Y mir






Contents

Affinoid algebras

1. Introduction
2. Tate algebras
3. Affinoid algebras
4. Weierstrass theory
5. Noetherian normalization and maximal modulus principle
6. Properties of affinoid algebras
7. Examples of the Berkovich spectra of affinoid algebras
8. H-strict affinoid algebras
9. Finite modules over affinoid algebras
10. Affinoid domains
11.  Graded reduction
12.  Gerritzen—Grauert theorem
13. Tate acyclicity theorem
14. Kiehl’s theorem
15. Boundaryless homomorphism
Bibliography

ot Ot Ot

17
20
23
26
27
31
38
47
o1
61
64

71






Affinoid algebras

1. Introduction

Our references for this chapter include [ I, ].

2. Tate algebras

Let (k,| ®]) be a complete non-Archimedean valued-field.
Definition 2.1. Let n € Nand r = (rq,...,7r,) € RZ,. We set
E{r7'TY =k{r{ Ty, ...,rn Tt}

::{f: Z aoT* € K[[T1, ..., Th]] - an € k, |ag|r® — 0 as |« —>oo}.
aeN™

For any f =3 cyn aaT® € k{r 'T}, we set

[ f]l» = max |aq|r®.
«

We call (k{r=1T},| o ||,;) the Tate algebra in n-variables with radii 7. The norm
| ] is called the Gauss norm.
We omit r from the notation if r = (1,...,1).

This is a special case of Example 4.15 in Banach rings.

Proposition 2.2. Let n € Nand r = (r1,...,7,) € R;. Then the Tate algebra
(k{r='T},| o |~) is a Banach k-algebra and || e ||, is a valuation.

ProoF. This is a special case of Proposition 4.16 in Banach rings. O

Remark 2.3. One should think of k{r~1T"} as analogues of C{(r~'T) in the theory
of complex analytic spaces. We could have studied complex analytic spaces directly
from the Banach rings C{(r~'7"), as we will do in the rigid world. But in the complex
world, the miracle is that we have a priori a good theory of functions on all open
subsets of the unit polydisk, so things are greatly simplified. The unit polydisk is a
ringed space for free.

As we will see, constructing a good function theory, or more precisely, enhancing
the unit disk to a ringed site is the main difficulty in the theory of rigid spaces. And
Tate’s innovation comes in at this point.

Example 2.4. Assume that the valuation on k is trivial.
Let n € N and r € R%,. Then k{r—'T} 2 k[Ty,...,T,] if r; > 1 for all i and
k{r='T} 2 k[[Ty,...,T,]] otherwise.

Lemma 2.5. Let A be a Banach k-algebra. For each n € N and ay,...,a, € /017
there is a unique continuous homomorphism k{Ty,...,T,} — A sending T; to a;.

PRrOOF. This is a special case of Proposition 4.18 in Banach rings. [l
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6 AFFINOID ALGEBRAS

3. Affinoid algebras

Let (k,|®|) be a complete non-Archimedean valued field and H be a subgroup
of Rsq such that |k*| - H # {1}.

Definition 3.1. A Banach k-algebra A is k-affinoid (vesp. strictly k-affinoid) if
there are n € N, r € RZ, and an admissible epimorphism k{r~'7} — A (resp. an
admissible epimorphism k{T} — A).

More generally, a Banach k-algebra A is kg -affinoid if there are n € N, r € H”
and an admissible epimorphism k{r =T} — A.

A morphism between k-affinoid (resp. strictly k-affinoid, resp. kp-affinoid)
algebras is a bounded k-algebra homomorphism.

The category of k-affinoid (resp. strictly k-affinoid, resp. kg-affinoid) algebras
is denoted by k-Aff Alg (resp. st-k-Aff Alg, resp. k- Aff Alg).

For the notion of admissible morphisms, we refer to Definition 2.5 in Banach
rings.

Although we have defined strictly k-affinoid algebra when k is trivially valued,
we will deliberately avoid talking about it in order to avoid pathologies.

Remark 3.2. Berkovich also introduced the notion of affinoid k-algebras: it is a
K-affinoid algebra for some complete non-Archimedean field extension K/k. We
will not use this notion.

Definition 3.3. The category of k-affinoid spectra k-Aff (resp. strictly k-affinoid
spectra st-k-Aff, resp. kp-affinoid spectra ky-Aff) is the opposite category of
k-Aff Alg (resp. st-k-Aff Alg, resp. k- Aff Alg). An object in these categories are
called a k-affinoid spectrum, strictly k-affinoid spectrum and ky-affinoid spectrum
respectively.

Given an object A of k-Aff Alg (resp. st-k-Aff Alg, resp. ky-Aff Alg), we denote
the corresponding object in k- Aff (resp. st-k-Aff, resp. ky-Aff) by Sp A. We call
Sp A the affinoid spectrum of A.

In Definition 6.1 in Banach rings., we defined functors Sp : k-Aff — Top,
Sp : st-k-Aff — Top and Sp : ky-Aff — Top. This motivates our notation. We will
freely view Sp A as an object in these categories or as a topological space.

Proposition 3.4. Finite limits exist in kg-Aff. Moreover, fiber products in kg-Aff
corresponds to completed tensor product in kg-Aff Alg.

PRroOF. It suffices to prove that finite fibered products exsit.

We prove the equivalent statement, finite fibered coproducts exist in kg-Aff Alg.
Given kg-affinoid algebras A, B, C' and morphisms A — B, A — C, we claim that
B& 4C represents the fibered coproduct of B and C over A. By general abstract
nonsense, we are reduced to handle the following cases: A =k and A — C'is the
codiagonal C®;,C — C. In both cases, the proposition is clear.

O

Example 3.5. Let r € Ryg. We let k, denote the subring of k[[T]] consisting of
[ =57 a;T" satisfying |a;[r® — 0 for i — oo and ¢ — —oc. Define a norm
|| ] on k, as follows: ‘

171 = maxals

We will show in Proposition 3.6 that k,. is k-affinoid.
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Proposition 3.6. Let r € R, then (k,, || e||,) defined in Example 3.5 is a k-affinoid
algebra. Moreover, || o ||, is a valuation.

PROOF. Observe that we have an admissible epimorphism
v k{rT M Ty — ke, T T, T e TN

As we do not have the universal property at our disposal yet, let us verify by hand
that this defines a ring homomorphism: consider a series

f= > a;TiT] € k{r T, rTo},
(4,5)€N?
namely,
(3.1) \ai7j|ri_j —0
as i + j — oo. Observe that for each k € Z, the series
C i — Z ;5
i—j=k,i,jEN
is convergent.
Then by definition, the image ¢(f) is given by

i Cka.

k=—o00

We need to verify that +(f) € k,. That is
ek|r® — 0

as k — doo. When k > 0, we have |cx| < |ago| by definition of cx. So |ex|r* — 0 as
k — oo by (3.1). The case k — —oc is similar.

We conclude that we have a well-defined map of sets ¢. It is straightforward
to verify that ¢ is a ring homomorphism. Next we show that ¢ is surjective. Take
g=>72__ ¢T" € k.. Wewant to show that g lies in the image of 1. As ¢ is a

1=—00

ring homomorphism, it suffices to treat two cases separately: g = Zfio ¢;T? and
g= Z?:_Oo c;T¢. We handle the first case only, as the second case is similar. In

this case, it suffices to consider f = > .2 ¢, T} € k{r='Ty,rT>}. It is immediate

that «(f) = g.
Next we show that ¢ is admissible. We first identify the kernel of .. We claim

that the kenrel is the ideal I generated by 17175 — 1. It is obvious that I C ker .
Conversely, consider an element
f=Y a;TiT] € k{r~'Ty,rTy}
(4,7)€N2
lying in the kenrel of ¢. Observe that
f= Z Jes Sr= Z a;; TiT}.
k=—o0 (4,5)EN2 i—j=k
If f € ker ¢, then so is each fi by our construction.

We first show that each fj lies in the ideal generated by 7175 — 1. The condition
that fr € ker: means
Z Qj,5 = 0.

(4,J)EN?i—j=Fk
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It is elementary to find b; ; € k for ¢, € N, ¢ — j = k such that
@ij = bi-1j-1 = bij.
Then )
fo=MTa—1) > b TiTY.
i,jEN,i—j=Fk

Observe that we can make sure that |b; ;| < max{|a; ;| : i—j = ¢'—j'}. In particular,
the sum of Zi,jeN,ifj:k b; ; TiT3 for various k converges to some g € k{r 'Ty,rT>}
and hence f = (T1T2 — 1)g. Therefore, we have proved that ker: is generated by
Ty, —1.

It remains to show that ¢ is admissible. In fact, we will prove a stronger result:
¢ induces an isometric isomorphism

k{r Ty, rTo} /T — k.
To see this, take f = 7o ¢, T* € k,, and we need to show that
[£1lr = inf{|[gllrr-1) : lg) = [}
Observe that if we set g = > 77 i TF+Y 0y c—xT¥, then o(g) = f and [|g||(yr—1) =

[ £1I. So it suffices to show that for any h =3 ;cne di jTIT] € k{r—'Ty,rTy}, we
have

(3-2) £l < llg + A(Th T2 = 1)1

We compute

g+h(T1T2—1) = Z(Ck—dkyo)le'FZ(ka—do_’k)TQk"r‘(Co—do)'F Z (diflyjfl—di’j)TliTg.

k=1 k=1 ij>1
So
+ h(TyTy — 1 —1 = max { max C; ;, max C.
lg-+ AT T~ 1), i s Ce |
where
C1x =max { | — diol, E di—1,j—1 —d;
i—j=hyij>1
for £k > 0 and
Cop =max { e — do i, E di—1-1 —di
i—j=—hij>1

for k > 1. It follows from the strong triangle inequality that |c;| < Cy for k>0
and c_j < Cy, for k> 1. So (3.2) follows. O

Proposition 3.7. Let r € Ry \ \/|k*|, then | o ||, defined in Example 3.5 is a
valuation on k..

Proor. Take f, g € k,., we need to show that

1fgllr = NI fll-lgll--

Let us expand
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Take ¢ and j so that
(3.3) lailr® = (I £llr, b7 = llgll:-

By our assumption on 7, 4, j are unique. Then
gl = max{ieels*),

where
cr = Z ayby.
u,vEL,u+v==k
It suffices to show that

(3-4) lexlr® =1 £ll-llgll-

for k =i+ j. Of course, we may assume that a; # 0 and b; # 0 as otherwise there
is nothing to prove. For u,v € Z, u + v = i + j while (u,v) # (4,5), we may assume
that u # i. Then |ay|r* < |a;|r® and [b,|r" < |bj|r?. So |ayby| < |a;b;| and we
conclude (3.4).

Remark 3.8. The argument of Proposition 4.16 in Banach rings does not work here
if € \/]k*], as in general one can not take minimal i, j so that (3.3) is satisfied.

Proposition 3.9. Assume that » € Ry \ 1/|k*|. Then k, is a valuation field and

| @~ is non-trivial.

PrOOF. We first show that Sp k,. consists of a single point: || e ||,.. Assume that
|e| € Spky. As | ||, is a valuation, we find

(3-5) [ef <[l

In particular, | e | restricted to k is the given valuation on k. It suffices to show that
|T| = r. This follows from (3.5) applied to T and T~1.

It follows that k, does not have any non-zero proper closed ideals: if I is such
an ideal, k, /I is a Banach k-algebra. By Proposition 6.10 in Banach rings., Sp k,. is
non-empty. So k, has to admit bounded semi-valuation with non-trivial kernel.

In particular, by Corollary 4.7 in Banach rings., the only maximal ideal of k&, is
0. It follows that k,. is a field.

The valuation || e ||, is non-trivial as |||, = r. O

Definition 3.10. Anelement r = (rq,...,r,) € RZ, for some n € Nis called a k-free
polyray if r1, ..., r, are linearly independent in the Q-linear space Q ®z Rso/+/|k%|.

Let n € Nand r = (r1,...,7,) € RZ,. Assume that r is a k-free polyray. We
define

kr = kr1®k t ®kkrn~

By an interated application of Proposition 3.9, k,. is a complete valuation field.
As a general explanation of why k.. is useful, we prove the following proposition:

Proposition 3.11. Let n € Nand r = (rq,...,7,) be a k-free polyray.
(1) For any k-Banach space X, the natural map

X > X®k,

is an isometric embedding.
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(2) Consider a sequence of bounded homomorphisms of k-Banch spaces X —
Y — Z. Then the sequence is admissible and exact (resp. coexact) if
and only if X®uk, = Y&k, = Z&uk, is admissible and exact (resp.
coexact).

PrROOF. We may assume that n = 1.

(1) We have a more explicit description of X&k,: as a vector space, it is the
space of f =37 _ a;T" with a; € X and ||a;|r* — 0 when |i| — oo. The norm is
given by max; |la;||r’. From this description, the embedding is obvious.

(2) This follows easily from the explicit description in (1). O

When X is a Banach k-algebra, X &k, is a Banach k,-algebra.

Example 3.12. For any n € N, r € R, not necessarily k-free. We define £, as
the completed fraction field of k{r~1T} provided with the extended valuation | e |,..
Then k, is still a valuation field extending k.

When r is a k-free polyray, we claim that k, coincides with k, defined in
Definition 3.10. To see this, let us temporarily denote the k, defined in this example
as k.. consider the extension of field:

Frack{r 'T} = k. = k{r*T,rS}/(T1S1 — 1,...,T,,S, — 1)

sending T; to T; for ¢ = 1,...,n. Observe that this is an extension of valuation field
as well by the same arguments as in Proposition 3.6. In particular, it induces an
extension of complete valuation fields k. — k,.. But the image clearly contains the
classes of all polynomials in k[T, S|, so k. — k, is an isometric isomorphism.

Proposition 3.13. Assume that k is non-trivially valued. Let B be a strict k-
affinoid algebra and ¢ : B — A be a finite bounded k-algebra homomorphism into a
k-Banach algebra A. Then A is also strictly k-affinoid.

PROOF. We may assume that B = k{T},...,T,} for some n € N. By assump-
tion, we can find finitely many a1y G € A such that A =37, o(B)a;.

We may assume that a; € A as k is non-trivially valued. By Proposition 4.18 in
Banach rings., ¢ admits a unique extension to a bounded k-algebra epimorphism

O k{Ty,....Tp,S1,...,5m} — A

sending S; to a;. By Corollary 7.5 in Banach rings., ® is admissible. Moreover,
the homomorphism & is surjective by our assumption. It follows that A is strictly
k-affinoid. O

Proposition 3.14. Assume that k is non-trivially valued. Let B be a strict k-
affinoid algebra and ¢ : B — A be a finite k-algebra homomorphism into a k-algebra
A. Then there is a norm on A such that the morphism is bounded and A is strictly
k-affinoid.

PROOF. By Proposition 8.4 in Banach rings., we can endow A with a Banach
norm such that ¢ is admissible. Then we can apply Proposition 3.13. (]

Lemma 3.15. Assume that k is non-trivially valued. Let n € N and r =
(r1,...,mn) € R%,. The algebra k{r~'T?} is strictly k-affinoid if r; € \/|k*| for all
1=1,...,n.

Remark 3.16. The converse is also true.
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PROOF. Assume that r; € \/|k*| for all : = 1,...,n. Take s; € N and ¢; € k*
such that
=l
fori=1,...,n. We deifne a bounded k-algebra homomorphism ¢ : k{T1,...,T,} —
E{r7Ty,..., 7T, } by sending T; to ¢; T;". This is possible by Proposition 4.18 in
Banach rings.
We claim that ¢ is finite. To see this, it suffices to observe that if we expand

fek{ry*,...,r T, as
f: Z aaTav

aeNn

f= D TP ansrse (),
BEN™,B;<s; YyEN™
where the product 7s is taken component-wise. For each 8 € N 3, < s;, we set

gg = Z aysypc () € k{T1,...,T,}.

we can regroup

YEN™
While f = 3 5cnm 5.5, 9(98)T7. So We have shown that ¢ is finite. Hence,
E{r7*Ty, ..., 7T, } is k-affinoid by Proposition 3.13. O

Proposition 3.17. Let A be a k-affinoid algebra, then there is n € N and a k-free
polyray 7 = (r1,...,7,) such that A®k, is strictly k,-affinoid. Moreover, we can
guarantee that k, is non-trivially valued.

PROOF. By Proposition 3.11, we may assume that A = k{t T} for some
t € RYy. By Lemma 3.15, it suffices to take r so that the linear subspace of
R>0/\/W generated by rq,...,r, contains all components of ¢t. Taking n > 1, we
can guarantee that k, is non-trivially valued. [l

Proposition 3.18. Let ¢ : Sp B — Sp A be a morphism of kg-affinoid algberas.
Then for any x € Sp A, there is a canonical homeomorphism

Sp B& A (z) — ¢~ ().
PROOF. We have a canonical morphism
Sp B& 4.7 () — Sp B.

We claim that this maps factorizes through ¢~!(z). Let y € Sp B4 (z). Let
| ® |, be the corresponding bounded semi-valuation. We need to show that the
restriction of | e |, to A coincides with x. But this is immediate: the restriction of
| ® |, to J€(x) has to coincide with the valuation on J2(x).

It remains to show that each element y € ¢~!(z) induces a bounded semi-
valuation on B& 45 (z). Let ||, be the bounded semi-valuation on B corresponding
to y. Observe that | e |, canonically extends to a bounded semi-valuation on
B®a Alker|e|,, where | e |, is the bounded semi-valuation on A corresponding to
x. Then it extends canonically to a bounded semi-valuation on B& 4.7 ().

These operations are clearly inverse to each other. [l

Proposition 3.19. Let ¢ : Sp B — Sp A be a monomorphism in kg-Aff. Then
for any y € Sp B with * = ¢(y), one has ¢~ *(z) = {y} and the natural map
H(x) — € (y) is an isomorphism of complete valuation rings.
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PROOF. By Proposition 3.18, it suffices to show that #(x) — B& 4.7 (y) is an
isomorphism as Banach k-algebras. By assumption, the codiagonal map B&4B — B
is an isomorphism. It follows that the base change with respect to A — 5 (z) is
also an isomorphism: B’®K#(I)B’ — B', where B’ = B& 4 ().

Include the fact that the first map is injective. It follows that the composition
B @)y B = B'®y B — B’ is injective. Therefore, /' (z) — B’ is an
isomorphism of rings. We also know that this map is bounded. But we already know
that 7 (z) is a complete valuation ring, so the map #(z) — B’ is an isomorphism
of complete valuation rings. (Il

4. Weierstrass theory

Let (k,| ]) be a complete non-Archimedean valued-field.
Proposition 4.1. We have canonical identifications

({T1,...,T,})° 2k{Ty,..., T,},
(k{Ty,...,T,}) =k{Ty,..., T},

E{Ty,..., T} =k[T1,...,Ty].
The last identification extends k — k and T} is mapped to T;.

PrOOF. This follows from Corollary 4.20 from the chapter Banach rings. O

We will denote the reduction map lnf{Tl, oo Tht — l}[Tl, ..., T,,] by e.

Definition 4.2. Let n € N. A system f1,...,f, € k{T1,...,T,,} is called an
affinoid chart of k{Ty,..., T} if f; € I;{Tl, ..., T} for each i = 1,...,n and the
continuous k-algebra homomorphism k{T1,...,T,,} = k{T1,...,T,} sending T; to
fi is an isomorphism.

The map k{T1,...,Tn} — k{T4,...,T,} is well-defined by Proposition 4.1 and
Lemma 2.5.

Lemma 4.3. Let n € Nand f € k{T1,...,T,}. Assume that ||f|l; = 1. Then the
following are equivalent:

(1) fisaunit k{T1,...,T,}.

(2) fisa unitin k[Ty,...,T,].

PROOF. As || o] is a valuation by Proposition 3.6, f is a unit in k{Ty,...,T,}
if and only if it is a unit in (k{T1,...,T,})°, which is identified with k{T},...,T,}
by Proposition 4.1. This result then follows from Corollary 4.21 in Banach rings. [

Definition 4.4. Let n € N. Consider g € k{T},...,T,}. We expand g as

9= Zginm gi € K{T1,..., Th1}.
i=0

For s € N, we say g is X,,-distinguished of degree s if gs is a unit in k{T1,...,Tn—1},
llgslly = llglly and [|lgs[x > [lgellr for all £ > s.
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Theorem 4.5 (Weierstrass division theorem). Let n,s € N and g € k{T1,...,T,}
be X, -distinguished of degree s. Then for each f € k{Ti,...,T,}, there exist
q € K{Ty,..., T} and r € k{Th,...,T,_1}[T,] with degs 7 < s such that

f=a9+r
Moreover, g and r are uniquely determined. We have the following estimates
(4.1) lalle < gl 1A el < I f [l

If in addition, f,g € k{Th,..., Tn—1}[Tn], then q € k{T1, ..., Th_1}[T%] as well.

PROOF. We may assume that ||g||; = 1.

Step 1. Assuming the existence of the division. Let us prove (4.1). We may
assume that f # 0, so that one of ¢,r is non-zero. Up to replacing ¢, r by a scalar
multiple, we may assume that max{||q||1, |71} = 1. So ||f]l1 <1 as well. We need
to show that || f||1 = 1. Assume the contrary, then

0=f=qg+r
Here @ denotes the reduction map. By our assumption, degy, = s > degy r >
degy, 7. From Proposition 4.1, the equality is in k[Ty,...,T,]. From the usual
Euclidean division, we have ¢ = 7 = 0. This is a contradiction to our assumption.
Step 2. Next we verify the uniqueness of the division. Suppose that

0=qgg+r

with ¢ and r as in the theorem. The estimate in Step 1 shows that ¢ =7 = 0.
Step 3. We prove the existence of the division.
We define

B:={qg+r:rek{Ty,...,To1}[Tn],degy r < s,q € k{T1,..., T} }.

From Step 1, B is a closed subgroup of k{Ty,...,T,}. In fact, suppose f; € B
is a sequence converging to f € k{Ti,...,T,}. From Step 1, we can represent
fi = q@g + 7;, then from Step 1, ¢; and r; are both Cauchy sequences, we may
assume that ¢; — ¢ € k{T1,...,T,} and r; — r. As degr r; <s, it follows that
r € k{Ty,...,T,_1}[Tn] and degy, r < s. So f = qg+r and hence B is closed.

It suffices to show that B is dense k{T1,...,T,}. We write

oo
g:Zg’LT:u giek{Tlv"'7Tn—1}~
i=0
We may assume that ||g||; = 1. Define € := max;>|/g;||. Then e < 1 by our

assumption. Let k. = {z € k : |z| < €} for the moment. There is a natural surjective
ring homomorphism

Tt (K{Ty,..., T ))° — (k/k)[TY, ..., T,]

with kernel {f € k{T1,...,Tn} : ||fll1 < €}. We now apply Euclidean division in
the ring (k/ke)[T1,...,T,] to write

Te(f) = Te(q)Te(g) + Te<r)
for some q € (k{T1,...,T,,})° and r € (kK{T1,...,Tn—1})°[T%] with degs, 7 < s. So

If —ag—rli <e
This proves that B is dense in k{T1,...,T,} by Proposition 2.8 in Banach rings.
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Step 4. It remains to prove the last assertion. But this is a consequence
of the usual Euclidean division theorem for the ring k{T1,...,T,—1}/T,] and the
uniqueness proved in Step 2.

Lemma 4.6. Let w € k{T1,...,Tn—1}[T] be a Weierstrass polynomial and g €
E{T1,...,T,}. Assume that wg € E{Th, ..., Th—1}[Ty], then g € k{Ty,..., T—1}[Tn]-

PROOF. By the division theorem of polynomial rings, we can write

wg =qw+r
for some q,r € k{T1,...,T1}[Ty], degy, r < degy, wg. But we can write wg = w-g.
From the uniqueness part of Theorem 4.5, we know that ¢ = g, so g is a polynomial
inT,,. O

As a consequence, we deduce Weierstrass preparation theorem.

Definition 4.7. Let n € Z~o. A Weierstrass polynomial in n-variables is a monic
polynomial w € k{T1,...,Ty—1}[T,] with |jw|; = 1.

Lemma 4.8. Let n € Zso and wy,w € k{T1,...,Tn—1}[Ty] be two monic polyno-
mials. If wywsy is a Weierstrass polynomial then so are wy and ws.

PROOF. As w; and ws are monic, ||w;||1 > 1 for ¢ = 1,2. On the other hand,
||W1H1 . ||UJ2||1 = ||w1w2||1 = 1, SO ||le1 =1fori= 1,2. |

Theorem 4.9 (Weierstrass preparation theorem). Let n € Zs¢ and g €
E{T\,...,T,} be X,-distinguished of degree s. Then there is a Weierstrass
polynomial w € k{T},...,Tn—1}[Ty] of degree s and a unit e € k{T1,...,T,} such
that

g = ew.

Moreover, e and w are unique. If g € k{T1,...,T,,—1}[T}], then so is e.

PROOF. We first prove the uniqueness. Assume that a decomposition as in the
theorem is given. Let r = T — w. Then T = e 'g + r. The uniqueness part of
Theorem 4.5 implies that e and r are uniquely determined, hence so is w.

Next we prove the existence. By Weierstrass division theorem Theorem 4.5, we
can write

T, =qg+r

for some ¢ € k{T1,..., T} and r € k{T1,..., T, 1}[T] with degy, r < s. Let
w =T5 — r. From the estimates in Theorem 4.5, ||r||; < 1. So |lw|; = 1. Then w is
a Weierstrass polynomial of degree s and w = gg. It suffices to argue that ¢ is a
unit.

We may assume that ||g||; = 1. By taking reductions, we find

W = qg.

As degr, g = degy, @ and the leading coefficients of both polynomials are units in
I%[Tl, ..oy T—1], it follows that ¢ is a unit in I%[Tl, ooy Tn—1]. Tt follows that g is also
a unit in ]NC[Tl, ..., Tp,]. By Lemma 4.3, ¢ is a unit in k{T3,...,T,}.

The lsat assertion is already proved in Theorem 4.5.

O
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Definition 4.10. Let n € Z~g and g € k{T1,...,T,} be X, -distinguished. Then
the Weierstrass polynomial w constructed in Theorem 4.9 is called the Weierstrass
polynomial defined by g.

Corollary 4.11. Let n € Z~o and g € k{Th,...,T,} be X,-distinguished. Let w
be the Weierstrass polynomial of g. Then the injection

E{Ty,....,Tn-1}Tn] = KT, ..., Tn}
induces an isomorphism of k-algebras
T, Toa T] /(@) = K{Th, ..., T}/ (9)-

PROOF. The surjectivity follows from Theorem 4.5 and the injectivity follows
from Lemma 4.6. ([l

In the complex setting, we can perturb a convergent power series so that it has
finite degree along a fixed axis, the corresponding result in the current setting is:

Lemma 4.12. Let n € Zs and g € k{T},...,T,} is non-zero. Then there is a
k-algebra automorphism o of k{T7,...,T,} so that o(g) is T,-distinguished.

PROOF. We may assume that ||g|l; = 1. We expand g as

g= Z aoTe.

a€eNn

Endow N" with the lexicographic order. Take the maximal 8 € N™ so that |ag| = 1.
Take t € Z~q so that t > max;—; ., o; for all € N* with a, # 0.

We will define o by sending T; to T; + T)5* for all ¢ =1,...,n — 1. The ¢;’s are
to be defined. We begin with ¢,, = 1 and define the other ¢;’s inductively:

for j=1,...,n— 1. We claim that o(f) is T},-distinguished of order s = Y7 | ¢; ;.
A straightforward computation shows that

a(g) = ZPinL
i=1

for some p; € I%[Th ...y Th—1] and ps = ag. Our claim follows. O

Proposition 4.13. Let n € N. Then k{T1,...,T,} is Noetherian.

ProOOF. We make induction on n. The case n = 0 is trivial. Assume that n > 0.
It suffices to show that for any non-zero g € k{T1,...,T.}, k{T1,...,T.}/(g) is
Noetherian. By Lemma 4.12, we may assume that g is T},-distinguished. According
to Theorem 4.5, k{Th,...,T,}/(g) is a finite free k{T1,...,T,—1}-module. By
the inductive hypothesis and Hilbert basis theorem, k{71,...,T,}/(g) is indeed
Noetherian. O

Proposition 4.14. Let n € N. Then k{T1,...,T,} is Jacobson.
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PrROOF. When n = 0, there is nothing to prove. We make induction on n and
assume that n > 0. Let p be a prime ideal in k{T1,...,T,}, we want to show that
the Jacobson radical of p is equal to p.

We distinguish two cases. First we assume that p # 0. Let p’ = pn
E{T1,...,Th—1}. By Lemma 4.12, we may assume that p contains a Weierstrass
polynomial w. Observe that

k{Tl,...,Tnfl}/p/ — k{Tl,,Tn}/p

is finite by Theorem 4.5. For any b € J(k{Th,...,T,}/p) (where J denotes the
Jacobson radical), we consider a monic integral equation of minimal degree over
k{Th - ,Tn_l}/pll

V' +arb" o ta, =0, a; €k{Ty,...,Tn1}/p.
Then
a, € J(k‘{Th,Tn}/p) ﬂk{Tl,...7Tn_1}/p/ = J(k’{Tl,...,Tn_l}/p/) =0

by our inductive hypothesis. It follows that n = 1 and so b = 0. This proves
J(k{Ty,..., T,}/p) = 0.

On the other hand, let us consider the case p = 0. As k{Ty,...,T,} is a
valuation ring, it is an integral domain, so the nilradical is 0. We need to show that

J(k{Ty,..., T,}) = 0.

Assume that there is a non-zero element f in J(k{T1,...,T}). We may assume
that || flly = L.

We claim that there is ¢ € k with |¢] = 1 such that ¢ + f is not a unit in
k{Ty,...,T,}. Assuming this claim for the moment, we can find a maximal ideal m
of k{T1,...,T,} such that ¢+ f € m. But f € m by our assumption, so ¢ € m as
well. This contradicts the fact that ¢ € £*.

It remains to prove the claim. We treat two cases separately. When |f(0)| < 1,
we simply take ¢ = 1, which works thanks to Lemma 4.3. If |f(0)| = 1, we just take

c=—f(0). O

Proposition 4.15. Let n € N. Then k{Th,...,T,} is UFD. In particular,
kE{Ty,...,T,} is normal.

PROOF. As || e]|; is a valuation by Proposition 2.2, k{T1,...,T,} is an integral
domain. In order to see that k{T1,...,T,} has the unique factorization property,
we make induction on n > 0. When n = 0, there is nothing to prove. Assume
that n > 0. Take a non-unit element f € k{Ti,...,T;,}. By Theorem 4.9 and
Lemma 4.12, we may assume that f is a Weierstrass polynomial. By inductive
hypothesis, k{T1,...,T,—1} is a UFD, hence so is k{T1, ..., Th—1}[Ts] by | ,
Tag 0BC1]. It follows that f can be decomposed into the products of monic prime
elements f1,..., fr € k{T1,...,Tn—1}[T,], which are all Weierstrass polynomials by
Lemma 4.8. Then by Corollary 4.11, we see that each f; is prime in k{T},...,T,}.

Any UFD is normal by | , Tag 0AFV]. d

Corollary 4.16. Let A be a strictly k-affinoid algebra, d € Nand ¢ : k{Th,..., Ty} —
A be an integral torsion-free injective homomorphism of k-algebras. Then p is a


https://stacks.math.columbia.edu/tag/0BC1
https://stacks.math.columbia.edu/tag/0AFV
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faithful k{71, ..., Ty}-algebra norm on A. If f* + @(t1)f" 1 + -+ p(t,) = 0 is
the minimal integral equation of f over k{T1,..., Ty}, then

.....

Proor. This follows from Proposition 9.11 in Banach rings and Proposition 4.15.
O

5. Noetherian normalization and maximal modulus principle
Let (k,| ®]) be a complete non-trivially valued non-Archimedean valued-field.

Theorem 5.1. Let A be a non-zero strictly k-affinoid algebra, n € N and « :
E{T1,...,T,} — A be a finite (resp. integral) k-algebra homomorphism. Then
up to replacing 11, ...,T, by an affinoid chart, we can guarantee that there exists
d € N, d < n such that o when restricted to k{T1,...,Ty} is finite (resp. integral)
and injective.

ProOF. We make an induction on n. The case n = 0 is trivial. Assume
that n > 0. If kera = 0, there is nothing to prove, so we may assume that
kera # 0. By Lemma 4.12 and Theorem 4.9, we may assume that there is a
Weierstrass polynomial w € k{T},...,T,_1}[Ts] in ker a. Then « induces a finite
(resp. integral) homomorphism 8 : k{Ti,...,T,}/(w) — A. By Theorem 4.5,
E{T\,....,Thn_1} = k{Th,..., T}/ (w) is a finite homomorphism. So their composi-
tion is a finite (resp. integral) homomorphism k{T3,...,T,,—1} — A. We can apply

the inductive hypothesis to conclude. O
Corollary 5.2. Let A be a non-zero strictly k-affinoid algebra, then there is d € N
and a finite injective k-algebra homomorphism: k{T71,...,Tq} — A.

PROOF. Take somen € N and a surjective k-algebra homomorphism k{T},...,T,} —
A and apply Theorem 5.1, we conclude. g

Corollary 5.3. Let A be a strictly k-affinoid algebra and I be an ideal in A such
that /T is a maximal ideal in A, then A/I is finite-dimensional over k.
In particular, Spm A = Spm,, A.

Proor. By Corollary 5.2, there is d € N and a finite monomorphism f :
kE{T1,...,Tq} — A/I. It suffices to show that d = 0. Observe that the composition

B{Th,.... T} L AT — AT

is finite and injective as k{T1,..., Ty} is an integral domain, so k{T1,...,T4} is a
field. This is possible only when d = 0. O

Corollary 5.4. Let B be a strictly k-affinoid algebra and A be a Noetherian Banach
k-algebra. Let f: A — B a k-algebra homomorphism. Then f is bounded.

Proor. This follows from Proposition 8.1 in Banach rings and Proposition 4.13.
O

In particular, we see that the topology of a k-affinoid algebra is uniquely
determined by the algebraic structure.

Corollary 5.5. Let A, B be strictly k-affinoid algebras. Let f be a finite k-algebra
homomorphism, then f is admissible.
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PRrROOF. This follows from Proposition 3.14 and Corollary 5.4, O

Definition 5.6. For any non-Archimedean valuation field (K, |e|) and n € N, we
define the n-dimensional polydisk with value in K:

B"(K) := {(a:l,...,xn) e K": max || < 1}.

Definition 5.7. Let n € N and f € k{T1,...,T,}, say with an expansion
f= Z a.T®, aq €k.
aeNn
We define the associated function f : B™(k*8) — k®& as sending z = (x1,...,2,) €

B"™(k¥8) to
Z anT®.
aeNn

Lemma 5.8. Let n € N and f € k{T},...,T,}, then f : B"(k*®) — ke is
continuous and for any z € B"(k¥#),

[f(@)] < [1f]]1-
There is © = (z1,...,7,) € B"(k*8) such that |f(z)| = | f|:-

PROOF. To see that f is continuous, it suffices to observe that f is a uniform

limit of polynomials. For any x = (1,...,2,) € B"(k*#), we have
= *l < X < .
/()] O%;n ao2®| < max |aqz®| < [|fll

To prove the last assertion, we may assume that ||f||; = 1. As the residue field of
k28 is equal to k™%, it has infinitely many elements, so there is a point » € B"(k*#®)

such that f(z) = f(Z) # 0. In other words, || f(x)|1 = 1. O

Proposition 5.9. Let n € N, then the maximal modulus principle holds for
E{Ti,...,T,}. Moreover, for any f € k{T1,..., T}, [|fll1 = |flsup-

ProOOF. By Lemma 6.3 in Banach rings., we have

11l = 1flsup
for any f € A. We only have to show that for any f € k{T1,...,T,} there is a
maximal ideal m C k{Ty,...,T,} such that |f(m)| = |/ f]|1-
By Lemma 5.8 we can take x = (1, ...,7,) € B"(k*®) such that | f(z)| = || f||:-
Let L be the field extension of k generated by z1,...,x,, then L/k is finite. Then
we can define a homomorphism
evy  k{Ty,..., T} = L

sending g € k{T},...,T,} to g(x). Observe that the image is indeed in L. Clearly
ev, is surjective. So m, := kerev, is a k-algebraic maximal ideal in k{T},...,T,}.
Then

[f(ma)| = [f (@) = £

Corollary 5.10. Let A be a strictly k-affinoid algebra. Then for any f € A,

| flsup € V[E*[U{0}.
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ProoF. We may assume that A # 0. By Corollary 5.2 and Proposition 9.11 in
Banach rings., we may assume that A = k{T1,...,T,} for some n € N. The result
then follows from Proposition 5.9. O

Corollary 5.11. Maximal modulus principle holds for any strictly k-affinoid alge-
bras.

PrOOF. This follows from Corollary 5.2, Proposition 9.11 in Banach rings and
Proposition 5.9. O

Proposition 5.12. Let ¢ : B — A be an integral k-algebra homomorphism
of strictly k-affinoid algebras. Then for each non-zero f € A, there is a moinc
polynomial ¢(f) = f™ + o(b1)f"* + -+ + ¢(b,) of f over B. Then

[ Floup = max [bil

PROOF. One side is simple: choose j = 1,...,n that maximizes [p(b;) f" 7 |sup,
then
|f|::Lup = |Jm|sup < “P(bj)fn_j‘sup < |bj|sup ’ ‘f ;Lu_pj'
So
| Flaup < 1651343

To prove the reverse inequality, let us begin with the case where A is an integral
domain.

We claim that there is d € N and a k-algebra homomorphism ¢ : k{Ty,..., T} —
B such that ¢ o 9 is integral and injective. In fact, choosing an epimorphism
a:k{Ty,..., T4} — A, we can apply Theorem 5.1 to find ¢ o @ to conclude.

By Corollary 4.16, if p denotes the minimal polynomial of f over k{T1,...,Tq},
we have |f|sup = o(p). In particular, p(f) = 0. Let ¢ € B[X] be the polynomial
obtained from p by replacing all coefficients by their ¢-images in B. Then clearly,
Flewp = o(a).

In general, let py,...,p, be the minimal primes in A. The number is finite
by Proposition 4.13. For each ¢ = 1,...,r, let m; : A — A/p; denote the natural
homomorphism. We know that there are monic polynomials ¢; € B[X] such that
¢i(m(f)) =0 and |m;(f)|sup = 0(g;) for i =1,...,7. Welet ¢ =¢1---¢,. Then

-
q(f) € ﬂ Pi-
i=1
So there is e € Z~ such that ¢'(f)° = 0. Let ¢ = ¢’°. By Proposition 9.5 in Banach
rings.,
U(Q) < max U(Qi) = max |7Ti(f)|sup = |f|sup-
i=1,...,r 1=1,...r

The last equality follows from Proposition 9.9 in Banach rings. ([

Lemma 5.13. Let ¢ : B — A be an admissible k-algebra homomorphism between
strictly k-affinoid algebras. Let 7 : B — B be the reduction map, then

7 ker @) = \/B+kerg, kerp = /7(ker).
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PrOOF. The second equation follows from the first one by applying 7. Let

v

us prove the first equation. By assumption, ¢(B) is open in ¢(B). Consider
g € 7 1(ker ¢), we know that

Jim ¢(g)" = 0.
So ¢(g)™ € p(B) for n large enough, and hence g" € B + ker . O

Lemma 5.14. Let m € Nand T' = k{T1,..., T }. Let A be a k-affinoid algebra
and ¢ : T{S1,...,S,} = A be a finite morphism such that ¢(S;) is integral over T
Then ¢|r : T — A is finite.

Proor. We make an induction on n. When n = 0, there is nothing to prove.
So assume n > 0 and the lemma has been proved for smaller values of n.
Let T/ =T{S1,...,Sn}. By assumption, there is a Weierstrass polynomial

w=SF+a; 851 .. ay € T[S,

such that @ € ker ¢. As ¢ is admissible by Corollary 5.5, we have w? € T + ker ¢
for some g € Z by Lemma 5.13.

In particular, we can find € (T") such that g := w? —r € ker . Observe that g
is .S, distinguished of order mgq as § = @%. By Corollary 4.11, the restriction of ¢ to
T{S1,...,Sn—1} is finite. We can apply the inductive hypothesis to conclude. O

Lemma 5.15. Let ¢ : B — A be a k-algebra homomorphism of strictly k-affinoid
algebras. Assume that there exist affinoid generators fi,..., f, € A of A such that
fi,--., fn are all integral over B, then ¢ is finite.

ProoOF. By assumption, we can find s; € Zsg, b;; € B fori = 1,...,n,
j=1,...,s; such that

Fr4+ o) i+ 4 @lbis,) =0

fori=1,...,n. Let s = s1+---+s, and define a bounded k-algebra homomorphism
v : D := k{T;;} — B sending T;; to b;;, for i = 1,...,nand j = 1,...,s;.
Observe that f1,..., f, are all integral over D. So it suffices to prove the theorem

when B = k{T1,...,T;n}. We extend ¢ to a bounded k-algebra epimorphism
@' T{S1,..., 8.} — Asending S; to f; for i = 1,...,n. Then ¢/(5;) is integral
over B. It suffices to apply Lemma 5.14. O

6. Properties of affinoid algebras

Let (k,|®|) be a complete non-Archimedean valued field and H be a subgroup
of Ry such that |k*|- H # {1}.

Proposition 6.1. Assume that k is non-trivially valued. Let A be a strictly
k-afifnoid algebra. Then

A={fed:p(f) <1} ={f € A:|flap <1}.
Proor. By Lemma 6.3, we have

Ag{feA:p(f)Sl}g{feA:|f|sup§1}'

Conversely, let f € A, |flsup < 1. Choose d € N and a surjective k-algebra
homomorphism
(p:k{Tl,...,Td}—)A.
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Let f* +t;f" ! +...+t, = 0 be the minimal equation of f over k{Ty,...,Ty}.
Then t; € (k{T1,...,T4})° by Proposition 9.11 in Banach rings. An induction on
1 > 0 shows that

n—1
fe Y e (T, Tah))

j=0
The right-hand side is clearly bounded. O

Corollary 6.2. Assume that k is non-trivially valued. Let (A, | o) be a strictly
k-affinoid algebra. For any f € A,

p(f) = Iflsup-

PrOOF. We have shown that p(f) > |flsup in Lemma 6.3 from the chapter
Banach Rings. Assume tha tthe inverse inequality fails: for some f € A,

p(f) > [ flsup-

If |flsup = O, then f lies in the Jacobson radical of A, which is equal to the
nilradial of A by Proposition 4.14. But then p(f) = 0 as well. We may therefore
assume that |f|syp # 0. By Corollary 5.10, we may assume that |f|s,p = 1 as p is
power-multiplicative. Then p(f) > 1. This contradicts Proposition 6.1. (]

Theorem 6.3. A k-affinoid algebra A is Noetherian and all ideals of A are closed.

PROOF. Let I be an ideal in A. By Proposition 3.17, we can take a suitable
r € RT, so that A&k, is strictly k,-affinoid. Then I(A®k,) is an ideal in ARk,
By Proposition 4.13, the latter ring is Noetherian. So we may take finitely many
generators fi1,..., fr € I. Each f € I can be written as

K
F=Y_fig
=1

with g; = Z;ifoo gi;T7 € A®k,. But then

k
=Y figio
i=1

So I is finitely generated.
As I = AN(I(A&k,)), by Corollary 7.4 in Banach rings., we see that I is closed
in A®k, and hence closed in A. O

Proposition 6.4. Let (A, | o ||) be a k-affinoid algebra and f € A. Then there is
C >0 and N > 1 such that for any n > N, we have

11 < Cp(f)".
Recall that p is the spectral radius map defined in Definition 4.9 in Banach

rings.

Proor. By Proposition 3.11, we may assume that k is non-trivially valued and
k is non-trivially valued.

If p(f) =0, then f lies in each maximal ideal of A. To see this, we may assume
that A is a field, then by Proposition 6.10 in Banach rings., there is a bounded
valuation || e ||" on A. But then p(f) = 0 implies that || f||" = 0 and hence f = 0.
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It follows that if p(f) = 0 then f lies in J(A), the Jacobson radical of A. By
Proposition 4.14, A is a Jacobson ring. So f is nilpotent. The assertion follows.

So we can assume that p(f) > 0. In this case, by Corollary 5.2 and Proposi-
tion 9.11 in Banach rings., we have p(f) € 1/|k*|. Take a € k™ and d € Z~ so that
p(f)¢ = |a|. Then p(f¢/a) =1 and hence it is powerly-bounded by Proposition 6.1.
It follows that there is C' > 0 so that for n > 1,

1F7 < Clal™ = Cp(f)".
It follows that ||| < Cp(f) for n > d as long as we enlarge C. O

Corollary 6.5. Let ¢ : A — B be a bounded homomorphism of k-affinoid algebras.
Let n € Nand f1,...,f, € B and 71,...,r, € Ry with r; > p(f;) for ¢ =
1,...,n. Write r = (r1,...,75), then there is a unique bounded homomorphism
® : A{r~'T} — B extending ¢ and sending T} to f;.

PrOOF. The uniqueness is clear. Let us consider the existence. Given

f= Z a, T € A{rilT},

aeNn

we define
O(h) = ) wlaa)f*.
a€eNn
It follows from Proposition 6.4 that the right-hand side the series converges. The
boundedness of ® is obvious. O

Proposition 6.6. Let (A, || e |4),(B,| o |B) be k-affinoid algebras, r € RZ,
and ¢ : A{r71T} — B be an admissible epimorphism. Write f; = ¢(T;) for
i = 1,...,n. Then there is ¢ > 0 such that for any ¢ = (¢1,...,9,) € B"
with || fi — ¢illp < € for all i = 1,...,n, there exists a unique bounded k-algebra
homomorphism v : A{r=!T} — B that coincides with ¢ on A and sends T} to g;.
Moreover, 1) is also an admissible epimorphism.

PRrROOF. The uniqueness of 1 is obvious. We prove the remaining assertions.
Taking € > 0 small enough, we could further guarantee that p(g;) < r;. It follows
from Corollary 6.5 that there exists a bounded homomorphism v as in the statement
of the proposition.

As ¢ is an admissible epimorphism, we may assume that || e || g is the residue
induced by || e |, on A{r~'T}.

By definition of the residue norm, for any § > 0 and any h € B, we can find

ko= Y a.T* € A{r~'T}
aeNn
with
laallar® < (14 0)[|[5

for any o € N*. Choose € € (0, (1+ )~ !). Now for g, ..., g, as in the statement
of the proposition, we can write

h="Y" aaf* =Y aag®+h1 = (ko) + h1.

aeNn aeNn
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It follows that

lhillB = < (1+d)e||h|ls-

B

Z ao(f* —g%)

aeNn

Repeating this procedure, we can construct k; € A{r~'T} for i € N and h; € B for
Jj € Z~g such that for any i € Z~(, we have

h=Y(ko+ -+ kiz1) + hy,
ill- <((1+8)e)"(1+8)|1Al| 5,
il s <((1+8)e) 2]l 5-
In particular, k := Y2 k; converges in A{r~'T} and
&l < (1+0)|[A]5-

It follows that v is an admissible epimorphism. ([l

Corollary 6.7. Let A be a Banach k-algebra, n € N and r = (r1,...,7,) be a
k-free polyray. Assume that AQk, is k.-affinoid, then A is k-affinoid.
If ARk, is kp-affinoid and r € H, then A is also kg-affinoid.

PROOF. We may assume that r has only one component.
Take m € N, p1,...,pm € Ry and an admissible epimorphism

7k Apyt S, 0 S — ASkk,.

Let
o0
W(Sl) = Z ai,jTJ, aij € A
j=—o00
fori=1,...,m. By Proposition 6.6, we may assume that there is a large integer [

such that a; ; = 0 for |j] > { and for any i = 1,...,m. We define B = k:{pi_lroi,j},
i=1,...,nand j = —I,—l+1,...,l. Let ¢ : B — A be the bounded k-algebra
homomorphism sending 7; ; to a; ;. The existence of ¢ is guaranteed by Corollary 6.5.

We claim that ¢ is an admissible epimorphism. It is clearly an epimorphism.

Let us show that ¢ is admissible. Let 7 : kr{pflSl, oy Dt S} — B&yk, be the
l

et T; ;T7, then we have the following

bounded homomorphism sending S; to
commutative diagram

ke{p~'S}
" n
Béyk, L2550 Agk,
It follows that &k, is also an admissible epimorphism. By Proposition 3.11, ¢ is
also admissible. O
7. Examples of the Berkovich spectra of affinoid algebras

Let (k,| ®]) be a complete non-Archimedean valued field.

Example 7.1. Take r > 0. We will study the Berkovich spectrum Sp k{r—1T'}.
We first assume that k is non-trivially valued and k is algebraically closed.
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For a € k with |a] <7 and p € (0,7], we set
E(a,p) = {z € Spk{r 'T}: (T — a)(z)| < p},
D(a,p) = {& € Sph{r T} : (T — a)(&)| < p}

We give a list of points on Sp k{r~'T}. The two classes are called closed disks and
open disks with center a and with radius r.

(1) Any element a € k with |a| < r determines a bounded semi-valuation on
k{r='T} sending f to |f(a)|. Such points are called points of type (1).

(2) For any a € k with |a| < r and p € |k| N (0,7], we define a bounded
semi-valuation on k{r~'T} sending f = a,(T —a)" to

|f|E(a,p) = max an|p™.

Such points are called points of type (2).
(3) For any a € k with |a|] < r and p € (0,7] \ |k|, we define a bounded
semi-valuation on k{r—'T} sending f = a,(T —a)" to

|f|E(a,p) = I}ng%( ‘an‘pn

Such points are called points of type (3).

(4) Let &€ = {E?},cr be a family of closed disks with radii p and such that
EP D Ef when p > p', where I is a non-empty subset of Rsy. We define
a bounded semi-valuation on k{r~1T} sending f to

Fle = inf ||z

If Nper B? Nk =0, we call the point | e |¢ a point of type (4).

We verify that points of type (1) are indeed points in Sp k{r='T}: f s |f(a)| is
a bounded semi-valuation. It is clearly a semi-valuation. It is bounded by Lemma 6.3
in Banach rings.

We verify that points of type (2) and type (3) are indeed points in Sp k{r~1T}.
We first need to make sense of the expansion

(7.1) f=Yan(T—a)"
n=0

In fact, by Corollary 6.5, there is an isomorphism of k-affinoid algebras ¢ :
A{r=1T} — A{r~'S} sending T to S + a, as [[(S + a)"||, = ™ and hence
p(S + a) = r. We expand the image of > /@, S™ and then (7.1) is just formally
expressing this expansion. Now in order to show that | e | ) is a bounded
semi-valuation, we may assume that a = 0 after applying ¢. It is a semi-valuation
as | e |, is a valuation on the larger ring k{p~'T}. Again, the boundedness is a
consequence of Lemma 6.3 in Banach rings.

We verify that points of type (4) are bounded semi-valuations. Take & =
{E*} jer as above. It is a semi-valuation as the infimum of bounded semi-valuations.
It is bounded as E* is for any p € I.

Proposition 7.2. Assume that k is non-trivially valued and algebraically closed.
For any r > 0, a point in Sp k{r T} belongs to one of the following classes: type

(1), type (2), type (3), type (4).
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PROOF. Let || o] be a bounded semi-valuation on k{r~1T"}. Consider the family
E={E,||T —al):a€k,lal <r}.
We claim that if a,b € k, |al,|b] <7 and |T —a| < ||T — b, then
E(a, |IT = all) € E@, |IT - b]).
In fact, if € E(a, ||T — a||), then
(T = a)(@)| < |IT — al]
Observe that |a — b] < max{||T — al|, ||T = b||} = ||T — b]|, so
(T = b)(2)| < max{|(T — a)(z)|,[a - b} < [T =]

So z € E(b, ||T — b||) proving our claim.
Now we claim that for any a € k,

1T —all = |T - ale.

From this, it follows that the bounded semi-valuation || e || is necessarily of the form
| o |, hence of type (1), type (2), type (3) or type (4).
In order to prove the claim, we observe that

T —ale = inf |T—algw,r-s))-
bek,|b|<r

We write T —a =T — b+ b — a, then
1T~ al ooy = max{|7 bl b — al} > |T — all.
In particular ||T" — a|| < |T' — ale. On the other hand, the computation shows that

T - = inf T - b—al}.
T—ale =, inf wax{|T ~a].|b~ al)

In order to show that ||T' — al| > |T — alg, it suffices to show that

inf_[b—al < |T—dl
bEk,|b|<r

when |a| > r. In this case, 1 — a~!T is invertible by Proposition 4.4 in Banach
rings., so

11— ) = 1 = a T, = 1+ Jal M.
We need to show

inf |b—al| <|a|+r,
bek,|b|<r

which is obvious. This proves our claim.
O

Proposition 7.3. Assume that k is non-trivially valued and algebraically closed.
Let r >0, and = € Spk{r~'T}.
(1) If z is of type (1), then J#(x) = k.
(2) If z is of type (2), then J#(x) = k,, () = k(T) and |5 (z)| = |k|.
(3) If 2 is of type (3), then J#(z) = k,, #(x) = k and |7 (x)*| is generated
by p and |k*|.
(4) If z is of type (4), then S (x) = k and | (z)| = |k|. Moreover, 7 (z) # k.
In other words, ##(z) 2 k is a non-trivial immediate extension.

In particular, the four types do no overlap.
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PROOF. (1) Assume that x is defined by a € k with |a| < r. Observe that the
valuation factorizes through k{r='T} — k, so 5 (x) is a subfield of k. But for
bek,blx)=>b,s0 7 (x)=k.

(2) Assume that z is defined by E(a, p) with a € k, |a| <r and p € (0,7] N |k|.
We may assume that a = 0. Observe that | e |5, ,) is a valuation. So J#(x) is
the completion of the fraction field of k{r~'T'}, namely 5 (z) = k,. Observe that
for any f € k{r T}, | flE(a,p) is of the form |a,|p™ for some a, € k, n € N, so
|f|E(a,p) € |k| and hence |7 (x)| C |k|. The reverse inequality is trivial. The residue
field is computed as in Corollary 4.20 from the chapter Banach rings.

(3) It follows from the same argument in (2) that #(z) = k,. On the other
hand, an element

f=> aT €k,
1=—00
satisfies |f| < 1 (vesp. |f| < 1) if and only if ag € k (resp. ag € k) and |a;|p" < 1

for i # 0. Tt follows that H(zx) = k.
(4) To be finished O

8. H-strict affinoid algebras

Let (k,|®]) be a complete non-Archimedean valued field and H be a subgroup
of R~¢ such that |[k*|- H # {1}.
We next give a non-strict extension of Proposition 3.13.

Proposition 8.1. Let B be a kgy-affinoid algebra and ¢ : B — A be a finite
bounded homomorphism into a k-Banach algebra A. Then A is also kp-affinoid.

PRrROOF. We first assume that k is non-trivially valued.

We may assume that B = k{r;'Ty,...,r;'T,} for some n € Nand r1,...,7, €
H. By assumption, we can find finitely many a4,...,a,, € A such that A =
Z?il ¢(B)a;.

We may assume that a; € A as k is non-trivially valued. By Proposition 4.18 in
Banach rings., ¢ admits a unique extension to a bounded k-algebra epimorphism

O k{r Ty, Ty S1, oy Sy — A

sending S; to a;. By Corollary 7.5 in Banach rings., ® is admissible. Moreover, the
homomorphism & is surjective by our assumption. It follows that A is kpy-affinoid.

If k is trivially valued, then H is non-trivial. Take s € H \ {1}. It follows from
the previous case applied to p&k, : Bk, — AQk, that ARk, is ky-affinoid. By
Corollary 6.7, A is also kp-affinoid. O

Proposition 8.2. Let A be a Banach k-algebra. Then the following are equivalent:
(1) Ais ky-affinoid;
(2) therearen € N, r € /|k*| - H and an admissible epimorphism k{r—7} —
A.

PrROOF. The non-trivial direction is (2). Assume (2). Take s1,...,8, € Zso,
C1,...,¢n €k and hq,...,h, € H such that

it = e h
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fori=1,...,n. We define a bounded k-algebra homomorphism
0 k{hl_lTl, e T — k;{rl_lTl, conr T

r ' r'n

by sending T; to ¢;T;¢. The existence of such a homomorphism is guaranteed
by Corollary 6.5. The same proof of Lemma 3.15 shows that ¢ is finite. By
Proposition 8.1, k{r 'Ty,...,r'T,} is ky-affinoid. O
Lemma 8.3. Assume that k is non-trivially valued. Let A be a k-affinoid algebra.
Then the following are equivalent:
(1) A is strictly k-affinoid;
(2) for any a € A, p(a) € \/|k>*| U{0}.
PRrROOF. (1) = (2) by Corollary 5.10 and Corollary 6.2.
(2) = (1): Take n € N, r € R%, and an admissible epimorphism
o k{r 1T} — A.

Let f; = o(T;) for i = 1,...,n. Suppose 71,...,rm € /|kX| and rpy1,..., 70 €
V1k*]. Then p(f;) < r; for i = 1,...,m and we can choose r,...,7, € \/|k*|
such that
p(fi) Smi <

fori=1,...,m. Set v}, =r; when i = m+1,...,n. We can then define a bounded
k-algebra homomorphism v : k{r'~'T} — A sending T to f; fori = 1,...,n. The
existence of 1 is guaranteed by Corollary 6.5. Observe that v is surjective and
admissible. It follows that A is strictly k-affinoid. O

Theorem 8.4. Let A be a k-affinoid algebra. Then the following are equivalent:
(1) A is kp-affinoid;
(2) Ais km—afﬁnoid;
(3) For any non-zero a € A, p(a) € \/[k*]- H U {0}.
PROOF. The equivalence between (1) and (2) follows from Proposition 8.2.
(1) = (3): we may assume that H D |k*|. Taken € N, r = (ry,...,7r,) € H"
and an admissible epimorphism
o k{r T} — A.
Take a k-free polyray s with at least one component so that |ks| D {r1,...,r,}. We
can apply Lemma 8.3 to p®yks, it follows that p(A) C \M U {0}.
(3) = (2): we may assume that H D |k*|. It suffices to apply the same

argument as (2) = (1) in the proof of Lemma 8.3.
O

9. Finite modules over affinoid algebras

Let (k,| ]) be a complete non-Archimedean valued field.

For any k-affinoid algebra A, we have defined the category Ban£ of finite Banach
A-modules in Definition 5.3 in Banach rings. We write J\/lodfv4 for the category of
finite A-modules.

Lemma 9.1. Let A be a k-affinoid algebra, (M, || e ||ar) be a finite Banach A-
module and (N, || || n) be a Banach A-module N. Let ¢ : M — N be an A-linear
homomorphism. Then ¢ is bounded.
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PRrROOF. Take n € N such that there is an admissible epimorphism
w: A" = M.

It suffices to show that ¢ o w is bounded. So we may assume that M = A". For
i=1,...,n, let e; be the vector with (0,...,0,1,0,...,0) of A™ with 1 placed at
the i-th place. Set C' = max;—1, ., |¢(e;)|n. For a general f = >"" | a;e; with
a; € A, we have

le(Hlv < Clifllar-
So ¢ is bounded. a

Proposition 9.2. Let A be a k-affinoid algebra. The forgetful functor Banf; —
./\/lodf:1 is an equivalence of categories.

PROOF. It suffices to construct the inverse functor. Let M be a finite A-module.
Choose n € N and an A-linear epimorphism 7 : A™ — M. By Theorem 6.3, ker 7
is closed in A™. We can endow M with the residue norm. By Lemma 9.1, the
equivalence class of the norm does not depend on the choice of .

For any A-linear homomorphism f : M — N of finite A-modules, we endow
M and N with the Banach structures as above. It follows from Lemma 9.1 that f
is bounded. We have defined the inverse functor of the forgetful functor Banﬁ —

Mod];. O

Remark 9.3. Let A be a k-affinoid algebra. It is not true that a Banach A-module
which is finite as A-module is finite as Banach A-module.

As an example, take 0 < p < ¢ <1 and A = k{q~'T}, B=k{p~'T}. Then B
is a Banach A-module. By Example 2.4, the underlying rings of A and B are both
E[[T]]. So the canonical map A — B is bijective. But B is not a finite A-module.
As otherwise, the inverse map B — A is bounded by Lemma 9.1, which is not the
case.

The correct statement is the following: consider a Banach A-module (M, || e | ar)
which is finite as A-module, then there is a norm on M such that M becomes a
finite Banach A-module. The new norm is not necessarily equivalent to the given
norm || e ||as.

Proposition 9.4. Let A be a k-affinoid algebra, M be a finite Banach A-module
and N be a Banach A-module, then any A-module homomorphism M — N is
bounded.

ProOOF. Choose n € N and an admissible epimorphism A™ — M, we reduce to
the case M = A™. We may assume that n = 1. Then in this case, any A-module
homomorphism A — N is bounded by definition of Banach A-modules. O

Proposition 9.5. Let A be a k-affinoid algebra and M, N be finite Banach A-
modules. Then the natural map

M®aN— M&aAN
is an isomorphism of Banach A-modules and M&® 4N is a finite Banach A-module.

Here the Banach A-module structure on M ® 4 N is given by Proposition 9.2.
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PRrROOF. Choose m,m’ € N an admissibly coexact sequence
A™ 5 A™ 5 M =0
of Banach A-modules. Then we have a commutative diagram of A-modules:

A" QU N — s AM @4 N —— M@4 N —— 0

I ! |

A S AN —— AM@ AN ——— MGAN —— 0

with exact rows. By 5-lemma, in order to prove M ®4 N — M®4N and M& 4N
is a finite Banach A-module, we may assume that M = A™ for some m € N.
Similarly, we can assume N = A™ for some n € N. In this case, the isomorphism
is immediate and M&4N is clearly a finite Banach A-module. By Lemma 9.1,
the Banach A-module structure on M@ 4N coincides with the Banach A-module
strucutre on M ® 4 N induced by Proposition 9.2. O

Proposition 9.6. Let A, B be a k-affinoid algebra and A — B be a bounded
k-algebra homomorphism. Let M be a finite Banach A-module, then the natural
map

M®sB— M&aB

is an isomorphism of Banach B-modules and M® 4B is a finite Banach B-module.

PRrROOF. By the same argument as Proposition 9.5, we may assume that M = A"
for some n € N. In this case, the assertions are trivial. (I

Proposition 9.7. Let A be a k-affinoid algebra and M, N be finite Banach A-
modules. Let ¢ : M — N be an A-linear map. Then ¢ is admissible.

PrOOF. By Lemma 9.1, ¢ is always bounded. According to Proposition 9.6 and
Proposition 3.11, we may assume that k is non-trivially valued. By Theorem 6.3, N
is a Noetherian A-module. It follows from Corollary 7.4 in Banach rings that Im ¢
is closed in N and is finite as an A module. In particular, the norm induced from
N and from M are equivalent by Lemma 9.1. It follows that ¢ is admissible. O

Proposition 9.8. Let A be a k-affinoid algebra. Let n € N and r = (r1,...,7,) be
a k-free polyray. Then M is a finite Banach A-module if and only if M &k, is a
finite Banach A®k,-module.

PrROOF. We may assume that r has only one component and write r; = r.
The direct implication is trivial. Let us assume that M®k, is a finite Banach
A®rk--module. Take n € N and an admissible epimorphism of A&y k,-modules

¢ : (AQrk, )" = M &k,
Let eq,...,e, denotes the standard basis of (A®xk,)". We expand
go(el) = Z mm-Tj.
j=—0o0

By Proposition 6.6, we can assume that there is [ > 0 such that m;; = 0 for all
i=1,...,nand |j| > I. It follows that

An(2l+1) M
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sending the standard basis to m; ; withi=1,...,nand j = —-,—=l+1,...,lisan
admissible epimorphism. ([

Proposition 9.9. Let ¢ : A — B be a morphism of k-affinoid algebras, n € N and
r € RY,. Then the following are equivalent:

(1) ¢ is finite and admissible.

(2) ¢®k, is finite and admissible.

This is | , Lemma 3.2]. T do not understand Temkin’s argument. The
following proof is a modification of the argument of Temkin’s.

PROOF. (1) = (2): This is straightforward.

(2) = (1): The admissible part is straightforward. Let us prove that ¢ is finite.
We may assume that n = 1. When r is not in /|k*|, we just apply Proposition 9.8.
Now suppose r € /|k*|. Let us take m € Z~q such that r™ = |c~!| for some
¢ € k*. Define a bounded k-algebra homomorphism

o k{T} = k{r 'T}
sending T to ¢I"™. Observe that ¢ is injective. We have argued in the proof of
Lemma 3.15 that this homomorphism is finite.

Then ¢ induces a finite extension of ring Frac k{r =T}/ Frac k{T}. In particular,
the closure of Frac k{T'} in k, is a subfield over which k, is finite. But this valuation
field is isomorphic to k{T'}. By Proposition 9.6 and fpqc descent | , Tag 02LA],
we may assume that r = 1.

Recall that k; is the completion of Frack{T'}. Let {fi}icr be the set of irre-
ducible monic polynomials in k[T]. Lift each f; to f; € k[T]. Let a € A®gky, we

represent a as
> .
a= ZalTl + Z aijka/fiJ.
1=0 i€l,j>1,0<k<deg f;
A similar expression exists for elements in B&yk, as well. Moreover, the representa-
tion is unique.
As B&yk; is finite over A®yky, we can find by, ..., by, such that any b € B can
be written as

m
b= ¢&ki(a;)b,
j=1
where a; € AQik’. We can replace b; by bj o and a; by ajo. It follows that B is
generated by g, ...,bn 0 over A. O

For any ring A, Alg’:1 denotes the category of finitely generated A-algebras.

Proposition 9.10. Let A be a k-affinoid algebra. Then the forgetful functor
Bam./éﬂgff1 — Ang is an equivalence of categories.

Recall that BanAng is defined in Definition 5.9 in Banach rings.

PROOF. It suffices to construct an inverse functor. Let B be a finite A-algebra.
We endow B with the norm || e || as in Proposition 9.2. We claim that B is a
Banach A-algebra.

Let us recall the definition of the norm. Take n € N, an epimorphism ¢ : A™ — B
of A-modules. Then || e || is the residue norm induced by .
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Consider the A-linear epimorphism ¢ : A"®@4 A™ — B® 4 B. By Proposition 9.7,
when both sides are endowed with the norms || @ [[ang,a» and || e ||pg .5 as in
Proposition 9.2, v is admissible. It follows that there is C' > 0 such that for any

f,9 € B,

If ®gllses < Clfll5 - 9lls-
On the other hand, by Proposition 9.2, the natural map B ® 4 B — B is bounded.
It follows that there is a constant C’ > 0 such that

If9lls < C'llf ® gllBos-
It follows that the multiplication in B is bounded and hence B is a finite Banach
algebra. Given any morphism B — B’ in Algﬁ, we endow B and B’ with the norms
given by Proposition 9.2. It follows from Lemma 9.1 that B — B’ is a bounded
homomorphism of finite Banach A-algebras. So we have defined an inverse functor
to the forgetful functor BanAng — .Alg];l. O

Remark 9.11. It is not true that any homomorphism of k-affinoid algebras is
bounded. For example, if the valuation on k is trivial. Take 0 < p < ¢ < 1 and
consider the natural homomorphism k, — k;. This homomorphism is bijective but
not bounded.

10. Affinoid domains

Let (k,|®|) be a complete non-Archimedean valued field and H be a subgroup
of Rsq such that |k*| - H # {1}.

Definition 10.1. Let A be a kgy-affinoid algebra. A closed subset V' C Sp A is
said to be a kg -affinoid domain in X if there is an object Sp Ay € ky-Aff and a
morphism ¢ : Sp Ay — Sp A in ky-Aff such that
(1) the image of ¢ in Sp A is V;
(2) given any object Sp B € ky-Aff and a morphism Sp B — Sp A whose
image lies in V| there is a unique morphism Sp B — Sp A in kgy-Aff such
that the following diagram commutes

Sp B

!
SpAy —2 5 SpA

We say V is represented by the morphism ¢ or by the corresponding morphism
A— Av.

When H = Ry, we say V is a k-affinoid domain in X. When H = |k*|, we
say V' is a strict k-affinoid domain in X.

We observe that Ay is canonically determined by the universal property.

Remark 10.2. This definition differs from the original definition of [ ], we
follow the approach of Temkin instead. It can be shown that this definition is
equivalent to the orignal definition of Berkovich when H = R+.

A priori, this does not seem to be a good definition, as it is not easy to see that
it is preserved by base field extension. But we will prove that it is the case after
establishing the Gerritzen—Grauert theorem.

We begin with a few examples.
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Example 10.3. Let A be a ky-affinoid domain, n,m € Nand f = (f1,..., fn) € A",
g=1(91,---,9m) € A™. Let r = (r1,...,ry) € \/\kx|-Hn and s = (s1,...,8m) €
VIEX[-H". Define

(SpA) {r~'f,sg7 ) i={z e SpA:[fi(x)] <rivlgj(@)] > 55,1 <i<n,1 <j<m}.

We claim that Sp A {r’lf, sg’l} is a kpy-affinoid domain in Sp A. These domains
are called kg -Laurent domains in Sp A. When m = 0, the domains Sp A{r~!f} are
called kp -Weierstrass domains in Sp A.

To see this, we define

A {r_lf, Sg_l} = A{r7 ', sSY/(Ty — f1, .o, T — fy 9151 — 1, oo GmSin — 1).
By Theorem 6.3, this defines a Banach k-algebra structure. We write || o || for the
quotient norm. By definition, A {r~!f, sg~'} is a kpy-affinoid algebra and there is
a natural morphism A — A {ril f,sg7 ! } We claim that this morphism represents
SpA{r='f sg'}.

For this purpose, we first compute Sp A {rflf, sg’l}. We observe that
SpA {rflf, sgfl} — Sp A is injective since A[f,g7!] is dense in A {r’lf, sg’l}.
We will therefore identify Sp A {rilf, sg’l} with a subset of Sp A.

Next we show that the image of Sp A {rilf, sgil} in Sp A is contained in
(SpA4) {rilf, sgil}. Take || o || € SpA{r’lf, sgfl}. Then there is a constant
C > 0 such that

lel<Clel.
Applying this to fF for some k € Z~g and i = 1,...,n, we find that
1£:ll* = IFEI < CUEN < CITE N smr = Ot
It follows that
1fill < 7.
Similarly, we deduce |g;| > s; for j = 1,...,m. Namely, ||e|| € (SpA) {r~'f,sg7'}.

Next we verify the universal property: let Sp B — Sp A be a morphism of kg-

affinoid domains that factorizes through (Sp A) {r='f,sg~'}. We write ¢ : A — B

for the corresponding morphism of kg -affinoid algebras. By Corollary 6.12 in Banach
rings., we have
pp(fi) = sup_|fi(z)] < sup i) < i
x€Sp B ye(Sp A){r~1f,sg71}
for i = 1,...,n. Similarly, one deduces that p(g,) < sj_l forj=1,...,m.
We will construct the dotted arrows:
A—Y B
o
A{r=1T,sSY
A{r=1f, sg}
so that this diagram commutes. We define 7 as the unique morphism sending T; to
fiand Sj to gjfori=1,...,n,j=1,...,m. The existence of such a morphism is

guaranteed by Corollary 6.5. In order to descend this morphism to 7/, it suffices to
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show that T; — f; and g;S; —1fori=1,...,nand j = 1,...,m lie in the kernel
of n. But this is immediate from our definition. Moreover, it is clear that 7’ is
necessarily unique.

It remains to show that each point in (Sp A) {r‘lf7 sg_l} liesin Sp A {r_lf, sg_l}.

It suffices to treat the cases (n,m) = (1,0) and (n,m) = (0,1). We will only
handle the former case, as the latter is similar. In concrete terms, we need to
show that for any « € Sp A corresponding to a bounded semi-valuation | e |, on A
satisfying |f(z)| < r, we can always extend | e |,, to a bounded semi-valuation || e ||
on A{r~!f}. Replacing A by A/ker|e|,, we may assume that |e|, is a valuation on
A. We endow A{r~'T} with the Gauss norm || e ||, induced by |e|, and A{r—'T}
with the quotient norm || e ||. This norm is bounded by construction. It suffices to
show that it is a valuation, and it extends the given valuation on A. The former
is a consequence of the latter, as A is dense in A{r~!f}. Now suppose a € A. A
general preimage of a in A{r—!T} is

at(T—f)Y bTI =a—foo+» (bjr — fb;)T”
3=0 j=1
with [|bj]|ar? — 0 as j — co. Now we compute

o= £+ 301 = 105) ] =mx {Ja = foolas e[ty foilr”

=
> max {|a — fbola max Jb; s — fbjz|f|z;}
jz1
= max {|a - fb0|mm>3«f(|fjbj—l - fj+1bj|m} > als.
3>

So ||a|| > |al|,. The reverse inequality is trivial. We conclude.

Example 10.4. Let A be a kpy-affinoid domain. Let n € N, g € A, f =
(fryeo o fn) €A™, r = (r1,...,mn) € VIKX]- H". Assume that g, f1,..., f, gener-

ates the unit ideal. Define
(SpA) {r_lf} ={xeSpA:|fi(x) <rig(x)|fori=1,...,n}.
g

Then we claim that (Sp A) {7,71%} is a ky-affinoid domain in Sp A. Domains of

this form are called kg-rational domains.
To see this, we define

By Theorem 5.1, this is indeed a kp-affinoid domain. We will denote by ||  ||" the

residue norm. We will prove that the natural map A — A {r‘lg} represents the

affinoid domain (Sp A) {r‘lg}. Observe that

SpA {rlf}
g
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is injective as elemnts of the form a/g with a € A is dense in A {r‘li}. Next we

show that
(SpA4) {r_lf} D SpA{r‘lf} .
g g

Let z € SpA {7,71%}’ take | @ |, as the corresponding bounded semi-valuation on

A {r’lg}. Then there is a constant C' > 0 such that for any k& € Z~,

\fils = 1fFle = 1915 - 1T < Clglirf
forall i =1,...,n. In particular,

Hence, x € (Sp A) {r‘lg}.
Next we verify the universal property. Let Sp B — Sp A be a morphism of
kp-affinoid spectra factorizing through (Sp A) {rilg}. Observe that g(x) # 0 for

allz € (Sp A) {r’lg}. As otherwise, f;(z) =0foralli=1,...,n. This contradicts
our assumption on g, f1, ..., fn. It follows that (g) is invertible by Corollary 6.11
int the chapter Banach Rings. From the definition of (Sp A) {T‘_lg}, it is clear that
p((fi)) <rp(¥(g)) fori=1,...,n.

We construct

A—Y B

l n T

A{r‘lT} T

A {r‘ 1L }
g
successively. The morphism 7 sends T; to ¢(f;)/¥(g) for i = 1,...,n. The existence

of such a morphism is guaranteed by Corollary 6.5. Clearly ¢g7T; — f; is contained in
kern, so 1 descends to 7. The morphism 7 is clearly unique.

It remains to verify that the image of SpA{r’lg} in SpA is exactly

(SpA) {r’lg}. In other words, we need to verify that if | e |, is a bounded
semi-valuation on A satisfying |fi|z < 7i|g|s, then | e |, extends to a bounded
semi-valuation on A {r‘lg}. Replacing A by A/ker| e |,, we may assume that
| ® | is a valuation on A. Consider the Gauss valuation | e |, on A{r~'T} and
the residue norm || e || on A {r’li}. It suffices to show that || e || is a valuation

extending the valuation | e |, on A. The former is a consequence of the latter. Take
a € A, we need to show that |a|, = ||a]|.
A general preimage of a in A{r~'T} has the form

n [e.9]

a+ Z(gTz - fi) Z bi,o T

i=1 acNn
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with ||b; o|| a7, where || ® || 4 denotes the initial norm on A. The same argument as
in Example 10.3 shows that

||a‘ + Z(QT‘Z - fz) Z bi,ocTa”z,r Z ‘a|:}c

i=1 aeN?
So ||a||lz > |ax|, the reverse inequality is trivial.

Proposition 10.5. Let ¢ : A — B be a bounded homomorphism of kp-affinoid
algebras. Then the following are equivalent:
(1) ¢(A) is dense in B;
(2) there is a ky-Weierstrass domain V' C Sp A containing the image of Sp B
under Sp ¢ such that ¢ extends to an admissible epimorphism Ay — B.

PROOF. (2) = (1): this is trivial.

(1) = (2): Assume that ¢(A) is dense in B. Take n € N, r € RZ; and
an admissible epimorphism ¢’ : A{r~'T} — B extending ¢. By Proposition 6.6,
we may assume that ¢'(T;) = @(f;) for some f; € A for i = 1,...,n. We define
V =Sp A{r~1T}. Then V satisfies all requirements. O

Proposition 10.6. Let A be a kg-affinoid algebra and V' C Sp A be a kg-affinoid
domain represented by ¢ : A — Ay. Then Sp ¢ induces a homeomorphism Sp Ay —
V.

In particular, we will identify V' with Sp Ay and say Sp Ay is a kg-affinoid
domain in Sp A.

PROOF. We observe that Sp Ay — Sp A is a monomorphism in the category
kp-Aff. In other words, A — Ay is an epimorphism in the category kgy-Aff Alg.
To see this, let 11,72 : Ay — B be two arrows in kg-Aff Alg such that n; o ¢ =
12 o @. It follows from the universal property in Definition 10.1 that n; = ns.
By Proposition 3.19, Sp Ay — Sp A is a bijection. But Sp Ay and Sp4 are both
compact and Hausdorff by Theorem 6.13 in Banach rings., so SpAy — V is a
homeomorphism. ([l

Corollary 10.7. Let A be a ky-affinoid algebra. Let Sp B be a kg-affinoid domain
in Sp A and Sp C is a kgy-affinoid domain in Sp A, then Sp C is a kg-affinoid domain
in Sp A.

Proor. This follows immediately from Proposition 10.6. (]

Proposition 10.8. Let A be a kgy-affinoid algebra and V, W be kg-Weierstrass
domains (resp. kpy-Laurent domains, resp. kpy-rational domains) in Sp A. Then
VNW is also a ky-Weierstrass domain (resp. kgy-Laurent domain, resp. ky-rational
domain).

PROOF. This is clear in the Weierstrass and Laurent cases. We will prove
therefore assume that V and W are kg-rational.
Take f1,...,fn € A, g1,...,9m € A both generating the unit ideal and r =

(r1,....rn) € /IEX[-H s =(s1,...,5m) € \/[kX|-H " such that
V= SpA{Tlff}, W = SpA{slg}.

m In
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We may assume that 7, = s,, = 1. Now let R = (R;;) € \/[kX|-H = where
R;j=r;s; and F = (F; ;) with F; ; = fig; fori=1,...,n,j=1,...,m. Observe
that the F; ;’s generate the unit ideal. We consider the kg-rational domain

F
Z = spA{R—1 }
frngm

Clearly VNW C Z. We need to prove the reverse inequality. Let x € Z, so we have

|fig; (@) < 7isj| fagm (@)l

forany i=1,...,n, 7 =1,...,m. In particular, when j = m, we have
| figm ()] < 73l frgm(2)]
forany i =1,...,n. But f,g. is invertible, so we can cancel g,,(x) to find
[fi(@)] < il f(2)].
So x € V. Similarly, we have x € W. a

Corollary 10.9. Let A be a kgy-affinoid algebra and V' be a kg-Laurent domain in
Sp A. Then V is also a kg-rational domain.

PROOF. By Proposition 10.8, it suffices to show consider ky-Laurent domains
of the following form:

SpA{r~'f}, SpA{sg~'}
where r, s € \/|k*|- H and f, g € A. Both domains are ky-rational by definition. O

Proposition 10.10. Let A be a kgy-affinoid algebra and Sp B be a kp-rational
domain in Sp A. Then there is a kg-Laurent domain SpC in Sp A such that
Sp B C SpC and Sp B is a kg-Weierstrass domain in Sp C.

B :A{r_lf}
g

for some n € N, r = (ry,...,1,) € \/|kx|-Hn, f=U1,-fn) €A and ge A
such that fi,..., fn, g generate the unit ideal. Let g” be the image of ¢ in B, which
is a unit. Choose ¢ € \/|k*|- H such that pp(g~') < c7!. Set C = A{cg™!}, then
Sp B C SpC. Moreover,

Proor. We write

SpBNSpC =0.
Let f{,..., fl,g" be the images of fi,..., fn,gin C. Write f' = (f1,..., f}). Then
by Corollary 6.11 in Banach rings., ¢’ is a unit and
SpB =SpC{r ¢ 1f}.
O
Proposition 10.11. Let A be a kgy-affinoid algebra, Sp B be a kpy-Weierstrass
domain (resp. kg-rational domain) in Sp A and Sp C' be a ky-Weierstrass domain

(resp. kg-rational domain) in Sp B. Then Sp C is a ky-Weierstrass domain (resp.
kp-rational domain) in Sp A.



10. AFFINOID DOMAINS 37

ProOOF. We first handle the Weierstrass case. Write
B = SpA{r_lf},C = SpB{s_lg}

for some n,m € N, r € \/[kX|-H , s € \/J&<|-H  and f = (f1,...,fn) € A",
g = (91,---,9m) € B™. Observe that if we replace g with a small perturbation,
the domain Sp C' in Sp B remains the same, so we may assume that gi,..., g, € A.
Then
SpC =Sp A{r~'f}NSp A{s™"g}
is a kg-Weierstrass domain by Proposition 10.8.
Next we handle the rational case. Write

B :A{s‘lf}
g

for some m €N, f=(f1,...,fm) €A™, r=(r1,...,m) EVIkX|-H andge A
such that f1,..., fin, g generate the unit ideal.

By Proposition 10.10 and Proposition 10.8, it suffices to handle the special
cases C = B{r~'h} and C' = B{rh=!} for some r € \/|k*|- H and h € B. Observe
that making a small perturbation on h does not change the domain. As A[g—1] is
dense in B, we may assume that there is n € Z~( such that b’ = g"h € A. As g is
invertible on Sp B, we can find ¢ € 1/|k*| - H so that

lg(a)|" > !
for x € Sp B.

We need to treat the cases C' = B{r~'h} and C = B{rh~'} separately. In the

first case, we write

/
SpC = SpBﬂSpA{(r,C)_l(h’l)}.

n

In the second case,

m1
SpC = SpBﬁSpA{(r,c)1 (gh” )}

(]

Lemma 10.12. Let A be a ky-affinoid algebra and Sp B be a kg-affinoid domain in
Sp A. Let Sp C be a rational domain in Sp A, then (Sp C) N (Sp B) is a ky-affinoid
domain in Sp A represented by A — B®4C.

PRrROOF. We first recall that B&4C' is kp-affinoid by Proposition 3.4.

We may assume that
CcC=A {sf}
g

forsome meN, f=(f1,...,fm) €A™, r=(r1,...,rm) EIkX|-H andge A
such that f1,..., fin, g generate the unit ideal.
Observe that there is a natural isomorphism

B®AOgB{31£}.

Hence,
SpB&AC ={z € SpB: |fi(x)| < s|g(x)| fori=1,...,m}.
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On the other hand,
SpC ={zeSpA:|fi(z)| < s|g(z)| fori=1,...,m}.

So Sp B&4C = B&4C. By Proposition 3.4, we have the Cartesian square in the
diagram below:

SpD

‘.A
".YSpB®AC SpC

o]

SpB —— SpA

It remains to verify the universal property. Let Sp D — Sp C be a morphism of
kp-affinoid spectra that factorizes through (Sp C') N (Sp B). Then by the universal
property of Sp B in Sp A, we find the dotted morphism Sp D — Sp B making the
diagram commutes. Then as the square is Cartesian, we get the desired morphism
SpD — Sp B&4C. This morphism is clearly unique. [

Proposition 10.13. Let A be a ky-affinoid algebra. Then for any € Sp A, any
neighbourhood U of z in Sp A contains a kg-Laurent domain V' in Sp A containing
x and z lies in the topological interior of V.

PROOF. The open neighbourhoods of the form

{yeSpA:|fi(y)l <ri,|g;(y) > s}

for some fi,..., fu,91,---,9m € Aand ry,...,7,,81,...,8, > 0 form a basis of
open neighbourhoods of x in Sp A, so we may assume that U has this form. Then
we can choose 77,85 € \/|k*[- H for i =1,...,n, j =1,...,m such that

|filz)| <7i<ri, |gj(x)] > 8 > s
Then the kg-Laurent domain V := Sp A{r'~1f,sg'~1} is contained in U. Moreover,
x is clearly in the interior of V. (I

11. Graded reduction

Let (k,| ®|) be a complete non-Archimedean valued field and H be a subgroup
of R+ such that |k™|- H # {1}.

Definition 11.1. Let A be a Banach k-algebra, we define the graded reduction of
A as

A= P {weA:pa)<h}/{zeA:p(x)<h}.

heRso
For any f € A with p(f) # 0, we define f as the image of f in the p(f)-graded piece
of A.

Definition 11.2. Let A be a ky-affinoid algebra. We define the kg -graded reduction
of A as the \/|k*| - H-graded ring

AH = @ {reA:px)<h}/{xeA:px)<h}.
he/|kX|-H
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For any f € A with p(f) # 0, we define f as the image of f in the p(f)-graded
piece of A7,
For any morphism f : A — B of ky-affinoid algebras, we define
FH A B
as the map induced by sending the class of x € A with p(z) < h for any h €

V|k*|- H to the class of f(z) € B.

Recall that p(A) = +/|k*|- H U {0} by Theorem 8.4, so f is well-defined.
This definition is compatible with Definition 11.1 in the sense that if we regard a
V|k*|- H-graded ring as an Rsg-graded ring, the two definitions give the same
object.

Example 11.3. If K is a ky-affinoid algebra which is a field as well, then K" is a
V/|k*| - H-graded field. This is immediate from the definition.
Lemma 11.4. Let (A,| o |) be a k-affinoid algebra, n € N and » € RZ;. Let
f € k{r~'T}. Expand f as

f= Z a.T%.

aeN"
Then

p(f) = max paa)r®.

PROOF. By induction, we may assume that n =1 and write r =71. As pisa
bounded powerly bounded semi-norm, we have

< TIY < No(T7) = Ny
p(f) < max pla;T7) < max pla;)p(T7) max pla;)r
Observe that p(a;) is not ambiguous: when intepreted as in A and in A{r'T}, it

has the same value.
Conversely, we need to show that for any j € N,

p(f) = plaj)r.
Equivalently, this means for any k € Z~ and any j € N, we need to show that
17* 1 = plag)*r*.

Fix j and k as above. We compute the left-hand side:

k
fk = Z bngﬁl, bﬁ = Hagl.
=1

B=(B1,--,0k)ENF
It follows that
ko 18l
» = max ||bg||T""".
£ max [[ball
Take 8= (4,7,...,7), we find
150 = Nlaf 177" = plag)*r*.
O

Lemma 11.5. Assume that k is non-trivially valued. Let A be a strictly k-affinoid
algebra. Then for any a, f € A, the set of non-zero values p(f"a) for n € N is a
discrete subset of R.
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PROOF. As A is noetherian Theorem 6.3, it has only finitely many minimal
prime ideals, say pi,...,Pm. It follows that

m
SpA=JSpA/p:.
i=1
Here we make the obvious identification by identifying Sp A/p; with a subset of
Sp A.
By Corollary 6.12 in Banach rings., it suffices to consider each of Sp A/p;
separately, so we may assume that A is an integral domain.
By Corollary 5.2, we can take d € N and a finite injective homomorphism
of k-algebras ¢ : k{Ty,...,Ts} — A. According to Proposition 9.11 in Banach
rings., pa is the restriction of the norm || ® ||prac 4 on Frac A induced by the finite

extension Frac A/ Frac k{71, ..., Ty} from the Gauss valuation. But it is well-known
that || ® ||prac 4 is the maximum of finitely many valuations on Frac A. Reproduce
BGR3.3.3.1 somewhere. The assertion is by now obvious. (]

Lemma 11.6. Let (A, | o ||) be a k-affinoid algebra, f € A with r = p(f) > 0. Let
B = A{r~!f}. Then for any a € A, we have
ppla) = lim r="pa(f"a).
If moreover, pg(a) > 0, then there is ng > 0 such that for n > ng,
pe(a) =r""pa(f"a), pp(f"a)=1"pa(a).
PROOF. We observe that for any a € A, n € Z~(, we have
pp(f"a) =r"pp(a).

So the last two assertions are equivalent.

Take a k-free polyray s such that A&k, and B&yk, are both strictly k,-affinoid.
By Proposition 3.11, A®gks{r~1f} — B&ks. Moreover, p4 and pp are both
preserved after base change to ks. So we may assume that k is non-trivially valued
and A and B are strictly k-affinoid.

Observe that for n € Z~,

pa(f"a) < pa(f)pa(fra) =rpa(fa).

So r~"pa(f™a) is decreasing in n. Moreover, for any x € Sp A{r~!f}, by Exam-
ple 10.3, we have

[f(@)| =
By Corollary 6.12 in Banach rings., we have
|f(@)| =r
for any x € Sp A{r~1f}. It follows from Corollary 6.12 in Banach rings that for any

n e Z>07

pa(fta)= sup |f"a(x)]=r"  sup  |a(x)] =1r"pp(a).
z€Sp A zeSp A{rf—1}

By Lemma 11.5, the decreasing sequence {r "pa(f™a)}, either tends to 0 or is
eventually constant. It converges to 0, there is nothing else to prove. So let us
assume that there is o € Ry and ng > 0 such that for n > ng, we have

r "pa(f"a) = .
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We have to show that o < pg(a). Assume the contrary « > pg(a). Then for all
x € Sp A, we have
|f"a(x)] < r"la(z)].
So f™a must obtain its maximum on U := {x € Sp A : |a(x)| > a}. But U is disjoint
from Sp A{r~1f} as
a > pp(a).
It follows from Example 10.3 that

B = sup |f(2)] = max [ f(z)] <r.

So
p(f"a) = sup [f"a(x)| = sup |f"a(z)| < B" sup |a(z)].
TESP A zeU zeU
This contradicts the fact that a > 0. O

Proposition 11.7. Let A be a kg-affinoid algebra and r € RZ,, then there is a
functorial isomorphism

— H _
A{r=iT}y = AH[p7T
of v/|k*|- H-graded rings.

Recall that k,. is defined in Example 3.12.

PROOF. By Lemma 11.4, we have a natural isomorphism

——— H 5
ATy, = P A

aeN”
for any s € \/|k>|- H. This establishes the desired isomorphism. O

Proposition 11.8. Let A be a ky-affinoid algebra and f € A with r = p(f) > 0.
Then there is a natural isomorphism
- -~ —~~— H
A? — A{rf-1}
of v/|k*|- H-graded rings.
Recall that A{rf='} is defined in Example 10.3, by Theorem 8.4, it is kg-
affinoid.
PROOF. Let B = A{rf~'} and denote by ¢ : A# — fl? the natural /|k>| - H-

graded homomorphism. From the universal property add details, we can factor the
natural map A¥ — B as ¢ : AJ’? — BH. We have a commutative diagram:

AH __ BH

%

We claim that 1 is bijective. Let Fz/fm be an element in ker, where a € A7 is
homogeneous. Lift @ to a € A. Then pp(a) < pa(a). By Lemma 11.6, pa(f"a) <
"pa(a) when n is large enough, so

fra=0
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in A. Therefore, a/f™ =0 in fl?. We have shown that 1 is injective.

It remains to show that v is surjective. Let b € B be a non-zero homogeneous
element. Lift b to b € B of the form f~"a for some a € A. By Lemma 11.6 again, up
to enlarging n, we can assume that pp(a) = pa(a). Then a = fb has a preimage
in A.

O

Corollary 11.9. Let A be a ky-affinoid algebra and r € RZ, then there is a
functorial isomorphism

—~——H

A @y kT 2 Adk,
of \/|k*|- H-graded rings.

PRrOOF. We can write
AGpk, = lim  A{r'THp(g)g )
g€k{r=1T},g#0

Taking graded reduction, we find
~ H —_ H
Ak, = lim  A{r~'THp(g)g ™'}
g€k{r=1T},g#0
—— H
= lim A{r='T};
g€k{r=1T},970 ‘
= lim AR T,

S
g€k{r—1T},g#0

~ ~H
:AH ®]}H kT .
Here we have applied Proposition 11.8 in the second equality and Proposition 11.7

in the third equality. The first equality follows from the simple observation that
graded reduction commutes with filtered colimits. (|

Theorem 11.10. Let ¢ : A — B be a morphism of kg-affinoid algebras. Then the
following are equivalent:

(1) ¢ is finite and admissible.
(2) ¢: AH — BH is finite.

Proor. Take n € N and r € RY so that
P(A®kkr) = p(B®kkr) = |kr|

and k, is non-trivially valued. Proof that this is possible.

By Corollary 2.36 in Commutative algebras and Proposition 9.9, we may assume
that k is non-trivially valued and p(A) = p(B) = |k|. By Lemma 2.33 in the chapter
Commutative Algebra, we have A = A ®%, k. According to Corollary 5.5, ¢ is
automatically admissible if it is finite.

So it suffices to argue that ¢ is finite if and only if ¢ : A — B is finite.

Assume that ¢ is finite. We show that ¢ is finite.

First consider the case where A is an integral domain.

We claim that there is d € N and a k-algebra homomorphism ¢ : k{T1,..., Ty} —
A such that ¢ o 1 is finite and injective. In fact, choosing an epimorphism
a: k{Ty,..., Ty} — A, we can apply Theorem 5.1 to find ¢ o « to conclude.
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It suffices to show that m is finite in order to conclude that ¢ is finite. So
we are reduced to the case A = k{T1,..., T4} and ker ¢ = 0.

We will show that the conditions of Lemma 10.1 in Banach rings is satisfied
with pp as the norm B. We have shown that pp is a faithful k{71, ..., Ty}-algebra
nrom in Corollary 4.16. As B is of finite over k{T},...,T4}, the rank condition is
clearly satisfied. It remains to establish that d) is integral.

By Proposition 5.12, for f € B, there is an integral equation

P (a) [+ plan) =0

over A such that pp(f) = max;=1. n |bz|¥£ If fe ]%, then |bilsup < 1, hence

b; € B. Add a ref R
Conversely, assume that ¢ is finite. It suffices to apply Lemma 5.15 to conclude
that ¢ is finite. O

Corollary 11.11. Let A be a ky-affinoid algebra, then A is finitely generated
over k.

Proor. Take n € N, r € RY; and an admissible epimorphism

7 k{r T} = A.

—~ H
Applying Theorem 11.10, we find that it suffices to prove that k{r='T"} is finitely
generated over k. But this follows from Proposition 11.7. ]

Lemma 11.12. Let A be a kp-affinoid algebra and K/k be an analytic field
extension. Then the natural homomorphism

- N ——H
(11.1) AT @iy KT — ASLK

is finite.

PROOF. Take n € N, r = (r1,...,1r,) € /|kX| “H" and an admissible epimor-
phism 7 : k{r~!T} — A. Then the induced map

7 s K{r 1T} = A&LK

is an admissible epimorphism. By Theorem 11.10, its reduction
—~——H
TK : f(H[r_lT] — AQLK

is finite. It remains to show that the image of Tx is contained in the image of
(11.1).

For this, we just observe that for i = 1,...,n, 7 (T;) # 0 if and only if
p(mk (T;)) = r;. The latter is equivalent to that p(m(T;)) = r;. In particular, 7 (7;)
is the image of 7(7T;) under (11.1). Our assertion follows. O

Lemma 11.13. Let A be a ky-affinoid algebra and B, C' be kg-affinoid algebras
over A. Then the natural homomorphism

H

(11.2) BY ® zu cH —)B@AC

is finite.
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PROOF. Take n,m € N, r = (ry,...,1,) € \/|kx|-Hn, s = (81,-.-,8m) €
VIEX[-H" and admissible epimorphism 7 : A{r—'T} — B, 7’ : A{s~'8} — C.
Then we have an admissible epimorphism

n&an’ : A{r™'T,s71S} — B&AC.

By Theorem 11.10, the reduction
H

7@ am’ : A" [r7 1T, 571S] — B&AC

is finite. It suffices to show that the image of this map is contained in the image of
(11.2). The argument is similar to that in Lemma 11.12, and we omit it. Include
it O

Definition 11.14. Let A be a kgy-affinoid algebra, we define the reduction map
Sp~AH := SpecV kx|-H AH

~ H
We have a natural map 7 : Sp A — Sp A" : given = € Sp A, it defines a character

Xz : A = #(z), which in turn induces ¥, : A7 — ;i;(;) We define 7 (z) =
ker .

Lemma 11.15. Assume that k is non-trivially valued and A is a strictly k-affinoid
algebra. Then the reduction map

7:SpA — Spec A
is surjective.

The reduction map is defined as follows: a point x € Sp A defines a character

Xz : A — #(z). By reduction, we get x, : A — 2 (x). The kernel is the image of
x.

ProOF. Step 1. We assume that A = k{T1,...,T,} for some n € N.

We make induction on n. The case n = 0 is trivial. We first handle the case
n = 1. In this case, we have an explicit description of the Berkovich disk Example 7.1
when k is algebraically closed.

By Corollary 8.6 in Banach rings, we have a natural identification

Sp k{T} = Sp k*ls{T'} / Gal(k*P /k).

By Proposition 4.1, we have an identification k{T} = k[T]. The prime ideals are
of two types: (T — a) for some a € k and 0. In the former case, the type (1) point
defined by a lies in the inverse image of (T — a) by definition. In the second case,
we take the Gauss point || e ||;.

Consider the case n > 1. Assume that the assertion has been proved for lower
n. Let p : Spk{T1,...,T,} — Spk{T1} be the projection induced by k{T1} —
E{T\,...,T,} sending T} to T. We have a comutative diagram

Spk{T1,...,T,} —2— Spk{T,}

I [

Spec k[T, ..., T,] — Speck[T1]
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Let # € Speckl[T1,...,T,] and § be its image in Speck[T}]. By the case n =
1, we can find y € Spk{T1} with m(y) = §. There is a bijection p~!(y) with
Sp #(y){Ts,...,Tn}. So it suffices to show that

(11.3) Sp 2 (Y){Tz,...,Tn} — Speck(§)[Ts, ..., T
is surjective. By construction, we have an embedding x(g) — %, SO we can
factorize (11.3) as

—_~—

Sp . (Y){Tz,...,Tn} — Spec H# (y)[Ts, ..., Tn] — Spec k(§)[Tz, ..., Ty].

By induction, the first map is surjective. The second map is obviously surjective. It
follows that the map (11.3) is also surjective.

Step 2. We handle the case where A is an integral domain. By Corollary 5.2,
we can find d € N and a finite injective morphism

k{Tl,...,Td} — A.

Then Frac A is a finite extension of Frack{T1,...,Tq}. Fix an algebraic closure
of Frac k{T1,...,Tq}. Let K be the smallest extension of Frac k{T1,...,Ty} inside
this algebraic closure which is norm over Frac k{T},...,T;} and which contains A.
Let G = Gal(K/Frack{T1,...,Tq}). Then let B be the smallest k-subalgebra of
K containing all y(A) for v € G. Then B is finite over k{T1,...,Ty} and hence
strictly k-affinoid by Proposition 8.1. We therefore have a commutative diagram

SpB —— SpA —— Spk{Ty,...,Tq}

l ! |

Spec B —— Sp A —— Speck[Ty, ..., Ty]

By going up theorem, all horizonal maps are surjective. So we only have to show
that 7p is surjective by diagram chasing.

The group G acts on K and hence on B. For any v € G, we write the
corresponding automorphism B — B as v. The induced map on the reduction
B — B is denoted by 4. In this way, we see that the G-action is compatible with
the big square. All maps but the left vertical map are surjective. So it suffices to
show that G acts transitively on each fiber of Spec B — Spec k[T, ..., Ty).

Let & € Speck[T1,...,Ty] and §,7’ € SpecSpec B lying over Z. If no elements
in v € G transforms § to ', we have

Py & P55
as B is finite over l;:[Tl, ..., T4]. Here po denotes the prime ideal corresponding to e.
By prime avoidance | , Tag 00DS], we can find f € B such that f € py by

A(f) & py for any v € G.
Take the minimal equation of f over Frack{Ty,...,Ty}:
frraf™+ - +a =0.

Up to sign, a, is a power of the product of all conjugates of f. So

ar € py \ py-
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By a, € T,, as it is integral over T, by Proposition 4.15. While f € B implies that
a, € (k{T1,...,T4})° by Corollary 4.16. Thus,

d;‘ Epg’mk{le-wTd} :pi7

which contradicts the fact that a, & py.
Step 3. We handle the general case. Let pq,...,p, be the minimal primes of
A. The number is finite by Theorem 6.3. We then have a map

i=1
We have a commutative diagram

[I;=iSpA/pi — Sp A

! |

[Ty SPGCZ/T% — Spec A

All maps but the right vertical one are surjective. Hence, the right vertical map is
surjective as well. |

Remark 11.16. Berkovich | | claimed that this follows from the proofs in
[ ]. The author does not understand how this works. The current proof is
due to Mattias Jonsson.

Theorem 11.17. Let A be a kg-affinoid algebra. Then the reduction 7 : Sp A —
Sp A7 i surjective.
PrROOF. Step 1. We reduce to the case where p(A) = |k|.

Take n € Zso and r = (r1,...,7,) € R% such that p(A®xk,) = |k,| such that
r1 is k-free. Let B = A®yk,. Then we have a commutative diagram

SpB —— SpA

[
SpB —— SpA
It suffices to show that the left vertical map is surjective and the bottom map is
surjective.
We begin with the bottom map. By Corollary 11.9, we can identify

———H

SpB — SpA ®ju kr

It suffices to show that
—~—H g —~—H
SpA ®iu k. —SpA
is surjective, which is trivial.
Step 2. We may assume that k is non-trivially valued, A is strictly k-affinoid
and p(A) = |k|]. By Lemma 2.34 in Commutative algebras, it suffices to show that
the usual reduction 7 : A — Spec A is surjective, which is exactly Lemma 11.15. O

Proposition 11.18. Let A be a kgy-affinoid algebra. Then for any generic point &
of an irreducible component of Sp~AH, 7H:=1(%) is a single point.
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ProOF. We first suppose that Sp A" is irreducible. Note that the character
AP 5 k(2)

corresponding to Z is injective, since A¥ does not have non-trival homogeneous
nilpotents. By Theorem 11.17, we can find € Sp A whose reduction is Z, we have

pa(f) < |f(2)].

So equality holds by Corollary 6.12 in Banach rings. In other words, 7f~1(%) =
{pa}. o

In general, by Lemma 3.2 in Commutative algebras, we can find f € A¥ that
is not contained on all generic points of irreducible components by z. Include
graded version of prime avoidance somewhere. Lift f to f € A and r = pa(f). Let
B = A{r=1f}, then

"z} CSp A{r~' f} = Sp B.

By Proposition 11.8, we have an identification

H _ jH
B —_ Af .
It suffices to apply the special case to B. (I

Proposition 11.19. Let A be a kg-affinoid algebra. Let Z be the set of generic

points of irreducible components of Sp~AH. Then 7f=1(Z) is the Shilov boundary
of A.
In particular, A admits a Shilov boundary.

Recall that the Shilov boundary is defined in Definition 8.7 in Banach rings.

PROOF. Let f € A be an element with p(f) = r > 0. Assume that f € A is
not contained in some Z € Z, take the unique lift z € A of Z by Proposition 11.18.
Then |f(x)| = r. In particular, 7°~1(Z) is a boundary.

To show that m~1(Z) is a minimal boundary, let x € 7>=1(Z) and U be an
open neighbourhood of . As

z=J 7 (D)),
f(@)
we can find f € A with f(Z) # 0 and Sp A{rf~'} C U, where r = p(f). As U is
open, we can find € > 0 such that
SpA{(r—ef '} CU.
So x belongs to any boundary of A.

12. Gerritzen—Grauert theorem

Let (k,| ®|) be a complete non-Archimedean valued field and H be a subgroup
of Rsq such that || - H # {1}.

Definition 12.1. Let A be a kg-affinoid algebra. A morphism ¢ : Sp B — Sp A in
kg-Aff is a closed immersion if the corresponding morphism A — B in ky-Aff Alg
is an admissible epimorphism.
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Example 12.2. Let A be a kgy-affinoid algbera. Consider the diagonal morphism
A :SpA — SpA x Sp A, defined by the codiagonal A&, A — A. We claim that A
is a closed immersion.

We first observe that we have a factorization

A@r A — ARpA — A

of the usual codiagonal, but A ®, A — A is clearly surjective. Hence, so is
A®kA — A.

In order to see that the codiagonal is admissible, we first observe that it is
bounded by definition. Take a k-free polyray r with at least one component, then by
Proposition 3.11, we may reduce to the case where k is non-trivially valued. Then
it suffices to apply the open mapping theorem Theorem 7.2 in Banach rings.

Proposition 12.3. Let A, C be a ky-affinoid algebra. Let Sp B — Sp A be a closed

immersion. Consider the Cartesian diagram:

SpB&,C —— SpB

"o |
SpC —— Sp A
Then Sp B&4C — Sp C is also a closed immersion.

PRrROOF. This follows from the right-exactness of completed tensor products. [
Definition 12.4. Let ¢ : SpB — Sp A be a morphism in kg-Aff. We call ¢ a
k-Runge immersion if there is a factorization in ky-Aff of ¢:

SpB —+SpC — SpA,
such that Sp B — Sp C'is a closd immersion and Sp C — Sp A is a ky-Weierstrass

domain.

Lemma 12.5. Let A be a ky-affinoid algebra and V' be a kg-Laurent domain in Sp A
represented by A — B = A{r~'f sg} for some n,m € N, f = (f1,...,fn) € A"

and g = (g1,.-.,9m) € A™, r = (r1,...,ry) € \/mn and s = (81,...,8m) €
\/mm. Then
(1) B is finite over the subalgebra generated by A¥ and fi,. - Fn, act gk
(2) if V is a neighbourhood of a point x € Sp A, then Y, (B¥) is finite over
Xa(AH).
PROOF. (1) Consider the admissible epimorphism
A{r~'T,sS} — B.

By Theorem 11.10, it induces a finite homomorphism

— H
A{r—1T,sS} — BY.

The former is computed in Proposition 11.7 and our assertion follows.
(2) This is a special case of (1). O

Theorem 12.6 (Gerritzen—Grauert, Temkin). Let ¢ : Sp A — Sp B be a monomor-
phism in kg-Aff. Then there is a finite cover of X by kpgy-rational domains
Wi, ..., W}, such that the restrictions ¢; : o~ 1(W;) — W; are ky-Runge immersions
fori=1,... k.
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Proor. Step 1. We reduce to the following claim: for each € Sp A, there
is a ky-rational domain U in Sp B containing y = ¢(x) such that V = 71U is a
neighbourhood of z in Sp A and the induced map V' — U is a closed immersion.

Assume this holds. Write U = Sp B {r%} for somen € N, f = (f1,...,fn) €

B™ and g € B such that fi,..., f,, g generates the unit ideal and r € /|k*] - H".
As g is invertible on U, we can find a small kg-rational domain W in Sp B containing
y such that

(1) g is invertible on W;
(2) o'W C o 'U.

Then U N W is a ky-Weierstrass domain in W and ¢~ 'W — W is therefore a
kp-Runge immersion. From the compactness of Sp A, this implies that we can find
kg-rational domains W1, ..., W,, of Sp B such that ¢ ~1(W;) — W; is a kg-Runge
immersion for ¢ =1,...,m and X7 U---U X, contains an open neighbourhood U
of p(Sp A). As Sp B is compact, we can find finitely many kp-rational domains
W1, - - -, Wy which do not intersection ¢(Sp A) that covers Sp B\ U. Then the
covering W7y, ..., Wy satisfies all the requirements.

We have reduced the problem to a local one on Sp B.

Step 2. We show that we may assume that y, (A7) is finite over ,(B). Here
the notation Y, is defined in Definition 6.7 in Banach rings.

By Corollary 11.11, X, (A) is finitely generated over X, (B*!). Take generators
hi,...,h; € A. By Proposition 3.19, 5 (x) — (y), so we can find fi,..., f1,g €

B with |g(y)| = 1 such that
g
foralli=1,...,L.

In fact, we can take g = 1. This can be seen as follows. Let B’ = B{ag~!'}

for some a € \/|k*|- H with a < 1. Then by Lemma 12.5, )Zy(B’H) is finite over
Xy (B™). So up to replacing B by the B’ and Sp A by the inverse image of Sp B/,
we may assume that g is invertible. Replacing f; by f;/g, we could then assume
that g = 1.

Up to replacing Sp B by Sp B{p(h1) "' f1, ..., p(h;) "1 fi}, we can guarantee that
fi = h; fori=1,...,1. So our assertion follows.

Step 3. We may assume that (A7) is finite over )’(Z/(BH) for any ' € Sp A
and y' = p(a').

Let m:Sp A — gia\z/ﬁlH be the reduction map. Let X denote the Zariski closure
of w(x). Then for any ' € Sp A with 7(z') € X, we have

< p(hi)

ker y, C ker x.

It follows that yo(AY) is finite over x, (BH).

Since 77X is open in Sp A Include the proof, we can find a kpy-Laurent
neighbourhood Sp B{rf,sg~'} for soem suitable tuples r, f,s,g of y such that
@ 'SpB{rf,sg~'} C 7 'X. Observe that for each 2’ € Sp A, xu (A¥) is finite
over @(BH ). This follows simply from Lemma 12.5. So up to replacing B with
B{rf,sg~1}, we conclude.
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Step 4. We claim that after all of these reductions, ¢ becomes a closed
immersion. By our assumptions, for any minimal homogeneous prime ideal p of AH
there is a point « € Sp A with ker x,, = p and le/p is finite over AX.

Let p1,...,pxr be the list of minimal homogeneous prime ideals of A" prove
finiteness, then

k
A — @B A" /p;
i=1

is injective. Since BY is graded noetherian Introduce this notion, we find that
AH s finite over Bf. So B — A is finite by Theorem 11.10. It follows that the
natural map A ®p A — A®pA is an isomorphism by Proposition 9.5. As ¢ is a
monomorphism, from general abstract nonsense, the codiagonal AQgA — A is an
isomorphism. In particular, the codiagonal A ® g A — A is an isomorphism. This
implies that A — B is surjective. O

Lemma 12.7. Let A be a kg-affinoid domain and V be a kg-affinoid domain in A
represented by A — Ay . Assume that Sp Ay — Sp A is a closed immersion, then
V is a kg-Weierstrass domain.

In this case, U := Sp A\ V is also ky-affinoid.

Proor. As Sp Ay — Sp A is a closed immersion, we can find an ideal I C A
and assume that Ay = A/I. Consider the morphism of kgy-affinoid spectra 1 :
Sp A/I? — Sp A induced by the natural map A/I?. By the universal property of V,
we have a commutative diagram:

Sp A/I?

S

SpA/I —— Sp A

On the other hand, the natural map A/I? — A/I induces a morphism of kg-affinoid
spectra o : Sp A/I — Sp A/I?. From the universal property again, the composition
1 o @ is the identity. In particular, A/I?> — A/I is injective and hence I = I2. Tt
follows that I is the principal ideal generated by an idempotent element e. We
may assume that e # 0, e # 1. Take ¢ € /|k*|- H such that 0 < ¢ < 1, then
V = (SpA){cte}.

Observe that U = (Sp A){ce™ !} and hence is ky-affinoid. O

Corollary 12.8. Let A be a kgy-affinoid algebra and V be a kg-affinoid domain in
Sp A. Then there are finitely many kg-affinoid domains W1y,...,W,, in Sp A such
that

n
v=Jw.
=1

PrOOF. By Theorem 12.6, we can find finitely many kgy-rational domains
Uy,...,U, in Sp A such that V N U; — U; is a kg-Runge immersion for each
i=1,...,m. By Proposition 10.11, it suffices to prove that V N U, is a ky-rational
domain in U;. Observe that V N U; is a ky-affinoid domain in U; by Lemma 10.12.
So we are reduced to the case where V' — Sp A is also a Runge immersion.

By Lemma 10.12 and Proposition 10.11 again, we may assume that V' — Sp A
is a Runge immersion.
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In this case, the result follows from Lemma 12.7. O

13. Tate acyclicity theorem

Let (k,| ) be a complete non-Archimedean valued field and H be a subgroup
of Ry such that |k*|- H # {1}.
Definition 13.1. Let A be a kgy-affinoid algebra, M be an A-module and V =
{Vi}ie1,....n be a finite covering of Sp A by ky-affinoid domains. We define the
augmented Cech complex C (V, M) as the following cochain complex with M placed
at the place 0:

v

COVM)=0-M=[[Mosdv, » [ M®sAu&aAy, —--.
i=1 1<i<j<n
Definition 13.2. Let A be a ky-affinoid algebra. A finite kg -affinoid covering of
Sp A is a finite covering of A by kg-affinoid domains.
A finite kp-affinoid covering U is a

(1) km-Laurent covering if there are n € N, fy,..., f, € Aand ry,...,7r, €

V|kX|- H such that U consists of
SpA{r{fit, ... ,ri " fin}

for all ¢, = £1, ¢ =1,...,n. In this case, we say that U/ is the ky-Laurent
covering generated by rflfl, N e
(2) kp-rational covering if there are n € N, f1,..., f, € A generating the unit

ideal, 7 = (r1,...,7m) € \/[k<]- H such that U consists of
SpA{(?‘/Tj)_lf}

fi
for j = 1,...,n. In this case, we say that U is the kg-rational covering
generated by rl_lfl, N T
In both cases, if f1,..., f, are all units in A, we say the covering is generated by
units in A.

Lemma 13.3. Let A be a ky-affinoid algebra and V = {V;}ie1,...m be a finite
kg-affinoid covering of Sp A. Then there is a kpy-rational covering refining V.

Proor. By Corollary 12.8, we may assume that all V;’s are kp-rational do-
mains in SpA. Take n; € N, g%l), .., € A generating the unit ideal, () =
(r%l),...,rf:i)fl,r%)) € |kX| "H" for each i = 1,...,m such that if we write

9@ = (gi”,...,g%)), then
) N\ =1 g(®
Vi=SpA (r(z)/r(’_)) g
i (4)
gn;
for i =1,...,m. Let B’ be the ky-rational covering generated by
I RN A

for i = 1,...,m. We denote the elements in B° by V}i, 7=1...,n;:

N =1 g(d)
- RN
V= SpA{(T(’)/Tj ) g(i)}.

J
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Let
I={a=(a1,...,am) eN": 1< a; <m; fori=1,...,m}
and
I' ={a=(a1,...,am) €l :a; =n; forsomei=1,...,n}.
Next for 8= (81,...,58m) € I, we let

1 m 1 m

and we have
Vs=Vi NNV =SpA {((ra)aej/r@)_l @Cgf}
as in the proof of Proposition 10.8.
When 8 € I’, we claim that

Ve =5p4 {((Ta)ael’/"ﬂ)l @QQ)ZEP} '
It is clear that the left-hand side is contained in the right-hand side. Conversely,

z in the right-hand side. By rearranging Uy, ..., U,,, we may assume that = € U;.
Let v = (1,...,7vm) € I\ I'. Then

7 gy (@) < rE) T ) T ()

The claim follows. Now {Vs}gey is the ky-rational covering generated by rgl g3
for B € I'. Tt is clear that this covering refines V. O

1) ,(2) ... 5(m)

I Gy Gy | S 71|95(x)|'

Lemma 13.4. Let A be a kgy-affinoid algebra and U be a kpy-rational covering of
Sp A. Then there is a ky-Laurent covering V of Sp A such that for each SpC € V,
the restriction U|s, ¢ is a ky-rational covering of Sp C' generated by units in C.

Proor. We take n € N, fi,....fn, € A generating the unit ideal and
1.y € /]kX|- H such that U is generated by v 'f1,...,7 ' f,. Choose

€ /|k*| - H such that

f
C<a:elgpAz—HllaX T |fl( |

Let V be the kg-Laurent covering of Sp A generated by (cr1) =1 f1,..., (crn) ™! fn.
We claim that V satisfies our requirements.

Take
V= SpA{ ery) "N, (crn)fe"ffl"}
be an element in V, ¢; = 1 for i = 1,...,n. We may assume that there is s € [0, n]
such that ¢ =---=¢; =1 and €541 = --- = ¢, = —1. We claim that U|y is teh
kp-rational covering generated by the images of 7”3_4}1 foi1y-eosmn i fy in

A{(Crl)ilfla"'7(C7ns)71fsv(crs+1)fs_+117 . Crn 1}
and these elements are units.
In fact, by our assumption, for x € V,

|fl(x)| SC’I’i7 fOI‘i:].,...,S;
|fi(x)] =er;, fori=s+1,...,n

In particular,
nllax ot fi(x )|<c< max ot fi(2)].

1= ,S
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Hence,

max 7 |fi(2)| = _max r7tfi(x)]

i=1,..., 1=s+1,..., n
Our claim follows. O

Lemma 13.5. Let A be a kgy-affinoid algebra and U be a kp-rational covering
of Sp A generated by units in A. Then there is a kgy-Laurent covering ) of Sp A
refining U.

ProoF. We take n € N, units fl, ceoyfn€Aand ry,...,r, € \/|k*| - H such
that U is generated by rflfl, eyt M

Take V as the Laurent covering generated by (rZ h=tf Ii Yfor1<i<j<n.
We claim that V refines U. Write I = {(i,5) € N? : 1 < i< j < n}. To see this,
consider V' € V), say

V= () SpA{(rir; )it 30 () SpA{(riry DT
(i,5)eh (i,5)€I2
where Iy, I5 is a partition of I. For i,j € {1,...,n}, we write ¢ < j if (4,5) € I; and
j =i if (i,7) € I,. Consider a maximal chain

11 g R R

on the set {1,...,n}. Then i < i, for each ¢ = 1,...,n. In other words, for x € X
we have

Fif @) <!
The right-hand side defines an element in . ]

We first prove Tate acyclicity theorem in a special case.

Lemma 13.6. Let A be a ky-affinoid algebra. Let V = {V;};c1,...»n be a finite
kVH—afﬁnoid covering of Sp A. Assume that each V; is a kg-rational domain. Then
C(V, A) is exact and admissible.

PrOOF. Step 1. We reduce to the case where
V={{Sp A{r ' f}1}. {Sp A{rf ' }}}
for some r € \/|k*|- H and f € A.

Take a k-free polyray s with at least one component. By Proposition 3.11, we
can make the base change to ks and assume that k is non-trivially valued. In this
case, by open mapping theorem Theorem 7.2 in Banach rings., the admissibility is
automatic. It suffices to prove the exactness.

In this case, we can define a presheaf Ox on X on the family of ky-rational
domains in Sp A: Ox(SpC) = C. From the general comparison theorem of Cech
cohomology BGR P327 reproduce in the topology part and Lemma 13.3, we may
assume that the covering V is ky-rational covering. But then we need to show
that for each kpy-rational domain W in Sp A, C'(V|W,A) is exact. Similarly, by
Lemma 13.4, we may assume that the kg-rational covering is generated by units.
Again, by Lemma 13.5, we can reduce to the case where V is a kg-Laurent covering.

We need to show that for each kg-affinoid domain Sp C in Sp A, C'(V|w, A) is
exact. But V|w is also a kp-Laurent covering. In particular, it suffices to show that
C(V, A) is exact. By induction on the number of generators of V, we can reduce
the case stated in the beginning.
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Step 2. After the reduction, we need to show that the following sequence is
exact:

0 AL Ay x Alrf ' S A ey 0,

where i(a) = (a,a) and d°(f,g) = f — g. We extend the sequence to the following
commutative diagram in kg-Aff Alg:

0
(€= HAL'C x (1 — f)Afrn) —2—— (¢~ HAL ¢y —— 0

l

+— ¢ +——oO

0 E - A{r='¢} x A{rn} : A{r='¢,m}/((n—1) —— 0>
0 A : A{r=Uf) x Afrf~1) d Al f Yy ——5 0
0 0

where t(a) = (a,a) and X sends ¢ to ¢ and 7 to . The two colomns are clearly
exact. It is straightforward to see that everywhere the first non-zero row is exact.
The second non-zero row is also exact. The non-trivial part is to show that if
Yopait € A{r71¢} € A{r~1¢} and Y ;o it € A{r~'n} € A{rn} are such that
their pair lies in the kernel of A, then

0= Zaici — Zblc_z
=0 =0

It follows that a; = 0 = b; for ¢ > 0 and a; = b;. So we find that the second row is
also exact. By diagram chasing, the third row is also exact. O

Corollary 13.7. Let A be a kg-affinoid algebra and Sp B be a k-affinoid domain in
Sp A. Then for any complete non-Archimedean field extension K/k, any K-affinoid
algebra C and any bounded ring homomorphism A — C such that SpC' — Sp A
factorizes through Sp B, there is a unique bounded ring homomorphism B — C
making the following diagram commutes:

SpC

N

SpB —— SpA

PROOF. The proof is the same as in Example 10.4 when Sp B is an affinoid
domain in Sp A.

In general, by Corollary 12.8, we can cover Sp B by finitely many affinoid
domains Sp By, ...,Sp By, in Sp A. Let Sp C; be the rational domain in Sp C' defined
by the preimage of Sp B; for i = 1,...,n. In other words, we have Cartesian
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diagrams for i = 1,...,n:
SpC; —— SpC

|l e |
SpB; — Sp A

It follows from Lemma 13.6 that we have an admissible exact sequence

n n
0> C— HCi — H Ci®cCj.

i=1 1<i<j<n
From general abstract nonsense, to construct bounded A-homomorphisms ¢ : B — C'
is the same as to construct bounded homomorphisms ¢; : B — C; over A such
that the induced maps B — C’i®c(]j are compatible. On the other hand, by our
definition of B;, in order to construct the morphisms ¢;, it suffices to construct
; : B; = C; over A. This reduces to the known case. O

Corollary 13.8. Let A be a kg-affinoid algebra and H' O H is a subgroup of R+q.
Let V = Sp B be a kpy-affinoid domain in Sp A, then Sp B is a kgs-affinoid domain
in Sp A.

ProoF. This follows immediately from Corollary 13.7. (]

Introduce the Shilov point

Proposition 13.9. Let A be a k-affinoid algebra and V' C X is a closed subset.
Let f: A — B be a morphism of k-affinoid algebras. Assume that for any complete
non-Archimedean field extension K/k, any K-affinoid algebra C' and any bounded
ring homomorphism A — C such that SpC — Sp A factorizes through V', there
is a unique bounded ring homomorphism B — C making the following diagram
commutes:

SpC

I

SpB —— SpA
Then V is an affinoid domain represented by the given A — B.

PrOOF. The only non-trival thing is to show that the image of Sp B — Sp A is
V.

Step 1. We reduce to the case where k is non-trivially valued and A, B are
both strictly k-affinoid.

Let r be a k-free polyray with at least one component such that A®k, and
B®&k, are both strictly k,-affinoid. Let V' be the inverse image of V in Sp A&k,
Then clearly, V’ has the same universal property. Assume that we have already
shown that the image of

Sp B&wk, — Ak,

is exactly V’. We have a commutative diagram:

Sp B®kk‘r E— Sp A®kk‘r

| |

SpB —— SpA
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From the existence of the Shilov points, both vertical sections are surjective. Hence,
the image of Sp B in Sp A is exactly V.

Step 2. After the reduction, it suffices to argue that each point in V' N Spm A
lies in the image. Let y be such a point corresponding to a maximal ideal m, of A.
Consider the commutative diagram

A—L B

A/m, —— B/m,B

The two vertical maps are the natural projections and o is the map induced by f.
The existence of o and the commutativity of the diagram follow from the universal
property. Observe that o is surjective as 7’ is. Similarly, « is surjective as 7 is.
Moreover, m, B = ker 7’ C ker a. In particular, o is bijection. So m,B is a maximal
ideal in B and the corresponding point x € Spm B sends z to y. O

Remark 13.10. In fact, the proof proves the following result: assume that the
valuation on k is non-trivial and A is a strictly k-affinoid algebra. Let Sp B be a
strictly k-affinoid domain. Then for each x € Spm B corresponding to a maximal
ideal m, in B and any n € Z~(, we have a natural isomorphism

Ajmy 5 B/m”,
where y is the image of « in Sp A and m,, is the corresponding maximal ideal in A.
Moreover, m, = m,B.

In particular, the natural map flmy — Emm is an isomorphism.

Corollary 13.11. Let A be a k-affinoid algebra and Sp B be a k-affinoid domain in
Sp A. Assume that K/k is an extension of complete valued field. Then Sp B& K is
a K-affinoid domain in Sp A®, K. Moreover, the image of Sp B&,K in Sp A®, K
is the inverse image of the image of Sp B in Sp A.

Proor. This is an immediate consequence of Proposition 13.9 and Corol-
lary 13.7. (I

Corollary 13.12. Let ¢ : Sp B — Sp A be a morphism of kg-affinoid spectra. Let
V C Sp A be a ky-affinoid domain in Sp A, then p=1(V) is a ky-affinoid domain in
Sp B.
In fact, suppose that V is represented by A — Ay, then B — B® 4 Ay represents
-1
p V.

PROOF. It is an immediate consequence of Proposition 13.9 and Corollary 13.7
that ¢ =1(V) is a k-affinoid domain. As B& 4 Ay is kg-affioid, we find that it is also
a kp-affinoid domain. O

Corollary 13.13. Let A be a ky-affinoid algbera and Sp B, Sp C be kg-affinoid
domains in Sp A. Then Sp BN SpC is a ky-affinoid domain represented by the
natural morphism A — B&4C.

PrOOF. This is an immediate consequence of Corollary 13.12. O

Corollary 13.14. Let A be a kg-affinoid algbera and Sp B, Sp C be kg-affinoid
domains in Sp A. Then the natural morphism

SpBNSpC — SpB xSpC
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is a closed immersion.

PrOOF. By Corollary 13.13, we need to show that the natural map
B®C — B&4C

is an admissible epimorphism. From general abstract nonsense and Proposition 12.3,
it suffices to show that the codiagonal

A®kA — A
is an admissible epimorphism. This follows from Example 12.2. ([l
Corollary 13.15. Let A be a kg-affinoid algebra. Let V, W be kg-affinoid domains

in Sp A represented by A — Ay and A — Ay respectively. Then VNW is a
kg-affinoid domain represented by A — Ay &4 Aw .

PrOOF. This is an immediate consequence of Corollary 13.12. (I

Corollary 13.16. Let A be a k-affinoid algebra and Sp B be an affinoid domain in
A. Then for any x € Sp B, we temporarily denote the completed residue field of B
(resp. A) at = as B (z) (resp. s#4(x)), then the natural map

HA(x) = AP ()

is an isomorphism of complete valuation fields over k.

PrOOF. We have an obvious bounded morphism ¢ : s#4(z) — S5 (z) over k.
By Proposition 13.9, there is a unique dotted morphism completion the diagram

HA ()

A

B+— A
The induced bounded morphism 5 (x) — #4(x) provides the inverse of v. [

Definition 13.17. Let X = Sp A be a k-affinoid spectra, we define a presheaf
Ox of Banach rings on the family of k-affinoid domains in X as follows: for any
k-affinoid domain Sp B, we set

Ox(SpB) = B.

Given an inclusion of affinoid domains, Sp C' — Sp B, we define the corresponding
restriction map as the given morphism B — C.

Theorem 13.18. Let A be a k-affinoid algebra and V' = Sp B be a k-affinoid
domain in Sp A. Then B is a flat A-algebra.

PRrROOF. Step 1. We reduce to the case where k is non-trivially valued and A
is strictly k-affinoid.

Let 7 be a k-free polyray with at least one component. Let ¢ : M — N be an
injective A-module homomorphism. We endow M and N with the structures of finite
Banach A-modules by Proposition 9.2 and then ¢ is admissible by Proposition 9.7.
By Proposition 3.11, the induced homomorphism

M&ik, — NQk,

is injective and admissible. Let V' be the inverse image of V in Sp A®k,. By
Corollary 13.11, V' is a k,-affinoid domain represented by A&k, — B&yk,.
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If we have shown the result in the special case, we know that
(M®rkr) @ ag, 1, (BOrkr) = (NQiky) @40, k. (BOrky)
is injective. By Proposition 9.6, this map can be identified with
(M®kkr)®fl®kkr (B&rk,) — (N®kk7")®A®kkr (B&rk,).
The latter map is easily identified with
M&aB — N&aB.
By Proposition 9.6 again, the latter map is identified with
M®aB— N®®sB.

We conclude that A — B is flat.

Step 2. After the reduction, we take a maximal ideal m, in B corresponding to
a point & € Sp B. Let y be the image of y in Sp A and m,, denotes the corresponding
maximal ideal. Then by Remark 13.10, flmy — émy is an isomorphism. By | ,
Tag 0C4G] and | , Tag 0399], we conclude that A — B is flat. |

Theorem 13.19 (Tate acyclicity theorem). Let A be a k-affinoid algebra and M
be an A-module. Let V = {V;};c1,... » be a finite k-affinoid covering of Sp A. Then

the complex (V, A) is exact. It is exact and admissible if M is finite as A-module.

ProOOF. We first observe that teh admissibility follows from the same argument
as in Lemma 13.6. We will only concentrate on the exactness.

Step 1. We first reduce to the case M = A.

As the covering V is finite, we can find N € N such that H7(V, M") = 0 for
all j > N and all A-module M"”. We take the minimum of such N. Assume that
N > 0.

Assume we have proved the theorem in this case, then the case where M is free
is immediate. In general, choose an exact sequence of A-modules:

0—-M —F—M-—0
with F' free. In this case, we have a short exact sequence
0—CW,M')— C(V,F) = C(V,M) — 0.
The exactness follows from Theorem 13.18.
From the long exact sequence, we find that
H™Y VY, M) = HY(V, M)
for all ¢ € Z. It follows that H4(V, M) = 0 for all ¢ > N — 1. This argument works
for any A-module M, and we get a contradiction with our choice of N.
Step 2. After the reduction in Step 1 and the successful defition of Ox in

Definition 13.17, the remaining of the argument is exactly the same as Lemma 13.6.
O

Corollary 13.20. Let A be a k-affinoid algebra and {Sp B;} be a finite kg-affinoid
covering of Sp A. Then A is ky-affinoid.

Proor. By Theorem 13.19, we have an admissible injective morphism

icl
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of Banach k-algebras. Then for any a € A,
pala) = max pp, (a).
We conclude using Theorem 8.4. O

Definition 13.21. Let A be a kgy-affinoid algebra. A compact kg -analytic domain
V in Sp A is a finite union of kp-affinoid domains in Sp A.

Lemma 13.22. Let A be a kgy-affinoid algebra and V' be a compact kg-analytic
domain. Write Sp A as a finite union of kg-affinoid domains Sp A; withi=1,...,n
in Sp A. Define A;; = Ai®AAj and

AV := ker ﬁAz — ﬁ Aij
i=1

ij=1

Then the Banach k-algebra does not depend on the choice of the covering {Sp 4;};
up to a canonical isomorphism.

The image of the natural continuous map Sp Ay — Sp A contains V' and the
map does not depend on the choice of the covering up to the canonical isomorphism
between Sp Ay for different coverings.

ProOF. We first observe that Ay is a Banach k-algebra as it is defined as an
equalizer. This follows from Lemma 4.22 in Banach rings.

Let {Sp B;};=1,...,m be another kg-affinoid covering of Sp A. We need to show
that Ay defined using the two coverings are canonically isomorphic. We write Af,
for

ker ﬁBJ — ﬁ Bzg
j=1 ij=1

to make a distinction. Write B;; = Bi®ABj.
By Theorem 13.19 in Affinoid algebras, the colomns in the following commutative
diagram are exact:

0 0
0 Av H?:l A HZi’:l A
" l
0 kert H?:l H_;nzl A1®AB] 4L> Hzi/zl H?j’j/=1 A“/®AB]]/

l‘r
[T 15—y Ai®aByy

The rows are exact by definition. By diagram chasing, the dotted arrow is injective.
To see it is surjective, it suffices to observe that the factors with 7 = ¢/ in the lower
right corner is exactly the same as the factors of the lower corner, so an element in
ker ¢ is necessarily in ker 7. It follows that the dotted arrow is surjective.

Similarly, we have a natural isomorphism A, 5 kert. We conclude the first
assertion.
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As for the second, observe that Sp Ay is defined as a colimit in the category
of Banach k-algebras, so it follows from general abstract nonsense that there is
a natural morphism Sp Ay — Sp A. It clearly contains V in the image. The
compatibility with the isomorphism above follows simply from the fact that the
map 7 is an A-algebra homomorphism. O

Remark 13.23. This is also a natural continuous map V' — Sp Ay, given by the
natural map Ay — A; for i = 1,...,n. This map is a section of the continuous map
Sp Ay — A we just constructed over V. In | |, Berkovich always uses this map
instead of Sp Ay — A.

Definition 13.24. Let A be a k-affinoid algebra and V' be a compact k-analytic
domain in Sp A. We define the Banach k-algebra Ay associated with V as Ay
constructed in Lemma 13.22.

The continuous map Sp Ay — Sp A constructed in Lemma 13.22 is called the
structure map ov V.

Proposition 13.25. Let A be a kg-affinoid algebra and V be a compact kpy-analytic
domain in Sp A. Then the following are equivalent:

(1) V is a kg-affinoid domain.
(2) Ay is a ky-affinoid algebra and the image of the structure map Sp Ay —
Sp A is exactly V.

Proor. (1) = (2): By Theorem 13.19 in Affinoid algebras, when V' is a
kg-afinoid domain, Ay is a kg-affinoid algebra and the structure map corresponds
to the inclusion of the kg-affinoid domain. There is nothing to prove.

(2) = (1): It suffices to show that the structure map represents the kg-
affinoid domain V. Take a kg-affinoid algebra D and a morphism Sp D — Sp A of
kg-affinoid spectra that factorizes through V. We need to construct a morphism
Sp D — Sp Ay making the following diagram commutative

SpD

™~

SpAV E— SpA

Take kg-affinoid domains Sp By,...,Sp B,, in Sp A that cover V. Let C; =
B;&aD for i = 1,...,n, then SpC; is a ky-affinoid domain in Sp D by Corol-
lary 13.12 in Affinoid algebras. By Theorem 13.19 in Affinoid algebras and general
abstract nonsense, it suffices to construct the dotted arrow after restricting to Sp C;
fori=1,...,n. So we could assume that Sp D — Sp A factorizes through Sp Bj.
From the universal property, we therefore have the dotted morphism making the
following diagram commutative:

SpD

SN

SpBy —— SpA
It suffices to show that the natural homomorphism

B — Ay®@aB;
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is an isomorphism. But this follows from general abstract nonsense as B; is already

a Banach Ay -algebra. O
Remark 13.26. This proposition is not correctly stated in | , Corollary 2.2.6].
The corresponding statement in | , Remark 1.2.1] is slightly weaker than our
statement.

Corollary 13.27. Let A be a ky-affinoid algebra and U,V C Sp A be two closed
subsets with empty intersection. Set W = U U V. Then the following are equivalent:
(1) W is a kg-affinoid domain in Sp A;
(2) U, V are both kpy-affinoid domains in Sp A.
If these equivalent conditions are satisfied, then we have a natural isomorphism

AW L)AU XAv.

PROOF. (2) = (1): This is a consequence of Proposition 13.25.

(1) = (2): We may assume that W = Sp A. As U and V are both open and
closed, by Proposition 10.13, U and V are both compact kpx-analytic domains in
Sp A. In this case,

A= AU X AV
and hence Ay and Ay are both ky-affinoid. By Proposition 13.25 again, U and V'
are both kp-affinoid domains in Sp A. (]

Corollary 13.28. Let A be a kgy-affinoid algebra and U be a kg-affinoid domain
in Sp A such that A — Ay is an admissible epimorphism. Then V := X \ U is a
kp-affinoid domain in Sp A, and we have a natural isomorphism

A%AUXA\/.

ProOOF. This follows from Lemma 12.7 and O

14. Kiehl’s theorem
Let (k,| ®]) be a complete non-Archimedean valued field.

Theorem 14.1. Let A be a k-affinoid algebra and U = {Sp B; }icr a finite k-affinoid
covering of Sp A. Suppose that we are given

(1) for each i € I a finite B;-module M;;
(2) for each i,j € I, an isomorphism
a;j: M; @p, Bij = M; @p; Bj;
of B;j-modules, where B;; = B1®ABj such that
(a) «y; is identity for all ¢ € T;
(b) ik = a0 a; on Sp B; N Sp B; N Sp By, for 4, j, k € 1.
Then there is a finite A-module M and isomorphisms
Bi: M ®a By — M;
of B;-modules for each ¢ € I and such that the following diagram is
commutative:

Bi®p,; Bij
M ®4 B; ®p, B Sl M; ®p, Bij

ﬂ l“”
5i®3j Bj;

M®a Bj ®B_7. Bji — M; ®B_7» Bji
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If moreover each M; is an Aj;-algebra for ¢ € I and the maps «;; are B;j-algebra
homomorphisms for 7, j € I, then we can endow M with the structure of an A-algebra
and f; is a B;-algebra homomorphism for i € I.

PROOF. By the same reduction as in our proof of Lemma 13.6, it suffices to

handle the case where U is a Laurent covering generated by a single element:
U={SpA{r~'f}.SpA{rf'}}

for some 7 > 0 and f € A. We write By = A{r~'f} and By = A{rf~'}. Then
By = A{T‘ilf, Tfil}. Let Mo, = M, X B, Bis. We endow M, (I‘GSp. My, resp.
M;2) with the structure of finite Banach Bj-(resp. Bs-, resp. Bjs-)module by
Proposition 9.2. We will denote the Banach norms on these modules by || ¢ || without
specifying the index. Let || ® ||, || ® |1, || ®|l2, || ® |12 denote the norms on A, By,
B, By respectively.

Step 1. We show that

d01M1><M2—>M12

is surjective, where do(ml, mg) = m1 — ma. Note that we have omitted the obvious
map My — My and My — Ms.

We will prove the following claim: let € > 0 be a constant. Then there is a
constant o > 0 such that for each u € My, there exist u™ € M; and u~ € M, with

+

[l < ellull,  flu—u® = w7 < ellul.

This implies that d° is surjective.

Let vy, ..., v, be generators of the By-module M; and wy, ..., w,, be generators
of the Byo-module M. We write the images of vy, ..., v, in M3 as v{,...,v], and
the images of w1, ..., w,, in Mis as wi,...,w.,. We could assume that the norms
|[e]] on My, My, Mis are the residue norms induced from B}, BY*, B}, by the basis
{vi}, {w;}, {v]} respectively. Then we can find an n x m-matrix C' = (¢;;) with
value in By and an m x n-matrix D = (D;;) with value in Bjo such that

m
! oo _1 .
v; = cijw;, 1=1,...,m;
j=1

n

/ / -

wj:E djv;, 1=1,...,n.
i=1

Fix 8 > 1. As By is dense in Byz, we can find ¢j; € Bofori=1,...,n,j=1,...,m
such that

max  max e — ¢z dallz < 8%
i,l=1,....nj5=1,....m

We write
n
!
u=>_aiv|
i=1

with a1, ...,a, € Bis with |la;|l12 < B||ul|. For each a; with i = 1,...,n, we can
expand lift them into series

oo
ai= Y c,TIS* € A{lr~'T,rS}
4,k=0
with
€5 llar? ™" < Bllail1a-
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In particular, we can find a;.|r € B; and a; € By with

laf (i < Bllailliz, ey |2 < Bllaillie-

Take

m
ut = Z ajvi € My, u = Z Zai_c;jwj € M.
i=1n i=17 j=1
Then u* satisfies all the requirements.

Step 2. We define M = kerd’. We will see that M satisfies the desired
requirement. To prove this assertion, it suffices to know that M generates M; as
A;-modules for i =1, 2.

In fact, assuming that this holds, we can choose f1,..., fs € M so that they
generate M; as A;-module for i = 1,2. In this way we get a surjective homomorphism
A® — M. Similarly, we apply the same construction to the kernel of this map, we
get a presentation

AT — A° - M — 0,

which can be embedded in the large commutative diagram

0 —— A" —— A7 x A} Ta 0
| |

0 —— A° —— Af x A3 1s 0

O—>M*>M1£M2 d ]\}12 0
C

All colomns are exact by our assumptions. All rows are exact: the third row is
Step 1 and our construction of M the first two rows are trivial. The desired result
follows from the right-exactness of tensor products.

In order to prove that M generates M; as A;-module for ¢ = 1,2 is the same as
verifying
is surjective for i« = 1,2. Endow M and M; with the structure of finite Banach
A-module and finite Banach A;-module respectively by Proposition 9.2. By Proposi-
tion 9.6, we can identify M ®4 A; with M& 4 A;. Now take a k-free polyray r with
at least one component such that AQik,, A1 Qrk,, As®rk, and A12®rk, are all
strictly k,-affinoid. By Proposition 3.11, we can then reduce to the strictly affinoid
case.

Step 3. After the reductions, we can assume that k is non-trivially valued and
A, Ay, Ay, Aqo are all strictly k-affinoid. We need to show that M generates M;
and My as Aj-module and As-module respectively.

For each z € Spm A with kernel m, we claim that teh natural map M — M/mM,;
is surjective for 1 =1, 2.

Assuming this claim, by Nakayama’s lemma, we see that M generates M; as
A-module for i =1, 2.

It remains to prove the claim. We have a short exact sequence

0—-mM — M — M/mM — 0.
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By | , Tag 030M], we have a short exact sequence of Cech complexes
0 0 0
0 —— kern M kere 0

|

0—— li X mM2 Emd M1 X M2 Emd Ml/li X Mg/mMQ — 0

" L

0 —— mM12 M12 Mlz/lig — 0
0 0 0

The rows are exact and the colomns are complexes. It follows from Step 1 and the
snake lemma that we have an exact sequence

0— kern — M — kert — 0.

In particular, the map M — ker. is surjective.

Next assume that « € Sp By, we will prove that kert — M;/mM; is bijective.
A dual arguement applies in the case x € Sp Ba. Note that this assertion readily
implies our claim.

By Remark 13.10, we have the natural map is a bijection

Bg/mBg — Blg/mBlg.
It follows that the following natural map is a bijection
Mg/mMg — Mlg/lig.

In particular, we find that ker. = M;/mM;. This proves our assertion.
Finally, the last assertion is clear as M is constructed as an equalizer. ([l

15. Boundaryless homomorphism

Let (k,|®|) be a complete non-Archimedean valued field and H be a subgroup
of Rsq such that |k*| - H # {1}.

Definition 15.1. Let A be a k-affinoid algebra. A bounded A-algebra homomor-
phism ¢ : B — D from an A-affinoid algebra to a Banach A-algebra D is said to be
boundaryless with respect to A if there are n € N, r = (rq,...,7,) € R%; and an
admissible epimorphism

7 A{r~'T} — B
such that pp(pom(T;)) <r;fori=1,...,n.

Intuitively, the condition means that we can embed Sp B into a disk (relative
to A) by a closed immersion such that the image of Sp D in Sp B does not hit the
boundary of the disk.

Proposition 15.2. Let A be a k-affinoid algebra and ¢ : B — D a bounded A-
algebra homomorphism from an A-affinoid algebra to a Banach A-algebra (D, || e ||).
Then the following are equivalent:

(1) ¢ is boundaryless with respect to A;
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(2) P(BR>0) is finite over G(AR>0);
(3) for any r € Rsg and any bounded A-algebra homomorphism v :
A{r~'T} — B, there is a polynomial P € A[T):
P=T"+a,T" '+ - +4a,
such that pa(a;) <r®fori=1,...,nand pp(po(P)) < r™;
(4) for any € € (0,1), there are n € Zsg, r = (r1,...,m,) € RZ; and an
admissible epimorphism

7 A{r7'T} = B

such that
lo(m(T3))|| < ers
fori=1,...,n.
PRrROOF. (1) = (2): Take n € Zsq, 7 = (r1,...,7,) € R, and an admissible
epimorphism

7 Alr7'T} = B

such that pp(pon(T;)) <r;fori=1,...,n.

By Theorem 11.10,

7 AR>o[p=iT] — BR>o

is finite. But @(7(T;)) =0 for all i = 1,...,n, so ¢(BR>0) is finite over p(AR>0).

(2) = (3): Take ¢ as in (3). We may assume that pp(y(7)) = r, as
otherwise, there is nothing to prove. Let b :=¢(T') € BR>0. As p(BR>0) is finite
over AR>0 it is in particular integral. So we can find n € N and homogeneous
elements @, ..., a, € A®>0 such that if we set

V=" 4+a 0" 4+,
then @(b') = 0. As p(b") = ", we may assume that p(a;) = r* for i = 1,...,n. Lift
@; to a; € A, we see that pa(a;) <7’ fori=1,...,n. Let
P=T"+a,T" '+ - +a,.
We find immediately that pp (¢ o ¥(P)) < r™.
(3) = (4): Fix e € (0,1), we want to construct 7 as in (4). We first assume
that B = A{s~!'T} for some s € R+.
By (3), we can find n € Z~( and a monic polynomial P =T" + a;T" ! + ... +
a, € A[T) such that pa(a;) < s* and pp(¢(P)) < s™. Up to replacing P by a power,
we may assume that
lo(P) ] < es” |1,
Take ¢ € Rsg, ¢ > smax{]||¢||/e,1}. We can define a bounded A-algebra homomor-

phism
m: A {qilTo, sy, s M, L, 572"+1Tn} — A{s7'T}
sending Ty to T and T; to T*~ 1 P fori = 1,...,n. This is well-defined by Corollary 6.5
as
pags—ry(T) =5 <q, pags—rry(T'P) < s page-imy(P) < 717
fori=1,...,n. Moreover,
le(m(To)) Il =lle(T)] < sllell < eq,
@@ =l P < (T - (P < es™ 7
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It remains to show that 7 is an admissible epimorphism.
Set R=7Z[1"1A;,...,n"1A,] and define a ring homomorphism
v:R[Ty,T1, Ty, ..., Tn) = A{q Ty, s "T1,s " Ty, ..., s 2" T, }
sending A; to a; and T; to T; for i = 1,...,n. Fix [ € N. By Lemma 2.41 in
Commutative algebras, we can find polynomials G; € Rn='T1,...,(2n — 1)71T,)]
and H; € R[To] of degree [ such that degy, H; < n — 1 and TS — Gy — H; € ker ®,
where
®: R[Ty,n Ty, (n+ 1) Ty, ..., (2n — 1)7'T,,] — R[T]

is the ring homomorphism sending Ty to T and T; to T~ H(T™ + Ay T 1 +-- -+ A,)
fori=1,...,n. Let g = v(G;) and h; = v(H;). We expand h; as

hy = agl)Tgkl + - 4al.
As p(a;) < s for i = 1,...,n, by Proposition 6.4, there is a constant C' > 0,
independent of the choice of [ such that

1
gl < ¢s', llal| < s

for i = 1,...,n. Choose an arbitrary element f € A{s~!T}, we can expand

oo
f=> Tt
1=0
We define
9="> bg, di= Zb;a?
1=0 1=0

fori=1,...,n and set
h=d T8 4 4 dy.
Then 7(g + h) = f and

HWSapwmwzmﬂ,WmSpm|Mw§c(quﬂww
eN i=1,...,n )

i=1

So 7 is admissible and surjective.
(4) = (1): This is trivial. O

Corollary 15.3. Let A be a k-affinoid algebra and B be an A-affinoid algebra. Let
U be a k-affinoid domain in Sp B and V' be a compact k-analytic domain in Sp B
contained in U, say V = |Ji_; V; for some k-affinoid domains V;,...,V,, in Sp B.
Assume that the morphisms By — By, are boundaryless with respect to A, then so
is the morphism By — By.

Proor. We verify Condition (3) in Proposition 15.2. Let r € R (. Consider a
bounded A-algebra homomorphism 1 : A{r~1T} — By. By Proposition 15.2, we
can find monic polynomials P; € A[T], say

P=Xm a0 xmil 4 g0

mi
for ¢ = 1,...,n, such that pA(a;i)) <7l for j =1,...,m; and vai(’(/J(PZ‘)) <
parr)(P). We set P =], P;. By Theorem 13.19,

By — ﬁBVL

=1
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is injective and admissible, so
pBy (P) = 1" | By, (P)= | I PBy, (P;) < parr(P).
s i=1

The polynomial P obviously satisfies the other condition in (3). O

Definition 15.4. Let ¢ : Sp B — Sp A be a morphism of kg-affinoid spectra. The
relative interior Int(p) = Int(Sp B/ Sp A) of ¢ is the set of points y € Sp B such
that the corresponding character x, : B — J¢(y) is inner with respect to A.
The relative boundary O(Sp B/ Sp A) of ¢ is Sp B \ Int(Sp B/ Sp A).
In other words, y € Int(Sp B/ Sp A) if there are n € N, r = (rq,...,7,) € RY,
and an admissible epimorphism of A-algebras
n: A{r~'T} - B
such that |7(T;)(y)| <7 fori=1,...,n.
Proposition 15.5. Let A be a k-affinoid algebra and B be an A-affinoid algebra.
For a closed subset ¥ C Sp B, the following conditions are equivalent:
(1) X C Int(Sp B/ Sp A);
(2) Forany € € (0,1), there are n € N, r € RZ, and an admissible epimorphism
7 A{r~'T} — B such that

»CSpB {(er)_l(ﬂ'(Tl), (T}

PROOF. (2) = (1): This follows immediately from the definition.

(1) = (2): For any y € X, we can take a k-Weierstrass domain V, of Sp B
containing x in the interior such that B — By, is boundaryless with respect to A.
In fact, by assumption, we can take n € N, r = (r1,...,r,) € RZ, and an admissible
epimorphism of A-algebras

n: A{r~'T} - B
such that |7(T;)(y)| < r; for i =1,...,n. We take s; € (|7(T;)(y)|, ;) and define
the Weierstrass domain

Vy,=SpB {sflﬂ(Tl), ... s_lw(Tn)} .

ren

As ¥ is compact, a finite number of them cover ¥. We can apply Corollary 15.3. O

Proposition 15.6. Let A be a k-affinoid algebra and ¢ : B — D a bounded
A-algebra homomorphism from an A-affinoid algebra to a Banach A-algebra D.
Then the following are equivalent:

(1) ¢ is boundaryless;
(2) Spe(SpD) C Int(Sp B/ Sp A).
PROOF. Assume (2). Fix € € (0,1). By Proposition 15.5, we can find n € N,
r € R%, and an admissible epimorphism 7 : A{r~*T'} — B of A-algebras such that

Sp¢(Sp D) C Sp B {(er) ' (n(T1),...,n(T,))} -
So pp(pon(T;)) < r;. That is, ¢ is boundaryless.
Assume (1). We can find n € N, r = (r1,...,r,) € RZ, and an admissible
epimorphism
7 A{r~'T} = B
such that pp(p o m(T;)) < r; for i = 1,...,n. In particular, |p o 7(T;)(x)| < r; for
any x € D. So (2) follows. O
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Proposition 15.7. Let ¢ : SpC — Sp A and 9 : Sp B — Sp A be morphsim of
k-affinoid spectra. Consider the Cartesian diagram

Sp B&.C —s SpC

"5 I

SpB —Y s spA

Then
¢~} (Int(Sp C/ Sp A)) C Int(Sp B&4C/ Sp B).

PROOF. Let x € Sp B&4C be a point such that ¢’ (x) € Int(SpC/Sp A). We
can then find n € N, r = (r1,...,7r,) € RZ; and an admissible epimorphism of
A-algebras

7 A{r7IT} = C
such that |7(T3)(¢'(z))| < r; for i = 1,...,n. By base change, we find an admissible
epimorphism of B-algebras
7 B{r_lT} — B®4C.
Moreover,
|7 (T) ()| = |m(T3) (W' ()] <74
fori=1,...,n. (Il
Proposition 15.8. Let A, B, C be k-affinoid algebras and ¢ : Sp B — Sp A and
1 : SpC — Sp B be morphisms. Then
Int(SpC/Sp A) = Int(SpC/Sp B) N+~ (Sp B/ Sp A).

PRrROOF. By abuse of notations, we will denote the morphisms A — B and
B — C defined by ¢ and % as ¢ and v respectively.
Let z € Int(SpC/SpA), then by definition, we can find n € N, r =

(r1,...,m,) € R%; and an admissible epimorphism 7 : A{r~'T} — C of A-algebras
such that

7 (Ti) ()] < i
for ¢ = 1,...,n. By scalar extension, m defines an admissible epimorphism of
B-algebras

7 B{r 'T} = C
with
7 (T3) ()] < ri

fori=1,...,n. So x € Int(Sp C/ Sp B).

On the other hand, let » € Ry and consider a bounded A-algebra homomor-
phism 7 : A{r~'T} — B. Applying Proposition 15.2 to on: A{r='T} — C, we
find a polynomial P € A[T] such that

P=T"+a,T" '+ - +a,
with pa(a;) < 7' fori=1,...,n and
[ on(P)(y(x))] <r".
In other words, |n(P)(x)| < r™. So z € ¥~1(Sp B/ Sp A) by Proposition 15.2.
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Conversely, take x € Int(Sp C'/ Sp B) N¢~1(Sp B/ Sp A). By definition, we can
find m,n e N, r = (r1,...,m,) € R%j and s = (s1,...,5n) € RY, and admissible
epimorphisms

7 A{r7'T} - B, «':B{s"'S}—=C
such that |7(T;)(¢(x))| <r; fori=1,...,nand |7'(S;)(z)| <s; for j =1,...,m.
Then we have an obvious epimorphism
7 A{r T, s7ESY = O
such that |7 (T;)(x)| < r; for i =1,...,nand |7”(S;)(z)| < s, for j =1,...,m. So
x € Int(SpC/ Sp A). O
Proposition 15.9. Let A be a k-affinoid algebra and Sp B be a k-affinoid domain
in Sp A. Then
Int(Sp B/ Sp A) = Intg;, 4(Sp B).

Here Intg, 4(Sp B) is the topological interior of Sp B in Sp A.

PRrROOF. Step 1. We first prove that Int(Sp B/ Sp A) 2 Ints, 4(Sp B).

Let y € Intgp 4(Sp B), we need to show that y € Int(Sp B/ Sp A).

Let Sp C be a k-Laurent domain containing y in the interior. Then by Proposi-
tion 15.8, Int(Sp C/ Sp A) C Int(Sp B/ Sp A)|spc- So up to replacing B by C, we
may assume that B is a k-Laurent domain, say

B=A{r""fsg7'},
where n,m € N, r = (r1,...,rn) € Ry, s = (s1,...,8m) €ERYy, f=(f1,...,fn) €
A™ and g = (g1,...,9m) € A™. The topological interior of Sp B is then
{x € SpA:|fi(x)] <rslgj(x)|>sfori=1,...,n5=1,...,m}.
Consider the admissible epimorphism
7 A{r~'T,sS} — B
sending T; to f; and S; to g; fori=1,...,n, j =1,...,m. Then |7(T;)(y)| < r;
and |7(S;)(y)| > s jfori=1,...,n,j=1,...,m.

Step 2. We prove Int(Sp B/ Sp A) C Ints, 4(Sp B) when Sp B is a k-Weierstrass
domain in Sp A.

Let y € Int(Sp B/ Sp A). We want to show that y € Intg, 4(Sp B).

Take n € N, r = (rq,...,r,) € R, and an admissible epimorphism

n: A{r~'T} - B
such that |7(T;)(y)| < r; for i = 1,...,n. By Proposition 10.5, we assume that
m(T;) e Afori=1,...,n.
We claim that
U:={zxeSpB:|n(T;)(z)|<rfori=1,...,n}
is open in Sp A. This implies that y € Intg, 4(Sp B).
We let
Vi={zeSpA: |n(T;)(z)| <r;fori=1,...,n}.
As 7 is an admissible epimorphism, so is Ay — B, so by Corollary 13.27,
V=SpBUV’,

where V' is a k-affinoid domain in Sp A disjoint from Sp B. So Sp B is open in V.
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In particular, in order to show that
U={zeSpA:|n(T;)(z)| <r;fori=1,...,n}NSpB
is open in Sp A, it suffices to show that

{zeSpA:|n(T)(z)|<rifori=1,...,n}NV ={x € SpA: |n(T;)(x)| <rfori=1,...

is open in Sp A, which is clear.

Step 3. We prove Int(Sp B/ Sp A) C Ints, 4(Sp B).

Let « € Int(Sp B/ Sp A). We want to show that « € Intg, 4(Sp B).

By Theorem 12.6, we can find a finite k-rational covering {X;}i=1,. . of SpA
such that Y; := Sp BN X; is a k-Weierstrass domain in X;. Forany i =1,...,n
such that y € Y;. Then y € Int(Y;/X;) by Proposition 15.7. By Step 2, we can find
an open set U; in Sp A such that U; N X; CY;. Let U be the intersection of the U;’s
with ¢ running over the indices in 1,...,n such that y € Y;, then

UNSpACSpB.
Sox € IntSpA(SpB). |
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