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Affinoid algebras

1. Introduction

Our references for this chapter include [BGR84], [Ber12].

2. Tate algebras

Let (k, | • |) be a complete non-Archimedean valued-field.
Definition 2.1. Let n ∈ N and r = (r1, . . . , rn) ∈ Rn>0. We set
k{r−1T} =k{r−1

1 T1, . . . , rnT
−1
n }

:=
{
f =

∑
α∈Nn

aαT
α ∈ k[[T1, . . . , Tn]] : aα ∈ k, |aα|rα → 0 as |α| → ∞

}
.

For any f =
∑
α∈Nn aαT

α ∈ k{r−1T}, we set
‖f‖r = max

α
|aα|rα.

We call (k{r−1T}, ‖ • ‖r) the Tate algebra in n-variables with radii r. The norm
‖ • ‖r is called the Gauss norm.

We omit r from the notation if r = (1, . . . , 1).
This is a special case of Example 4.15 in Banach rings.

Proposition 2.2. Let n ∈ N and r = (r1, . . . , rn) ∈ Rn>0. Then the Tate algebra
(k{r−1T}, ‖ • ‖r) is a Banach k-algebra and ‖ • ‖r is a valuation.

Proof. This is a special case of Proposition 4.16 in Banach rings. �

Remark 2.3. One should think of k{r−1T} as analogues of C〈r−1T 〉 in the theory
of complex analytic spaces. We could have studied complex analytic spaces directly
from the Banach rings C〈r−1T 〉, as we will do in the rigid world. But in the complex
world, the miracle is that we have a priori a good theory of functions on all open
subsets of the unit polydisk, so things are greatly simplified. The unit polydisk is a
ringed space for free.

As we will see, constructing a good function theory, or more precisely, enhancing
the unit disk to a ringed site is the main difficulty in the theory of rigid spaces. And
Tate’s innovation comes in at this point.
Example 2.4. Assume that the valuation on k is trivial.

Let n ∈ N and r ∈ Rn>0. Then k{r−1T} ∼= k[T1, . . . , Tn] if ri ≥ 1 for all i and
k{r−1T} ∼= k[[T1, . . . , Tn]] otherwise.
Lemma 2.5. Let A be a Banach k-algebra. For each n ∈ N and a1, . . . , an ∈ Å,
there is a unique continuous homomorphism k{T1, . . . , Tn} → A sending Ti to ai.

Proof. This is a special case of Proposition 4.18 in Banach rings. �
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6 AFFINOID ALGEBRAS

3. Affinoid algebras

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

Definition 3.1. A Banach k-algebra A is k-affinoid (resp. strictly k-affinoid) if
there are n ∈ N, r ∈ Rn>0 and an admissible epimorphism k{r−1T} → A (resp. an
admissible epimorphism k{T} → A).

More generally, a Banach k-algebra A is kH-affinoid if there are n ∈ N, r ∈ Hn

and an admissible epimorphism k{r−1T} → A.
A morphism between k-affinoid (resp. strictly k-affinoid, resp. kH -affinoid)

algebras is a bounded k-algebra homomorphism.
The category of k-affinoid (resp. strictly k-affinoid, resp. kH -affinoid) algebras

is denoted by k-AffAlg (resp. st-k-AffAlg, resp. kH -AffAlg).

For the notion of admissible morphisms, we refer to Definition 2.5 in Banach
rings.

Although we have defined strictly k-affinoid algebra when k is trivially valued,
we will deliberately avoid talking about it in order to avoid pathologies.

Remark 3.2. Berkovich also introduced the notion of affinoid k-algebras: it is a
K-affinoid algebra for some complete non-Archimedean field extension K/k. We
will not use this notion.

Definition 3.3. The category of k-affinoid spectra k-Aff (resp. strictly k-affinoid
spectra st-k-Aff, resp. kH-affinoid spectra kH -Aff) is the opposite category of
k-AffAlg (resp. st-k-AffAlg, resp. kH -AffAlg). An object in these categories are
called a k-affinoid spectrum, strictly k-affinoid spectrum and kH-affinoid spectrum
respectively.

Given an object A of k-AffAlg (resp. st-k-AffAlg, resp. kH -AffAlg), we denote
the corresponding object in k-Aff (resp. st-k-Aff, resp. kH -Aff) by SpA. We call
SpA the affinoid spectrum of A.

In Definition 6.1 in Banach rings., we defined functors Sp : k-Aff → T op,
Sp : st-k-Aff → T op and Sp : kH -Aff → T op. This motivates our notation. We will
freely view SpA as an object in these categories or as a topological space.

Proposition 3.4. Finite limits exist in kH -Aff. Moreover, fiber products in kH -Aff
corresponds to completed tensor product in kH -AffAlg.

Proof. It suffices to prove that finite fibered products exsit.
We prove the equivalent statement, finite fibered coproducts exist in kH -AffAlg.

Given kH -affinoid algebras A,B,C and morphisms A→ B, A→ C, we claim that
B⊗̂AC represents the fibered coproduct of B and C over A. By general abstract
nonsense, we are reduced to handle the following cases: A = k and A→ C is the
codiagonal C⊗̂kC → C. In both cases, the proposition is clear.

�

Example 3.5. Let r ∈ R>0. We let kr denote the subring of k[[T ]] consisting of
f =

∑∞
i=−∞ aiT

i satisfying |ai|ri → 0 for i → ∞ and i → −∞. Define a norm
‖ • ‖r on kr as follows:

‖f‖r := max
i∈Z
|ai|ri.

We will show in Proposition 3.6 that kr is k-affinoid.
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Proposition 3.6. Let r ∈ R>0, then (kr, ‖•‖r) defined in Example 3.5 is a k-affinoid
algebra. Moreover, ‖ • ‖r is a valuation.

Proof. Observe that we have an admissible epimorphism
ι : k{r−1T1, rT2} → kr, T1 7→ T, T2 7→ T−1.

As we do not have the universal property at our disposal yet, let us verify by hand
that this defines a ring homomorphism: consider a series

f =
∑

(i,j)∈N2

ai,jT
i
1T

j
2 ∈ k{r−1T1, rT2},

namely,
(3.1) |ai,j |ri−j → 0
as i+ j →∞. Observe that for each k ∈ Z, the series

ck :=
∑

i−j=k,i,j∈N
ai,j

is convergent.
Then by definition, the image ι(f) is given by

∞∑
k=−∞

ckT
k.

We need to verify that ι(f) ∈ kr. That is
|ck|rk → 0

as k → ±∞. When k ≥ 0, we have |ck| ≤ |ak0| by definition of ck. So |ck|rk → 0 as
k →∞ by (3.1). The case k → −∞ is similar.

We conclude that we have a well-defined map of sets ι. It is straightforward
to verify that ι is a ring homomorphism. Next we show that ι is surjective. Take
g =

∑∞
i=−∞ ciT

i ∈ kr. We want to show that g lies in the image of ι. As ι is a
ring homomorphism, it suffices to treat two cases separately: g =

∑∞
i=0 ciT

i and
g =

∑0
i=−∞ ciT

i. We handle the first case only, as the second case is similar. In
this case, it suffices to consider f =

∑∞
i=0 ciT

i
1 ∈ k{r−1T1, rT2}. It is immediate

that ι(f) = g.
Next we show that ι is admissible. We first identify the kernel of ι. We claim

that the kenrel is the ideal I generated by T1T2 − 1. It is obvious that I ⊆ ker ι.
Conversely, consider an element

f =
∑

(i,j)∈N2

ai,jT
i
1T

j
2 ∈ k{r−1T1, rT2}

lying in the kenrel of ι. Observe that

f =
∞∑

k=−∞
fk, fk =

∑
(i,j)∈N2,i−j=k

ai,jT
i
1T

j
2 .

If f ∈ ker ι, then so is each fk by our construction.
We first show that each fk lies in the ideal generated by T1T2−1. The condition

that fk ∈ ker ι means ∑
(i,j)∈N2,i−j=k

ai,j = 0.
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It is elementary to find bi,j ∈ k for i, j ∈ N, i− j = k such that
ai,j = bi−1,j−1 − bi,j .

Then
fk = (T1T2 − 1)

∑
i,j∈N,i−j=k

bi,jT
i
1T

j
2 .

Observe that we can make sure that |bi,j | ≤ max{|ai′,j′ | : i−j = i′−j′}. In particular,
the sum of

∑
i,j∈N,i−j=k bi,jT

i
1T

j
2 for various k converges to some g ∈ k{r−1T1, rT2}

and hence fk = (T1T2 − 1)g. Therefore, we have proved that ker ι is generated by
T1T2 − 1.

It remains to show that ι is admissible. In fact, we will prove a stronger result:
ι induces an isometric isomorphism

k{r−1T1, rT2}/I → kr.

To see this, take f =
∑∞
k=−∞ ckT

k ∈ kr, and we need to show that
‖f‖r = inf{‖g‖(r,r−1) : ι(g) = f}.

Observe that if we set g =
∑∞
k=0 ckT

k
1 +
∑∞
k=1 c−kT

k
2 , then ι(g) = f and ‖g‖(r,r−1) =

‖f‖. So it suffices to show that for any h =
∑

(i,j)∈N2 di,jT
i
1T

j
2 ∈ k{r−1T1, rT2}, we

have
(3.2) ‖f‖r ≤ ‖g + h(T1T2 − 1)‖r,r−1 .

We compute

g+h(T1T2−1) =
∞∑
k=1

(ck−dk,0)T k1 +
∞∑
k=1

(c−k−d0,k)T k2 +(c0−d0)+
∑
i,j≥1

(di−1,j−1−di,j)T i1T
j
2 .

So
‖g + h(T1T2 − 1)‖r,r−1 = max

{
max
k≥0

C1,k,max
k≥1

C2,k

}
,

where

C1,k = max

|ck − dk,0|,
∣∣∣∣∣∣

∑
i−j=k,i,j≥1

di−1,j−1 − di,j

∣∣∣∣∣∣


for k ≥ 0 and

C2,k = max

|c−k − d0,k|,

∣∣∣∣∣∣
∑

i−j=−k,i,j≥1
di−1,j−1 − di,j

∣∣∣∣∣∣


for k ≥ 1. It follows from the strong triangle inequality that |ck| ≤ C1,k for k ≥ 0
and c−k ≤ C2,k for k ≥ 1. So (3.2) follows. �

Proposition 3.7. Let r ∈ R>0 \
√
|k×|, then ‖ • ‖r defined in Example 3.5 is a

valuation on kr.

Proof. Take f, g ∈ kr, we need to show that
‖fg‖r ≥ ‖f‖r‖g‖r.

Let us expand

f =
∞∑

i=−∞
aiT

i, g =
∞∑

i=−∞
biT

i.
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Take i and j so that

(3.3) |ai|ri = ‖f‖r, |bj |rj = ‖g‖r.

By our assumption on r, i, j are unique. Then

‖fg‖r = max
k∈Z
{|ck|rk},

where
ck :=

∑
u,v∈Z,u+v=k

aubv.

It suffices to show that

(3.4) |ck|rk = ‖f‖r‖g‖r
for k = i+ j. Of course, we may assume that ai 6= 0 and bj 6= 0 as otherwise there
is nothing to prove. For u, v ∈ Z, u+ v = i+ j while (u, v) 6= (i, j), we may assume
that u 6= i. Then |au|ru < |ai|ri and |bv|rv ≤ |bj |rj . So |aubv| < |aibj | and we
conclude (3.4). �

Remark 3.8. The argument of Proposition 4.16 in Banach rings does not work here
if r ∈

√
|k×|, as in general one can not take minimal i, j so that (3.3) is satisfied.

Proposition 3.9. Assume that r ∈ R>0 \
√
|k×|. Then kr is a valuation field and

‖ • ‖r is non-trivial.

Proof. We first show that Sp kr consists of a single point: ‖ • ‖r. Assume that
| • | ∈ Sp kr. As ‖ • ‖r is a valuation, we find

(3.5) | • | ≤ ‖ • ‖r.

In particular, | • | restricted to k is the given valuation on k. It suffices to show that
|T | = r. This follows from (3.5) applied to T and T−1.

It follows that kr does not have any non-zero proper closed ideals: if I is such
an ideal, kr/I is a Banach k-algebra. By Proposition 6.10 in Banach rings., Sp kr is
non-empty. So kr has to admit bounded semi-valuation with non-trivial kernel.

In particular, by Corollary 4.7 in Banach rings., the only maximal ideal of kr is
0. It follows that kr is a field.

The valuation ‖ • ‖r is non-trivial as ‖T‖r = r. �

Definition 3.10. An element r = (r1, . . . , rn) ∈ Rn>0 for some n ∈ N is called a k-free
polyray if r1, . . . , rn are linearly independent in the Q-linear space Q⊗ZR>0/

√
|k×|.

Let n ∈ N and r = (r1, . . . , rn) ∈ Rn>0. Assume that r is a k-free polyray. We
define

kr = kr1⊗̂k · · · ⊗̂kkrn .

By an interated application of Proposition 3.9, kr is a complete valuation field.
As a general explanation of why kr is useful, we prove the following proposition:

Proposition 3.11. Let n ∈ N and r = (r1, . . . , rn) be a k-free polyray.
(1) For any k-Banach space X, the natural map

X → X⊗̂kkr
is an isometric embedding.
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(2) Consider a sequence of bounded homomorphisms of k-Banch spaces X →
Y → Z. Then the sequence is admissible and exact (resp. coexact) if
and only if X⊗̂kkr → Y ⊗̂kkr → Z⊗̂kkr is admissible and exact (resp.
coexact).

Proof. We may assume that n = 1.
(1) We have a more explicit description of X⊗̂kkr: as a vector space, it is the

space of f =
∑∞
i=−∞ aiT

i with ai ∈ X and ‖ai‖ri → 0 when |i| → ∞. The norm is
given by maxi ‖ai‖ri. From this description, the embedding is obvious.

(2) This follows easily from the explicit description in (1). �

When X is a Banach k-algebra, X⊗̂kkr is a Banach kr-algebra.

Example 3.12. For any n ∈ N, r ∈ Rn>0, not necessarily k-free. We define kr as
the completed fraction field of k{r−1T} provided with the extended valuation | • |r.
Then kr is still a valuation field extending k.

When r is a k-free polyray, we claim that kr coincides with kr defined in
Definition 3.10. To see this, let us temporarily denote the kr defined in this example
as k′r consider the extension of field:

Frac k{r−1T} → kr = k{r−1T, rS}/(T1S1 − 1, . . . , TnSn − 1)
sending Ti to Ti for i = 1, . . . , n. Observe that this is an extension of valuation field
as well by the same arguments as in Proposition 3.6. In particular, it induces an
extension of complete valuation fields k′r → kr. But the image clearly contains the
classes of all polynomials in k[T, S], so k′r → kr is an isometric isomorphism.

Proposition 3.13. Assume that k is non-trivially valued. Let B be a strict k-
affinoid algebra and ϕ : B → A be a finite bounded k-algebra homomorphism into a
k-Banach algebra A. Then A is also strictly k-affinoid.

Proof. We may assume that B = k{T1, . . . , Tn} for some n ∈ N. By assump-
tion, we can find finitely many a1, . . . , am ∈ A such that A =

∑m
i=1 ϕ(B)ai.

We may assume that ai ∈ Å as k is non-trivially valued. By Proposition 4.18 in
Banach rings., ϕ admits a unique extension to a bounded k-algebra epimorphism

Φ : k{T1, . . . , Tn, S1, . . . , Sm} → A

sending Si to ai. By Corollary 7.5 in Banach rings., Φ is admissible. Moreover,
the homomorphism Φ is surjective by our assumption. It follows that A is strictly
k-affinoid. �

Proposition 3.14. Assume that k is non-trivially valued. Let B be a strict k-
affinoid algebra and ϕ : B → A be a finite k-algebra homomorphism into a k-algebra
A. Then there is a norm on A such that the morphism is bounded and A is strictly
k-affinoid.

Proof. By Proposition 8.4 in Banach rings., we can endow A with a Banach
norm such that ϕ is admissible. Then we can apply Proposition 3.13. �

Lemma 3.15. Assume that k is non-trivially valued. Let n ∈ N and r =
(r1, . . . , rn) ∈ Rn>0. The algebra k{r−1T} is strictly k-affinoid if ri ∈

√
|k×| for all

i = 1, . . . , n.

Remark 3.16. The converse is also true.
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Proof. Assume that ri ∈
√
|k×| for all i = 1, . . . , n. Take si ∈ N and ci ∈ k×

such that
rsii = |c−1

i |
for i = 1, . . . , n. We deifne a bounded k-algebra homomorphism ϕ : k{T1, . . . , Tn} →
k{r−1

1 T1, . . . , r
−1
n Tn} by sending Ti to ciT sii . This is possible by Proposition 4.18 in

Banach rings.
We claim that ϕ is finite. To see this, it suffices to observe that if we expand

f ∈ k{r−1
1 T1, . . . , r

−1
n Tn} as

f =
∑
α∈Nn

aαT
α,

we can regroup
f =

∑
β∈Nn,βi<si

T β
∑
γ∈Nn

aγs+βc
−γ(cT s)γ ,

where the product γs is taken component-wise. For each β ∈ Nn, βi < si, we set

gβ :=
∑
γ∈Nn

aγs+βc
−γ(T )γ ∈ k{T1, . . . , Tn}.

While f =
∑
β∈Nn,βi<si ϕ(gβ)T β . So We have shown that ϕ is finite. Hence,

k{r−1
1 T1, . . . , r

−1
n Tn} is k-affinoid by Proposition 3.13. �

Proposition 3.17. Let A be a k-affinoid algebra, then there is n ∈ N and a k-free
polyray r = (r1, . . . , rn) such that A⊗̂kkr is strictly kr-affinoid. Moreover, we can
guarantee that kr is non-trivially valued.

Proof. By Proposition 3.11, we may assume that A = k{t−1T} for some
t ∈ Rm>0. By Lemma 3.15, it suffices to take r so that the linear subspace of
R>0/

√
|k×| generated by r1, . . . , rn contains all components of t. Taking n ≥ 1, we

can guarantee that kr is non-trivially valued. �

Proposition 3.18. Let ϕ : SpB → SpA be a morphism of kH -affinoid algberas.
Then for any x ∈ SpA, there is a canonical homeomorphism

SpB⊗̂AH (x)→ ϕ−1(x).

Proof. We have a canonical morphism
SpB⊗̂AH (x)→ SpB.

We claim that this maps factorizes through ϕ−1(x). Let y ∈ SpB⊗̂AH (x). Let
| • |y be the corresponding bounded semi-valuation. We need to show that the
restriction of | • |y to A coincides with x. But this is immediate: the restriction of
| • |y to H (x) has to coincide with the valuation on H (x).

It remains to show that each element y ∈ ϕ−1(x) induces a bounded semi-
valuation on B⊗̂AH (x). Let |•|y be the bounded semi-valuation on B corresponding
to y. Observe that | • |y canonically extends to a bounded semi-valuation on
B ⊗A A/ ker | • |x, where | • |x is the bounded semi-valuation on A corresponding to
x. Then it extends canonically to a bounded semi-valuation on B⊗̂AH (x).

These operations are clearly inverse to each other. �

Proposition 3.19. Let ϕ : SpB → SpA be a monomorphism in kH -Aff. Then
for any y ∈ SpB with x = ϕ(y), one has ϕ−1(x) = {y} and the natural map
H (x)→H (y) is an isomorphism of complete valuation rings.
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Proof. By Proposition 3.18, it suffices to show that H (x)→ B⊗̂AH (y) is an
isomorphism as Banach k-algebras. By assumption, the codiagonal map B⊗̂AB → B
is an isomorphism. It follows that the base change with respect to A→ H (x) is
also an isomorphism: B′⊗̂H (x)B

′ → B′, where B′ = B⊗̂AH (x).
Include the fact that the first map is injective. It follows that the composition

B′ ⊗H (x) B → B′⊗̂H (x)B
′ → B′ is injective. Therefore, H (x) → B′ is an

isomorphism of rings. We also know that this map is bounded. But we already know
that H (x) is a complete valuation ring, so the map H (x)→ B′ is an isomorphism
of complete valuation rings. �

4. Weierstrass theory

Let (k, | • |) be a complete non-Archimedean valued-field.

Proposition 4.1. We have canonical identifications

(k{T1, . . . , Tn})◦ ∼=k̊{T1, . . . , Tn},

(k{T1, . . . , Tn})̌ ∼=ǩ{T1, . . . , Tn},

˜k{T1, . . . , Tn} ∼=k̃[T1, . . . , Tn].

The last identification extends k̊ → k̃ and Ti is mapped to Ti.

Proof. This follows from Corollary 4.20 from the chapter Banach rings. �

We will denote the reduction map k̊{T1, . . . , Tn} → k̃[T1, . . . , Tn] by •̃.

Definition 4.2. Let n ∈ N. A system f1, . . . , fn ∈ k{T1, . . . , Tn} is called an
affinoid chart of k{T1, . . . , Tn} if fi ∈ k̊{T1, . . . , Tn} for each i = 1, . . . , n and the
continuous k-algebra homomorphism k{T1, . . . , Tn} → k{T1, . . . , Tn} sending Ti to
fi is an isomorphism.

The map k{T1, . . . , Tn} → k{T1, . . . , Tn} is well-defined by Proposition 4.1 and
Lemma 2.5.

Lemma 4.3. Let n ∈ N and f ∈ k{T1, . . . , Tn}. Assume that ‖f‖1 = 1. Then the
following are equivalent:

(1) f is a unit k{T1, . . . , Tn}.
(2) f̃ is a unit in k̃[T1, . . . , Tn].

Proof. As ‖ • ‖1 is a valuation by Proposition 3.6, f is a unit in k{T1, . . . , Tn}
if and only if it is a unit in (k{T1, . . . , Tn})◦, which is identified with k̊{T1, . . . , Tn}
by Proposition 4.1. This result then follows from Corollary 4.21 in Banach rings. �

Definition 4.4. Let n ∈ N. Consider g ∈ k{T1, . . . , Tn}. We expand g as

g =
∞∑
i=0

giT
i
n, gi ∈ k{T1, . . . , Tn−1}.

For s ∈ N, we say g is Xn-distinguished of degree s if gs is a unit in k{T1, . . . , Tn−1},
‖gs‖1 = ‖g‖1 and ‖gs‖1 > ‖gt‖1 for all t > s.
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Theorem 4.5 (Weierstrass division theorem). Let n, s ∈ N and g ∈ k{T1, . . . , Tn}
be Xn-distinguished of degree s. Then for each f ∈ k{T1, . . . , Tn}, there exist
q ∈ k{T1, . . . , Tn} and r ∈ k{T1, . . . , Tn−1}[Tn] with degTn r < s such that

f = qg + r.

Moreover, q and r are uniquely determined. We have the following estimates
(4.1) ‖q‖1 ≤ ‖g‖−1

1 ‖f‖1, ‖r‖1 ≤ ‖f‖1.
If in addition, f, g ∈ k{T1, . . . , Tn−1}[Tn], then q ∈ k{T1, . . . , Tn−1}[Tn] as well.

Proof. We may assume that ‖g‖1 = 1.
Step 1. Assuming the existence of the division. Let us prove (4.1). We may

assume that f 6= 0, so that one of q, r is non-zero. Up to replacing q, r by a scalar
multiple, we may assume that max{‖q‖1, ‖r‖1} = 1. So ‖f‖1 ≤ 1 as well. We need
to show that ‖f‖1 = 1. Assume the contrary, then

0 = f̃ = q̃g̃ + r̃.

Here •̃ denotes the reduction map. By our assumption, degTn = s > degTn r ≥
degTn r̃. From Proposition 4.1, the equality is in k̃[T1, . . . , Tn]. From the usual
Euclidean division, we have q̃ = r̃ = 0. This is a contradiction to our assumption.

Step 2. Next we verify the uniqueness of the division. Suppose that
0 = qg + r

with q and r as in the theorem. The estimate in Step 1 shows that q = r = 0.
Step 3. We prove the existence of the division.
We define
B :=

{
qg + r : r ∈ k{T1, . . . , Tn−1}[Tn],degTn r < s, q ∈ k{T1, . . . , Tn}

}
.

From Step 1, B is a closed subgroup of k{T1, . . . , Tn}. In fact, suppose fi ∈ B
is a sequence converging to f ∈ k{T1, . . . , Tn}. From Step 1, we can represent
fi = qig + ri, then from Step 1, qi and ri are both Cauchy sequences, we may
assume that qi → q ∈ k{T1, . . . , Tn} and ri → r. As degTn ri < s, it follows that
r ∈ k{T1, . . . , Tn−1}[Tn] and degTn r < s. So f = qg + r and hence B is closed.

It suffices to show that B is dense k{T1, . . . , Tn}. We write

g =
∞∑
i=0

giT
i
n, gi ∈ k{T1, . . . , Tn−1}.

We may assume that ‖g‖1 = 1. Define ε := maxj≥s ‖gj‖. Then ε < 1 by our
assumption. Let kε = {x ∈ k : |x| ≤ ε} for the moment. There is a natural surjective
ring homomorphism

τε : (k{T1, . . . , Tn})◦ → (̊k/kε)[T1, . . . , Tn]
with kernel {f ∈ k{T1, . . . , Tn} : ‖f‖1 ≤ ε}. We now apply Euclidean division in
the ring (̊k/kε)[T1, . . . , Tn] to write

τε(f) = τε(q)τε(g) + τε(r)
for some q ∈ (k{T1, . . . , Tn})◦ and r ∈ (k{T1, . . . , Tn−1})◦[Tn] with degTn r < s. So

‖f − qg − r‖1 ≤ ε.
This proves that B is dense in k{T1, . . . , Tn} by Proposition 2.8 in Banach rings.
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Step 4. It remains to prove the last assertion. But this is a consequence
of the usual Euclidean division theorem for the ring k{T1, . . . , Tn−1}[Tn] and the
uniqueness proved in Step 2. �

Lemma 4.6. Let ω ∈ k{T1, . . . , Tn−1}[Tn] be a Weierstrass polynomial and g ∈
k{T1, . . . , Tn}. Assume that ωg ∈ k{T1, . . . , Tn−1}[Tn], then g ∈ k{T1, . . . , Tn−1}[Tn].

Proof. By the division theorem of polynomial rings, we can write

ωg = qω + r

for some q, r ∈ k{T1, . . . , Tn−1}[Tn], degTn r < degTn ωg. But we can write ωg = ω·g.
From the uniqueness part of Theorem 4.5, we know that q = g, so g is a polynomial
in Tn. �

As a consequence, we deduce Weierstrass preparation theorem.

Definition 4.7. Let n ∈ Z>0. A Weierstrass polynomial in n-variables is a monic
polynomial ω ∈ k{T1, . . . , Tn−1}[Tn] with ‖ω‖1 = 1.

Lemma 4.8. Let n ∈ Z>0 and ω1, ω ∈ k{T1, . . . , Tn−1}[Tn] be two monic polyno-
mials. If ω1ω2 is a Weierstrass polynomial then so are ω1 and ω2.

Proof. As ω1 and ω2 are monic, ‖ωi‖1 ≥ 1 for i = 1, 2. On the other hand,
‖ω1‖1 · ‖ω2‖1 = ‖ω1ω2‖1 = 1, so ‖ωi‖1 = 1 for i = 1, 2. �

Theorem 4.9 (Weierstrass preparation theorem). Let n ∈ Z>0 and g ∈
k{T1, . . . , Tn} be Xn-distinguished of degree s. Then there is a Weierstrass
polynomial ω ∈ k{T1, . . . , Tn−1}[Tn] of degree s and a unit e ∈ k{T1, . . . , Tn} such
that

g = eω.

Moreover, e and ω are unique. If g ∈ k{T1, . . . , Tn−1}[Tn], then so is e.

Proof. We first prove the uniqueness. Assume that a decomposition as in the
theorem is given. Let r = T sn − ω. Then T sn = e−1g + r. The uniqueness part of
Theorem 4.5 implies that e and r are uniquely determined, hence so is ω.

Next we prove the existence. By Weierstrass division theorem Theorem 4.5, we
can write

T sn = qg + r

for some q ∈ k{T1, . . . , Tn} and r ∈ k{T1, . . . , Tn−1}[Tn] with degTn r < s. Let
ω = T sn − r. From the estimates in Theorem 4.5, ‖r‖1 ≤ 1. So ‖ω‖1 = 1. Then ω is
a Weierstrass polynomial of degree s and ω = qg. It suffices to argue that q is a
unit.

We may assume that ‖g‖1 = 1. By taking reductions, we find

ω̃ = q̃g̃.

As degTn g̃ = degTn ω̃ and the leading coefficients of both polynomials are units in
k̃[T1, . . . , Tn−1], it follows that q̃ is a unit in k̃[T1, . . . , Tn−1]. It follows that q̃ is also
a unit in k̃[T1, . . . , Tn]. By Lemma 4.3, q is a unit in k{T1, . . . , Tn}.

The lsat assertion is already proved in Theorem 4.5.
�
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Definition 4.10. Let n ∈ Z>0 and g ∈ k{T1, . . . , Tn} be Xn-distinguished. Then
the Weierstrass polynomial ω constructed in Theorem 4.9 is called the Weierstrass
polynomial defined by g.

Corollary 4.11. Let n ∈ Z>0 and g ∈ k{T1, . . . , Tn} be Xn-distinguished. Let ω
be the Weierstrass polynomial of g. Then the injection

k{T1, . . . , Tn−1}[Tn]→ k{T1, . . . , Tn}

induces an isomorphism of k-algebras

k{T1, . . . , Tn−1}[Tn]/(ω)→ k{T1, . . . , Tn}/(g).

Proof. The surjectivity follows from Theorem 4.5 and the injectivity follows
from Lemma 4.6. �

In the complex setting, we can perturb a convergent power series so that it has
finite degree along a fixed axis, the corresponding result in the current setting is:

Lemma 4.12. Let n ∈ Z>0 and g ∈ k{T1, . . . , Tn} is non-zero. Then there is a
k-algebra automorphism σ of k{T1, . . . , Tn} so that σ(g) is Tn-distinguished.

Proof. We may assume that ‖g‖1 = 1. We expand g as

g =
∑
α∈Nn

aαT
α.

Endow Nn with the lexicographic order. Take the maximal β ∈ Nn so that |aβ | = 1.
Take t ∈ Z>0 so that t ≥ maxi=1,...,n αi for all α ∈ Nn with ãα 6= 0.

We will define σ by sending Ti to Ti + T cin for all i = 1, . . . , n− 1. The ci’s are
to be defined. We begin with cn = 1 and define the other ci’s inductively:

cn−j = 1 + t

j−1∑
d=0

cn−d

for j = 1, . . . , n− 1. We claim that σ(f) is Tn-distinguished of order s =
∑n
i=1 ciβi.

A straightforward computation shows that

σ̃(g) =
s∑
i=1

piT
i
n

for some pi ∈ k̃[T1, . . . , Tn−1] and ps = ãβ . Our claim follows. �

Proposition 4.13. Let n ∈ N. Then k{T1, . . . , Tn} is Noetherian.

Proof. We make induction on n. The case n = 0 is trivial. Assume that n > 0.
It suffices to show that for any non-zero g ∈ k{T1, . . . , Tn}, k{T1, . . . , Tn}/(g) is
Noetherian. By Lemma 4.12, we may assume that g is Tn-distinguished. According
to Theorem 4.5, k{T1, . . . , Tn}/(g) is a finite free k{T1, . . . , Tn−1}-module. By
the inductive hypothesis and Hilbert basis theorem, k{T1, . . . , Tn}/(g) is indeed
Noetherian. �

Proposition 4.14. Let n ∈ N. Then k{T1, . . . , Tn} is Jacobson.
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Proof. When n = 0, there is nothing to prove. We make induction on n and
assume that n > 0. Let p be a prime ideal in k{T1, . . . , Tn}, we want to show that
the Jacobson radical of p is equal to p.

We distinguish two cases. First we assume that p 6= 0. Let p′ = p ∩
k{T1, . . . , Tn−1}. By Lemma 4.12, we may assume that p contains a Weierstrass
polynomial ω. Observe that

k{T1, . . . , Tn−1}/p′ → k{T1, . . . , Tn}/p

is finite by Theorem 4.5. For any b ∈ J(k{T1, . . . , Tn}/p) (where J denotes the
Jacobson radical), we consider a monic integral equation of minimal degree over
k{T1, . . . , Tn−1}/p′:

bn + a1b
n−1 + · · ·+ an = 0, ai ∈ k{T1, . . . , Tn−1}/p′.

Then

an ∈ J(k{T1, . . . , Tn}/p) ∩ k{T1, . . . , Tn−1}/p′ = J(k{T1, . . . , Tn−1}/p′) = 0

by our inductive hypothesis. It follows that n = 1 and so b = 0. This proves
J(k{T1, . . . , Tn}/p) = 0.

On the other hand, let us consider the case p = 0. As k{T1, . . . , Tn} is a
valuation ring, it is an integral domain, so the nilradical is 0. We need to show that

J(k{T1, . . . , Tn}) = 0.

Assume that there is a non-zero element f in J(k{T1, . . . , Tn}). We may assume
that ‖f‖1 = 1.

We claim that there is c ∈ k with |c| = 1 such that c + f is not a unit in
k{T1, . . . , Tn}. Assuming this claim for the moment, we can find a maximal ideal m
of k{T1, . . . , Tn} such that c+ f ∈ m. But f ∈ m by our assumption, so c ∈ m as
well. This contradicts the fact that c ∈ k×.

It remains to prove the claim. We treat two cases separately. When |f(0)| < 1,
we simply take c = 1, which works thanks to Lemma 4.3. If |f(0)| = 1, we just take
c = −f(0). �

Proposition 4.15. Let n ∈ N. Then k{T1, . . . , Tn} is UFD. In particular,
k{T1, . . . , Tn} is normal.

Proof. As ‖ • ‖1 is a valuation by Proposition 2.2, k{T1, . . . , Tn} is an integral
domain. In order to see that k{T1, . . . , Tn} has the unique factorization property,
we make induction on n ≥ 0. When n = 0, there is nothing to prove. Assume
that n > 0. Take a non-unit element f ∈ k{T1, . . . , Tn}. By Theorem 4.9 and
Lemma 4.12, we may assume that f is a Weierstrass polynomial. By inductive
hypothesis, k{T1, . . . , Tn−1} is a UFD, hence so is k{T1, . . . , Tn−1}[Tn] by [Stacks,
Tag 0BC1]. It follows that f can be decomposed into the products of monic prime
elements f1, . . . , fr ∈ k{T1, . . . , Tn−1}[Tn], which are all Weierstrass polynomials by
Lemma 4.8. Then by Corollary 4.11, we see that each fi is prime in k{T1, . . . , Tn}.

Any UFD is normal by [Stacks, Tag 0AFV]. �

Corollary 4.16. LetA be a strictly k-affinoid algebra, d ∈ N and ϕ : k{T1, . . . , Td} →
A be an integral torsion-free injective homomorphism of k-algebras. Then ρ is a

https://stacks.math.columbia.edu/tag/0BC1
https://stacks.math.columbia.edu/tag/0AFV
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faithful k{T1, . . . , Td}-algebra norm on A. If fn + ϕ(t1)fn−1 + · · · + ϕ(tn) = 0 is
the minimal integral equation of f over k{T1, . . . , Td}, then

|f |sup = max
i=1,...,n

|ti|1/i.

Proof. This follows from Proposition 9.11 in Banach rings and Proposition 4.15.
�

5. Noetherian normalization and maximal modulus principle

Let (k, | • |) be a complete non-trivially valued non-Archimedean valued-field.

Theorem 5.1. Let A be a non-zero strictly k-affinoid algebra, n ∈ N and α :
k{T1, . . . , Tn} → A be a finite (resp. integral) k-algebra homomorphism. Then
up to replacing T1, . . . , Tn by an affinoid chart, we can guarantee that there exists
d ∈ N, d ≤ n such that α when restricted to k{T1, . . . , Td} is finite (resp. integral)
and injective.

Proof. We make an induction on n. The case n = 0 is trivial. Assume
that n > 0. If kerα = 0, there is nothing to prove, so we may assume that
kerα 6= 0. By Lemma 4.12 and Theorem 4.9, we may assume that there is a
Weierstrass polynomial ω ∈ k{T1, . . . , Tn−1}[Tn] in kerα. Then α induces a finite
(resp. integral) homomorphism β : k{T1, . . . , Tn}/(ω) → A. By Theorem 4.5,
k{T1, . . . , Tn−1} → k{T1, . . . , Tn}/(ω) is a finite homomorphism. So their composi-
tion is a finite (resp. integral) homomorphism k{T1, . . . , Tn−1} → A. We can apply
the inductive hypothesis to conclude. �

Corollary 5.2. Let A be a non-zero strictly k-affinoid algebra, then there is d ∈ N
and a finite injective k-algebra homomorphism: k{T1, . . . , Td} → A.

Proof. Take some n ∈ N and a surjective k-algebra homomorphism k{T1, . . . , Tn} →
A and apply Theorem 5.1, we conclude. �

Corollary 5.3. Let A be a strictly k-affinoid algebra and I be an ideal in A such
that

√
I is a maximal ideal in A, then A/I is finite-dimensional over k.

In particular, SpmA = Spmk A.

Proof. By Corollary 5.2, there is d ∈ N and a finite monomorphism f :
k{T1, . . . , Td} → A/I. It suffices to show that d = 0. Observe that the composition

k{T1, . . . , Td}
f−→ A/I → A/

√
I

is finite and injective as k{T1, . . . , Td} is an integral domain, so k{T1, . . . , Td} is a
field. This is possible only when d = 0. �

Corollary 5.4. Let B be a strictly k-affinoid algebra and A be a Noetherian Banach
k-algebra. Let f : A→ B a k-algebra homomorphism. Then f is bounded.

Proof. This follows from Proposition 8.1 in Banach rings and Proposition 4.13.
�

In particular, we see that the topology of a k-affinoid algebra is uniquely
determined by the algebraic structure.

Corollary 5.5. Let A, B be strictly k-affinoid algebras. Let f be a finite k-algebra
homomorphism, then f is admissible.
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Proof. This follows from Proposition 3.14 and Corollary 5.4, �

Definition 5.6. For any non-Archimedean valuation field (K, | • |) and n ∈ N, we
define the n-dimensional polydisk with value in K:

Bn(K) :=
{

(x1, . . . , xn) ∈ Kn : max
i=1,...,n

|xi| ≤ 1
}
.

Definition 5.7. Let n ∈ N and f ∈ k{T1, . . . , Tn}, say with an expansion

f =
∑
α∈Nn

aαT
α, aα ∈ k.

We define the associated function f : Bn(kalg)→ kalg as sending x = (x1, . . . , xn) ∈
Bn(kalg) to ∑

α∈Nn
aαx

α.

Lemma 5.8. Let n ∈ N and f ∈ k{T1, . . . , Tn}, then f : Bn(kalg) → kalg is
continuous and for any x ∈ Bn(kalg),

|f(x)| ≤ ‖f‖1.
There is x = (x1, . . . , xn) ∈ Bn(kalg) such that |f(x)| = ‖f‖1.

Proof. To see that f is continuous, it suffices to observe that f is a uniform
limit of polynomials. For any x = (x1, . . . , xn) ∈ Bn(kalg), we have

|f(x)| =

∣∣∣∣∣ ∑
α∈Nn

aαx
α

∣∣∣∣∣ ≤ max
α∈Nn

|aαxα| ≤ ‖f‖1.

To prove the last assertion, we may assume that ‖f‖1 = 1. As the residue field of
kalg is equal to k̃alg, it has infinitely many elements, so there is a point x ∈ Bn(kalg)
such that f̃(x) = f̃(x̃) 6= 0. In other words, ‖f(x)‖1 = 1. �

Proposition 5.9. Let n ∈ N, then the maximal modulus principle holds for
k{T1, . . . , Tn}. Moreover, for any f ∈ k{T1, . . . , Tn}, ‖f‖1 = |f |sup.

Proof. By Lemma 6.3 in Banach rings., we have
‖f‖1 ≥ |f |sup

for any f ∈ A. We only have to show that for any f ∈ k{T1, . . . , Tn} there is a
maximal ideal m ⊆ k{T1, . . . , Tn} such that |f(m)| = ‖f‖1.

By Lemma 5.8 we can take x = (x1, . . . , xn) ∈ Bn(kalg) such that |f(x)| = ‖f‖1.
Let L be the field extension of k generated by x1, . . . , xn, then L/k is finite. Then
we can define a homomorphism

evx : k{T1, . . . , Tn} → L

sending g ∈ k{T1, . . . , Tn} to g(x). Observe that the image is indeed in L. Clearly
evx is surjective. So mx := ker evx is a k-algebraic maximal ideal in k{T1, . . . , Tn}.
Then

|f(mx)| = |f(x)| = ‖f‖1.
�

Corollary 5.10. Let A be a strictly k-affinoid algebra. Then for any f ∈ A,
|f |sup ⊆

√
|k×| ∪ {0}.
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Proof. We may assume that A 6= 0. By Corollary 5.2 and Proposition 9.11 in
Banach rings., we may assume that A = k{T1, . . . , Tn} for some n ∈ N. The result
then follows from Proposition 5.9. �

Corollary 5.11. Maximal modulus principle holds for any strictly k-affinoid alge-
bras.

Proof. This follows from Corollary 5.2, Proposition 9.11 in Banach rings and
Proposition 5.9. �

Proposition 5.12. Let ϕ : B → A be an integral k-algebra homomorphism
of strictly k-affinoid algebras. Then for each non-zero f ∈ A, there is a moinc
polynomial q(f) = fn + ϕ(b1)fn−1 + · · ·+ ϕ(bn) of f over B. Then

|f |sup = max
i=1,...,n

|bi|1/isup.

Proof. One side is simple: choose j = 1, . . . , n that maximizes |ϕ(bj)fn−j |sup,
then

|f |nsup = |fn|sup ≤ |ϕ(bj)fn−j |sup ≤ |bj |sup · |f |n−jsup .

So
|f |sup ≤ |bj |1/jsup.

To prove the reverse inequality, let us begin with the case where A is an integral
domain.

We claim that there is d ∈ N and a k-algebra homomorphism ψ : k{T1, . . . , Td} →
B such that ϕ ◦ ψ is integral and injective. In fact, choosing an epimorphism
α : k{T1, . . . , Td} → A, we can apply Theorem 5.1 to find φ ◦ α to conclude.

By Corollary 4.16, if p denotes the minimal polynomial of f over k{T1, . . . , Td},
we have |f |sup = σ(p). In particular, p(f) = 0. Let q ∈ B[X] be the polynomial
obtained from p by replacing all coefficients by their ψ-images in B. Then clearly,
|f |sup = σ(q).

In general, let p1, . . . , pr be the minimal primes in A. The number is finite
by Proposition 4.13. For each i = 1, . . . , r, let πi : A → A/pi denote the natural
homomorphism. We know that there are monic polynomials qi ∈ B[X] such that
qi(π(f)) = 0 and |πi(f)|sup = σ(qi) for i = 1, . . . , r. We let q′ = q1 · · · qr. Then

q′(f) ∈
r⋂
i=1

pi.

So there is e ∈ Z>0 such that q′(f)e = 0. Let q = q′e. By Proposition 9.5 in Banach
rings.,

σ(q) ≤ max
i=1,...,r

σ(qi) = max
i=1,...,r

|πi(f)|sup = |f |sup.

The last equality follows from Proposition 9.9 in Banach rings. �

Lemma 5.13. Let ϕ : B → A be an admissible k-algebra homomorphism between
strictly k-affinoid algebras. Let τ : B̊ → B̃ be the reduction map, then

τ−1(ker ϕ̃) =
√
B̌ + ker ϕ̊, ker ϕ̃ =

√
τ(ker ϕ̊).
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Proof. The second equation follows from the first one by applying τ . Let
us prove the first equation. By assumption, ϕ(B̌) is open in ϕ(B). Consider
g ∈ τ−1(ker ϕ̃), we know that

lim
n→∞

ϕ(g)n = 0.

So ϕ(g)n ∈ ϕ(B̌) for n large enough, and hence gn ∈ B̌ + ker ϕ̊. �

Lemma 5.14. Let m ∈ N and T = k{T1, . . . , Tm}. Let A be a k-affinoid algebra
and ϕ : T{S1, . . . , Sn} → A be a finite morphism such that ϕ̃(Si) is integral over T̃ .
Then ϕ|T : T → A is finite.

Proof. We make an induction on n. When n = 0, there is nothing to prove.
So assume n > 0 and the lemma has been proved for smaller values of n.

Let T ′ = T{S1, . . . , Sn}. By assumption, there is a Weierstrass polynomial

ω = Skn + a1S
k−1
n + · · ·+ ak ∈ T̊ [Sn]

such that ω̃ ∈ ker ϕ̃. As ϕ is admissible by Corollary 5.5, we have ωq ∈ Ť ′ + ker ϕ̊
for some q ∈ Z by Lemma 5.13.

In particular, we can find r ∈ (T ′)̌ such that g := ωq−r ∈ ker ϕ̊. Observe that g
is Sn distinguished of order mq as g̃ = ω̃q. By Corollary 4.11, the restriction of ϕ to
T{S1, . . . , Sn−1} is finite. We can apply the inductive hypothesis to conclude. �

Lemma 5.15. Let ϕ : B → A be a k-algebra homomorphism of strictly k-affinoid
algebras. Assume that there exist affinoid generators f1, . . . , fn ∈ Å of A such that
f̃1, . . . , f̃n are all integral over B̃, then ϕ is finite.

Proof. By assumption, we can find si ∈ Z>0, bij ∈ B̊ for i = 1, . . . , n,
j = 1, . . . , si such that

f̃sii + ϕ̃(b̃i1)f̃si−1
i + · · ·+ ϕ̃(b̃isi) = 0

for i = 1, . . . , n. Let s = s1 + · · ·+sn and define a bounded k-algebra homomorphism
ψ : D := k{Tij} → B sending Tij to bij , for i = 1, . . . , n and j = 1, . . . , si.
Observe that f̃1, . . . , f̃n are all integral over D̃. So it suffices to prove the theorem
when B = k{T1, . . . , Tm}. We extend ϕ to a bounded k-algebra epimorphism
ϕ′ : T{S1, . . . , Sn} → A sending Si to fi for i = 1, . . . , n. Then ˜ϕ′(Si) is integral
over B̃. It suffices to apply Lemma 5.14. �

6. Properties of affinoid algebras

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

Proposition 6.1. Assume that k is non-trivially valued. Let A be a strictly
k-afifnoid algebra. Then

Å = {f ∈ A : ρ(f) ≤ 1} = {f ∈ A : |f |sup ≤ 1}.

Proof. By Lemma 6.3, we have
Å ⊆ {f ∈ A : ρ(f) ≤ 1} ⊆ {f ∈ A : |f |sup ≤ 1}.

Conversely, let f ∈ A, |f |sup ≤ 1. Choose d ∈ N and a surjective k-algebra
homomorphism

ϕ : k{T1, . . . , Td} → A.
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Let fn + t1f
n−1 + · · · + tn = 0 be the minimal equation of f over k{T1, . . . , Td}.

Then ti ∈ (k{T1, . . . , Td})◦ by Proposition 9.11 in Banach rings. An induction on
i ≥ 0 shows that

fn+i ∈
n−1∑
j=0

ϕ ((k{T1, . . . , Td})◦) f j .

The right-hand side is clearly bounded. �

Corollary 6.2. Assume that k is non-trivially valued. Let (A, ‖ • ‖) be a strictly
k-affinoid algebra. For any f ∈ A,

ρ(f) = |f |sup.

Proof. We have shown that ρ(f) ≥ |f |sup in Lemma 6.3 from the chapter
Banach Rings. Assume tha tthe inverse inequality fails: for some f ∈ A,

ρ(f) > |f |sup.

If |f |sup = 0, then f lies in the Jacobson radical of A, which is equal to the
nilradial of A by Proposition 4.14. But then ρ(f) = 0 as well. We may therefore
assume that |f |sup 6= 0. By Corollary 5.10, we may assume that |f |sup = 1 as ρ is
power-multiplicative. Then ρ(f) > 1. This contradicts Proposition 6.1. �

Theorem 6.3. A k-affinoid algebra A is Noetherian and all ideals of A are closed.

Proof. Let I be an ideal in A. By Proposition 3.17, we can take a suitable
r ∈ Rm>0 so that A⊗̂kr is strictly kr-affinoid. Then I(A⊗̂kr) is an ideal in A⊗̂kr.
By Proposition 4.13, the latter ring is Noetherian. So we may take finitely many
generators f1, . . . , fk ∈ I. Each f ∈ I can be written as

f =
k∑
i=1

figi

with gi =
∑∞
j=−∞ gi,jT

j ∈ A⊗̂kr. But then

f =
k∑
i=1

figi,0.

So I is finitely generated.
As I = A∩ (I(A⊗̂kr)), by Corollary 7.4 in Banach rings., we see that I is closed

in A⊗̂kr and hence closed in A. �

Proposition 6.4. Let (A, ‖ • ‖) be a k-affinoid algebra and f ∈ A. Then there is
C > 0 and N ≥ 1 such that for any n ≥ N , we have

‖fn‖ ≤ Cρ(f)n.

Recall that ρ is the spectral radius map defined in Definition 4.9 in Banach
rings.

Proof. By Proposition 3.11, we may assume that k is non-trivially valued and
k is non-trivially valued.

If ρ(f) = 0, then f lies in each maximal ideal of A. To see this, we may assume
that A is a field, then by Proposition 6.10 in Banach rings., there is a bounded
valuation ‖ • ‖′ on A. But then ρ(f) = 0 implies that ‖f‖′ = 0 and hence f = 0.
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It follows that if ρ(f) = 0 then f lies in J(A), the Jacobson radical of A. By
Proposition 4.14, A is a Jacobson ring. So f is nilpotent. The assertion follows.

So we can assume that ρ(f) > 0. In this case, by Corollary 5.2 and Proposi-
tion 9.11 in Banach rings., we have ρ(f) ∈

√
|k×|. Take a ∈ k× and d ∈ Z>0 so that

ρ(f)d = |a|. Then ρ(fd/a) = 1 and hence it is powerly-bounded by Proposition 6.1.
It follows that there is C > 0 so that for n ≥ 1,

‖fnd‖ ≤ C|a|n = Cρ(f)nd.

It follows that ‖fn‖ ≤ Cρ(f) for n ≥ d as long as we enlarge C. �

Corollary 6.5. Let ϕ : A→ B be a bounded homomorphism of k-affinoid algebras.
Let n ∈ N and f1, . . . , fn ∈ B and r1, . . . , rn ∈ R>0 with ri ≥ ρ(fi) for i =
1, . . . , n. Write r = (r1, . . . , rn), then there is a unique bounded homomorphism
Φ : A{r−1T} → B extending ϕ and sending Ti to fi.

Proof. The uniqueness is clear. Let us consider the existence. Given

f =
∑
α∈Nn

aαT
α ∈ A{r−1T},

we define
Φ(h) =

∑
α∈Nn

ϕ(aα)fα.

It follows from Proposition 6.4 that the right-hand side the series converges. The
boundedness of Φ is obvious. �

Proposition 6.6. Let (A, ‖ • ‖A), (B, ‖ • ‖B) be k-affinoid algebras, r ∈ Rn>0
and ϕ : A{r−1T} → B be an admissible epimorphism. Write fi = ϕ(Ti) for
i = 1, . . . , n. Then there is ε > 0 such that for any g = (g1, . . . , gn) ∈ Bn

with ‖fi − gi‖B < ε for all i = 1, . . . , n, there exists a unique bounded k-algebra
homomorphism ψ : A{r−1T} → B that coincides with ϕ on A and sends Ti to gi.
Moreover, ψ is also an admissible epimorphism.

Proof. The uniqueness of ψ is obvious. We prove the remaining assertions.
Taking ε > 0 small enough, we could further guarantee that ρ(gi) ≤ ri. It follows
from Corollary 6.5 that there exists a bounded homomorphism ψ as in the statement
of the proposition.

As ϕ is an admissible epimorphism, we may assume that ‖ • ‖B is the residue
induced by ‖ • ‖r on A{r−1T}.

By definition of the residue norm, for any δ > 0 and any h ∈ B, we can find

k0 =
∑
α∈Nn

aαT
α ∈ A{r−1T}

with
‖aα‖Arα ≤ (1 + δ)‖h‖B

for any α ∈ Nn. Choose ε ∈ (0, (1 + δ)−1). Now for g1, . . . , gn as in the statement
of the proposition, we can write

h =
∑
α∈Nn

aαf
α =

∑
α∈Nn

aαg
α + h1 = ψ(k0) + h1.
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It follows that

‖h1‖B =

∥∥∥∥∥ ∑
α∈Nn

aα(fα − gα)

∥∥∥∥∥
B

≤ (1 + δ)ε‖h‖B .

Repeating this procedure, we can construct ki ∈ A{r−1T} for i ∈ N and hj ∈ B for
j ∈ Z>0 such that for any i ∈ Z>0, we have

h =ψ(k0 + · · ·+ ki−1) + hi,

‖ki‖r ≤((1 + δ)ε)i(1 + δ)‖h‖B ,
‖hi‖B ≤((1 + δ)ε)i‖h‖B .

In particular, k :=
∑∞
i=0 ki converges in A{r−1T} and

‖k‖r ≤ (1 + δ)‖h‖B .

It follows that ψ is an admissible epimorphism. �

Corollary 6.7. Let A be a Banach k-algebra, n ∈ N and r = (r1, . . . , rn) be a
k-free polyray. Assume that A⊗̂kkr is kr-affinoid, then A is k-affinoid.

If A⊗̂kkr is kH -affinoid and r ∈ H, then A is also kH -affinoid.

Proof. We may assume that r has only one component.
Take m ∈ N, p1, . . . , pm ∈ R>0 and an admissible epimorphism

π : kr{p−1
1 S1, . . . , p

−1
m Sm} → A⊗̂kkr.

Let

π(Si) =
∞∑

j=−∞
ai,jT

j , ai,j ∈ A

for i = 1, . . . ,m. By Proposition 6.6, we may assume that there is a large integer l
such that ai,j = 0 for |j| > l and for any i = 1, . . . ,m. We define B = k{p−1

i rjTi,j},
i = 1, . . . , n and j = −l,−l + 1, . . . , l. Let ϕ : B → A be the bounded k-algebra
homomorphism sending Ti,j to ai,j . The existence of ϕ is guaranteed by Corollary 6.5.

We claim that ϕ is an admissible epimorphism. It is clearly an epimorphism.
Let us show that ϕ is admissible. Let η : kr{p−1

1 S1, . . . , p
−1
m Sm} → B⊗̂kkr be the

bounded homomorphism sending Si to
∑l
j=−l Ti,jT

j , then we have the following
commutative diagram

kr{p−1S}

B⊗̂kkr A⊗̂kkr

πη

ϕ⊗̂kkr

It follows that ϕ⊗̂kkr is also an admissible epimorphism. By Proposition 3.11, ϕ is
also admissible. �

7. Examples of the Berkovich spectra of affinoid algebras

Let (k, | • |) be a complete non-Archimedean valued field.

Example 7.1. Take r > 0. We will study the Berkovich spectrum Sp k{r−1T}.
We first assume that k is non-trivially valued and k is algebraically closed.
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For a ∈ k with |a| ≤ r and ρ ∈ (0, r], we set

E(a, ρ) =
{
x ∈ Sp k{r−1T} : |(T − a)(x)| ≤ ρ

}
,

D(a, ρ) =
{
x ∈ Sp k{r−1T} : |(T − a)(x)| < ρ

}
.

We give a list of points on Sp k{r−1T}. The two classes are called closed disks and
open disks with center a and with radius r.

(1) Any element a ∈ k with |a| ≤ r determines a bounded semi-valuation on
k{r−1T} sending f to |f(a)|. Such points are called points of type (1).

(2) For any a ∈ k with |a| ≤ r and ρ ∈ |k| ∩ (0, r], we define a bounded
semi-valuation on k{r−1T} sending f =

∑∞
n=0 an(T − a)n to

|f |E(a,ρ) := max
n∈N
|an|ρn.

Such points are called points of type (2).
(3) For any a ∈ k with |a| ≤ r and ρ ∈ (0, r] \ |k|, we define a bounded

semi-valuation on k{r−1T} sending f =
∑∞
n=0 an(T − a)n to

|f |E(a,ρ) := max
n∈N
|an|ρn.

Such points are called points of type (3).
(4) Let E = {Eρ}ρ∈I be a family of closed disks with radii ρ and such that

Eρ ⊇ Eρ′ when ρ > ρ′, where I is a non-empty subset of R>0. We define
a bounded semi-valuation on k{r−1T} sending f to

|f |E := inf
ρ∈I
|f |Eρ .

If
⋂
ρ∈I E

ρ ∩ k = ∅, we call the point | • |E a point of type (4).
We verify that points of type (1) are indeed points in Sp k{r−1T}: f 7→ |f(a)| is

a bounded semi-valuation. It is clearly a semi-valuation. It is bounded by Lemma 6.3
in Banach rings.

We verify that points of type (2) and type (3) are indeed points in Sp k{r−1T}.
We first need to make sense of the expansion

(7.1) f =
∞∑
n=0

an(T − a)n.

In fact, by Corollary 6.5, there is an isomorphism of k-affinoid algebras ι :
A{r−1T} → A{r−1S} sending T to S + a, as ‖(S + a)n‖r = rn and hence
ρ(S + a) = r. We expand the image of

∑∞
n=0 anS

n and then (7.1) is just formally
expressing this expansion. Now in order to show that | • |E(a,ρ) is a bounded
semi-valuation, we may assume that a = 0 after applying ι. It is a semi-valuation
as | • |ρ is a valuation on the larger ring k{ρ−1T}. Again, the boundedness is a
consequence of Lemma 6.3 in Banach rings.

We verify that points of type (4) are bounded semi-valuations. Take E =
{Eρ}ρ∈I as above. It is a semi-valuation as the infimum of bounded semi-valuations.
It is bounded as Eρ is for any ρ ∈ I.

Proposition 7.2. Assume that k is non-trivially valued and algebraically closed.
For any r > 0, a point in Sp k{r−1T} belongs to one of the following classes: type
(1), type (2), type (3), type (4).
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Proof. Let ‖•‖ be a bounded semi-valuation on k{r−1T}. Consider the family
E := {E(a, ‖T − a‖) : a ∈ k, |a| ≤ r} .

We claim that if a, b ∈ k, |a|, |b| ≤ r and ‖T − a‖ ≤ ‖T − b‖, then
E(a, ‖T − a‖) ⊆ E(b, ‖T − b‖).

In fact, if x ∈ E(a, ‖T − a‖), then
|(T − a)(x)| ≤ ‖T − a‖.

Observe that |a− b| ≤ max{‖T − a‖, ‖T − b‖} = ‖T − b‖, so
|(T − b)(x)| ≤ max{|(T − a)(x)|, |a− b|} ≤ ‖T − b‖.

So x ∈ E(b, ‖T − b‖) proving our claim.
Now we claim that for any a ∈ k,

‖T − a‖ = |T − a|E .
From this, it follows that the bounded semi-valuation ‖ • ‖ is necessarily of the form
| • |E , hence of type (1), type (2), type (3) or type (4).

In order to prove the claim, we observe that
|T − a|E = inf

b∈k,|b|≤r
|T − a|E(b,‖T−b‖).

We write T − a = T − b+ b− a, then
|T − a|E(b,‖T−b‖) = max{‖T − b‖, |b− a|} ≥ ‖T − a‖.

In particular ‖T − a‖ ≤ |T − a|E . On the other hand, the computation shows that
|T − a|E = inf

b∈k,|b|≤r
max{‖T − a‖, |b− a|}.

In order to show that ‖T − a‖ ≥ |T − a|E , it suffices to show that
inf

b∈k,|b|≤r
|b− a| ≤ ‖T − a‖

when |a| > r. In this case, 1 − a−1T is invertible by Proposition 4.4 in Banach
rings., so

‖1− a−1T‖ = ‖1− a−1T‖r = 1 + |a|−1r.

We need to show
inf

b∈k,|b|≤r
|b− a| ≤ |a|+ r,

which is obvious. This proves our claim.
�

Proposition 7.3. Assume that k is non-trivially valued and algebraically closed.
Let r > 0, and x ∈ Sp k{r−1T}.

(1) If x is of type (1), then H (x) = k.
(2) If x is of type (2), then H (x) = kρ, H̃ (x) = k̃(T ) and |H (x)| = |k|.
(3) If x is of type (3), then H (x) = kρ, H̃ (x) = k̃ and |H (x)×| is generated

by ρ and |k×|.
(4) If x is of type (4), then H̃ (x) = k̃ and |H (x)| = |k|. Moreover, H (x) 6= k.

In other words, H (x) ) k is a non-trivial immediate extension.
In particular, the four types do no overlap.
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Proof. (1) Assume that x is defined by a ∈ k with |a| ≤ r. Observe that the
valuation factorizes through k{r−1T} → k, so H (x) is a subfield of k. But for
b ∈ k, b(x) = b, so H (x) = k.

(2) Assume that x is defined by E(a, ρ) with a ∈ k, |a| ≤ r and ρ ∈ (0, r] ∩ |k|.
We may assume that a = 0. Observe that | • |E(a,ρ) is a valuation. So H (x) is
the completion of the fraction field of k{r−1T}, namely H (x) = kρ. Observe that
for any f ∈ k{r−1T}, |f |E(a,ρ) is of the form |an|ρn for some an ∈ k, n ∈ N, so
|f |E(a,ρ) ∈ |k| and hence |H (x)| ⊆ |k|. The reverse inequality is trivial. The residue
field is computed as in Corollary 4.20 from the chapter Banach rings.

(3) It follows from the same argument in (2) that H (x) = kρ. On the other
hand, an element

f =
∞∑

i=−∞
aiT

i ∈ kρ

satisfies |f | ≤ 1 (resp. |f | < 1) if and only if a0 ∈ k̊ (resp. a0 ∈ ǩ) and |ai|ρi < 1
for i 6= 0. It follows that H̃(x) = k̃.

(4) To be finished �

8. H-strict affinoid algebras

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

We next give a non-strict extension of Proposition 3.13.

Proposition 8.1. Let B be a kH -affinoid algebra and ϕ : B → A be a finite
bounded homomorphism into a k-Banach algebra A. Then A is also kH -affinoid.

Proof. We first assume that k is non-trivially valued.
We may assume that B = k{r−1

1 T1, . . . , r
−1
n Tn} for some n ∈ N and r1, . . . , rn ∈

H. By assumption, we can find finitely many a1, . . . , am ∈ A such that A =∑m
i=1 ϕ(B)ai.
We may assume that ai ∈ Å as k is non-trivially valued. By Proposition 4.18 in

Banach rings., ϕ admits a unique extension to a bounded k-algebra epimorphism

Φ : k{r−1
1 T1, . . . , r

−1
n Tn, S1, . . . , Sm} → A

sending Si to ai. By Corollary 7.5 in Banach rings., Φ is admissible. Moreover, the
homomorphism Φ is surjective by our assumption. It follows that A is kH -affinoid.

If k is trivially valued, then H is non-trivial. Take s ∈ H \ {1}. It follows from
the previous case applied to ϕ⊗̂ks : B⊗̂ks → A⊗̂ks that A⊗̂ks is kH -affinoid. By
Corollary 6.7, A is also kH -affinoid. �

Proposition 8.2. Let A be a Banach k-algebra. Then the following are equivalent:
(1) A is kH -affinoid;
(2) there are n ∈ N, r ∈

√
|k×| ·H and an admissible epimorphism k{r−1T} →

A.

Proof. The non-trivial direction is (2). Assume (2). Take s1, . . . , sn ∈ Z>0,
c1, . . . , cn ∈ k× and h1, . . . , hn ∈ H such that

rsii = |c−1
i |hi
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for i = 1, . . . , n. We define a bounded k-algebra homomorphism
ϕ : k{h−1

1 T1, . . . , h
−1
n Tn} → k{r−1

1 T1, . . . , r
−1
n Tn}

by sending Ti to ciT
si
i . The existence of such a homomorphism is guaranteed

by Corollary 6.5. The same proof of Lemma 3.15 shows that ϕ is finite. By
Proposition 8.1, k{r−1

1 T1, . . . , r
−1
n Tn} is kH -affinoid. �

Lemma 8.3. Assume that k is non-trivially valued. Let A be a k-affinoid algebra.
Then the following are equivalent:

(1) A is strictly k-affinoid;
(2) for any a ∈ A, ρ(a) ∈

√
|k×| ∪ {0}.

Proof. (1) =⇒ (2) by Corollary 5.10 and Corollary 6.2.
(2) =⇒ (1): Take n ∈ N, r ∈ Rn>0 and an admissible epimorphism

ϕ : k{r−1T} → A.

Let fi = ϕ(Ti) for i = 1, . . . , n. Suppose r1, . . . , rm 6∈
√
|k×| and rm+1, . . . , rn ∈√

|k×|. Then ρ(fi) < ri for i = 1, . . . ,m and we can choose r′1, . . . , r′m ∈
√
|k×|

such that
ρ(fi) ≤ r′i < ri

for i = 1, . . . ,m. Set r′i = ri when i = m+ 1, . . . , n. We can then define a bounded
k-algebra homomorphism ψ : k{r′−1T} → A sending Ti to fi for i = 1, . . . , n. The
existence of ψ is guaranteed by Corollary 6.5. Observe that ψ is surjective and
admissible. It follows that A is strictly k-affinoid. �

Theorem 8.4. Let A be a k-affinoid algebra. Then the following are equivalent:
(1) A is kH -affinoid;
(2) A is k√|k×|·H -affinoid;

(3) For any non-zero a ∈ A, ρ(a) ∈
√
|k×| ·H ∪ {0}.

Proof. The equivalence between (1) and (2) follows from Proposition 8.2.
(1) =⇒ (3): we may assume that H ⊇ |k×|. Take n ∈ N, r = (r1, . . . , rn) ∈ Hn

and an admissible epimorphism
ϕ : k{r−1T} → A.

Take a k-free polyray s with at least one component so that |ks| ⊇ {r1, . . . , rn}. We
can apply Lemma 8.3 to ϕ⊗̂kks, it follows that ρ(A) ⊆

√
|k×s | ∪ {0}.

(3) =⇒ (2): we may assume that H ⊇ |k×|. It suffices to apply the same
argument as (2) =⇒ (1) in the proof of Lemma 8.3.

�

9. Finite modules over affinoid algebras

Let (k, | • |) be a complete non-Archimedean valued field.
For any k-affinoid algebra A, we have defined the category BanfA of finite Banach

A-modules in Definition 5.3 in Banach rings. We writeModfA for the category of
finite A-modules.

Lemma 9.1. Let A be a k-affinoid algebra, (M, ‖ • ‖M ) be a finite Banach A-
module and (N, ‖ • ‖N ) be a Banach A-module N . Let ϕ : M → N be an A-linear
homomorphism. Then ϕ is bounded.
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Proof. Take n ∈ N such that there is an admissible epimorphism

π : An →M.

It suffices to show that ϕ ◦ π is bounded. So we may assume that M = An. For
i = 1, . . . , n, let ei be the vector with (0, . . . , 0, 1, 0, . . . , 0) of An with 1 placed at
the i-th place. Set C = maxi=1,...,n ‖ϕ(ei)‖N . For a general f =

∑n
i=1 aiei with

ai ∈ A, we have
‖ϕ(f)‖N ≤ C‖f‖M .

So ϕ is bounded. �

Proposition 9.2. Let A be a k-affinoid algebra. The forgetful functor BanfA →
ModfA is an equivalence of categories.

Proof. It suffices to construct the inverse functor. LetM be a finite A-module.
Choose n ∈ N and an A-linear epimorphism π : An → M . By Theorem 6.3, kerπ
is closed in An. We can endow M with the residue norm. By Lemma 9.1, the
equivalence class of the norm does not depend on the choice of π.

For any A-linear homomorphism f : M → N of finite A-modules, we endow
M and N with the Banach structures as above. It follows from Lemma 9.1 that f
is bounded. We have defined the inverse functor of the forgetful functor BanfA →
ModfA. �

Remark 9.3. Let A be a k-affinoid algebra. It is not true that a Banach A-module
which is finite as A-module is finite as Banach A-module.

As an example, take 0 < p < q < 1 and A = k{q−1T}, B = k{p−1T}. Then B
is a Banach A-module. By Example 2.4, the underlying rings of A and B are both
k[[T ]]. So the canonical map A→ B is bijective. But B is not a finite A-module.
As otherwise, the inverse map B → A is bounded by Lemma 9.1, which is not the
case.

The correct statement is the following: consider a Banach A-module (M, ‖•‖M )
which is finite as A-module, then there is a norm on M such that M becomes a
finite Banach A-module. The new norm is not necessarily equivalent to the given
norm ‖ • ‖M .

Proposition 9.4. Let A be a k-affinoid algebra, M be a finite Banach A-module
and N be a Banach A-module, then any A-module homomorphism M → N is
bounded.

Proof. Choose n ∈ N and an admissible epimorphism An →M , we reduce to
the case M = An. We may assume that n = 1. Then in this case, any A-module
homomorphism A→ N is bounded by definition of Banach A-modules. �

Proposition 9.5. Let A be a k-affinoid algebra and M,N be finite Banach A-
modules. Then the natural map

M ⊗A N →M⊗̂AN

is an isomorphism of Banach A-modules and M⊗̂AN is a finite Banach A-module.

Here the Banach A-module structure on M ⊗A N is given by Proposition 9.2.
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Proof. Choose m,m′ ∈ N an admissibly coexact sequence

Am
′
→ Am →M → 0

of Banach A-modules. Then we have a commutative diagram of A-modules:

Am
′ ⊗A N Am ⊗A N M ⊗A N 0

Am
′⊗̂AN Am⊗̂AN M⊗̂AN 0

with exact rows. By 5-lemma, in order to prove M ⊗A N
∼−→M⊗̂AN and M⊗̂AN

is a finite Banach A-module, we may assume that M = Am for some m ∈ N.
Similarly, we can assume N = An for some n ∈ N. In this case, the isomorphism
is immediate and M⊗̂AN is clearly a finite Banach A-module. By Lemma 9.1,
the Banach A-module structure on M⊗̂AN coincides with the Banach A-module
strucutre on M ⊗A N induced by Proposition 9.2. �

Proposition 9.6. Let A, B be a k-affinoid algebra and A → B be a bounded
k-algebra homomorphism. Let M be a finite Banach A-module, then the natural
map

M ⊗A B →M⊗̂AB
is an isomorphism of Banach B-modules and M⊗̂AB is a finite Banach B-module.

Proof. By the same argument as Proposition 9.5, we may assume thatM = An

for some n ∈ N. In this case, the assertions are trivial. �

Proposition 9.7. Let A be a k-affinoid algebra and M,N be finite Banach A-
modules. Let ϕ : M → N be an A-linear map. Then ϕ is admissible.

Proof. By Lemma 9.1, ϕ is always bounded. According to Proposition 9.6 and
Proposition 3.11, we may assume that k is non-trivially valued. By Theorem 6.3, N
is a Noetherian A-module. It follows from Corollary 7.4 in Banach rings that Imϕ
is closed in N and is finite as an A module. In particular, the norm induced from
N and from M are equivalent by Lemma 9.1. It follows that ϕ is admissible. �

Proposition 9.8. Let A be a k-affinoid algebra. Let n ∈ N and r = (r1, . . . , rn) be
a k-free polyray. Then M is a finite Banach A-module if and only if M⊗̂kkr is a
finite Banach A⊗̂kkr-module.

Proof. We may assume that r has only one component and write r1 = r.
The direct implication is trivial. Let us assume that M⊗̂kkr is a finite Banach
A⊗̂kkr-module. Take n ∈ N and an admissible epimorphism of A⊗̂kkr-modules

ϕ : (A⊗̂kkr)n →M⊗̂kkr.
Let e1, . . . , en denotes the standard basis of (A⊗̂kkr)n. We expand

ϕ(ei) =
∞∑

j=−∞
mi,jT

j .

By Proposition 6.6, we can assume that there is l > 0 such that mi,j = 0 for all
i = 1, . . . , n and |j| > l. It follows that

An(2l+1) →M
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sending the standard basis to mi,j with i = 1, . . . , n and j = −l,−l + 1, . . . , l is an
admissible epimorphism. �

Proposition 9.9. Let φ : A→ B be a morphism of k-affinoid algebras, n ∈ N and
r ∈ Rn>0. Then the following are equivalent:

(1) φ is finite and admissible.
(2) φ⊗̂kkr is finite and admissible.

This is [Tem04, Lemma 3.2]. I do not understand Temkin’s argument. The
following proof is a modification of the argument of Temkin’s.

Proof. (1) =⇒ (2): This is straightforward.
(2) =⇒ (1): The admissible part is straightforward. Let us prove that φ is finite.

We may assume that n = 1. When r is not in
√
|k×|, we just apply Proposition 9.8.

Now suppose r ∈
√
|k×|. Let us take m ∈ Z>0 such that rm = |c−1| for some

c ∈ k×. Define a bounded k-algebra homomorphism
ϕ : k{T} → k{r−1T}

sending T to cTm. Observe that ϕ is injective. We have argued in the proof of
Lemma 3.15 that this homomorphism is finite.

Then ϕ induces a finite extension of ring Frac k{r−1T}/Frac k{T}. In particular,
the closure of Frac k{T} in kr is a subfield over which kr is finite. But this valuation
field is isomorphic to k{T}. By Proposition 9.6 and fpqc descent [Stacks, Tag 02LA],
we may assume that r = 1.

Recall that k1 is the completion of Frac k{T}. Let {f̃i}i∈I be the set of irre-
ducible monic polynomials in k̃[T ]. Lift each f̃i to fi ∈ k̊[T ]. Let a ∈ A⊗̂kk1, we
represent a as

a =
∞∑
l=0

alT
l +

∑
i∈I,j≥1,0≤k<deg fi

aijkT
k/f ji .

A similar expression exists for elements in B⊗̂kk1 as well. Moreover, the representa-
tion is unique.

As B⊗̂kk1 is finite over A⊗̂kk1, we can find b1, . . . , bm such that any b ∈ B can
be written as

b =
m∑
j=1

φ⊗̂kk1(aj)bj ,

where aj ∈ A⊗̂kk′. We can replace bj by bj,0 and aj by aj,0. It follows that B is
generated b1,0, . . . , bm,0 over A. �

For any ring A, AlgfA denotes the category of finitely generated A-algebras.

Proposition 9.10. Let A be a k-affinoid algebra. Then the forgetful functor
BanAlgfA → AlgfA is an equivalence of categories.

Recall that BanAlgfA is defined in Definition 5.9 in Banach rings.

Proof. It suffices to construct an inverse functor. Let B be a finite A-algebra.
We endow B with the norm ‖ • ‖B as in Proposition 9.2. We claim that B is a
Banach A-algebra.

Let us recall the definition of the norm. Take n ∈ N, an epimorphism ϕ : An → B
of A-modules. Then ‖ • ‖B is the residue norm induced by ϕ.

https://stacks.math.columbia.edu/tag/02LA
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Consider the A-linear epimorphism ψ : An⊗AAn → B⊗AB. By Proposition 9.7,
when both sides are endowed with the norms ‖ • ‖An⊗AAn and ‖ • ‖B⊗AB as in
Proposition 9.2, ψ is admissible. It follows that there is C > 0 such that for any
f, g ∈ B,

‖f ⊗ g‖B⊗B ≤ C‖f‖B · ‖g‖B .
On the other hand, by Proposition 9.2, the natural map B ⊗A B → B is bounded.
It follows that there is a constant C ′ > 0 such that

‖fg‖B ≤ C ′‖f ⊗ g‖B⊗B .
It follows that the multiplication in B is bounded and hence B is a finite Banach
algebra. Given any morphism B → B′ in AlgfA, we endow B and B′ with the norms
given by Proposition 9.2. It follows from Lemma 9.1 that B → B′ is a bounded
homomorphism of finite Banach A-algebras. So we have defined an inverse functor
to the forgetful functor BanAlgfA → AlgfA. �

Remark 9.11. It is not true that any homomorphism of k-affinoid algebras is
bounded. For example, if the valuation on k is trivial. Take 0 < p < q < 1 and
consider the natural homomorphism kp → kq. This homomorphism is bijective but
not bounded.

10. Affinoid domains

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

Definition 10.1. Let A be a kH -affinoid algebra. A closed subset V ⊆ SpA is
said to be a kH-affinoid domain in X if there is an object SpAV ∈ kH -Aff and a
morphism φ : SpAV → SpA in kH -Aff such that

(1) the image of φ in SpA is V ;
(2) given any object SpB ∈ kH -Aff and a morphism SpB → SpA whose

image lies in V , there is a unique morphism SpB → SpA in kH -Aff such
that the following diagram commutes

SpB

SpAV SpA
!

φ

We say V is represented by the morphism φ or by the corresponding morphism
A→ AV .

When H = R>0, we say V is a k-affinoid domain in X. When H = |k×|, we
say V is a strict k-affinoid domain in X.

We observe that AV is canonically determined by the universal property.

Remark 10.2. This definition differs from the original definition of [Ber12], we
follow the approach of Temkin instead. It can be shown that this definition is
equivalent to the orignal definition of Berkovich when H = R>0.

A priori, this does not seem to be a good definition, as it is not easy to see that
it is preserved by base field extension. But we will prove that it is the case after
establishing the Gerritzen–Grauert theorem.

We begin with a few examples.
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Example 10.3. Let A be a kH -affinoid domain, n,m ∈ N and f = (f1, . . . , fn) ∈ An,
g = (g1, . . . , gm) ∈ Am. Let r = (r1, . . . , rn) ∈

√
|k×| ·H

n and s = (s1, . . . , sm) ∈√
|k×| ·H

m. Define

(SpA)
{
r−1f, sg−1} := {x ∈ SpA : |fi(x)| ≤ ri, |gj(x)| ≥ sj , 1 ≤ i ≤ n, 1 ≤ j ≤ m} .

We claim that SpA
{
r−1f, sg−1} is a kH -affinoid domain in SpA. These domains

are called kH-Laurent domains in SpA. When m = 0, the domains SpA{r−1f} are
called kH-Weierstrass domains in SpA.

To see this, we define
A
{
r−1f, sg−1} := A{r−1T, sS}/(T1 − f1, . . . , Tn − fn, g1S1 − 1, . . . , gmSm − 1).

By Theorem 6.3, this defines a Banach k-algebra structure. We write ‖ • ‖′ for the
quotient norm. By definition, A

{
r−1f, sg−1} is a kH -affinoid algebra and there is

a natural morphism A→ A
{
r−1f, sg−1}. We claim that this morphism represents

SpA
{
r−1f, sg−1}.

For this purpose, we first compute SpA
{
r−1f, sg−1}. We observe that

SpA
{
r−1f, sg−1} → SpA is injective since A[f, g−1] is dense in A

{
r−1f, sg−1}.

We will therefore identify SpA
{
r−1f, sg−1} with a subset of SpA.

Next we show that the image of SpA
{
r−1f, sg−1} in SpA is contained in

(SpA)
{
r−1f, sg−1}. Take ‖ • ‖ ∈ SpA

{
r−1f, sg−1}. Then there is a constant

C > 0 such that
‖ • ‖ ≤ C‖ • ‖′.

Applying this to fki for some k ∈ Z>0 and i = 1, . . . , n, we find that

‖fi‖k = ‖fki ‖ ≤ C‖fki ‖′ ≤ C‖T ii ‖r,s−1 = Crki .

It follows that
‖fi‖ ≤ ri.

Similarly, we deduce |gj | ≥ sj for j = 1, . . . ,m. Namely, ‖•‖ ∈ (SpA)
{
r−1f, sg−1}.

Next we verify the universal property: let SpB → SpA be a morphism of kH -
affinoid domains that factorizes through (SpA)

{
r−1f, sg−1}. We write ψ : A→ B

for the corresponding morphism of kH -affinoid algebras. By Corollary 6.12 in Banach
rings., we have

ρB(fi) = sup
x∈SpB

|fi(x)| ≤ sup
y∈(SpA){r−1f,sg−1}

|fi(y)| ≤ ri

for i = 1, . . . , n. Similarly, one deduces that ρ(gj) ≤ s−1
j for j = 1, . . . ,m.

We will construct the dotted arrows:

A B

A{r−1T, sS}

A{r−1f, sg}

ψ

η

τ

so that this diagram commutes. We define η as the unique morphism sending Ti to
fi and Sj to gj for i = 1, . . . , n, j = 1, . . . ,m. The existence of such a morphism is
guaranteed by Corollary 6.5. In order to descend this morphism to η′, it suffices to
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show that Ti − fi and gjSj − 1 for i = 1, . . . , n and j = 1, . . . ,m lie in the kernel
of η. But this is immediate from our definition. Moreover, it is clear that η′ is
necessarily unique.

It remains to show that each point in (SpA)
{
r−1f, sg−1} lies in SpA

{
r−1f, sg−1}.

It suffices to treat the cases (n,m) = (1, 0) and (n,m) = (0, 1). We will only
handle the former case, as the latter is similar. In concrete terms, we need to
show that for any x ∈ SpA corresponding to a bounded semi-valuation | • |x on A
satisfying |f(x)| ≤ r, we can always extend | • |x to a bounded semi-valuation ‖ • ‖
on A{r−1f}. Replacing A by A/ ker | • |x, we may assume that | • |x is a valuation on
A. We endow A{r−1T} with the Gauss norm ‖ • ‖x,r induced by | • |x and A{r−1T}
with the quotient norm ‖ • ‖. This norm is bounded by construction. It suffices to
show that it is a valuation, and it extends the given valuation on A. The former
is a consequence of the latter, as A is dense in A{r−1f}. Now suppose a ∈ A. A
general preimage of a in A{r−1T} is

a+ (T − f)
∞∑
j=0

bjT
j = a− fb0 +

∞∑
j=1

(bj−1 − fbj)T j

with ‖bj‖Arj → 0 as j →∞. Now we compute

‖a− fbj +
∞∑
j=1

(bj−1 − fbj)‖x,r = max
{
|a− fb0|x,max

j≥1
|bj−1 − fbj |xrj

}

≥max
{
|a− fb0|x,max

j≥1
|bj−1 − fbj |x|f |jx

}
= max

{
|a− fb0|x,max

j≥1
|f jbj−1 − f j+1bj |x

}
≥ |a|x.

So ‖a‖ ≥ |a|x. The reverse inequality is trivial. We conclude.

Example 10.4. Let A be a kH -affinoid domain. Let n ∈ N, g ∈ A, f =
(f1, . . . , fn) ∈ An, r = (r1, . . . , rn) ∈

√
|k×| ·H

n. Assume that g, f1, . . . , fn gener-
ates the unit ideal. Define

(SpA)
{
r−1 f

g

}
= {x ∈ SpA : |fi(x)| ≤ ri|g(x)| for i = 1, . . . , n} .

Then we claim that (SpA)
{
r−1 f

g

}
is a kH -affinoid domain in SpA. Domains of

this form are called kH-rational domains.
To see this, we define

A

{
r−1 f

g

}
:= A{r−1T}/(gT1 − f1, . . . , gTn − fn).

By Theorem 5.1, this is indeed a kH -affinoid domain. We will denote by ‖ • ‖′ the
residue norm. We will prove that the natural map A→ A

{
r−1 f

g

}
represents the

affinoid domain (SpA)
{
r−1 f

g

}
. Observe that

SpA
{
r−1 f

g

}
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is injective as elemnts of the form a/g with a ∈ A is dense in A
{
r−1 f

g

}
. Next we

show that

(SpA)
{
r−1 f

g

}
⊇ SpA

{
r−1 f

g

}
.

Let x ∈ SpA
{
r−1 f

g

}
, take | • |x as the corresponding bounded semi-valuation on

A
{
r−1 f

g

}
. Then there is a constant C > 0 such that for any k ∈ Z>0,

|fi|kx = |fki |x = |g|kx · |T ki |x ≤ C|g|kxrki
for all i = 1, . . . , n. In particular,

|fi|x ≤ ri|g|x.

Hence, x ∈ (SpA)
{
r−1 f

g

}
.

Next we verify the universal property. Let SpB → SpA be a morphism of
kH -affinoid spectra factorizing through (SpA)

{
r−1 f

g

}
. Observe that g(x) 6= 0 for

all x ∈ (SpA)
{
r−1 f

g

}
. As otherwise, fi(x) = 0 for all i = 1, . . . , n. This contradicts

our assumption on g, f1, . . . , fn. It follows that ψ(g) is invertible by Corollary 6.11
int the chapter Banach Rings. From the definition of (SpA)

{
r−1 f

g

}
, it is clear that

ρ(ψ(fi)) ≤ rρ(ψ(g)) for i = 1, . . . , n.
We construct

A B

A{r−1T}

A
{
r−1 f

g

}

ψ

η

τ

successively. The morphism η sends Ti to ψ(fi)/ψ(g) for i = 1, . . . , n. The existence
of such a morphism is guaranteed by Corollary 6.5. Clearly gTi − fi is contained in
ker η, so η descends to τ . The morphism τ is clearly unique.

It remains to verify that the image of SpA
{
r−1 f

g

}
in SpA is exactly

(SpA)
{
r−1 f

g

}
. In other words, we need to verify that if | • |x is a bounded

semi-valuation on A satisfying |fi|x ≤ ri|g|x, then | • |x extends to a bounded
semi-valuation on A

{
r−1 f

g

}
. Replacing A by A/ ker | • |x, we may assume that

| • |x is a valuation on A. Consider the Gauss valuation | • |x,r on A{r−1T} and
the residue norm ‖ • ‖ on A

{
r−1 f

g

}
. It suffices to show that ‖ • ‖ is a valuation

extending the valuation | • |x on A. The former is a consequence of the latter. Take
a ∈ A, we need to show that |a|x = ‖a‖.

A general preimage of a in A{r−1T} has the form

a+
n∑
i=1

(gTi − fi)
∞∑

α∈Nn
bi,αT

α
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with ‖bi,α‖Arα, where ‖ • ‖A denotes the initial norm on A. The same argument as
in Example 10.3 shows that

‖a+
n∑
i=1

(gTi − fi)
∞∑

α∈Nn
bi,αT

α‖x,r ≥ |a|x.

So ‖a‖x ≥ |ax|, the reverse inequality is trivial.

Proposition 10.5. Let ϕ : A → B be a bounded homomorphism of kH -affinoid
algebras. Then the following are equivalent:

(1) ϕ(A) is dense in B;
(2) there is a kH -Weierstrass domain V ⊆ SpA containing the image of SpB

under Spϕ such that ϕ extends to an admissible epimorphism AV → B.

Proof. (2) =⇒ (1): this is trivial.
(1) =⇒ (2): Assume that ϕ(A) is dense in B. Take n ∈ N, r ∈ Rn>0 and

an admissible epimorphism ϕ′ : A{r−1T} → B extending ϕ. By Proposition 6.6,
we may assume that ϕ′(Ti) = ϕ(fi) for some fi ∈ A for i = 1, . . . , n. We define
V = SpA{r−1T}. Then V satisfies all requirements. �

Proposition 10.6. Let A be a kH -affinoid algebra and V ⊆ SpA be a kH -affinoid
domain represented by ϕ : A→ AV . Then Spϕ induces a homeomorphism SpAV →
V .

In particular, we will identify V with SpAV and say SpAV is a kH -affinoid
domain in SpA.

Proof. We observe that SpAV → SpA is a monomorphism in the category
kH -Aff. In other words, A → AV is an epimorphism in the category kH -AffAlg.
To see this, let η1, η2 : AV → B be two arrows in kH -AffAlg such that η1 ◦ ϕ =
η2 ◦ ϕ. It follows from the universal property in Definition 10.1 that η1 = η2.
By Proposition 3.19, SpAV → SpA is a bijection. But SpAV and SpA are both
compact and Hausdorff by Theorem 6.13 in Banach rings., so SpAV → V is a
homeomorphism. �

Corollary 10.7. Let A be a kH -affinoid algebra. Let SpB be a kH -affinoid domain
in SpA and SpC is a kH -affinoid domain in SpA, then SpC is a kH -affinoid domain
in SpA.

Proof. This follows immediately from Proposition 10.6. �

Proposition 10.8. Let A be a kH -affinoid algebra and V,W be kH -Weierstrass
domains (resp. kH -Laurent domains, resp. kH -rational domains) in SpA. Then
V ∩W is also a kH -Weierstrass domain (resp. kH -Laurent domain, resp. kH -rational
domain).

Proof. This is clear in the Weierstrass and Laurent cases. We will prove
therefore assume that V and W are kH -rational.

Take f1, . . . , fn ∈ A, g1, . . . , gm ∈ A both generating the unit ideal and r =
(r1, . . . , rn) ∈

√
|k×| ·H

n, s = (s1, . . . , sm) ∈
√
|k×| ·H

m such that

V = SpA
{
r−1 f

fm

}
, W = SpA

{
s−1 g

gn

}
.
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We may assume that rn = sm = 1. Now let R = (Ri,j) ∈
√
|k×| ·H

mn where
Ri,j = risj and F = (Fi,j) with Fi,j = figj for i = 1, . . . , n, j = 1, . . . ,m. Observe
that the Fi,j ’s generate the unit ideal. We consider the kH -rational domain

Z = SpA
{
R−1 F

fngm

}
.

Clearly V ∩W ⊆ Z. We need to prove the reverse inequality. Let x ∈ Z, so we have

|figj(x)| ≤ risj |fngm(x)|

for any i = 1, . . . , n, j = 1, . . . ,m. In particular, when j = m, we have

|figm(x)| ≤ ri|fngm(x)|

for any i = 1, . . . , n. But fngm is invertible, so we can cancel gm(x) to find

|fi(x)| ≤ ri|fn(x)|.

So x ∈ V . Similarly, we have x ∈W . �

Corollary 10.9. Let A be a kH -affinoid algebra and V be a kH -Laurent domain in
SpA. Then V is also a kH -rational domain.

Proof. By Proposition 10.8, it suffices to show consider kH -Laurent domains
of the following form:

SpA{r−1f}, SpA{sg−1}

where r, s ∈
√
|k×| ·H and f, g ∈ A. Both domains are kH -rational by definition. �

Proposition 10.10. Let A be a kH -affinoid algebra and SpB be a kH -rational
domain in SpA. Then there is a kH -Laurent domain SpC in SpA such that
SpB ⊆ SpC and SpB is a kH -Weierstrass domain in SpC.

Proof. We write

B = A

{
r−1 f

g

}
for some n ∈ N, r = (r1, . . . , rn) ∈

√
|k×| ·H

n, f = (f1, . . . , fn) ∈ An and g ∈ A
such that f1, . . . , fn, g generate the unit ideal. Let g′′ be the image of g in B, which
is a unit. Choose c ∈

√
|k×| ·H such that ρB(g−1) < c−1. Set C = A{cg−1}, then

SpB ⊆ SpC. Moreover,
SpB ∩ SpC = ∅.

Let f ′1, . . . , f ′n, g′ be the images of f1, . . . , fn, g in C. Write f ′ = (f ′1, . . . , f ′n). Then
by Corollary 6.11 in Banach rings., g′ is a unit and

SpB = SpC{r−1g′−1f ′}.

�

Proposition 10.11. Let A be a kH -affinoid algebra, SpB be a kH -Weierstrass
domain (resp. kH -rational domain) in SpA and SpC be a kH -Weierstrass domain
(resp. kH -rational domain) in SpB. Then SpC is a kH -Weierstrass domain (resp.
kH -rational domain) in SpA.
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Proof. We first handle the Weierstrass case. Write
B = SpA{r−1f}, C = SpB{s−1g}

for some n,m ∈ N, r ∈
√
|k×| ·H

n, s ∈
√
|k×| ·H

m and f = (f1, . . . , fn) ∈ An,
g = (g1, . . . , gm) ∈ Bm. Observe that if we replace g with a small perturbation,
the domain SpC in SpB remains the same, so we may assume that g1, . . . , gm ∈ A.
Then

SpC = SpA{r−1f} ∩ SpA{s−1g}
is a kH -Weierstrass domain by Proposition 10.8.

Next we handle the rational case. Write

B = A

{
s−1 f

g

}
for some m ∈ N, f = (f1, . . . , fm) ∈ Am, r = (r1, . . . , rm) ∈

√
|k×| ·H

m and g ∈ A
such that f1, . . . , fm, g generate the unit ideal.

By Proposition 10.10 and Proposition 10.8, it suffices to handle the special
cases C = B{r−1h} and C = B{rh−1} for some r ∈

√
|k×| ·H and h ∈ B. Observe

that making a small perturbation on h does not change the domain. As A[g−1] is
dense in B, we may assume that there is n ∈ Z>0 such that h′ = gnh ∈ A. As g is
invertible on SpB, we can find c ∈

√
|k×| ·H so that

|g(x)|n > c−1

for x ∈ SpB.
We need to treat the cases C = B{r−1h} and C = B{rh−1} separately. In the

first case, we write

SpC = SpB ∩ SpA
{

(r, c)−1 (h′, 1)
gn

}
.

In the second case,

SpC = SpB ∩ SpA
{

(r, c)−1 (gn, 1)
h′

}
.

�

Lemma 10.12. Let A be a kH -affinoid algebra and SpB be a kH -affinoid domain in
SpA. Let SpC be a rational domain in SpA, then (SpC) ∩ (SpB) is a kH -affinoid
domain in SpA represented by A→ B⊗̂AC.

Proof. We first recall that B⊗̂AC is kH -affinoid by Proposition 3.4.
We may assume that

C = A

{
s
f

g

}
for some m ∈ N, f = (f1, . . . , fm) ∈ Am, r = (r1, . . . , rm) ∈

√
|k×| ·H

m and g ∈ A
such that f1, . . . , fm, g generate the unit ideal.

Observe that there is a natural isomorphism

B⊗̂AC ∼= B

{
s−1 f

g

}
.

Hence,
SpB⊗̂AC = {x ∈ SpB : |fi(x)| ≤ s|g(x)| for i = 1, . . . ,m} .
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On the other hand,

SpC = {x ∈ SpA : |fi(x)| ≤ s|g(x)| for i = 1, . . . ,m} .

So SpB⊗̂AC = B⊗̂AC. By Proposition 3.4, we have the Cartesian square in the
diagram below:

SpD

SpB⊗̂AC SpC

SpB SpA
�

It remains to verify the universal property. Let SpD → SpC be a morphism of
kH -affinoid spectra that factorizes through (SpC) ∩ (SpB). Then by the universal
property of SpB in SpA, we find the dotted morphism SpD → SpB making the
diagram commutes. Then as the square is Cartesian, we get the desired morphism
SpD → SpB⊗̂AC. This morphism is clearly unique. �

Proposition 10.13. Let A be a kH -affinoid algebra. Then for any x ∈ SpA, any
neighbourhood U of x in SpA contains a kH -Laurent domain V in SpA containing
x and x lies in the topological interior of V .

Proof. The open neighbourhoods of the form

{y ∈ SpA : |fi(y)| < ri, |gj(y)| > sj}

for some f1, . . . , fn, g1, . . . , gm ∈ A and r1, . . . , rn, s1, . . . , sm ≥ 0 form a basis of
open neighbourhoods of x in SpA, so we may assume that U has this form. Then
we can choose r′i, s′j ∈

√
|k×| ·H for i = 1, . . . , n, j = 1, . . . ,m such that

|fi(x)| < r′i < ri, |gj(x)| > s′j > sj .

Then the kH -Laurent domain V := SpA{r′−1f, sg′−1} is contained in U . Moreover,
x is clearly in the interior of V . �

11. Graded reduction

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

Definition 11.1. Let A be a Banach k-algebra, we define the graded reduction of
A as

Ã :=
⊕
h∈R>0

{x ∈ A : ρ(x) ≤ h} / {x ∈ A : ρ(x) < h} .

For any f ∈ A with ρ(f) 6= 0, we define f̃ as the image of f in the ρ(f)-graded piece
of Ã.

Definition 11.2. Let A be a kH -affinoid algebra. We define the kH-graded reduction
of A as the

√
|k×| ·H-graded ring

ÃH :=
⊕

h∈
√
|k×|·H

{x ∈ A : ρ(x) ≤ h} / {x ∈ A : ρ(x) < h} .
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For any f ∈ A with ρ(f) 6= 0, we define f̃ as the image of f in the ρ(f)-graded
piece of ÃH .

For any morphism f : A→ B of kH -affinoid algebras, we define
f̃H : ÃH → B̃H

as the map induced by sending the class of x ∈ A with ρ(x) ≤ h for any h ∈√
|k×| ·H to the class of f(x) ∈ B.

Recall that ρ(A) =
√
|k×| ·H ∪ {0} by Theorem 8.4, so f̃ is well-defined.

This definition is compatible with Definition 11.1 in the sense that if we regard a√
|k×| ·H-graded ring as an R>0-graded ring, the two definitions give the same

object.

Example 11.3. If K is a kH -affinoid algebra which is a field as well, then K̃H is a√
|k×| ·H-graded field. This is immediate from the definition.

Lemma 11.4. Let (A, ‖ • ‖) be a k-affinoid algebra, n ∈ N and r ∈ Rn>0. Let
f ∈ k{r−1T}. Expand f as

f =
∑
α∈Nn

aαT
α.

Then
ρ(f) = max

α∈Nn
ρ(aα)rα.

Proof. By induction, we may assume that n = 1 and write r = r1. As ρ is a
bounded powerly bounded semi-norm, we have

ρ(f) ≤ max
j∈N

ρ(ajT j) ≤ max
j∈N

ρ(aj)ρ(T j) = max
j∈N

ρ(aj)rj .

Observe that ρ(aj) is not ambiguous: when intepreted as in A and in A{r−1T}, it
has the same value.

Conversely, we need to show that for any j ∈ N,
ρ(f) ≥ ρ(aj)rj .

Equivalently, this means for any k ∈ Z>0 and any j ∈ N, we need to show that
‖fk‖r ≥ ρ(aj)krjk.

Fix j and k as above. We compute the left-hand side:

fk =
∑

β=(β1,...,βk)∈Nk
bβT

|β|, bβ =
k∏
l=1

aβl .

It follows that
‖fk‖r = max

β∈Nk
‖bβ‖T |β|.

Take β = (j, j, . . . , j), we find

‖fk‖r ≥ ‖akj ‖rjk ≥ ρ(aj)krjk.
�

Lemma 11.5. Assume that k is non-trivially valued. Let A be a strictly k-affinoid
algebra. Then for any a, f ∈ A, the set of non-zero values ρ(fna) for n ∈ N is a
discrete subset of R>0.
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Proof. As A is noetherian Theorem 6.3, it has only finitely many minimal
prime ideals, say p1, . . . , pm. It follows that

SpA =
m⋃
i=1

SpA/pi.

Here we make the obvious identification by identifying SpA/pi with a subset of
SpA.

By Corollary 6.12 in Banach rings., it suffices to consider each of SpA/pi
separately, so we may assume that A is an integral domain.

By Corollary 5.2, we can take d ∈ N and a finite injective homomorphism
of k-algebras ι : k{T1, . . . , Td} → A. According to Proposition 9.11 in Banach
rings., ρA is the restriction of the norm ‖ • ‖FracA on FracA induced by the finite
extension FracA/Frac k{T1, . . . , Td} from the Gauss valuation. But it is well-known
that ‖ • ‖FracA is the maximum of finitely many valuations on FracA. Reproduce
BGR3.3.3.1 somewhere. The assertion is by now obvious. �

Lemma 11.6. Let (A, ‖ • ‖) be a k-affinoid algebra, f ∈ A with r = ρ(f) > 0. Let
B = A{r−1f}. Then for any a ∈ A, we have

ρB(a) = lim
n→∞

r−nρA(fna).

If moreover, ρB(a) > 0, then there is n0 > 0 such that for n ≥ n0,
ρB(a) = r−nρA(fna), ρB(fna) = r−nρA(a).

Proof. We observe that for any a ∈ A, n ∈ Z>0, we have
ρB(fna) = rnρB(a).

So the last two assertions are equivalent.
Take a k-free polyray s such that A⊗̂kks and B⊗̂kks are both strictly ks-affinoid.

By Proposition 3.11, A⊗̂kks{r−1f} ∼−→ B⊗̂kks. Moreover, ρA and ρB are both
preserved after base change to ks. So we may assume that k is non-trivially valued
and A and B are strictly k-affinoid.

Observe that for n ∈ Z>0,
ρA(fn+1a) ≤ ρA(f)ρA(fna) = rρA(fna).

So r−nρA(fna) is decreasing in n. Moreover, for any x ∈ SpA{r−1f}, by Exam-
ple 10.3, we have

|f(x)| ≥ r.
By Corollary 6.12 in Banach rings., we have

|f(x)| = r

for any x ∈ SpA{r−1f}. It follows from Corollary 6.12 in Banach rings that for any
n ∈ Z>0,

ρA(fna) = sup
x∈SpA

|fna(x)| ≥ rn sup
x∈SpA{rf−1}

|a(x)| = rnρB(a).

By Lemma 11.5, the decreasing sequence {r−nρA(fna)}n either tends to 0 or is
eventually constant. It converges to 0, there is nothing else to prove. So let us
assume that there is α ∈ R>0 and n0 > 0 such that for n ≥ n0, we have

r−nρA(fna) = α.
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We have to show that α ≤ ρB(a). Assume the contrary α > ρB(a). Then for all
x ∈ SpA, we have

|fna(x)| ≤ rn|a(x)|.
So fna must obtain its maximum on U := {x ∈ SpA : |a(x)| ≥ α}. But U is disjoint
from SpA{r−1f} as

α > ρB(a).
It follows from Example 10.3 that

β := sup
x∈U
|f(x)| = max

x∈U
|f(x)| < r.

So
ρ(fna) = sup

x∈SpA
|fna(x)| = sup

x∈U
|fna(x)| ≤ βn sup

x∈U
|a(x)|.

This contradicts the fact that α > 0. �

Proposition 11.7. Let A be a kH -affinoid algebra and r ∈ Rn>0, then there is a
functorial isomorphism

˜A{r−1T}
H ∼−→ ÃH [r−1T ]

of
√
|k×| ·H-graded rings.

Recall that kr is defined in Example 3.12.

Proof. By Lemma 11.4, we have a natural isomorphism

˜A{r−1T}
H

s
∼−→

⊕
α∈Nn

ÃHsr−α

for any s ∈
√
|k×| ·H. This establishes the desired isomorphism. �

Proposition 11.8. Let A be a kH -affinoid algebra and f ∈ A with r = ρ(f) > 0.
Then there is a natural isomorphism

ÃH
f̃

∼−→ ˜A{rf−1}
H

of
√
|k×| ·H-graded rings.

Recall that A{rf−1} is defined in Example 10.3, by Theorem 8.4, it is kH -
affinoid.

Proof. Let B = A{rf−1} and denote by φ : ÃH → ÃH
f̃

the natural
√
|k×| ·H-

graded homomorphism. From the universal property add details, we can factor the
natural map ÃH → B̃H as ψ : ÃH

f̃
→ B̃H . We have a commutative diagram:

ÃH B̃H

ÃH
f̃

φ
ψ

We claim that ψ is bijective. Let ã/f̃m be an element in kerψ, where ã ∈ ÃH is
homogeneous. Lift ã to a ∈ A. Then ρB(a) < ρA(a). By Lemma 11.6, ρA(fna) <
rnρA(a) when n is large enough, so

f̃nã = 0
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in Ã. Therefore, ã/fm = 0 in ÃH
f̃
. We have shown that ψ is injective.

It remains to show that ψ is surjective. Let b̃ ∈ B̃H be a non-zero homogeneous
element. Lift b̃ to b ∈ B of the form f−na for some a ∈ A. By Lemma 11.6 again, up
to enlarging n, we can assume that ρB(a) = ρA(a). Then ã = f̃nb̃ has a preimage
in Ã.

�

Corollary 11.9. Let A be a kH -affinoid algebra and r ∈ Rn>0, then there is a
functorial isomorphism

ÃH ⊗k̃H k̃r
H ∼= Ã⊗̂kkr

H

of
√
|k×| ·H-graded rings.

Proof. We can write
A⊗̂kkr = lim−→

g∈k{r−1T},g 6=0
A{r−1T}{ρ(g)g−1}.

Taking graded reduction, we find

Ã⊗̂kkr
H

= lim−→
g∈k{r−1T},g 6=0

˜A{r−1T}{ρ(g)g−1}
H

= lim−→
g∈k{r−1T},g 6=0

˜A{r−1T}
H

g̃

= lim−→
g∈k{r−1T},g 6=0

ÃH [r−1T ]g̃

=ÃH ⊗k̃H k̃r
H
.

Here we have applied Proposition 11.8 in the second equality and Proposition 11.7
in the third equality. The first equality follows from the simple observation that
graded reduction commutes with filtered colimits. �

Theorem 11.10. Let φ : A→ B be a morphism of kH -affinoid algebras. Then the
following are equivalent:

(1) φ is finite and admissible.
(2) φ̃ : ÃH → B̃H is finite.

Proof. Take n ∈ N and r ∈ Rn>0 so that

ρ(A⊗̂kkr) = ρ(B⊗̂kkr) = |kr|
and kr is non-trivially valued. Proof that this is possible.

By Corollary 2.36 in Commutative algebras and Proposition 9.9, we may assume
that k is non-trivially valued and ρ(A) = ρ(B) = |k|. By Lemma 2.33 in the chapter
Commutative Algebra, we have Ã = Ã1 ⊗k̃1

k̃. According to Corollary 5.5, φ is
automatically admissible if it is finite.

So it suffices to argue that φ is finite if and only if φ̃ : Ã→ B̃ is finite.
Assume that ϕ is finite. We show that ϕ̃ is finite.
First consider the case where A is an integral domain.
We claim that there is d ∈ N and a k-algebra homomorphism ψ : k{T1, . . . , Td} →

A such that φ ◦ ψ is finite and injective. In fact, choosing an epimorphism
α : k{T1, . . . , Td} → A, we can apply Theorem 5.1 to find φ ◦ α to conclude.
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It suffices to show that φ̃ ◦ ψ is finite in order to conclude that φ̃ is finite. So
we are reduced to the case A = k{T1, . . . , Td} and kerφ = 0.

We will show that the conditions of Lemma 10.1 in Banach rings is satisfied
with ρB as the norm B. We have shown that ρB is a faithful k{T1, . . . , Td}-algebra
nrom in Corollary 4.16. As B is of finite over k{T1, . . . , Td}, the rank condition is
clearly satisfied. It remains to establish that φ̊ is integral.

By Proposition 5.12, for f ∈ B, there is an integral equation

fn + φ(a1)fn−1 + · · ·+ φ(an) = 0

over A such that ρB(f) = maxi=1,...,n |bi|1/isup. If f ∈ B̊, then |bi|sup ≤ 1, hence
bi ∈ B̊. Add a ref

Conversely, assume that φ̃ is finite. It suffices to apply Lemma 5.15 to conclude
that φ is finite. �

Corollary 11.11. Let A be a kH -affinoid algebra, then ÃH is finitely generated
over k̃H .

Proof. Take n ∈ N, r ∈ Rn>0 and an admissible epimorphism

π : k{r−1T} → A.

Applying Theorem 11.10, we find that it suffices to prove that ˜k{r−1T}
H

is finitely
generated over k̃H . But this follows from Proposition 11.7. �

Lemma 11.12. Let A be a kH -affinoid algebra and K/k be an analytic field
extension. Then the natural homomorphism

(11.1) ÃH ⊗k̃H K̃
H → Ã⊗̂kK

H

is finite.

Proof. Take n ∈ N, r = (r1, . . . , rn) ∈
√
|k×| ·H

n and an admissible epimor-
phism π : k{r−1T} → A. Then the induced map

πK : K{r−1T} → A⊗̂kK

is an admissible epimorphism. By Theorem 11.10, its reduction

π̃K : K̃H [r−1T ]→ Ã⊗̂kK
H

is finite. It remains to show that the image of π̃K is contained in the image of
(11.1).

For this, we just observe that for i = 1, . . . , n, π̃K(Ti) 6= 0 if and only if
ρ(πK(Ti)) = ri. The latter is equivalent to that ρ(π(Ti)) = ri. In particular, π̃K(Ti)
is the image of π(Ti) under (11.1). Our assertion follows. �

Lemma 11.13. Let A be a kH -affinoid algebra and B, C be kH -affinoid algebras
over A. Then the natural homomorphism

(11.2) B̃H ⊗ÃH C̃
H → B̃⊗̂AC

H

is finite.
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Proof. Take n,m ∈ N, r = (r1, . . . , rn) ∈
√
|k×| ·H

n, s = (s1, . . . , sm) ∈√
|k×| ·H

m and admissible epimorphism π : A{r−1T} → B, π′ : A{s−1S} → C.
Then we have an admissible epimorphism

π⊗̂Aπ′ : A{r−1T, s−1S} → B⊗̂AC.

By Theorem 11.10, the reduction

π̃⊗̂Aπ′ : ÃH [r−1T, s−1S]→ B̃⊗̂AC
H

is finite. It suffices to show that the image of this map is contained in the image of
(11.2). The argument is similar to that in Lemma 11.12, and we omit it. Include
it �

Definition 11.14. Let A be a kH -affinoid algebra, we define the reduction map

˜SpAH := Spec
√
|k×|·H ÃH .

We have a natural map πH : SpA→ ˜SpAH : given x ∈ SpA, it defines a character
χx : A → H (x), which in turn induces χ̃x : ÃH → H̃ (x). We define πH(x) =
ker χ̃x.

Lemma 11.15. Assume that k is non-trivially valued and A is a strictly k-affinoid
algebra. Then the reduction map

π : SpA→ Spec Ã

is surjective.

The reduction map is defined as follows: a point x ∈ SpA defines a character
χx : A→H (x). By reduction, we get χ̃x : Ã→ H̃ (x). The kernel is the image of
x.

Proof. Step 1. We assume that A = k{T1, . . . , Tn} for some n ∈ N.
We make induction on n. The case n = 0 is trivial. We first handle the case

n = 1. In this case, we have an explicit description of the Berkovich disk Example 7.1
when k is algebraically closed.

By Corollary 8.6 in Banach rings, we have a natural identification

Sp k{T} = Sp ̂kalg{T}/Gal(ksep/k).

By Proposition 4.1, we have an identification k̃{T} = k̃[T ]. The prime ideals are
of two types: (T − a) for some a ∈ k and 0. In the former case, the type (1) point
defined by a lies in the inverse image of (T − a) by definition. In the second case,
we take the Gauss point ‖ • ‖1.

Consider the case n > 1. Assume that the assertion has been proved for lower
n. Let p : Sp k{T1, . . . , Tn} → Sp k{T1} be the projection induced by k{T1} →
k{T1, . . . , Tn} sending T1 to T1. We have a comutative diagram

Sp k{T1, . . . , Tn} Sp k{T1}

Spec k̃[T1, . . . , Tn] Spec k̃[T1]

π

p

π .
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Let x̃ ∈ Spec k̃[T1, . . . , Tn] and ỹ be its image in Spec k̃[T1]. By the case n =
1, we can find y ∈ Sp k{T1} with π(y) = ỹ. There is a bijection p−1(y) with
Sp H (y){T2, . . . , Tn}. So it suffices to show that

(11.3) Sp H (y){T2, . . . , Tn} → Specκ(ỹ)[T2, . . . , Tn]

is surjective. By construction, we have an embedding κ(ỹ) → H̃ (y), so we can
factorize (11.3) as

Sp H (y){T2, . . . , Tn} → Spec H̃ (y)[T2, . . . , Tn]→ Specκ(ỹ)[T2, . . . , Tn].

By induction, the first map is surjective. The second map is obviously surjective. It
follows that the map (11.3) is also surjective.

Step 2. We handle the case where A is an integral domain. By Corollary 5.2,
we can find d ∈ N and a finite injective morphism

k{T1, . . . , Td} → A.

Then FracA is a finite extension of Frac k{T1, . . . , Td}. Fix an algebraic closure
of Frac k{T1, . . . , Td}. Let K be the smallest extension of Frac k{T1, . . . , Td} inside
this algebraic closure which is norm over Frac k{T1, . . . , Td} and which contains A.
Let G = Gal(K/Frac k{T1, . . . , Td}). Then let B be the smallest k-subalgebra of
K containing all γ(A) for γ ∈ G. Then B is finite over k{T1, . . . , Td} and hence
strictly k-affinoid by Proposition 8.1. We therefore have a commutative diagram

SpB SpA Sp k{T1, . . . , Td}

Spec B̃ Sp Ã Spec k[T1, . . . , Td]

.

By going up theorem, all horizonal maps are surjective. So we only have to show
that πB is surjective by diagram chasing.

The group G acts on K and hence on B. For any γ ∈ G, we write the
corresponding automorphism B → B as γ. The induced map on the reduction
B̃ → B̃ is denoted by γ̃. In this way, we see that the G-action is compatible with
the big square. All maps but the left vertical map are surjective. So it suffices to
show that G acts transitively on each fiber of Spec B̃ → Spec k̃[T1, . . . , Td].

Let x̃ ∈ Spec k̃[T1, . . . , Td] and ỹ, ỹ′ ∈ Spec Spec B̃ lying over x̃. If no elements
in γ ∈ G transforms ỹ to ỹ′, we have

pỹ′ 6∈ pγ̃(ỹ)

as B̃ is finite over k̃[T1, . . . , Td]. Here p• denotes the prime ideal corresponding to •.
By prime avoidance [Stacks, Tag 00DS], we can find f ∈ B̊ such that f̃ ∈ pỹ′ by
γ̃(f̃) 6∈ pỹ for any γ ∈ G.

Take the minimal equation of f over Frac k{T1, . . . , Td}:

fr + a1f
r−1 + · · ·+ ar = 0.

Up to sign, ar is a power of the product of all conjugates of f . So

ãr ∈ pỹ′ \ pỹ.

https://stacks.math.columbia.edu/tag/00DS
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By ar ∈ Tn as it is integral over Tn by Proposition 4.15. While f ∈ B̊ implies that
ar ∈ (k{T1, . . . , Td})◦ by Corollary 4.16. Thus,

ãr ∈ pỹ′ ∩ ˜k{T1, . . . , Td} = px̃,

which contradicts the fact that ãr 6∈ pỹ.
Step 3. We handle the general case. Let p1, . . . , pr be the minimal primes of

A. The number is finite by Theorem 6.3. We then have a map

A→
r∏
i=1

A/pi.

We have a commutative diagram∐r
i=1 SpA/pi SpA

∐r
i=1 Spec Ã/pi Spec Ã

.

All maps but the right vertical one are surjective. Hence, the right vertical map is
surjective as well. �

Remark 11.16. Berkovich [Ber12] claimed that this follows from the proofs in
[BGR84]. The author does not understand how this works. The current proof is
due to Mattias Jonsson.

Theorem 11.17. Let A be a kH -affinoid algebra. Then the reduction πH : SpA→
˜SpAH is surjective.

Proof. Step 1. We reduce to the case where ρ(A) = |k|.
Take n ∈ Z>0 and r = (r1, . . . , rn) ∈ Rn>0 such that ρ(A⊗̂kkr) = |kr| such that

r1 is k-free. Let B = A⊗̂kkr. Then we have a commutative diagram

SpB SpA

S̃pB
H

S̃pA
H

πH πH .

It suffices to show that the left vertical map is surjective and the bottom map is
surjective.

We begin with the bottom map. By Corollary 11.9, we can identify

S̃pB
H ∼−→ S̃pA

H
⊗k̃H k̃r

H
.

It suffices to show that
S̃pA

H
⊗k̃H k̃r

H → S̃pA
H

is surjective, which is trivial.
Step 2. We may assume that k is non-trivially valued, A is strictly k-affinoid

and ρ(A) = |k|. By Lemma 2.34 in Commutative algebras, it suffices to show that
the usual reduction π : A→ Spec Ã is surjective, which is exactly Lemma 11.15. �

Proposition 11.18. Let A be a kH -affinoid algebra. Then for any generic point x̃
of an irreducible component of ˜SpAH , πH,−1(x̃) is a single point.
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Proof. We first suppose that ˜SpAH is irreducible. Note that the character

ÃH → κ(x̃)

corresponding to x̃ is injective, since ÃH does not have non-trival homogeneous
nilpotents. By Theorem 11.17, we can find x ∈ SpA whose reduction is x̃, we have

ρA(f) ≤ |f(x)|.

So equality holds by Corollary 6.12 in Banach rings. In other words, πH,−1(x̃) =
{ρA}.

In general, by Lemma 3.2 in Commutative algebras, we can find f̃ ∈ ÃH that
is not contained on all generic points of irreducible components by x. Include
graded version of prime avoidance somewhere. Lift f̃ to f ∈ A and r = ρA(f). Let
B = A{r−1f}, then

πH,−1{x} ⊆ SpA{r−1f} = SpB.
By Proposition 11.8, we have an identification

B̃H = ÃH
f̃
.

It suffices to apply the special case to B. �

Proposition 11.19. Let A be a kH -affinoid algebra. Let Z be the set of generic
points of irreducible components of ˜SpAH . Then πH,−1(Z) is the Shilov boundary
of A.

In particular, A admits a Shilov boundary.

Recall that the Shilov boundary is defined in Definition 8.7 in Banach rings.

Proof. Let f ∈ A be an element with ρ(f) = r > 0. Assume that f̃ ∈ Ã is
not contained in some x̃ ∈ Z, take the unique lift x ∈ A of x̃ by Proposition 11.18.
Then |f(x)| = r. In particular, πH,−1(Z) is a boundary.

To show that πH,−1(Z) is a minimal boundary, let x ∈ πH,−1(Z) and U be an
open neighbourhood of x. As

x =
⋃
f̃(x̃)

π−1
X (D(f̃)),

we can find f ∈ A with f̃(x̃) 6= 0 and SpA{rf−1} ⊆ U , where r = ρ(f). As U is
open, we can find ε > 0 such that

SpA{(r − ε)f−1} ⊆ U.

So x belongs to any boundary of A.
�

12. Gerritzen–Grauert theorem

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

Definition 12.1. Let A be a kH -affinoid algebra. A morphism ϕ : SpB → SpA in
kH -Aff is a closed immersion if the corresponding morphism A→ B in kH -AffAlg
is an admissible epimorphism.
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Example 12.2. Let A be a kH -affinoid algbera. Consider the diagonal morphism
∆ : SpA→ SpA× SpA, defined by the codiagonal A⊗̂kA→ A. We claim that ∆
is a closed immersion.

We first observe that we have a factorization
A⊗k A→ A⊗̂kA→ A

of the usual codiagonal, but A ⊗k A → A is clearly surjective. Hence, so is
A⊗̂kA→ A.

In order to see that the codiagonal is admissible, we first observe that it is
bounded by definition. Take a k-free polyray r with at least one component, then by
Proposition 3.11, we may reduce to the case where k is non-trivially valued. Then
it suffices to apply the open mapping theorem Theorem 7.2 in Banach rings.

Proposition 12.3. Let A,C be a kH -affinoid algebra. Let SpB → SpA be a closed
immersion. Consider the Cartesian diagram:

SpB⊗̂AC SpB

SpC SpA
�

Then SpB⊗̂AC → SpC is also a closed immersion.

Proof. This follows from the right-exactness of completed tensor products. �

Definition 12.4. Let ϕ : SpB → SpA be a morphism in kH -Aff. We call ϕ a
kH-Runge immersion if there is a factorization in kH -Aff of ϕ:

SpB → SpC → SpA,
such that SpB → SpC is a closd immersion and SpC → SpA is a kH -Weierstrass
domain.

Lemma 12.5. Let A be a kH -affinoid algebra and V be a kH -Laurent domain in SpA
represented by A → B = A{r−1f, sg} for some n,m ∈ N, f = (f1, . . . , fn) ∈ An
and g = (g1, . . . , gm) ∈ Am, r = (r1, . . . , rn) ∈

√
|k×| ·H

n and s = (s1, . . . , sm) ∈√
|k×| ·H

m. Then
(1) B̃H is finite over the subalgebra generated by ÃH and f̃1, . . . , f̃n, g̃

−1
1 , . . . , g̃−1

m ;
(2) if V is a neighbourhood of a point x ∈ SpA, then χ̃x(B̃H) is finite over

χ̃x(ÃH).

Proof. (1) Consider the admissible epimorphism
A{r−1T, sS} → B.

By Theorem 11.10, it induces a finite homomorphism

˜A{r−1T, sS}
H

→ B̃H .

The former is computed in Proposition 11.7 and our assertion follows.
(2) This is a special case of (1). �

Theorem 12.6 (Gerritzen–Grauert, Temkin). Let ϕ : SpA→ SpB be a monomor-
phism in kH -Aff. Then there is a finite cover of X by kH -rational domains
W1, . . . ,Wk such that the restrictions ϕi : ϕ−1(Wi)→Wi are kH -Runge immersions
for i = 1, . . . , k.
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Proof. Step 1. We reduce to the following claim: for each x ∈ SpA, there
is a kH -rational domain U in SpB containing y = ϕ(x) such that V = ϕ−1U is a
neighbourhood of x in SpA and the induced map V → U is a closed immersion.

Assume this holds. Write U = SpB
{
r fg

}
for some n ∈ N, f = (f1, . . . , fn) ∈

Bn and g ∈ B such that f1, . . . , fn, g generates the unit ideal and r ∈
√
|k×| ·H

n.
As g is invertible on U , we can find a small kH -rational domainW in SpB containing
y such that

(1) g is invertible on W ;
(2) ϕ−1W ⊆ ϕ−1U .

Then U ∩W is a kH -Weierstrass domain in W and ϕ−1W → W is therefore a
kH -Runge immersion. From the compactness of SpA, this implies that we can find
kH -rational domains W1, . . . ,Wm of SpB such that ϕ−1(Wi)→Wi is a kH -Runge
immersion for i = 1, . . . ,m and X1 ∪ · · · ∪Xm contains an open neighbourhood U
of ϕ(SpA). As SpB is compact, we can find finitely many kH -rational domains
Wm+1, . . . ,Wk which do not intersection ϕ(SpA) that covers SpB \ U . Then the
covering W1, . . . ,Wk satisfies all the requirements.

We have reduced the problem to a local one on SpB.
Step 2. We show that we may assume that χ̃x(ÃH) is finite over χ̃y(B̃H). Here

the notation χy is defined in Definition 6.7 in Banach rings.
By Corollary 11.11, χ̃x(ÃH) is finitely generated over χ̃y(B̃H). Take generators

h1, . . . , hl ∈ A. By Proposition 3.19, H (x) ∼−→H (y), so we can find f1, . . . , fl, g ∈
B with |g(y)| = 1 such that ∣∣∣∣(fig − hi

)
(x)
∣∣∣∣ < ρ(hi)

for all i = 1, . . . , l.
In fact, we can take g = 1. This can be seen as follows. Let B′ = B{ag−1}

for some a ∈
√
|k×| ·H with a < 1. Then by Lemma 12.5, χ̃y(B̃′

H) is finite over
χ̃y(B̃H). So up to replacing B by the B′ and SpA by the inverse image of SpB′,
we may assume that g is invertible. Replacing fi by fi/g, we could then assume
that g = 1.

Up to replacing SpB by SpB{ρ(h1)−1f1, . . . , ρ(hl)−1fl}, we can guarantee that
f̃i = h̃i for i = 1, . . . , l. So our assertion follows.

Step 3. We may assume that χ̃x′(ÃH) is finite over χ̃y′(B̃H) for any x′ ∈ SpA
and y′ = ϕ(x′).

Let π : SpA→ S̃pA
H

be the reduction map. Let X denote the Zariski closure
of π(x). Then for any x′ ∈ SpA with π(x′) ∈ X , we have

ker χ̃x ⊆ ker χ̃x′ .

It follows that χ̃x′(ÃH) is finite over χ̃y′(B̃H).
Since π−1X is open in SpA Include the proof, we can find a kH -Laurent

neighbourhood SpB{rf, sg−1} for soem suitable tuples r, f, s, g of y such that
ϕ−1 SpB{rf, sg−1} ⊆ π−1X . Observe that for each x′ ∈ SpA, χ̃x′(ÃH) is finite
over χ̃y′(B̃H). This follows simply from Lemma 12.5. So up to replacing B with
B{rf, sg−1}, we conclude.
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Step 4. We claim that after all of these reductions, ϕ becomes a closed
immersion. By our assumptions, for any minimal homogeneous prime ideal p of ÃH ,
there is a point x ∈ SpA with ker χ̃y = p and ÃH/p is finite over ÃH .

Let p1, . . . , pk be the list of minimal homogeneous prime ideals of ÃH prove
finiteness, then

ÃH →
k⊕
i=1

ÃH/pi

is injective. Since B̃H is graded noetherian Introduce this notion, we find that
ÃH is finite over B̃H . So B → A is finite by Theorem 11.10. It follows that the
natural map A ⊗B A → A⊗̂BA is an isomorphism by Proposition 9.5. As ϕ is a
monomorphism, from general abstract nonsense, the codiagonal A⊗̂BA

∼−→ A is an
isomorphism. In particular, the codiagonal A⊗B A→ A is an isomorphism. This
implies that A→ B is surjective. �

Lemma 12.7. Let A be a kH -affinoid domain and V be a kH -affinoid domain in A
represented by A→ AV . Assume that SpAV → SpA is a closed immersion, then
V is a kH -Weierstrass domain.

In this case, U := SpA \ V is also kH -affinoid.

Proof. As SpAV → SpA is a closed immersion, we can find an ideal I ⊆ A
and assume that AV = A/I. Consider the morphism of kH -affinoid spectra ψ :
SpA/I2 → SpA induced by the natural map A/I2. By the universal property of V ,
we have a commutative diagram:

SpA/I2

SpA/I SpA

On the other hand, the natural map A/I2 → A/I induces a morphism of kH -affinoid
spectra ϕ : SpA/I → SpA/I2. From the universal property again, the composition
ψ ◦ ϕ is the identity. In particular, A/I2 → A/I is injective and hence I = I2. It
follows that I is the principal ideal generated by an idempotent element e. We
may assume that e 6= 0, e 6= 1. Take c ∈

√
|k×| ·H such that 0 < c < 1, then

V = (SpA){c−1e}.
Observe that U = (SpA){ce−1} and hence is kH -affinoid. �

Corollary 12.8. Let A be a kH -affinoid algebra and V be a kH -affinoid domain in
SpA. Then there are finitely many kH -affinoid domains W1, . . . ,Wn in SpA such
that

V =
n⋃
i=1

Wi.

Proof. By Theorem 12.6, we can find finitely many kH -rational domains
U1, . . . , Um in SpA such that V ∩ Ui → Ui is a kH -Runge immersion for each
i = 1, . . . ,m. By Proposition 10.11, it suffices to prove that V ∩ Ui is a kH -rational
domain in Ui. Observe that V ∩ Ui is a kH -affinoid domain in Ui by Lemma 10.12.
So we are reduced to the case where V → SpA is also a Runge immersion.

By Lemma 10.12 and Proposition 10.11 again, we may assume that V → SpA
is a Runge immersion.
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In this case, the result follows from Lemma 12.7. �

13. Tate acyclicity theorem

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

Definition 13.1. Let A be a kH -affinoid algebra, M be an A-module and V =
{Vi}i∈1,...,n be a finite covering of SpA by kH -affinoid domains. We define the
augmented Čech complex Č(V,M) as the following cochain complex with M placed
at the place 0:

Č(V,M) = 0→M →
n∏
i=1

M ⊗A AVi →
∏

1≤i<j≤n
M ⊗A AVi⊗̂AAVj → · · · .

Definition 13.2. Let A be a kH -affinoid algebra. A finite kH-affinoid covering of
SpA is a finite covering of A by kH -affinoid domains.

A finite kH -affinoid covering U is a
(1) kH-Laurent covering if there are n ∈ N, f1, . . . , fn ∈ A and r1, . . . , rn ∈√

|k×| ·H such that U consists of
SpA

{
r−ε1
1 f ε1

1 , . . . , r−εn1 f εn1
}

for all εi = ±1, i = 1, . . . , n. In this case, we say that U is the kH -Laurent
covering generated by r−1

1 f1, . . . , r
−1
n fn.

(2) kH-rational covering if there are n ∈ N, f1, . . . , fn ∈ A generating the unit
ideal, r = (r1, . . . , rn) ∈

√
|k×| ·H

n such that U consists of

SpA
{

(r/rj)−1 f

fj

}
for j = 1, . . . , n. In this case, we say that U is the kH -rational covering
generated by r−1

1 f1, . . . , r
−1
n fn.

In both cases, if f1, . . . , fn are all units in A, we say the covering is generated by
units in A.

Lemma 13.3. Let A be a kH -affinoid algebra and V = {Vi}i∈1,...,m be a finite
kH -affinoid covering of SpA. Then there is a kH -rational covering refining V.

Proof. By Corollary 12.8, we may assume that all Vi’s are kH -rational do-
mains in SpA. Take ni ∈ N, g(i)

1 , . . . , g
(i)
ni ∈ A generating the unit ideal, r(i) =

(r(i)
1 , . . . , r

(i)
ni−1, r

(i)
ni ) ∈

√
|k×| ·H

ni for each i = 1, . . . ,m such that if we write
g(i) = (g(i)

1 , . . . , g
(i)
ni ), then

Vi = SpA
{(

r(i)/r(i)
ni

)−1 g(i)

g
(i)
ni

}
for i = 1, . . . ,m. Let Bi be the kH -rational covering generated by

(r(i))−1f
(i)
1 , . . . , (r(i))−1f (i)

ni

for i = 1, . . . ,m. We denote the elements in Bi by V ij , j = 1, . . . , ni:

V ij := SpA
{(

r(i)/r
(i)
j

)−1 g(i)

g
(i)
j

}
.
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Let
I := {α = (α1, . . . , αm) ∈ Nm : 1 ≤ αi ≤ ni for i = 1, . . . ,m}

and
I ′ := {α = (α1, . . . , αm) ∈ I : αi = ni for some i = 1, . . . , n} .

Next for β = (β1, . . . , βm) ∈ I, we let

gβ = g
(1)
β1
· · · g(m)

βm
, rβ = r

(1)
β1
· · · r(m)

βm
,

and we have

Vβ := V 1
β1
∩ · · · ∩ V mβm = SpA

{
((rα)α∈I/rβ)−1 (gα)α∈I

gβ

}
as in the proof of Proposition 10.8.

When β ∈ I ′, we claim that

Vβ = SpA
{

((rα)α∈I′/rβ)−1 (gα)α∈I′
gβ

}
.

It is clear that the left-hand side is contained in the right-hand side. Conversely,
x in the right-hand side. By rearranging U1, . . . , Um, we may assume that x ∈ U1.
Let γ = (γ1, . . . , γm) ∈ I \ I ′. Then

r−1
γ |gγ(x)| ≤ (r(1)

n1
)−1(r(2)

γ2
)−1 · · · (r(m)

γm )−1
∣∣∣g(1)
n1
g(2)
γ2
· · · g(m)

γm

∣∣∣ ≤ r−1
β |gβ(x)|.

The claim follows. Now {Vβ}β∈I′ is the kH -rational covering generated by r−1
β gβ

for β ∈ I ′. It is clear that this covering refines V. �

Lemma 13.4. Let A be a kH -affinoid algebra and U be a kH -rational covering of
SpA. Then there is a kH -Laurent covering V of SpA such that for each SpC ∈ V,
the restriction U|SpC is a kH -rational covering of SpC generated by units in C.

Proof. We take n ∈ N, f1, . . . , fn ∈ A generating the unit ideal and
r1, . . . , rn ∈

√
|k×| ·H such that U is generated by r−1

1 f1, . . . , r
−1
n fn. Choose

c ∈
√
|k×| ·H such that

c < inf
x∈SpA

max
i=1,...,n

r−1
i |fi(x)|.

Let V be the kH -Laurent covering of SpA generated by (cr1)−1f1, . . . , (crn)−1fn.
We claim that V satisfies our requirements.

Take
V = SpA

{
(cr1)−ε1f ε1

1 , . . . , (crn)−εnf εnn
}

be an element in V , εi = ±1 for i = 1, . . . , n. We may assume that there is s ∈ [0, n]
such that ε1 = · · · = εs = 1 and εs+1 = · · · = εn = −1. We claim that U|V is teh
kH -rational covering generated by the images of r−1

s+1fs+1, . . . , r
−1
n fn in

A
{

(cr1)−1f1, . . . , (crs)−1fs, (crs+1)f−1
s+1, . . . , (crn)f−1

n

}
and these elements are units.

In fact, by our assumption, for x ∈ V ,
|fi(x)| ≤cri, for i = 1, . . . , s;
|fi(x)| ≥cri, for i = s+ 1, . . . , n.

In particular,
max
i=1,...,s

r−1
i |fi(x)| ≤ c < max

i=1,...,n
r−1
i |fi(x)|.
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Hence,
max
i=1,...,s

r−1
i |fi(x)| = max

i=s+1,...,n
r−1
i |fi(x)|.

Our claim follows. �

Lemma 13.5. Let A be a kH -affinoid algebra and U be a kH -rational covering
of SpA generated by units in A. Then there is a kH -Laurent covering V of SpA
refining U .

Proof. We take n ∈ N, units f1, . . . , fn ∈ A and r1, . . . , rn ∈
√
|k×| ·H such

that U is generated by r−1
1 f1, . . . , r

−1
n fn.

Take V as the Laurent covering generated by (rir−1
j )−1fif

−1
j for 1 ≤ i < j ≤ n.

We claim that V refines U . Write I = {(i, j) ∈ N2 : 1 ≤ i < j ≤ n}. To see this,
consider V ∈ V, say

V =
⋂

(i,j)∈I1

SpA{(rir−1
j )−1fif

−1
j } ∩

⋂
(i,j)∈I2

SpA{(rir−1
j )+1f−1

i fj},

where I1, I2 is a partition of I. For i, j ∈ {1, . . . , n}, we write i � j if (i, j) ∈ I1 and
j � i if (i, j) ∈ I2. Consider a maximal chain

i1 � i2 � · · · � is
on the set {1, . . . , n}. Then i � is for each i = 1, . . . , n. In other words, for x ∈ X,
we have

|fif−1
is

(x)| ≤ rir−1
is
.

The right-hand side defines an element in U . �

We first prove Tate acyclicity theorem in a special case.

Lemma 13.6. Let A be a kH -affinoid algebra. Let V = {Vi}i∈1,...,n be a finite
kH -affinoid covering of SpA. Assume that each Vi is a kH -rational domain. Then
Č(V, A) is exact and admissible.

Proof. Step 1. We reduce to the case where
V =

{
{SpA{r−1f}}, {SpA{rf−1}}

}
for some r ∈

√
|k×| ·H and f ∈ A.

Take a k-free polyray s with at least one component. By Proposition 3.11, we
can make the base change to ks and assume that k is non-trivially valued. In this
case, by open mapping theorem Theorem 7.2 in Banach rings., the admissibility is
automatic. It suffices to prove the exactness.

In this case, we can define a presheaf OX on X on the family of kH -rational
domains in SpA: OX(SpC) = C. From the general comparison theorem of Čech
cohomology BGR P327 reproduce in the topology part and Lemma 13.3, we may
assume that the covering V is kH -rational covering. But then we need to show
that for each kH -rational domain W in SpA, Č(V|W , A) is exact. Similarly, by
Lemma 13.4, we may assume that the kH -rational covering is generated by units.
Again, by Lemma 13.5, we can reduce to the case where V is a kH -Laurent covering.

We need to show that for each kH -affinoid domain SpC in SpA, Č(V|W , A) is
exact. But V|W is also a kH -Laurent covering. In particular, it suffices to show that
Č(V, A) is exact. By induction on the number of generators of V, we can reduce
the case stated in the beginning.
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Step 2. After the reduction, we need to show that the following sequence is
exact:

0→ A
i−→ A{r−1f} ×A{rf−1} d0

−→ A{r−1f, rf−1} → 0,

where i(a) = (a, a) and d0(f, g) = f − g. We extend the sequence to the following
commutative diagram in kH -AffAlg:

0 0

(ζ − f)A{r−1ζ} × (1− fη)A{rη} (ζ − f)A{r−1ζ, rζ−1} 0

0 A A{r−1ζ} ×A{rη} A{r−1ζ, rη}/(ζη − 1) 0

0 A A{r−1f} ×A{rf−1} A{r−1f, rf−1} 0

0 0

λ′

ι λ

ε d0

,

where ι(a) = (a, a) and λ sends ζ to ζ and η to η. The two colomns are clearly
exact. It is straightforward to see that everywhere the first non-zero row is exact.
The second non-zero row is also exact. The non-trivial part is to show that if∑∞

i=0 aiζ
i ∈ A{r−1ζ} ∈ A{r−1ζ} and

∑∞
i=0 biζ

i ∈ A{r−1η} ∈ A{rη} are such that
their pair lies in the kernel of λ, then

0 =
∞∑
i=0

aiζ
i −

∞∑
i=0

biζ
−i.

It follows that ai = 0 = bi for i > 0 and ai = bi. So we find that the second row is
also exact. By diagram chasing, the third row is also exact. �

Corollary 13.7. Let A be a kH -affinoid algebra and SpB be a k-affinoid domain in
SpA. Then for any complete non-Archimedean field extension K/k, any K-affinoid
algebra C and any bounded ring homomorphism A → C such that SpC → SpA
factorizes through SpB, there is a unique bounded ring homomorphism B → C
making the following diagram commutes:

SpC

SpB SpA

Proof. The proof is the same as in Example 10.4 when SpB is an affinoid
domain in SpA.

In general, by Corollary 12.8, we can cover SpB by finitely many affinoid
domains SpB1, . . . ,SpBn in SpA. Let SpCi be the rational domain in SpC defined
by the preimage of SpBi for i = 1, . . . , n. In other words, we have Cartesian
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diagrams for i = 1, . . . , n:
SpCi SpC

SpBi SpA
�

It follows from Lemma 13.6 that we have an admissible exact sequence

0→ C →
n∏
i=1

Ci →
n∏

1≤i<j≤n
Ci⊗̂CCj .

From general abstract nonsense, to construct bounded A-homomorphisms ϕ : B → C
is the same as to construct bounded homomorphisms ϕi : B → Ci over A such
that the induced maps B → Ci⊗̂CCj are compatible. On the other hand, by our
definition of Bi, in order to construct the morphisms ϕi, it suffices to construct
ψi : Bi → Ci over A. This reduces to the known case. �

Corollary 13.8. Let A be a kH -affinoid algebra and H ′ ⊇ H is a subgroup of R>0.
Let V = SpB be a kH -affinoid domain in SpA, then SpB is a kH′ -affinoid domain
in SpA.

Proof. This follows immediately from Corollary 13.7. �

Introduce the Shilov point

Proposition 13.9. Let A be a k-affinoid algebra and V ⊆ X is a closed subset.
Let f : A→ B be a morphism of k-affinoid algebras. Assume that for any complete
non-Archimedean field extension K/k, any K-affinoid algebra C and any bounded
ring homomorphism A → C such that SpC → SpA factorizes through V , there
is a unique bounded ring homomorphism B → C making the following diagram
commutes:

SpC

SpB SpA

.

Then V is an affinoid domain represented by the given A→ B.

Proof. The only non-trival thing is to show that the image of SpB → SpA is
V .

Step 1. We reduce to the case where k is non-trivially valued and A, B are
both strictly k-affinoid.

Let r be a k-free polyray with at least one component such that A⊗̂kkr and
B⊗̂kkr are both strictly kr-affinoid. Let V ′ be the inverse image of V in SpA⊗̂kkr.
Then clearly, V ′ has the same universal property. Assume that we have already
shown that the image of

SpB⊗̂kkr → A⊗̂kkr
is exactly V ′. We have a commutative diagram:

SpB⊗̂kkr SpA⊗̂kkr

SpB SpA
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From the existence of the Shilov points, both vertical sections are surjective. Hence,
the image of SpB in SpA is exactly V .

Step 2. After the reduction, it suffices to argue that each point in V ∩ SpmA
lies in the image. Let y be such a point corresponding to a maximal ideal my of A.
Consider the commutative diagram

A B

A/my B/myB

f

π π′
α

σ

.

The two vertical maps are the natural projections and σ is the map induced by f .
The existence of α and the commutativity of the diagram follow from the universal
property. Observe that σ is surjective as π′ is. Similarly, α is surjective as π is.
Moreover, myB = kerπ′ ⊆ kerα. In particular, σ is bijection. So myB is a maximal
ideal in B and the corresponding point x ∈ SpmB sends x to y. �

Remark 13.10. In fact, the proof proves the following result: assume that the
valuation on k is non-trivial and A is a strictly k-affinoid algebra. Let SpB be a
strictly k-affinoid domain. Then for each x ∈ SpmB corresponding to a maximal
ideal mx in B and any n ∈ Z>0, we have a natural isomorphism

A/mny
∼−→ B/mnx ,

where y is the image of x in SpA and my is the corresponding maximal ideal in A.
Moreover, mx = myB.

In particular, the natural map Âmy → B̂mx is an isomorphism.
Corollary 13.11. Let A be a k-affinoid algebra and SpB be a k-affinoid domain in
SpA. Assume that K/k is an extension of complete valued field. Then SpB⊗̂kK is
a K-affinoid domain in SpA⊗̂kK. Moreover, the image of SpB⊗̂kK in SpA⊗̂kK
is the inverse image of the image of SpB in SpA.

Proof. This is an immediate consequence of Proposition 13.9 and Corol-
lary 13.7. �

Corollary 13.12. Let ϕ : SpB → SpA be a morphism of kH -affinoid spectra. Let
V ⊆ SpA be a kH -affinoid domain in SpA, then ϕ−1(V ) is a kH -affinoid domain in
SpB.

In fact, suppose that V is represented by A→ AV , then B → B⊗̂AAV represents
ϕ−1V .

Proof. It is an immediate consequence of Proposition 13.9 and Corollary 13.7
that ϕ−1(V ) is a k-affinoid domain. As B⊗̂AAV is kH -affioid, we find that it is also
a kH -affinoid domain. �

Corollary 13.13. Let A be a kH -affinoid algbera and SpB, SpC be kH -affinoid
domains in SpA. Then SpB ∩ SpC is a kH -affinoid domain represented by the
natural morphism A→ B⊗̂AC.

Proof. This is an immediate consequence of Corollary 13.12. �

Corollary 13.14. Let A be a kH -affinoid algbera and SpB, SpC be kH -affinoid
domains in SpA. Then the natural morphism

SpB ∩ SpC → SpB × SpC
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is a closed immersion.

Proof. By Corollary 13.13, we need to show that the natural map
B⊗̂kC → B⊗̂AC

is an admissible epimorphism. From general abstract nonsense and Proposition 12.3,
it suffices to show that the codiagonal

A⊗̂kA→ A

is an admissible epimorphism. This follows from Example 12.2. �

Corollary 13.15. Let A be a kH -affinoid algebra. Let V,W be kH -affinoid domains
in SpA represented by A → AV and A → AW respectively. Then V ∩W is a
kH -affinoid domain represented by A→ AV ⊗̂AAW .

Proof. This is an immediate consequence of Corollary 13.12. �

Corollary 13.16. Let A be a k-affinoid algebra and SpB be an affinoid domain in
A. Then for any x ∈ SpB, we temporarily denote the completed residue field of B
(resp. A) at x as H B(x) (resp. H A(x)), then the natural map

H A(x)→H B(x)
is an isomorphism of complete valuation fields over k.

Proof. We have an obvious bounded morphism ι : H A(x)→H B(x) over k.
By Proposition 13.9, there is a unique dotted morphism completion the diagram

H A(x)

B A

The induced bounded morphism H B(x)→H A(x) provides the inverse of ι. �

Definition 13.17. Let X = SpA be a k-affinoid spectra, we define a presheaf
OX of Banach rings on the family of k-affinoid domains in X as follows: for any
k-affinoid domain SpB, we set

OX(SpB) = B.

Given an inclusion of affinoid domains, SpC → SpB, we define the corresponding
restriction map as the given morphism B → C.

Theorem 13.18. Let A be a k-affinoid algebra and V ′ = SpB be a k-affinoid
domain in SpA. Then B is a flat A-algebra.

Proof. Step 1. We reduce to the case where k is non-trivially valued and A
is strictly k-affinoid.

Let r be a k-free polyray with at least one component. Let ϕ : M → N be an
injective A-module homomorphism. We endowM and N with the structures of finite
Banach A-modules by Proposition 9.2 and then ϕ is admissible by Proposition 9.7.
By Proposition 3.11, the induced homomorphism

M⊗̂kkr → N⊗̂kkr
is injective and admissible. Let V ′ be the inverse image of V in SpA⊗̂kkr. By
Corollary 13.11, V ′ is a kr-affinoid domain represented by A⊗̂kkr → B⊗̂kkr.
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If we have shown the result in the special case, we know that
(M⊗̂kkr)⊗A⊗̂kkr (B⊗̂kkr)→ (N⊗̂kkr)⊗A⊗̂kkr (B⊗̂kkr)

is injective. By Proposition 9.6, this map can be identified with
(M⊗̂kkr)⊗̂A⊗̂kkr (B⊗̂kkr)→ (N⊗̂kkr)⊗̂A⊗̂kkr (B⊗̂kkr).

The latter map is easily identified with
M⊗̂AB → N⊗̂AB.

By Proposition 9.6 again, the latter map is identified with
M ⊗A B → N ⊗A B.

We conclude that A→ B is flat.
Step 2. After the reduction, we take a maximal ideal mx in B corresponding to

a point x ∈ SpB. Let y be the image of y in SpA and my denotes the corresponding
maximal ideal. Then by Remark 13.10, Âmy → B̂my is an isomorphism. By [Stacks,
Tag 0C4G] and [Stacks, Tag 0399], we conclude that A→ B is flat. �

Theorem 13.19 (Tate acyclicity theorem). Let A be a k-affinoid algebra and M
be an A-module. Let V = {Vi}i∈1,...,n be a finite k-affinoid covering of SpA. Then
the complex Č(V, A) is exact. It is exact and admissible if M is finite as A-module.

Proof. We first observe that teh admissibility follows from the same argument
as in Lemma 13.6. We will only concentrate on the exactness.

Step 1. We first reduce to the case M = A.
As the covering V is finite, we can find N ∈ N such that Ȟj(V,M ′′) = 0 for

all j ≥ N and all A-module M ′′. We take the minimum of such N . Assume that
N > 0.

Assume we have proved the theorem in this case, then the case where M is free
is immediate. In general, choose an exact sequence of A-modules:

0→M ′ → F →M → 0
with F free. In this case, we have a short exact sequence

0→ Č(V,M ′)→ Č(V, F )→ Č(V,M)→ 0.
The exactness follows from Theorem 13.18.

From the long exact sequence, we find that
Hq−1(V,M) ∼= Hq(V,M ′)

for all q ∈ Z. It follows that Hq(V,M) = 0 for all q ≥ N − 1. This argument works
for any A-module M , and we get a contradiction with our choice of N .

Step 2. After the reduction in Step 1 and the successful defition of OX in
Definition 13.17, the remaining of the argument is exactly the same as Lemma 13.6.

�

Corollary 13.20. Let A be a k-affinoid algebra and {SpBi} be a finite kH -affinoid
covering of SpA. Then A is kH -affinoid.

Proof. By Theorem 13.19, we have an admissible injective morphism

A→
∏
i∈I

Bi

https://stacks.math.columbia.edu/tag/0C4G
https://stacks.math.columbia.edu/tag/0399
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of Banach k-algebras. Then for any a ∈ A,

ρA(a) = max
i∈I

ρBi(a).

We conclude using Theorem 8.4. �

Definition 13.21. Let A be a kH -affinoid algebra. A compact kH-analytic domain
V in SpA is a finite union of kH -affinoid domains in SpA.

Lemma 13.22. Let A be a kH -affinoid algebra and V be a compact kH -analytic
domain. Write SpA as a finite union of kH -affinoid domains SpAi with i = 1, . . . , n
in SpA. Define Aij = Ai⊗̂AAj and

AV := ker

 n∏
i=1

Ai →
n∏

i,j=1
Aij

 .

Then the Banach k-algebra does not depend on the choice of the covering {SpAi}i
up to a canonical isomorphism.

The image of the natural continuous map SpAV → SpA contains V and the
map does not depend on the choice of the covering up to the canonical isomorphism
between SpAV for different coverings.

Proof. We first observe that AV is a Banach k-algebra as it is defined as an
equalizer. This follows from Lemma 4.22 in Banach rings.

Let {SpBj}j=1,...,m be another kH -affinoid covering of SpA. We need to show
that AV defined using the two coverings are canonically isomorphic. We write A′V
for

ker

 m∏
j=1

Bj →
m∏

i,j=1
Bij


to make a distinction. Write Bij = Bi⊗̂ABj .

By Theorem 13.19 in Affinoid algebras, the colomns in the following commutative
diagram are exact:

0 0

0 AV
∏n
i=1Ai

∏n
i,i′=1Aii′

0 ker ι
∏n
i=1
∏m
j=1Ai⊗̂ABj

∏n
i,i′=1

∏m
j,j′=1Aii′⊗̂ABjj′

∏n
i=1
∏m
j,j′=1Ai⊗̂ABjj′

η

τ

ι

The rows are exact by definition. By diagram chasing, the dotted arrow is injective.
To see it is surjective, it suffices to observe that the factors with i = i′ in the lower
right corner is exactly the same as the factors of the lower corner, so an element in
ker ι is necessarily in ker τ . It follows that the dotted arrow is surjective.

Similarly, we have a natural isomorphism A′V
∼−→ ker ι. We conclude the first

assertion.
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As for the second, observe that SpAV is defined as a colimit in the category
of Banach k-algebras, so it follows from general abstract nonsense that there is
a natural morphism SpAV → SpA. It clearly contains V in the image. The
compatibility with the isomorphism above follows simply from the fact that the
map η is an A-algebra homomorphism. �

Remark 13.23. This is also a natural continuous map V → SpAV , given by the
natural map AV → Ai for i = 1, . . . , n. This map is a section of the continuous map
SpAV → A we just constructed over V . In [Ber93], Berkovich always uses this map
instead of SpAV → A.

Definition 13.24. Let A be a k-affinoid algebra and V be a compact k-analytic
domain in SpA. We define the Banach k-algebra AV associated with V as AV
constructed in Lemma 13.22.

The continuous map SpAV → SpA constructed in Lemma 13.22 is called the
structure map ov V .

Proposition 13.25. Let A be a kH -affinoid algebra and V be a compact kH -analytic
domain in SpA. Then the following are equivalent:

(1) V is a kH -affinoid domain.
(2) AV is a kH -affinoid algebra and the image of the structure map SpAV →

SpA is exactly V .

Proof. (1) =⇒ (2): By Theorem 13.19 in Affinoid algebras, when V is a
kH -affinoid domain, AV is a kH -affinoid algebra and the structure map corresponds
to the inclusion of the kH -affinoid domain. There is nothing to prove.

(2) =⇒ (1): It suffices to show that the structure map represents the kH -
affinoid domain V . Take a kH -affinoid algebra D and a morphism SpD → SpA of
kH -affinoid spectra that factorizes through V . We need to construct a morphism
SpD → SpAV making the following diagram commutative

SpD

SpAV SpA

.

Take kH -affinoid domains SpB1, . . . ,SpBn in SpA that cover V . Let Ci =
Bi⊗̂AD for i = 1, . . . , n, then SpCi is a kH -affinoid domain in SpD by Corol-
lary 13.12 in Affinoid algebras. By Theorem 13.19 in Affinoid algebras and general
abstract nonsense, it suffices to construct the dotted arrow after restricting to SpCi
for i = 1, . . . , n. So we could assume that SpD → SpA factorizes through SpB1.
From the universal property, we therefore have the dotted morphism making the
following diagram commutative:

SpD

SpB1 SpA

.

It suffices to show that the natural homomorphism

B1 → AV ⊗̂AB1
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is an isomorphism. But this follows from general abstract nonsense as B1 is already
a Banach AV -algebra. �

Remark 13.26. This proposition is not correctly stated in [Ber12, Corollary 2.2.6].
The corresponding statement in [Ber93, Remark 1.2.1] is slightly weaker than our
statement.

Corollary 13.27. Let A be a kH -affinoid algebra and U, V ⊆ SpA be two closed
subsets with empty intersection. Set W = U ∪V . Then the following are equivalent:

(1) W is a kH -affinoid domain in SpA;
(2) U , V are both kH -affinoid domains in SpA.

If these equivalent conditions are satisfied, then we have a natural isomorphism
AW

∼−→ AU ×AV .

Proof. (2) =⇒ (1): This is a consequence of Proposition 13.25.
(1) =⇒ (2): We may assume that W = SpA. As U and V are both open and

closed, by Proposition 10.13, U and V are both compact kH -analytic domains in
SpA. In this case,

A ∼= AU ×AV
and hence AU and AV are both kH -affinoid. By Proposition 13.25 again, U and V
are both kH -affinoid domains in SpA. �

Corollary 13.28. Let A be a kH -affinoid algebra and U be a kH -affinoid domain
in SpA such that A → AU is an admissible epimorphism. Then V := X \ U is a
kH -affinoid domain in SpA, and we have a natural isomorphism

A
∼−→ AU ×AV .

Proof. This follows from Lemma 12.7 and �

14. Kiehl’s theorem

Let (k, | • |) be a complete non-Archimedean valued field.

Theorem 14.1. Let A be a k-affinoid algebra and U = {SpBi}i∈I a finite k-affinoid
covering of SpA. Suppose that we are given

(1) for each i ∈ I a finite Bi-module Mi;
(2) for each i, j ∈ I, an isomorphism

αij : Mi ⊗Bi Bij →Mj ⊗Bj Bji
of Bij-modules, where Bij = Bi⊗̂ABj such that
(a) αii is identity for all i ∈ I;
(b) αik = αjk ◦ αij on SpBi ∩ SpBj ∩ SpBk for i, j, k ∈ I.
Then there is a finite A-module M and isomorphisms

βi : M ⊗A Bi →Mi

of Bi-modules for each i ∈ I and such that the following diagram is
commutative:

M ⊗A Bi ⊗Bi Bij Mi ⊗Bi Bij

M ⊗A Bj ⊗Bj Bji Mi ⊗Bj Bji

βi⊗BiBij

αij

βi⊗BjBji
.
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If moreover each Mi is an Ai-algebra for i ∈ I and the maps αij are Bij-algebra
homomorphisms for i, j ∈ I, then we can endowM with the structure of an A-algebra
and βi is a Bi-algebra homomorphism for i ∈ I.

Proof. By the same reduction as in our proof of Lemma 13.6, it suffices to
handle the case where U is a Laurent covering generated by a single element:

U =
{

SpA{r−1f},SpA{rf−1}
}

for some r > 0 and f ∈ A. We write B1 = A{r−1f} and B2 = A{rf−1}. Then
B12 = A{r−1f, rf−1}. Let M12 = M1 ⊗B1 B12. We endow M1 (resp. M2, resp.
M12) with the structure of finite Banach B1-(resp. B2-, resp. B12-)module by
Proposition 9.2. We will denote the Banach norms on these modules by ‖•‖ without
specifying the index. Let ‖ • ‖A, ‖ • ‖1, ‖ • ‖2, ‖ • ‖12 denote the norms on A, B1,
B2, B12 respectively.

Step 1. We show that
d0 : M1 ×M2 →M12

is surjective, where d0(m1,m2) = m1 −m2. Note that we have omitted the obvious
map M1 →M12 and M2 →M12.

We will prove the following claim: let ε > 0 be a constant. Then there is a
constant α > 0 such that for each u ∈M12, there exist u+ ∈M1 and u− ∈M2 with

‖u±‖ ≤ α‖u‖, ‖u− u+ − u−‖ ≤ ε‖u‖.
This implies that d0 is surjective.

Let v1, . . . , vn be generators of the B1-moduleM1 and w1, . . . , wm be generators
of the B2-module M2. We write the images of v1, . . . , vn in M12 as v′1, . . . , v′n and
the images of w1, . . . , wm in M12 as w′1, . . . , w′m. We could assume that the norms
‖ • ‖ on M1, M2, M12 are the residue norms induced from Bn1 , Bm2 , Bn12 by the basis
{vi}, {wj}, {v′i} respectively. Then we can find an n ×m-matrix C = (cij) with
value in B12 and an m× n-matrix D = (Dji) with value in B12 such that

v′i =
m∑
j=1

cijw
′
j , i = 1, . . . , n;

w′j =
n∑
i=1

djiv
′
i, i = 1, . . . , n.

Fix β > 1. As B2 is dense in B12, we can find c′ij ∈ B2 for i = 1, . . . , n, j = 1, . . . ,m
such that

max
i,l=1,...,n

max
j=1,...,m

‖cij − c′ij‖2 · ‖djl‖2 ≤ β−2ε.

We write

u =
n∑
i=1

ai‖v′i‖

with a1, . . . , an ∈ B12 with ‖ai‖12 ≤ β‖u‖. For each ai with i = 1, . . . , n, we can
expand lift them into series

ai =
∞∑

j,k=0
cijkT

jSk ∈ A{r−1T, rS}

with
‖cijk‖Arj−k ≤ β‖ai‖12.
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In particular, we can find a+
i ∈ B1 and a−i ∈ B2 with

‖a+
i ‖1 ≤ β‖ai‖12, ‖a−i ‖2 ≤ β‖ai‖12.

Take

u+ =
∑
i=1n

a+
i vi ∈M1, u− =

∑
i=1n

m∑
j=1

a−i c
′
ijwj ∈M2.

Then u± satisfies all the requirements.
Step 2. We define M = ker d0. We will see that M satisfies the desired

requirement. To prove this assertion, it suffices to know that M generates Mi as
Ai-modules for i = 1, 2.

In fact, assuming that this holds, we can choose f1, . . . , fs ∈ M so that they
generateMi as Ai-module for i = 1, 2. In this way we get a surjective homomorphism
As →M . Similarly, we apply the same construction to the kernel of this map, we
get a presentation

Ar → As →M → 0,
which can be embedded in the large commutative diagram

0 Ar Ar1 ×Ar2 Ar12 0

0 As As1 ×As2 As12 0

0 M M1 ×M2 M12 0

0 0 0

d0

All colomns are exact by our assumptions. All rows are exact: the third row is
Step 1 and our construction of M ; the first two rows are trivial. The desired result
follows from the right-exactness of tensor products.

In order to prove that M generates Mi as Ai-module for i = 1, 2 is the same as
verifying

M ⊗A Ai →Mi

is surjective for i = 1, 2. Endow M and Mi with the structure of finite Banach
A-module and finite Banach Ai-module respectively by Proposition 9.2. By Proposi-
tion 9.6, we can identify M ⊗A Ai with M⊗̂AAi. Now take a k-free polyray r with
at least one component such that A⊗̂kkr, A1⊗̂kkr, A2⊗̂kkr and A12⊗̂kkr are all
strictly kr-affinoid. By Proposition 3.11, we can then reduce to the strictly affinoid
case.

Step 3. After the reductions, we can assume that k is non-trivially valued and
A, A1, A2, A12 are all strictly k-affinoid. We need to show that M generates M1
and M2 as A1-module and A2-module respectively.

For each x ∈ SpmA with kernel m, we claim that teh natural mapM →M/mMi

is surjective for i = 1, 2.
Assuming this claim, by Nakayama’s lemma, we see that M generates Mi as

A-module for i = 1, 2.
It remains to prove the claim. We have a short exact sequence

0→ mM →M →M/mM → 0.
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By [Stacks, Tag 03OM], we have a short exact sequence of Čech complexes

0 0 0

0 ker η M ker ι 0

0 mM1 ×mM2 M1 ×M2 M1/mM1 ×M2/mM2 0

0 mM12 M12 M12/mM12 0

0 0 0

η ι

The rows are exact and the colomns are complexes. It follows from Step 1 and the
snake lemma that we have an exact sequence

0→ ker η →M → ker ι→ 0.
In particular, the map M → ker ι is surjective.

Next assume that x ∈ SpB1, we will prove that ker ι→M1/mM1 is bijective.
A dual arguement applies in the case x ∈ SpB2. Note that this assertion readily
implies our claim.

By Remark 13.10, we have the natural map is a bijection
B2/mB2 → B12/mB12.

It follows that the following natural map is a bijection
M2/mM2 →M12/mM12.

In particular, we find that ker ι = M1/mM1. This proves our assertion.
Finally, the last assertion is clear as M is constructed as an equalizer. �

15. Boundaryless homomorphism

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

Definition 15.1. Let A be a k-affinoid algebra. A bounded A-algebra homomor-
phism ϕ : B → D from an A-affinoid algebra to a Banach A-algebra D is said to be
boundaryless with respect to A if there are n ∈ N, r = (r1, . . . , rn) ∈ Rn>0 and an
admissible epimorphism

π : A{r−1T} → B

such that ρD(ϕ ◦ π(Ti)) < ri for i = 1, . . . , n.

Intuitively, the condition means that we can embed SpB into a disk (relative
to A) by a closed immersion such that the image of SpD in SpB does not hit the
boundary of the disk.

Proposition 15.2. Let A be a k-affinoid algebra and ϕ : B → D a bounded A-
algebra homomorphism from an A-affinoid algebra to a Banach A-algebra (D, ‖ • ‖).
Then the following are equivalent:

(1) ϕ is boundaryless with respect to A;

https://stacks.math.columbia.edu/tag/03OM
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(2) ϕ̃(B̃R>0) is finite over ϕ̃(ÃR>0);
(3) for any r ∈ R>0 and any bounded A-algebra homomorphism ψ :

A{r−1T} → B, there is a polynomial P ∈ A[T ]:
P = Tn + a1T

n−1 + · · ·+ an

such that ρA(ai) ≤ ri for i = 1, . . . , n and ρD(ϕ ◦ ψ(P )) < rn;
(4) for any ε ∈ (0, 1), there are n ∈ Z>0, r = (r1, . . . , rn) ∈ Rn>0 and an

admissible epimorphism
π : A{r−1T} → B

such that
‖ϕ(π(Ti))‖ ≤ εri

for i = 1, . . . , n.

Proof. (1) =⇒ (2): Take n ∈ Z>0, r = (r1, . . . , rn) ∈ Rn>0 and an admissible
epimorphism

π : A{r−1T} → B

such that ρD(ϕ ◦ π(Ti)) < ri for i = 1, . . . , n.
By Theorem 11.10,

π̃ : ÃR>0 [r−1T ]→ B̃R>0

is finite. But ϕ̃(π̃(Ti)) = 0 for all i = 1, . . . , n, so φ̃(B̃R>0) is finite over φ̃(ÃR>0).
(2) =⇒ (3): Take ψ as in (3). We may assume that ρB(ψ(T )) = r, as

otherwise, there is nothing to prove. Let b̃ := ψ̃(T ) ∈ B̃R>0 . As ϕ̃(B̃R>0) is finite
over ÃR>0 , it is in particular integral. So we can find n ∈ N and homogeneous
elements ã1, . . . , ãn ∈ ÃR>0 such that if we set

b̃′ := b̃n + ã1b̃
n−1 + · · ·+ ãn,

then ϕ̃(b̃′) = 0. As ρ(b̃n) = rn, we may assume that ρ(ãi) = ri for i = 1, . . . , n. Lift
ãi to ai ∈ A, we see that ρA(ai) ≤ ri for i = 1, . . . , n. Let

P = Tn + a1T
n−1 + · · ·+ an.

We find immediately that ρD(ϕ ◦ ψ(P )) < rn.
(3) =⇒ (4): Fix ε ∈ (0, 1), we want to construct π as in (4). We first assume

that B = A{s−1T} for some s ∈ R>0.
By (3), we can find n ∈ Z>0 and a monic polynomial P = Tn + a1T

n−1 + · · ·+
an ∈ A[T ] such that ρA(ai) ≤ si and ρD(ϕ(P )) < sn. Up to replacing P by a power,
we may assume that

‖ϕ(P )‖ ≤ εsn‖ϕ‖−1.

Take q ∈ R>0, q > smax{‖ϕ‖/ε, 1}. We can define a bounded A-algebra homomor-
phism

π : A
{
q−1T0, s

−nT1, s
−n−1T2, . . . , s

−2n+1Tn
}
→ A{s−1T}

sending T0 to T and Ti to T i−1P for i = 1, . . . , n. This is well-defined by Corollary 6.5
as

ρA{s−1T}(T ) = s < q, ρA{s−1T}(T i−1P ) ≤ si−1ρA{s−1T}(P ) ≤ si−1+n

for i = 1, . . . , n. Moreover,
‖ϕ(π(T0))‖ =‖ϕ(T )‖ ≤ s‖ϕ‖ < εq,

‖ϕ(π(Ti))‖ =‖ϕ(T i−1P )‖ ≤ ‖ϕ(T i−1)‖ · ‖ϕ(P )‖ ≤ εsi+n−1.
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It remains to show that π is an admissible epimorphism.
Set R = Z[1−1A1, . . . , n

−1An] and define a ring homomorphism
ν : R[T0, T1, T2, . . . , Tn]→ A

{
q−1T0, s

−nT1, s
−n−1T2, . . . , s

−2n+1Tn
}

sending Ai to ai and Ti to Ti for i = 1, . . . , n. Fix l ∈ N. By Lemma 2.41 in
Commutative algebras, we can find polynomials Gl ∈ R[n−1T1, . . . , (2n− 1)−1Tn]
and Hl ∈ R[T0] of degree l such that degT0 Hl ≤ n − 1 and T l0 −Gl −Hl ∈ ker Φ,
where

Φ : R[T0, n
−1T1, (n+ 1)−1T2, . . . , (2n− 1)−1Tn]→ R[T ]

is the ring homomorphism sending T0 to T and Ti to T i−1(Tn +A1T
n−1 + · · ·+An)

for i = 1, . . . , n. Let gl = ν(Gl) and hl = ν(Hl). We expand hl as

hl = a
(l)
1 Tn−1

0 + · · ·+ a(l)
n .

As ρ(ai) ≤ si for i = 1, . . . , n, by Proposition 6.4, there is a constant C > 0,
independent of the choice of l such that

‖gl‖ ≤ Csl, ‖a(l)
i ‖ ≤ Cs

l

for i = 1, . . . , n. Choose an arbitrary element f ∈ A{s−1T}, we can expand

f =
∞∑
l=0

blT
l.

We define

g =
∞∑
l=0

blgl, di =
∞∑
l=0

bla
(l)
i

for i = 1, . . . , n and set
h = d1T

n−1
0 + · · ·+ dn.

Then π(g + h) = f and

‖g‖ ≤ C max
l∈N
‖bl‖sl = C‖f‖, ‖h‖ ≤ max

i=1,...,n
‖di‖qi ≤ C

(
max

i=1,...,n
qi
)
‖f‖.

So π is admissible and surjective.
(4) =⇒ (1): This is trivial. �

Corollary 15.3. Let A be a k-affinoid algebra and B be an A-affinoid algebra. Let
U be a k-affinoid domain in SpB and V be a compact k-analytic domain in SpB
contained in U , say V =

⋃n
i=1 Vi for some k-affinoid domains V1, . . . , Vn in SpB.

Assume that the morphisms BU → BVi are boundaryless with respect to A, then so
is the morphism BU → BV .

Proof. We verify Condition (3) in Proposition 15.2. Let r ∈ R>0. Consider a
bounded A-algebra homomorphism ψ : A{r−1T} → BU . By Proposition 15.2, we
can find monic polynomials Pi ∈ A[T ], say

Pi = Xmi + a
(i)
1 Xmi−1 + · · ·+ a(i)

mi

for i = 1, . . . , n, such that ρA(a(i)
j ) ≤ rj for j = 1, . . . ,mi and ρBVi (ψ(Pi)) <

ρA[T ](P ). We set P =
∏n
i=1 Pi. By Theorem 13.19,

BV →
n∏
i=1

BVi
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is injective and admissible, so

ρBV (P ) = ρ∏n

i=1
BVi

(P ) =
n∏
i=1

ρBVi (Pi) < ρA[T ](P ).

The polynomial P obviously satisfies the other condition in (3). �

Definition 15.4. Let ϕ : SpB → SpA be a morphism of kH -affinoid spectra. The
relative interior Int(ϕ) = Int(SpB/ SpA) of ϕ is the set of points y ∈ SpB such
that the corresponding character χy : B →H (y) is inner with respect to A.

The relative boundary ∂(SpB/ SpA) of ϕ is SpB \ Int(SpB/ SpA).
In other words, y ∈ Int(SpB/ SpA) if there are n ∈ N, r = (r1, . . . , rn) ∈ Rn>0

and an admissible epimorphism of A-algebras
π : A{r−1T} → B

such that |π(Ti)(y)| < ri for i = 1, . . . , n.
Proposition 15.5. Let A be a k-affinoid algebra and B be an A-affinoid algebra.
For a closed subset Σ ⊆ SpB, the following conditions are equivalent:

(1) Σ ⊆ Int(SpB/ SpA);
(2) For any ε ∈ (0, 1), there are n ∈ N, r ∈ Rn>0 and an admissible epimorphism

π : A{r−1T} → B such that
Σ ⊆ SpB

{
(εr)−1(π(T1), . . . , π(Tn))

}
.

Proof. (2) =⇒ (1): This follows immediately from the definition.
(1) =⇒ (2): For any y ∈ Σ, we can take a k-Weierstrass domain Vy of SpB

containing x in the interior such that B → BVy is boundaryless with respect to A.
In fact, by assumption, we can take n ∈ N, r = (r1, . . . , rn) ∈ Rn>0 and an admissible
epimorphism of A-algebras

π : A{r−1T} → B

such that |π(Ti)(y)| < ri for i = 1, . . . , n. We take si ∈ (|π(Ti)(y)|, ri) and define
the Weierstrass domain

Vy = SpB
{
s−1

1 π(T1), . . . , s−1
n π(Tn)

}
.

As Σ is compact, a finite number of them cover Σ. We can apply Corollary 15.3. �

Proposition 15.6. Let A be a k-affinoid algebra and ϕ : B → D a bounded
A-algebra homomorphism from an A-affinoid algebra to a Banach A-algebra D.
Then the following are equivalent:

(1) ϕ is boundaryless;
(2) Spϕ(SpD) ⊆ Int(SpB/ SpA).

Proof. Assume (2). Fix ε ∈ (0, 1). By Proposition 15.5, we can find n ∈ N,
r ∈ Rn>0 and an admissible epimorphism π : A{r−1T} → B of A-algebras such that

Spϕ(SpD) ⊆ SpB
{

(εr)−1(π(T1), . . . , π(Tn))
}
.

So ρD(ϕ ◦ π(Ti)) < ri. That is, ϕ is boundaryless.
Assume (1). We can find n ∈ N, r = (r1, . . . , rn) ∈ Rn>0 and an admissible

epimorphism
π : A{r−1T} → B

such that ρD(ϕ ◦ π(Ti)) < ri for i = 1, . . . , n. In particular, |ϕ ◦ π(Ti)(x)| < ri for
any x ∈ D. So (2) follows. �
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Proposition 15.7. Let ϕ : SpC → SpA and ψ : SpB → SpA be morphsim of
k-affinoid spectra. Consider the Cartesian diagram

SpB⊗̂AC SpC

SpB SpA

ψ′

� ϕ

ψ

.

Then
ψ′−1(Int(SpC/SpA)) ⊆ Int(SpB⊗̂AC/SpB).

Proof. Let x ∈ SpB⊗̂AC be a point such that ψ′(x) ∈ Int(SpC/SpA). We
can then find n ∈ N, r = (r1, . . . , rn) ∈ Rn>0 and an admissible epimorphism of
A-algebras

π : A{r−1T} → C

such that |π(Ti)(ψ′(x))| < ri for i = 1, . . . , n. By base change, we find an admissible
epimorphism of B-algebras

π′ : B{r−1T} → B⊗̂AC.

Moreover,
|π′(Ti)(x)| = |π(Ti)(ψ′(x))| < ri

for i = 1, . . . , n. �

Proposition 15.8. Let A,B,C be k-affinoid algebras and ϕ : SpB → SpA and
ψ : SpC → SpB be morphisms. Then

Int(SpC/SpA) = Int(SpC/SpB) ∩ ψ−1(SpB/ SpA).

Proof. By abuse of notations, we will denote the morphisms A → B and
B → C defined by ϕ and ψ as ϕ and ψ respectively.

Let x ∈ Int(SpC/SpA), then by definition, we can find n ∈ N, r =
(r1, . . . , rn) ∈ Rn>0 and an admissible epimorphism π : A{r−1T} → C of A-algebras
such that

|π(Ti)(x)| < ri

for i = 1, . . . , n. By scalar extension, π defines an admissible epimorphism of
B-algebras

π′ : B{r−1T} → C

with
|π′(Ti)(x)| < ri

for i = 1, . . . , n. So x ∈ Int(SpC/SpB).
On the other hand, let r ∈ R>0 and consider a bounded A-algebra homomor-

phism η : A{r−1T} → B. Applying Proposition 15.2 to ψ ◦ η : A{r−1T} → C, we
find a polynomial P ∈ A[T ] such that

P = Tn + a1T
n−1 + · · ·+ an

with ρA(ai) ≤ ri for i = 1, . . . , n and

|ψ ◦ η(P )(ψ(x))| < rn.

In other words, |η(P )(x)| < rn. So x ∈ ψ−1(SpB/ SpA) by Proposition 15.2.
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Conversely, take x ∈ Int(SpC/SpB) ∩ ψ−1(SpB/ SpA). By definition, we can
find m,n ∈ N, r = (r1, . . . , rn) ∈ Rn>0 and s = (s1, . . . , sm) ∈ Rm>0 and admissible
epimorphisms

π : A{r−1T} → B, π′ : B{s−1S} → C

such that |π(Ti)(ψ(x))| < ri for i = 1, . . . , n and |π′(Sj)(x)| < sj for j = 1, . . . ,m.
Then we have an obvious epimorphism

π′′ : A{r−1T, s−1S} → C

such that |π′′(Ti)(x)| < ri for i = 1, . . . , n and |π′′(Sj)(x)| < sj for j = 1, . . . ,m. So
x ∈ Int(SpC/SpA). �

Proposition 15.9. Let A be a k-affinoid algebra and SpB be a k-affinoid domain
in SpA. Then

Int(SpB/ SpA) = IntSpA(SpB).

Here IntSpA(SpB) is the topological interior of SpB in SpA.

Proof. Step 1. We first prove that Int(SpB/ SpA) ⊇ IntSpA(SpB).
Let y ∈ IntSpA(SpB), we need to show that y ∈ Int(SpB/ SpA).
Let SpC be a k-Laurent domain containing y in the interior. Then by Proposi-

tion 15.8, Int(SpC/SpA) ⊆ Int(SpB/ SpA)|SpC . So up to replacing B by C, we
may assume that B is a k-Laurent domain, say

B = A{r−1f, sg−1},
where n,m ∈ N, r = (r1, . . . , rn) ∈ Rn>0, s = (s1, . . . , sm) ∈ Rm>0, f = (f1, . . . , fn) ∈
An and g = (g1, . . . , gm) ∈ Am. The topological interior of SpB is then

{x ∈ SpA : |fi(x)| < ri, |gj(x)| > sj for i = 1, . . . , n; j = 1, . . . ,m} .
Consider the admissible epimorphism

π : A{r−1T, sS} → B

sending Ti to fi and Sj to gj for i = 1, . . . , n, j = 1, . . . ,m. Then |π(Ti)(y)| < ri
and |π(Sj)(y)| > sj for i = 1, . . . , n, j = 1, . . . ,m.

Step 2. We prove Int(SpB/ SpA) ⊆ IntSpA(SpB) when SpB is a k-Weierstrass
domain in SpA.

Let y ∈ Int(SpB/ SpA). We want to show that y ∈ IntSpA(SpB).
Take n ∈ N, r = (r1, . . . , rn) ∈ Rn>0 and an admissible epimorphism

π : A{r−1T} → B

such that |π(Ti)(y)| < ri for i = 1, . . . , n. By Proposition 10.5, we assume that
π(Ti) ∈ A for i = 1, . . . , n.

We claim that
U := {x ∈ SpB : |π(Ti)(x)| < ri for i = 1, . . . , n}

is open in SpA. This implies that y ∈ IntSpA(SpB).
We let

V := {x ∈ SpA : |π(Ti)(x)| ≤ ri for i = 1, . . . , n} .
As π is an admissible epimorphism, so is AV → B, so by Corollary 13.27,

V = SpB ∪ V ′,
where V ′ is a k-affinoid domain in SpA disjoint from SpB. So SpB is open in V .
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In particular, in order to show that
U = {x ∈ SpA : |π(Ti)(x)| < ri for i = 1, . . . , n} ∩ SpB

is open in SpA, it suffices to show that
{x ∈ SpA : |π(Ti)(x)| < ri for i = 1, . . . , n}∩V = {x ∈ SpA : |π(Ti)(x)| < ri for i = 1, . . . , n}
is open in SpA, which is clear.

Step 3. We prove Int(SpB/ SpA) ⊆ IntSpA(SpB).
Let x ∈ Int(SpB/ SpA). We want to show that x ∈ IntSpA(SpB).
By Theorem 12.6, we can find a finite k-rational covering {Xi}i=1,...,n of SpA

such that Yi := SpB ∩Xi is a k-Weierstrass domain in Xi. For any i = 1, . . . , n
such that y ∈ Yi. Then y ∈ Int(Yi/Xi) by Proposition 15.7. By Step 2, we can find
an open set Ui in SpA such that Ui ∩Xi ⊆ Yi. Let U be the intersection of the Ui’s
with i running over the indices in 1, . . . , n such that y ∈ Yi, then

U ∩ SpA ⊆ SpB.
So x ∈ IntSpA(SpB). �
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