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Abstract. In this paper, we develop the general intersection theory of nef b-divisors, extending
the movable intersection theory à la Boucksom. As an application, we prove a quantitative
version of the monotonicity of the mixed volumes of currents.
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1. Introduction

The current paper is a sequel of the author’s previous paper [Xia25].

1.1. Motivation. Let X be a compact Kähler manifold of dimension n. This paper is motivated
by the monotonicity theorem of Witt Nyström (see [WN19b; DDNL18]): Given closed positive
(1, 1)-currents

T1, . . . , Tn, S1, . . . , Sn

on X such that Ti and Si lie in the same cohomology class and Ti is more singular than Si for
each i, then one has

(1.1)
∫
X
S1 ∧ · · · ∧ Sn ≥

∫
X
T1 ∧ · · · ∧ Tn.

Here the product is understood in the non-pluripolar sense of [BT87; GZ07; BEGZ10].
Inequality (1.1) expresses the principle that increasing singularities of currents lead to a loss

of mass. However, the monotonicity theorem itself provides no quantitative or qualitative control
on how much mass is lost.

From an intuitive point of view, the more singular the currents Ti are relative to Si, the larger
the difference in (1.1) should be. The main goal of this paper is to make this intuition precise.

To this end, one must first quantify the difference in singularities. A classical invariant serving
this purpose is given by Lelong numbers. We aim to obtain a qualitative control of the difference
in (1.1) in terms of the differences between the Lelong numbers of the currents Ti and Si.

There is, however, a fundamental caveat. In general, such a control is impossible due to
pathological examples, such as [BBJ21, Example 6.10]: On P1, there exists a closed positive
(1, 1)-current T ∈ c1(O(1)) whose Lelong numbers vanish identically, while its non-pluripolar
mass is zero. This phenomenon shows that Lelong numbers alone do not suffice to control
non-pluripolar products in full generality.

The resolution of this difficulty is provided by the theory of I-good currents developed in
[DX22; DX24b; Xia24; Xia]. Roughly speaking, I-good currents are precisely those closed
positive currents that exclude such pathological behavior.
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Related problems have been previously investigated by Vu, Su, among others; see for instance
[SV25; Su25b; Vu23b; Su25a]. Their approaches rely on techniques involving relative non-
pluripolar products and density currents, and lead only to non-optimal lower bounds for the
difference in (1.1). In contrast, in this paper we approach the problem using the theory of nef
b-divisors, developed in [Xia25] and [DF22]. As we shall show, this method allows us to obtain
an optimal control of the difference in (1.1) when the currents involved are I-good.

1.2. Main results. We first extend the intersection theory of transcendental b-divisors over
X initiated in [Xia25]. Recall that a nef b-divisor D over X is a family of modified nef classes
DY ∈ H1,1(Y,R), with Y → X running over all modifications of X. These classes are assumed
to be compatible with each other under pushforward.

In [Xia25], we showed that nef b-divisors can be understood using the theory of currents,
and defined the intersection number between n nef b-divisors. The first goal of this paper is to
develop the full intersection theory. In particular, we establish the following theorem:

Theorem A.
(1) There is a map sending p nef b-divisors D1, . . . ,Dp over X to a nef b-class D1∩· · ·∩Dp over

X. The map is multi-R≥0-linear1 and satisfies the expected properties of an intersection
product.

(2) When Di = D(αi) is the nef b-divisor induced by a pseudoeffective class αi ∈ H1,1(X,R)
as in Definition 3.11 for each i = 1, . . . , p, the product

(D1 ∩ · · · ∩ Dp)X
is just the movable intersection ⟨α1 ∧ · · · ∧ αp⟩ in the sense of [Bou02; BDPP13].

(3) In general, the intersection product can be recovered from the movable intersection as a
limit:

(D1 ∩ · · · ∩ Dp)X = lim
π : Y→X

⟨D1,Y ∧ · · · ∧ Dp,Y ⟩,

where π : Y → X runs over the modifications of X.
(4) Suppose that Di is associated with an I-good Kähler current Ti for each i = 1, . . . , p, then

(D1 ∩ · · · ∩ Dp)X = {T1 ∧ · · · ∧ Tp},
where the bracket {•} denote the associated cohomology class.

The notion of nef b-class is a generalization of nef b-divisors. A nef b-class T is a compatible
choice of movable classes TY ∈ Hp,p(Y,R). We refer to Definition 3.2 for the details.

Part (2) shows that the intersection theory of b-divisors is a generalization of the more
classical movable intersection theory. The latter has the drawback of being non-linear, making
concrete applications difficult. By contrast, the intersection theory of b-divisors is linear. The
non-linearity is completely encoded in the map from a pseudoeffective class α to the associated
nef b-divisors D(α), which is easier to understand in general.

Part (4) shows that the intersection theory of b-divisors can also be regarded as a partial
generalization of the non-pluripolar product. Although we can only recover the cohomology
class of the non-pluripolar product, this is enough for most applications, since in practice, we
usually only need the top intersection.

The monotonicity theorem (1.1) admits a generalization in the theory of b-divisors as follows:
If we have another nef b-divisor D′

1 which dominates D1 in the sense that D′
1,Y − D1,Y is

pseudoeffective for each modification π : Y → X, then
D′

1 ∩ D2 ∩ · · · ∩ Dp ≥ D1 ∩ D2 ∩ · · · ∩ Dp,
in the sense that on each modification of X the difference is a positive cohomology class, as
defined in Definition 2.11.

By the linearity of the intersection product, we could formally write the difference as(
D′

1 − D1
)
∩ D2 ∩ · · · ∩ Dp.

1In the sense that the product is additive in each variable, while homogeneous only with respect to non-negative
scalings.
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However, this term simply makes no sense, as D′
1−D1 is not nef in general. However, it could be

formally regarded as a linear combination of prime divisors over X with non-negative coefficients,
at least when D1,X = D′

1,X .
When trying to give a formal meaning to these objects, in Section 4, we define the restricted

volume of nef b-divisors, generalizing the notion of restricted volumes of Kähler classes [Mat13;
CT22]. More precisely, given nef b-divisors D1, . . . ,Dp over X and a prime divisor D over X, we
shall define a class

volX|D (D1, . . . ,Dp) ∈ Hp+1,p+1(X,R).
After studying the restricted volume in detail, in Section 5 we prove the following key

inequality:

Theorem B. Let D1, . . . ,Dp be nef b-divisors over X, T, T ′ be closed positive (1, 1)-currents on
X in the same cohomology class such that T ⪯I T

′. Then(
D1 ∩ · · · ∩ Dp ∩ D(T ′)

)
X
−
(
D1 ∩ · · · ∩ Dp ∩ D(T )

)
X

≥X
∑
D/X

(
ν(T,D)− ν(T ′, D)

)
volX|D (D1, . . . ,Dp) ,

(1.2)

where D runs over all prime divisors over X (modulo equivalence). Here ≥X means the difference
is a positive class.

Moreover, when X is projective, equality holds.
If we further assume the transcendental Morse inequality holds, then the equality holds for all

compact Kähler manifolds X.

Here D(T ) is a nef b-divisor canonically constructed from T , as we studied in [Xia22; Xia25].
The notation T ⪯I T

′ means that all Lelong numbers of T (on all modifications) dominate those
of T ′. Equivalently, in the setup of the theorem, it says that D(T ) ≤ D(T ′).

The main inequality (1.2) gives a qualitative version of the monotonicity theorem. Put it in a
different way, it says that the loss of mass can be decomposed into a weighted sum of restricted
volumes over all prime divisors.

When D1, . . . ,Dp are nef b-divisors associated with currents, Theorem B gives a solution to
our initial question in view of Theorem A(4).

In dimension 1, since the transcendental Morse inequality is known, (1.2) reduces to

(1.3) volT ′ − volT =
∑
x∈X

(
ν(T, x)− ν(T ′, x)

)
,

which is already non-trivial. Similarly, in dimension 2, the transcendental Morse inequality has
been confirmed in Y. Deng’s thesis [Den17], and hence (1.2) is also an equality. Since we have
a relatively complete understanding of divisors over surfaces, it should be possible to extract
useful algebrico-geometric information about Kähler surfaces from our equality. The author
wishes to explore this point in the near future.

C. Favre suggested that the right-hand side of (1.2) could be interpreted as an integral
over the Berkovich analytification of X with respect to a Dirac type measure with weights
volX|D (D1, . . . ,Dp). This novel measure might be useful for the study of dynamical systems on
X. However, due to the author’s insufficient knowledge about dynamical systems, we do not
pursue this point of view in the current paper.

Theorem B contains many new inequalities of the movable intersection product as well. Instead
of trying to give an exhaustive list, we will only explain one such result in Corollary 5.3. Here
instead of stating the most general form, we only mention a very elegant and special case as in
Corollary 5.4.

Theorem 1.1. Let [E] be a divisorial closed positive (1, 1)-current on X, say

[E] =
∑
i

ciEi,
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where the Ei’s are distinct prime divisors on X and ci > 0. Consider modified nef classes
α1, . . . , αp, β ∈ H1,1(X,R). Assume that β ≥ {E}, then

⟨α1∧· · ·∧αp∧β⟩−
〈
α1∧· · ·∧αp∧ (β−{E})

〉
≥X

∑
i

(
ν(β−{E}, Ei)+ci

)
volX|Ei

(α1, . . . , αp) .

The restricted volume of cohomology classes is defined in Definition 4.19. A weaker estimate
with ci in place of ν(β − {E}, Ei) + ci can also be obtained using the theory of relative non-
pluripolar products.

As another application of our main theorem, in Section 6 we prove the following version of
the loss of mass theorem stated in the more traditional language:

Theorem C. Let α ∈ H1,1(X,R) be a big class. Consider closed positive (1, 1)-currents S, T ∈ α
with T ⪯I S. Fix a prime divisor D over X, then

(1.4) volS − volT ≥
(
ν(T,D)− ν(S,D)

)n
· volS

2n−1
(
νmax(α,D)− ν(α,D)

)n .
The constant 21−n can be marginally improved, but this does not seem very relevant.
For the notion of the volume of a current, see [Xia25, Section 3] or Section 2.1. For I-good

currents with positive non-pluripolar mass, the volume is equal to the non-pluripolar mass. The
notation νmax(α,D) (resp. νmin(α,D)) denotes the maximal (resp. minimal) Lelong number of
closed positive currents in α. There is also a more general version of (1.4) for mixed volumes,
see Corollary 6.14.

This kind of problems have been extensively studied by Vu and Su, see [Vu23b; Su25b; Su25a].
As we shall see in the toric example Example 6.2, the coefficient in this kind of estimate cannot
be a universal constant, contrary to the assertions in the literature. Our result improves all
known results in this direction. More importantly, our result is the first estimate with explicit
constants.

Interestingly, our approach relies on the recent development in the theory of transcendental
Okounkov bodies in [DRWN+23]. Based on the volume formula of transcendental Okounkov
bodies, we established the following estimate of the restricted volume, which has independent
interests as well.

Theorem 1.2. Let α ∈ H1,1(X,R) be a big class. Then for any prime divisor D on X, we have

volX|D
(
α− t{D}

)
≥ volα(

νmax(α,D)− ν(α,D)
)n ·min

{
t− ν(α,D), νmax(α,D)− t

}n−1

as long as ν(α,D) ≤ t ≤ νmax(α,D).
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This draft was written during the author’s visit to Sichuan University. The author would like
to thank Huadi Qu for her kind invitation.
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2. Preliminaries

2.1. Quasi-plurisubharmonic functions. Let X be a connected compact Kähler manifold of
dimension n.

We briefly recall the notions of P and I-equivalences. For the details, see [Xia, Chapter 3,
Chapter 6].

Definition 2.1. Let φ,ψ be quasi-plurisubharmonic functions on X. We say φ ∼P ψ (resp.
φ ⪯P ψ) if there is a closed smooth real (1, 1)-form θ on X such that φ,ψ ∈ PSH(X, θ)>0 and

Pθ[φ] = Pθ[ψ] (resp.Pθ[φ] ≤ Pθ[ψ]).



TRANSCENDENTAL B-DIVISORS II — THE INTERSECTION THEORY 5

Here PSH(X, θ) denotes the space of θ-plurisubharmonic functions on X and PSH(X, θ)>0
denotes the subset consisting of φ ∈ PSH(X, θ) with

∫
X θ

n
φ > 0, with θφ = θ + ddcφ. Here and

in the sequel, the Monge–Ampère type product θnφ is always understood in the non-pluripolar
sense of [BT87; GZ07; BEGZ10]. The envelope Pθ is defined as follows:

Pθ[φ] := sup*
C∈R

(φ+ C) ∧ 0,

where (φ+ C) ∧ 0 is the maximal element in PSH(X, θ) dominated by both φ+ C and 0.
Given a closed smooth real (1, 1)-form θ on X so that φ,ψ ∈ PSH(X, θ), we also say θφ ∼P θψ

(resp. θφ ⪯P θψ) if φ ∼P ψ (resp. φ ⪯P ψ). We write φ ⪯ ψ is φ ≤ ψ + C for some constant C.
Similarly, we write θφ ⪯ θψ. The same convention applies also to the I-partial order introduced
later.

Definition 2.2. Let φ,ψ be quasi-plurisubharmonic functions on X. We say φ ∼I ψ (resp.
φ ⪯I ψ) if I(λφ) = I(λψ) (resp. I(λφ) ⊆ I(λψ)) for all real λ > 0.

Here I denotes the multiplier ideal sheaf in the sense of Nadel.
If θ is a closed smooth real (1, 1)-form such that φ,ψ ∈ PSH(X, θ), then φ ⪯I ψ if and only if

Pθ[φ]I ≤ Pθ[ψ]I ,

where
Pθ[φ]I = sup {η ∈ PSH(X, θ) : η ≤ 0, I(λφ) ⊇ I(λη) for all λ > 0} .

Equivalently, we may replace ⊇ by = in this equation.
Another equivalent formulation of Definition 2.2 is that for any prime divisor E over X, we

have
ν(φ,E) = ν(ψ,E) resp. ν(φ,E) ≥ ν(ψ,E).

Here ν denotes the generic Lelong number.
We briefly recall the notion of prime divisors over a complex space Z. A prime divisor over Z

is a prime divisor E on Y , where π : Y → Z is a proper bimeromorphic map from a complex
manifold. Consider another prime divisor E′ on Y ′, where π′ : Y ′ → Z is another such map.
These divisors are considered equivalent if there is a proper bimeromorphic map π′′ : Y ′′ → Z
from a complex manifold dominating both π and π′ so that the strict transforms of E and E′

on Y ′′ are the same. By abuse of language, when we talk about a prime divisor over Z, we
sometimes refer to such an equivalence class.

Given any φ ∈ PSH(X, θ), we have

φ− sup
X
φ ≤ Pθ[φ] ≤ Pθ[φ]I .

The operation Pθ[•]I is idempotent. We say φ ∈ PSH(X, θ) is I-model if Pθ[φ]I = φ. Similarly,
on the subset PSH(X, θ)>0, the operation Pθ[•] is also idempotent. We say φ ∈ PSH(X, θ)>0 is
model if Pθ[φ] = φ.

A quasi-plurisubharmonic function φ on X is called I-good if there is a closed smooth real
(1, 1)-form θ on X such that φ ∈ PSH(X, θ)>0 and

Pθ[φ] = Pθ[φ]I .

This notion is independent of the choice of θ. For any closed smooth real (1, 1)-form θ′ on X so
that θ′ + ddcφ ≥ 0, we also say the current θ′

φ is I-good.
Given a closed positive (1, 1)-current T on X, we write T = θ + ddcφ, then we define

volT :=
∫
X

(θ + ddcPθ[φ]I)n .

This definition is independent of the choice of the decomposition of T as θ + ddcφ. In general,

volT ≥
∫
X
Tn,
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and if
∫
X T

n > 0, equality holds if and only if T is I-good. More generally, if T1, . . . , Tn are
closed positive (1, 1)-currents on X with positive non-pluripolar masses, we define

vol(T1, . . . , Tn) :=
∫
X

(θ1 + ddcPθ1 [φ1]) ∧ · · · ∧ (θn + ddcPθn [φn]) ,

where we write Ti = θi + ddcφi for each i. In general, when the masses possibly vanish, we define
vol(T1, . . . , Tn) := lim

ϵ→0+
vol(T1 + ϵω, . . . , Tn + ϵω)

for any Kähler form ω on X. Note that
vol(T ) = vol(T, . . . , T )

for any closed positive (1, 1)-current T on X.
We say a closed positive (1, 1)-current T has analytic singularities if locally T can be written

as ddcf , where f is a plurisubharmonic function of the following form:

c log
(
|f1|2 + · · ·+ |fN |2

)
+R,

where c ∈ Q≥0, f1, . . . , fN are holomorphic functions on X and R is a bounded function. When
we write T = θ + ddcφ for some smooth closed real (1, 1)-form θ and φ ∈ PSH(X, θ), we also
say φ has analytic singularities.

As a particular case, if D is an effective Q-divisor on X, we say a closed positive (1, 1)-current
T has log singularities along D if T − [D] is positive, and has locally bounded potentials. It
is easy to see that T has analytic singularities. Conversely, if we begin with T with analytic
singularities, there is always a modification π : Y → X so that π∗T has log singularities along
an effective Q-divisor on Y . See Definition 2.3 for our definition of modifications.

Let θ be a smooth closed real (1, 1)-form on X and η ∈ PSH(X, θ). We say a sequence (ηj)j
of quasi-plurisubharmonic functions is a quasi-equisingular approximation of η if the following
are satisfied:

(1) for each j, ηj has analytic singularities;
(2) (ηj)j is decreasing with limit η;
(3) for each λ′ > λ > 0, we can find j0 > 0 so that for j ≥ j0,

I(λ′ηj) ⊆ I(λη);
(4) There is a decreasing sequence (ϵj)j in R≥0 with limit 0, and a Kähler form ω on X so

that
ηj ∈ PSH (X, θ + ϵjω)

for each j > 0.
The existence of quasi-equisingular approximations is guaranteed by [DPS01]. We also say
(θ + ddcηj)j is a quasi-equisingular approximation of θ + ddcη. When θη is a Kähler current, we
can (and we always do) take a quasi-equisingular approximation in the same cohomology class
of {θ}.

Suppose that {θ} is big. It is shown in [DDNL21] that there is a pseudometric dS on PSH(X, θ)
satisfying the following inequality: For any φ,ψ ∈ PSH(X, θ), we have

dS(φ,ψ) ≤ 1
n+ 1

n∑
j=0

(
2
∫
X
θjφ∨ψ ∧ θ

n−j
Vθ
−
∫
X
θjφ ∧ θ

n−j
Vθ
−
∫
X
θjψ ∧ θ

n−j
Vθ

)
≤CndS(φ,ψ),

(2.1)

where Cn = 3(n + 1)2n+2. Here Vθ = max{φ ∈ PSH(X, θ) : φ ≤ 0}. Moreover, dS(φ,ψ) = 0
if and only if φ ∼P ψ. In particular, the dS-pseudometric descends to a pseudometric (still
denoted by dS) on the space of closed positive (1, 1)-currents in {θ}.

Given a net of closed positive (1, 1)-currents Ti in {θ}, and another closed positive (1, 1)-current
T in {θ}. Then Ti

dS−→ T if and only if Ti + ω
dS−→ T + ω for any Kähler form ω on X.

In general, given closed positive (1, 1)-currents Ti and T on X, we say Ti
dS−→ T if we can find

Kähler forms ωi and ω on X such that the Ti + ωi’s and T + ω represent the same cohomology
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class and Ti + ωi
dS−→ T + ω. This definition is independent of the choices of the ωi’s and ω.

Quasi-equisingular approximations provide the primary source of dS-convergent sequences.
The proceeding theory can be easily extended to compact normal Kähler spaces, as explained

in the appendix of [Xia].

2.2. Modifications and cones. Let X be a reduced compact Kähler space of dimension n.
In this paper, we use the word modification in a very non-standard sense.

Definition 2.3. A modification of X is a bimeromorphic morphism π : Y → X, which is a finite
composition of blow-ups with smooth centers.

We say a modification π′ : Z → X dominates another π : Y → X if there is a morphism
g : Z → Y making the following diagram commutative:

(2.2)
Z Y

X.

g

π′ π

The modifications of X together with the domination relation form a directed set.
Fix a reference Kähler form ω on X. Recall that a class α ∈ H1,1(X,R) is modified nef or

movable if for any ϵ > 0, we can find a closed (1, 1)-current T ∈ α such that
(1) T + ϵω ≥ 0;
(2) ν(T + ϵω,D) = 0 for any prime divisor D on X.

This definition is independent of the choice of ω. Here ν(•, D) denote the generic Lelong number
along D.

These classes are called nef en codimension 1 in Boucksom’s thesis [Bou02], where they were
introduced for the first time. Modified nef classes form a closed convex cone in H1,1(X,R). Note
that a modified nef class is necessarily pseudoeffective. A nef class is obviously modified nef.

Recall the multiplicity of a cohomology class as defined in [Bou02, Section 2.1.3].

Definition 2.4. Let α ∈ H1,1(X,R) be a pseudoeffective class and D be a prime divisor on X.
We define the Lelong number ν(α,D) as follows:

(1) When α is big, define ν(α,D) = ν(T,D) for any closed positive (1, 1)-current T ∈ α with
minimal singularities (namely, a current in α that is less singular than any current in α).

(2) In general, define
ν(α,D) := lim

ϵ→0+
ν(α+ ϵ{ω}, D).

When α is big, (2) is compatible with (1) and the definition is independent of the choice of ω.
By definition, a pseudoeffective class α is modified nef if and only if ν(α,D) = 0 for all prime
divisors D on X.

Let T be a closed positive (1, 1)-current on X. Then we define the regular part Reg T of T as
the regular part of T with respect to Siu’s decomposition. In other words, we write

(2.3) T = Reg T +
∑
i

ci[Ei],

where Ei is a countable collection of prime divisors on X and ci = ν(T,Ei) > 0; the regular part
Reg T is a closed positive (1, 1)-current whose generic Lelong number along each prime divisor
on X is 0.

Definition 2.5. We say a closed positive (1, 1)-current T on X is non-divisorial (resp. divisorial)
if T = Reg T (resp. Reg T = 0).

Note that the cohomology class of a non-divisorial current is always modified nef. Conversely,
a current with minimal singularities in a big and modified nef class is always non-divisorial.
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2.3. Partially ordered linear spaces. Let V be a finite-dimensional real vector space, and
C ⊆ V be a convex cone satisfying the following assumptions:

(C1) C is closed;
(C2) C is pointed, namely C ∩ (−C) = {0};
(C3) C is full-dimensional, namely V = C − C.
Given x, y ∈ V , we define x ≤ y if y − x ∈ C. Thanks to (C2), ≤ defines a partial order. In

particular, we can talk about increasing and decreasing nets. This partial order has the following
properties:
(VO1) Given x, y, z ∈ V , if x ≤ y, then x+ z ≤ y + z;
(VO2) for any λ ≥ 0 and x, y ∈ V , if x ≤ y, then λx ≤ λy.
In the terminology of [AT07], ≤ is a vector-ordering of V . The results in this section can be
proved using the more general theory in [AT07], but we shall give elementary proofs for the ease
of the readers.

Let V ∨ denote the dual vector space of V . Let C∨ ⊆ V ∨ be the dual cone of C, namely,
C∨ =

{
ℓ ∈ V ∨ : ℓ|C ≥ 0

}
.

It is well-known that under the assumption of (C1) and (C2), C∨ has full dimension. See [BV04,
Exercise 2.31].
Proposition 2.6. Suppose that (xi)i∈I is a decreasing net in C, then (xi)i converges to some
element in x ∈ C. Moreover, x ≤ xi for all i ∈ I.
Proof. Since C∨ has full dimension, we can choose ℓ1, . . . , ℓn ∈ C∨ forming a basis of V ∨. Then
the linear isomorphism

L := (ℓ1, . . . , ℓn) : V → Rn

maps C into a cone C ′ contained in the first quadrant.
In particular, (L(xi))i∈I is a net in the first quadrant and each component forms a decreasing

net. The usual monotone convergence theorem shows that (L(xi))i has a limit y in the first
quadrant. Then xi → x := L−1(y). Thanks to (C1), x ∈ C.

Next fix i ∈ I, we have
xj ≤ xi, ∀j ∈ I, j ≥ i.

Using (C1) again, we find x ≤ xi. □

Corollary 2.7. Suppose that (xi)i∈I is an increasing net in V and y ∈ V is such that xi ≤ y
for all i, then (xi)i converges to some x ≤ y. Furthermore, x ≥ xi for each i ∈ I.
Proof. It suffices to apply Proposition 2.6 to the net (y − xi)i∈I . □

Proposition 2.8. Let (yi)i>0 be a sequence in C so that
∑∞
i=1 yi converges. Consider sequences

(xji )j>0 in C for all i > 0 so that

xji ≤ yi, ∀i, j > 0;

lim
j→∞

xji = xi, ∀i > 0.

Then for all j > 0,
∑∞
i=1 x

j
i converges and

(2.4) lim
j→∞

∞∑
i=1

xji =
∞∑
i=1

xi.

Proof. For each j > 0, the convergence of
∑∞
i=1 x

j
i follows from Corollary 2.7.

As for (2.4), as in the proof of Proposition 2.6, assume that V = Rn and C ⊆ Rn≥0. In this
case, it suffices to apply the dominated convergence theorem to each component. □

Proposition 2.9. Let y ∈ C. Consider increasing sequences (xji )j>0 in C for all i > 0 with
limits xi. Assume that

∞∑
i=1

xji ≤ y, ∀j > 0,
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Then
lim
j→∞

∞∑
i=1

xji =
∞∑
i=1

xi.

Proof. As in the proof of Proposition 2.6, assume that V = Rn and C ⊆ Rn≥0. In this case, it
suffices to apply Levi’s monotone convergence theorem to each component. □

Proposition 2.10. Let (xi)i∈I , (yi)i∈I , (zi)i∈I be nets in C with xi → x for some x ∈ C and
zi → x. Assume that xi ≥ yi ≥ zi for all i ∈ I, then yi → x.

Proof. As in the proof of Proposition 2.6, we may assume that V = Rn and C = Rn≥0. Then it
suffices to apply the squeeze theorem to the components. □

2.4. Cones in cohomology. Let X be a connected compact Kähler manifold of dimension n.
In Appendix A, we shall briefly recall Lelong’s theory of positive forms.

Definition 2.11. We say a class α ∈ Hp,p(X,R) is positive if for all weakly positive closed
(n− p, n− p)-form F on X, we have

α ∩ {F} ≥ 0.
We write α ≥X 0 in this case.

Here {F} refers to the cohomology class in Hn−p,n−p(X,R) represented by F . The cap
notation ∩ refers to the cohomology pairing.

When we have two classes α, β ∈ Hp,p(X,R), we write α ≥X β if α− β ≥X 0. Similarly, the
notation ≤X has the obvious meaning.

If α contains a closed strongly positive (p, p)-current, it is clearly positive. The author does
not know if the converse holds in general. When p = n− 1, the converse follows from [DP04,
Theorem 0.1]. See [CT15] for a proof without relying on the dubious Demailly regularization on
singular complex spaces. When p = 1, the converse also holds, namely a class in H1,1(X,R) is
positive if and only if it is pseudoeffective. In this case, we usually omit the subindex X and
write α ≥ β. The non-trivial implication is a theorem of Lamari, see [Lam99, Lemme 3.3].

An example of positive classes is given by non-pluripolar products.

Proposition 2.12. Let T1, . . . , Tp be closed positive (1, 1)-currents on X. Then T1 ∧ · · · ∧ Tp is
strongly positive, and hence {T1 ∧ · · · ∧ Tp} is positive.

Here and in the sequel T1 ∧ · · · ∧ Tp denotes the non-pluripolar product as before.
Although this result is definitely known to experts, it seems missing from the literature. We

take this opportunity to give a proof. In the proof below, we implicitly use the fact that a
smooth real closed (p, p)-form is strongly positive as a form if and only if it is strong positive as
a current. This is a consequence of Lemma A.3 proved in the appendix.

Proof. It suffices to show that T1 ∧ · · · ∧ Tp is strongly positive. The problem is then local.
We are reduced to the following: Suppose that U is a domain set in Cn and φ1, . . . , φp are
plurisubharmonic functions on U . Assume that ddcφ1 ∧ · · · ∧ ddcφp is well-defined, then it is
strongly positive.

Step 1. We first assume that each φi is bounded. Then taking convolution with Friedrichs
mollifiers, we may assume that each φi is smooth. In this case, the strong positivity of
ddcφ1 ∧ · · · ∧ ddcφp follows from [Dem12, Page 169, Proposition 1.11].

Step 2. We handle the general case.
Let η be a compactly supported smooth closed weakly positive (n− p, n− p)-form on U . We

need to show that

(2.5)
∫
U

(ddcφ1 ∧ · · · ∧ ddcφp) ∧ η ≥ 0.

For this purpose, we apply [BEGZ10, Lemma 1.5] and get∫
U

(ddcφ1 ∧ · · · ∧ ddcφp) ∧ η = lim
C→∞

∫
{φi>−C}

( p∧
i=1

ddc (φi ∨ (−C))
)
∧ η.
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But each term is non-negative by Step 1, and hence (2.5) follows. □

Proposition 2.13. The cone of positive classes in Hp,p(X,R) satisfy (C1), (C2) and (C3).

In particular, the abstract results proved in Section 2.3 can be applied. In the sequel of this
paper, we shall apply them without further mentioning.

Proof. The condition (C1) is obvious.
Let us prove (C2). Let α ∈ Hp,p(X,R) be a class with vanishing intersection with all classes

of the form {F}, where F is a closed weakly positive (n− p, n− p)-form. We need to show that
α = 0.

Fix a general cohomology class β ∈ Hn−p,n−p(X,R), it suffices to show that

(2.6) α ∩ β = 0.

For this purpose, take a closed real (n− p, n− p)-form G representing β. Fix a Kähler form ω
on X. We observe that

G+ Cωn−p

is positive when C is large enough. In fact, thanks to the compactness of X, this problem is
essentially local, we can consider it on a coordinate chart on X. Then this is just a simple linear
algebra. For later use, let us observe that we can in fact guarantee that G+ Cωn−p is strongly
positive, as follows from Theorem A.6.

Now by our assumption,

α ∩
{
Cωn−p} = 0, α ∩

{
G+ Cωn−p} = 0.

Therefore, (2.6) follows.
Finally let us prove (C3). This follows form the observation in proving (C2): A closed smooth

real (p, p)-form can always be represented as the difference of two closed smooth strongly positive
(p, p)-forms. □

Proposition 2.14. Let f : Y → X be a proper morphism from a Kähler manifold, if α ∈
Hp,p(Y,R) is positive, then so is f∗α.

Note that we do not require that f be bimeromorphic, nor surjective.

Proof. This follows from the fact that the pull-back of a weakly positive form is weakly positive.
□

Proposition 2.15. Let α ∈ H1,1(X,R) be a nef class and β ∈ Hp,p(X,R) be a positive class.
Then α ∩ β is positive.

Proof. Without loss of generality, we may assume that α is a Kähler class. Then our assertion
follows from the fact that the wedge product of a positive (1, 1)-form with a weakly positive
form is weakly positive. □

Lemma 2.16. Let α ∈ Hp,p(X,R) be a positive class. Assume that for each Kähler class β, we
have α ∩ βn−p = 0, then α = 0.

Proof. Suppose that α ̸= 0, then we can find a closed real (n − p, n − p)-form F so that
α ∩ {F} < 0. As in the proof of Proposition 2.13, we can find a Kähler form ω on X so that
F + ωn−p is positive. Then by our assumption, we know that α ∩ {F + ωn−p} < 0, which is a
contradiction. □

A source of positive classes is provided by the following monotonicity theorem proved in
increasing order of generality by [WN19b; DDNL18; Vu21]:

Theorem 2.17. Let α1, . . . , αp ∈ H1,1(X,R) be pseudoeffective classes. Consider closed positive
(1, 1)-currents Ti, Si ∈ αi for i = 1, . . . , p. Assume that Ti ⪯P Si for all i. Then

(2.7) {T1 ∧ · · · ∧ Tp} ≤X {S1 ∧ · · · ∧ Sp} .
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The notion of P -partial order is recalled in Section 2.1. In particular, the cohomology class
{T1 ∧ · · · ∧ Tp}

depends only on the P -equivalence classes of the Ti’s and the cohomology classes of the Ti’s.

Proof. Take a Kähler form ω on X and replacing Ti and Si by Ti+ϵω and Si+ϵω respectively for
some small ϵ > 0, we can reduce to the case where the Ti’s and the Si’s are all Kähler currents.

Take a smooth closed real (1, 1)-form θi ∈ αi and write
Ti = θi + ddcφi, Si = θi + ddcψi.

Then φi ⪯P ψi.
Step 1. We first prove that{

(θ1 + ddcψ1) ∧ · · · ∧ (θp + ddcψp)
}

=
{

(θ1 + ddcPθ1 [ψ1]) ∧ · · · ∧
(
θp + ddcPθp [ψp]

)}
.

The ≤X direction is proved in [Vu21, Theorem 4.4]. Therefore, using Lemma 2.16, in order to
prove the equality, we may assume that p = n. In this case, the assertion follows from the usual
monotonicity theorem. See [Xia, Proposition 6.1.4].

Step 2. By Step 1, we may replace ψi by Pθi
[ψi] and assume that φi ⪯ ψi for each i = 1, . . . , p.

By Vu’s result [Vu21, Theorem 4.4] again, we conclude (2.7). □

Let us also recall another result for later use.

Theorem 2.18. Let α1, . . . , αp ∈ H1,1(X,R) be big classes. Consider nets of closed positive
(1, 1)-currents (T ji )j∈J in αi for each i = 1, . . . , p. Assume that T ji

dS−→ Ti ∈ αi for each
i = 1, . . . , p. Then

(2.8) lim
j∈J

{
T j1 ∧ · · · ∧ T

j
p

}
= {T1 ∧ · · · ∧ Tp} .

This follows verbatim from the proof of [Xia, Theorem 6.2.1], with Theorem 2.17 in place of
the usual monotonicity theorem.

For later use, we recall the behavior of the non-pluripolar products under bimeromorphic
morphisms:

Proposition 2.19. Let π : Y → X be a proper bimeromorphic morphism from a Kähler manifold.
Let T1, . . . , Tp be closed positive (1, 1)-currents on X. Then

π♢(T1 ∧ · · · ∧ Tp) =π∗T1 ∧ · · · ∧ π∗Tp,

π∗ (π∗T1 ∧ · · · ∧ π∗Tp) =T1 ∧ · · · ∧ Tp.

Here π♢ is defined as follows: Take a smallest Zariski closed subset Z ⊆ X so that π is an
isomorphism outside Z. Then given a closed positive (p, p)-current T on X, we let π♢T be the
zero-extension of π|∗Y \π−1(Z)(T ) to Y .

Both assertions follow easily from the fact that the non-pluripolar products put no mass on
proper analytic sets.

Definition 2.20. A class α ∈ Hp,p(X,R) is strictly movable if there is a proper bimeromorphic
morphism π : Y → X from a Kähler manifold Y , and Kähler classes β1, . . . , βp ∈ H1,1(Y,R) so
that
(2.9) α = π∗ (β1 ∩ · · · ∩ βp) .
A class in the closed convex cone generated by strictly movable classes is called a movable class.

The cone of movable classes in Hp,p(X,R) is a closed convex cone. A movable class is clearly
positive.

Example 2.21. When p = 1, a class α ∈ H1,1(X,R) is movable if and only if it is modified nef.
This is [Bou02, Proposition 2.1.2].

When p = 0 or p = n, we have canonical identifications Hp,p(X,R) ∼= R. A class corresponding
to t ∈ R is movable if and only if t ≥ 0.
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Example 2.22. In (2.9), if β1, . . . , βp ∈ H1,1(Y,R) are nef, α is still movable. This follows
immediately from the continuity of π∗.

Proposition 2.23. Let π : Y → X be a proper bimeromorphic morphism from a Kähler manifold
Y . Suppose that α ∈ Hp,p(Y,R) is movable, then so is π∗α.

Proof. We may assume that α is strictly movable. Then our assertion follows immediately from
the definition. □

Proposition 2.24. Let α ∈ H1,1(X,R) be a pseudoeffective class, and β ∈ Hp,p(X,R) be a
movable class. Then

(1) α ∩ β is positive;
(2) if furthermore α is nef, then α ∩ β is movable.

Proof. We may assume that β is strictly movable. Take a proper bimeromorphic morphism
π : Y → X from a Kähler manifold Y , and Kähler classes γ1, . . . , γp ∈ H1,1(Y,R) with

β = π∗ (γ1 ∩ · · · ∩ γp) .
Then

α ∩ β = π∗ (π∗α ∩ γ1 ∩ · · · ∩ γp) .
(1) By Proposition 2.14, it suffices to show that π∗α ∩ γ1 ∩ · · · ∩ γp is positive, which follows

from Proposition 2.15.
(2) Thanks to Proposition 2.23, it suffices to show that π∗α ∩ γ1 ∩ · · · ∩ γp is movable. But

this is obvious. □

For mnemonic purposes, we summarize Proposition 2.24 and Proposition 2.15 in Table 1.

α ∈ H1,1(X,R) β ∈ Hp,p(X,R) α ∩ β
nef positive positive
nef movable movable

positive movable positive

Table 1. Positivity properties of intersection products

2.5. Movable intersection theory. Let X be a connected compact Kähler manifold of
dimension n. Consider pseudoeffective (1, 1)-classes α1, . . . , αp ∈ H1,1(X,R).

Definition 2.25. The movable intersection ⟨α1 ∧ · · · ∧ αp⟩ ∈ Hp,p(X,R) is defined as follows:
(1) When the αi’s are all big, we take closed positive (1, 1)-currents with minimal singularities

Ti,min in each αi and let
⟨α1 ∧ · · · ∧ αp⟩ = {T1,min ∧ · · · ∧ Tp,min} ;

(2) in general, define

⟨α1 ∧ · · · ∧ αp⟩ = lim
ϵ→0+

〈
(α1 + ϵβ) ∧ · · · ∧ (αp + ϵβ)

〉
,

where β ∈ H1,1(X,R) is a Kähler class.

The movable intersection is independent of the choices we made. Moreover, it is always a
positive class. The current definition is taken from [BEGZ10]. A more traditional (but equivalent)
definition can be found in [Bou02; BDPP13].

Proposition 2.26. Let α1, . . . , αp, α
′
1, α, β1, . . . , βp ∈ H1,1(X,R) be pseudoeffective classes, and

λ ≥ 0. We have the following properties:
(1) The movable intersection is symmetric: For each permutation σ of {1, . . . , p}, we have〈

ασ(1) ∧ · · · ∧ ασ(p)
〉

= ⟨α1 ∧ · · · ∧ αp⟩.
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(2) The movable intersection is superadditive in each variable:〈
(α1 + α′

1) ∧ α2 ∧ · · · ∧ αp
〉
≥X ⟨α1 ∧ α2 ∧ · · · ∧ αp⟩+ ⟨α′

1 ∧ α2 ∧ · · · ∧ αp⟩.
(3) The movable intersection is homogeneous in each variable:

⟨λα1 ∧ α2 ∧ · · · ∧ αp⟩ = λ⟨α1 ∧ α2 ∧ · · · ∧ αp⟩.
(4) The movable intersection is increasing in each variable: Suppose that α1 ≥ α′

1, then
⟨α1 ∧ · · · ∧ αp⟩ ≥X ⟨α′

1 ∧ α2 ∧ · · · ∧ αp⟩.
(5) We have

(2.10) α = ⟨α⟩+
∑
D⊆X

ν(α,D){D},

where D runs over the set of prime divisors on X.
(6) We have

⟨α1 ∧ · · · ∧ αp⟩ = lim
ϵ→0+

〈
(α1 + ϵβ1) ∧ · · · ∧ (αp + ϵβp)

〉
.

(7) When α1 is nef, we have
⟨α1 ∧ · · · ∧ αp⟩ = α1 ∩ ⟨α2 ∧ · · · ∧ αp⟩

See [BDPP13, Theorem 3.5] for the proof of most parts. Part (6) is proved in [Bou02,
Proposition 3.2.4].

The decomposition (2.10) is usually referred to as the divisorial Zariski decomposition or the
Boucksom–Nakayama decomposition.

The volume of pseudoeffective class α ∈ H1,1(X,R) is defined as vol(α) := ⟨αn⟩.

3. Generalized intersection theory

Let X be a connected compact Kähler manifold of dimension n. In the whole section, p, q
will denote two non-negative integers.

We remind the readers that the word modification takes a very non-standard meaning in this
paper, as we recalled in Definition 2.3.

3.1. The notion of b-classes. We introduce the central object of interest in this paper — The
b-classes.

Definition 3.1. A (Weil) b-class T of degree p over X is an element in
(3.1) lim←−

π : Y→X

Hp,p(Y,R),

where π : Y → X runs over the directed set of modifications of X. Here the limit is taken in the
category of real vector spaces.

Equivalently, thanks to Hironaka’s Chow lemma [Hir75, Corollary 2], we could ask π to run
over the set of proper bimeromorphic morphisms from Kähler manifolds.

The components of T with respect to (3.1) will be denoted by TY ∈ Hp,p(Y,R). The vector
space of b-classes of degree p over X is denoted by Divpb(X).

The vector space Divpb(X) is endowed with the projective limit topology. In other words, the
convergence of a net of b-classes (Ti)i∈I means the convergence of (TiY )i∈I to TY with respect
to the Euclidean topology for each modification π : Y → X.

Definition 3.2. A b-class T ∈ Divpb(X) is nef if the component TY is movable in the sense of
Definition 2.20 for each modification π : Y → X.

A b-class T ∈ Divpb(X) is pseudoeffective if the component TY is positive in the sense of
Definition 2.11 for each modification π : Y → X.

Remark 3.3. There is a subtlety here: We can as π : Y → X to run over either all modifications
or all proper bimeromorphic morphisms from Kähler manifolds. The corresponding notions of
nef or pseudoeffective b-classes are identical thanks to Proposition 2.14 and Proposition 2.23.
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Note that nef b-classes and pseudoeffective b-classes are both closed conditions, namely they
are preserved under limits of nets, since the movable cone and the positive cone on a compact
Kähler manifold are both closed.

From the projective limit definition (3.1), there is a canonical identification between Divpb(X)
and Divpb(Y ) for each proper bimeromorphic morphism π : Y → X between Kähler manifolds.
We shall implicitly use this identification all the time.

All notions related to b-divisors defined in this paper are invariant under changing X to its
modifications. We shall explicitly check this whenever the statement is not obvious.

Furthermore, using this identification, we can make sense of Divpb(X) for an arbitrary reduced
compact Kähler space X: Simply take a projective resolution Y → X, and set Divpb(X) :=
Divb(Y ).

Example 3.4. When p = 0, there is a canonical identification Div0
b(X) ∼= R. An element

t ∈ Div0
b(X) is nef or pseudoeffective if and only if t ≥ 0. Similarly, when p = n, there is also a

canonical identification Divnb(X) ∼= R. An element t ∈ Divnb(X) is nef or pseudoeffective if and
only if t ≥ 0.

When p = 1, Div1
b(X) is just the set of b-divisors over X, as we studied in the previous paper.

An element in Div1
b(X) is nef (resp. pseudoeffective) in the sense of Definition 3.2 if and only if

it is a nef (resp. pseudoeffective) b-divisor in the sense of [Xia25]. See [Xia, Corollary 11.1.1]
for the details.

Definition 3.5. Given T,T′ ∈ Divpb(X), we write T ≥ T′ if for each modification π : Y → X,
we have TY ≥Y T′

Y .

Recall that ≥Y is defined right after Definition 2.11.
Thanks to Proposition 2.14, it suffices to check this condition for a cofinal set of modifications.

Note that ≥ defines a partial order on Divpb(X).

Remark 3.6. In Definition 3.5 we could equivalent ask π to run over the set of proper bimero-
morphic morphisms π : Y → X from Kähler manifolds, as a consequence of Proposition 2.14.

Let us recall the following construction from [Xia22; Xia25]:

Definition 3.7. Let T be a closed positive (1, 1)-current on X, we define a nef b-divisor D(T )
over X as follows:
(3.2) D(T )Y = {Reg π∗T} ∈ H1,1(Y,R),
for all modification π : Y → X.

Here Reg is defined in (2.3).

Remark 3.8. From the obvious functoriality of Siu’s decomposition, for a proper bimeromorphic
morphism π : Y → X from a Kähler manifold Y , the component D(T )Y of D(T ) is given by
exactly the same formula (3.2).

Note that D(T ) depends linearly on T in the following sense: If T ′ is another closed positive
(1, 1)-current on X, and λ ≥ 0, then
(3.3) D(T + T ′) = D(T ) + D(T ′), D(λT ) = λD(T ).

Recall that a nef b-divisor D is big if its volume
volD := lim

π : Y→X
volDY

is positive.
The main result in [Xia25] says

Theorem 3.9. Fix a modified nef and big class α ∈ H1,1(X,R). The map D in Definition 3.7
induces a canonical bijection between

(1) the set of non-divisorial closed positive (1, 1)-currents in α modulo I-equivalence, and
(2) the set of nef and big b-divisors D over X with DX = α.
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The correspondence preserves the volumes.
Moreover, given any nef and big b-divisor D over X, we can always find a non-divisorial

I-good closed positive (1, 1)-current T with D = D(T ).

The relevant notions are recalled in Section 2.1. In general, we cannot take T as a Kähler
current, however, we have the following useful observation: If D is a nef b-divisor, ω is a Kähler
form on X, then D + D(ω) can be represented as D(T ) where T is an I-good non-divisorial
Kähler current. It suffices to write D+D(ω) as (D+ 2−1D(ω)) + 2−1D(ω) and apply Theorem 3.9
to the term in the parentheses.

Recall that a nef b-divisor D over X is Cartier if it admits a realization: A pair (π : Y → X,α)
consisting of a proper bimeromorphic morphism π : Y → X from a Kähler manifold Y and a nef
class α ∈ H1,1(Y,R), so that for each modification π′ : Y ′ → X dominating π, the value DY ′ is
the pull-back of α through the morphism Y ′ → Y . We also say D is realized on Y by α.

Note that we can always take π to be a modification.
As a corollary, we have:

Corollary 3.10. For any nef b-divisor D over X, we can find a decreasing sequence (Di)i of
nef Cartier b-divisors over X with limit D.

See [Xia25, Corollary 4.15].

Definition 3.11. Given a pseudoeffective class α ∈ H1,1(X,R), we define a nef b-divisor D(α)
over X as follows:

D(α)Y = ⟨π∗α⟩,

where π : Y → X is a modification.

Recall that ⟨•⟩ refers to the movable intersection product as we recalled in Section 2.5. Namely,
D(α)Y is the movable part of π∗α with respect to the Boucksom–Nakayama decomposition.

When α is big, D(α) = D(Tmin), where Tmin ∈ α is a current with minimal singularities. When
α is nef, we have

(3.4) D(α)Y = π∗α

for each modification π : Y → X.
The operator is concave in the following sense:

Proposition 3.12. Let α, β ∈ H1,1(X,R) be pseudoeffective classes. Then

(3.5) D(α) + D(β) ≤ D(α+ β).

Equality holds when α, β are both nef.

Proof. In order to prove (3.5), it suffices to prove

D(α)X + D(β)X ≤ D(α+ β)X .

In other words, ∑
D⊆X

(
ν(α,D) + ν(β,D)

)
{D} ≥

∑
D⊆X

ν(α+ β,D){D},

which follows from the simple observation: For any prime divisor D on X, we have

ν(α,D) + ν(β,D) ≥ ν(α+ β,D).

When α and β are nef, the equality holds in (3.5) by our explicit description of the associated
b-divisors in (3.4). □
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3.2. The intersection theory. We begin with the intersection between a Cartier nef b-divisor
and a nef b-class.

Definition 3.13. Let D be a nef Cartier b-divisor over X and T ∈ Divqb(X) be a nef b-class.
Then we define the nef class D ∩ T ∈ Divq+1

b (X) as follows: Let (π : Y → X,α) be a realization
of D, then we define for each modification π′ : Y ′ → X dominating π through g : Y ′ → Y ,
(3.6) (D ∩ T)Y ′ := g∗α ∩ TY ′ ∈ Hp+1,p+1(Y,R).
Here as before, ∩ on the right-hand side denotes the intersection product of cohomology. The
class defined in (3.6) is movable by Proposition 2.24. The relevant notations are summarized in
the following commutative diagram:

Y ′ Y

X.
π′

g

π

By the projection formula, these classes are compatible under pushforwards. To be more
precise, if π′′ : Y ′′ → X is a modification dominating π′ through h : Y ′′ → Y ′, as in the following
commutative diagram:

(3.7)
Y ′′ Y ′ Y

X,
π′′

h

π′

g

π

then
h∗
(
(g ◦ h)∗α ∩ TY ′′

)
= g∗α ∩ TY ′ .

Since the set of the π′’s dominating π is cofinal in the directed set of modifications of X, the
above definition indeed yields a nef b-class D ∩ T over X.

Remark 3.14. By exactly the same argument, if π′ : Y ′ → X is a proper bimeromorphic map
from a Kähler manifold dominating π through g : Y ′ → Y , then the value (D ∩ T)Y ′ is given by
exactly the same formula (3.6).

Lemma 3.15. The product D∩T in Definition 3.13 is independent of the choice of the realization
(π : Y → X,α) of D.

Proof. Let (π : Y ′ → X,α′) be another realization of D. We want to show that D ∩ T defined
with respect to the two realizations are the same. For this purpose, we may assume that π′

dominates π through a morphism g : Y ′ → Y and α′ = g∗α.
Consider a modification π′′ : Y ′′ → X dominating Y ′ through a morphism h : Y ′′ → Y ′. Then

have a commutative diagram as (3.7). Our assertion now means(
h∗α′) ∩ TY ′′ = ((g ◦ h)∗α) ∩ TY ′′ ,

which is clear. □

As a consequence, we have:

Corollary 3.16. Let D be a nef Cartier b-divisor over X and T ∈ Divqb(X) be a nef b-class.
Let π : Y → X be a proper bimeromorphic morphism from a Kähler manifold Y . Then D ∩ T in
Definition 3.19 is the same as D ∩ T when D and T are regarded as elements in Div1

b(Y ) and
Divpb(Y ).

We prove a few elementary properties of the intersection product. These properties will soon
be replaced by the more general versions.

Lemma 3.17. Let D,D′ be Cartier nef b-divisors over X and T,T′ ∈ Divpb(X) be nef b-classes.
(1) Assume that D ≥ D′, then

D ∩ T ≥ D′ ∩ T.
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(2) Assume that T ≥ T′, then
D ∩ T ≥ D ∩ T′.

Proof. Thanks to Corollary 3.16, we may assume that D and D′ are both realized on X by nef
classes α, α′ ∈ H1,1(X,R). Fix a modification π : Y → X.

(1) We need to show that if α ≥ α′, then
π∗α ∩ TY ≥Y π∗α′ ∩ TY .

This follows from Proposition 2.24.
(2) We need to show that if TY ≥Y T′

Y , then
π∗α ∩ TY ≥Y π∗α ∩ T′

Y .

This follows from Proposition 2.15. □

Lemma 3.18. Let D,D′ be nef Cartier b-divisors over X, λ ≥ 0 and T,T′ ∈ Divpb(X) be nef
b-classes. Then

(1) (D + D′) ∩ T = D ∩ T + D′ ∩ T;
(2) D ∩ (T + T′) = D ∩ T + D ∩ T′;
(3) (λD) ∩ T = λ (D ∩ T);
(4) D ∩ (λT) = λ (D ∩ T).

Proof. Thanks to Corollary 3.16, we may assume that D and D′ are both realized on X, then all
these assertions are obvious. □

Next we come to the general intersection theory between a nef b-divisor and a nef b-class.

Definition 3.19. Let D be a nef b-divisor over X and T ∈ Divqb(X) be a nef b-class. Then we
define the nef b-class D ∩ T ∈ Divq+1

b (X) as follows: Take a decreasing sequence (Di)i of nef
Cartier b-divisors over X converging to D whose existence is guaranteed by Corollary 3.10, then
let
(3.8) D ∩ T := lim

i→∞
Di ∩ T.

Thanks to Lemma 3.17, the sequence (Di ∩ T)i is decreasing. Since we consider the projective
limit topology on the space of b-classes, the convergence in (3.8) means the convergence of the
components on each model. The existence of the limit in (3.8) then follows from Proposition 2.6.

Lemma 3.20. The intersection D ∩ T in Definition 3.19 is independent of the choice of the
sequence (Di)i.

In particular, when D is Cartier, the b-class D ∩ T defined in Definition 3.19 coincides with
that in Definition 3.13.

Proof. We continue to use the notations in Definition 3.19.
We claim that for each nef Cartier b-divisor D′ over X with D′ ≥ D, we have

(3.9) lim
i→∞

Di ∩ T ≤ D′ ∩ T.

From this assertion, the lemma trivially follows.
In order to prove (3.9), it suffices to establish

(3.10) lim
i→∞

(Di ∩ T)X ≤X
(
D′ ∩ T

)
X .

In fact, applying (3.10) to D,D′, Di and T regarded as b-classes over a modification of X, we
conclude the general statement (3.9).

Thanks to Proposition 2.14, in order to prove (3.10), we may further assume that D′ is realized
on X by a nef class α ∈ H1,1(X,R). Then we are left with
(3.11) lim

i→∞
(Di ∩ T)X ≤X α ∩ TX .

Fix a Kähler class β ∈ H1,1(X,R). For each ϵ > 0, we can find i0 > 0 so that when i > i0,
Di,X ≤ α+ ϵβ.
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Fix an i > i0. Then
Di ≤ D(α+ ϵβ) = D(α) + ϵD(β),

where the inequality follows from Lemma 3.21 and the equality follows from Proposition 3.12.
Therefore, by Lemma 3.17 and Lemma 3.18,

(Di ∩ T)X ≤X (D(α) ∩ T)X + ϵ (D(β) ∩ T)X .
Letting i→∞ and then ϵ→ 0+, (3.11) follows. □

Lemma 3.21. Let π : Y → X be a proper bimeromorphic morphism from a Kähler manifold Y .
Then for any modified nef class α ∈ H1,1(Y,R), we have

α ≤ π∗π∗α.

Proof. Without loss of generality, we may assume that α is big. Take a current T with minimal
singularities T ∈ α. Then π∗π∗T is a closed positive (1, 1)-current in π∗π∗α whose regular part
with respect to Siu’s decomposition coincides with T . Our assertion follows. □

Proposition 3.22. Let π : Y → X be a modification. Let D be a nef b-divisor over X and
T ∈ Divqb(X) be a nef b-class. Then D ∩ T in Definition 3.13 remains invariant if we regard D
and T as elements in Div1

b(Y ) and Divpb(Y ).

Proof. This is a simple consequence of the Cartier case proved in Corollary 3.16. □

Proposition 3.23. Let D,D′ be nef b-divisors over X, λ ≥ 0 and T,T′ ∈ Divpb(X) be nef
b-classes. Then

(1) (D + D′) ∩ T = D ∩ T + D′ ∩ T;
(2) D ∩ (T + T′) = D ∩ T + D ∩ T′;
(3) (λD) ∩ T = λ (D ∩ T);
(4) D ∩ (λT) = λ (D ∩ T).

Proof. These are straightforward consequences of the Cartier case proved in Lemma 3.18. □

If we have nef b-divisors D1, . . . ,Dp over X and a nef b-class T ∈ Divqb(X), then we can define

D1 ∩ · · · ∩ Dp ∩ T := D1 ∩ (D2 ∩ · · · ∩ Dp ∩ T) ∈ Divp+q
b (X)

inductively.

Example 3.24. Let D1, . . . ,Dp be nef b-divisors over X. Consider 1 ∈ Div0
b(X) with the

identification in Example 3.4 in mind. We have
D1 ∩ · · · ∩ Dp ∩ 1 = D1 ∩ · · · ∩ Dp.

To see this, by induction on p, we may assume that p = 1, then our assertion becomes
D1 ∩ 1 = D1.

By approximation, it suffices to prove this when D1 is Cartier. Furthermore, Corollary 3.16
allows us to reduce to the case where D1 is realized on X. Then our assertion is trivial.

When p = n, the product D1 ∩ · · · ∩ Dn recovers the intersection product
(D1, . . . ,Dn)

studied in [Xia25] after taking the canonical identification Divnb(X) = R in Example 3.4 into
account.

We prove a monotonicity result:

Proposition 3.25. Let D,D′ be nef b-divisors over X and T,T′ ∈ Divpb(X) be nef b-classes.
(1) Assume that D ≥ D′, then

D ∩ T ≥ D′ ∩ T.
(2) Assume that T ≥ T′, then

D ∩ T ≥ D ∩ T′.



TRANSCENDENTAL B-DIVISORS II — THE INTERSECTION THEORY 19

Proof. (1) Take a nef Cartier b-divisor D′′ over X with D′′ ≥ D. We need to show that
D′′ ∩ T ≥ D′ ∩ T.

This is already proved during the proof of Lemma 3.20.
(2) By definition, we may assume that D is Cartier. Then the assertion follows from Lemma 3.17.

□

Theorem 3.26. Let (Dji )j∈J be decreasing nets of nef b-divisors over X with limits Di for each
i = 1, . . . , p. Let (Tj)j∈J be a decreasing net of nef b-classes in Divqb(X) with limit T. Then

lim
j∈J

Dj1 ∩ · · · ∩ Djp ∩ Tj = D1 ∩ · · · ∩ Dp ∩ T.

Proof. By induction on p ≥ 1 and using Proposition 3.25, it suffices to prove our assertion in
the case p = 1. In this case, we omit the subindex i and we are left with
(3.12) lim

j∈J
Dj ∩ Tj = D ∩ T.

We first observe that the limit on the left-hand side of (3.12) exists, as a consequence of
Proposition 3.25. Furthermore, the ≥ direction in (3.12) holds.

Step 1. We first assume that Tj = T for all j ∈ J . In this case, take a decreasing sequence
(D′k)k>0 of Cartier nef b-divisors with limit D. Fix k > 0, we need to show that

(3.13) lim
j∈J

Dj ∩ T ≤ D′k ∩ T.

For this purpose, we may further assume that D′k is realized on X by a nef class α ∈ H1,1(X,R).
Fix a Kähler class β on X, then for each ϵ > 0, we can find j0 ∈ J so that when j ≥ j0, we have

DjX ≤ α+ ϵβ.

Therefore, thanks to Lemma 3.21 and Proposition 3.12,

Dj ≤ D′k + ϵD(β), j ≥ j0.

Using Proposition 3.25 and Proposition 3.23, we find

Dj ∩ T ≤ D′k ∩ T + ϵD(β) ∩ T, j ≥ j0.

Taking limit with respect to j and then letting ϵ→ 0+, we derive (3.13).
Step 2. We assume that Dj = D for all j ∈ J . Then we need to show that

(3.14) lim
j∈J

D ∩ Tj ≤ D ∩ T.

In this case, take a decreasing sequence (D′k)k>0 of nef Cartier b-divisors with limit D. Suppose
that we can prove (3.14) with D′k in place of D, then due to Proposition 3.25 we have

lim
j∈J

D ∩ Tj ≤ lim
j∈J

D′k ∩ Tj = D′k ∩ T

for each k > 0. Letting k →∞, we conclude (3.14).
Therefore, we may assume that D is Cartier when proving (3.14). Replacing X by a modifica-

tion, we may further assume that D is realized on X by a nef class α ∈ H1,1(X,R). Then (3.14)
means the following: Let π : Y → X be a modification, then

lim
j∈J

π∗α ∩ TjY ≤Y π∗α ∩ TY ,

which is obvious.
Step 3. We prove the general case.
For each fixed j0 ∈ J , by Step 1 and Proposition 3.25, we have

D ∩ Tj0 = lim
j∈J

Dj ∩ Tj0 ≥ lim
j∈J

Dj ∩ Tj .

Taking the limit with respect to j0, we conclude (3.12) using Step 2.
□
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We summarize the properties of our intersection product. These properties generalize the
corresponding statements for movable intersection product as in Proposition 2.26. They also
generalize the corresponding properties when p = n proved in [Xia25].

Proposition 3.27. Let D1, . . . ,Dp,D′
1,D′ be nef b-divisors over X, T,T′ ∈ Divqb(X) be nef

b-classes, α ∈ H1,1(X,R) be a nef class, and λ ≥ 0. We have the following properties:
(1) The product is symmetric: For each permutation σ of {1, . . . , p}, we have

D1 ∩ · · · ∩ Dp ∩ T = Dσ(1) ∩ · · · ∩ Dσ(p) ∩ T.

(2) The product is additive in each variable:(
D1 + D′

1
)
∩ D2 ∩ · · · ∩ Dp ∩ T =D1 ∩ D2 ∩ · · · ∩ Dp ∩ T + D′

1 ∩ D2 ∩ · · · ∩ Dp ∩ T,
D1 ∩ · · · ∩ Dp ∩

(
T + T′) =D1 ∩ · · · ∩ Dp ∩ T + D1 ∩ · · · ∩ Dp ∩ T′.

(3) The product is homogeneous in each variable:
(λD1) ∩ D2 ∩ · · · ∩ Dp ∩ T =λ (D1 ∩ D2 ∩ · · · ∩ Dp ∩ T) ,

D1 ∩ · · · ∩ Dp ∩ (λT) =λ (D1 ∩ · · · ∩ Dp ∩ T) .

(4) The product is increasing in each variable: If we assume D1 ≥ D′
1, we have

D1 ∩ D2 ∩ · · · ∩ Dp ∩ T ≥ D′
1 ∩ D2 ∩ · · · ∩ Dp ∩ T.

Similarly, if we assume T ≥ T′, then

D1 ∩ · · · ∩ Dp ∩ T ≥ D1 ∩ · · · ∩ Dp ∩ T′.

(5) We have (
D1 ∩ · · · ∩ Dp ∩ D(α)

)
X

=
(
D1 ∩ · · · ∩ Dp

)
X
∩ α.

Proof. (1) We can easily reduce to the case p = 2, and then we need to show

D1 ∩ D2 ∩ T = D2 ∩ D1 ∩ T.

By approximation using Theorem 3.26, we can easily reduce to the case where D1 and D2 are
both Cartier. Thanks to Corollary 3.16, we may further assume that D1 and D2 are realized on
X by nef classes α1, α2 ∈ H1,1(X,R). In this case our assertion becomes the following: For any
modification π : Y → X, we have

π∗α1 ∩ (π∗α2 ∩ TY ) = π∗α2 ∩ (π∗α1 ∩ TY ) ,

which is obvious.
(2) (3) These are consequences of Proposition 3.23.
(4) This is a consequence of Proposition 3.25.
(5) This follows immediately from the definition Definition 3.13. □

Example 3.28. Let α1, . . . , αp ∈ H1,1(X,R) be nef classes. Then for any modification π : Y →
X, we have (

D(α1) ∩ · · · ∩ D(αp)
)
Y

= π∗α1 ∩ · · · ∩ π∗αp.

This is an immediate consequence of Proposition 3.27(5). We shall generalize this statement in
Corollary 3.30.

The intersection theory of b-divisors is closely related to the non-pluripolar product.

Theorem 3.29. Let T1, . . . , Tp be I-good closed positive (1, 1)-currents with positive volume.
Then

(3.15)
(
D(T1) ∩ · · · ∩ D(Tp)

)
Y

= {π∗T1 ∧ · · · ∧ π∗Tp}

for all modifications π : Y → X.
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Proof. First observe that the right-hand side of (3.15) does define a nef b-class, thanks to
Proposition 2.19 and Proposition 2.12. Since the assumptions of the theorem remain valid after
replacing the Ti’s by π∗Ti’s as well, it then suffices to prove

(3.16)
(
D(T1) ∩ · · · ∩ D(Tp)

)
X

= {T1 ∧ · · · ∧ Tp}

In order to prove (3.16), we can easily reduce to the case where the Ti’s are Kähler currents:
Take a Kähler form ω and replace Ti by Ti + ϵω for a small enough ϵ > 0. If we manage to prove(

D(T1 + ϵω) ∩ · · · ∩ D(Tp + ϵω)
)
X

= {(T1 + ϵω) ∧ · · · ∧ (Tp + ϵω)} ,

letting ϵ → 0+, (3.16) follows, since D and the intersection product are both linear, see (3.3)
and Proposition 3.27.

Now assume that the Ti’s are Kähler currents. Take quasi-equisingular approximations (T ji )j>0
of Ti for each i = 1, . . . , p. Suppose that we can prove(

D(T j1 ) ∩ · · · ∩ D(T jp )
)
X

=
{
T j1 ∧ · · · ∧ T

j
p

}
, j > 0.

Thanks to [Xia25, Proposition 4.9], for each i = 1, . . . , p, the sequence (D(T ji ))j is decreasing
with limit D(Ti). Letting j →∞ and applying Theorem 2.18 and Theorem 3.26, we conclude
(3.16).

So we may assume that the Ti’s have analytic singularities. We may replace X by a modification
and assume that T1, . . . , Tp in fact have log singularities. But then since both sides of (3.15)
remain unchanged if we replace Ti by Reg Ti, it follows that we may assume that Ti has bounded
potential for each i = 1, . . . , p. In this case, {Ti} is nef and D(Ti) = D({Ti}) for i = 1, . . . , p. In
particular, by Example 3.28,(

D(T1) ∩ · · · ∩ D(Tp)
)
X

= {T1} ∩ · · · ∩ {Tp}.

By Bedford–Taylor theory, the right-hand side of (3.16) is the same class, and (3.16) follows. □

Corollary 3.30. Let α1, . . . , αp ∈ H1,1(X,R) be pseudoeffective classes, then for any modification
π : Y → X, we have (

D(α1) ∩ · · · ∩ D(αp)
)
Y

= ⟨π∗α1 ∧ · · · ∧ π∗αp⟩.

In other words, the intersection theory of nef b-divisors generalizes the movable intersection
theory, as promised in the introduction.

Proof. We may assume that Y = X.
Fix a Kähler class β on X and replace each αi by αi + ϵβ, we may assume that each αi is big.

This is allowed thanks to Proposition 2.26(6) and Proposition 3.27.
Then it suffices to apply Theorem 3.29 to the currents Ti ∈ αi with minimal singularities. □

As an application, we prove the following fundamental result regarding the movable intersec-
tion.

Proposition 3.31. Let π : Y → X be a proper bimeromorphic morphism from a Kähler manifold
Y . Let α1, . . . , αp ∈ H1,1(Y,R) be pseudoeffective classes. Then

(3.17) π∗⟨α1 ∧ · · · ∧ αp⟩ ≤X ⟨π∗α1 ∧ · · · ∧ π∗αp⟩.

Proof. Fix a Kähler class β on Y and replacing αi by αi + ϵβ for some small enough ϵ > 0, we
may assume that the αi’s are big. This is allowed thanks to Proposition 2.26(6).

By [Xia25, Lemma 3.12], we have

D(π∗αi) ≥ D(αi), i = 1, . . . , p.

Now it follows from Proposition 3.27 that

D(π∗α1) ∩ · · · ∩ D(π∗αp) ≥ D(α1) ∩ · · · ∩ D(αp).
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In particular, (
D(π∗α1) ∩ · · · ∩ D(π∗αp)

)
X
≥X

(
D(α1) ∩ · · · ∩ D(αp)

)
X
.

Using Corollary 3.30, we can rewrite this as (3.17). □

Theorem 3.32. Let D1, . . . ,Dp be nef b-divisors over X. Then

(3.18)
(
D1 ∩ · · · ∩ Dp

)
X

= lim
π : Y→X

π∗
〈
D1,Y ∧ · · · ∧ Dp,Y

〉
,

where π : Y → X runs over all modifications of X.

We first observe that the right-hand side of (3.18) is decreasing with respect to ≤X thanks to
Proposition 3.31, and hence the limit exists by Proposition 2.6.

The striking point is that the left-hand side of (3.18) is a linear intersection product, while
each term of the right-hand side is non-linear!

Proof. Step 1. We first prove the ≤X inequality.
For this purpose, it suffices to prove the following:

(D1 ∩ · · · ∩ Dp)X ≤X ⟨D1,X ∧ · · · ∧ Dp,X⟩.

After adding a small multiple of D(ω) to each Di, where ω is a Kähler form on X, we may
assume that the Di’s are big and Di = D(Ti) for some I-good non-divisorial Kähler currents Ti
for each i = 1, . . . , p. Then due to Theorem 3.29, it suffices to show that

{T1 ∧ · · · ∧ Tp} ≤X {T1,min ∧ · · · ∧ Tp,min} ,

where Ti,min ∈ Di,X is a current with minimal singularities. Then our assertion follows from the
monotonicity theorem Theorem 2.17.

Step 2. We reduce (3.18) to the case of p = n and the Di’s are big and Di = D(Ti) for some
non-divisorial I-good Kähler current Ti for each i = 1, . . . , p.

Thanks to Lemma 2.16 and Step 1, we may assume p = n. If suffices to handle the case where
the Di’s are big as well. In fact, take a Kähler form ω on X. Suppose that for ϵ > 0 we have
established((

D1 + ϵD(ω)
)
∩ · · · ∩

(
Dn + ϵD(ω)

))
X

≥ lim
π : Y→X

〈
(D1,Y + ϵπ∗{ω}) ∧ · · · ∧ (Dn,Y + ϵπ∗{ω})

〉
,

then from the monotonicity Proposition 2.26(4), we have((
D1 + ϵD(ω)

)
∩ · · · ∩

(
Dn + ϵD(ω)

))
X

≥ lim
π : Y→X

⟨D1,Y ∧ · · · ∧ Dn,Y ⟩.

Letting ϵ→ 0+, our assertion (3.18) follows.
Step 3. We need to show that

(3.19)
∫
X
T1 ∧ · · · ∧ Tn ≥ lim

π : Y→X

〈
D(T1)Y ∧ · · · ∧ D(Tn)Y

〉
.

When the Ti’s have analytic singularities, we may replace X by a modification and reduce to
the case where the Ti’s have log singularities. Then replacing Ti by Reg Ti, we may assume that
the Ti’s have bounded local potentials. Then the {Ti}’s are indeed nef and∫

X
T1 ∧ · · · ∧ Tn = {T1} ∩ · · · ∩ {Tn} =

〈
{T1} ∧ · · · ∧ {Tn}

〉
.

In general, take quasi-equisingular approximations (T ji )j>0 of each Ti. Then we know that for
each j > 0,∫

X
T j1 ∧ · · · ∧ T

j
n ≥ lim

π : Y→X

〈
D(T j1 )Y ∧ · · · ∧ D(T jn)Y

〉
≥ lim

π : Y→X

〈
D(T1)Y ∧ · · · ∧ D(Tn)Y

〉
.

Letting j →∞ and applying Theorem 2.18, we conclude (3.19). □
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4. Restricted volume

Let X be a connected compact Kähler manifold of dimension n. In this section, p will denote
a non-negative integer.

4.1. The trace operator. We first recall the notion of trace operators introduced in [DX24a].
For the details, see [Xia, Chapter 8].

Assume that D is a prime divisor on X.

Definition 4.1. Let T be a closed positive (1, 1)-current on X with ν(T,D) = 0. We define
TrD T as a closed positive (1, 1)-current on D̃, the normalization of D, modulo P -equivalence.
The definition goes as follows:

(1) When T has analytic singularities, we can simply define TrD T as T |D;
(2) in general, take a quasi-equisingular approximation (Tj)j of T and define TrD T as an

arbitrary dS-limit of (Tj |D̃)j .

When T is a Kähler current on X with ν(T,D) = 0, we can take a representative TrD T
as a Kähler current in {T}|

D̃
. When D̃ is not smooth, this means that we can find a smooth

closed real (1, 1)-form θ ∈ {T} so that TrD T can be represented by θ|
D̃

+ ddcφ for some θ|
D̃

-psh
function φ, and the current TrD T dominates a Kähler form on D̃. We always choose such a
representative.

In this case, we define the restricted volume of T on X as

volX|D(T ) := vol (TrD T ) .

Note that volX|D(T ) is independent of the choice of TrD T , since any two choices are P -equivalent.
More generally, if T is a closed positive (1, 1)-current on X with ν(T,D) = 0, we take a Kähler

form ω on X, then we can define

(4.1) volX|D(T ) := lim
ϵ→0+

volX|D(T + ϵω)

This definition agrees with the previous definition when T is a Kähler current. When volX|D(T ) >
0, we can always find a representative of TrD T in {T}|

D̃
, and the restricted volume volX|D(T )

is just the volume of such a representative. See [Xia, Example 8.1.6] for the details.
When ν(T,D) > 0, we define

volX|D(T ) := 0.
Next we recall that there is a notion of trace operators of nef b-divisors defined in [Xia25].

Given a nef b-divisor D over X, a prime divisor D on X, then there is a canonical way to define
a nef b-divisor TrD D over D. Instead of recalling the lengthy definition, we use the following
assertion proved in [Xia25] as the definition:

Definition 4.2. Let D be a nef b-divisor over X. We define TrD D as a nef b-divisor over D as
follows:

(1) When D = D(T ) for a closed positive Kähler current T on X, then we let

TrD D := D(TrD T ).

(2) In general, we define

TrD D := lim
ϵ→0+

TrD
(
D + ϵD(ω)

)
for any Kähler form ω on X.

Note that in (2) D + ϵD(ω) for any ϵ > 0 satisfies the condition in (1), as a consequence of
Theorem 3.9.

A priori, TrD T is a current on D̃, so TrD D is just a nef b-divisor over D̃. But by definition,
nef b-divisors over D are the same as those over D̃, so we can also regard TrD D as a nef b-divisor
over D.
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Whenever TrD T has a representative in {T}|D̃ (in particular when volX|D(T ) > 0), we always
have
(4.2) TrD D = D(TrD T ),
where TrD T is understood as a representative in {T}|D̃. This is proved in [Xia25, Theorem 7.5].
Proposition 4.3. Let π : Y → X be a modification with D′ as the strict transform of D, then
for any nef b-divisor D over X, we have
(4.3) TrD D = TrD′ D.

Here on the right-hand side, we regard D as a nef b-divisor over Y and TrD′ D is a nef b-divisor
over D′, which can be canonically identified with a nef b-divisor over D.

Proof. Take a Kähler form ω on X. It suffice to prove (4.3) with D+ ϵD(ω) in place of D for any
ϵ > 0. We may then assume that there is a non-divisorial I-good Kähler current T on X so that
D = D(T ). Then TrD T can be represented by a current in {T}|

D̃
. We fix such a representative.

Consider the following commutative diagram

D̃′ D′ Y

D̃ D X.

p̃ p π

Observe that ν(π∗T,D′) = 0 by Zariski’s main theorem. From the basic properties of the trace
operator [Xia, Lemma 8.2.1], we have

p̃∗ TrD T ∼P TrD′ π∗T.

In particular, TrD′ π∗T can be represented by a current in π∗{T}|
D̃′ , we fix such a representative.

Taking the induced b-divisors, we get
D (p̃∗ TrD T ) = D (TrD′ π∗T ) .

This is exactly (4.3). □

We need a few basic properties of the trace operator.
Proposition 4.4. Let D, D′ be nef b-divisors over X, and λ ≥ 0. Then we have the following
properties:

(1) When D ≤ D′ and D′
X = DX , we have

TrD D ≤ TrD D′.

(2) The trace operator is additive:
TrD

(
D + D′) = TrD D + TrD D′.

(3) The trace operator is homogeneous:
TrD (λD) = λTrD D.

Proof. These properties all follow from the corresponding properties of the trace operator of
currents. See [Xia, Proposition 8.2.1].

We only give a detailed proof to (1), and the other two assertions are similar. Take a Kähler
form ω on X. It suffices to show that for each ϵ > 0, we have

TrD(D + ϵD(ω)) ≤ TrD(D′ + ϵD(ω)).
Therefore, thanks to Theorem 3.9, we may assume that

D = D(T ), D′ = D(T ′)
for I-good non-divisorial Kähler currents T and T ′ on X. Observe that T ⪯I T

′ as a consequence
of [Xia25, Corollary 4.1.4]. But then, thanks to [Xia, Proposition 8.2.1], we have

TrD T ⪯P TrD T ′.

Then by [Xia25, Corollary 4.1.4] again, our assertion follows. □
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Theorem 4.5. Let α ∈ H1,1(X,R) be a big class. Assume that (Ti)i∈I is a net of closed positive
(1, 1)-currents in α, decreasing with respect to the I-partial order. Assume that Ti

dS−→ T for
some closed positive (1, 1)-current T ∈ α satisfying ν(T, α) = 0. Then

TrD Ti
dS−→ TrD T.

Furthermore,
(4.4) lim

i∈I
volX|D(Ti) = volX|D(T ).

Proof. The former statement is proved in [Xia, Proposition 8.2.2]. If volX|D(T ) > 0, then TrD Ti
and TrD T can both be represented by currents in α|

D̃
with positive masses. In this case, (4.4)

follows from the dS-continuity of the volume. See [Xia, Theorem 6.2.5].
If volX|D(T ) = 0, fix a Kähler form ω on X. Fix ϵ > 0, we can find δ > 0 so that

volX|D(T + δω) ≤ ϵ.
In this case, applying (4.4) to the net (Ti + δω)i, in view of [Xia, Corollary 6.2.8] we find that

lim
i∈I

volX|D(Ti) ≤ lim
i∈I

volX|D(Ti + δω) = volX|D(T + δω) ≤ ϵ.

Since ϵ > 0 is arbitrary, we conclude that
lim
i∈I

volX|D(Ti) = 0.

□

Corollary 4.6. Let (Di)i∈I be a decreasing net of nef b-divisors over X with DiX independent
of the choice of i ∈ I. Then
(4.5) lim

i→∞
TrD Di = TrD D.

Note that thanks to Proposition 4.4(1), (TrD Di)i is decreasing, and hence the limit in (4.5)
exists.

Proof. Fix a Kähler form ω on X. Thanks to the additivity of the trace operator proved in
Proposition 4.4, it suffices to prove (4.5) with Di + D(ω) and D + D(ω) in place of Di and D. So
by Theorem 3.9, we may assume that there are non-divisorial I-good Kähler currents Ti, T ∈ DX
with

Di = D(Ti), D = D(T )
for all i ∈ I.

It follows from [Xia25, Corollary 4.1.4] and the I-goodness of the Ti’s and T that (Ti)i is
decreasing with respect to the P -partial order and T ⪯P Ti.

Since T has positive mass, it follows from [Xia, Corollary 6.2.6] that (Ti)i admits a dS-limit
S in {T}, then D(S) = D(T ). It follows from [Xia25, Corollary 4.1.4] that S ∼P T . Hence
Ti

dS−→ T . Our assertion then follows from Theorem 4.5. □

Let us make sense of the trace operator in some simple cases.

Example 4.7. Let α ∈ H1,1(X,R) be a nef class. Then
TrD D(α) = D (α|D) .

To see this, we may assume that α is a Kähler class. Take a Kähler form ω ∈ α, then by
definition,

TrD D(α) = D(ω|D) = D (α|D) .

Example 4.8. Let α ∈ H1,1(X,R) be a big class. Assume that D is not contained in the
non-Kähler locus of α. Then
(4.6) TrD D(α) = D (TrD Tmin) ,
where Tmin ∈ α is a current with minimal singularities.
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It follows from [Xia, Proposition 8.3.1] that TrD Tmin is represented by Tmin|D. Therefore, we
can apply (4.2) to conclude (4.6).

Proposition 4.9. Let α, β ∈ H1,1(X,R) be modified nef classes. Then

(4.7) TrD D(α) + TrD D(β) ≤ TrD D(α+ β).

Proof. Since α+ β is also modified nef, we have

D(α)X + D(β)X = α+ β = D(α+ β)X .

Thanks to Proposition 4.4, it suffices to show that

D(α) + D(β) ≤ D(α+ β),

which is just Proposition 3.12. □

Next recall the notion of restricted volumes of a cohomology class studied in [CT22; Mat13].
Fix a pseudoeffective class α ∈ H1,1(X,R). If α is big and D is not contained in the non-Kähler
locus of X, then we set

volX|D(α) := sup
{∫

D
T |n−1
D : T ∈ α is a Kähler current with analytic singularities,

ν(T,D) = 0} .

Here
∫
D T |

n−1
D could be understood as the non-pluripolar product

∫
D̃ T |

n−1
D̃

on the normalization
D̃ of D.

In general, if α is pseudoeffective and D is not contained in the non-nef locus of α, we take a
Kähler form ω on X and set

volX|D(α) := lim
ϵ→0+

volX|D(α+ ϵ{ω}).

If D is contained in the non-nef locus of α, we set

volX|D(α) := 0.

The restricted volume can be expressed as an intersection number of b-divisors.

Theorem 4.10. Let D be a prime divisor of X. Given a big class α ∈ H1,1(X,R), then

volX|D(α) =


(
TrD D(α)

)n−1
, if ν(α,D) = 0;

0, otherwise.

The notation (TrD D(α))n−1 is short for TrD D(α) ∩ · · · ∩ TrD D(α), where TrD D(α) appears
n− 1 times.

Restricted volumes to higher codimensional subspaces admit similar expressions. Since we are
not in need of them in this paper, we omit the details.

Proof. We may assume that ν(α,D) = 0 since there is nothing to prove otherwise. Furthermore,
we may replace α by ⟨α⟩ and assume that α is modified nef.

Step 1. We first assume that D is not contained in the non-Kähler locus of α.
We aim to prove that

(4.8) volX|D(α) =
(
TrD D(α)

)n−1
.

Let π : Y → X be a modification so that the strict transform D′ of D is smooth. Then by
[CT22, Lemma 4.2, Lemma 4.3],

volX|D(α) = volY |D′(π∗α)

and D′ is not in the non-Kähler locus of π∗α. On the other hand,

TrD D(α) = TrD′ D(π∗α)
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as a consequence of Example 4.8 and Proposition 4.3. So(
TrD D(α)

)n−1
=
(
TrD′ D(π∗α)

)n−1
.

Therefore, we may further assume that D is smooth. In this case our assertion follows from [Xia,
Proposition 8.3.1].

Step 2. Next we assume that ν(α,D) = 0, but D is contained in the non-Kähler locus of α.
Fix a Kähler form ω, then for any ϵ > 0, we have

TrD D(α+ ϵ{ω}) ≥ TrD D(α)
by Proposition 4.9. Therefore, our Step 1 and Proposition 3.27(4) imply that

volX|D(α) = lim
ϵ→0+

volX|D(α+ ϵ{ω}) = lim
ϵ→0+

(
TrD D(α+ ϵ{ω})

)n−1
≥
(
TrD D(α)

)n−1
.

Due to [Vu23a, Theorem 1.1], volX|D(α) = 0, so our assertion follows. □

4.2. The restricted volume. Let D be a prime divisor over X. Motivated by Theorem 4.10,
we introduce the following definition:

Definition 4.11. Let D1, . . . ,Dp be nef b-divisors over X. Let π : Y → X be a modification so
that D is a prime divisor on Y . Then we define the restricted volume of D1, . . . ,Dp to D as

volX|D (D1, . . . ,Dp) := π∗ (TrD D1 ∩ · · · ∩ TrD Dp)Y ∈ Hp+1,p+1(X,R).

The notation
(4.9) (TrD D1 ∩ · · · ∩ TrD Dp)Y
requires some explanation. The traces TrD Di’s are nef b-divisors over D. For each resolution
W → D, we can then regard TrD Di as a nef b-divisor over W . The intersection TrD D1 ∩ · · · ∩
TrD Dp then makes sense as a b-class in Divpb(W ). The pushforward of

(TrD D1 ∩ · · · ∩ TrD Dp)W
with respect to W → D ↪→ Y is then a well-defined positive class in Hp+1,p+1(Y,R), and it is
independent of the choice of W . We denote this class by (4.9).

When p = 0, volX|D(−) is {D} if D is a prime divisor on X and 0 if D is exceptional over X.

Lemma 4.12. The quantity volX|D (D1, . . . ,Dp) defined in Definition 4.11 is independent of
the choice of Y .

Proof. Take a different modification Π: Z → X so that D is a prime divisor on Z. We want to
show that the quantity volX|D (D1, . . . ,Dp) defined with respect to π and Π are the same. For
this purpose, we may assume that Π dominates π through a morphism p : Z → Y . Let D′ be
the strict transform of D on Z. Then we need to show that

π∗ (TrD D1 ∩ · · · ∩ TrD Dp)Y = Π∗ (TrD′ D1 ∩ · · · ∩ TrD′ Dp)Z .
For this purpose, it suffices to show that

(TrD D1 ∩ · · · ∩ TrD Dp)Y = p∗ (TrD′ D1 ∩ · · · ∩ TrD′ Dp)Z .
Our assertion then follows from Proposition 4.3 and Proposition 3.22. □

We first observe how this quantity behaves with respect to modifications:

Proposition 4.13. Let π : Y → X be a modification. Then
volX|D (D1, . . . ,Dp) = π∗ volY |D (D1, . . . ,Dp) .

Here on the right-hand side, we regard the Di’s are nef b-divisors over Y .

In particular, we can regard (
volY |D (D1, . . . ,Dp)

)
π : Y→X

as an element in Divp+1
b (X). We denote it by vol|D (D1, . . . ,Dp).
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Proof. Take a modification Π: Z → Y so that D is a prime divisor on Z. Then thanks to
Lemma 4.12 we only need to show that

π∗Π∗ (TrD D1 ∩ · · · ∩ TrD Dp)Z = (π ◦Π)∗ (TrD D1 ∩ · · · ∩ TrD Dp)Z ,

which is obvious. □

Proposition 4.14. Let D1, . . . ,Dp be nef b-divisors over X. Consider a nef class α ∈ H1,1(X,R).
Then

volX|D
(
D1, . . . ,Dp,D(α)

)
= volX|D (D1, . . . ,Dp) ∩ α.

Proof. By Proposition 4.13, we may replace X by a modification and assume that D is a smooth
prime divisor on X. Then by projection formula and Example 4.7 our assertion means(

TrD D1 ∩ · · · ∩ TrD Dp ∩ D(α|D)
)
X

= (TrD D1 ∩ · · · ∩ TrD Dp)X ∩ α|D,

which follows readily from Proposition 3.27(5). □

The basic properties of the trace operator imply the following properties of the restricted
volume:

Proposition 4.15. Let D1, . . . ,Dp,D′
1 be nef b-divisors over X, and D be a prime divisor over

X. Consider λ ≥ 0. Then we have the following properties:
(1) The restricted volume is symmetric: Let σ be a permutation of {1, . . . , p}, then

vol|D
(
Dσ(1), . . . ,Dσ(p)

)
= vol|D (D1, . . . ,Dp) .

(2) The restricted volume is additive in each variable:

vol|D
(
D1 + D′

1,D2, . . . ,Dp
)

= vol|D (D1,D2, . . . ,Dp) + vol|D
(
D′

1,D2, . . . ,Dp
)
.

(3) The restricted volume is homogeneous in each variable:

vol|D (λD1,D2, . . . ,Dp) = λ vol|D (D1, . . . ,Dp) .

Proof. By Proposition 4.13, we may replace X by a modification and assume that D is a smooth
prime divisor on X.

(1) This follows immediately from Proposition 3.27(1).
(2) This follows immediately from Proposition 3.27(2) and Proposition 4.4(2).
(3) This follows immediately from Proposition 3.27(3) and Proposition 4.4(3). □

Proposition 4.16. Let (Dji )j∈J be decreasing nets of nef b-divisors over X (i = 1, . . . , p).
Assume that for each i = 1, . . . , p, the class Dji,X does not depend on the choice of j ∈ J . Denote
the limit of (Dji )j by Di. Consider a prime divisor D over X. Then

lim
j∈J

vol|D
(
Dj1, . . . ,D

j
p

)
= vol|D (D1, . . . ,Dp) .

Proof. By Proposition 4.13, we may replace X by a modification and assume that D is a smooth
prime divisor on X. It suffices to show that

lim
j∈J

volX|D
(
Dj1, . . . ,D

j
p

)
= volX|D (D1, . . . ,Dp) .

It follows from Corollary 4.6 and Proposition 4.4(1) that for each i = 1, . . . , p, the net
(TrD Dji )j is decreasing with limit TrD Di. Our assertion then follows from Theorem 3.26. □

The restricted volume is easy to understood in some special cases.

Example 4.17. When Di = D(αi) for some nef classes αi ∈ H1,1(X,R) for all i = 1, . . . , p, we
have

volX|D (D1, . . . ,Dp) =
{

0, if D is exceptional;
α1 ∩ · · · ∩ αp ∩ {D}, otherwise.
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To see this, let π : Y → X be a modification so that D is a smooth prime divisor on Y . Then by
definition and Example 4.7,

volX|D (D1, . . . ,Dp) =π∗ (TrD D1 ∩ · · · ∩ TrD Dp)Y
=π∗

(
D(π∗α1|D) ∩ · · · ∩ D(π∗αp|D)

)
Y

=π∗ (π∗α1 ∩ · · · ∩ π∗αp ∩ {D})
=α1 ∩ · · · ∩ αp ∩ π∗{D}.

Our assertion follows.

Example 4.18. Assume that D is a prime divisor on X. Let α ∈ H1,1(X,R) be a big class.
Then

volX|D
(
D(α)n−1

)
= volX|D

(
⟨α⟩
)
.

This is what we proved in Theorem 4.10.

Motivated by this example, we introduce the following definition:

Definition 4.19. Assume that D is a prime divisor on X. Let α1, . . . , αp ∈ H1,1(X,R) be
pseudoeffective classes with ν(αi, D) = 0 for all i = 1, . . . , p. When the αi’s are all big, we define

volX|D(α1, . . . , αp) := volX|D
(
D(α1), . . . ,D(αp)

)
∈ Hp+1,p+1(X,R).

In general we set

volX|D(α1, . . . , αp) := lim
ϵ→0+

volX|D (α1 + ϵβ, . . . , αp + ϵβ)

for any Kähler class β on X. The limit exists and is independent of the choice of β thanks to
Proposition 4.9 and Proposition 3.27(4).

If ν(αi, D) > 0 for any i, we just set

volX|D(α1, . . . , αp) := 0.

Example 4.20. Assume that D is a prime divisor on X. Let T be a closed positive (1, 1)-current
on X with ν(T,D) = 0. Then

(4.10) volX|D
(
D(T )n−1

)
= volX|D(T ).

We first assume that T is a Kähler current. Take a representative TrD T ∈ {T}|D. Then our
assertion amounts to

D(TrD T )n−1 = vol(TrD T ).
This is part of Theorem 3.9.

Now let us come back to the general case. Take a Kähler form ω on X. Then we know that

volX|D

((
D(T ) + ϵD(ω)

)n−1)
= volX|D(T + ϵω).

Thanks to Proposition 4.14 and (4.1), when ϵ→ 0+, the limit gives (4.10).

Motivated by the above example, we introduce the following:

Definition 4.21. Suppose that T1, . . . , Tp are closed positive (1, 1)-currents on X, D is a prime
divisor on X. Assume that ν(Ti, D) = 0 for all i, then we define

volX|D(T1, . . . , Tp) := volX|D
(
D(T1), . . . ,D(Tp)

)
∈ Hp+1,p+1(X,R).

If ν(Ti, D) > 0 for some i, we simply set

volX|D(T1, . . . , Tp) := 0.

We need the following Brunn–Minkowski inequality for the sequel.
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Proposition 4.22. Assume that n > 1. Let D1, . . . ,Dn−1 be nef b-divisors over X and D is a
prime divisor on X. Then

volX|D (D1, . . . ,Dn−1) ≥
n−1∏
i=1

(vol TrD Di)1/(n−1) .

Proof. This follows from the Brunn–Minkowski inequality proved in [Xia25, Proposition 5.7]. □

5. Qualitative monotonicity theorem

Let X be a connected compact Kähler manifold of dimension n. Fix a non-negative integer p.
We shall derive a qualitative monotonicity theorem using the theory of b-divisors.

Lemma 5.1. Let T1, . . . , Tp be closed positive (1, 1)-currents with analytic singularities on X.
Suppose that T, T ′ are I-good closed positive (1, 1)-currents on X with positive volumes in the
same cohomology class. Assume that T ⪯ T ′. Then{

T1 ∧ · · · ∧ Tp ∧ T ′}− {T1 ∧ · · · ∧ Tp ∧ T}

≥X
∑
D⊆X

(
ν(T,D)− ν(T ′, D)

){ p∧
i=1

(
Ti − ν(Ti, D)[D]

)∣∣∣
D̃

}
.

(5.1)

Here D runs over the set of prime divisors on X, and D̃ → D is the normalization of D.

Note that the sum is a countable sum. We have omitted the obvious pushforward maps from
D̃ to X.

Proof. Step 1. We first assume that T1, . . . , Tp, T, T ′ all have log singularities. Then we may
replace the Ti’s by their non-divisorial parts, and hence reduce to the case where T1, . . . , Tp all
have bounded local potentials. A further regularization then allows us to reduce to the case
where T1, . . . , Tp are all Kähler forms, say ω1, . . . , ωp. Then our assertion (5.1) means

{
ω1 ∧ · · · ∧ ωp ∧ Reg T ′}− {ω1 ∧ · · · ∧ ωp ∧ Reg T}

≥X
∑
D⊆X

(
ν(T,D)− ν(T ′, D)

)
{ω1|D ∧ · · · ∧ ωp|D} .

This is obvious. We even have equality in this case.
Step 2. We assume that T and T ′ both have analytic singularities. Replacing Ti by Reg Ti,

we may assume that each Ti is non-divisorial.
Let π : Y → X be a modification which resolves the singularities of T1, . . . , Tp and T, T ′. Then

by Step 1 and Proposition 2.12, we have{
π∗T1 ∧ · · · ∧ π∗Tp ∧ π∗T ′}− {π∗T1 ∧ · · · ∧ π∗Tp ∧ π∗T}

≥Y
∑
E⊆Y

(
ν(T,E)− ν(T ′, E)

){ p∧
i=1

(
π∗Ti − ν(Ti, E)[E]

)∣∣∣
Ẽ

}

≥Y
∑
D⊆X

(
ν(T,D)− ν(T ′, D)

)
j̃∗

{ p∧
i=1

(π∗Ti) |D̃′

}

=
∑
D⊆X

(
ν(T,D)− ν(T ′, D)

)
j̃∗

{ p∧
i=1

p̃∗
(
Ti|D̃

)}
.
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Here D′ denotes the strict transform of D on Y . The notations are summarized in the following
commutative diagram:

D̃′ D′ Y

D̃ D X.

p̃

j̃

j

p π

ĩ

i

Taking pushforward and applying Proposition 2.19, we find

{T1 ∧ · · · ∧ Tp ∧ T ′} − {T1 ∧ · · · ∧ Tp ∧ T}

≥X
∑
D⊆X

(
ν(T,D)− ν(T ′, D)

)
π∗j̃∗

{ p∧
i=1

p̃∗
(
Ti|D̃

)}

=
∑
D⊆X

(
ν(T,D)− ν(T ′, D)

)
ĩ∗p̃∗

{ p∧
i=1

p̃∗
(
Ti|D̃

)}

=
∑
D⊆X

(
ν(T,D)− ν(T ′, D)

)
ĩ∗

{ p∧
i=1

(
Ti|D̃

)}
.

The desired inequality (5.1) follows.
Step 3. We handle the general case.
Replacing T and T ′ by

T −
∑
D

ν(T ′, D)[D], T ′ −
∑
D

ν(T ′, D)[D],

we may first assume that T ′ is non-divisorial. We need to show that

(5.2)
{
T1 ∧ · · · ∧ Tp ∧ T ′}− {T1 ∧ · · · ∧ Tp ∧ T} ≥X

∑
D⊆X

ν(T,D)
{ p∧
i=1

(
Ti − ν(Ti, D)[D]

)∣∣∣
D̃

}
.

Take a Kähler form ω on X. Replacing T and T ′ by T + ω and T ′ + ω, we may assume that
both are Kähler currents. Take quasi-equisingular approximations (Sk)k, (S′

k)k of T and T ′ so
that Sk ⪯ S′

k. It follows from Step 2 that for each k > 0,
(5.3){

T1 ∧ · · · ∧ Tp ∧ S′
k

}
− {T1 ∧ · · · ∧ Tp ∧ Sk} ≥X

∑
D⊆X

ν(Sk, D)
{ p∧
i=1

(
Ti − ν(Ti, D)[D]

)∣∣∣
D̃

}
.

Note that in all expressions like
∑
D⊆X above, we only need to consider the countable set of

prime divisors D with ν(T,D) > 0.
Next, for each k > 0, we have

∑
D⊆X

ν(Sk, D)
{ p∧
i=1

(
Ti − ν(Ti, D)[D]

)∣∣∣
D̃

}
≤X

{
T1 ∧ · · · ∧ Tp ∧ S′

1
}

by Theorem 2.17. Therefore, the monotone convergence theorem Proposition 2.9 is applicable.
Letting k →∞ in (5.3) and applying Theorem 2.18, we conclude the desired inequality (5.2). □

Now using the language of b-divisors, we derive our main theorem:
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Theorem 5.2. Let D1, . . . ,Dp be nef b-divisors over X, and T, T ′ be closed positive (1, 1)-currents
on X in the same cohomology class such that T ⪯I T

′. Then(
D1 ∩ · · · ∩ Dp ∩ D(T ′)

)
X
−
(
D1 ∩ · · · ∩ Dp ∩ D(T )

)
X

≥X lim
π : Y→X

∑
D⊆Y

(
ν(T,D)− ν(T ′, D)

)
volX|D (D1, . . . ,Dp) .

(5.4)

Observe that the right-hand side of (5.4) is an increasing net and hence the limit exists by
Corollary 2.7.

The right-hand side of (5.4) can be written more elegantly as∑
D/X

(
ν(T,D)− ν(T ′, D)

)
volX|D (D1, . . . ,Dp) ,

where the sum is taken over all divisors over X modulo equivalence.

Proof. From the bimeromorphic invariance of our assumptions, it suffices to prove the following:(
D1 ∩ · · · ∩ Dp ∩ D(T ′)

)
X
−
(
D1 ∩ · · · ∩ Dp ∩ D(T )

)
X

≥X
∑
D⊆X

(
ν(T,D)− ν(T ′, D)

)
(TrD D1 ∩ · · · ∩ TrD Dp)X .

Fix a Kähler form ω on X and replace T and T ′ by T +ω and T ′ +ω, we may assume that both
are Kähler currents.

Take a closed smooth real (1, 1)-form θ ∈ {T} and write

T = θ + ddcφ, T ′ = θ + ddcφ′.

We may then replace φ and φ′ by Pθ[φ]I and Pθ[φ′]I respectively and assume that both T and
T ′ are I-good and T ⪯ T ′.

Replacing T and T ′ by

T −
∑
D

ν(T ′, D)[D], T ′ −
∑
D

ν(T ′, D)[D],

we may further assume that T ′ is non-divisorial and hence it remains to prove(
D1 ∩ · · · ∩ Dp ∩ D(T ′)

)
X
−
(
D1 ∩ · · · ∩ Dp ∩ D(T )

)
X

≥X
∑
D⊆X

ν(T,D) (TrD D1 ∩ · · · ∩ TrD Dp)X .
(5.5)

We first prove (5.5) when Di = D(Ti) for some non-divisorial I-good Kähler current Ti for all
i = 1, . . . , p. In this case, thanks to Theorem 3.29, (5.5) reduces to{

T1 ∧ · · · ∧ Tp ∧ T ′}− {T1 ∧ · · · ∧ Tp ∧ T} ≥X
∑
D⊆X

ν(T,D) {TrD T1 ∧ · · · ∧ TrD Tp} .

Here as usual, we omitted the obvious pushforward from D̃ to X.
Taking quasi-equisingular approximations (T ji )j>0 of Ti for each i = 1, . . . , p, we can then

apply Lemma 5.1 to conclude that for each j > 0,{
T j1 ∧ · · · ∧ T

j
p ∧ T ′

}
−
{
T j1 ∧ · · · ∧ T

j
p ∧ T

}
≥X

∑
D⊆X

ν(T,D)
{

TrD T j1 ∧ · · · ∧ TrD T jp
}
.

Letting j →∞, we conclude using Theorem 3.26 and Proposition 2.8.
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Now let us come back to the general situation. For each ϵ > 0, we then have((
D1 + ϵD(ω)

)
∩ · · · ∩

(
Dp + ϵD(ω)

)
∩ D(T ′)

)
X

−
((

D1 + ϵD(ω)
)
∩ · · · ∩

(
Dp + ϵD(ω)

)
∩ D(T )

)
X

≥X
∑
D⊆X

ν(T,D)
(

TrD
(
D1 + ϵD(ω)

)
∩ · · · ∩ TrD

(
Dp + ϵD(ω)

))
X

≥X
∑
D⊆X

ν(T,D) (TrD D1 ∩ · · · ∩ TrD Dp)X .

Letting ϵ→ 0+ we conclude (5.5). □

We get some interesting new inequalities even for the movable intersection theory:

Corollary 5.3. Let [E] be a divisorial closed positive (1, 1)-current on X, say

(5.6) [E] =
∑
i

ciEi,

where the Ei’s are distinct prime divisors on X and ci > 0. Consider pseudoeffective classes
α1, . . . , αp, β ∈ H1,1(X,R). Assume that β ≥ {E}, then

⟨α1 ∧ · · · ∧ αp ∧ β⟩ −
〈
α1 ∧ · · · ∧ αp ∧ (β − {E})

〉
≥X

∑
i

(
ν(β − {E}, Ei) + ci − ν(β,Ei)

)
volX|Ei

(
⟨α1⟩, . . . , ⟨αp⟩

)
.

(5.7)

Here we used the mixed restricted volume defined in Definition 4.19. This inequality is stated
purely using the traditional language of movable intersection product and restricted volume, at
least when α1 = · · · = αp. But it is far from being obvious without the knowledge of b-divisors.

Proof. We make assume that the index set in (5.6) is a set of the form {1, 2, . . . , N}, where N is
possibly ∞. Then it suffices to show that (5.7) holds with the sum replaced by the finite sum
from 1 to M , where M ≤ N is an integer.

Fix a Kähler class γ on X. Observe that

lim
ϵ→0+

ν (β + ϵγ − {E}, Ei) = ν (β − {E}, Ei) , lim
ϵ→0+

ν (β + ϵγ,Ei) = ν (β,Ei) , ∀i.

Therefore, in view of Proposition 2.26(6), we may therefore replace β by β + ϵγ for some ϵ > 0
and assume that β and β −{E} are both big. Similarly, we may assume that the αi’s are all big.

We apply Theorem 5.2 to the following situation: Di = D(αi), and T ′ is a current with minimal
singularities in β and T − [E] is a current with minimal singularities in β − {E}. Then we find(

D(α1) ∩ · · · ∩ D(αp) ∩ D(β)
)
X
−
(
D(α1) ∩ · · · ∩ D(αp) ∩ D (β − {E})

)
X

≥X
∑
D⊆X

(
ν(β − {E}, D)− ν(β,D) + ν([E], D)

)
volX|D

(
D(α1), . . . ,D(αp)

)
≥X

∑
i

(
ν(β − {E}, Ei)− ν(β,Ei) + ci

)
volX|Ei

(
D(α1), . . . ,D(αp)

)
.

Thanks to Corollary 3.30, this inequality translates immediately to (5.7). □

The following special case is already very non-trivial:

Corollary 5.4. Let [E] be a divisorial closed positive (1, 1)-current on X, say

[E] =
∑
i

ciEi,
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where the Ei’s are distinct prime divisors on X and ci > 0. Consider modified nef classes
α1, . . . , αp, β ∈ H1,1(X,R). Assume that β ≥ {E}, then

⟨α1∧· · ·∧αp∧β⟩−
〈
α1∧· · ·∧αp∧ (β−{E})

〉
≥X

∑
i

(
ν(β−{E}, Ei)+ci

)
volX|Ei

(α1, . . . , αp) .

A weaker result with ci in place of ν(β − {E}, Ei) + ci can also be proved via Vu’s theory of
relative non-pluripolar products. The weaker inequality has already played a significant role in
the works of Su and Vu.

In order to proceed further, we shall need the celebrated conjectural transcendental Morse
inequality [BDPP13]:

(5.8) d
dt

∣∣∣∣
t=0

vol(α+ tβ) = n⟨αn−1⟩ ∩ β

for all classes α, β ∈ H1,1(X,R) with α big. This conjecture is known when X is projective, as
proved by Witt Nyström in [WN19a]. When n = 1, 2, it is also known, see [Den17].

We shall need the following consequence:

Theorem 5.5. Assume that the transcendental Morse inequality holds on X. Then for any
prime divisor D on X and any big class α ∈ H1,1(X,R), we have

(5.9) volX|D(α) = ⟨αn−1⟩ ∩ {D}.

We note that the ≤ direction in (5.9) is trivial.

Proof. This is a consequence of (5.8) and the main theorems of [WN21; Vu23a]. □

Theorem 5.6. Assume that either X is projective or n = 1, 2.
Let D1, . . . ,Dp be nef b-divisors over X, T, T ′ be closed positive (1, 1)-currents on X in the

same cohomology class such that T ⪯I T
′. Then(

D1 ∩ · · · ∩ Dp ∩ D(T ′)
)
X
−
(
D1 ∩ · · · ∩ Dp ∩ D(T )

)
X

=
∑
D/X

(
ν(T,D)− ν(T ′, D)

)
volX|D (D1, . . . ,Dp) .

(5.10)

The projectivity assumption (or n = 2 assumption) is only to guarantee that we can apply
Theorem 5.5. If the transcendental Morse inequality is known, the same proof works without
this assumption as well.

Proof. Step 1. We make some preliminary reductions.
Adding a Kähler form to T and T ′, neither side of (5.10) changes, so we may assume that T

and T ′ are both Kähler currents. Take a smooth closed real (1, 1)-form θ ∈ {T}, then we can
represent T = θ + ddcφ and T ′ = θ + ddcφ′. After replacing T and T ′ by θ + ddcPθ[φ]I and
θ + ddcPθ[φ′]I , we may assume that they are both I-good. Finally, after adding a Kähler form
to them again, we reduce to the case where T and T ′ are both I-good Kähler currents.

Next observe that the ≥X direction in (5.10) is already proved in Theorem 5.2, so thanks to
Lemma 2.16 and Proposition 4.14, in order to establish the equality, it suffices to consider the
case with p = n− 1. We shall make this assumption in the sequel.

Since both sides of (5.10) depend linearly on the Di’s, as proved in Proposition 3.27 and
Proposition 4.15, by polarization we may assume that D1 = · · · = Dn−1 = D. Our assertion
becomes

(5.11)
(
Dn−1 ∩ D(T ′)

)
X
−
(
Dn−1 ∩ D(T )

)
X

=
∑
D/X

(
ν(T,D)− ν(T ′, D)

)
volX|D

(
Dn−1

)
.

Step 2. We reduce to the case where D in (5.11) can be written as D(S) for some non-divisorial
I-good Kähler current S.
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Take a Kähler form ω on X, then for any ϵ > 0,∑
D/X

(
ν(T,D)− ν(T ′, D)

)
volX|D

((
D + ϵD(ω)

)n−1)

=
n−1∑
j=0

ϵj
(
n− 1
j

) ∑
D/X

(
ν(T,D)− ν(T ′, D)

)
volX|D

(
Dn−1−j ,D(ω)j

)
.

Note that the coefficients of the terms with ϵj are finite thanks to Theorem 5.2. Letting ϵ→ 0+,
we conclude that

lim
ϵ→0+

∑
D/X

(
ν(T,D)− ν(T ′, D)

)
volX|D

((
D + ϵD(ω)

)n−1)

=
∑
D/X

(
ν(T,D)− ν(T ′, D)

)
volX|D

(
Dn−1

)
.

A similar expression holds for the left-hand side of (5.11) as well. So we may replace D by
D + ϵD(ω) when proving (5.11). And our assertion follows.

Step 3. In view of Theorem 3.29, it remains to show that

(5.12)
∫
X
Sn−1 ∧ T ′ −

∫
X
Sn−1 ∧ T ≤

∑
D/X

(
ν(T,D)− ν(T ′, D)

)
volX|D

(
D(S)n−1

)
.

We make a further reduction, we may add freely a Kähler form to T and T ′, so that we may
assume that {T} is a Kähler class, say represented by a Kähler form ω. Due to Theorem 5.2, we
have ∫

X
Sn−1 ∧ ω −

∫
X
Sn−1 ∧ T

=
∫
X
Sn−1 ∧ ω −

∫
X
Sn−1 ∧ T ′ +

∫
X
Sn−1 ∧ T ′ −

∫
X
Sn−1 ∧ T

≥
∑
D/X

(
ν(T,D)− ν(T ′, D)

)
volX|D

(
D(S)n−1

)
+
∑
D/X

ν(T ′, D) volX|D
(
D(S)n−1

)
=
∑
D/X

ν(T,D) volX|D
(
D(S)n−1

)
.

In order to establish (5.12), it suffices to prove the outer equality, namely we may assume that
T ′ = ω, and it remains only to prove that

(5.13)
∫
X
Sn−1 ∧ ω −

∫
X
Sn−1 ∧ T ≤

∑
D/X

ν(T,D) volX|D
(
D(S)n−1

)
.

Next take a quasi-equisingular approximations (Tj)j>0 of T . Suppose that we can prove (5.13)
with Tj in place of T , namely∫

X
Sn−1 ∧ ω −

∫
X
Sn−1 ∧ Tj =

∑
D/X

ν(Tj , D) volX|D
(
D(S)n−1

)
.

Letting j →∞ and applying Proposition 2.9 and Theorem 2.18, we conclude (5.13). In particular,
we have reduced to the case where T has analytic singularities.

Take a modification π : Y → X resolving the singularities of T . Then it suffices to prove (5.13)
when T has log singularities. Of course, ω is no longer a Kähler form now, but we can as before
add a Kähler form to both ω and T to keep this property.

After all these reductions, we are finally reduced to the following assertion: Suppose that E is
a prime divisor on X, then

(5.14) {Sn−1} ∩ {E} ≤
∑
D/X

ν([E], D) volX|D
(
D(S)n−1

)
.
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Here S is an I-good current with positive volume. Note that the reverse inequality is known,
namely follows from Theorem 5.2.

After the same reduction as in Step 2, we can assume that S is a Kähler current as well.
Replacing S by RegS, we may assume that it is non-divisorial.

Step 4. We finally prove (5.14) using the transcendental Morse inequality. Only in this step
are we in need of the assumption that X is projective or n = 2.

If π : Y → X is a modification. Then Theorem 5.5 shows that
(5.15) π∗

〈
D(S)n−1

π

〉
∩ {E} =

〈
D(S)n−1

π

〉
∩ π∗{E} =

∑
D⊆Y

ν([E], D) volY |D
(
D(S)π

)
.

By Theorem 3.32 and Theorem 3.29, the limit of the left-hand side of (5.15) is nothing but(
D(S)n−1

)
X
∩ {E} = {Sn−1} ∩ {E}.

Therefore, it only remains to argue that

(5.16) lim
π : Y→X

∑
D⊆Y

ν([E], D) volY |D
(
D(S)Y

)
≤
∑
D/X

ν([E], D) volX|D
(
D(S)n−1

)
.

Fix a smooth closed real (1, 1)-form θ ∈ {S} and represent S = θ + ddcφ for some I-good
φ ∈ PSH(X, θ). Now fix a modification π : Y → X. Set

φY := sup* {η ∈ PSH(X, θ) : η ≤ 0, ν(η,D) = ν(φ,D) for all D ⊆ Y } .
Here D runs over all prime divisors on Y . Write TY = θ + ddcφY . Note that TY has positive
volume, since φY dominates φ. Moreover, TY is I-good since φY is I-model.

Observe that Reg(π∗TY ) has minimal singularities in D(S)Y . Hence

(5.17) D
(
D(S)Y

)
= D(TY ).

Therefore, in view of Example 4.18, for any prime divisor D on Y , we have

volY |D
(
D(S)Y

)
= volX|D

(
D(TY )n−1

)
.

It follows that∑
D⊆Y

ν([E], D) volY |D
(
D(S)Y

)
≤
∑
D/X

ν([E], D) volX|D
(
D(TY )n−1

)
.

We claim that for each prime divisor D over X, we have a decreasing limit

(5.18) lim
π : Y→X

volX|D
(
D(TY )n−1

)
= volX|D

(
D(S)n−1

)
.

Assume this result for the moment.
Observe that∑
D/X

ν([E], D) volX|D (TX) =
∑
D/X

ν([E], D) volX|D
(
D({S})n−1

)
≤ {Sn−1} ∩ {E} <∞.

We apply the monotone convergence theorem for nets [Fol99, Proposition 7.12] to the discrete
space consisting of prime divisors over X to find the following:

lim
π : Y→X

∑
D/X

ν([E], D) volY |D
(
D(S)Y

)
= lim
π : Y→X

∑
D/X

ν([E], D) volY |D
(
D(TY )n−1

)
= lim
π : Y→X

∑
D/X

ν([E], D) volX|D
(
D(TY )n−1

)
=
∑
D/X

ν([E], D) volX|D
(
D(S)n−1

)
.

Here we applied Example 4.18 and (5.17) on the second line, and Proposition 4.13 on the third
line.
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Therefore,
lim

π : Y→X

∑
D⊆Y

ν([E], D) volY |D
(
D(S)Y

)
≤ lim
π : Y→X

∑
D/X

ν([E], D) volY |D
(
D(S)Y

)
=
∑
D/X

ν([E], D) volX|D
(
D(S)n−1

)
.

Therefore, (5.16) follows.
It only remains to argue (5.18). Note that (φY )π : Y→X is decreasing in singularity types, and

the masses of the φY ’s dominate that of φ, which is positive. Hence by [Xia, Corollary 6.2.6],
φY has a dS-limit ψ. But by [Xia, Theorem 6.2.4] the limit is I-equivalent to φ. On the other
hand, φ and ψ are both I-good, hence φ ∼P ψ. It follows that φY

dS−→ φ. Now by [Xia25,
Proposition 4.9], we have

lim
π : Y→X

D(TY ) = D(S).

Observe that D(TY )X = D(S)X = {S}, so (5.18) follows from Proposition 4.16. □

When n = 1, Theorem 5.6 reduces to the following elegant formula:

Corollary 5.7. Assume that X is a compact Riemann surface. Let T, T ′ be closed positive
(1, 1)-currents on X in the same cohomology class such that T ⪯I T

′. Then

(5.19) volT ′ − volT =
∑
x∈X

(
ν(T, x)− ν(T ′, x)

)
.

6. Loss of masses in terms of Lelong numbers

Let X be a connected compact Kähler manifold of dimension n.
In a series of papers, Vu and Su [Vu23b; Su25b; Su25a] established the following type of

estimates: Consider a closed positive (1, 1)-current T in a big cohomology class α ∈ H1,1(X,R),
then

(6.1) volα− volT ≥ c
(
ν(T, x)− ν(α, x)

)n
, ∀x ∈ X

and similar estimates bounding the difference of the volumes of two currents from below. In
none of these works, the constant c is explicit. In this section, based on the theory of restricted
volumes of b-divisors, we shall provide an explicit constant in a much more general setup.

Since the Lelong number at a point is the same as the generic Lelong number at the exceptional
divisor after blowing-up this point, we shall consider Lelong numbers along divisors instead.

6.1. The toric setting. In order to get a feeling of what kind of inequality we should expect,
let us first consider the toric situation. For the details of the setup, we refer to [Xia, Chapter 12].

Let T be a complex torus of dimension n. Let N (resp. M) be the cocharacter lattice (resp.
character lattice) of T . Fix a fan Σ in NR corresponding to a smooth projective toric variety X.
Fix a toric-invariant big divisor

H =
∑

ρ∈Σ(1)
aρDρ,

where Σ(1) is the set of rays in Σ, Dρ is the toric-invariant divisor on X corresponding to ρ via
the orbit-cone correspondence, and aρ ∈ Z. Let

PH =
{
m ∈MR : ⟨m,uρ⟩ ≥ −aρ ∀ρ ∈ Σ(1)

}
,

where uρ ∈ N is the ray generator of ρ.
Recall the following key theorem proved in [Xia, Chapter 12].

Theorem 6.1. The I-equivalence classes of toric-invariant closed positive (1, 1)-currents in α
are in natural bijection with the convex bodies contained in PH .
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Here a convex body refers to a compact non-empty convex set.
Given such a current T , the corresponding convex body is denoted by ∆(T ). We have

volT = n! vol ∆(T ).
Two toric-invariant currents T, S in α satisfies T ⪯I S if and only if ∆(T ) ⊆ ∆(S). Now fix a
toric-invariant prime divisor D. In the ample case, D corresponds to a facet of PH , but this fails
in the big case. However, if ρ ∈ Σ(1) is the ray corresponding to D, then we have

ν(T,D) = inf {⟨m,uρ⟩+ aρ : m ∈ ∆(T )} .
So eventually, we are looking for two inequalities:

(6.2) vol ∆(S)− vol ∆(T ) ≥ c
(

inf
{
⟨m,uρ⟩ : m ∈ ∆(T )

}
− inf

{
⟨m,uρ⟩ : m ∈ ∆(S)

})n
.

Note that it is impossible to find uniform c for all S and T , contrary to the assertions in the
literature.

Example 6.2. Consider the simplex Q with the following vertices in Rn:
(0, . . . , 0), (1, 0, . . . , 0), (1, ϵ, 0, . . . , 0), (1, 0, ϵ, 0, . . . , 0), . . . , (1, 0, . . . , 0, ϵ)

for some ϵ > 0. It is a polytope contained in [0, 1]n, the Newton polytope of O(1, . . . , 1) on (P1)n.
Now let

Qt = {x ∈ Q : x1 ≥ t},
where t ∈ (0, 1). Then

volQ− volQt = tn

n!ϵ
n−1.

If we take uρ = (1, 0, . . . , 0) corresponding to the facet {x1 = 0}, we find that the constant c in
(6.2) corresponds to

ϵn−1

n! ,

which can be arbitrarily small.

Now we look for the optimal constant c in (6.2). We first make a few simplifications. Since
uρ is part of a basis of N , up to a linear transform in SL(n,Z), we may assume that N = Zn,
uρ = (1, 0, . . . , 0). We have a given rational polytope PH with positive volume contained in
{x1 ≥ 0}, two subconvex bodies Q1 ⊆ Q2. We wish to find c so that

(6.3) volQ2 − volQ1 ≥ c
(

inf
x∈Q1

x1 − inf
x∈Q2

x1

)n
.

Without loss of generality, we may assume that Q2 touches {x1 = 0}. Namely, infx∈Q2 x1 = 0.
Now we fix Q2 and t := infx∈Q1 x1 and consider the optimal Q1, namely when the left-hand

side takes the minimal value. It is clearly given by
Q1 := {(x1, y) ∈ Q : x1 ≥ t}.

See Fig. 1 for the optimal situation.
The volume of the remaining part is then bounded from below by the volume of a cone with

base Q2 ∩ {x1 = 0} and the vertex with x1 = t:
t

n
vol{y ∈ Rn−1 : (0, y) ∈ Q2}.

But we wish to obtain something to the order of tn, for this purpose, it suffices to observe that
t ≤ max

x∈PH

x1.

Putting everything together, we find

volQ2 − volQ1 ≥
1

n(maxx∈PH
x1)n−1

(
inf
x∈Q1

x1 − inf
x∈Q2

x1

)n
vol{y ∈ Rn−1 : (0, y) ∈ Q2}.

Translating everything back to the language of currents, we get
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Figure 1. The optimal situation

Proposition 6.3. Let S, T be toric invariant closed positive (1, 1)-currents in the same coho-
mology class α with S ⪰I T , then for any toric-invariant prime divisor D on X, we have

volS − volT ≥ 1(
νmax(α,D)− ν(α,D)

)n−1 ·
(
ν(T,D)− ν(S,D)

)n
· volX|D

(
S − ν(S,D)[D]

)
.

See Definition 6.4 for the definition of νmax.
This proof only works in the toric setting. In general, we shall rely on the non-toric general-

ization of Newton bodies, namely the Okounkov bodies.

6.2. Transcendental Okounkov bodies. Let X be a connected compact Kähler manifold of
dimension n.

We first recall the following notion:

Definition 6.4. Let α ∈ H1,1(X,R) be a big class, and D be a prime divisor over X. We define
νmax(α,D) = sup {ν(T,D) : T is a closed positive (1, 1)-current ∈ α} .

Note that this quantity is invariant if we replace X by a modification and D by its strict
transform. The same quantity can therefore be defined when X is only normal.

Also observe that νmax(α,D) > ν(α,D) ≥ 0. In fact, since ⟨α⟩ is big, we can find ϵ > 0 small
enough with ⟨α⟩ − ϵ{D} big. It follows that

α− (ν(α,D) + ϵ) {D}
is big. Adding (ν(α,D) + ϵ)[D] to a current with minimal singularities in α− ν(α,D){D}, we
obtain a current T with ν(T,D) > ν(α,D).

Proposition 6.5. Let α ∈ H1,1(X,R) be a big class. Consider a prime divisor D on X. Then
for any t ≥ 0, we have

νmax(α,D) = νmax(α+ t{D}, D)− t.

Proof. Fix t ≥ 0.
Take a closed positive (1, 1)-current T ∈ α, then T + t[D] is a current in α+ t{D}. Since

ν(T + t[D], D) = ν(T,D) + t,

we conclude
νmax(α,D) ≤ νmax(α+ t{D}, D)− t.

In particular the right-hand side is always positive.
Next fix ϵ ∈ (0, νmax(α+ t{D}, D)− t), take a closed positive (1, 1)-current T ∈ α+ t{D} with

ν(T,D) ≥ νmax(α+ t{D}, D)− ϵ.
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By our choice of ϵ, ν(T,D) > t. Then T − t[D] ∈ α is a closed positive (1, 1)-current, and
νmax(α,D) ≥ ν(T − t[D], D) = ν(T,D)− t ≥ νmax(α+ t{D}, D)− t− ϵ.

Letting ϵ→ 0+, the reverse inequality follows. □

Recall that a smooth flag on X is a chain of smooth analytic subspaces Y• = (Y1 ⊇ · · · ⊇ Yn)
so that each Yi is irreducible of codimension i in X. Given a big class α ∈ H1,1(X,R), there is a
natural way of constructing a convex body ∆Y•(α) ⊆ Rn associated with Y• and α, known as
the Okounkov body. The Okounkov body is contained in the first quadrant. Instead of recalling
the lengthy definition, we refer to [Den17; DRWN+23] for the details.

We shall need a few basic properties of the Okounkov bodies, as proved in [DRWN+23] and
[Xia, Chapter 10].

Theorem 6.6. Let α ∈ H1,1(X,R) be a big class and Y• be a smooth flag on X, then we have
the following:

(1) The volume of the Okounkov body is proportional to the volume of the class:
(6.4) volα = n! vol ∆Y•(α).

(2) The Okounkov body ∆Y•(α) is continuous with respect to α if we consider the topology
induced by the Hausdorff metric.

(3) The two ends have pluripotential-theoretic interpretations:
min

x∈∆Y• (α)
x1 = ν(α, Y1), max

x∈∆Y• (α)
x1 = νmax(α, Y1).

(4) For all t ∈ (ν(α, Y1), νmax(α, Y1)), we have

volX|Y1 (α− t{Y1}) = (n− 1)! vol
{
y ∈ Rn−1 : (t, y) ∈ ∆Y•(α)

}
.

In fact, the slice in (4) is an example of the partial Okounkov bodies studied in [Xia21] and
[Xia, Chapter 10].

We shall need a few auxiliary lemmata.

Lemma 6.7. Let A > 0. Let f : [0, A]→ R≥0 be a continuous concave function. Then for any
n ∈ Z>0, and any t0 ∈ (0, A), we have∫ A

0
f(t)n dt ≤ f(t0)nAn+1

n+ 1 min{t0, A− t0}−n.

Proof. Fix t0 ∈ (0, A), assume that f(t0) = C ≥ 0, let us compute the maximum of
∫ A

0 f(t)ndt.
Since f is concave, the maximization problem reduces immediately to the case where f is affine.
So we need to compute the maximum of∫ A

0
(B(t− t0) + C)n dt = (B(A− t0) + C)n+1 − (−Bt0 + C)n+1

(n+ 1)B
under the constraints that

−Bt0 + C ≥ 0, B(A− t0) + C ≥ 0.
Observe that the integral is convex in B, and hence the maximum is obtained at the boundary
of the interval, in other words, the maximum of the integral is

max
{
CnAn+1

(n+ 1)tn0
,

CnAn+1

(n+ 1)(A− t0)n

}
= CnAn+1

n+ 1 min{t0, A− t0}−n.

□

Lemma 6.8. Assume that n > 1. Let P ⊆ Rn be a convex body. Assume that
min
x∈P

x1 = 0, max
x∈P

x1 = A ≥ 0.

Then for any t0 ∈ [0, A], we have

vol
{
y ∈ Rn−1 : (t0, y) ∈ P

}
≥ n

An
volP ·min{t0, A− t0}n−1.
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The proof resulted from a discussion with Yangyang Li.

Proof. We may assume that t0 ∈ (0, A) since otherwise there is nothing to prove.
We write

g(t) := vol
{
y ∈ Rn−1 : (t, y) ∈ P

}
.

By Brunn–Minkowski inequality, the function g1/(n−1) is concave. Therefore, thanks to
Lemma 6.7, we have

volP =
∫ A

0
g(t) dt ≤ g(t0)An

n
min{t0, A− t0}−n+1.

□

The following lower bound of the restricted volume seems new.

Corollary 6.9. Let α ∈ H1,1(X,R) be a big class. Then for any prime divisor D on X, we have

(6.5) volX|D (α− t{D}) ≥ volα(
νmax(α,D)− ν(α,D)

)n ·min{t− ν(α,D), νmax(α,D)− t}n−1

as long as ν(α,D) ≤ t ≤ νmax(α,D).

In particular, when ν(α,D) < t < νmax(α,D), we have ν(α− t{D}, D) = 0.

Proof. The inequality (6.5) is trivial if t takes the boundary value. We may assume that
ν(α,D) < t < νmax(α,D).

Since the problem is invariant after replacing X by a modification and D by its strict transform,
we may assume that D is smooth and is the first component in a smooth flag Y• on X. Then
our assertion follows from Lemma 6.8 and Theorem 6.6. More precisely, we have

volX|D (α− t{D})

≥(n− 1)! vol
{
y ∈ Rn−1 : (t, y) ∈ ∆Y•(α)

}
≥(n− 1)! · n

(νmax(α,D)− ν(α,D))n vol ∆Y•(α) ·min{t− ν(α,D), νmax(α,D)− t}n−1

= volα
(νmax(α,D)− ν(α,D))n ·min{t− ν(α,D), νmax(α,D)− t}n−1.

□

6.3. Loss of mass problem. Now fix a connected compact Kähler manifold X of dimension n.

Theorem 6.10. Let α1, . . . , αn ∈ H1,1(X,R) be big classes. Consider closed positive (1, 1)-
currents Si, Ti ∈ αi with Si ⪰I Ti. Fix a prime divisor D over X. Then

vol(S1, . . . , Sn)− vol(T1, . . . , Tn)

≥ max
i=1,...,n

∏
j ̸=i

1
νmax(αj , D)− ν(αj , D)

 volX|D
(
D(S1), . . . , D̂(Si), . . . ,D(Sn)

)
·
n∏
i=1

(
ν(Ti, D)− ν(Si, D)

)
.

Proof. Observe that
vol(S1, . . . , Sn)− vol(T1, . . . , Tn) ≥ vol(S1, S2, . . . , Sn)− vol(T1, S2, . . . , Sn).

We apply Theorem 5.6 to get

vol(S1, . . . , Sn)− vol(T1, . . . , Tn) ≥
(
ν(T1, D)− ν(S1, D)

)
volX|D

(
D(S2), . . . ,D(Sn)

)
.

Next observe that for j > 1,
ν(Tj , D)− ν(Sj , D) ≤ νmax(αj , D)− ν(αj , D),
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and hence

vol(S1, . . . , Sn)− vol(T1, . . . , Tn)

≥
n∏
j=2

ν(Tj , D)− ν(Sj , D)
νmax(αj , D)− ν(αj , D) ·

(
ν(T1, D)− ν(S1, D)

)
· volX|D

(
D(S2), . . . ,D(Sn)

)
,

and our assertion follows by symmetry. □

In order to appreciate our result, let us consider the following special cases.

Corollary 6.11. Let α ∈ H1,1(X,R) be a big class. Consider closed positive (1, 1)-currents
T, S ∈ α with T ⪯I S. Then

volS − volT ≥ 1(
νmax(α,D)− ν(α,D)

)n−1 ·
(
ν(T,D)− ν(S,D)

)n
· volX|D

(
S − ν(S,D)[D]

)
.

We have obtain what we could expect from the toric situation Proposition 6.3.

Proof. It suffices to apply Theorem 6.10. Note that the restricted volume of b-divisors is just
volX|D(S − ν(S,D)[D]) thanks to Example 4.20. □

Corollary 6.12. Let α ∈ H1,1(X,R) be a big class, and T1, . . . , Tn ∈ α be closed positive
(1, 1)-currents. Suppose that D is a prime divisor on X. Then

volα− vol(T1, . . . , Tn) ≥ 1(
νmax(α,D)− ν(α,D)

)n−1 volX|D
(
⟨α⟩
)
·
n∏
i=1

(
ν(Ti, D)− ν(α,D)

)
.

Proof. We apply Theorem 6.10, with all Si’s being a current with minimal singularities in α.
The restricted volume of the b-divisors is just volX|D (⟨α⟩) due to Example 4.18. □

Note that in the situation of Corollary 6.12, it could happen that volX|D(⟨α⟩) = 0. In order
to get a meaningful lower bound in this case, we shall derive a different estimate following the
same idea.

Theorem 6.13. Assume that n > 1. Let α1, . . . , αn ∈ H1,1(X,R) be big classes. Consider closed
positive (1, 1)-currents Ti ∈ αi for all i = 1, . . . , n. Fix a prime divisor D over X. Then

⟨α1, . . . , αn⟩ − vol(T1, . . . , Tn)

≥ 1
2n−1

n∏
i=1

(
ν(Ti, D)− ν(αi, D)

)
max

k=1,...,n

∏
j ̸=k

 volαj(
νmax(αj , D)− ν(αj , D)

)n


1/(n−1)

.

In the proof below, by choosing better values of c, we can slightly improve the inequality, we
leave the details to the interested readers.

Proof. Since the problem is invariant after replacing X by a modification and D by the strict
transform, we may assume that D is a prime divisor on X.

After replacing αi by αi − ν(αi, D){D} and Ti by Ti − ν(αi, D)[D], we may assume that
ν(αi, D) = 0 for all i = 1, . . . , n.

We may assume that ν(Ti, D) > 0 for all i since there is nothing to prove otherwise. Fix a
constant c ∈ (0, 1) for the moment.

Now let S′
i be a current with minimal singularities in αi − cν(Ti, D){D}. Then ν(S′

i, D) = 0
thanks to Corollary 6.9. We write Si = S′

i + cν(Ti, D)[D]. Let Smin ∈ α1 be a current with



TRANSCENDENTAL B-DIVISORS II — THE INTERSECTION THEORY 43

minimal singularities. Then

⟨α1, . . . , αn⟩ − vol (T1, . . . , Tn)
≥ vol (Smin, S2, . . . , Sn)− vol (T1, S2, . . . , Sn)

≥ν(T1, D) volX|D
(
D(S2), . . . ,D(Sn)

)
≥ν(T1, D)

n∏
j=2

volX|D
(
αj − cν(Tj , D){D}

)1/(n−1)

≥ν(T1, D)
n∏
j=2

(
volαj

νmax (αj , D)n ·min
{
cν(Tj , D), νmax(αj , D)− cν(Tj , D)

}n−1
)1/(n−1)

=ν(T1, D)
n∏
j=2

( volαj
νmax (αj , D)n

)1/(n−1)

·min
{
cν(Tj , D), νmax(αj , D)− cν(Tj , D)

} .
where the first inequality follows from [Xia25, Proposition 3.6], the second follows from The-
orem 5.2, the third follows from Proposition 4.22 and Example 4.18, the fourth follows from
Corollary 6.9.

Next take c = 1/2, then since for each j = 2, . . . , n, we have

1
2ν(Tj , D) ≤ νmax(αj , D)− 1

2ν(Tj , D),

we can continue the estimate

⟨α1, . . . , αn⟩ − vol (T1, . . . , Tn)

≥ν(T1, D)
n∏
j=2

( volαj
νmax(αj , D)n

)1/(n−1)

· 1
2ν(Tj , D)


= 1

2n−1

n∏
i=1

ν(Ti, D) ·
n∏
j=2

(
volαj

νmax(αj , D)n

)1/(n−1)

.

The desired inequality follows by symmetry. □

Corollary 6.14. Assume that n > 1. Let α1, . . . , αn ∈ H1,1(X,R) be big classes. Consider
closed positive (1, 1)-currents Si, Ti ∈ αi. Assume that Ti ⪯I Si. Fix a prime divisor D over X.
Assume that volSj > 0 for all j = 1, . . . , n. Then

(6.6)

vol(S1, . . . , Sn)− vol(T1, . . . , Tn)

≥ 1
2n−1

n∏
i=1

(
ν(Ti, D)− ν(Si, D)

) n∏
j=2

 volSj(
νmax(αj , D)− ν(Sj , D)

)n


1/(n−1)

.

Proof. Since the problem is invariant after replacing X by a modification and D, we may assume
that D is a prime divisor on X.

When S1, . . . , Sn have analytic singularities, from the bimeromorphic invariance of both sides
of (6.6), we may reduce to the case where S1, . . . , Sn have log singularities. Then our assertion
(6.6) follows at once from Proposition 6.5 and Theorem 6.13.

Next we handle the case where S1, . . . , Sn are Kähler currents. Take quasi-equisingular
approximations (Ski )k of Si, the the desired inequality holds with Ski in place of Si. Letting
k → ∞, the assertion for the Si’s follows. Here we have applied the continuity of Lelong
numbers, as proved in [Xia, Theorem 6.2.4], and the continuity of the volumes as proved in
[Xia25, Proposition 3.10].
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Finally, consider the general case. Fix a Kähler form ω on X. Then for any ϵ > 0, we have
vol (S1 + ϵω, . . . , Sn + ϵω)− vol (T1 + ϵω, . . . , Tn + ϵω)

≥ 1
2n−1

n∏
i=1

(
ν(Ti, D)− ν(Si, D)

) n∏
j=2

 vol(Sj + ϵω)(
νmax(αj + ϵ{ω}, D)− ν(Sj , D)

)n


1/(n−1)

.

It suffices to observe that
lim
ϵ→0+

νmax(αj + ϵ{ω}, D) = νmax(αj , D)

as a consequence of Theorem 6.6(2) and (3). Letting ϵ→ 0+, we conclude (6.6). □

The following case is probably the most important for applications:

Corollary 6.15. Let α ∈ H1,1(X,R) be a big class. Consider closed positive (1, 1)-currents
S, T ∈ α with T ⪯I S. Fix a prime divisor D over X, then

(6.7) volS − volT ≥
(
ν(T,D)− ν(S,D)

)n
· volS

2n−1
(
νmax(α,D)− ν(α,D)

)n .
Proof. We first assume that n > 1. When volS > 0, this follows immediate from Corollary 6.14.
When volS = 0, there is nothing to prove.

Finally when n = 1, we consider the partial Okounkov bodies ∆(S) and ∆(T ) with respect
to the flag D. See the algebraic approach in [Xia21] or the transcendental approach in [Xia,
Chapter 10]. Since we are in dimension 1, the cohomology class α is necessarily algebraic, so the
algebraic theory in [Xia21] actually suffices, at least when α is a rational class.

Let ∆(α) be the corresponding Okounkov body of α. Then ∆(α) ⊇ ∆(S) ⊇ ∆(T ) and they
are (possibly degenerate) closed intervals. The situation is summarized in Fig. 2.

0 ν(α,D)ν(S,D) ν(T,D) νmax(α,D)

∆(S)

∆(T )

∆(α)

Figure 2. The Okounkov bodies

Then using the theory of Okounkov bodies, our assertion (6.7) translates into

vol ∆(S)− vol ∆(T ) ≥
(
ν(T,D)− ν(S,D)

)
· vol ∆(S)
νmax(α,D)− ν(α,D) .

From the picture, it is clear that
vol ∆(S) ≤ νmax(α,D)− ν(α,D), vol ∆(S)− vol ∆(T ) ≥ ν(T,D)− ν(S,D),

and our assertion follows. □

Note that the constant
1

2n−1
(
νmax(α,D)− ν(α,D)

)n
appearing in (6.7) depends continuously on α, as follows from Theorem 6.6(2) and (3). Our
theorem therefore implies the main theorem of [Vu23b] when D is taken as the exceptional
divisor of the blow-up at a point.

The dependence on volS in the right-hand of (6.7) seems optimal, in view of Example 6.2.
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Appendix A. Positive forms

We briefly recall the notion of positive forms due to Lelong [Lel68] and Harvey–Knapp [HK74].
The latter reference, on which a large part of Demailly’s textbook [Dem12, Chapter III] was
based, was unfortunately omitted from the reference list.

Let V be a finite dimensional complex vector space of dimension n. Let V ∨ denote the complex
linear space consisting of R-linear functional V → R on V . For each pair of non-negative integers
p, q, we write Λp,qV ∨ for the space of (p, q)-forms in Λp+q(V ∨ ⊗R C). Note that the complex
dual of V is Λ1,0V ∨.

Fix an integer p ∈ {0, 1, . . . , n} in the sequel.

Definition A.1. A form α ∈ Λp,pV ∨ is
(1) weakly positive if for each β1, . . . , βn−p ∈ V ∨, we have

α ∧ iβ1 ∧ β1 ∧ · · · ∧ iβn−p ∧ βn−p

gives the positive orientation of V ;
(2) strongly positive if α is a finite linear combination with R≥0 coefficients of terms of the

form
(A.1) iβ1 ∧ β1 ∧ · · · ∧ iβp ∧ βp,

where β1, . . . , βp ∈ V ∨. A form like (A.1) is called a basic form.
(3) positive if for one (hence all) basis w1, . . . , wn of Λ1,0V ∨, when we expand α as

(A.2) α = (−1)p(p−1)/2 ∑
|I|=|J |=p

αI,J ipwI ∧ wJ ,

the matrix (αI,J)I,J is Hermitian and positive semidefinite. Here wI = wi1 ∧ · · · ∧ wip ,
where i1 < i2 < · · · < ip are the elements in I, and βJ is similar.

Remark A.2. The terminology needs some clarification. In [Lel68], Lelong only introduced the
notions of weakly positive forms and strongly positive forms. He called the weakly positive
forms positive forms. Lelong’s terminology is largely followed by the modern schools in complex
geometry.

The notion of positive forms as above is introduced by Harvey–Knapp. The terminology of
Harvey–Knapp is, by contrast, largely followed by people in non-Archimedean geometry and
tropical geometry.

When we represent a weakly positive form in the form of matrices as in (A.2), the matrix is
always Hermitian. See [Dem12, Page 167, Corollary 1.5].

It is immediate from the definitions that a strongly positive form is positive, and a positive
form is weakly positive. Furthermore, the cone of weakly positive forms is the dual cone of that
of strongly positive forms.

When p = 0, 1, n − 1, n, all three notions are equivalent. For all other value of p, namely
p = 2, 3, . . . , n− 2, all three notions are different. This was originally a question of Lelong, and
proved in [HK74].

The wedge product preserves the various positivities as Table 2. In general, the product
between a positive form and a weakly positive form is no longer weakly positive, as follows from
the arguments of [HK74, Page 49].

α β α ∧ β
Strongly positive Strongly positive Strongly positive

Positive Positive Positive
Strongly positive Weakly positive Weakly positive

Table 2. Positivity properties of wedge products

It is easy to see that weakly positive and positive forms form closed convex cones. As for the
case of strongly positive forms, this has always been a folklore result. Harvey–Knapp [HK74]
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mentioned this on Page 49 without giving the details. We take this opportunity to give a
complete proof along the lines of Harvey–Knapp, following the answer on MathOverflow [MO].

Lemma A.3. The set of strongly positive (p, p)-forms on V form a closed convex cone.

Therefore, the cone of strongly positive forms is the dual of that of weakly positive forms.
We need the following straightforward consequence in the main body of the paper: A (p, p)-

form on a complex manifold is strongly positive as a form if and only if it is strongly positive
as a current, namely the pairing with any compactly supported weakly positive form with
bidimension (p, p) is non-negative.

This consequence has already been widely applied in the related literature without rigorous
justification.

Remark A.4. A very similar argument works in the non-Archimedean setting, and gives a rigorous
proof to the assertion about strongly positive Lagerberg forms (as defined in [Lag12]) in the
second version of [CLD25, Section 1.2.4].

Proof. The non-trivial point is to show that the cone of strongly positive (p, p)-forms is closed.
Fix an identification V ∼= Cn so that V gets a Hermitian norm.
Step 1. We show that

C :=
{
α ∈ Λp,pV ∨ : α = iβ1 ∧ β1 ∧ · · · ∧ iβp ∧ βp for some β1, . . . , βp ∈ V ∨

}
is closed.

Let
C ′ :=

{
α ∈ Λp,pV ∨ : α = ip2

γ ∧ γ for some γ ∈ Λp,0V ∨
}
.

Note that C ⊆ C ′.
We first show that C ′ is closed. Consider a Cauchy sequence (ip2

γj ∧ γ̄j)j in C. Fix a basis
w1, . . . , wn of V ∨. Then we can write

γj =
∑

|I|=p
γj,IwI .

The boundedness of ip2
γj ∧ γ̄j implies the boundedness of γj,I for each fixed I. Therefore, after

subtracting a subsequence, we may assume that γj,I → γI for some γI ∈ C. Then

ip2
γj ∧ γ̄j → ip2

γ ∧ γ̄.

Next we show that C is closed. This means, suppose that γj is decomposable then we want to
show that γ is also decomposable. But the condition of being decomposable is equivalent to
finitely many polynomial relations between the coefficients, classically known as the Plücker
relations, which pass through limits. See [GKZ08, Section 3.1.E] for details.2 Our assertion
follows.

Step 2. Let S be the unit sphere in V . Then from Step 1, the intersection S ∩ C is compact.
We claim that the convex hull of S ∩ C does not contain the origin. Suppose that this fails,

then we can find vi ∈ S ∩ C and λi > 0 (i = 1, . . . ,m) so that
m∑
i=1

λivi = 0.

But under the matrix representation (A.2), the vi’s can be regarded as strictly positive matrices,
so this cannot happen.

Our assertion now follows from Lemma A.5. □

Lemma A.5. Let C be a convex body in Rn, 0 ̸∈ C, then the convex cone generated by C union
with 0 is closed.

2More conceptually, the decomposability of γ also follows from the fact that the Plücker embedding of the
Grasmannian is a closed immersion.
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Proof. Let λi > 0 and ci ∈ C. Assume that λici converges to c ∈ Rn. Then we need to show
that either c = 0 or c is in the convex cone generated by c.

We may assume that c ̸= 0. Then since C is compact and 0 ̸∈ C, then |ci| is a bounded
sequence, bounded away from 0 as well. But λici has a non-zero limit, this means λi is also
bounded and bounded away from 0. After replacing everything by a subsequence, we may
assume that λi → λ > 0, ci → c′ ∈ C. Then c = λc′, and our assertion follows. □

A symmetric form can always be decomposed as the difference of two strongly positive forms.
More generally, we have the following:

Theorem A.6. Fix a basis w1, . . . , wn, then Λp,pV ∨ has a basis consisting of forms of the form

ip2
β1 ∧ · · · ∧ βp ∧ β1 ∧ · · · ∧ βp,

where βi is one of wi ± wj or wi ± iwj with i, j = 1, . . . , n.

This result was first proved by Harvey–Knapp [HK74, Proposition 1.9]. See also Demailly
[Dem12, Page 167, Lemma 1.4]. The corresponding statement fails in the setup of Lagerberg
forms, as previously asserted in the first version of [CLD25]. See [Ber25] for the details.
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