ. Similarly,
on the subset PSH(X, θ)>0, the operation Pθ[•] is also idempotent, see [DDNL18, Theorem 3.12].
We say φ ∈ PSH(X, θ)>0 is model if Pθ[φ] = φ.

Suppose that {θ} is big. It is shown in [DDNL21b] that there is a pseudometric dS on
PSH(X, θ) satisfying the following inequality: For any φ,ψ ∈ PSH(X, θ), we have

dS(φ,ψ) ≤ 1
n+ 1

n∑
j=0

(
2
∫
X
θjφ∨ψ ∧ θ

n−j
Vθ
−
∫
X
θjφ ∧ θ

n−j
Vθ
−
∫
X
θjψ ∧ θ

n−j
Vθ

)
≤CndS(φ,ψ),

(2.4)

where Cn = 3(n+ 1)2n+2. Here Vθ = max{φ ∈ PSH(X, θ) : φ ≤ 0}. Moreover, dS(φ,ψ) = 0 if
and only if φ ∼P ψ. See [Xia, Proposition 6.2.2]. In particular, the dS-pseudometric descends to
a pseudometric (still denoted by dS) on the space of closed positive (1, 1)-currents in {θ}.

Given a net of closed positive (1, 1)-currents Ti in {θ}, and another closed positive (1, 1)-
current T in {θ}. It is shown in [Xia21, Section 4] and [Xia, Corollary 6.2.8] that Ti

dS−→ T if
and only if Ti + ω

dS−→ T + ω for any Kähler form ω on X.
In general, given closed positive (1, 1)-currents Ti and T on X, we say Ti

dS−→ T if we can find
Kähler forms ωi and ω on X such that the Ti + ωi’s and T + ω represent the same cohomology
class and Ti + ωi

dS−→ T + ω. This definition is independent of the choices of the ωi’s and ω.
We introduce a stronger notion in this paper:

Definition 2.12. Let (Ti)i be a net of closed positive (1, 1)-current on X and T be a closed
positive (1, 1)-current on X. We say Ti =⇒ T if

(1) Ti
dS−→ T ;

(2) {Ti} → {T}.

A quasi-plurisubharmonic function φ on X is called I-good if there is a closed smooth real
(1, 1)-form θ on X such that φ ∈ PSH(X, θ)>0 and

Pθ[φ] = Pθ[φ]I .
For any closed smooth real (1, 1)-form θ′ on X so that θ′ + ddcφ ≥ 0, we also say the current θ′

φ

is I-good. This notion is independent of the choice of θ, as proved in [Xia24, Lemma 1.7]. See
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also [Xia, Section 7.1]. As a simple example, an I-model potential with positive non-pluripolar
mass is always I-good.

A key result proved in [DX22; DX24b] is the following:

Theorem 2.13. A closed positive (1, 1)-current T on X is I-good if and only if there is a sequence
of closed positive (1, 1)-currents (Tj)j on X with analytic singularities such that Tj =⇒ T .

In fact, (Tj)j can be taken as any quasi-equisingular approximation of T .

Here we say a closed positive (1, 1)-current T has analytic singularities if locally T can be
written as ddcf , where f is a plurisubharmonic function of the following form:

c log
(
|f1|2 + · · ·+ |fN |2

)
+R,

where c ∈ Q≥0, f1, . . . , fN are holomorphic functions on X and R is a bounded function. A few
subtleties of this notion are discussed in [DRWN+23, Remark 2.7]. When we write T = θ+ ddcφ
for some smooth closed real (1, 1)-form θ and φ ∈ PSH(X, θ), we also say φ has analytic
singularities.

As a particular case, if D is an effective Q-divisor on X, we say a closed positive (1, 1)-current
T has log singularities along D if T − [D] is positive, and has locally bounded potentials. It
is easy to see that T has analytic singularities. Conversely, if we begin with T with analytic
singularities, there is always a modification π : Y → X so that π∗T has log singularities along
an effective Q-divisor on Y . See [MM07, Page 104].

Let θ be a smooth closed real (1, 1)-form on X and η ∈ PSH(X, θ). We say a sequence (ηj)j
of quasi-plurisubharmonic functions is a quasi-equisingular approximation of η if the following
are satisfied:

(1) for each j, ηj has analytic singularities;
(2) (ηj)j is decreasing with limit η;
(3) for each λ′ > λ > 0, we can find j0 > 0 so that for j ≥ j0,

I(λ′ηj) ⊆ I(λη);
(4) There is a decreasing sequence (ϵj)j in R≥0 with limit 0, and a Kähler form ω on X so

that
ηj ∈ PSH (X, θ + ϵjω)

for each j > 0.
The existence of quasi-equisingular approximations is guaranteed by [DPS01]. We also say
(θ + ddcηj)j is a quasi-equisingular approximation of θ + ddcη.

The class I-good singularities is closed under many natural operations.

Proposition 2.14. The sum and maximum of two I-good quasi-plurisubharmonic functions
are still I-good. If θ is a closed real smooth (1, 1)-form on X and (φi)i is a non-empty bounded
from above family of I-good θ-psh functions, then sup*i φi is also I-good.

See [Xia, Section 7.2] for the proofs.

3. Mixed volumes

Let X be a connected compact Kähler manifold of dimension n. Let T1, . . . , Tn be closed
positive (1, 1)-currents on X. Let θ1, . . . , θn be closed real smooth (1, 1)-forms on X in the
cohomology classes of T1, . . . , Tn respectively. Consider φi ∈ PSH(X, θi) so that Ti = θi + ddcφi
for each i = 1, . . . , n. Fix a reference Kähler form ω on X.

3.1. The different definitions. For each i = 1, . . . , n, let (φji )j be a quasi-equisingular
approximation of φi.

Definition 3.1. The mixed volume of T1, . . . , Tn in the sense of Cao is defined as follows:

⟨T1, . . . , Tn⟩C := lim
j→∞

∫
X

(
θ1 + ϵjω + ddcφj1

)
∧ · · · ∧

(
θn + ϵjω + ddcφjn

)
,
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where (ϵj)j is a decreasing sequence with limit 0 such that φji ∈ PSH(X, θi + ϵjω) for each
i = 1, . . . , n and j > 0.

It is shown in [Cao14] Section 2 that this definition is independent of the choices of the θi’s,
the ϵj ’s, the φi’s, the φji ’s and ω.

A different definition relies on the I-envelope technique studied in [DX24b; DX22]. Recall
that the volume of a current is defined in [Xia, Definition 3.2.3]:

vol(θ + ddcφ) =
∫
X

(θ + ddcPθ[φ]I)n .

It depends only on the current θ + ddcφ, not on the choice of the choices of θ and φ. In general,
as shown in [DX22; DX24b],

vol(θ + ddcφ) ≥
∫
X

(θ + ddcφ)n.

If furthermore the right-hand side is positive, then the equality holds if and only if φ is I-good.
We refer to [Xia, Section 7.1] for the details.

Definition 3.2. Assume that volTi > 0 for all i = 1, . . . , n. The mixed volume of T1, . . . , Tn in
the sense of Darvas–Xia is defined as follows:

(3.1) vol(T1, . . . , Tn) =
∫
X

(θ1 + ddcPθ1 [φ1]I) ∧ · · · ∧ (θn + ddcPθn [φn]I) .

In general, define
(3.2) vol(T1, . . . , Tn) = lim

ϵ→0+
vol(T1 + ϵω, . . . , Tn + ϵω).

This definition is again independent of the choices of ω, the θi’s and the φi’s, using the same
proof as [Xia, Proposition 3.2.7].

The mixed volume can be regarded as generalizations of the movable intersection theory. In
fact, when each Ti has minimal singularities, the mixed volume is exactly the movable intersection
of corresponding cohomology classes.

When volTi > 0 for all i = 1, . . . , n, the definition (3.2) is compatible with (3.1), as from the
I-goodness of the Pθi

[φi]I ’s, we have
Pθi+ϵω [Pθi

[φi]I ] = Pθi+ϵω[φi]I .
Hence (3.2) reduces to (3.1) as a consequence of Theorem 2.9.

When T1 = · · · = Tn = T , the above definition is compatible with pure case:

Proposition 3.3. We always have
vol(T, . . . , T ) = volT.

Proof. Write T = θφ. In more concrete terms, we need to show that

lim
ϵ→0+

∫
X

(θ + ϵω + ddcPθ+ϵω[φ]I)n =
∫
X

(θ + ddcPθ[φ]I)n.

We may replace φ by Pθ[φ]I and assume that φ is I-model in PSH(X, θ). Then we claim that
φ = inf

ϵ>0
Pθ+ϵω[φ]I .

From this, our assertion follows from [Xia, Proposition 3.1.9].
The ≤ direction is clear. For the converse, it suffices to show that for each prime divisor E

over X, we have
ν(φ,E) ≤ ν

(
inf
ϵ>0

Pθ+ϵω[φ]I , E
)
.

We simply compute

ν

(
inf
ϵ>0

Pθ+ϵω[φ]I , E
)
≥ sup

ϵ>0
ν (Pθ+ϵω[φ]I , E) = ν(φ,E).

□
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Proposition 3.4. Both volumes are symmetric. The mixed volume in the sense of Cao is
multi-Q≥0-linear, while the mixed volume in the sense of Darvas–Xia is multi-R≥0-linear.

The multi-Q≥0-linearity means two things:
(1) For each λ ∈ Q≥0, we have

⟨λT1, T2, . . . , Tn⟩C = λ⟨T1, T2, . . . , Tn⟩C .

(2) If T ′
1 is anther closed positive (1, 1)-current, then

(3.3) ⟨T1 + T ′
1, T2, . . . , Tn⟩C = ⟨T1, T2, . . . , Tn⟩C + ⟨T ′

1, T2, . . . , Tn⟩C .

Multi-R≥0-linearity is defined similarly.

Proof. We first handle the mixed volumes in the sense of Cao. Only the property (3.3) needs a
proof. But this follows from the fact that the sum of two quasi-equisingular approximations is
again a quasi-equisingular approximation. See [Xia, Theorem 6.2.2, Corollary 7.1.2].

Next we handle the case of mixed volumes in the sense of Darvas–Xia. We only need to show
that

(3.4) vol(T1 + T ′
1, T2, . . . , Tn) = vol(T1, T2, . . . , Tn) + vol(T ′

1, T2, . . . , Tn).

Thanks to the definition (3.2), we may assume that volTi > 0 for each i and volT ′
1 > 0. Write

T ′
1 = θ′

1 + ddcφ′
1. Then thanks to Proposition 2.14,

Pθ1 [φ1]I + Pθ′
1
[φ′

1]I ∼P Pθ1+θ′
1
[φ1 + φ′

1]I .

Therefore, (3.4) follows from Theorem 2.9. □

Theorem 3.5. We have

(3.5) ⟨T1, . . . , Tn⟩C = vol(T1, . . . , Tn).

In particular, we no longer need the notation ⟨T1, . . . , Tn⟩C .

Proof. Step 1. We reduce to the case where T1 = · · · = Tn.
Suppose this special case has been proved. Let λ1, . . . , λn ∈ Q>0 be some numbers. Then

⟨
n∑
i=1

λiTi, . . . ,
n∑
i=1

λiTi⟩C = vol
(

n∑
i=1

λiTi

)
.

It follows from Proposition 3.4 that both sides are polynomials in the λi’s. Comparing the
coefficients of λ1 · · ·λn, we conclude (3.5).

From now on, we assume that T1 = · · · = Tn = T . Write T = θφ.
Step 2. We reduce to the case where T is a Kähler current. For this purpose, it suffices to

show that

lim
ϵ→0+

⟨T1 + ϵω, . . . , Tn + ϵω⟩C = ⟨T1, . . . , Tn⟩C ,

which is obvious by definition.
Step 3. Let (φj)j be a quasi-equisingular approximation of φ in PSH(X, θ). We need to show

that

lim
j→∞

∫
X

(θ + ddcφj)n =
∫
X

(θ + ddcPθ[φ]I)n.

This follows from [DX24b, Corollary 3.4], see also [Xia, Corollary 7.1.2].
□
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3.2. Properties of mixed volumes.

Proposition 3.6. Let S1, . . . , Sn be closed positive (1, 1)-currents on X. Assume that for each
i = 1, . . . , n,

(1) Ti ⪯I Si;
(2) {Ti} = {Si}.

Then
(3.6) vol(T1, . . . , Tn) ≤ vol(S1, . . . , Sn).

Proof. Let ω be a Kähler form on X. It suffices to show that for each ϵ > 0, we have
vol(T1 + ϵω, . . . , Tn + ϵω) ≤ vol(S1 + ϵω, . . . , Sn + ϵω).

In particular, we reduce to the case where volTi > 0, volSi > 0 for each i = 1, . . . , n.
In this case, (3.6) is a consequence of Theorem 2.9. □

Proposition 3.7. We have

vol(T1, . . . , Tn) ≥
n∏
i=1

(volTi)1/n.

Proof. We may assume that volTi > 0 for each i = 1, . . . , n since there is nothing to prove
otherwise. In this case, we need to show that∫

X
(θ1 + ddcPθ1 [φ1]I) ∧ · · · ∧ (θn + ddcPθ1 [φn]I) ≥

n∏
i=1

(∫
X

(θi + ddcPθi
[φi]I)n

)1/n
.

This is a special case of the main theorem of [DDNL21a]. □

Proposition 3.8. Let π : Y → X be a proper bimeromorphic morphism from a Kähler manifold
Y to X, then

vol(π∗T1, . . . , π
∗Tn) = vol(T1, . . . , Tn).

Proof. As in the proof of Proposition 3.6, we may easily reduce to the case where volTi > 0 for
each i = 1, . . . , n. By [Xia, Proposition 3.2.5], we know that if we write Ti = θi + ddcφi, then

π∗Pθi
[φi]I = Pπ∗θi

[π∗φi]I .
In particular,

vol π∗Ti = volTi > 0.
Our assertion follows from the obvious bimeromorphic invariance of the non-pluripolar product.

□

Lemma 3.9. Let ω be a Kähler form on X. Then there is a constant C > 0 depending only on
X,ω, {θ1}, . . . , {θn} such that

0 ≤ vol(T1 + ϵω, . . . , Tn + ϵω)− vol(T1, . . . , Tn) ≤ Cϵ
for any ϵ ∈ [0, 1].

Proof. By linearity, we can write
vol(T1 + ϵω, . . . , Tn + ϵω)− vol(T1, . . . , Tn)

as a linear combination of the mixed volumes between the Ti’s and ω with coefficients ϵj for
some j ≥ 1. The mixed volumes are clearly bounded by a constant. □

Proposition 3.10. Let (T ji )j∈J be nets of closed positive (1, 1)-currents on X for each i =
1, . . . , n. Assume that for each i = 1, . . . , n, we have

T ji =⇒ Ti.

Then

(3.7) lim
j∈J

∫
X
T j1 ∧ · · · ∧ T

j
n =

∫
X
T1 ∧ · · · ∧ Tn,
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and
(3.8) lim

j∈J
vol

(
T j1 , . . . , T

j
n

)
= vol (T1, . . . , Tn) .

Recall that =⇒ is defined in Definition 2.12.

Proof. Let ω be a Kähler form on X. For each ϵ > 0, we can find j0 ∈ J so that for j ≥ j0, the
following classes are Kähler:

{Ti}+ 2−1ϵ{ω} − {T ji }, i = 1, . . . , n.

Take a Kähler form ωji in the class {Ti}+ ϵ{ω} − {T ji }. Then observe that for i = 1, . . . , n,

T ji + ωji
dS−→ Ti + ϵω.

Since these currents are now in the same cohomology class, it follows from [Xia21, Theorem 4.2]
(see also [Xia, Theorem 6.2.1]) that

(3.9) lim
j∈J

∫
X

(T j1 + ωj1) ∧ · · · ∧ (T jn + ωjn) =
∫
X

(T1 + ϵω) ∧ · · · ∧ (Tn + ϵω).

Note that we can find a constant C > 0 independent of j ≥ j0 so that for any j ≥ j0, we have∫
X

(T j1 + ωj1) ∧ · · · ∧ (T jn + ωjn)−
∫
X
T j1 ∧ · · · ∧ T

j
n ≤ Cϵ,∫

X
(T1 + ϵω) ∧ · · · ∧ (Tn + ϵω)−

∫
X
T1 ∧ · · · ∧ Tn ≤ Cϵ.

(3.10)

Hence (3.7) follows.
As for (3.8), it suffices to replace (3.10) by Lemma 3.9, and (3.9) by

lim
j∈J

vol
(
T j1 + ωj1, . . . , T

j
n + ωjn

)
= vol (T1 + ϵω, . . . , Tn + ϵω) ,

which follows from [Xia21, Theorem 4.2, Theorem 4.6] (see also [Xia, Theorem 6.2.1, Theo-
rem 6.2.3]). □

Next we establish a semicontinuity property of the mixed volumes.

Theorem 3.11. Let (φji )j∈J (i = 1, . . . , n) be nets in PSH(X, θi). Assume that for each prime
divisor E over X, we have

lim
j∈J

ν(φji , E) = ν(φi, E), i = 1, . . . , n.

Then
lim
j∈J

vol
(
θ1 + ddcφj1, . . . , θn + ddcφjn

)
≤ vol (θ1 + ddcφ1, . . . , θn + ddcφn) .

Proof. Step 1. We first assume that vol(θi + ddcφji ) > 0 and vol(θi + ddcφi) > 0 for all
i = 1, . . . , n and j ∈ J .

Without loss of generality, we may assume that the φji ’s and the φi’s are I-model for all
i = 1, . . . , n and j ∈ J . Our assertion becomes

(3.11) lim
j∈J

∫
X

(
θ1 + ddcφj1

)
∧ · · · ∧

(
θn + ddcφjn

)
≤
∫
X

(θ1 + ddcφ1) ∧ · · · ∧ (θn + ddcφn) .

For each j ∈ J , define
ψji := sup*

k≥j
φki , i = 1, . . . , n.

Observe that ψji is I-good thanks to Proposition 2.14. It follows from [Xia, Corollary 1.4.1] and
our assumption that

lim
j∈J

ν
(
ψji , E

)
= ν (φi, E) , i = 1, . . . , n.

For each i = 1, . . . , n, we define
ψi = inf

j∈J
Pθi

[ψji ].
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Due to [DX22, Lemma 2.21] (see also [Xia, Proposition 3.2.12]), ψi is I-model. Thanks to [Xia,
Proposition 3.1.10], we know

ν(ψi, E) = ν(φi, E)
for any i = 1, . . . , n and any prime divisor E over X. In other words, ψi ∼I φi for i = 1, . . . , n.
But both φi and ψi are I-good, therefore,

ψi ∼P φi, i = 1, . . . , n.
By Theorem 2.9, we have∫

X
(θ1 + ddcψ1) ∧ · · · ∧ (θn + ddcψn) =

∫
X

(θ1 + ddcφ1) ∧ · · · ∧ (θn + ddcφn).

Next by Theorem 2.9 again,

lim
j∈J

∫
X

(
θ1 + ddcφj1

)
∧ · · · ∧

(
θn + ddcφjn

)
≤ lim

j∈J

∫
X

(
θ1 + ddcψj1

)
∧ · · · ∧

(
θn + ddcψjn

)
.

On the other hand, due to [DDNL21b, Proposition 4.8], for each i = 1, . . . , n, we have

ψji
dS−→ ψi.

We conclude from Proposition 3.10 that

lim
j∈J

∫
X

(
θ1 + ddcψj1

)
∧ · · · ∧

(
θn + ddcψjn

)
=
∫
X

(θ1 + ddcψ1) ∧ · · · ∧ (θn + ddcψn).

Putting these equations together, (3.11) follows.
Step 2. Next we handle the general case.
Fix a Kähler form ω on X. For any ϵ ∈ (0, 1], from Step 1, we know that

lim
j∈J

vol
(
θ1 + ϵω + ddcφj1, . . . , θn + ϵω + ddcφjn

)
≤ vol (θ1 + ϵω + ddcφ1, . . . , θn + ϵω + ddcφn) .

Using Lemma 3.9, we have

lim
j∈J

vol
(
θ1 + ddcφj1, . . . , θn + ddcφjn

)
≤ lim
j∈J

vol
(
θ1 + ϵω + ddcφj1, . . . , θn + ϵω + ddcφjn

)
≤ vol (θ1 + ϵω + ddcφ1, . . . , θn + ϵω + ddcφn)
≤ vol (θ1 + ddcφ1, . . . , θn + ddcφn) + Cϵ.

But since ϵ is arbitrary, our assertion follows. □

Lemma 3.12. Let π : Y → X be a proper bimeromorphic morphism from a Kähler manifold Y .
Then for any non-divisorial closed positive (1, 1)-current T on Y , we have

π∗π∗T = T +
N∑
i=1

ci[Ei]

for finitely many π-exceptional divisors Ei and ci > 0.
In particular, if S is a closed positive (1, 1)-current on X, we can find Ei and ci as above so

that

π∗⟨S⟩ = ⟨π∗S⟩+
N∑
i=1

ci[Ei].

Proof. Let E be the exceptional locus of π. Then
T = 1Y \Eπ

∗π∗T.

Therefore,
π∗π∗T − T = 1Eπ

∗π∗T,

which has the stated form, due to the support theorems, see [Dem12a, Section 8]. □

It turns out that the mixed volume depends only on the regular parts of the currents.
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Theorem 3.13. We have
vol (T1, . . . , Tn) = vol (Reg T1, . . . ,Reg Tn) .

Recall that Reg is defined in (2.3).

Remark 3.14. In general, it is not true that the mixed volume depends only on the non-pluripolar
parts of the currents. This even fails for the pure volume, see [BBJ21, Example 6.10] for an
example.

Proof. Step 1. We first prove the assertion when T1 = · · · = Tn = T and volT > 0. We want to
show that

volT = vol Reg T.
We decompose T as in (2.3).
We first handle the case where the collection of the Ei’s is finite. In this case, it suffices to

prove the following: If S is a closed positive (1, 1)-current on X, and E is a prime divisor on
X, then vol(S + [E]) = volS. For this purpose, we may assume that S is a Kähler current.
Take a quasi-equisingular approximation (Sj)j of S, note that (Sj + [E])j is a quasi-equisingular
approximation of S+ [E] by [Xia, Theorem 6.2.2, Corollary 7.1.2]. Hence, we may finally assume
that S has analytic singularities. In this case the assertion is obvious.

So we may assume that the index i runs over all positive integers. From the previous argument,
we know that for any N ≥ 0,

volT = vol
(
T −

N∑
i=1

ci[Ei]
)
.

Thanks to Proposition 3.10 and [Xia, Theorem 6.2.2], it suffices to show that

(3.12)
N∑
i=1

ci[Ei] =⇒
∞∑
i=1

ci[Ei]

as N →∞.
Fix a Kähler form ω on X. We can find N0 > 0 so that for any N ≥ N0, the class of

ω +
∞∑

i=N+1
ci[Ei]

is Kähler. Take a Kähler form ωN in this class. Then the currents
N∑
i=1

ci[Ei] + ωN ,
∞∑
i=1

ci[Ei] + ω

all lie in the same cohomology class. So our problem is reduced to
N∑
i=1

ci[Ei] + ωN
dS−→

∞∑
i=1

ci[Ei] + ω.

In fact, it suffices to show the convergence of the non-pluripolar masses, due to [Xia, Corol-
lary 6.2.5]. In other words, we need to show that

lim
N→∞

∫
X
ωnN =

∫
X
ωn,

which follows from the convergence {ωN} → {ω}.
Step 2. We handle the general case. Fix a Kähler form ω on X, by Step 1, for any

d1, . . . , dn > 0 and ϵ > 0, we have

vol
(

n∑
i=1

di(Ti + ϵω)
)

= vol
(

n∑
i=1

di(Reg Ti + ϵω)
)
.

Since both sides are polynomials in d1, . . . , dn, we conclude that
vol(T1 + ϵω, . . . , Tn + ϵω) = vol(Reg T1 + ϵω, . . . ,Reg Tn + ϵω).
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Letting ϵ→ 0+, we conclude our assertion. □

Corollary 3.15. Let π : X → Z be a proper bimeromorphic morphism from X to a Kähler
manifold Z. Then

(3.13) vol(T1, . . . , Tn) = vol(π∗T1, . . . , π∗Tn).

Proof. Observe that we may assume that Ti = Reg Ti for all i = 1, . . . , n. In fact, clearly the
pushforward of the divisorial part of Ti is divisorial as well, hence by Theorem 3.13, they do not
contribute to the volumes.

Now by Proposition 3.8, it remains to show that

vol(T1, . . . , Tn) = vol(π∗π∗T1, . . . , π
∗π∗Tn).

By Lemma 3.12, the difference π∗π∗Ti − Ti is divisorial, hence our desired equality follows from
Theorem 3.13. □

A particular corollary of Corollary 3.15 will be useful later.

Corollary 3.16. Let π : X → Z be a proper bimeromorphic morphism from X to a Kähler
manifold Z. Assume that T is an I-good closed positive (1, 1)-current on X, then so is π∗T .

Proof. We may assume that
∫
X T

n > 0. Then by Corollary 3.15,

vol π∗T = volT > 0

as well. Since T is I-good, we have

volT =
∫
X
Tn.

But
∫
X T

n =
∫
Z(π∗T )n, so

vol π∗T =
∫
Z

(π∗T )n > 0.

It follows that π∗T is I-good. □

Lemma 3.17. Let π : X → Z be a proper bimeromorphic morphism from X to a Kähler manifold
Z. Consider non-divisorial closed positive (1, 1) currents T, S on X in the same cohomology
class. Assume that T ⪯I S, then π∗T ⪯I π∗S.

Proof. We may assume that π is a modification thanks to Hironaka’s Chow lemma [Hir75,
Corollary 2] and Lemma 2.11.

By Lemma 3.12,

π∗π∗T = T +
N∑
i=1

ci[Ei],

where ci > 0 and the Ei’s are π-exceptional divisors. It follows that

T +
N∑
i=1

ci[Ei] ⪯I S +
N∑
i=1

ci[Ei].

Replacing T and S by T +
∑N
i=1 ci[Ei] and S +

∑N
i=1 ci[Ei] respectively, we may assume that

T = π∗π∗T . In particular, S and π∗π∗S lie in the same cohomology class, and hence S = π∗π∗S
(c.f. the proof of Theorem 4.11 below). Our assertion then follows from Lemma 2.11. □

4. Transcendental b-divisors

Let X be a connected compact Kähler manifold of dimension n.
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4.1. The definitions. The b-divisors defined in this section are sometimes known as b-divisor
classes. We always omit the word classes to save space.
Definition 4.1. A (Weil) b-divisor D over X is an assignment (Dπ)π : Y→X , where π : Y → X
runs over all modifications of X such that

(1) Dπ ∈ H1,1(Y,R);
(2) The classes are compatible under push-forwards: If π′ : Z → X and π : Y → X are both

in Modif(X) and π′ dominates π through g : Z → Y (namely, g makes the diagram (2.1)
commutative), then g∗Dπ′ = Dπ.

We also write DY = Dπ if there is no risk of confusion.
Given two Weil b-divisors D and D′ over X, we say D ≤ D′ if for each π ∈ Modif(X), we have

Dπ ≤ D′
π. Recall that by definition, this means the class D′

π − Dπ is pseudoeffective.
The class DX is called the root of D. The set of Weil b-divisors over X has the obvious

structure of real vector spaces.
Definition 4.2. The volume of a Weil b-divisor D over X is

volD := lim
π : Y→X

volDY .

The right-hand side is a decreasing net due to Proposition 2.4, hence the limit always exists.
We say D is big if volD > 0.

Lemma 4.3. Let (Di)i∈I be a net of b-divisors converging to D. Then
(4.1) lim

i∈I
volDi ≤ volD.

If the net is decreasing, then
lim
i∈I

volDi = volD.

Here we say (Di)i∈I converges to D if for any modification π : Y → X, we have Di,Y → DY
with respect to the Euclidean topology.

In general, we cannot expect equality in (4.1), as shown by [DF22, Example 3.3].

Proof. Let π : Y → X be a modification. Then
volDY = lim

i∈I
volDi,Y ≥ lim

i∈I
volDi.

The inequality (4.1) follows. As for the decreasing case, it suffices to observe that both sides of
(4.1) can be written as

inf
i

inf
π : Y→X

volDi,Y .
□

Definition 4.4. A Cartier b-divisor D over X is a Weil b-divisor D over X such that there exists
a modification π : Y → X and a class αY ∈ H1,1(Y,R) so that for each π′ : Z → X dominating
π, the class DZ is the pull-back of αY . Any such (π, αY ) is called a realization of D.

By abuse of language, we also say (Y, αY ) is a realization of D. The realization is not unique
in general.
Definition 4.5. A Cartier b-divisor D over X is nef if there exists a realization (π : Y → X,αY )
of D such that αY is nef.
Definition 4.6. A Weil b-divisor D over X is nef if there is a net of nef Cartier b-divisors (Di)i
over X converging to D.

In other words, for each modification π : Y → X, we have Di,Y → DY .
Note that thanks to Proposition 2.4, each DY is necessarily modified nef, but it is not nef in

general.
A priori, for a Cartier b-divisor, nefness could mean two different things, either defined

by Definition 4.5 or by Definition 4.6. We will show in Corollary 4.13 that they are actually
equivalent. Before that, by a nef Cartier b-divisor, we always mean in the sense of Definition 4.5.
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Our definition Definition 4.6 amounts defining the set of Weil b-divisors as the closure of
the set of Cartier b-divisors in lim←−π H1,1(Y,R) with respect to the projective limit topology. In
particular, the limit of a converging net of nef b-divisors is still nef.

4.2. The b-divisors of currents. Let T be a closed positive (1, 1)-current on X.
Given any modification π : Y → X, we define

(4.2) D(T )Y := {Reg π∗T} ∈ H1,1(Y,R).

The b-divisor D(T ) was firstly explicitly introduced in [Xia22] in 2020. The paper received very
little attention and the same object was re-introduced in [BBGHdJ22] and [Tru24] later on.

We observe that if T ′ is another closed positive (1, 1)-current on X and λ ≥ 0, then

D(T + T ′) = D(T ) + D(T ′), D(λT ) = λD(T ).

We shall use these identities implicitly in the sequel.
Note that when T has analytic singularities, D(T ) is Cartier.

Lemma 4.7. Let T be a closed positive (1, 1)-current on X. Then D(T ) is nef. Moreover,

(4.3) volT = volD(T ).

Proof. Let ω be a Kähler form on X. Then D(ω) is the Cartier b-divisor realized by (X, {ω}).
We could always approximate D(T ) by D(T + ϵω) = D(T ) + ϵD(ω). Moreover, we can find a
constant C > 0 so that

(4.4) 0 ≤ vol (D(T ) + ϵD(ω))− volD(T ) ≤ Cϵ.

Hence we may assume that T is a Kähler current.
Next, we take a closed smooth real (1, 1)-form θ cohomologous to T and write T = θφ for

some φ ∈ PSH(X, θ). Let (φj)j be a quasi-equisingular approximation of φ in PSH(X, θ). Then
it is easy to see that D(θ + ddcφj) → D(θ + ddcφ). See [Xia24, Theorem 9.6] Step 2 for the
details. As a consequence,

volD(θ + ddcφj)→ volD(θ + ddcφ),

thanks to Lemma 4.3.
So we may assume that T has analytic singularities. Let π : Y → X be a modification so that

π∗T = [D] +R,

where D is an effective Q-divisor on Y and R is a closed positive (1, 1)-current with locally
bounded potentials. Then D(T ) is the nef Cartier b-divisor realized by (π, {R}). Note that (4.3)
is obvious in this case. □

Remark 4.8. There is a different possibility: Replace Reg by the non-pluripolar part. Given T
as above, we define

D′(T )π := [⟨π∗T ⟩].
But thanks to Lemma 3.12, we have

D′(T ) = D(⟨T ⟩),

so there is no new information.

Conversely, we want to realize nef b-divisors as D(T ). We first prove a continuity result.

Proposition 4.9. Let (Ti)i∈I be a net of closed positive (1, 1)-currents on X and T be a closed
positive (1, 1)-current on X. Assume that Ti =⇒ T , then

D(Ti)→ D(T ).

Recall that =⇒ is defined in Definition 2.12.
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Proof. When the cohomology classes {Ti} and {T} are all the same, the proof is the same as
that in the algebraic case, which we omit. See [Xia24, Theorem 9.8].

In general, fix a Kähler form ω on X. Then we can find i0 ∈ I so that for i ≥ i0, the class
ω + {T} − {Ti}

is Kähler, and we can find a Kähler form ωi in this class. It follows that
Ti + ωi, T + ω

are all in the same cohomology class, and hence
D(Ti + ωi)→ D(T + ω).

But clearly
D(ωi)→ D(ω),

so our assertion follows. □

Theorem 4.10. Each big and nef b-divisor D over X can be realized as D(T ) for some T ∈ DX .
Furthermore, we may always assume that T is I-good.

Note that T is not unique. The current T is necessarily non-divisorial.

Proof. Fix a big and nef b-divisor D over X.
For each π : Y → X, we take a current with minimal singularities TY in DY . We claim that

D(π∗TY ) coincides with D up to the level of Y : For any modification π′ : Z → X dominated by
π through a morphism g : Y → Z, we have

DZ = D(π∗TY )Z .
The notations are summarized in the following commutative diagram:

(4.5)
Y Z

X.

g

π π′

After unfolding the definitions, this means
Reg(π′∗π∗TY ) ∈ DZ .

Note that
Reg(π′∗π∗TY ) = Reg(π′∗π′

∗g∗TY ).
Due to Proposition 2.4, we know that DY is modified nef and big. In particular, TY is non-
divisorial, hence so is g∗TY by Lemma 2.7. It follows from Lemma 3.12 that

Reg(π′∗π′
∗g∗TY ) = Reg(g∗TY ) = g∗TY ∈ DZ .

Note that
(4.6) volTY ≥ volD > 0.

Next we claim that the P -singularity types of the net (π∗TY )Y is decreasing.
To see this, let us fix a diagram as (4.5). We need to show that

π∗TY ⪯P π′
∗TZ .

Since TZ has minimal singularities, it is clear that g∗TY ⪯I TZ . In particular, Lemma 3.17
guarantees that π∗TY ⪯I π

′
∗TZ . But thanks to Corollary 3.16, both π∗TY and π′

∗TZ are I-good,
so there is no difference between the P -partial order and the I-partial order in this case. Our
assertion follows.

Next we claim that the net (π∗TY )Y has a dS-limit.
To see, let us take a smooth closed real (1, 1)-form θ in α and write π∗TY as θ + ddcφY for

some θ-psh function φY . It suffices to show that the net (φY )Y has a dS-limit. But as we recalled
earlier, the dS-pseudometric gives 0-distance to P -equivalent potentials, so it suffices to show that
the decreasing net (Pθ[φY ])Y has a dS-limit. This follows from (4.6) and [Xia, Corollary 6.2.6]
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(which is just a reformulation of the completeness theorem of Darvas–Di Nezza–Lu [DDNL21b,
Theorem 1.1]).

Take a closed positive (1, 1)-current T ∈ DX such that

π∗TY
dS−→ T.

It follows from Proposition 4.9 that
D(π∗TY )→ D(T ).

Therefore, we conclude that
D(T ) = D.

Thanks to Lemma 4.7, volT > 0. Write T = θ + ddcφ for some φ ∈ PSH(X, θ), then
T ′ := θ + ddcPθ[φ]I

is I-good, non-divisorial and D(T ′) = D(T ). □

Let α be a modified nef class on X. We write G(α) for the set of closed positive (1, 1)-currents
T on X with T = Reg T ∈ α and volT > 0.

Theorem 4.11. There is a natural bijection from G(α)/ ∼I to the set of big and nef b-divisors
D over X with DX = α.

Proof. Given T ∈ G(α), we associate the b-divisor D(T ). It is big and nef due to Lemma 4.7.
This map clearly descends to G(α)/ ∼I .

This map is surjective by Theorem 4.10. Now we show that it is injective. Let T, T ′ ∈ G(α).
Assume that D(T ) = D(T ′), we want to show that T ∼I T

′.
Let E be a prime divisor over X, it suffices to show that

(4.7) ν(T,E) = ν(T ′, E).
We may assume that E is not a prime divisor on X, as otherwise both sides vanish.

Choose a sequence of blow-ups with smooth connected centers
Y := Xk → Xk−1 → · · · → X0 := X

so that E is a prime divisor on Y , exceptional with respect to Xk → Xk−1. Denote the
composition by π : Y → X. Thanks to Proposition 2.2,

H1,1(Xk,R) = H1,1(Xk−1,R)⊕ R{Ek},
where Ek = E is the exceptional divisor of Xk → Xk−1.

By induction,

H1,1(Y,R) = H1,1(X,R)⊕
k⊕
i=1

R{Ei},

where Ei is the exceptional divisor of Xi → Xi−1. Now by Lemma 3.12,

(4.8) Reg π∗T = π∗T −
k∑
i=1

ν(T,Ei)[Ei].

In particular, the cohomology class of Reg π∗T determines ν(T,E). Hence, (4.7) follows. □

Corollary 4.12. The set of nef b-divisors over X can be naturally identified with
lim←−
ω

(G(α+ ω)/ ∼I) ,

where ω runs over the directed set of Kähler forms on X (with respect to the partial order of
reverse domination), and given two Kähler forms ω ≤ ω′ the transition map

G(α+ ω)/ ∼I→ G(α+ ω′)/ ∼I

is induced by the map G(α+ ω)→ G(α+ ω′) sending T to T + ω′ − ω.

Corollary 4.13. Let D be a Cartier b-divisor over X. Then D is nef in the sense of Definition 4.5
if and only if it is nef in the sense of Definition 4.6.
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This result is the transcendental version of [DF22, Theorem 2.8].

Proof. We only handle the non-trivial implication. Assume that D is nef in the sense of
Definition 4.6. We want to show that D is nef in the sense of Definition 4.5. We may clearly
assume that D is big. Take a non-divisorial closed positive (1, 1)-current T on X such that
D = D(T ).

Without loss of generality, we may also assume that D is realized by (X,α) for some cohomology
class α ∈ H1,1(X,R). Now D = D(T ) means that for each modification π : Y → X, the current
π∗T is non-divisorial. In particular, T has vanishing generic Lelong number along each prime
divisor over X, see (4.8). That means, T has vanishing Lelong number everywhere. It follows
that α = {T} is nef. □

Corollary 4.14. Let T and T ′ be non-divisorial closed positive (1, 1)-currents on X. Suppose
that {T} = {T ′}, then the following are equivalent:

(1) D(T ) ≤ D(T ′);
(2) T ⪯I T

′.

Proof. This follows from (4.8). □

In particular, we obtain the transcendental analogue of [DF22, Theorem A].

Corollary 4.15. Let D be a nef b-divisor over X. Then there is a decreasing sequence of nef
and big Cartier b-divisors Di over X with limit D.

Proof. Take a Kähler form ω on X. By Theorem 4.10, for each i > 0, we can find a non-divisorial
Kähler current Ti ∈ DX + i−1{ω} such that

D(Ti) = D + i−1D(ω).

We observe that
Ti+1 ∼I Ti.

This follows from applying Corollary 4.14 to Ti and Ti+1 + (i−1 − (i + 1)−1)ω. Let (T ji )j be
quasi-equisingular approximations of Ti such that

(1) T ji is a Kähler current in DX + i−1{ω} for j ≥ j0(i), and
(2) the singularity types of (T ji )i is constant.

Note that (2) is possible by the using the Bergman kernel construction of the quasi-equisingular
approximations.

It suffices to take Di = D(T jii ), where ji is a strictly increasing sequence of positive integers
with ji ≥ j0(i). □

5. The intersection theory

Let X be a connected compact Kähler manifold of dimension n. We will define the intersection
numbers of nef b-divisors and show that they satisfy the same properties as their algebraic
analogues, c.f. [DF22, Theorem 3.2].

Definition 5.1. Let D1, . . . ,Dn be big and nef b-divisors over X. Then we define their
intersection as

(D1, . . . ,Dn) := vol(T1, . . . , Tn),
where T1, . . . , Tn are closed positive (1, 1)-currents in D1,X , . . . ,Dn,X respectively such that
D(Ti) = Di.

In general, if the Di’s are only nef, we define

(D1, . . . ,Dn) := lim
ϵ→0+

(D1 + ϵD(ω), . . . ,Dn + ϵD(ω)) ,

where ω is a Kähler form on X.
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The definition makes sense thanks to Theorem 4.10. It does not depend on the choices of
T1, . . . , Tn since they are uniquely defined up to I-equivalence, as proved in Theorem 4.11.

When D1, . . . ,Dn are big and nef, the two definitions coincide as follows from Lemma 5.5
below.

We first note that even when the Ti’s have vanishing volumes, the two intersection products
still agree.

Proposition 5.2. Let T1, . . . , Tn be a closed positive (1, 1)-currents on X. Then
(D(T1), . . . ,D(Tn)) = vol(T1, . . . , Tn).

This is a trivial consequence of the definitions.

Proposition 5.3. The product in Definition 5.1 is symmetric and multi-R≥0-linear.

Proof. The multi-linearity follows immediately from Proposition 3.4. The symmetry is immediate.
□

Proposition 5.4. The product in Definition 5.1 is monotonically increasing in each variable.

Proof. Let D1, . . . ,Dn and D′ be nef b-divisors over X so that D1 ≤ D′. We want to show that
(D1, . . . ,Dn) ≤

(
D′,D2, . . . ,Dn

)
.

We can easily reduce to the case where D1, . . . ,Dn and D′ are all big. In this case, take I-
good non-divisorial closed positive (1, 1)-currents T1, . . . , Tn and T ′ so that D(Ti) = Di for all
i = 1, . . . , n and D(T ′) = D′. Furthermore, we may assume that the Ti’s and T ′ are Kähler
currents by the perturbation argument.

Let (T ji )j be a quasi-equisingular approximation of Ti for i = 2, . . . , n. It follows from
Proposition 3.10 that ∫

X
T1 ∧ · · · ∧ Tn = lim

j→∞

∫
X
T1 ∧ T j2 ∧ · · · ∧ T

j
n.

It suffices to show that for all j ≥ 1,∫
X
T1 ∧ T j2 ∧ · · · ∧ T

j
n ≤

∫
X
T ′ ∧ T j2 ∧ · · · ∧ T

j
n.

Therefore, we have reduced to the case where T2, . . . , Tn have analytic singularities. After a
resolution, we may assume that they have log singularities along Q-divisors. By Theorem 3.13,
we can further reduce to the case where T2, . . . , Tn have bounded local potentials. Perturbing
T2, . . . , Tn by a Kähler form, we may further assume that {T2}, . . . , {Tn} are Kähler classes. By
Proposition 3.6, we finally reduce to the case where T2, . . . , Tn are Kähler forms. In this case,
our assertion is obvious. □

Lemma 5.5. Let ω be a Kähler form on X. Fix a compact set K ⊆ H1,1(X,R). Let D1, . . . ,Dn
be nef b-divisors over X such that Di,X ∈ K for each i = 1, . . . , n. Then there is a constant C
depending only on X,K, {ω} such that for any ϵ ∈ [0, 1], we have

0 ≤ (D1 + ϵD(ω), . . . ,Dn + ϵD(ω))− (D1, . . . ,Dn) ≤ Cϵ.

Proof. This is a simple consequence of the linearity Proposition 5.3. □

We first make a consistency check.

Proposition 5.6. Suppose that D is a nef b-divisor over X, then
(D, . . . ,D) = volD.

Proof. Using Lemma 5.5 and (4.4), we may easily reduce to the case where D is nef and big. In
this case, take a non-divisorial closed positive (1, 1)-current T in DX such that D(T ) = D. Then
we need to show that

volD = volT,
which is proved in Lemma 4.7. □
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Proposition 5.7. Let D1, . . . ,Dn be nef b-divisors over X. Then

(D1, . . . ,Dn) ≥
n∏
i=1

(volDi)1/n .

Proof. We may assume that volDi > 0 for each i = 1, . . . , n since there is nothing to prove
otherwise. In this case, our assertion follows from Proposition 3.7. □

Proposition 5.8. The product in Definition 5.1 is upper semicontinuous in the following sense.
Suppose that (Dji )j∈J are nets of nef b-divisors over X with limits Di for each i = 1, . . . , n. Then

lim
j∈J

(
Dj1, . . . ,D

j
n

)
≤ (D1, . . . ,Dn) .

Proof. Step 1. We first assume that the Dji ’s and the Di’s are all big.
Take I-good non-divisorial closed positive (1, 1)-currents T ji and Ti so that D(T ji ) = Dji and

D(Ti) = Di. Note that by our assumption and the proof of Theorem 4.11, for any prime divisor
E over X, we have

lim
j∈J

ν(T ji , E) = ν(Ti, E).

So our assertion follows from Theorem 3.11.
Step 2. Next we handle the general case.
Take a Kähler form ω on X. Then by Lemma 5.5, for any ϵ ∈ (0, 1], we have

lim
j∈J

(
Dj1, . . . ,D

j
n

)
≤ lim
j∈J

(
Dj1 + ϵD(ω), . . . ,Djn + ϵD(ω)

)
≤ (D1 + ϵD(ω), . . . ,Dn + ϵD(ω))
≤ (D1, . . . ,Dn) + Cϵ.

Since ϵ is arbitrary, our assertion follows. □

Proposition 5.9. The product in Definition 5.1 is continuous along decreasing nets in each
variable. In other words, if (Dji )j∈J (i = 1, . . . , n) are decreasing nets of nef b-divisors over X
with limits Di. Then

lim
j∈J

(
Dj1, . . . ,D

j
n

)
= (D1, . . . ,Dn) .

Proof. This is a straightforward consequence of Proposition 5.4 and Proposition 5.8. □

Remark 5.10. As shown in [Xia22; Xia24], this intersection theory coincides with the Dang–Favre
theory if X is projective and D1, . . . ,Dn are algebraic.

To be more precise, these papers handled the case where the cohomology classes D1,X , . . . ,Dn,X
lie in the Néron–Severi group NS1(X). By scaling, the same holds if they lie in the Q-span of
NS1(X). Finally, by Proposition 5.9, the same holds in general.

6. Smooth pull-backs of b-divisors

Let X be a connected compact Kähler manifold of dimension n. Consider a smooth morphism
f : Y → X of relative dimension m from another connected compact Kähler manifold Y . Given
a nef b-divisor D over X, we shall define a functorial pull-back f∗D over Y .

This section is purely of auxiliary purpose. Hence we do not pursue the most general statements.
In fact, it is possible to define a pull-back even when f is not smooth, using the non-Archimedean
theory of [BJ22]. In the next section, we will need a special case of the construction in this
section, where Y is a projective bundle on X.

We first assume that D is big and nef. Thanks to Theorem 4.11, we can find a non-divisorial
closed positive (1, 1)-current T in DX such that D(T ) = D. Moreover, T is unique up to
I-equivalence.

We can therefore define
f∗D := D(f∗T ).

Note that thanks to [Xia, Proposition 1.4.5], the I-equivalence class of f∗T is independent of the
choices of T . Hence f∗D is a well-defined nef b-divisor over Y , independent of the choice of T .
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Observe that f∗T is non-divisorial since this is the case if f is either a projection or étale. In
particular, (f∗D)Y = f∗DX .

In general, if D is not necessarily nef, we take a Kähler form ω on X and define
f∗D := lim

ϵ→0+
f∗ (D + ϵD(ω)) .

Note that f∗ (D + ϵD(ω)) is increasing with respect to ϵ > 0, so the limit makes sense. It is clear
that this definition is independent of the choice of ω. Observe that
(6.1) (f∗D)Y = f∗DX .

Proposition 6.1. The pull-back f∗ defined above is R≥0-linear. Moreover, for any closed
positive (1, 1)-current T on X, we have
(6.2) D(f∗T ) = f∗D(T ).

Proof. The R≥0-linearity is obvious.
We prove (6.2). Fix a Kähler form ω on X. It suffices to handle two cases separately: T is

either non-divisorial or divisorial. In the first case, by definition,
f∗D(T ) = lim

ϵ→0+
D (f∗(T + ϵω)) = D(f∗T ).

Next we assume that T is divisorial, say T =
∑
i ci[Ei]. In this case, by (3.12) and Proposition 4.9,

we may assume that T has finitely many components. By linearity, we reduce to the case where
T = [E] for some prime divisor E on X. In this case, we have f∗T = [f−1E]. Hence both sides
of (6.2) vanish. □

The pull-back is functorial as expected.

Proposition 6.2. Let g : Z → Y be another smooth morphism from a connected compact Kähler
manifold Z. Then for any nef b-divisor D over X, we have
(6.3) (f ◦ g)∗D = g∗f∗D.

Proof. We may assume that D is big. Then there is a non-divisorial closed positive (1, 1)-current
T ∈ DX so that D(T ) = DX .

Thanks to Proposition 6.1, both sides of (6.3) are equal to D(g∗f∗T ). □

Proposition 6.3. Let π : X ′ → X be a modification. Consider the Cartesian diagram,

(6.4)
Y ′ X ′

Y X.

πY

f ′

□ π

f

Then for any nef b-divisor D over X, we have
(6.5) (f∗D)Y ′ = f ′∗DX′ .

Thanks to the smoothness of f , πY is also a modification, so the left-hand side of (6.5) makes
sense.

Proof. We may assume that D is big. Take a non-divisorial closed positive (1, 1)-current T in DX
so that D = D(T ). Since f ′∗ preserves non-divisorial currents and divisorial currents, we have

f ′∗ Reg π∗T = Reg π∗
Y (f∗T ).

Therefore,
{Reg π∗

Y (f∗T )} = f ′∗{Reg π∗T}.
Our assertion follows. □

Proposition 6.4. Let D,D′ be nef b-divisors over X with DX = D′
X . Then the following are

equivalent:
(1) D ≤ D′;
(2) f∗D ≤ f∗D′.
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Proof. We may assume that D and D′ are both big. Take non-divisorial closed positive (1, 1)-
currents T and T ′ in DX such that D = D(T ) and D′ = D(T ′).

(1) =⇒ (2). Assume (1). It follows from Corollary 4.14 that T ⪯I T
′. By [Xia, Proposi-

tion 1.4.5], we have f∗T ⪯I f
∗T ′, hence by (6.1) and Corollary 4.14 again, we find f∗D ≤ f∗D′.

(2) =⇒ (1). Assume (2). Fix a prime divisor E over X. It suffices to show that
(6.6) ν(T,E) ≥ ν(T ′, E).
Take a modification π : X ′ → X so that E is a prime divisor on X ′. Form the Cartesian diagram
(6.4). Then by Corollary 4.14,

ν(f∗T, f ′−1E) ≥ ν(f∗T ′, f ′−1E),
which, thanks to [Xia, Proposition 1.4.5], is just (6.6). □

Proposition 6.5. Let θ be a smooth closed real (1, 1)-form on X representing a big cohomology
class. Let (φi)i∈I be a net in PSH(X, θ) and φ ∈ PSH(X, θ). Assume that φi

dS−→ φ, then

f∗φi
dS−→ f∗φ.

Proof. Since PSH(X, θ) is a pseudometric space, we may assume that (φi)i is a sequence.
Replacing θ by θ + ω for some Kähler form ω on X, we may assume that the non-pluripolar
masses of the φi’s are bounded from below by a positive constant. Then it follows from [DDNL18,
Proposition 4.2] and [Xia, Corollary 6.2.11] that we may assume without loss of generality that
(φi)i is either increasing or decreasing.

The increasing case follows from [Xia, Corollary 6.2.3]. We assume that (φi)i is a decreasing
sequence. Fix a Kähler form Ω on Y . By [Xia, Corollary 6.2.5], it remains to argue that

lim
i→∞

∫
Y

(f∗θ + Ω + ddcf∗φi)n+m =
∫
Y

(f∗θ + Ω + ddcf∗φ)n+m .

After a binomial expansion, it suffices to show that for any a = 0, . . . , n, we have

lim
i→∞

∫
Y

(f∗θ + ddcf∗φi)a ∧ Ωn+m−a =
∫
Y

(f∗θ + ddcf∗φ)a ∧ Ωn+m−a,

or equivalently,

lim
i→∞

∫
X

(θ + ddcφi)a ∧ f∗Ωn+m−a =
∫
X

(θ + ddcφ)a ∧ f∗Ωn+m−a.

Since f is smooth, the form f∗Ωn+m−a is smooth as well. Our assertion then follows from [Xia24,
Theorem 1.9]. □

Corollary 6.6. Let (Ti)i∈I be a net of closed positive (1, 1)-currents on X and T be a closed
positive (1, 1)-current on X. Assume that Ti =⇒ T , then f∗Ti =⇒ f∗T .

Proof. This is an immediate consequence of Proposition 6.5. □

7. The trace operator of b-divisors

Let X be a connected compact Kähler manifold of dimension n and Z be a smooth irreducible
analytic set of dimension m in X. Let D be a nef b-divisor over X.

We will study the problem of restricting nef b-divisors over X to Z in this section. This
problem has been studied in the analytic setting in [DX24a]. We shall follow the slightly different
approach as studied in [Xia, Chapter 8], which is better behaved in the zero mass case.

7.1. The analytic theory. Let T be a closed positive (1, 1)-current on X representing a
cohomology class α. Assume that ν(T,Z) = 0.

Consider a quasi-equisingular approximation (Tj)j of T , where the currents Tj are not
necessarily in α. Then ν(Tj , Z) = 0 and hence Tj |Z makes sense. We then define TrZ T as any
closed positive (1, 1)-current on Z such that Tj |Z

dS−→ TrZ T .
One can show that TrZ T is always well-defined modulo P -equivalence and is independent of

the choice of the sequence (Tj)j .
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If furthermore, T is a Kähler current, then TrZ T can be represented by Kähler current in
α|Z .

The details can be found in [Xia, Chapter 8].

7.2. The codimension 1 case. We assume that Z is a divisor so that m = n− 1.
For the moment, let us assume that D is a Cartier nef b-divisor. Let (π : Y → X,α) be a

realization of D.
Let ZY denote the strict transform of Z and pY : ZY → Z denotes the restriction of π. The

notations are summarized in the commutative diagram:

(7.1)
ZY Y

Z X.

pY π

After replacing π by a further modification, we may assume that ZY is smooth. This follows
from the embedded resolution [BM97; Wło09]. In this case, we define the trace TrZ D of D on Z
as the nef Cartier b-divisor over Z realized by (pY , α|ZY

). Note that we are slightly abusing our
language since pY is not a modification in general. To be more precise, here we mean that for
any modification Z ′ → Z dominating ZY , TrZ D is defined as the nef Cartier b-divisor over Z
realized by (Z ′ → Z, β), where β is the pull-back of α|ZY

.

Lemma 7.1. Assume that D is a Cartier nef b-divisor, then TrZ D defined above is independent
of the choice of π.

Proof. Given a different realization (π′ : Y ′ → X,α′) of D, we want to show that it defines the
same TrZ D. We may assume that π′ dominates π so that we have a commutative diagram:

ZY ′ Y ′

ZY Y

Z X.

τ

pY ′ π′

σ

pY π

The notations τ, σ, pY ′ have the obvious meanings. We may assume that ZY and ZY ′ are both
smooth.

Our assertion becomes the following:

τ∗ (α|ZY
) = (σ∗α) |ZY ′ ,

which is obvious since the upper square in the diagram commutes. □

Proposition 7.2. Let D′ be another nef Cartier b-divisor over X. Assume that D′ ≤ D and
D′
X = DX , then TrZ D′ ≤ TrZ D.

Proof. We take realizations (π : Y → X,α′) and (π, α) of D′ and D on the same modification.
Then by assumption α ≥ α′, and α− α′ is represented by an effective R-divisor not containing
ZY in its support. It follows that α|ZY

≥ α′|ZY
. Therefore, our assertion follows. □

Lemma 7.3. Let T be a closed positive (1, 1)-current with analytic singularities Then

(7.2) TrZ D(T ) = D (TrZ (T − ν(T,Z)[Z])) .

Proof. Let π : Y → X be a modification so that

π∗T = [D] +R,

where D is an effective Q-divisor and R is a closed positive (1, 1)-current with locally bounded
potential. We may assume that the strict transform ZY of Z is smooth. Then by definition,
both sides of (7.2) are Cartier nef b-divisors realized by (ZY , {R}|ZY

). □
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In general, when D is nef and big but not necessarily Cartier, take an I-good non-divisorial
Kähler current T ∈ DX so that D = D(T ). Consider a quasi-equisingular approximation (Ti)i of
T in the same cohomology class as T , we define

TrZ D = lim
i→∞

TrZ D(Ti).

Thanks to Proposition 7.2, the right-hand side is a decreasing sequence and hence the limit
exists.

Lemma 7.4. The definition of TrZ D is independent of the choices we made, and

(7.3) TrZ D = D(TrZ T ).

Proof. It suffices to prove (7.3), but this follows from Proposition 4.9 and the dS-continuity of
the trace operator along decreasing sequences. □

More generally, if D is just nef, we take a Kähler form ω on X, and let

TrZ D := lim
ϵ→0+

TrZ (D + ϵD(ω)) .

This definition is independent of the choice of ω.

Theorem 7.5. Let T be a closed positive (1, 1)-current such that TrZ (T − ν(T,Z)[Z]) can be
represented by a closed positive (1, 1)-current in {T − ν(T,Z)[Z]}|Z . Take such a representative.
Then

TrZ D(T ) = D (TrZ (T − ν(T,Z)[Z])) .

Proof. Replacing T by T + ϵω for some ϵ > 0 and some Kähler form ω, we may assume that
D(T ) is big.

Replacing T by T − ν(T,Z)[Z], we may assume that ν(T,Z) = 0. Then we need to show that

TrZ D(T ) = D (TrZ T ) .

Here TrZ T is in {T}|Z .
Let (Tj)j be a quasi-equisingular approximation of T in the same cohomology class as T .

Then Tj
dS−→ T . Hence by Proposition 4.9, we have

D(Ti)→ D(T ).

By definition and Proposition 4.9,

TrZ D(T ) = lim
i→∞

TrZ D(Ti), D (TrZ T ) = lim
i→∞

D(Ti|Z).

Hence our assertion follows from Lemma 7.3.
□

7.3. The higher codimension case. Now assume that Z has codimension at least 2.
In this case, similar to the analytic theory, we cannot restrict a general nef b-divisor.
We consider the following commutative diagram:

(7.4)
E BlZ X

Z X,

q p

where p : BlZ X → X is the blow-up of X along Z and E is the exceptional divisor. Note that
q : E → Z can be naturally identified with the projectivized normal bundle of Z in X.

Let D be a nef b-divisor over X such that

(7.5) DBlZ X = p∗DX .

Assume (7.5), then the trace can be defined. To do so, we shall rely on the analytic theory.
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Proposition 7.6. Let D be a nef b-divisor over X satisfying (7.5). Then there is a unique nef
b-divisor TrZ D over Z such that
(7.6) q∗ TrZ D = TrE D,
where D is regarded as a nef b-divisor over BlZ X in the obvious way.

The pull-back q∗ is defined in Section 6.
We first recall the following decomposition:

(7.7) H1,1(E,R) = H1,1(Z,R)⊕ Rζ,
where ζ is the tautological class of the projective bundle q. See [RYY19, Proposition 3.3] for
example. This decomposition also explains why we need to impose the condition (7.5).

Proof. Thanks to Proposition 6.3, (7.5) and (7.7), the root of TrZ D is necessarily the first
component of (TrE D)E with respect to the decomposition (7.7). By Proposition 6.4, the nef
b-divisor TrZ D is unique if it exists.

Fix a Kähler form ω on X. It suffices to prove the existence of TrZ(D + ϵD(ω)) for any ϵ > 0.
In fact, if we have established these existence, then thanks to Proposition 6.4, we know that
TrZ(D + ϵD(ω)) is increasing with respect to ϵ, hence defining

TrZ D := lim
ϵ→0+

TrZ (D + ϵD(ω))

would suffice.
Therefore, we may assume that there is a non-divisorial Kähler current T in DX such that

D = D(T ). Then (7.5) translates into ν(T,Z) = 0. In particular, TrZ T is defined and can be
represented by a Kähler current in {T}|Z . We fix such a representative. We claim that in fact
(7.8) TrE D = q∗D(TrZ T ).
In fact, due to Proposition 6.1, we know that

q∗D(TrZ T ) = D(q∗ TrZ T ).
Thanks to Theorem 7.5, (7.8) translates into
(7.9) D(q∗ TrZ T ) = D(TrE(p∗T )).
Now Corollary 6.6 and Proposition 4.9 allow us to reduce to the case where T has analytic
singularities, and (7.9) finally reduces to

D (q∗(T |Z)) = D ((p∗T )|E) ,
which follows immediately from the commutativity of (7.4). □

Definition 7.7. Let D be a nef b-divisor over X satisfying (7.5). Then TrZ D is defined as the
unique nef b-divisor over Z such that (7.6) holds.

One can easily deduce the basic properties of the trace TrZ D from the analytic theory of
trace operators. We omit these transparent translations.

The trace operator of b-divisors has a natural explanation in terms of non-Archimedean
metrics, see [Xia25a].
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