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Analytic sets

1. Introduction

2. Remmert–Stein theorem

Lemma 2.1. Let n ∈ N and U be a relatively compact open neighbourhood of 0 in
Cn. Let k ∈ {0, 1, . . . , n−1}. We write Lk for the intersection of z1 = · · · = zn−k = 0
with U , where z1, . . . , zn are the coordinates on Cn. Let A be an analytic set in
U \ Lk of dimension ≤ k. Then for i = 0, . . . , k, we can find a linear subspace L′ of
Cn of dimension n− k + i such that

dimL′ ∩A ≤ i, dimL′ ∩ Lk ≤ i.

Proof. We make an induction on n. When n = 0, 1, there is nothing to prove.
Let n > 1. If i = k, we just take L′ = Cn. Assume 0 ≤ i < k.

Let M1, . . . ,MN be the irreducible components of A. We may assume that no
components are single points. Take a non-zero base point pj ∈Mj for j = 1, . . . , N .
Let H be an (n− 1)-dimensional linear subspace of Cn which does not contain Lk

or any of the points p1, . . . , pN . Without loss of generality, we may guarantee that
H is given by zn = 0.

Let kj denote the dimension of Mj for j = 1, . . . , N . Let M ′j = Mj ∩ H for
j = 1, . . . , N . Observe that the dimension ofM ′j is either kj or kj−1 for j = 1, . . . , N .
Let

M ′ :=
N⋃

i=1
M ′i .

Then dimM ′ ≤ k − 1. By the inductive hypothesis, we can find a linear subspace
L′ of Cn of dimension n− k + 1 with the desired properties. �

Lemma 2.2. Let k ≤ n be two elements in N and D = ∆k ×∆n−k be the product
of two unit polycylinders. Write L for ∆k × {0}. Consider a non-empty analytic
subset M of D \ L of dimension k everywhere. Assume that M does not intersect a
neighbourhood of ∆k × {y ∈ Cn−k : ‖y‖L∞ = 1}. Then for any ε > 0, M meets the
polycylinder {(x, y) ∈ D : ‖x‖L∞ < ε, |y|L∞ ∈ (0, 1)}.

Proof. Step 1. We observe that for each a ∈ ∆k, the intersection

{(x, y) ∈ D : x = a} ∩M

is discrete. In fact, by our assumption, the absolute values the coordinate functions
of ∆n−k obtain their maxima on each irreducible component of the intersection. By
Corollary 4.23 in Morphisms between complex analytic spaces, these coordinates
are all constant.
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6 ANALYTIC SETS

Step 2. Let (x1, y1) ∈ M . Then y1 6= 0 by assumption. We may assume
that x1 6= 0 as otherwise there is nothing to prove. Let us write x1 = (x1

1, . . . , x
1
k),

y1 = (y1
1 , . . . , y

1
n−k) with x1

1 6= 0 and y1
1 6= 0.

Let b = (x1
2, . . . , x

1
k). Let N be the intersection ofM with ∆×{b}×∆n−k. Then

N is non-empty and has dimension 1 everywhere. In fact, by Krulls Hauptidealsatz,
the dimension of N at each point is at least 1. By Step 1, the dimension is at most
1.

We argue that we can take |z1| on M as small as wel wish. Suppose otherwise,

sup
z∈M
|z1| > 0.

Tkae q ∈ Z>0 with
|x1

1|q < |y1
1 |.

Consider the function f : N → C sending (x, y) to y1/x
q
1. Then f is a morphism of

complex analytic spaces and is bounded, say

sup
(x,y)∈N

|f(x, y)| = C0.

Then C0 > 1 by our choice of q. But at the boundary of D, |z1| = 1, so we find that
|f(x, y)| obtains its maximum on each irreducible component of N . So in particular,
|z1| obtains its infimum on each irreducible component of N . This contradicts the
fact that N has dimension 1 everywhere.

We can now assume that |x1
1| < ε. Now we can replaceM by {x1

1}×∆k−1×∆n−k

and reduce the value of k by 1. By induction, we conclude. �

Lemma 2.3 (Fundamental lemma). Let X be a complex manifold and F be a
nowhere dense analytic set of dimension ≤ k, where k ∈ N. Let E be an analytic
set in X \ F such that for any x ∈ E,

dimx E = k.

Then {
x ∈ F : Ē is analytic at x

}
is clopen in X.

Proof. The given set is clearly open. It suffices to show that it is closed.
Let p ∈ F be a point in the closure of the given set. We need to show that Ē

is analytic at p. The problem is local on X, we may assume that X is a complex
model space. Then it is immediate that we can reduce to the case where X is a
domain in Cn for some n ∈ N. By enlarging F , we may assume that F is defined
by y = 0, where x, y denote the first k and the last n− k coordinates on X ⊆ Cn.
Finally, we may assume that p = 0.

By Lemma 2.1, we can take a linear subspace L of Cn which meets F and E
only at discrete points. We may arrange that L is defined by the condition x = 0.

Take ε, δ > 0 so that
(1)

S :=
{

(x, y) ∈ Ck × Cn−k : ‖x‖L∞ < ε, ‖y‖L∞ < δ
}
⊆ D;

(2) {
(x, y) ∈ Ck × Cn−k : ‖x‖L∞ < ε, ‖y‖L∞ = δ

}
∩ E = ∅.
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Observe that for all a ∈ Ck, ‖a‖L∞ < ε, the intersection

({a} × Cn−k) ∩ E ∩ IntS

is discrete. In fact, the intersection is an analytic set in S \ F and the absolute
values of y1, . . . , yn−k take their maxima on each irreducible components by (2). So
they are in fact constant.

By our assumption, there are points at which Ē is analytic on Z := {|x| <
ε, y = 0}. Let B0 be a connected component of the set of such points. We can
equivalently view B0 as an open subset of {|x| < ε}. Then for any a ∈ B0, the set

Fa := {(x, y) ∈ Cn : x = a} ∩ Ē ∩ IntS

is discrete. Let (x1, y1) be a point in this set, then Ē is equidimensional of dimension
k at this point. Each irreducible component Kj at (x1, y1) is a ramified covering of
order mj . We define the order m(x1, y1) as this sum.

For each a ∈ B0, we define s(a) as the sum of multiplicities of points of Fa.
Then s(a) is locally constant on B0 and by (2), s(a) is actually constant. Let s be
this common value.

Assume that Ē is not analytic at 0. Then B0 meets |x| = ε, say at x′. Let s′ be
the number of intersection points of {x = x′} ∩ E counting mulitiplicity.

Observe that s′ ≤ s, as otherwise, there will be more than s points of E over
points of B0 close to x′. But s′ 6= s as otherwise, we contradict Lemma 2.2.

So s′ < s. If x ∈ B0 converges to x′, then at lest one of the s points of Ē over
x converges to (x′, 0) and the coordinates y1, . . . , yn−k of this point converge to 0.
The same holds for all boundary points of B0 in {‖x‖L∞ < ε}.

We introduce n− k unknowns X1, . . . , Xn−k and set

z =
n−k∑
j=1

yjXj .

If (x, yi) (i = 1, . . . , s) denotes the s-points of Ē lying over x ∈ B0, then we set

zi :=
n−k∑
j=1

yi
jXj

for i = 1, . . . , s. Then z1 · · · zs is a homogeneous polynomial of degree s. The
coefficients are holomorphic on B0 by Riemann extension theorem. As B0 is not
contained in Ē, the coefficients are not all 0.

If x ∈ B0 converges to a boundary point of B0 in {‖x‖L∞ < ε}, then all
coefficients converge to 0.

By Proposition 4.44 in Morphisms between complex analytic spaces, we conclude
that the boundary points of B0 in the interior of {‖x‖L∞ < ε} lie in an analytic
subset of codimension 1.

Let Q(z) = (z − z1) · · · (z − zs). Hen Q is a homogeneous polynomial of degree
s with respect to the uj ’s. The coefficients are holomorphic on x ∈ B0 and are
polynomials in the yi’s. The vanishing of the coordinates defines exactly the part of
Ē over B0 in the interior of S. But the coefficients are bounded at the boundary, so
they extend to holomorphic functions everywhere and in particular on {‖x‖L∞ < ε}.
The vanishing of the coefficients define an analytic set E′ in B0 × {‖y‖L∞ < δ}.
Each point of E′ belongs to the part of Ē lying over B0. So Ē is analytic at each
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point of {{(x, 0) : ‖x‖L∞ < ε} < ε}. In particular, B0 = {{‖x‖L∞ < ε} < ε}. This
is a contradiction. �

Theorem 2.4. Let X be a complex manifold and F be a nowhere-dense analytic
set in X of dimension ≤ k ∈ N. Let E be an analytic set in X \ F all of whose
irreducible components are of dimension ≥ k on each point. Consider a point x ∈ F
with dimx F < k. Then Ē is analytic at x.

Proof. Let r = dimx F . The problem is local. By Theorem 2.4 in Local
properties of complex analytic spaces, we may assume that F is of dimension ≤ r
everywhere. We need to show that Ē is an analytic set in X. By induction on r, we
may clearly assume that F is a complex manifold of equidimension r with respect
to the reduced indudced structure.

Again, as the problem is local, we may reduce to the case where X is a complex
model space and then to the case where X is an open neighbourhood of 0 Cn for
some n ∈ N. Let p ∈ F , we want to show that Ē is analytic at p. We may then
assume that p = 0. We can then rearrange F so that F is a linear subspace of
dimension r0. We can take a closed subspace V of X such that V \ F intersects E
at an analytic subset of dimension < k. Let E1 = E \ V . Then

E1 = Ē.

As E1 is analytic at all points in V \F , it follows from Lemma 2.3 that E1 is analytic
on all points of V . So Ē is analytic at points in F .

�

Theorem 2.5 (Remmert–Stein). Let X be a complex analytic space and F be a
nowhere-dense analytic set in X of dimension ≤ k ∈ N. Let E be an analytic set
in X \ F all of whose irreducible components are of dimension ≥ k on each point.
Then {

x ∈ F : Ē is not analytic at x
}

is an analytic set of dimension k at each point.

Proof. The problem is local on X, so we may assume that X is a complex
model space. Then we reduce immediately to the case where X is a domain in Cn

for some n ∈ N. In particular, we may assume that X is a complex manifold.
Let F ′ be set of regular points of F of dimension k and F ′0 ⊆ F be the set of

points where Ē is analytic. Then F ′0 is the union of some connected components of
F0 by Lemma 2.3.

Let F ′1 be the union of the other connected components of F ′. Observe that
G := F ′1 is an analytic subset of F . Observe that Ē is analytic at no points of G. It
suffices to show that Ē is analytic at all points of F \G.

Let p ∈ F \G. We show that Ē is If dimp F < k, we just apply Theorem 2.4. So
we may assume that dimp F = k. By our choice, p ∈ F ′0. In a neighbourhood of p,
the subset of F consisting of points where Ē is not analytic is contained in F ′0 \ F ′0,
which is an analytic set of dimension < k. We conclude again by Theorem 2.4. �

Corollary 2.6. Let f : X → Y be a morphism of complex analytic spaces and
n ∈ N. Assume that X is a complex manifold. Then{

x ∈ X : dimx f
−1(x) ≥ n

}
is closed.
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Proof. Let x ∈ X, dimx f
−1(x) = n. We need to show that the fiber dimension

in a neighbourhood of x is at most n.
The problem is local, so we may assume that Y is Hausdorff. Suppose our

assertion is false, then we can find a sequence xi ∈ X convering to x such that
dimxi

f−1(xi) > d for all i ∈ Z>0. Let Ei be the irreducible component of f−1(xi)
containing xi such that dimxi

Ei = dimxi
f−1(xi) for i ∈ Z>0.

We may assume that Ei’s have the same dimension d > n and xi and x are all
different. Let M be the union of the Ei’s, then M is an analytic set in X \ f−1(x).
By Theorem 2.5, M̄ is analytic near x. This is absurd. �

Corollary 2.7 (Remmert). Let f : X → Y be a morphism of complex analytic
spaces and n ∈ N. Then {

x ∈ X : dimx f
−1(x) ≥ n

}
is an analytic set in X.

This result is not stated in the correct way in Remmert’s paper. In most of
Remmert’s papers, the notion of codimension is misused.

Proof. By Corollary 2.6, the given set is closed. It suffices to show that it is
analytic along each point on X. In particular, we may assume that X is connected.

Step 1. We reduce to the case where Y is a complex manifold.
The problem is local on Y , so we may assume that Y is a complex model space.

Then clearly, we can assume that Y is a domain in Cn for some n ∈ N. In particular,
Y is a complex manifold.

Step 2. We first handle the case where X is a complex manifold and the rank
of ΩX/Y is constant.

In this case, we simply observe that dimx f
−1(x) = rankx ΩX/Y and our asser-

tion is obvious.
Step 3. The problem is local on X, so we may assume that dimX <∞.
Let

B =
{
x ∈ Xreg : rankx ΩX/Y > τ

}
,

where
τ := min

x′∈X
rankx′ ΩX/Y .

Then B is an analytic set in Xreg by Step 2. The closure B̄ is an analytic set in
X, as this can be characterized by the condition that rankx ΩX/Y > τ . Moreover,
dim B̄ < N .

We may assume that n > τ , as there is nothing to prove otherwise. In particular,{
x ∈ X : dimx f

−1(x) ≥ n
}
⊆ B̄ ∪XSing.

We write D = B̄ ∪XSing and endow it with the reduced induced structure.
We make induction on N := dimX. The problem is trivial when N = 0.

Assume that N ≥ 1. Then {
x ∈ D0 : dimx f

−1(x) ≥ n
}

is an analytic set in D for each connected component D0 of D.
We observe that{

x ∈ X : dimx f
−1(x) ≥ n

}
=
⋃
D0

{
x ∈ D0 : dimx f

−1(x) ≥ n
}
,
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where D0 runs over all connected components of D and N − s0 is the dimension of
D0. From this it follows that

{
x ∈ X : dimx f

−1(x) ≥ n
}
is analytic, as the formula

union on the right-hand side is locally finite. �

Corollary 2.8. Let f : X → Y be a morphism of complex analytic spaces and
x ∈ X. Assume that X is equidimensional at x, Y is unibranch at f(x) and

dimx X − dimx f
−1(f(x)) = dimf(x) Y.

Then there is an open neighbourhood U of x in X such that U → Y induced by f
is open.

Proof. The problem is local on X. By Theorem 2.4 in Local properties of com-
plex analytic spaces, up to shrinking X, we may assume that X is equidimensional
of dimension dimx X. By Corollary 4.19 in Morphisms between complex analytic
spaces,

dimx X − dimz f
−1(f(z)) ≤ dimf(z) Y

for all z ∈ X. But as dimz f
−1(f(z)) is upper semi-continuous by Corollary 2.7,

the set where equality holds is open. Our assertion follows from Corollary 4.19 in
Morphisms between complex analytic spaces. �

Corollary 2.9. Let X be a complex analytic space, x ∈ X and f ∈ OX(X).
Assume that f(x) = 0. Consider the following conditions:

(1) f : X → C is open in a neighbourhood of x;
(2) fx is a non-zero divisor in modulo each minimal prime of OX,x;
(3) f : X → C is open at x.

Then (1) implies (2) implies (3). If moreover X is equidimensional at x, then (1) is
equivalent to (2).

Proof. (1) =⇒ (2): If fx is a zero-divisor modulo some minimal prime of
OX,x, then f is identically 0 on some irreducible component up to shrinking X. So
f cannot be open in a neighbourhood of x.

(2) =⇒ (3): By Krulls Hauptidealsatz,
dimx W (f) = dimx X − 1.

By Corollary 4.19 in Morphisms between complex analytic spaces, f is open at x.
(2) =⇒ (1): If X is equidimensional at x, then by Krulls Hauptidealsatz,

dimx W (f) = dimx X − 1.
We conclude by Corollary 2.8. �

Corollary 2.10. Let f : X → Y be an open morphism of complex analytic spaces
and x ∈ X. Assume that Y is equidimensional at f(x), then for any g ∈ mY,f(x)
which is a non-zero divisor modulo each minimal prime, then f#

x (g) ∈ mX,x is also
a non-zero divisor modulo each minimal prime.

Proof. The problem is local on X and Y . Up to shrinking X and Y , we may
assume that g and f spreads to morphisms Y → C and X → C such that we have
a commutative diagram

X Y

C

f

.
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The morphism Y → C is open by Corollary 2.9. It follows that α is also open. We
conclude again by Corollary 2.9. �

Corollary 2.11. Let f : X → Y be a morphism of complex analytic spaces. Assume
that Y is equidimensional. Consider the following conditions:

(1) f is open;
(2) For any x ∈ X,

dimx X − dimx f
−1(f(x)) = dimf(x) Y.

Then (1) implies (2). If moreover, Y is unibranch, then (1) and (2) are equivalent.

Proof. (2) =⇒ (1): Suppose that Y is unibranch. This is a consequence of
Corollary 4.20 in Morphisms between complex analytic spaces.

(1) =⇒ (2): We may assume that Y is connected and X,Y are reduced. Fix
x ∈ X and write y = f(x). We make an induction on n = dimY . When n = 0, the
assertion is trivial. Take g ∈ mY,y which is a non-zero divisor modulo each minimal
prime in OY,y. By Corollary 2.10, h := f#

x (g) ∈ mX,x is also a non-zero divisor
modulo each minimal prime. Let X ′ and Y ′ be the closed analytic spaces of X and
Y defined by h and g respectively. Up to shrinking X and Y , we may assume that
there is a commutative square

X ′ X

Y ′ Y

f ′ f .

By inductive hypothesis,

dimx X
′ = dimx X

′
y + dimy Y

′.

We conclude using Krulls Hauptidealsatz. �

Corollary 2.12. Let f : X → Y be a flat morphism of complex analytic spaces.
Then f is open.

Proof. Step 1. If Y is unibranch, then we conclude using Corollary 2.11 and
Proposition 5.3 in Morphisms between complex analytic spaces.

Step 2. In general, we may assume that Y is reduced. Let Ȳ be the normaliza-
tion of Y . Then Y has the quotient topology with respect to Ȳ → Y . So it suffices
to show that the base change X ×Y Ȳ → Ȳ is open. But we know that the latter is
flat by Proposition 5.2 in Morphisms between complex analytic spaces. We conclude
using Step 1. �

Corollary 2.13. Let f : X → Y be a morphism of complex analytic spaces. Then

{x ∈ X : f is quasi-finite at x}

is co-analytic.

Proof. This follows immediately from Corollary 2.7. �

As an application of Remmert–Stein theorem, we prove Chow’s theorem.

Theorem 2.14. Let n ∈ N and X be a closed analytic subspace of Pn. Then X is
the analytification of a closed subvariety of Pn.
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Proof. We may assume that X is non-empty. Let π : Cn+1 \ {0} → Pn be the
projection and Y = π−1(X). Then X is analytic in Cn+1 \ {0}. By Theorem 2.5,
X̄ is an analytic set in Cn+1.

Choose an open ball U in Cn+1 centered at 0 and finitely many holomorphic
functions f1, . . . , fk ∈ OCn+1(U) such that X̄ ∩ U = W (f1, . . . , fk). Let P be the
collection of homogeneous components of the fi’s. Then

X =
⋂

f∈P

W (f).

In fact, let us denote the right-hand side by Y for the moment. It is clear that
X̄ ∩ U contains Y ∩ U and hence X̄ ⊇ Y . Conversely, take x ∈ X̄ ∩ U , from the
fact that λx ∈ X̄ ∩ U for all λ ∈ C, |λ| < 1, we find easily that all homogeneous
components of the fi’s vanishes at x. So x ∈ Y . We conclude that X̄ ⊆ Y .

Now as C[X0, . . . , Xn] is noetherian, we may take a finite subcollection P ′ of P
such that

X =
⋂

f∈P′

W (f).

�
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