TRANSCENDENTAL B-DIVISORS II — THE INTERSECTION THEORY

MINGCHEN XIA

ABSTRACT. In this paper, we develop the general intersection theory of nef b-divisors, extending
the movable intersection theory a la Boucksom. As an application, we prove a quantitative
version of the monotonicity of the mixed volumes of currents.
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1. INTRODUCTION

The current paper is a sequel of the author’s previous paper | ].

1.1. Motivation. Let X be a compact Kéhler manifold of dimension n. This paper is motivated
by the monotonicity theorem of Witt Nystrém (see | ; ]): Given closed positive
(1,1)-currents

Ti,....,Tn,S1,...,5,

on X such that T; and S; lie in the same cohomology class and T; is more singular than S; for
each ¢, then one has

(1.1) /Sl/\"‘/\Snz/Tl/\"'/\Tn.

Here the product is understood in the non-pluripolar sense of | ; ; ].

Inequality (1.1) expresses the principle that increasing singularities of currents lead to a loss
of mass. However, the monotonicity theorem itself provides no quantitative or qualitative control
on how much mass is lost.

From an intuitive point of view, the more singular the currents T; are relative to S;, the larger
the difference in (1.1) should be. The main goal of this paper is to make this intuition precise.

To this end, one must first quantify the difference in singularities. A classical invariant serving
this purpose is given by Lelong numbers. We aim to obtain a qualitative control of the difference
in (1.1) in terms of the differences between the Lelong numbers of the currents T; and S;.

There is, however, a fundamental caveat. In general, such a control is impossible due to
pathological examples, such as | , Example 6.10]: On P!, there exists a closed positive
(1,1)-current T' € ¢1(O(1)) whose Lelong numbers vanish identically, while its non-pluripolar
mass is zero. This phenomenon shows that Lelong numbers alone do not suffice to control
non-pluripolar products in full generality.

The resolution of this difficulty is provided by the theory of Z-good currents developed in
[ ; ; ; |. Roughly speaking, Z-good currents are precisely those closed
positive currents that exclude such pathological behavior.
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Related problems have been previously investigated by Vu, Su, among others; see for instance
[ ; ; ; ]. Their approaches rely on techniques involving relative non-
pluripolar products and density currents, and lead only to non-optimal lower bounds for the
difference in (1.1). In contrast, in this paper we approach the problem using the theory of nef
b-divisors, developed in [ | and | ]. As we shall show, this method allows us to obtain
an optimal control of the difference in (1.1) when the currents involved are Z-good.

1.2. Main results. We first extend the intersection theory of transcendental b-divisors over
X initiated in [ |. Recall that a nef b-divisor D over X is a family of modified nef classes
Dy € HY(Y,R), with Y — X running over all modifications of X. These classes are assumed
to be compatible with each other under pushforward.

In | ], we showed that nef b-divisors can be understood using the theory of currents,
and defined the intersection number between n nef b-divisors. The first goal of this paper is to
develop the full intersection theory. In particular, we establish the following theorem:

Theorem A.

(1) There is a map sending p nef b-divisors Dy, ..., D, over X to a nef b-class D1N---ND,, over
X. The map is multi—Rzo—linearl and satisfies the expected properties of an intersection
product.

(2) When D; = D(oy) is the nef b-divisor induced by a pseudoeffective class o;; € HY (X, R)
as in Definition 3.11 for each i =1,...,p, the product

(Dlﬂ-“ﬂﬂ)p)x

is just the movable intersection (oq A --- A ay) in the sense of [ ; /.
(8) In general, the intersection product can be recovered from the movable intersection as a
limat:

Din---NAD)yv = li D o AD
(DrN---NDy)x m}}gx< 1Ly A ADpy),

where w:'Y — X runs over the modifications of X.
(4) Suppose that D; is associated with an Z-good Kdhler current T; for each i =1,...,p, then

DiN---NDp)x ={T1 A--- AT},
where the bracket {®} denote the associated cohomology class.

The notion of nef b-class is a generalization of nef b-divisors. A nef b-class T is a compatible
choice of movable classes Ty € HPP(Y,R). We refer to Definition 3.2 for the details.

Part (2) shows that the intersection theory of b-divisors is a generalization of the more
classical movable intersection theory. The latter has the drawback of being non-linear, making
concrete applications difficult. By contrast, the intersection theory of b-divisors is linear. The
non-linearity is completely encoded in the map from a pseudoeffective class « to the associated
nef b-divisors D(«), which is easier to understand in general.

Part (4) shows that the intersection theory of b-divisors can also be regarded as a partial
generalization of the non-pluripolar product. Although we can only recover the cohomology
class of the non-pluripolar product, this is enough for most applications, since in practice, we
usually only need the top intersection.

The monotonicity theorem (1.1) admits a generalization in the theory of b-divisors as follows:
If we have another nef b-divisor D)} which dominates Iy in the sense that Dll,Y — Dy is
pseudoeffective for each modification 7: Y — X, then

DiNDyN---NDy, >DyNDyN---NDy,
in the sense that on each modification of X the difference is a positive cohomology class, as

defined in Definition 2.11.
By the linearity of the intersection product, we could formally write the difference as

(D] —Dy) NDy N --- N D,

"n the sense that the product is additive in each variable, while homogeneous only with respect to non-negative
scalings.
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However, this term simply makes no sense, as D} — Dy is not nef in general. However, it could be
formally regarded as a linear combination of prime divisors over X with non-negative coefficients,
at least when Dy x =D .
When trying to give a formal meaning to these objects, in Section 4, we define the restricted
volume of nef b-divisors, generalizing the notion of restricted volumes of Kéhler classes [ ;
]. More precisely, given nef b-divisors Dy, ...,ID, over X and a prime divisor D over X, we
shall define a class

volyp (D1,...,D,) € HPFPH (X R).

After studying the restricted volume in detail, in Section 5 we prove the following key
inequality:

Theorem B. Let Dy,...,D, be nef b-divisors over X, T, T' be closed positive (1,1)-currents on
X in the same cohomology class such that T <7 T'. Then

(Din--nDND(T)) —(Din---ND,ND(T))

>x Y (v(T, D) = v(T', D)) volyp (D1, ..., D),
D/X

(1.2)

where D runs over all prime divisors over X (modulo equivalence). Here >x means the difference
s a positive class.

Moreover, when X is projective, equality holds.

If we further assume the transcendental Morse inequality holds, then the equality holds for all
compact Kihler manifolds X .

Here D(T) is a nef b-divisor canonically constructed from 7T, as we studied in [ ; ].
The notation T <7 T” means that all Lelong numbers of T' (on all modifications) dominate those
of T'. Equivalently, in the setup of the theorem, it says that D(T") < D(T").

The main inequality (1.2) gives a qualitative version of the monotonicity theorem. Put it in a
different way, it says that the loss of mass can be decomposed into a weighted sum of restricted
volumes over all prime divisors.

When Dy, ...,D, are nef b-divisors associated with currents, Theorem B gives a solution to
our initial question in view of Theorem A(4).

In dimension 1, since the transcendental Morse inequality is known, (1.2) reduces to

(1.3) volT' —vol T = Z (I/(T, x) —v(T, J:))u
zeX

which is already non-trivial. Similarly, in dimension 2, the transcendental Morse inequality has
been confirmed in Y. Deng’s thesis | |, and hence (1.2) is also an equality. Since we have
a relatively complete understanding of divisors over surfaces, it should be possible to extract
useful algebrico-geometric information about Kéhler surfaces from our equality. The author
wishes to explore this point in the near future.

C. Favre suggested that the right-hand side of (1.2) could be interpreted as an integral
over the Berkovich analytification of X with respect to a Dirac type measure with weights
volx|p (D1,...,Dp). This novel measure might be useful for the study of dynamical systems on
X. However, due to the author’s insufficient knowledge about dynamical systems, we do not
pursue this point of view in the current paper.

Theorem B contains many new inequalities of the movable intersection product as well. Instead
of trying to give an exhaustive list, we will only explain one such result in Corollary 5.3. Here
instead of stating the most general form, we only mention a very elegant and special case as in
Corollary 5.4.

Theorem 1.1. Let [E] be a divisorial closed positive (1,1)-current on X, say

[E] = ZciEi,
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where the E;’s are distinct prime divisors on X and ¢; > 0. Consider modified nef classes
aty. .. 0p, B € HYY(X R). Assume that 8 > {E}, then

<Oq/\.../\ap/\5>_<a1/\---/\ap/\(ﬁ—{E})> >y Z(y(ﬁ—{E},Ei)m) Vol g, (a1, ..., ap) .

The restricted volume of cohomology classes is defined in Definition 4.19. A weaker estimate
with ¢; in place of v(8 — {E}, E;) + ¢; can also be obtained using the theory of relative non-
pluripolar products.

As another application of our main theorem, in Section 6 we prove the following version of
the loss of mass theorem stated in the more traditional language:

Theorem C. Let o € H'Y (X, R) be a big class. Consider closed positive (1,1)-currents S, T € a
with T <7 8. Fiz a prime divisor D over X, then

vol S8
on—1 (Vmax(oz, D) — v(«, D))n

(1.4) vol§ —vol T > (W(T, D) -~ (S, D))" -

The constant 2~ can be marginally improved, but this does not seem very relevant.

For the notion of the volume of a current, see | , Section 3] or Section 2.1. For Z-good
currents with positive non-pluripolar mass, the volume is equal to the non-pluripolar mass. The
notation vmax(a, D) (resp. vmin(a, D)) denotes the maximal (resp. minimal) Lelong number of
closed positive currents in «. There is also a more general version of (1.4) for mixed volumes,
see Corollary 6.14.

This kind of problems have been extensively studied by Vu and Su, see [ ; ; ].
As we shall see in the toric example Example 6.2, the coefficient in this kind of estimate cannot
be a universal constant, contrary to the assertions in the literature. Our result improves all
known results in this direction. More importantly, our result is the first estimate with explicit
constants.

Interestingly, our approach relies on the recent development in the theory of transcendental
Okounkov bodies in [ ]. Based on the volume formula of transcendental Okounkov
bodies, we established the following estimate of the restricted volume, which has independent

interests as well.

Theorem 1.2. Let o € HYY(X,R) be a big class. Then for any prime divisor D on X, we have
1

VlelD(a — t{D}) Z Vo

(l/max(a, D) — v(«, D))

n—1
e min{t —v(a, D), Vmax(a, D) — t}

as long as v(a, D) <t < vpax(a, D).

Acknowledgments. The author would like to thank Chen Jiang, Yangyang Li, Bingyu Zhang
and Shuang Su for helpful discussions. The author also wishes to thank Charles Favre for
mathematical discussions at USTC, despite the fact that we hold radically different views on
many other aspects.

This draft was written during the author’s visit to Sichuan University. The author would like
to thank Huadi Qu for her kind invitation.

The author is supported by the National Key R&D Program of China 2025YFA1018200.

2. PRELIMINARIES

2.1. Quasi-plurisubharmonic functions. Let X be a connected compact Kéhler manifold of
dimension n.

We briefly recall the notions of P and Z-equivalences. For the details, see [Xia, Chapter 3,
Chapter 6].

Definition 2.1. Let ¢, be quasi-plurisubharmonic functions on X. We say ¢ ~p ¥ (resp.
¢ 2p 1) if there is a closed smooth real (1,1)-form € on X such that ¢, 9 € PSH(X, 6)-o and

Pylo] = Py[p]  (vesp.Palp] < Palt]).



TRANSCENDENTAL B-DIVISORS II — THE INTERSECTION THEORY 5

Here PSH(X, 6) denotes the space of #-plurisubharmonic functions on X and PSH(X, )~
denotes the subset consisting of ¢ € PSH(X, 0) with [y 67 > 0, with 6, = 0 + dd“p. Here and
in the sequel, the Monge—Ampeére type product 93 is always understood in the non-pluripolar
sense of | : : |. The envelope P is defined as follows:

Pylg] = sup*(p + C) N O,
CeR
where (¢ + C) A0 is the maximal element in PSH(X, #) dominated by both ¢ 4+ C and 0.

Given a closed smooth real (1,1)-form § on X so that ¢,1 € PSH(X, 6), we also say 6, ~p 6y
(resp. O, =p 0y) if ¢ ~p 1) (resp. ¢ <p ). We write p <1 is ¢ < 9 + C for some constant C'.
Similarly, we write 6, < 6. The same convention applies also to the Z-partial order introduced
later.

Definition 2.2. Let ¢, be quasi-plurisubharmonic functions on X. We say ¢ ~z 1 (resp.
o <7 9Y) if Z(A\p) = Z(Mp) (resp. Z(Ap) C Z(\)) for all real XA > 0.

Here Z denotes the multiplier ideal sheaf in the sense of Nadel.
If 6 is a closed smooth real (1, 1)-form such that ¢, € PSH(X, ), then ¢ =<7 ¢ if and only if

Polylz < Pyy]z,

where
Pylplz =sup{n € PSH(X,0) : n < 0,Z(Ap) D Z(\n) for all A > 0}.

Equivalently, we may replace O by = in this equation.

Another equivalent formulation of Definition 2.2 is that for any prime divisor E over X, we

have
vip, E) =v(¥, E) resp. v(p, E) =2 v(y, E).
Here v denotes the generic Lelong number.

We briefly recall the notion of prime divisors over a complex space Z. A prime divisor over Z
is a prime divisor F on Y, where 7: Y — Z is a proper bimeromorphic map from a complex
manifold. Consider another prime divisor E/ on Y/, where n’: Y’ — Z is another such map.
These divisors are considered equivalent if there is a proper bimeromorphic map #”: Y"” — Z
from a complex manifold dominating both 7 and 7’ so that the strict transforms of E and E’
on Y” are the same. By abuse of language, when we talk about a prime divisor over Z, we

sometimes refer to such an equivalence class.
Given any ¢ € PSH(X,#), we have

P sup < Pyle] < Pylolz.

The operation Pyle|z is idempotent. We say ¢ € PSH(X, ) is Z-model if Py[p|r = ¢. Similarly,
on the subset PSH(X, )<, the operation FPy[e] is also idempotent. We say ¢ € PSH(X,0)~¢ is
model if Py[p] = .

A quasi-plurisubharmonic function ¢ on X is called Z-good if there is a closed smooth real
(1,1)-form 6 on X such that ¢ € PSH(X,0)0 and

Pyle] = Pplolz

This notion is independent of the choice of 8. For any closed smooth real (1,1)-form 6’ on X so
that 6’ + dd“p > 0, we also say the current 6/, is Z-good.
Given a closed positive (1, 1)-current 7" on X, we write 7' = 6 + dd°p, then we define

vol T = / (6 + dd° Py[]z)" .
X
This definition is independent of the choice of the decomposition of T" as § + dd®p. In general,

volT > / ",
X
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and if [ T™ > 0, equality holds if and only if T" is Z-good. More generally, if T1,...,T;, are
closed positive (1,1)-currents on X with positive non-pluripolar masses, we define

VOl(Tl, - ,Tn) = /X ((91 + ddCP91 [(,01]) VANEREIA (9n + ddcpgn [(pn]) ,

where we write T; = 0; + dd®y; for each i. In general, when the masses possibly vanish, we define

vol(Th, ..., Tp) = El_i>r(1)r1+V01(T1 +ew, ..., T+ ew)

for any Kahler form w on X. Note that
vol(T) = vol(T,...,T)

for any closed positive (1,1)-current 7" on X.
We say a closed positive (1,1)-current 7" has analytic singularities if locally 7" can be written
as dd°f, where f is a plurisubharmonic function of the following form:

clog(Jfif? +-- +|fnl?) + R

where ¢ € Q>0, f1,..., fn are holomorphic functions on X and R is a bounded function. When
we write T' = 6 + dd“p for some smooth closed real (1,1)-form 6 and ¢ € PSH(X,#), we also
say ¢ has analytic singularities.

As a particular case, if D is an effective Q-divisor on X, we say a closed positive (1, 1)-current
T has log singularities along D if T — [D] is positive, and has locally bounded potentials. It
is easy to see that T has analytic singularities. Conversely, if we begin with T" with analytic
singularities, there is always a modification 7: Y — X so that 7*T has log singularities along
an effective Q-divisor on Y. See Definition 2.3 for our definition of modifications.

Let 6 be a smooth closed real (1,1)-form on X and n € PSH(X,0). We say a sequence (1),
of quasi-plurisubharmonic functions is a quasi-equisingular approximation of n if the following
are satisfied:

(1) for each j, 7’ has analytic singularities;
(2) (17); is decreasing with limit 7;
(3) for each A’ > A > 0, we can find jo > 0 so that for j > jo,
I(N'') C Z(M);
(4) There is a decreasing sequence (€;); in R>¢ with limit 0, and a Kéhler form w on X so
that
7’ € PSH(X,0 + ¢jw)
for each j > 0.
The existence of quasi-equisingular approximations is guaranteed by | ]. We also say
(6 + dd°n/) j is a quasi-equisingular approximation of 6 4+ dd°n. When 6, is a Kéhler current, we
can (and we always do) take a quasi-equisingular approximation in the same cohomology class
of {0}.

Suppose that {0} is big. It is shown in [ ] that there is a pseudometric dg on PSH(X, 6)

satisfying the following inequality: For any ¢, € PSH(X,#), we have
ds(p) <23 (2/ 67 Aen—j—/ TN —/ o7 /\9"_j)
(2.1) R o x Ve x 7 Ve x vV

0
SCndS((Pa ¢)7

where C,, = 3(n + 1)2"*2. Here Vy = max{yp € PSH(X,0) : » < 0}. Moreover, ds(¢,9) =0
if and only if ¢ ~p 1. In particular, the dg-pseudometric descends to a pseudometric (still
denoted by dg) on the space of closed positive (1, 1)-currents in {6}.

Given a net of closed positive (1, 1)-currents T; in {6}, and another closed positive (1, 1)-current

T in {0}. Then T; 25, 7 if and only if T; + w 95, T 4w for any Kéhler form w on X.

In general, given closed positive (1,1)-currents 7; and 7" on X, we say T; 95, 7 if we can find
Kéhler forms w; and w on X such that the T; + w;’s and T' + w represent the same cohomology
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class and T; + w; d—s> T + w. This definition is independent of the choices of the w;’s and w.
Quasi-equisingular approximations provide the primary source of dg-convergent sequences.

The proceeding theory can be easily extended to compact normal Kéhler spaces, as explained
in the appendix of [Xia].

2.2. Modifications and cones. Let X be a reduced compact Kéhler space of dimension n.
In this paper, we use the word modification in a very non-standard sense.

Definition 2.3. A modification of X is a bimeromorphic morphism 7: Y — X, which is a finite
composition of blow-ups with smooth centers.

We say a modification 7’: Z — X dominates another 7: Y — X if there is a morphism
g: Z — Y making the following diagram commutative:

Z g Y
(2.2) N /
X.

The modifications of X together with the domination relation form a directed set.
Fix a reference Kihler form w on X. Recall that a class a € HY'(X,R) is modified nef or
movable if for any € > 0, we can find a closed (1,1)-current 7' € « such that
(1) T+ ew > 0;
(2) v(T + ew, D) = 0 for any prime divisor D on X.

This definition is independent of the choice of w. Here v(e, D) denote the generic Lelong number
along D.

These classes are called nef en codimension 1 in Boucksom’s thesis | ], where they were
introduced for the first time. Modified nef classes form a closed convex cone in H!(X,R). Note
that a modified nef class is necessarily pseudoeffective. A nef class is obviously modified nef.

Recall the multiplicity of a cohomology class as defined in [ , Section 2.1.3].

Definition 2.4. Let a € HY (X, R) be a pseudoeffective class and D be a prime divisor on X.
We define the Lelong number v(a, D) as follows:

(1) When « is big, define v(«, D) = v(T, D) for any closed positive (1,1)-current 7' € o with
minimal singularities (namely, a current in « that is less singular than any current in «).
(2) In general, define

v(a,D) = el—i>%1+ v(a+ e{w}, D).

When « is big, (2) is compatible with (1) and the definition is independent of the choice of w.
By definition, a pseudoeffective class « is modified nef if and only if v(«, D) = 0 for all prime
divisors D on X.

Let T be a closed positive (1,1)-current on X. Then we define the regular part RegT of T as
the regular part of 7" with respect to Siu’s decomposition. In other words, we write

(2.3) T =RegT + Z cilEi),

)

where E; is a countable collection of prime divisors on X and ¢; = v(T, E;) > 0; the regular part
RegT is a closed positive (1, 1)-current whose generic Lelong number along each prime divisor
on X is 0.

Definition 2.5. We say a closed positive (1, 1)-current 7" on X is non-divisorial (resp. divisorial)
if T'=RegT (resp. RegT = 0).

Note that the cohomology class of a non-divisorial current is always modified nef. Conversely,
a current with minimal singularities in a big and modified nef class is always non-divisorial.
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2.3. Partially ordered linear spaces. Let V' be a finite-dimensional real vector space, and
C C V be a convex cone satisfying the following assumptions:

(C1) C is closed;

(C2) C is pointed, namely C' N (—C) = {0};

(C3) C is full-dimensional, namely V = C — C.

Given x,y € V, we define < y if y — 2 € C. Thanks to (C2), < defines a partial order. In
particular, we can talk about increasing and decreasing nets. This partial order has the following
properties:

(VO1) Given z,y,z € V,if z <y, then z + 2 < y + z;

(VO2) for any A > 0 and z,y € V, if z <y, then Az < Ay.

In the terminology of | |, < is a vector-ordering of V. The results in this section can be
proved using the more general theory in [ |, but we shall give elementary proofs for the ease
of the readers.

Let V'V denote the dual vector space of V. Let CV C VV be the dual cone of C, namely,

V:{EEV\/:E‘CZO}.

It is well-known that under the assumption of (C1) and (C2), CV has full dimension. See | ,
Exercise 2.31].

Proposition 2.6. Suppose that (z;)icr is a decreasing net in C, then (x;); converges to some
element in x € C. Moreover, x < x; for alli € I.

Proof. Since CV has full dimension, we can choose ¢1,...,¢, € CV forming a basis of V. Then
the linear isomorphism

L= l,....0,): V—=>R"
maps C into a cone C’ contained in the first quadrant.

In particular, (L(x;));er is a net in the first quadrant and each component forms a decreasing
net. The usual monotone convergence theorem shows that (L(z;)); has a limit y in the first
quadrant. Then x; — 2 := L~!(y). Thanks to (C1), z € C.

Next fix i € I, we have

rj < @y, Viel,j>i.
Using (C1) again, we find z < x;. O

Corollary 2.7. Suppose that (x;)ier is an increasing net in' V and y € V is such that x; <y
for all i, then (x;); converges to some x < y. Furthermore, x > x; for each i € I.

Proof. Tt suffices to apply Proposition 2.6 to the net (y — ;)ier- O

Proposition 2.8. Let (yi)i>0 be a sequence in C' so that > 2, y; converges. Consider sequences
(x])j>0 in C for all i > 0 so that

ol <wyi, Vi j>0;

]

lim xz =ux;, Vi>O0.
j—)OO

Then for all j >0, 32, x! comjerges and

(2.4) lim Zx = Zx,

j—}OO

Proof. For each j > 0, the convergence of > ;2 xj follows from Corollary 2.7.
As for (2.4), as in the proof of Proposition 2. 6 assume that V' = R" and C' C RY,. In this
case, it suffices to apply the dominated convergence theorem to each component. U

Proposition 2.9. Let y € C. Consider increasing sequences (xg)j>0 in C for all i > 0 with
limits x;. Assume that

m .
dal <y, Vji>0,
=1
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Then

o0 . oo
lim Y 2/ =) x.
A= LT
Proof. As in the proof of Proposition 2.6, assume that V = R" and C' C R%,. In this case, it
suffices to apply Levi’s monotone convergence theorem to each component. O

Proposition 2.10. Let (x;)icr, (Yi)icr, (zi)ier be nets in C with x; — x for some xz € C and
z; = x. Assume that x; > y; > z; for alli € I, then y; — x.

Proof. As in the proof of Proposition 2.6, we may assume that V' = R" and C'=R%,,. Then it
suffices to apply the squeeze theorem to the components. O

2.4. Cones in cohomology. Let X be a connected compact Kéhler manifold of dimension n.
In Appendix A, we shall briefly recall Lelong’s theory of positive forms.

Definition 2.11. We say a class a € HPP(X,R) is positive if for all weakly positive closed
(n —p,n — p)-form F on X, we have

an{F} >0.
We write o > x 0 in this case.

Here {F'} refers to the cohomology class in H* "~ P(X R) represented by F. The cap
notation N refers to the cohomology pairing.

When we have two classes a, f € HPP(X,R), we write o >x f if @« —  >x 0. Similarly, the
notation <x has the obvious meaning.

If o contains a closed strongly positive (p, p)-current, it is clearly positive. The author does
not know if the converse holds in general. When p = n — 1, the converse follows from | ,
Theorem 0.1]. See | | for a proof without relying on the dubious Demailly regularization on
singular complex spaces. When p = 1, the converse also holds, namely a class in HY! (X, R) is
positive if and only if it is pseudoeffective. In this case, we usually omit the subindex X and
write a > . The non-trivial implication is a theorem of Lamari, see | , Lemme 3.3].

An example of positive classes is given by non-pluripolar products.

Proposition 2.12. Let 11, ...,T, be closed positive (1,1)-currents on X. Then Ty A --- AT, is
strongly positive, and hence {T1 A --- ATy} is positive.

Here and in the sequel 77 A - - - A T}, denotes the non-pluripolar product as before.

Although this result is definitely known to experts, it seems missing from the literature. We
take this opportunity to give a proof. In the proof below, we implicitly use the fact that a
smooth real closed (p, p)-form is strongly positive as a form if and only if it is strong positive as
a current. This is a consequence of Lemma A.3 proved in the appendix.

Proof. It suffices to show that 71 A --- AT}, is strongly positive. The problem is then local.
We are reduced to the following: Suppose that U is a domain set in C" and 1, ..., p, are
plurisubharmonic functions on U. Assume that dd°p; A --- A dd®p), is well-defined, then it is
strongly positive.

Step 1. We first assume that each ¢; is bounded. Then taking convolution with Friedrichs
mollifiers, we may assume that each ¢; is smooth. In this case, the strong positivity of
dd®pq A -+ Add®yp, follows from | , Page 169, Proposition 1.11].

Step 2. We handle the general case.

Let 1 be a compactly supported smooth closed weakly positive (n — p,n — p)-form on U. We
need to show that

(2.5) / (ddp1 A --- Addpp) A > 0.
U

For this purpose, we apply | , Lemma 1.5] and get

P
/ (dd°p1 A --- Addpp) A = lim (/\ dd® (p; vV (—C))) AT
U {pi>—C}

C—oo im1
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But each term is non-negative by Step 1, and hence (2.5) follows. i
Proposition 2.13. The cone of positive classes in HPP(X,R) satisfy (C1), (C2) and (C3).

In particular, the abstract results proved in Section 2.3 can be applied. In the sequel of this
paper, we shall apply them without further mentioning.

Proof. The condition (C1) is obvious.

Let us prove (C2). Let o € HPP(X,R) be a class with vanishing intersection with all classes
of the form {F'}, where F' is a closed weakly positive (n — p,n — p)-form. We need to show that
a=0.

Fix a general cohomology class § € H* P P(X R), it suffices to show that

(2.6) anp=0.

For this purpose, take a closed real (n — p,n — p)-form G representing 8. Fix a Kéhler form w
on X. We observe that

G+ Cw" P

is positive when C is large enough. In fact, thanks to the compactness of X, this problem is
essentially local, we can consider it on a coordinate chart on X. Then this is just a simple linear
algebra. For later use, let us observe that we can in fact guarantee that G + Cw™ P is strongly
positive, as follows from Theorem A.6.

Now by our assumption,

an{Cuw"?} =0, an{G+Cw" P} =0.

Therefore, (2.6) follows.

Finally let us prove (C3). This follows form the observation in proving (C2): A closed smooth
real (p, p)-form can always be represented as the difference of two closed smooth strongly positive
(p, p)-forms. O

Proposition 2.14. Let f: Y — X be a proper morphism from a Kdhler manifold, if o €
HPP(Y,R) is positive, then so is f.c.

Note that we do not require that f be bimeromorphic, nor surjective.

Proof. This follows from the fact that the pull-back of a weakly positive form is weakly positive.
O

Proposition 2.15. Let o € HY(X,R) be a nef class and B € HPP(X,R) be a positive class.
Then o N B is positive.

Proof. Without loss of generality, we may assume that « is a Kédhler class. Then our assertion
follows from the fact that the wedge product of a positive (1, 1)-form with a weakly positive
form is weakly positive. O

Lemma 2.16. Let o € HPP(X,R) be a positive class. Assume that for each Kdhler class (3, we
have aN B"P =0, then a = 0.

Proof. Suppose that o # 0, then we can find a closed real (n — p,n — p)-form F so that
anN{F} < 0. As in the proof of Proposition 2.13, we can find a Ké&hler form w on X so that
F + w™ P is positive. Then by our assumption, we know that a N {F + w" P} < 0, which is a
contradiction. O

A source of positive classes is provided by the following monotonicity theorem proved in
increasing order of generality by | ; ; |:

Theorem 2.17. Let ay,...,a, € HVY(X,R) be pseudoeffective classes. Consider closed positive
(1,1)-currents T;, S; € o fori=1,...,p. Assume that T; <p S; for all i. Then

(2.7) (TLA - AT} <x {S1A--AS,}.
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The notion of P-partial order is recalled in Section 2.1. In particular, the cohomology class
{ThN---NT,}
depends only on the P-equivalence classes of the T;’s and the cohomology classes of the T;’s.

Proof. Take a Kahler form w on X and replacing T; and S; by T; + ew and S; + ew respectively for
some small € > 0, we can reduce to the case where the T;’s and the S;’s are all Kdhler currents.
Take a smooth closed real (1,1)-form 6; € o; and write

T, =0, + ddcgoi, S; = 0; + ddcwi.
Then p; <p ;.
Step 1. We first prove that
{(00+dden) A A (0 + ddoyy) b = {(01 + APy, [n]) A -+ A (6, + dd°Py, [i5,]) }.

The <x direction is proved in [ , Theorem 4.4]. Therefore, using Lemma 2.16, in order to
prove the equality, we may assume that p = n. In this case, the assertion follows from the usual
monotonicity theorem. See [Xia, Proposition 6.1.4].

Step 2. By Step 1, we may replace v; by Py, [;] and assume that ¢; < 9; foreachi =1,...,p.
By Vu’s result | , Theorem 4.4] again, we conclude (2.7). O

Let us also recall another result for later use.

Theorem 2.18. Let ay,...,q, € HYY(X,R) be big classes. Consider nets of closed positive

(1,1)-currents (T,L.j)jeJ in a; for each i = 1,...,p. Assume that Tij s, T; € «; for each
i=1,...,p. Then
: J il
(2.8) yg}{TIA--./\Tg}_{TlA.--ATp}.
This follows verbatim from the proof of [Xia, Theorem 6.2.1], with Theorem 2.17 in place of

the usual monotonicity theorem.
For later use, we recall the behavior of the non-pluripolar products under bimeromorphic
morphisms:

Proposition 2.19. Let m: Y — X be a proper bimeromorphic morphism from a Kdhler manifold.
Let T, ..., T, be closed positive (1,1)-currents on X. Then

Ty A ANT) =Ty A -+ AT,
T (T TV N - AT Tp) =Ty A -+~ NT,.

Here 7° is defined as follows: Take a smallest Zariski closed subset Z C X so that 7 is an
isomorphism outside Z. Then given a closed positive (p, p)-current 7" on X, we let 79T be the
zero-extension of W’*Y\W_I(Z) (T) to Y.

Both assertions follow easily from the fact that the non-pluripolar products put no mass on
proper analytic sets.

Definition 2.20. A class o € HPP(X,R) is strictly movable if there is a proper bimeromorphic
morphism 7: Y — X from a Kihler manifold Y, and Kihler classes 3, ..., 3, € Hb(Y,R) so
that

(2.9) a=m (B1N---NSp).
A class in the closed convex cone generated by strictly movable classes is called a mowvable class.

The cone of movable classes in HPP(X,R) is a closed convex cone. A movable class is clearly
positive.

Example 2.21. When p =1, a class o € HY'(X,R) is movable if and only if it is modified nef.
This is [ , Proposition 2.1.2].

When p = 0 or p = n, we have canonical identifications HPP(X,R) 2 R. A class corresponding
tot € R is movable if and only if t > 0.
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Example 2.22. In (2.9), if 1,..., 8, € HY(Y,R) are nef,  is still movable. This follows
immediately from the continuity of .

Proposition 2.23. Let w: Y — X be a proper bimeromorphic morphism from a Kdhler manifold
Y. Suppose that o € HPP(Y,R) is movable, then so is myc.

Proof. We may assume that « is strictly movable. Then our assertion follows immediately from
the definition. (]

Proposition 2.24. Let a € HY(X,R) be a pseudoeffective class, and 3 € HPP(X,R) be a
movable class. Then

(1) an B is positive;

(2) if furthermore « is nef, then a0 B is movable.

Proof. We may assume that § is strictly movable. Take a proper bimeromorphic morphism
m: Y — X from a Kahler manifold Y, and Kahler classes v1,...,7, € HYY(Y,R) with

B=m (NN,
Then
aNfB=m(manNy N---Np).
(1) By Proposition 2.14, it suffices to show that 7*a N~; N--- N+, is positive, which follows
from Proposition 2.15.

(2) Thanks to Proposition 2.23, it suffices to show that 7*a N~; N --- N+, is movable. But
this is obvious. U

For mnemonic purposes, we summarize Proposition 2.24 and Proposition 2.15 in Table 1.

ac HVY(X R) [ B e HPP(X,R) | anp
nef positive positive
nef movable movable
positive movable positive

TABLE 1. Positivity properties of intersection products

2.5. Movable intersection theory. Let X be a connected compact Kéhler manifold of
dimension n. Consider pseudoeffective (1,1)-classes a,...,q, € HVY(X,R).
Definition 2.25. The movable intersection (a1 A --- A o) € HPP(X,R) is defined as follows:
(1) When the «;’s are all big, we take closed positive (1, 1)-currents with minimal singularities
T; min in each «a; and let
(Oél ARERNA ap> = {Tl,min ANRRRA Tp,min} ;

(2) in general, define

(01 A= Aay) = lim (a1 +€B) A=+ Ay +€B)),

=1l
e—0+
where 3 € HY (X, R) is a Kihler class.
The movable intersection is independent of the choices we made. Moreover, it is always a

positive class. The current definition is taken from | ]. A more traditional (but equivalent)
definition can be found in [ ; ]-

Proposition 2.26. Let ay,...,ap,a),a,B1,...,B, € HYL(X,R) be pseudoeffective classes, and
A > 0. We have the following properties:

(1) The movable intersection is symmetric: For each permutation o of {1,...,p}, we have

<OJU(1) VANKIERIVA ao(p)> = <051 VANEERIAN Ozp>.
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(2) The movable intersection is superadditive in each variable:
{(ar +a)) Nag A= ANap) >x (a1 Aag A+ Aay) + (0] Aag A A ay).
(8) The movable intersection is homogeneous in each variable:
(At Aaa A== Nap) = XMar Aag A=+ A ay).
(4) The movable intersection is increasing in each variable: Suppose that aq > o, then
(1 A Nag) >x (@) Aag A A ay).
(5) We have

(2.10) a=(a)+ > v(a,D){D},
DCX
where D runs over the set of prime divisors on X.
(6) We have

(a1 A Nay) = eli%l+<(a1 +ef) N Aoy + eﬁp)>.
(7) When oy is nef, we have
(@ A= Nay) =arN{aa A Aay)

See [ , Theorem 3.5] for the proof of most parts. Part (6) is proved in | ,
Proposition 3.2.4].

The decomposition (2.10) is usually referred to as the divisorial Zariski decomposition or the
Boucksom—Nakayama decomposition.

The volume of pseudoeffective class a € HM (X, R) is defined as vol(a) := (™).

3. GENERALIZED INTERSECTION THEORY

Let X be a connected compact Kéhler manifold of dimension n. In the whole section, p, ¢
will denote two non-negative integers.

We remind the readers that the word modification takes a very non-standard meaning in this
paper, as we recalled in Definition 2.3.

3.1. The notion of b-classes. We introduce the central object of interest in this paper — The
b-classes.

Definition 3.1. A (Weil) b-class T of degree p over X is an element in
(3.1) lim  HPP(Y,R),
m: Y =X

where m: Y — X runs over the directed set of modifications of X. Here the limit is taken in the
category of real vector spaces.

Equivalently, thanks to Hironaka’s Chow lemma | , Corollary 2], we could ask 7 to run
over the set of proper bimeromorphic morphisms from Ké&hler manifolds.

The components of T with respect to (3.1) will be denoted by Ty € HPP(Y,R). The vector
space of b-classes of degree p over X is denoted by Div} (X).

The vector space Divl (X) is endowed with the projective limit topology. In other words, the
convergence of a net of b-classes (T*);c; means the convergence of (T% );c; to Ty with respect
to the FKuclidean topology for each modification 7: Y — X.

Definition 3.2. A b-class T € Div}(X) is nef if the component Ty is movable in the sense of
Definition 2.20 for each modification 7: Y — X.

A b-class T € Divl(X) is pseudoeffective if the component Ty is positive in the sense of
Definition 2.11 for each modification 7: Y — X.

Remark 3.3. There is a subtlety here: We can as 7: Y — X to run over either all modifications
or all proper bimeromorphic morphisms from Kéhler manifolds. The corresponding notions of
nef or pseudoeffective b-classes are identical thanks to Proposition 2.14 and Proposition 2.23.
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Note that nef b-classes and pseudoeffective b-classes are both closed conditions, namely they
are preserved under limits of nets, since the movable cone and the positive cone on a compact
Kahler manifold are both closed.

From the projective limit definition (3.1), there is a canonical identification between Div} (X)
and Div} (Y) for each proper bimeromorphic morphism m: ¥ — X between Kéhler manifolds.
We shall implicitly use this identification all the time.

All notions related to b-divisors defined in this paper are invariant under changing X to its
modifications. We shall explicitly check this whenever the statement is not obvious.

Furthermore, using this identification, we can make sense of Div} (X) for an arbitrary reduced
compact Kéhler space X: Simply take a projective resolution ¥ — X, and set Divﬁ(X ) =
Divy, (V).

Example 3.4. When p = 0, there is a canonical identification Div)(X) = R. An element
te Divg(X) is nef or pseudoeffective if and only if t > 0. Similarly, when p = n, there is also a
canonical identification Diviy(X) = R. An element t € Diviy(X) is nef or pseudoeffective if and
only if t > 0.

When p =1, Div}la(X) s just the set of b-divisors over X, as we studied in the previous paper.
An element in Divi(X) is nef (resp. pseudoeffective) in the sense of Definition 3.2 if and only if
it is a nef (resp. pseudoeffective) b-divisor in the sense of [ ]. See [Xia, Corollary 11.1.1]
for the details.

Definition 3.5. Given T, T’ € Divl (X), we write T > T’ if for each modification 7: ¥ — X,
we have Ty >y T4

Recall that >y is defined right after Definition 2.11.
Thanks to Proposition 2.14, it suffices to check this condition for a cofinal set of modifications.
Note that > defines a partial order on Divl (X).

Remark 3.6. In Definition 3.5 we could equivalent ask 7 to run over the set of proper bimero-
morphic morphisms 7: Y — X from Kéhler manifolds, as a consequence of Proposition 2.14.

Let us recall the following construction from | ; |:

Definition 3.7. Let T" be a closed positive (1, 1)-current on X, we define a nef b-divisor ID(7")
over X as follows:
(3.2) D(T)y = {Regn*T} € HY (Y, R),
for all modification 7: Y — X.
Here Reg is defined in (2.3).

Remark 3.8. From the obvious functoriality of Siu’s decomposition, for a proper bimeromorphic
morphism 7: Y — X from a Kéhler manifold Y, the component D(7T)y of D(T) is given by
exactly the same formula (3.2).

Note that D(T") depends linearly on T in the following sense: If 7" is another closed positive
(1,1)-current on X, and A > 0, then
(3.3) D(T+T) =D(T)+D(T"), DWAT)=AD(T).

Recall that a nef b-divisor D is big if its volume

volD := lim volDy
T Y —=X
is positive.
The main result in | | says

Theorem 3.9. Fiz a modified nef and big class o € HYY(X,R). The map D in Definition 3.7
induces a canonical bijection between

(1) the set of non-divisorial closed positive (1,1)-currents in o modulo Z-equivalence, and
(2) the set of nef and big b-divisors D over X with Dx = «.
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The correspondence preserves the volumes.
Moreover, given any nef and big b-divisor D over X, we can always find a non-divisorial
Z-good closed positive (1,1)-current T with D = D(T).

The relevant notions are recalled in Section 2.1. In general, we cannot take 7" as a Kéahler
current, however, we have the following useful observation: If D is a nef b-divisor, w is a Kéhler
form on X, then D 4+ D(w) can be represented as D(T") where T is an Z-good non-divisorial
Kihler current. It suffices to write D+ D(w) as (D +27!D(w)) +27'D(w) and apply Theorem 3.9
to the term in the parentheses.

Recall that a nef b-divisor D over X is Cartier if it admits a realization: A pair (7: Y — X, a)
consisting of a proper bimeromorphic morphism 7: Y — X from a Ké&hler manifold Y and a nef
class a € H4(Y,R), so that for each modification 7’: Y/ — X dominating , the value Dy~ is
the pull-back of o through the morphism Y/ — Y. We also say D is realized on Y by a.

Note that we can always take 7 to be a modification.

As a corollary, we have:

Corollary 3.10. For any nef b-divisor D over X, we can find a decreasing sequence (D?); of
nef Cartier b-divisors over X with limit D.

See | , Corollary 4.15].

Definition 3.11. Given a pseudoeffective class o € H'(X,R), we define a nef b-divisor D(«)
over X as follows:

D(a)y = (m"a),
where 7m: Y — X is a modification.

Recall that (e) refers to the movable intersection product as we recalled in Section 2.5. Namely,
D(«)y is the movable part of 7*« with respect to the Boucksom—Nakayama decomposition.

When « is big, D(«) = D(Tnin), where Tinin € o is a current with minimal singularities. When
« is nef, we have

(3.4) D(a)y = 7"«

for each modification 7: Y — X.
The operator is concave in the following sense:

Proposition 3.12. Let o, 8 € HYY(X,R) be pseudoeffective classes. Then
(3.5) D(a) + D(8) < D(a + B).
Equality holds when «, 8 are both nef.
Proof. In order to prove (3.5), it suffices to prove
D(a)x +D(B)x < D(a+P)x.

In other words,

>~ (v(a, D)+ v(8,D)){D} > 3" v(a+ B, D){D},

DCX DCX
which follows from the simple observation: For any prime divisor D on X, we have
v(a,D) +v(8,D) = v(a+ ,D).

When « and 3 are nef, the equality holds in (3.5) by our explicit description of the associated
b-divisors in (3.4). O
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3.2. The intersection theory. We begin with the intersection between a Cartier nef b-divisor
and a nef b-class.

Definition 3.13. Let D be a nef Cartier b-divisor over X and T € Div{(X) be a nef b-class.
Then we define the nef class DN T € DiV%H(X) as follows: Let (m: Y — X, ) be a realization
of D, then we define for each modification 7’: Y’ — X dominating 7 through g: Y/ —» Y,

(3.6) (DNT)y, = g*anTy, € APTLPTL(Y R).

Here as before, N on the right-hand side denotes the intersection product of cohomology. The
class defined in (3.6) is movable by Proposition 2.24. The relevant notations are summarized in
the following commutative diagram:

Yy’ 9 Y
X.

By the projection formula, these classes are compatible under pushforwards. To be more
precise, if 7”: Y"” — X is a modification dominating 7’ through h: Y” — Y”, as in the following
commutative diagram:

yr Lty Ay
(3.7) N lw, /
X,

then

hus ((g oh)*anN Tyu) =g*anTy.

Since the set of the 7’’s dominating 7 is cofinal in the directed set of modifications of X, the
above definition indeed yields a nef b-class D N T over X.

Remark 3.14. By exactly the same argument, if 7': Y’ — X is a proper bimeromorphic map
from a Kédhler manifold dominating 7 through g: Y’ — Y, then the value (D N T)y~ is given by
exactly the same formula (3.6).

Lemma 3.15. The product DNT in Definition 3.13 is independent of the choice of the realization
(m:Y = X,a) of D.

Proof. Let (m: Y — X, /) be another realization of D. We want to show that D N'T defined
with respect to the two realizations are the same. For this purpose, we may assume that 7’
dominates 7 through a morphism g: Y/ — Y and o' = g*a.

Consider a modification 7”: Y” — X dominating Y’ through a morphism h: Y — Y. Then
have a commutative diagram as (3.7). Our assertion now means

(h*o/) NTyr = ((g o h)*a) N Ty,

which is clear. O

As a consequence, we have:

Corollary 3.16. Let D be a nef Cartier b-divisor over X and T € Div{(X) be a nef b-class.
Let m:'Y — X be a proper bimeromorphic morphism from a Kdhler manifold Y. Then DNT in

Definition .19 is the same as DN'T when D and T are regarded as elements in Divi(Y) and
Divl (V).

We prove a few elementary properties of the intersection product. These properties will soon
be replaced by the more general versions.

Lemma 3.17. Let D, D' be Cartier nef b-divisors over X and T, T’ € Divi (X) be nef b-classes.

(1) Assume that D >/, then
DNT>D'NT.
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(2) Assume that T > T', then
DNT>DNT.

Proof. Thanks to Corollary 3.16, we may assume that D and I’ are both realized on X by nef
classes a, o’ € H'Y(X,R). Fix a modification 7: Y — X.
(1) We need to show that if « > o/, then

m™anNTy >y 7*a/ N Ty.
This follows from Proposition 2.24.
(2) We need to show that if Ty >y T, then
anNTy >y 7*aNTy.
This follows from Proposition 2.15. U

Lemma 3.18. Let D, be nef Cartier b-divisors over X, A > 0 and T,T" € Div}(X) be nef
b-classes. Then

(1) (D+D)NT=DNT+D'NT;

(2) DN(T+T)=DNT+DNT;

(3) AD)NT =X(DNT);

(4) DNAT) =A(DNT).

Proof. Thanks to Corollary 3.16, we may assume that D and D’ are both realized on X, then all
these assertions are obvious. O

Next we come to the general intersection theory between a nef b-divisor and a nef b-class.

Definition 3.19. Let D be a nef b-divisor over X and T € Div{(X) be a nef b-class. Then we
define the nef b-class DNT € Ding(X ) as follows: Take a decreasing sequence (D;); of nef
Cartier b-divisors over X converging to D whose existence is guaranteed by Corollary 3.10, then
let
(3.8) DNT:= lim D; NT.
71— 00

Thanks to Lemma 3.17, the sequence (D; N'T); is decreasing. Since we consider the projective
limit topology on the space of b-classes, the convergence in (3.8) means the convergence of the
components on each model. The existence of the limit in (3.8) then follows from Proposition 2.6.

Lemma 3.20. The intersection D N'T in Definition 3.19 is independent of the choice of the
sequence (ID;);.

In particular, when I is Cartier, the b-class D N T defined in Definition 3.19 coincides with
that in Definition 3.13.

Proof. We continue to use the notations in Definition 3.19.

We claim that for each nef Cartier b-divisor I/ over X with D’ > ID, we have
(3.9) lim D;NT <D NT.

1— 00

From this assertion, the lemma trivially follows.

In order to prove (3.9), it suffices to establish
(310) lim (Dz N T)X <x (D/ N T)X .

1—00

In fact, applying (3.10) to D, D/, D; and T regarded as b-classes over a modification of X, we
conclude the general statement (3.9).

Thanks to Proposition 2.14, in order to prove (3.10), we may further assume that D' is realized
on X by a nef class a € Hb (X, R). Then we are left with
(3.11) lim (DZ’QT)X <x aNnTx.

1—00
Fix a Kihler class f € H' (X, R). For each ¢ > 0, we can find ig > 0 so that when i > i,
D;x <a+eb.



18 MINGCHEN XIA

Fix an i > ig. Then

D; <D(a+ €B) = D(ar) + eD(B),
where the inequality follows from Lemma 3.21 and the equality follows from Proposition 3.12.
Therefore, by Lemma 3.17 and Lemma 3.18,

D;iNT)x <x (D()NT)x +e(DB)NT)x .
Letting ¢ — oo and then € — 0+, (3.11) follows. O

Lemma 3.21. Let w: Y — X be a proper bimeromorphic morphism from a Kdihler manifold Y .
Then for any modified nef class o € HY(Y,R), we have

a < 1 mea.

Proof. Without loss of generality, we may assume that « is big. Take a current 1" with minimal
singularities T' € . Then 7*m, T is a closed positive (1, 1)-current in 7*7.a whose regular part
with respect to Siu’s decomposition coincides with 7. Our assertion follows. O

Proposition 3.22. Let 7: Y — X be a modification. Let D be a nef b-divisor over X and
T € Div{(X) be a nef b-class. Then DN'T in Definition 3.13 remains invariant if we regard D
and T as elements in Divi(Y) and DivE(Y).

Proof. This is a simple consequence of the Cartier case proved in Corollary 3.16. O

Proposition 3.23. Let D, be nef b-divisors over X, X > 0 and T,T" € Div}(X) be nef
b-classes. Then

(1) ( D+D)NT=DNT+D'NT,;

(2) DN(T+T)=DNT+DNT;

(3) (AD)NT =X(DNT);

(4) DN (AT) =X (DNT).

Proof. These are straightforward consequences of the Cartier case proved in Lemma 3.18. [
If we have nef b-divisors Dy, ..., D, over X and a nef b-class T € Div{(X), then we can define
DiN---ND,NT:=D;N(DyN---ND,NT) € DiviT(X)
inductively.

Example 3.24. Let Dy, ..., D, be nef b-divisors over X. Consider 1 € Div)(X) with the
identification in Example 3.4 in mind. We have
Din---ND,N1=DiN---ND,.
To see this, by induction on p, we may assume that p = 1, then our assertion becomes
D;N1=Ds.

By approzimation, it suffices to prove this when D1 is Cartier. Furthermore, Corollary 3.16
allows us to reduce to the case where Dy is realized on X. Then our assertion is trivial.
When p = n, the product Dy N ---ND, recovers the intersection product

(Dq,...,Dy)
studied in [ | after taking the canonical identification Divi(X) = R in Ezample 3.4 into
account.

We prove a monotonicity result:

Proposition 3.25. Let D, be nef b-divisors over X and T, T’ € Divi(X) be nef b-classes.
(1) Assume that D > 1D, then
DNT>D'NT.

(2) Assume that T > T', then
DNT>DNT.
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Proof. (1) Take a nef Cartier b-divisor D” over X with D” > D. We need to show that
D'NT>D'NT.

This is already proved during the proof of Lemma 3.20.
(2) By definition, we may assume that ID is Cartier. Then the assertion follows from Lemma 3.17.
O

Theorem 3.26. Let (Dg)jej be decreasing nets of nef b-divisors over X with limits D; for each
i=1,...,p. Let (T?)ec; be a decreasing net of nef b-classes in Divi(X) with limit T. Then

%iEmJDJlﬁ~~-ﬂD§ﬂ’]I‘j:]D>1ﬁ~~ﬂ]D)pﬂ’]I‘.

Proof. By induction on p > 1 and using Proposition 3.25, it suffices to prove our assertion in
the case p = 1. In this case, we omit the subindex i and we are left with

(3.12) limD NT =DNT.
jeJ
We first observe that the limit on the left-hand side of (3.12) exists, as a consequence of
Proposition 3.25. Furthermore, the > direction in (3.12) holds.
Step 1. We first assume that T = T for all j € J. In this case, take a decreasing sequence
(D'")j~0 of Cartier nef b-divisors with limit . Fix k > 0, we need to show that

(3.13) lmD/ NT <D*NT.
Jj€J

For this purpose, we may further assume that D'* is realized on X by a nef class a € H''(X, R).
Fix a Kéhler class § on X, then for each € > 0, we can find jy € J so that when j > jg, we have

Dg( < a+eb.
Therefore, thanks to Lemma 3.21 and Proposition 3.12,
D’ <D* +eD(B), > jo
Using Proposition 3.25 and Proposition 3.23, we find
DNT<D*NT+eDB)NT, ;> o

Taking limit with respect to j and then letting € — 0+, we derive (3.13).
Step 2. We assume that 7 =D for all j € J. Then we need to show that

(3.14) IimDNT <DNT.
JjeJ

In this case, take a decreasing sequence (D)~ of nef Cartier b-divisors with limit ID. Suppose
that we can prove (3.14) with D' in place of D, then due to Proposition 3.25 we have

ImDN T <limD*NT =D*NT
JjeJ jeJ

for each k > 0. Letting k — oo, we conclude (3.14).

Therefore, we may assume that I is Cartier when proving (3.14). Replacing X by a modifica-
tion, we may further assume that I is realized on X by a nef class o € H'(X,R). Then (3.14)
means the following: Let 7: Y — X be a modification, then

%iemj ™ a N Tgf <y m*anTy,

which is obvious.
Step 3. We prove the general case.
For each fixed jo € J, by Step 1 and Proposition 3.25, we have

DNT° =limD’ NT% > lim DY NTV.
jeJ jedJ

Taking the limit with respect to jg, we conclude (3.12) using Step 2.
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We summarize the properties of our intersection product. These properties generalize the
corresponding statements for movable intersection product as in Proposition 2.26. They also
generalize the corresponding properties when p = n proved in | ].

Proposition 3.27. Let Dy,...,D,, D], D" be nef b-divisors over X, T,T" € Div{(X) be nef
b-classes, o € H'Y (X, R) be a nef class, and X > 0. We have the following properties:

(1) The product is symmetric: For each permutation o of {1,...,p}, we have
Dyn---NDpNT =DggyN---NDg) NT.
(2) The product is additive in each variable:
D +D)NDeN---ND,NT =Dy NDeN---ND,NT+D;NDyN---ND,NT,
DiN---ND,N(T+T)=DyN---ND,NT+DyN---ND,NT".
(8) The product is homogeneous in each variable:
(ADy)NDeN---ND,NT =A(DNDeN---ND,NT),
Din---ND,NAT) =ADyN---ND,NT).
(4) The product is increasing in each variable: If we assume Dy > D), we have
DiNDyN---ND,NT>D)NDyN---ND,NT.
Similarly, if we assume T > T, then
DiN---ND,NT>DyN---ND,NT.
(5) We have
(Dm---ml))pml))(a))x = (Dm---mD)p)Xma.

Proof. (1) We can easily reduce to the case p = 2, and then we need to show
DiNDoNT =Dy "Dy NT.

By approximation using Theorem 3.26, we can easily reduce to the case where Dy and Dy are
both Cartier. Thanks to Corollary 3.16, we may further assume that D; and Dy are realized on
X by nef classes a1, as € Hb1(X, R). In this case our assertion becomes the following: For any
modification 7: Y — X, we have

o N (7T*Ck2 N Ty) =7 s N (ﬂ'*Oq N Ty) ,

which is obvious.
(2) (3) These are consequences of Proposition 3.23.
(4) This is a consequence of Proposition 3.25.
(5) This follows immediately from the definition Definition 3.13. O

Example 3.28. Let aq,...,a, € HYY(X,R) be nef classes. Then for any modification 7: Y —
X, we have

(D(al) N---N D(ap))y =7mrar N N1 .

This is an immediate consequence of Proposition 3.27(5). We shall generalize this statement in
Corollary 3.30.

The intersection theory of b-divisors is closely related to the non-pluripolar product.

Theorem 3.29. Let T1,...,T, be Z-good closed positive (1,1)-currents with positive volume.
Then

(3.15) (D(r)n--n D(Tp))y = (T Ty A+ AT T}

for all modifications m: Y — X.
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Proof. First observe that the right-hand side of (3.15) does define a nef b-class, thanks to
Proposition 2.19 and Proposition 2.12. Since the assumptions of the theorem remain valid after
replacing the T;’s by 7*T;’s as well, it then suffices to prove

(3.16) (D(71) ﬂ--~ﬂID>(Tp))X ={TyA---NT,}

In order to prove (3.16), we can easily reduce to the case where the 7;’s are Kéhler currents:
Take a Kahler form w and replace T; by T; + ew for a small enough € > 0. If we manage to prove

(D(ry —I—Gw)ﬁ---ﬂ]D)(Tp+ew))X = {(Ty+ew) A A(Ty+ew)},

letting € — 0+, (3.16) follows, since D and the intersection product are both linear, see (3.3)
and Proposition 3.27. '

Now assume that the T}’s are Kéhler currents. Take quasi-equisingular approximations (77) §>0
of T; for each 7 = 1,...,p. Suppose that we can prove

(D(T{)m--.mD(Tg))X:{T{A---ATg}, j>0.

Thanks to | , Proposition 4.9], for each ¢ = 1,...,p, the sequence (D(77)); is decreasing
with limit ID(7;). Letting j — oo and applying Theorem 2.18 and Theorem 3.26, we conclude
(3.16).

So we may assume that the T;’s have analytic singularities. We may replace X by a modification
and assume that T7,...,T}, in fact have log singularities. But then since both sides of (3.15)
remain unchanged if we replace T; by Reg T;, it follows that we may assume that T; has bounded
potential for each ¢ = 1,...,p. In this case, {T;} is nef and D(7;) = D({T;}) fori =1,...,p. In
particular, by Example 3.28,

(D) n---n ]D(Tp))X ={Ty}n---n{T,}.
By Bedford-Taylor theory, the right-hand side of (3.16) is the same class, and (3.16) follows. O

Corollary 3.30. Letaq,...,qp € HYL(X, R) be pseudoeffective classes, then for any modification
m:Y — X, we have

(D(ar) N0 ]D)(ozp))y = (T ay A ATay).

In other words, the intersection theory of nef b-divisors generalizes the movable intersection
theory, as promised in the introduction.

Proof. We may assume that ¥ = X.

Fix a Kéhler class § on X and replace each a; by «; + €3, we may assume that each «; is big.
This is allowed thanks to Proposition 2.26(6) and Proposition 3.27.

Then it suffices to apply Theorem 3.29 to the currents 7; € a; with minimal singularities. U

As an application, we prove the following fundamental result regarding the movable intersec-
tion.

Proposition 3.31. Let m: Y — X be a proper bimeromorphic morphism from a Kdhler manifold
Y. Let aq,...,0p € HYY(Y,R) be pseudoeffective classes. Then

(3.17) Te{ar Ao ANay) <x (Teoq A=+ ATeoy).

Proof. Fix a Kahler class $ on Y and replacing «; by a; + € for some small enough € > 0, we
may assume that the a;’s are big. This is allowed thanks to Proposition 2.26(6).
By [ , Lemma 3.12], we have

D(meay) > D(ey), i=1,...,p.
Now it follows from Proposition 3.27 that
D(maq) M- ND(meap) > D(ag) N ND(ay).
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In particular,

(D(mear) N+ D(ﬁ*ap))x >x (D(ar) N+ ]D)(ap)>X.
Using Corollary 3.30, we can rewrite this as (3.17). (]
Theorem 3.32. Let Dq,...,ID, be nef b-divisors over X. Then

(3.18) (Din--n D,,)X = lim Dy A ADpy ),

where m: Y — X runs over all modifications of X.

We first observe that the right-hand side of (3.18) is decreasing with respect to <x thanks to
Proposition 3.31, and hence the limit exists by Proposition 2.6.

The striking point is that the left-hand side of (3.18) is a linear intersection product, while
each term of the right-hand side is non-linear!

Proof. Step 1. We first prove the <x inequality.
For this purpose, it suffices to prove the following;:

(Dlﬂ"'mDp)X <x <D17X/\~-'/\Dp,x>.

After adding a small multiple of D(w) to each I;, where w is a Kéhler form on X, we may
assume that the D;’s are big and D; = D(T;) for some Z-good non-divisorial Kéhler currents T;
for each i = 1,...,p. Then due to Theorem 3.29, it suffices to show that

{Tl VANEERIVAN Tp} <x {Tl,min ARERRA Tp,min} )

where T} min € ID; x is a current with minimal singularities. Then our assertion follows from the
monotonicity theorem Theorem 2.17.

Step 2. We reduce (3.18) to the case of p = n and the D;’s are big and D; = ID(7;) for some
non-divisorial Z-good Kéhler current 7; for each i =1,...,p.

Thanks to Lemma 2.16 and Step 1, we may assume p = n. If suffices to handle the case where
the D;’s are big as well. In fact, take a Kéahler form w on X. Suppose that for ¢ > 0 we have
established

((]D)l +eD(w)) N -0 (D + eD(w))) > lim ((Dry +em™{w}) A A (Dpy +en*{w})),
X T Y =X
then from the monotonicity Proposition 2.26(4), we have

((]D1 + e]D)(w)) N---N (]D)n + eD(w)))X > 7r:131/12)((@)1,3/ A ADpy).

Letting € — 0+, our assertion (3.18) follows.
Step 3. We need to show that

(3.19) /XTl Ao ATy > ml)i/H_1>X<]D)(T1)y A AD(To)y ).

When the T;’s have analytic singularities, we may replace X by a modification and reduce to
the case where the T;’s have log singularities. Then replacing 7T; by RegT;, we may assume that
the T;’s have bounded local potentials. Then the {T;}’s are indeed nef and

/T1A--~/\Tn:{T1}ﬂ~--ﬂ{Tn}:<{T1}/\---/\{Tn}>.
X

In general, take quasi-equisingular approximations (TZ] )j>o0 of each T;. Then we know that for
each j > 0,

T A ATzt (D A AB(Ty) >t (BT Ao AD(E)y )

Letting j — oo and applying Theorem 2.18, we conclude (3.19). O
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4. RESTRICTED VOLUME

Let X be a connected compact Kéhler manifold of dimension n. In this section, p will denote
a non-negative integer.

4.1. The trace operator. We first recall the notion of trace operators introduced in | ].
For the details, see [Xia, Chapter 8§].
Assume that D is a prime divisor on X.

Definition 4.1. Let T be a closed positive (1,1)-current on X with v(T, D) = 0. We define
Trp T as a closed positive (1,1)-current on D, the normalization of D, modulo P-equivalence.
The definition goes as follows:

(1) When T has analytic singularities, we can simply define Trp T as T'|p;
(2) in general, take a quasi-equisingular approximation (7}); of T' and define Trp T as an
arbitrary ds-limit of (Tj|p);-

When T is a Kahler current on X with v(7, D) = 0, we can take a representative Trp T
as a Kéhler current in {T'}|5. When D is not smooth, this means that we can find a smooth
closed real (1,1)-form 6 € {T'} so that Trp T' can be represented by 6|7 4 ddyp for some 6|5-psh
function ¢, and the current Trp T dominates a Kihler form on D. We always choose such a
representative.

In this case, we define the restricted volume of T on X as

volx|p(T) = vol (Trp T).

Note that volx|p(T) is independent of the choice of Trp T, since any two choices are P-equivalent.
More generally, if T is a closed positive (1, 1)-current on X with v(T, D) = 0, we take a Kéhler
form w on X, then we can define

(4.1) volx|p(T) = 6l_i>1(1)1+ volx|p(T + ew)

This definition agrees with the previous definition when 7" is a Kéhler current. When voly p(T") >
0, we can always find a representative of Trp T in {T'}|7, and the restricted volume volyp(7)

is just the volume of such a representative. See [Xia, Example 8.1.6] for the details.
When v(T, D) > 0, we define

VlelD(T) =0.
Next we recall that there is a notion of trace operators of nef b-divisors defined in | ].
Given a nef b-divisor D over X, a prime divisor D on X, then there is a canonical way to define

a nef b-divisor Trp D over D. Instead of recalling the lengthy definition, we use the following
assertion proved in [ ] as the definition:

Definition 4.2. Let D be a nef b-divisor over X. We define Trp D as a nef b-divisor over D as
follows:

(1) When D = D(T) for a closed positive Kéhler current 7" on X, then we let
TrpD :=D(Trp T).
(2) In general, we define
TrpD = E£%1+ Trp (]D + 6]D>(w))
for any Kéhler form w on X.

Note that in (2) D+ eD(w) for any € > 0 satisfies the condition in (1), as a consequence of
Theorem 3.9. B N

A priori, Trp T is a current on D, so Trp DD is just a nef b-divisor over D. But by definition,
nef b-divisors over D are the same as those over ]_~), so we can also regard Trp D as a nef b-divisor
over D.
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Whenever Trp T' has a representative in {T'}| 5 (in particular when volx|p(T") > 0), we always
have
(42) TI'D]D) = D(TI‘D T),
where Trp T is understood as a representative in {T'}|5. This is proved in | , Theorem 7.5].

Proposition 4.3. Let m: Y — X be a modification with D' as the strict transform of D, then
for any nef b-divisor D over X, we have

(4.3) Trp D = Trp D.

Here on the right-hand side, we regard ID as a nef b-divisor over Y and Trps D is a nef b-divisor
over D', which can be canonically identified with a nef b-divisor over D.

Proof. Take a Kéahler form w on X. It suffice to prove (4.3) with D + eD(w) in place of D for any

€ > 0. We may then assume that there is a non-divisorial Z-good Kahler current 7" on X so that

D =D(T). Then Trp T can be represented by a current in {T'}|5. We fix such a representative.
Consider the following commutative diagram

D’ D Y
[
D D X.

Observe that v(7*T, D’') = 0 by Zariski’s main theorem. From the basic properties of the trace
operator [Xia, Lemma 8.2.1], we have

ﬁ* TI‘DT ~p TI“D/ m*T.

In particular, Trps 7*T can be represented by a current in 7*{T'}| i We fix such a representative.
Taking the induced b-divisors, we get

D(p*TrpT) =D (Trp 7*T).
This is exactly (4.3). O
We need a few basic properties of the trace operator.

Proposition 4.4. Let D, I be nef b-divisors over X, and X\ > 0. Then we have the following
properties:
(1) When D <D’ and D'y = Dx, we have

TrpD < Trp D).
(2) The trace operator is additive:
Trp (D+ D) =TrpD+ Trp D'
(8) The trace operator is homogeneous:
Trp (AD) = A Trp D.

Proof. These properties all follow from the corresponding properties of the trace operator of
currents. See [Xia, Proposition 8.2.1].

We only give a detailed proof to (1), and the other two assertions are similar. Take a Kéhler
form w on X. It suffices to show that for each € > 0, we have

Trp(D + eD(w)) < Trp(D' + eD(w)).
Therefore, thanks to Theorem 3.9, we may assume that
D=D(T), D' =D(T")

for Z-good non-divisorial Kahler currents 7' and 7”7 on X. Observe that T' <7 T" as a consequence
of | , Corollary 4.1.4]. But then, thanks to [Xia, Proposition 8.2.1], we have

TrpT <p Trp T
Then by | , Corollary 4.1.4] again, our assertion follows. O
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Theorem 4.5. Let o € HYY(X R) be a big class. Assume that (T;)ier is a net of closed positive

(1,1)-currents in «, decreasing with respect to the I-partial order. Assume that T; d—s> T for
some closed positive (1,1)-current T € « satisfying v(T,a) = 0. Then

Trp T, %5 Trp T

Furthermore,
(4.4) limvolyp(T;) = volx|p(T).

1€
Proof. The former statement is proved in [Xia, Proposition 8.2.2]. If volx|p(T') > 0, then Trp T;
and Trp T can both be represented by currents in «| 7 with positive masses. In this case, (4.4)
follows from the dg-continuity of the volume. See [Xia, Theorem 6.2.5].

If volx|p(T) = 0, fix a Kéhler form w on X. Fix € > 0, we can find § > 0 so that
volx|p(T + dw) < e.
In this case, applying (4.4) to the net (T; + dw);, in view of [Xia, Corollary 6.2.8] we find that
%VOIX‘D(TZ‘) < liigVOIXID(E + 0w) = volx|p(T + dw) < e.

Since € > 0 is arbitrary, we conclude that
1. 1 T —_— .
iIEHIl 4Y X\D( z) 0
O

Corollary 4.6. Let (D%);c; be a decreasing net of nef b-divisors over X with D% independent
of the choice of i € I. Then
(4.5) lim Trp D' = Trp D.
1—00
Note that thanks to Proposition 4.4(1), (Trp D?); is decreasing, and hence the limit in (4.5)
exists.

Proof. Fix a Kahler form w on X. Thanks to the additivity of the trace operator proved in
Proposition 4.4, it suffices to prove (4.5) with D + D(w) and D + D(w) in place of D* and D. So
by Theorem 3.9, we may assume that there are non-divisorial Z-good Kéhler currents T;,T € Dx
with

D; =D(T3), D=D(T)

for all 2 € 1.

It follows from | , Corollary 4.1.4] and the Z-goodness of the T;’s and T that (7;); is
decreasing with respect to the P-partial order and T' <p T;.

Since T has positive mass, it follows from [Xia, Corollary 6.2.6] that (7;); admits a dg-limit
S in {T}, then D(S) = D(T'). It follows from | , Corollary 4.1.4] that S ~p T. Hence
T; d—s> T. Our assertion then follows from Theorem 4.5. O

Let us make sense of the trace operator in some simple cases.

Example 4.7. Let o € HY1(X,R) be a nef class. Then
Trp D(a) =D («a|p) -
To see this, we may assume that o is a Kdhler class. Take a Kdhler form w € «, then by
definition,
Trp D(a) = D(wlp) = D (alp).
Example 4.8. Let a € HYY(X,R) be a big class. Assume that D is not contained in the
non-Kdhler locus of a. Then

(4.6) Trp D(a) = D (Trp Tinin) ,

where Thin € a is a current with minimal singularities.
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It follows from [Xia, Proposition 8.3.1] that Trp Tyin is represented by Tin|p. Therefore, we
can apply (4.2) to conclude (4.6).
Proposition 4.9. Let o, 8 € HYY(X,R) be modified nef classes. Then
(4.7) Trp D(a) + Trp D(B) < Trp D(a + ).
Proof. Since a + (8 is also modified nef, we have

D(a)x +D(B)x =a+B=D(a+f)x
Thanks to Proposition 4.4, it suffices to show that
D(e) +D(8) < D(a + B),

which is just Proposition 3.12. O

Next recall the notion of restricted volumes of a cohomology class studied in | ; ].
Fix a pseudoeffective class o € HV1(X,R). If a is big and D is not contained in the non-Kéhler
locus of X, then we set

volx|p(a) = sup { / T|7 " : T € o is a Kéhler current with analytic singularities,
v(T,D)=0}.

Here [, T[5! could be understood as the non-pluripolar product [T ]%_1 on the normalization

D of D.
In general, if « is pseudoeffective and D is not contained in the non-nef locus of «a, we take a
Kahler form w on X and set

volx|p(a) = E£I51+ volx|p(a + e{w}).
If D is contained in the non-nef locus of «, we set
volx|p(a) = 0.
The restricted volume can be expressed as an intersection number of b-divisors.

Theorem 4.10. Let D be a prime divisor of X. Given a big class o € H"'(X,R), then

volx|p(a) = (TrD D(a)) i vfe, D) =0;
0, otherwise.

The notation (Trp D(a))" ! is short for Trp D(a) N --- N Trp D(a), where Trp D(«) appears
n — 1 times.

Restricted volumes to higher codimensional subspaces admit similar expressions. Since we are
not in need of them in this paper, we omit the details.

Proof. We may assume that v(a, D) = 0 since there is nothing to prove otherwise. Furthermore,
we may replace a by (o) and assume that « is modified nef.

Step 1. We first assume that D is not contained in the non-Ké&hler locus of c.

We aim to prove that

(4.8) volx|p(a) = (Trp D(a))n_l.

Let m: Y — X be a modification so that the strict transform D’ of D is smooth. Then by
[ , Lemma 4.2, Lemma 4.3],

volx|p(a) = voly p/ (7" a)
and D’ is not in the non-Kaihler locus of 7*«. On the other hand,

Trp D(a) = Trp D(7" )
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as a consequence of Example 4.8 and Proposition 4.3. So

(TrD ]D)(a))n_l = (TI‘D/ D(ﬂ'*a))n

Therefore, we may further assume that D is smooth. In this case our assertion follows from [Xia,
Proposition 8.3.1].
Step 2. Next we assume that v(a, D) = 0, but D is contained in the non-Kéhler locus of a.
Fix a Kéhler form w, then for any ¢ > 0, we have

Trp D(a + e{w}) > Trp D(«)
by Proposition 4.9. Therefore, our Step 1 and Proposition 3.27(4) imply that
n—1
(TrD D(a + e{w})) > (TrD D(a))

Due to | , Theorem 1.1], volx|p(a) = 0, so our assertion follows. O

-1

n—1

volx|p(a) = Gli%1+ volx|p(a+ e{w}) = 6£%1+

4.2. The restricted volume. Let D be a prime divisor over X. Motivated by Theorem 4.10,
we introduce the following definition:

Definition 4.11. Let Dy,...,D, be nef b-divisors over X. Let 7: Y — X be a modification so
that D is a prime divisor on Y. Then we define the restricted volume of Dy, ...,D, to D as

volx|p (D1,....Dp) == (Trp Dy N -+ N TrpDp)y, € HPFPHH(XR).
The notation
(4.9) (TI"D DiNn---NTrp ]DP)Y

requires some explanation. The traces Trp D;’s are nef b-divisors over D. For each resolution
W — D, we can then regard Trp ID; as a nef b-divisor over W. The intersection TrpD; N ---N
Trp D, then makes sense as a b-class in Divh (W). The pushforward of

(TI‘D DiNn---NTrp DP)W

with respect to W — D < Y is then a well-defined positive class in HP*1P+1(Y R), and it is
independent of the choice of W. We denote this class by (4.9).
When p = 0, volx|p(—) is {D} if D is a prime divisor on X and 0 if D is exceptional over X.

Lemma 4.12. The quantity volx|p (D1,...,Dy) defined in Definition 4.11 is independent of
the choice of Y.

Proof. Take a different modification II: Z — X so that D is a prime divisor on Z. We want to
show that the quantity voly|p (Dy,...,D,) defined with respect to 7 and II are the same. For
this purpose, we may assume that II dominates m through a morphism p: Z — Y. Let D’ be
the strict transform of D on Z. Then we need to show that

T (TrpDy N ---NTrpDy)y = IL (Trp Dy N - N Trp D),
For this purpose, it suffices to show that
(TrpDiN---NTrpDy)y =ps (Trpy DN ---NTrp D), .

Our assertion then follows from Proposition 4.3 and Proposition 3.22. U

We first observe how this quantity behaves with respect to modifications:
Proposition 4.13. Let m: Y — X be a modification. Then

volx|p (D1,...,Dp) = mevolyp (D1, ..., D).

Here on the right-hand side, we regard the D;’s are nef b-divisors over Y.

In particular, we can regard

(voly|p (D1, D))

as an element in Divf)Jrl(X). We denote it by volp (D1,...,Dy).

T Y =X
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Proof. Take a modification II: Z — Y so that D is a prime divisor on Z. Then thanks to
Lemma 4.12 we only need to show that

. (TI“D]D)l M- ﬂTI“D]D)p)Z = (WOH)* (TI‘D]D)l ﬂ-'-ﬂTI‘D]D)p)Z,
which is obvious. U

Proposition 4.14. Let Dy, ..., D, be nef b-divisors over X. Consider a nef class o € HV1(X, R).
Then

VOIX‘D(Dl, e ,]D)p,]D)(a)) = volx|p (D1,...,Dp) Na.

Proof. By Proposition 4.13, we may replace X by a modification and assume that D is a smooth
prime divisor on X. Then by projection formula and Example 4.7 our assertion means

(TI“D]D)l n--- ﬂTI“DDpﬂD(Oé|D))X = (TI"D]D)l N--- ﬁTl"D]D)p)X ﬁa]D,
which follows readily from Proposition 3.27(5). O

The basic properties of the trace operator imply the following properties of the restricted
volume:

Proposition 4.15. Let Dy,...,D,, D) be nef b-divisors over X, and D be a prime divisor over
X. Consider A > 0. Then we have the following properties:

(1) The restricted volume is symmetric: Let o be a permutation of {1,...,p}, then

vol (Dg(l), - ,]D)C,(p)) = voljp (D1, ..., D).
(2) The restricted volume is additive in each variable:
volyp (D + D, Dy, ..., D) = volyp (Dy, Dy, ..., D) + volp (D, D, ..., D).
(8) The restricted volume is homogeneous in each variable:
vol p (AD1, Dg, ..., Dy) = Avoljp (Dq,...,Dp).

Proof. By Proposition 4.13, we may replace X by a modification and assume that D is a smooth
prime divisor on X.

(1) This follows immediately from Proposition 3.27(1).

(2) This follows immediately from Proposition 3.27(2) and Proposition 4.4(2).

(3) This follows immediately from Proposition 3.27(3) and Proposition 4.4(3). O

Proposition 4.16. Let (Dg)jeJ be decreasing nets of nef b-divisors over X (i = 1,...,p).
Assume that for each i =1,... p, the class ]D)g?X does not depend on the choice of j € J. Denote
the limit of (Dg)J by D;. Consider a prime divisor D over X. Then

- i N _
lim vol} (Dl,...,D;) = volp (D1, ..., D).

Proof. By Proposition 4.13, we may replace X by a modification and assume that D is a smooth
prime divisor on X. It suffices to show that

Ejél}VlelD (D{, e ,]D);) = V01X|D (]D)l, N ,Dp) .
It follows from Corollary 4.6 and Proposition 4.4(1) that for each i = 1,...,p, the net
(Trp ]D)g ); is decreasing with limit Trp ID;. Our assertion then follows from Theorem 3.26. O

The restricted volume is easy to understood in some special cases.

Example 4.17. When D; = D(«;) for some nef classes a; € HYY(X,R) for alli=1,...,p, we
have

0, if D is exceptional;
VolXD(]D)l,...,Dp):{ N

a;N---NayN{D}, otherwise.
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To see this, let m: Y — X be a modification so that D is a smooth prime divisor on Y. Then by
definition and Fxample 4.7,

volx|p (D1,...,Dp) =me (Trp Dy N -+~ N Trp Dy)y,
=r.(D(x"n|p) N+ N D(w*apb))Y
=7, (tFoq N--- N ey, N{D})
=a1 N---Nay Nm{D}.
Our assertion follows.

Example 4.18. Assume that D is a prime divisor on X. Let a € HYY(X,R) be a big class.
Then

volx|p (D(a)"_l) = volx|p (<a>>
This is what we proved in Theorem J.10.

Motivated by this example, we introduce the following definition:

Definition 4.19. Assume that D is a prime divisor on X. Let a1,...,a, € HY(X,R) be
pseudoeffective classes with v(a;, D) =0 for all i = 1,...,p. When the «;’s are all big, we define

Vle|D(O£1, ceey ap) = VOlX|D <]D)(041)’ .. ,D(ap)> c HP+I,P+1(X’ R)
In general we set
volx|p(ai,...,ap) = 61_i>%1+V01X|D (o1 +€B,...,0p + €B)

for any Kéhler class 8 on X. The limit exists and is independent of the choice of 5 thanks to
Proposition 4.9 and Proposition 3.27(4).
If v(a;, D) > 0 for any 4, we just set

volx|p(ai,...,ap) = 0.

Example 4.20. Assume that D is a prime divisor on X. Let T be a closed positive (1,1)-current
on X with v(T,D) =0. Then

(4.10) volyjp (D(T)"~1) = volx|p(T).

We first assume that T is a Kdhler current. Take a representative TrpT € {T'}|p. Then our
assertion amounts to

D(Trp T)" ! = vol(Trp T).

This is part of Theorem 3.9.
Now let us come back to the general case. Take a Kdhler form w on X. Then we know that

n—1
Thanks to Proposition 4.1/ and (4.1), when € — 0+, the limit gives (4.10).

Motivated by the above example, we introduce the following;:

Definition 4.21. Suppose that T1,...,T), are closed positive (1,1)-currents on X, D is a prime
divisor on X. Assume that v(7;, D) = 0 for all 4, then we define

voly(p(Th, . .., Ty) = volX|D(]D(T1), . ,D(Tp)) € PPt (X R).
If v(T;, D) > 0 for some i, we simply set
V01X|D(T1, ce ,Tp) = 0.

We need the following Brunn—-Minkowski inequality for the sequel.
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Proposition 4.22. Assume that n > 1. Let Dy,...,D,_1 be nef b-divisors over X and D is a
prime divisor on X. Then

volx|p (Dy,...,D H vol Trp ;) 1/(” DN

Proof. This follows from the Brunn—Minkowski inequality proved in [ , Proposition 5.7]. O

9. QUALHATH@)MONOTONKHTYTHEOREM

Let X be a connected compact Kédhler manifold of dimension n. Fix a non-negative integer p.
We shall derive a qualitative monotonicity theorem using the theory of b-divisors.

Lemma 5.1. Let T1,...,T), be closed positive (1,1)-currents with analytic singularities on X.
Suppose that T, T' are Z-good closed positive (1,1)-currents on X with positive volumes in the
same cohomology class. Assume that T <T'. Then

(VAN ANT,AT'} = {Ty N NT, AT}

>x > (v(T,D) - w(T", D)) {/p\ (ﬂ—u(n,p)[p])|5}.

DCX =1

(5.1)

Here D runs over the set of prime divisors on X, and D — D is the normalization of D.

_ Note that the sum is a countable sum. We have omitted the obvious pushforward maps from
D to X.

Proof. Step 1. We first assume that 11, ...,T,, T, T" all have log singularities. Then we may

replace the T;’s by their non-divisorial parts, and hence reduce to the case where 17,...,T), all
have bounded local potentials. A further regularization then allows us to reduce to the case
where T1,...,T), are all Kéhler forms, say wi,...,wp. Then our assertion (5.1) means

{wiA--Awp, ARegT'} — {w1 A+ Aw, ARegT'}

>x > (V(T,D) = (T, D)) {wrlp A+ Awplp}.
DCX

This is obvious. We even have equality in this case.

Step 2. We assume that T and 7" both have analytic singularities. Replacing T; by Reg T;,
we may assume that each 7T; is non-divisorial.

Let 7: Y — X be a modification which resolves the singularities of T4, ..., T, and T, T'. Then
by Step 1 and Proposition 2.12, we have

{7y N AT Ty ATy = {m* Ty A - AT T, A*T'}
>y 3 (WT.B) - o(T, ) {/\ (w*n—um,E)[E])\E}

ECY 1=
>y > ( (T,D) — v(T, D)) (7*T3) \5/}

DCX

> (V(T, D) — V(T’,D))j*

DCX

,_/H I
->’U

@
I
—

—N—
>
h~h
*
~—
S
X
N—
——

Il
—
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Here D’ denotes the strict transform of D on Y. The notations are summarized in the following
commutative diagram:

D’ Dy
J{ﬁ lp lﬂ'
D D' X

Taking pushforward and applying Proposition 2.19, we find

{TVA- ANT,AT'y—{TAN---NT, AT}

> Y (V(T, D) — (T, D))mi* { /P\ P (Tz‘\ﬁ) }
=1

DCX

-y (,/(T, D) — (T, D))E*ﬁ* {/p\ﬁ* (Ti‘5>}
DCX =1

= > (T, D) - w(T", D)) {/p\ (Tﬁ)} '
DCX i=1

The desired inequality (5.1) follows.
Step 3. We handle the general case.
Replacing T and T” by

T-> v(T',D)D], T - v(T' D)D),
D D

we may first assume that 7" is non-divisorial. We need to show that

(5.2) {TVA - ATy AT} = {TiA--- ATy AT >x S y(T,D){/P\ (E—V(T%,D)[DD’E}‘
DCX =1

Take a Kéhler form w on X. Replacing T and 7" by T + w and 7" + w, we may assume that
both are Kéhler currents. Take quasi-equisingular approximations (S )k, (S},) of T and T” so
that S, < S;. It follows from Step 2 that for each k > 0,

(5.3)

(TiA - ATy ASY = {Ti A ATy A S} 2x S V(SkaD){/p\ (Ti_V(Ti’D)[D])‘ﬁ}'
DCX =1

Note that in all expressions like )y above, we only need to consider the countable set of
prime divisors D with v(T, D) > 0.
Next, for each k > 0, we have

> v(Sk. D) {7\ (7: - V(%D)[D])\B} <x {Ti A AT, A S}

DCX i=1

by Theorem 2.17. Therefore, the monotone convergence theorem Proposition 2.9 is applicable.
Letting £ — oo in (5.3) and applying Theorem 2.18, we conclude the desired inequality (5.2). O

Now using the language of b-divisors, we derive our main theorem:
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Theorem 5.2. Let Dy, ..., Dy, be nef b-divisors over X, and T, T" be closed positive (1,1)-currents
on X in the same cohomology class such that T <7 T'. Then

(Dlm-.-mﬂ)me(T’))X - (Dm~--m]D>,,mD(T))X
(5.4) >x _lim 3 (v(T, D) = (1", D)) voly|p (Dy,..., D).

T Y =X DCY

Observe that the right-hand side of (5.4) is an increasing net and hence the limit exists by
Corollary 2.7.
The right-hand side of (5.4) can be written more elegantly as

(1/ ) —v(T' D))VOIX‘D(]D)l,...,Dp),
D/X

where the sum is taken over all divisors over X modulo equivalence.

Proof. From the bimeromorphic invariance of our assumptions, it suffices to prove the following:
/
(]D)lm--ﬂ]D)me(T))X - (Dlm---mDPmD(T))X

>x > (W(T,D) = w(T', D)) (Trp Dy N -+ N Trp D)
DCX

Fix a Kéahler form w on X and replace T and 7" by T + w and T” + w, we may assume that both
are Kéahler currents.
Take a closed smooth real (1,1)-form § € {T'} and write

T=0+dd%, T =60+dd°y.

We may then replace ¢ and ¢’ by Pyl¢|z and Py[¢']7 respectively and assume that both 7" and
T are Z-good and T' < T".
Replacing T and T” by

T-> v(T',D)D], T -> v(T', D)D),
D

D

we may further assume that 7" is non-divisorial and hence it remains to prove

(Dm.--mmeD(T’))X— (Dm---ﬂDpﬂD(T))X

5.5
(5:5) >x Y v(T,D)(TrpDyN---NTrpDy)

DCX

We first prove (5.5) when I; = D(7;) for some non-divisorial Z-good Kéhler current T; for all
i=1,...,p. In this case, thanks to Theorem 3.29, (5.5) reduces to

{TyN- AT ATy —{TA A ATy AT} 2x > (T, D){TrpTy A+ ATrp Ty}
DCX

Here as usual, we omitted the obvious pushforward from D to X.
Taking quasi-equisingular approximations (17);s¢ of T; for each i = 1,...,p, we can then
apply Lemma 5.1 to conclude that for each j > 0,

{Tin-aiar} = {r{ne AT AT > S (T, D) {Tep T A ATep T
DCX

Letting j — 0o, we conclude using Theorem 3.26 and Proposition 2.8.



TRANSCENDENTAL B-DIVISORS II — THE INTERSECTION THEORY 33

Now let us come back to the general situation. For each ¢ > 0, we then have

((D1 + D)) N+--N (B + eD(w)) N ]D)(T'))X

_ ((m + D)) N+ (Dy + eB(w)) N ID)(T)>

X
>x Z v(T, D) (TrD (]D)l + dD)(w)) Nn---NTrp (ID)p + dD)(w)))
DCX X
>x Z V(T,D) (TI‘D]D)l n--- ﬂTI“D]D)p)X .
DCX
Letting € — 0+ we conclude (5.5). O

We get some interesting new inequalities even for the movable intersection theory:

Corollary 5.3. Let [E] be a divisorial closed positive (1,1)-current on X, say
(5.6) [E] =) cE,
i

where the E;’s are distinct prime divisors on X and ¢; > 0. Consider pseudoeffective classes
at, ..., ap B € HYY (X, R). Assume that 3 > {E}, then

{or A Aay AB) = (a1 A Aoy A (B = {E}))

(5.7) >y Z(V(ﬁ —{B}, E)) + ci — v(B, Bi) ) volx|, (o), . ().

Here we used the mixed restricted volume defined in Definition 4.19. This inequality is stated
purely using the traditional language of movable intersection product and restricted volume, at
least when a; = --- = . But it is far from being obvious without the knowledge of b-divisors.

Proof. We make assume that the index set in (5.6) is a set of the form {1,2,..., N}, where N is
possibly co. Then it suffices to show that (5.7) holds with the sum replaced by the finite sum
from 1 to M, where M < N is an integer.

Fix a Ké&hler class v on X. Observe that

61_i>1%n+1/(6 +ey—{E}, E;) =v(B—{E}, E), 61_i>%1+1/(5 +ev, Ei) =v (B, Ei), Vi

Therefore, in view of Proposition 2.26(6), we may therefore replace 5 by 8 + ey for some € > 0
and assume that 5 and 8 — {E} are both big. Similarly, we may assume that the «;’s are all big.

We apply Theorem 5.2 to the following situation: I; = D(«;), and 7" is a current with minimal
singularities in 8 and T — [E] is a current with minimal singularities in 8 — {E'}. Then we find

(D(@1) N+ ND(ap) ND(B))  ~ (Plar) N+ N Dlay) ND (5~ {E}))

>x Y (v(B—{E}, D) v(8,D) + v([E], D)) volx|p(D(@n), ..., D(ey))

DCX
>x Z(V(ﬂ —{E}, Ei) —v(B,Ei) + Ci) volx|g, (D(al)a oy aD(ap)>'
i
Thanks to Corollary 3.30, this inequality translates immediately to (5.7). O

The following special case is already very non-trivial:

Corollary 5.4. Let [E] be a divisorial closed positive (1,1)-current on X, say

[E] = ZciEi,
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where the E;’s are distinct prime divisors on X and ¢; > 0. Consider modified nef classes
aty. .. 0p, B € HYY(X R). Assume that 8 > {E}, then

<a1/\'--/\ozp/\ﬁ>—<a1/\'"/\Oép/\(ﬁ—{E})> >y Z(y(ﬁ—{E},Ei)—}—ci) volx|g, (@1, .., qp).

A weaker result with ¢; in place of v(5 — {E}, E;) + ¢; can also be proved via Vu’s theory of
relative non-pluripolar products. The weaker inequality has already played a significant role in
the works of Su and Vu.

In order to proceed further, we shall need the celebrated conjectural transcendental Morse
inequality [ |:

(5.8) % vol(a + tB8) = n{a™ 1yN g3
t=0

for all classes «, 8 € H'(X,R) with a big. This conjecture is known when X is projective, as
proved by Witt Nystrém in [ ]. When n = 1,2, it is also known, see | .
We shall need the following consequence:

Theorem 5.5. Assume that the transcendental Morse inequality holds on X. Then for any
prime divisor D on X and any big class o € HY (X, R), we have

(5.9) volx|p(a) = ("N {D}.
We note that the < direction in (5.9) is trivial.
Proof. This is a consequence of (5.8) and the main theorems of | ; ]. O

Theorem 5.6. Assume that either X is projective orn =1, 2.
Let Dy, ...,D, be nef b-divisors over X, T,T" be closed positive (1,1)-currents on X in the
same cohomology class such that T <7 T'. Then

(Dm-~-mD>me>(T’))X— (D1n- D, ND(D))

= Z (Z/(T, D) — I/(T/, D)) V01X|D (Dh ces 7]D)p) .
D/X

X
(5.10)

The projectivity assumption (or n = 2 assumption) is only to guarantee that we can apply
Theorem 5.5. If the transcendental Morse inequality is known, the same proof works without
this assumption as well.

Proof. Step 1. We make some preliminary reductions.

Adding a Kéahler form to T and T”, neither side of (5.10) changes, so we may assume that T
and T are both Kéhler currents. Take a smooth closed real (1,1)-form 6 € {T'}, then we can
represent 7' = 0 + dd¢p and T = 6 4+ dd°y’. After replacing T and 7" by 6 + dd°Py[¢|z and
0 + dd°Py[¢]z, we may assume that they are both Z-good. Finally, after adding a Kéhler form
to them again, we reduce to the case where T and T” are both Z-good Kahler currents.

Next observe that the >x direction in (5.10) is already proved in Theorem 5.2, so thanks to
Lemma 2.16 and Proposition 4.14, in order to establish the equality, it suffices to consider the
case with p =n — 1. We shall make this assumption in the sequel.

Since both sides of (5.10) depend linearly on the D;’s, as proved in Proposition 3.27 and

Proposition 4.15, by polarization we may assume that D; = --- = D,,_; = D. Our assertion
becomes

-1 -1 _ -1
(5.11) (D" 'n ]D(T’))X - (" 'n D(T))X = %{(V(T, D)~ v(1", D)) volx|p (D" ') .

Step 2. We reduce to the case where D in (5.11) can be written as ID(S) for some non-divisorial
Z-good Kéhler current S.
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Take a Kéhler form w on X, then for any € > 0,

Z (y(T, D) —v(T', D)) voly|p <(]D) + e]D)(w)>”1>

D/X
:§6j <n . 1) > (V(T7D) — (T, D)) voly|p (Dn_l_j,]l)(w)j) )
j=0 J D/X

Note that the coefficients of the terms with €/ are finite thanks to Theorem 5.2. Letting € — 0+,
we conclude that

—0
€ +D/X

=) ( — (T’ D)) volx|p (D”_l) .

D/X

lim > (v(T, D) — v(T", D)) volx|p ((D + €D(w)>n_1>

A similar expression holds for the left-hand side of (5.11) as well. So we may replace D by
D + eD(w) when proving (5.11). And our assertion follows.
Step 3. In view of Theorem 3.29, it remains to show that

(5.12) /X LA - / S™UAT < 3 (W(T. D)~ v(T", D)) volxp (D(S)" ).

D/X

We make a further reduction, we may add freely a Kahler form to 7' and T”, so that we may
assume that {7} is a Kédhler class, say represented by a Kéhler form w. Due to Theorem 5.2, we

have
/ S”*l/\w—/ S YAT
X

:/ S"_l/\w—/S” 1/\T’+/S” AT — /S”‘lAT

> Z( ) — (T’ D)) VOIX‘D( )= 1)+ Z (T', D) V01X|D( (S)"—l)

D/X

= 3 (T, D)volyp (D(S)"") .
D/X

In order to establish (5.12), it suffices to prove the outer equality, namely we may assume that
T’ = w, and it remains only to prove that

(5.13) 57 nw= [ STAT < 37 (T, D) volpp (B(S)™Y).

D/X

Next take a quasi-equisingular approximations (7});>0 of 7. Suppose that we can prove (5.13)
with T3 in place of T', namely

n—1 n—1 R . n—1
/Xs /\w—/XS ATy = 32 (T, D) volyp (D))

D/X

Letting j — oo and applying Proposition 2.9 and Theorem 2.18, we conclude (5.13). In particular,
we have reduced to the case where T' has analytic singularities.

Take a modification 77: Y — X resolving the singularities of T'. Then it suffices to prove (5.13)
when T has log singularities. Of course, w is no longer a Kéhler form now, but we can as before
add a Kéhler form to both w and T to keep this property.

After all these reductions, we are finally reduced to the following assertion: Suppose that FE is
a prime divisor on X, then

(5.14) ("} n{E} < 3 w((E], D) volx|p (D(S)" ") .
D/X
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Here S is an Z-good current with positive volume. Note that the reverse inequality is known,
namely follows from Theorem 5.2.

After the same reduction as in Step 2, we can assume that S is a Kéhler current as well.
Replacing S by Reg S, we may assume that it is non-divisorial.

Step 4. We finally prove (5.14) using the transcendental Morse inequality. Only in this step
are we in need of the assumption that X is projective or n = 2.

If 7: Y — X is a modification. Then Theorem 5.5 shows that

(5.15) r.(D(S)2 ) N {E} = (D($)3 ) N7 {E} = 3 w([E], D) voly|p(D(S)x).
DCY

By Theorem 3.32 and Theorem 3.29, the limit of the left-hand side of (5.15) is nothing but
(Des)™™1)  N{E} = {s" "} n{E}

Therefore, it only remains to argue that
(5.16) lim 3" w([E], D) volyjp (D(S)y ) < Y- v([E], D) volx|p (B(S)" ).
7Y —X DCY DX

Fix a smooth closed real (1,1)-form 6 € {S} and represent S = 0 + dd®p for some Z-good
¢ € PSH(X, 6). Now fix a modification 7: ¥ — X. Set

vy =sup*{n € PSH(X,0):n<0,v(n,D) =v(p,D) forall D CY}.

Here D runs over all prime divisors on Y. Write Ty = 6 + dd®py. Note that Ty has positive
volume, since py dominates ¢. Moreover, Ty is Z-good since py is Z-model.
Observe that Reg(n*Ty ) has minimal singularities in ID(S)y. Hence

(5.17) D(D(S)y ) = D(Ty).
Therefore, in view of Example 4.18, for any prime divisor D on Y, we have

VOIY‘D (D(S)y) = VOIX‘D (D(Ty)nil) .
It follows that
S~ w([E), D) voly|p(D(S)y) < 3= w([E], D) voly;p (D(Ty)" ) .
DCY D/X

We claim that for each prime divisor D over X, we have a decreasing limit
: n—1\ __ n—1
(5.18) lim _volyjp (]D)(Ty) ) = voly|p (]D(S) )

Assume this result for the moment.
Observe that

S W([B). D) volxip (Tx) = 3 v([E), D) volxp (D({SH)" ) < {5"'} N {E} < .
D/X D/X

We apply the monotone convergence theorem for nets [ , Proposition 7.12] to the discrete
space consisting of prime divisors over X to find the following:

lm 3" v((E], D) volyp (D(S)y )

T Y—=X Dy
:Fi}flﬁx > v([E], D) voly|p (]D)(Ty)nﬂ)
' D/X
= lim > v([E],D)volyp (D(Ty)n—1>
T Y—=X Dy
- Z v([E], D) volx|p (]D)(S)ﬂfl) .

D/X

Here we applied Example 4.18 and (5.17) on the second line, and Proposition 4.13 on the third
line.
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Therefore,

= 3" v([E], D) volyp (D(S)" ™).
D/X
Therefore, (5.16) follows.
It only remains to argue (5.18). Note that (¢y)r. y—x is decreasing in singularity types, and
the masses of the ¢y ’s dominate that of ¢, which is positive. Hence by [Xia, Corollary 6.2.6],
vy has a dg-limit ¢. But by [Xia, Theorem 6.2.4] the limit is Z-equivalent to ¢. On the other

hand, ¢ and v are both Z-good, hence ¢ ~p 1. It follows that py s, . Now by [ ,
Proposition 4.9], we have
lim D(Ty) = D(S).
T Y—=X

Observe that D(Ty)x = D(S)x = {5}, so (5.18) follows from Proposition 4.16. O
When n = 1, Theorem 5.6 reduces to the following elegant formula:

Corollary 5.7. Assume that X is a compact Riemann surface. Let T, T’ be closed positive
(1,1)-currents on X in the same cohomology class such that T <7z T'. Then

(5.19) vol T — vol T = (V(T, z) —v(T', x))
zeX

6. LOSS OF MASSES IN TERMS OF LELONG NUMBERS

Let X be a connected compact Kédhler manifold of dimension n.

In a series of papers, Vu and Su | ; ; | established the following type of
estimates: Consider a closed positive (1,1)-current 7' in a big cohomology class o € H' (X, R),
then

(6.1) volaw — vol T > C(V(T,ZC) —v(a, x))n, Ve e X

and similar estimates bounding the difference of the volumes of two currents from below. In
none of these works, the constant c is explicit. In this section, based on the theory of restricted
volumes of b-divisors, we shall provide an explicit constant in a much more general setup.
Since the Lelong number at a point is the same as the generic Lelong number at the exceptional
divisor after blowing-up this point, we shall consider Lelong numbers along divisors instead.

6.1. The toric setting. In order to get a feeling of what kind of inequality we should expect,
let us first consider the toric situation. For the details of the setup, we refer to [Xia, Chapter 12].

Let T be a complex torus of dimension n. Let N (resp. M) be the cocharacter lattice (resp.
character lattice) of T'. Fix a fan ¥ in N corresponding to a smooth projective toric variety X.
Fix a toric-invariant big divisor

H= Y a,D,
peX(1)

where (1) is the set of rays in 3, D, is the toric-invariant divisor on X corresponding to p via
the orbit-cone correspondence, and a, € Z. Let

Py = {m € Mg : (m,u,) > —a, VYpe€ Z(l)},

where u, € N is the ray generator of p.
Recall the following key theorem proved in [Xia, Chapter 12].

Theorem 6.1. The Z-equivalence classes of toric-invariant closed positive (1,1)-currents in «
are in natural bijection with the convex bodies contained in Pp.
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Here a convex body refers to a compact non-empty convex set.
Given such a current 7', the corresponding convex body is denoted by A(7T'). We have

volT = n!vol A(T).

Two toric-invariant currents 7, S in « satisfies 7' <7 S if and only if A(T") C A(S). Now fix a
toric-invariant prime divisor D. In the ample case, D corresponds to a facet of Py, but this fails
in the big case. However, if p € 3(1) is the ray corresponding to D, then we have

v(T, D) = inf {{(m,u,) +a, :m e A(T)}.

So eventually, we are looking for two inequalities:
(6.2) vol A(S) — vol A(T) > c<inf{<m,up) im € A(T)} — inf{(m,up> :m € A(S)}) :

Note that it is impossible to find uniform ¢ for all S and T, contrary to the assertions in the
literature.

Example 6.2. Consider the simplex QQ with the following vertices in R™:
0,...,0),(1,0,...,0),(1,60,...,0),(1,0,60,...,0),...,(1,0,...,0,¢)
for some € > 0. It is a polytope contained in [0,1]", the Newton polytope of O(1,...,1) on (P1)".
Now let
Qt:{$6Q2$1Zt},
where t € (0,1). Then

n

t
vol@Q —vol Q; = —€" L.
n!

If we take u, = (1,0,...,0) corresponding to the facet {x1 = 0}, we find that the constant c in
(6.2) corresponds to

which can be arbitrarily small.

Now we look for the optimal constant ¢ in (6.2). We first make a few simplifications. Since
u,, is part of a basis of IV, up to a linear transform in SL(n,Z), we may assume that N = Z",
u, = (1,0,...,0). We have a given rational polytope Py with positive volume contained in
{z1 > 0}, two subconvex bodies Q1 C Q2. We wish to find ¢ so that

6.3 1 — vol > inf — inf .
(6.3) volQo — vol Q1 > ¢ (Ilean 1 xlean x1>

Without loss of generality, we may assume that Q2 touches {1 = 0}. Namely, inf,cq, 1 = 0.
Now we fix ()2 and ¢ := inf ¢, 1 and consider the optimal @)1, namely when the left-hand
side takes the minimal value. It is clearly given by

Q1 ={(z1,y) €Q a1 >t}
See Fig. 1 for the optimal situation.
The volume of the remaining part is then bounded from below by the volume of a cone with
base Q2 N {x1 = 0} and the vertex with x; = :

t _
ﬁvol{y cR"1:(0,y) € Qa}.

But we wish to obtain something to the order of ¢", for this purpose, it suffices to observe that

t < max xi.
x€Py

Putting everything together, we find

1 n
105 — vol Q > inf z7 — inf Hy e R"1:(0,y) € )
ol Qs = el Q1 > ey ((int 21— int 1) voly (0,y) € Qs}

Translating everything back to the language of currents, we get
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FIGURE 1. The optimal situation
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\V4

_t._

Proposition 6.3. Let S,T be toric invariant closed positive (1,1)-currents in the same coho-
mology class o with S =7 T, then for any toric-invariant prime divisor D on X, we have

1
(Vmax(a, D) — v(a, D))n_1

vol S — vol T > (WT.D) (5. D))" -volxp (S — (5. D)[D)).

See Definition 6.4 for the definition of vy ax.
This proof only works in the toric setting. In general, we shall rely on the non-toric general-
ization of Newton bodies, namely the Okounkov bodies.

6.2. Transcendental Okounkov bodies. Let X be a connected compact Kéhler manifold of
dimension n.
We first recall the following notion:

Definition 6.4. Let o € H4(X, R) be a big class, and D be a prime divisor over X. We define
Umax (@, D) = sup {v(T, D) : T is a closed positive (1, 1)-current € o} .
Note that this quantity is invariant if we replace X by a modification and D by its strict
transform. The same quantity can therefore be defined when X is only normal.

Also observe that vyax(a, D) > v(a, D) > 0. In fact, since («) is big, we can find € > 0 small
enough with (a) — e{D} big. It follows that

a—(v(a, D) +€){D}
is big. Adding (v(a, D) + €)[D] to a current with minimal singularities in o — v(a, D){D}, we
obtain a current T with v(T, D) > v(«, D).

Proposition 6.5. Let « € H'Y(X,R) be a big class. Consider a prime divisor D on X. Then
for any t > 0, we have
Vmax (@, D) = vmax(a + t{D}, D) — t.

Proof. Fix t > 0.
Take a closed positive (1,1)-current 7' € «, then T + ¢[D] is a current in « + t{D}. Since

v(T +t[D],D) =v(T,D) +1t,

we conclude
Vmax (@, D) < Upax(a+t{D}, D) — t.

In particular the right-hand side is always positive.
Next fix € € (0, Umax(a+t{D}, D) —t), take a closed positive (1,1)-current T' € a+t{D} with

v(T,D) > vpax(a+t{D}, D) —e.
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By our choice of €, v(T, D) > t. Then T — t[D] € « is a closed positive (1, 1)-current, and
Vmax(a, D) > v(T —¢[D], D) = v(T,D) —t > vmax(a + t{D}, D) — t —e.
Letting € — 0+, the reverse inequality follows. U

Recall that a smooth flag on X is a chain of smooth analytic subspaces Yo = (Y1 2 --- 2 Y,)
so that each Y; is irreducible of codimension i in X. Given a big class o € HY1 (X, R), there is a
natural way of constructing a convex body Ay, (a) C R™ associated with Y, and «, known as
the Okounkov body. The Okounkov body is contained in the first quadrant. Instead of recalling

the lengthy definition, we refer to | : | for the details.
We shall need a few basic properties of the Okounkov bodies, as proved in [ | and
[Xia, Chapter 10].

Theorem 6.6. Let o € HYL(X | R) be a big class and Ye be a smooth flag on X, then we have
the following:

(1) The volume of the Okounkov body is proportional to the volume of the class:
(6.4) vola = n!vol Ay, (a).

(2) The Okounkov body Ay, («) is continuous with respect to « if we consider the topology
induced by the Hausdorff metric.
(3) The two ends have pluripotential-theoretic interpretations:

min 21 = v(a, Y] max X1 = Vpax(@, Y1).
v€Ayy (@) (o, Y1), €Ay (@) max(2, Y1)

(4) For allt € (v(a, Y1), Vmax (@, Y1)), we have
volypy, (@ = H{Y1}) = (n = Dlvol {y € R" " : (t,9) € Ay, (@) .

In fact, the slice in (4) is an example of the partial Okounkov bodies studied in | | and
[}ia, Chapter 10].
We shall need a few auxiliary lemmata.

Lemma 6.7. Let A > 0. Let f: [0, A] = R>qg be a continuous concave function. Then for any
n € Zso, and any ty € (0, A), we have

t n gAn+1 ] B
/ f(t) < (7(2&)—1- n min{tg, A — to} "

Proof. Fix ty € (0, A), assume that f(tg) = C > 0, let us compute the maximum of fOA f(t)"dte.
Since f is concave, the maximization problem reduces immediately to the case where f is affine.
So we need to compute the maximum of

A
/O (B(t—to) +C)" dt =

under the constraints that

(B(A —to) + C)" — (=Bty + C)"*!
(n+1)B

—Btog+C >0, B(A—ty)+C>0.

Observe that the integral is convex in B, and hence the maximum is obtained at the boundary
of the interval, in other words, the maximum of the integral is

CnAn—H CnAn—i-l CnAn—H
max —

i+ D (n+ D(A—to)" min{to, A —to} "

n+1
Lemma 6.8. Assume thatn > 1. Let P C R"™ be a convex body. Assume that

minz; =0, maxxz; =A>0.
zEP z€P

Then for any ty € [0, A], we have
n . _
vol {y eR" 1 (tg,y) € P} > EVOIP -min{tg, A — to}" L.
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The proof resulted from a discussion with Yangyang Li.

Proof. We may assume that ¢y € (0, A) since otherwise there is nothing to prove.
We write

g(t) = vol {y eR" 1 (t,y) € P} :

By Brunn-Minkowski inequality, the function ¢'/(®=1 is concave. Therefore, thanks to
Lemma 6.7, we have

A ta) A"
vol P = / g(t)dt < g(?l) min{tg, A —to} "
0

O
The following lower bound of the restricted volume seems new.

Corollary 6.9. Let a € HY'(X,R) be a big class. Then for any prime divisor D on X, we have

vol o
(I/max<05, D) —v(a, D))

as long as v(a, D) <t < vpax(a, D).

(6.5) volx|p (a—t{D}) > = -min{t — v(a, D), vmax(a, D) — t}" 1

In particular, when v(a, D) < t < vmax(c, D), we have v(a — t{D}, D) = 0.
Proof. The inequality (6.5) is trivial if ¢ takes the boundary value. We may assume that
v(a,D) <t < Vnax(a, D).

Since the problem is invariant after replacing X by a modification and D by its strict transform,
we may assume that D is smooth and is the first component in a smooth flag Y, on X. Then
our assertion follows from Lemma 6.8 and Theorem 6.6. More precisely, we have

volyp (o — t{D})

>(n— 1)lvol {y € B": (t,y) € Ay, (o)}
(Vmax(aa D) - I/(OZ, D))n
vol

= -min{t — v(a Vmax (@, — L
_(Vmax(aa D) _ I/(Oé,D))n {t ( ,D), ( D) t}

>(n—1)!- vol Ay, (o) - min{t — v(a, D), vax(a, D) — t}"71

O
6.3. Loss of mass problem. Now fix a connected compact Kéhler manifold X of dimension n.

Theorem 6.10. Let a,...,a, € HYY(X,R) be big classes. Consider closed positive (1,1)-
currents S;,T; € a; with S; =7 T;. Fixz a prime divisor D over X. Then

vol(S1,...,S,) —vol(T1,...,T))

= Iax ((H Vmax () D)l— v(ay D)) volxip (D(SI)""’W""’D(S")))
Jeees i Vmax (g 7

n

1 (v, D) - v(S:, D)).

i=1
Proof. Observe that

VOI(Sl, ceey Sn) - VOl(Tl, ey Tn) > VOI(Sl, 52, ey Sn) - VOI(Tl, SQ, ceey Sn)
We apply Theorem 5.6 to get

vol(S1, ..., Sp) — vol(Ty, ..., T,) > (V(Tl, D) —v(Ss, D)) volxp (]D)(Sg), .. 71@(5”)).

Next observe that for j > 1,
V(ijD) - V(SJ'?D) < VmaX(aij) - V(O‘j’D)v



42 MINGCHEN XIA

and hence
vol(S1,...,S,) —vol(T1,...,T,)
. V(ijD)_V(Sj’D)

>
j=2 Vmax(aja D) - V(aj7 D)

: (u(Tl,D) - V(S1,D)> -volx|p (D(Sﬂv e ,]DD(Sn)),

and our assertion follows by symmetry. O

In order to appreciate our result, let us consider the following special cases.

Corollary 6.11. Let o € HYY(X,R) be a big class. Consider closed positive (1,1)-currents
T,5 € awthT <1 S. Then

1
(Vmax(a, D) — v(e, D))ni1

vol S —volT > : (Z/(T, D) — V(S,D))n : V01X|D<S —v(S, D)[D])

We have obtain what we could expect from the toric situation Proposition 6.3.

Proof. 1t suffices to apply Theorem 6.10. Note that the restricted volume of b-divisors is just
volx|p(S — (S, D)[D]) thanks to Example 4.20. O

Corollary 6.12. Let a € HY'(X,R) be a big class, and Ty,...,T, € a be closed positive
(1,1)-currents. Suppose that D is a prime divisor on X. Then

> ( (. D) i ( D))n_l V01X|D<<Oé>) . f[l(u(Ti,D) - y(ajD)).

vola — vol(Th,...,T,)

Proof. We apply Theorem 6.10, with all S;’s being a current with minimal singularities in a.
The restricted volume of the b-divisors is just volx|p ({a)) due to Example 4.18. O

Note that in the situation of Corollary 6.12, it could happen that volx|p({c)) = 0. In order
to get a meaningful lower bound in this case, we shall derive a different estimate following the
same idea.

Theorem 6.13. Assume thatn > 1. Let ay,...,a, € H'Y(X,R) be big classes. Consider closed
positive (1,1)-currents T; € o for alli=1,...,n. Fiz a prime divisor D over X. Then

(a1, ..., an) —vol(Ty,...,T),)

1/(n—1)
1
on—1 |

vol o

> n
(I/max(()éj, D) — v(aj, D))

n
(V(Ti, D) — v(ay, D)) k)g?}{,n H
i=1 Jj#k
In the proof below, by choosing better values of ¢, we can slightly improve the inequality, we
leave the details to the interested readers.

Proof. Since the problem is invariant after replacing X by a modification and D by the strict
transform, we may assume that D is a prime divisor on X.

After replacing a; by o; — v(a;, D){D} and T; by T; — v(«a;, D)[D], we may assume that
v(aj,D)=0foralli=1,...,n.

We may assume that v(7;, D) > 0 for all ¢ since there is nothing to prove otherwise. Fix a
constant ¢ € (0, 1) for the moment.

Now let S/ be a current with minimal singularities in «; — cv(T;, D){D}. Then v(S},D) =0
thanks to Corollary 6.9. We write S; = S} + cv(T;, D)[D]. Let Smin € a1 be a current with
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minimal singularities. Then
(a1, ..., an) —vol (Th,...,Ty)
Z VOl (Smim SQ, ey Sn) - VOl (Tl, SQ, ceey Sn)
>y/(T3, D) volx|p (D(S2), ., D(Sh))

n 1/(n—1)
>v(T1, D) [] volx;p (e — ev(T}, D){D})
j=2

1/(n-1)

vol o5 . n—1
>v(Th, D) H (W . mln{cy(Tj,D), Vmax (o, D) — cv(Tj, D)} )

Vmax (Oéj,

L vol av; Y/(n=1)
=v(T1, D) H ((JD)n> -min{cy(Tj, D), Vmax(ej, D) — ev(T5, D)}) .

where the first inequality follows from | , Proposition 3.6], the second follows from The-
orem 5.2, the third follows from Proposition 4.22 and Example 4.18, the fourth follows from
Corollary 6.9.

Next take ¢ = 1/2, then since for each j = 2,...,n, we have

1 1
V(L5 D) < timax(@j, D) = Sv(T;, D),

we can continue the estimate

(a1, ..., an) —vol(Ty,...,Ty)

j=2 Vmax\%j,
1 n n vol 1/(n—-1)
= v(T;, D) - J )
i L) 11 (e
The desired inequality follows by symmetry. ([

Corollary 6.14. Assume that n > 1. Let aq,...,a, € HYY(X,R) be big classes. Consider
closed positive (1,1)-currents S;, T; € o;. Assume that T; <7 S;. Fix a prime divisor D over X.
Assume that vol S; > 0 for all j =1,...,n. Then

vol(S1,...,Sn) —vol(T1,...,T})

n 1S o
v(T;, D) — v(S;, D) ——— "
( VI o) —vi5,)

v
)
7
—
-
&:::

Proof. Since the problem is invariant after replacing X by a modification and D, we may assume
that D is a prime divisor on X.

When Si, ..., S, have analytic singularities, from the bimeromorphic invariance of both sides
of (6.6), we may reduce to the case where S, ..., S, have log singularities. Then our assertion
(6.6) follows at once from Proposition 6.5 and Theorem 6.13.

Next we handle the case where Si,...,5, are Kéahler currents. Take quasi-equisingular
approximations (Sf)k of S;, the the desired inequality holds with Sf in place of S;. Letting
k — oo, the assertion for the S;’s follows. Here we have applied the continuity of Lelong
numbers, as proved in [Xia, Theorem 6.2.4], and the continuity of the volumes as proved in
[ , Proposition 3.10].
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Finally, consider the general case. Fix a Kéahler form w on X. Then for any € > 0, we have
vol (S1 + ew, ..., Sy + ew) —vol (T} + ew, ..., T}, + ew)
1/(n—1)
vol(S;j + ew)

> n
Vmax(@; + €{w}, D) = v(S;, D))

e Zﬁl(vm,m - v(sz-,m)jﬁQ (

It suffices to observe that

im vmax(oj + e{w}, D) = Vmax(aj, D)

e—0+
as a consequence of Theorem 6.6(2) and (3). Letting ¢ — 0+, we conclude (6.6). O

The following case is probably the most important for applications:

Corollary 6.15. Let a € HYY(X,R) be a big class. Consider closed positive (1,1)-currents
S, T € o withT <7 5. Fix a prime divisor D over X, then

vol §
on—1 (Z/max(a, D) — v(«, D))n

(6.7) vol S — volT > (y(T’D) — (S, D))n .

Proof. We first assume that n > 1. When vol .S > 0, this follows immediate from Corollary 6.14.
When vol S = 0, there is nothing to prove.
Finally when n = 1, we consider the partial Okounkov bodies A(S) and A(T') with respect

to the flag D. See the algebraic approach in [ | or the transcendental approach in [Xia,
Chapter 10]. Since we are in dimension 1, the cohomology class « is necessarily algebraic, so the
algebraic theory in [ | actually suffices, at least when « is a rational class.

Let A(a) be the corresponding Okounkov body of a. Then A(a)) D A(S) D A(T) and they

are (possibly degenerate) closed intervals. The situation is summarized in Fig. 2.

A(S)

®- ®-
4 @

. D)n(S.D) (T, D) V(@ D)
T
Ala)

FIGURE 2. The Okounkov bodies

e

Then using the theory of Okounkov bodies, our assertion (6.7) translates into
vol A(S)
Vmax(aa D) - V(a7 D) ‘

Vol A(S) = vol A(T) > ((T, D) = (8, D)) -

From the picture, it is clear that
vol A(S) < vmax(a, D) — v(a, D), volA(S) —vol A(T) > v(T, D) — v(S, D),
and our assertion follows. O

Note that the constant )

on—1 (Vmax(a, D) — v(«, D))n

appearing in (6.7) depends continuously on «, as follows from Theorem 6.6(2) and (3). Our
theorem therefore implies the main theorem of [ | when D is taken as the exceptional
divisor of the blow-up at a point.

The dependence on vol S in the right-hand of (6.7) seems optimal, in view of Example 6.2.
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APPENDIX A. POSITIVE FORMS

We briefly recall the notion of positive forms due to Lelong [ ] and Harvey—Knapp [ ].
The latter reference, on which a large part of Demailly’s textbook [ , Chapter III] was
based, was unfortunately omitted from the reference list.

Let V be a finite dimensional complex vector space of dimension n. Let V'V denote the complex
linear space consisting of R-linear functional V' — R on V. For each pair of non-negative integers
p,q, we write APV for the space of (p,q)-forms in APT9(VV @ C). Note that the complex
dual of V is ALOVV,

Fix an integer p € {0,1,...,n} in the sequel.

Definition A.1. A form o € APPVV is
(1) weakly positive if for each fBi,...,Bn—p € VY, we have
aNiBLABLA - NiBn—p A Ba—p

gives the positive orientation of V;
(2) strongly positive if «v is a finite linear combination with R>( coefficients of terms of the

form
(A1) iBLABLANiBy A By,
where (1,...,8, € VV. A form like (A.1) is called a basic form.
(3) positive if for one (hence all) basis w1, ..., w, of A%VV, when we expand « as
(A.2) a=(-1)Pe=D2 Ny siPwr A7,
=|J|=p
the matrix (az,7)7,s is Hermitian and positive semidefinite. Here wy = w;; A -+ A w;,,
where i1 < iy < --- < i, are the elements in I, and 3, is similar.
Remark A.2. The terminology needs some clarification. In [ |, Lelong only introduced the

notions of weakly positive forms and strongly positive forms. He called the weakly positive
forms positive forms. Lelong’s terminology is largely followed by the modern schools in complex
geometry.

The notion of positive forms as above is introduced by Harvey—Knapp. The terminology of
Harvey—Knapp is, by contrast, largely followed by people in non-Archimedean geometry and
tropical geometry.

When we represent a weakly positive form in the form of matrices as in (A.2), the matrix is
always Hermitian. See [ , Page 167, Corollary 1.5].

It is immediate from the definitions that a strongly positive form is positive, and a positive
form is weakly positive. Furthermore, the cone of weakly positive forms is the dual cone of that
of strongly positive forms.

When p = 0,1,n — 1,n, all three notions are equivalent. For all other value of p, namely
p=2,3,...,n— 2, all three notions are different. This was originally a question of Lelong, and
proved in [ ]

The wedge product preserves the various positivities as Table 2. In general, the product
between a positive form and a weakly positive form is no longer weakly positive, as follows from
the arguments of | , Page 49].

Q 154 alp
Strongly positive | Strongly positive | Strongly positive
Positive Positive Positive
Strongly positive | Weakly positive | Weakly positive

TABLE 2. Positivity properties of wedge products

It is easy to see that weakly positive and positive forms form closed convex cones. As for the
case of strongly positive forms, this has always been a folklore result. Harvey—Knapp | ]
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mentioned this on Page 49 without giving the details. We take this opportunity to give a
complete proof along the lines of Harvey—Knapp, following the answer on MathOverflow [MO].

Lemma A.3. The set of strongly positive (p,p)-forms on V' form a closed convex cone.

Therefore, the cone of strongly positive forms is the dual of that of weakly positive forms.

We need the following straightforward consequence in the main body of the paper: A (p,p)-
form on a complex manifold is strongly positive as a form if and only if it is strongly positive
as a current, namely the pairing with any compactly supported weakly positive form with
bidimension (p, p) is non-negative.

This consequence has already been widely applied in the related literature without rigorous
justification.

Remark A.4. A very similar argument works in the non-Archimedean setting, and gives a rigorous
proof to the assertion about strongly positive Lagerberg forms (as defined in | ]) in the
second version of | , Section 1.2.4].

Proof. The non-trivial point is to show that the cone of strongly positive (p, p)-forms is closed.
Fix an identification V' = C™ so that V gets a Hermitian norm.
Step 1. We show that

C = {aEAp’pVV:a:iﬁl/\E/\---/\iﬂp/\prorsomeﬁl,...,ﬁper}

is closed.
Let

= {a e APPVY o = ip2fy A7 for some v € Ap’OVV} )

Note that C C C". .
We first show that C” is closed. Consider a Cauchy sequence (i”"7; A ;); in C. Fix a basis
wi,...,w, of VV. Then we can write

Vi = Z Y4, IWI-
|I|=p

The boundedness of ip2*yj A ; implies the boundedness of 7, ; for each fixed I. Therefore, after
subtracting a subsequence, we may assume that -y; ; — ~ for some 7; € C. Then

ipz’}/j /\")7j — ip2")//\’_}/.
Next we show that C' is closed. This means, suppose that 7, is decomposable then we want to
show that v is also decomposable. But the condition of being decomposable is equivalent to
finitely many polynomial relations between the coefficients, classically known as the Pliicker
relations, which pass through limits. See | , Section 3.1.E] for details.” Our assertion
follows.
Step 2. Let S be the unit sphere in V. Then from Step 1, the intersection S N C is compact.

We claim that the convex hull of S N C does not contain the origin. Suppose that this fails,
then we can find v; € SNC and A\; >0 (i =1,...,m) so that

1=1

But under the matrix representation (A.2), the v;’s can be regarded as strictly positive matrices,
so this cannot happen.
Our assertion now follows from Lemma A.5. O

Lemma A.5. Let C' be a convex body in R™, 0 & C, then the convex cone generated by C' union
with 0 is closed.

2More conceptually, the decomposability of + also follows from the fact that the Pliicker embedding of the
Grasmannian is a closed immersion.
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Proof. Let A\; > 0 and ¢; € C. Assume that \;¢; converges to ¢ € R™. Then we need to show
that either ¢ = 0 or c¢ is in the convex cone generated by c.

We may assume that ¢ # 0. Then since C' is compact and 0 ¢ C, then |¢;]| is a bounded
sequence, bounded away from 0 as well. But \;¢; has a non-zero limit, this means A; is also
bounded and bounded away from 0. After replacing everything by a subsequence, we may
assume that \; = X >0, ¢; — ¢ € C. Then ¢ = \¢/, and our assertion follows. O

A symmetric form can always be decomposed as the difference of two strongly positive forms.
More generally, we have the following:

Theorem A.6. Fiz a basis w1, ..., w,, then APPVY has a basis consisting of forms of the form
2 — —
BN ABy ANBLA A By,
where B; is one of w; £ w; or w; £iw; with 1,5 =1,...,n.
This result was first proved by Harvey—Knapp [ , Proposition 1.9]. See also Demailly

[ , Page 167, Lemma 1.4]. The corresponding statement fails in the setup of Lagerberg
forms, as previously asserted in the first version of | ]. See [ | for the details.
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