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Banach rings

1. Introduction

This section conerns the theory of Banach algebras. Our references are [Ber12]
and [BGR84].

In this chapter, all rings are assumed to be commutative.

2. Semi-normed Abelian groups

Definition 2.1. Let A be an Abelian group. A semi-norm on A is a function
‖ • ‖ : A→ [0,∞] satisfying

(1) ‖0‖ = 0;
(2) ‖f − g‖ ≤ ‖f‖+ ‖g‖ for all f, g ∈ A.

A semi-norm ‖ • ‖ on A is a norm if moreover the following conditions is satisfied:
(0) if ‖f‖ = 0 for some f ∈ A, then f = 0.

We write
ker ‖ • ‖ = {a ∈ A : ‖a‖ = 0}.

A semi-norm ‖ • ‖ on A is non-Archimedean or ultra-metric if Condition (2) can
be replaced by

(2’) ‖f − g‖ ≤ max{‖f‖, ‖g‖} for all f, g ∈ A.

Definition 2.2. A semi-normed Abelian group (resp. normed Abelian group) is a
pair (A, ‖ • ‖) consisting of an Abelian group A and a semi-norm (resp. norm) ‖ • ‖
on A. When ‖ • ‖ is clear from the context, we also say A is a semi-normed Abelian
group (resp. normed Abelian group).

Definition 2.3. Let (A, ‖ • ‖A) be a semi-normed Abelian group and B ⊆ A be a
subgroup. Then we define the quotient semi-norm ‖ • ‖A/B on A/B as follows:

‖a+B‖A/B := inf{‖a+ b‖A : b ∈ B}

for all a+B ∈ A/B.
We define the subgroup semi-norm on B as follows:

‖b‖B = ‖b‖A
for all b ∈ B.

Definition 2.4. Let A be an Abelian group and ‖ • ‖, ‖ • ‖′ be two seminorms on
A. We say ‖ • ‖ and ‖ • ‖′ are equivalent if there is a constant C > 0 such that

C−1‖f‖ ≤ ‖f‖′ ≤ C‖f‖

for all f ∈ A.
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6 BANACH RINGS

Definition 2.5. Let (A, ‖ • ‖A), (B, ‖ • ‖B) be semi-normed Abelian groups. A
homomorphism ϕ : A→ B is said to be

(1) bounded if there is a constant C > 0 such that ‖ϕ(f)‖B ≤ C‖f‖A for any
f ∈ A;

(2) admissible if the quotient semi-norm on A/ kerϕ is equivalent to the
subspace semi-norm on Imϕ.

Observe that an admissible homomorphism is always bounded.
Next we study the topology defined by a semi-norm.

Lemma 2.6. Let (A, ‖ • ‖) be a semi-normed Abelian group. Define

d(a, b) = ‖a− b‖

for a, b ∈ A. Then ‖ • ‖ is a pseudo-metric on A. This psuedo-metric is a metric if
and only if ‖ • ‖ is a norm.

Let Â be the metric completion of A, then there is a norm ‖•‖ on Â inducing its
metric. Moreover, the natural homomorphism A→ Â is an isometric homomorphism
with dense image.

Proof. This is clear from the definitions. �

We always endow A with the topology induced by the psuedo-metric d.

Proposition 2.7. Let f : A → B be a homomorphism between semi-normed
Abelian groups. Assume that f is bounded, then it is continuous.

The converse is not true.

Proof. Clear from the definition. �

Proposition 2.8. Let (A, ‖ • ‖) be a normed Abelian group and B be a subgroup
of A. Assume that there is ε ∈ (0, 1) such that for each a ∈ A, there is b ∈ B such
that

‖a+ b‖ ≤ ε‖a‖.

Then B is dense in A.

Proof. Assume to the contrary that there exists a ∈ A so that

c := inf
b∈B
‖a− b‖ > 0.

Choose b1 ∈ B so that
‖a+ b1‖ < ε−1c.

By our hypothesis, there is b2 ∈ B such that

‖a+ b1 + b2‖ ≤ ε‖a+ b1‖ < c.

This is a contradiction. �

Definition 2.9. Let (A, ‖•‖) be a semi-normed Abelian group. The normed Abelian
group (Â, ‖ • ‖) constructed in Lemma 2.6 is called the completion of (A, ‖ • ‖).



3. SEMI-NORMED RINGS 7

3. Semi-normed rings

Definition 3.1. Let A be a ring. A semi-norm ‖ • ‖ on A is a semi-norm ‖ • ‖ on
the underlying additive group satisfying the following extra properties:

(3) ‖1‖ = 1;
(4) for any f, g ∈ A, ‖fg‖ ≤ ‖f‖ · ‖g‖.
A semi-norm ‖ • ‖ on A is called power-multiplicative if ‖f‖n = ‖fn‖ for all

f ∈ A and n ∈ N.
A semi-norm ‖ • ‖ on A is called multiplicative if ‖fg‖ = ‖f‖‖g‖ for all f, g ∈ A.

Definition 3.2. A semi-normed ring (resp. normed ring) is a pair (A, ‖ • ‖)
consisting of a ring A and a semi-norm (resp. norm) ‖ • ‖ on A. When ‖ • ‖ is clear
from the context, we also say A is a semi-normed ring (resp. normed ring).

Definition 3.3. Let (A, ‖ • ‖) be a semi-normed ring. An element a ∈ A is
multiplicative if a 6∈ ker ‖ • ‖ and for any x ∈ A,

‖ax‖ = ‖a‖ · ‖x‖.

Definition 3.4. Let (A, ‖•‖) be a normed ring. An element a ∈ A is power-bounded
if {|an| : n ∈ N} is bounded in R. The set of power-bounded elements in A is denoted
by Å.

An element a ∈ A is called topologically nilpotent if an → 0 as n→∞. The set
of topologically nilpotent elements in A is denoted by Ǎ.

Proposition 3.5. Let (A, ‖ • ‖) be a non-Archimedean normed ring. Then Å is a
subring of A and Ǎ is an ideal in Å. Moreover, Å, Ǎ are open and closed in A.

Proof. Choose a, b ∈ Å, by definition, there is a constant C > 0 so that for
any n ∈ N,

‖an‖ ≤ C, ‖bn‖ ≤ C.
It follows that

‖(ab)n‖ ≤ ‖an‖ · ‖bn‖ ≤ C2

and
‖(a− b)n‖ ≤ max

i=0,...,n
‖aibn−i‖ ≤ C2.

So Å is a subring.
Next we show that Ǎ is an ideal in Å. On the other hand, take c ∈ Ǎ, then

‖(ac)n‖ ≤ ‖an‖ · ‖cn‖ ≤ C‖cn‖

But ‖cn‖ → 0 as n→∞, hence ac ∈ Ǎ.
On the other hand, consider c, d ∈ Ǎ, we need to show c− d ∈ Ǎ. Choose C > 0

so that
‖an‖ ≤ C, ‖bn‖ ≤ C

for all n ∈ N. Fix ε > 0, then there is m ∈ N so that for any k ≥ m,
‖ak‖ ≤ εC−1, ‖bk‖ ≤ εC−1.

In particular, for k ≥ 2m, we have
‖(a− b)k‖ ≤ max

i=0,...,k
‖ai‖ · ‖bk−i‖ ≤ ε.

It follows that a− b ∈ Ǎ. This proves that Ǎ is an ideal in Å.
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In order to see Ǎ is open and closed in A, observe that it is a subgroup of A, so
it suffices to show that Ǎ is open in A. It suffices to show that

{a ∈ A : ‖a‖ < 1} ⊆ Ǎ.
But this is obvious, if ‖a‖ < 1, then ‖an‖ ≤ ‖a‖n for all n ∈ N, it follows that
an → 0 as n→∞, namely, a ∈ Ǎ.

As Ǎ is a subgroup of Å, it follows that Å is both open and closed. �

Definition 3.6. Let (A, ‖ • ‖) be a non-Archimedean normed ring. We define the
reduction of A as Ã = Å/Ǎ. The map Å → Ã is called the reduction map. We
usually denote the reduction map by a 7→ ã.

This definition makes sense thanks to Proposition 3.5.
Definition 3.7. Let A be a ring. A semi-valuation on A is a multiplicative semi-
norm on A. A semi-valuation on A is a valuation on A if its underlying semi-norm
of Abelian groups is a norm.
Definition 3.8. A semi-valued ring (resp. valued ring) is a pair (A, ‖•‖) consisting
of a ring A and a semi-valuation (resp. valuation) ‖ • ‖ on A. When ‖ • ‖ is clear
from the context, we also say A is a semi-valued ring (resp. valued ring).

A semi-valued ring (resp. valued ring) (A, ‖ • ‖) is called a semi-valued field
(resp. valued field) if A is a field.

4. Banach rings

Definition 4.1. A Banach ring is a normed ring that is complete with respect to
the metric defined in Lemma 2.6.
Definition 4.2. A Banach ring (A, ‖•‖A) is uniform if ‖•‖A is power-multiplicative.
Definition 4.3. Let A be a semi-normed ring. There is an obvious ring structure
on the completion Â of A defined in Definition 2.9. We call the resulting Banach
ring the completion of A.
Proposition 4.4. Let (A, ‖•‖) be a Banach ring and f ∈ A. Assume that ‖f‖ < 1,
then 1− f is invertible.

Proof. Define

g =
∞∑
i=0

f i.

From our assumption, the series converges and g ∈ A. It is elementary to check that
g is the inverse of 1− f . �

In the non-Archimedean case, we have a stronger result:

Proposition 4.5. Let (A, ‖ • ‖) be a non-Archimedean Banach ring and f ∈ Ǎ.
Then 1− f is invertible. Moreover, (1− f)−1 can be written as 1 + z for some z ∈ Ǎ.

Proof. Define

g =
∞∑
i=0

f i.

From our assumption, the series converges and g ∈ A. It is elementary to check
that g is the inverse of 1− f . Moreover, in view of Proposition 3.5 as for any i ≥ 1,
f i ∈ Ǎ, the same holds for their sum, we conclude the final assertion. �
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Corollary 4.6. Let (A, ‖ • ‖) be a Banach ring. Then the set of invertible elements
in A is open.

Proof. Let x ∈ A be an invertible element. It suffices to show that for any
y ∈ A, |y| < 1/(‖x−1‖), y+ x is invertible. For this purpose, it suffices to show that
1 + x−1y is invertible. But this follows from Proposition 4.4. �

Corollary 4.7. Let A be a Banach ring and m be a maximal ideal in A. Then m is
closed.

Proof. The closure m̄ is obviously an ideal in A. We need to show that
m 6= A. Namely, 1 is not in the closure of m. But clearly, m is contained in the set of
non-invertible elements, the latter being closed by Corollary 4.6. So we conclude. �

Lemma 4.8. Let A be a non-Archimedean Banach ring. An element a ∈ Å is a
unit in Å if and only if ã is a unit in Ã.

Proof. The direct implication is trivial. Conversely, assume that a ∈ Å and
there is an element b ∈ Å such that

ãb̃ = 1.
Then 1− ab ∈ Ǎ. It follows from Proposition 4.5 that ab is a unit in Å and hence a
is a unit in Å. �

Definition 4.9. Let (A, ‖ • ‖) be a Banach ring. We define the spectral radius
ρ = ρA : A→ [0,∞) as follows:

ρ(f) = inf
n≥1
‖fn‖1/n, f ∈ A.

Lemma 4.10. Let (A, ‖ • ‖) be a Banach ring. Then for any f ∈ A, we have
ρ(f) = lim

n→∞
‖fn‖1/n.

Proof. This follows from the multiplicative version of Fekete’s lemma. �

Example 4.11. The ring C with its usual norm | • | is a Banach ring. In fact,
(C, | • |) is a complete valued field.

Example 4.12. Let {(Ai, ‖ • ‖i}i∈I be a family of Banach rings. We define their
product

∏
i∈I Ai as the following Banach ring: as a set it consists of all elements

f = (fi)i∈I with
‖f‖ := sup

i∈I
‖fi‖i <∞.

The norm is given by ‖ • ‖. It is easy to verify that
∏
i∈I Ai is indeed a Banach ring.

Example 4.13. For any Banach ring (A, ‖•‖), any n ∈ N and any r = (r1, . . . , rn) ∈
Rn>0, we define A〈r−1z〉 = A〈r−1

1 z1, . . . , r
−1
n zn〉 as the subring of A[[z1, . . . , zn]]

consisting of formal power series

f =
∑
α∈Nn

aαz
α, aα ∈ A

such that
‖f‖r :=

∑
α∈Nn

‖aα‖rα <∞.

We will verify in Proposition 4.14 that (A〈r−1z〉, ‖ • ‖r) is a Banach ring.
When r = (1, . . . , 1), we omit r−1 from our notations.
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Proposition 4.14. In the setting of Example 4.13, (A〈r−1z〉, ‖ • ‖r) is a Banach
ring.

Proof. By induction, we may assume that n = 1.
It is obvious that ‖ • ‖r is a norm on the undelrying Abelian group. To see that

‖•‖r is a norm on the ring A〈r−1z〉, we need to verify the condition in Definition 3.1.
Condition (3) in Definition 3.1 is obvious. Let us consider Condition (4). Let

f =
∞∑
i=0

aiz
i, g =

∞∑
j=0

bjz
j

be two elements in A〈r−1z〉. Then

fg =
∞∑
k=0

 ∑
i+j=k

aibj

 zk.

We compute

‖fg‖r =
∞∑
k=0

∥∥∥∥∥∥
∑
i+j=k

aibj

∥∥∥∥∥∥ rk ≤
∞∑
k=0

 ∑
i+j=k

‖ai‖ · ‖bj‖

 rk = ‖f‖r · ‖g‖r.

It remains to verify that A〈r−1z〉 is complete.
For this purpose, take a Cauchy sequence

f b =
∞∑
i=0

abiz
i ∈ A〈r−1z〉

for b ∈ N. Then for each i, the coefficients (abi )b is a Cauchy sequence in A. Let ai
be the limit of abi as b→∞ and set

f =
∞∑
i=0

aiz
i ∈ A[[z]].

We need to show that f ∈ A〈r−1z〉 and f b → f .
Fix a constant ε > 0. There is m = m(ε) > 0 such that for all j ≥ m and all

k ≥ 0, we have
∞∑
i=0
‖aj+ki − aji‖r

i < ε/2.

In particular, for any s > 0, we have
s∑
i=0
‖ai − aji‖r

i ≤
s∑
i=0
‖ai − aj+ki ‖ri +

s∑
i=0
‖aji − a

j+k
i ‖ri ≤

s∑
i=0
‖ai − aj+ki ‖ri + ε/2.

When k is large enough, we can guarantee that
s∑
i=0
‖ai − aj+ki ‖ri < ε/2.

So
s∑
i=0
‖ai − aji‖r

i ≤ ε.
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Let s→∞, we find

‖f − f j‖r ≤
∞∑
i=0
‖ai − aji‖r

i ≤ ε.

In particular, ‖f‖r <∞ and f j → f as j →∞. �

Example 4.15. For any non-Archimedean Banach ring (A, ‖ • ‖), any n ∈ N and
any r = (r1, . . . , rn) ∈ Rn>0, we define A{r−1T} = A{r−1

1 T1, . . . , r
−1
n Tn} as the

subring of A[[T1, . . . , Tn]] consisting of formal power series

f =
∑
α∈Nn

aαT
α, aα ∈ A

such that ‖aα‖rα → 0 as |α| → ∞. We set
‖f‖r := max

α∈Nn
‖aα‖rα.

We will verify in Proposition 4.16 that (A〈r−1T 〉, ‖ • ‖r) is a Banach ring.
The semi-norm ‖ • ‖r is called the Gauss norm.

Proposition 4.16. In the setting of Example 4.15, (A{r−1T}, ‖ • ‖r) is a Banach
ring.

Moreover, if the norm ‖ • ‖ on A is a valuation, so is ‖ • ‖r.

The second part is usually known as the Gauss lemma.

Proof. By induction on n, we may assume that n = 1.
The proof of the fact that ‖ • ‖r is a norm is similar to that of Proposition 4.14.

We leave the details to the readers.
Next we argue that (A{r−1T}, ‖ • ‖r) is complete. Take a Cauchy sequence

f b =
∞∑
i=0

abiT
i ∈ A{r−1T}

for b ∈ N. As
‖abi − ab

′

i ‖ri ≤ ‖f b − f b
′
‖r

for any i, b, b′ ≥ 0, it follows that for any i ≥ 0, {abi}b is a Cauchy sequence. Let
ai ∈ A be its limit and set

f =
∞∑
i=0

aiT
i ∈ A[[T ]].

We need to show that f ∈ A{r−1T} and f b → f .
Fix ε > 0. We can find m = m(ε) > 0 such that for all j ≥ m and all k ≥ 0,

‖f j − f j+k‖r ≤ ε.

It follows that ‖aji − a
j+k
i ‖ri ≤ ε for all i ≥ 0. Let k →∞, we find

‖aji − ai‖r
i ≤ ε

for all i ≥ 0. Fix j ≥ 0, take i large enough so that |aji |ri < ε. Then ‖ai‖ri ≤ ε. So
we find f ∈ A{r−1T}. On the other hand,

‖f − f j‖r = max
i
‖aji − ai‖r

i ≤ ε.

This proves that f j → f .
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Now assume that ‖ • ‖ is a valuation, we verify that ‖ • ‖r is also a valuation.
Again, we may assume that n = 1. Take two elements f, g ∈ A{r−1T}:

f =
∞∑
i=0

aiT
i, g =

∞∑
j=0

bjT
j .

As we have already shown |fg|r ≤ |f |r|g|r, it suffices to check the reverse inequality.
For this purpose, choose the minimal indices i, j so that

‖f‖r = ‖ai‖ri, ‖g‖r = ‖bj‖rj .
Write

fg =
∞∑
k=0

 ∑
p+q=k

apbq

T k.

Then we claim that ∥∥∥∥∥∥
∑
p+q=k

apbq

∥∥∥∥∥∥ rk = ‖f‖r‖g‖r

when k = i+ j. This implies the desired inequality. Of course, we may assume that
ai 6= 0 and bj 6= 0 as otherwise there is nothing to prove. To verify our claim, it
suffices to observe that for (p, q) 6= (i, j), r+ s = i+ j, say p < i and q > j, we have

‖apbq‖rk = ‖ap‖rp · ‖bq‖rq < ‖ai‖ri · ‖bj‖rj .
So

‖apbq‖ < ‖aibj‖.
Since the valuation on A is non-Archimedean, it follows that

‖
∑
p+q=k

apbq‖ = ‖aibj‖.

Our claim follows. �

Remark 4.17. More generally, it A is endowed with a semi-valuation ‖ • ‖′, then
the same procedure and the same proof produces a semi-valuation on A{r−1T}.

Proposition 4.18. Let A, B be a non-Archimedean Banach ring and f : A→ B
be a continuous homomorphism. Then for any b ∈ B̊, there is a unique continuous
homomorphism F : A{T} → B extending f and sending T to b.

Proof. From the continuity and the fact that A[T ] is dense in A{T}, F is clearly
unique. To prove the existence, we define F directly: consider g =

∑∞
i=0 aiT

i ∈
A{T}, we define

F (g) :=
∞∑
i=0

f(ai)f i.

As fi ∈ Å and ai → 0, the right-hand side is well-defined. It is straightforward to
check that F is a continuous homomorphism. �

Proposition 4.19. For any non-Archimedean Banach ring (A, ‖ • ‖), we have

(A{T})◦ = Å{T}, (A{T})̌ = Ǎ{T}.

For the definitions of •̊ and •̌, we refer to Definition 3.4.
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Proof. We first show that

Å{T} ⊆ (A{T})◦.

Let f ∈ Å{T}. We expand f as

f =
∞∑
i=0

aiT
i, ai ∈ Å.

Then for each i, j ∈ N, ‖aiT i‖j1 = ‖ai‖j . So for each i ∈ N, aiT i ∈ (A{T})◦. By
Proposition 3.5, it follows that f ∈ (A{T})◦.

Next we prove the reverse inclusion. Take f ∈ (A{T})◦, suppose by contrary
that f 6∈ Å{T}. Expand f as

f =
∞∑
i=0

aiT
i, ai ∈ A.

We can take a minimalm ∈ N so that am 6∈ Å. Then
∑m−1
i=0 aiT

i ∈ Å{T} ⊆ (A{T})◦
by what we have proved. It follows that

g := f −
m−1∑
i=0

aiT
i =

∞∑
i=m

aiT
i ∈ (A{T})◦.

Then it follows that
‖gj‖ ≥ ‖ajm‖

for any j ∈ N. It follows that am ∈ Å, which is a contradiction.
Next we show that

Ǎ{T} ⊆ (A{T})̌.

Let f ∈ Ǎ{T}. We expand f as

f =
∞∑
i=0

aiT
i, ai ∈ Ǎ.

Then for each i, j ∈ N, ‖aiT i‖j1 = ‖ai‖j . So for each i ∈ N, aiT i ∈ (A{T})̌. By
Proposition 3.5, it follows that f ∈ (A{T})̌.

Conversely, take f ∈ (A{T})̌, suppose by contrary that f 6∈ Ǎ{T}. Expand f
as

f =
∞∑
i=0

aiT
i, ai ∈ A.

We can take a minimal m ∈ N so that am 6∈ Ǎ. Then
∑m−1
i=0 aiT

i ∈ Ǎ{T} ⊆ (A{T})̌
by what we have proved. It follows that

g := f −
m−1∑
i=0

aiT
i =

∞∑
i=m

aiT
i ∈ (A{T})̌.

Then it follows that
‖gj‖ ≥ ‖ajm‖

for any j ∈ N. It follows that am ∈ Ǎ, which is a contradiction. �
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Corollary 4.20. For any non-Archimedean Banach ring (A, ‖ • ‖), we have a
canonical isomorphism

Ã{T} ∼= Ã[T ].

The natural map A{T}◦ → Ã{T} corresponds to a homomorphism Å{T} → Ã[T ]
extending the homomorphism Å→ Ã and sending T to T .

Proof. Let f =
∑∞
i=0 aiT

i ∈ A{T}◦. Then ai ∈ Å by Proposition 4.19. But
‖ai‖ → 0 as i → ∞, so ai ∈ Ǎ for almost all i. It follows that the image of f in
Ã{T} is the same as the image of an element from Å[T ]. On the other hand, for
each f ∈ Ã[T ], we can expand f = aNT

N + · · · + a1T
1 + a0 with aN ∈ Ã. Lift

each ai to bi ∈ Å. Then the image of bNTN + · · ·+ b1T
1 + b0 under the reduction

corresponds to f . The assertions follow. �

Corollary 4.21. Let (A, ‖ • ‖) be a non-Archimedean Banach ring. An element
f =

∑∞
i=0 aiT

i ∈ Å{T} is a unit in Å{T} if and only if a0 is a unit in Å and ai ∈ Ǎ
for all i > 0.

Proof. By Proposition 4.16, we know that A{T} is complete. According to
Lemma 4.8 and Proposition 4.19, f is a unit in Å{T} if and only if

∑∞
i=0 ãiT

i is a
unit in Ã[T ]. By Lemma 4.8 again, a0 is a unit in A if and only if ã0 is a unit in Ã.
So we are reduced to argue that units in Ã[T ] are exactly units in Ã. This follows
from the general fact about units in polynomial rings over a reduced ring. �

Lemma 4.22. Let A, B be Banach rings and f, g : A→ B be bounded homomor-
phisms. Then the equalizer Eq(f, g) of f and g is a Banach subring of A.

If C ia a Banach ring, A,B are moreover Banach C-algebras and f, g are
moerover bounded homomorphism of Banach C-algebras, then Eq(f, g) is a Banach
C-subalgebra of A.

Proof. As an equalizer of ring homomorphisms, Eq(f, g) is a subring of A.
We can realize Eq(f, g) = ker(f − g), so Eq(f − g) is a closed subring of A, hence a
Banach subring with respect to the subspace norm.

The second assertion is proved similarly. �

5. Semi-normed modules

Definition 5.1. Let (A, ‖ • ‖A) be a normed ring. A semi-normed A-module (resp.
normed A-module) is a pair (M, ‖ • ‖M ) consisting of an A-module M and a semi-
norm (resp. norm) on the underlying Abelian group of M such that there is a
constant C > 0 such that

‖fm‖M ≤ C‖f‖A‖m‖M
for all f ∈ A and m ∈M . In case ‖ • ‖A is non-Archimedean, we require that ‖ • ‖M
is also non-Archimedean.

We say the semi-normed A-module (resp. normed A-module) M is faithful if
we can take C = 1.

When ‖ • ‖M is clear from the context, we say M is a semi-normed A-module
(resp. normed A-module).

An A-module homomorphism ϕ : M → N between two semi-normed A-modules
M and N is bounded if the homomorphism of the underlying semi-normed Abelian
groups is bounded in the sense of Definition 2.5.
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A Banach A-module is a normed A-module which is complete with respect to
the metric Lemma 2.6.

We denote by BanA the category of Banach A-modules with bounded A-module
homomorphisms as morphisms.

Definition 5.2. Let A be a Banach ring and (M, ‖ • ‖M ), (N, ‖bullet‖N ) be two
Banach A-modules. Define their direct sum as the Banach A-module (M ⊕N, ‖ •
‖M⊕N ), where for m ∈M,n ∈ N , we set

‖(m,n)‖M⊕N := max{‖m‖M , ‖n‖N}.
This definition extends immediately to finite direct sums of Banach A-modules.

Definition 5.3. Let A be a Banach ring. A Banach A-module M is said to be
finite if there is n ∈ N and an admissible epimorphism An →M .

A morphism between finite A modules M and N is a morphism M → N in
BanA. We write BanfA for the category of finite Banach A-modules.

Definition 5.4. Let A be a semi-normed ring and M be a semi-normed A-module.
There is an obvious Â-module structure on the completion M̂ of A defined in
Definition 2.9. We call the resulting Banach module the completion of M .

Definition 5.5. Let A be a non-Archimedean semi-normed ring. Consider semi-
normed A-modules (M, ‖ • ‖M ) and (N, ‖ • ‖N ). We define the tensor product of
(M, ‖•‖M ) and (N, ‖•‖N ) as the semi-normed A-module (M⊗N, ‖•‖M⊗N ), where

‖x‖M⊗N = inf max
i

(‖mi‖M · ‖ni‖N ),

where the infimum is taken over all decompositions x =
∑
imi ⊗ ni.

Definition 5.6. Let A be a non-Archimedean Banach ring. Consider semi-normed A-
modules M and M , we define the complete tensor product of M and N as the metric
completion M⊗̂AN of the tensor product of M and N defined in Definition 5.5.

Theorem 5.7. Let (A, ‖ • ‖A) be a normed ring. Then BanA is a quasi-Abelian
category.

Proof. We first observe that BanA is preadditive, as for any M,N ∈ BanA,
HomBanA

(M,N) can be given the group structure inherited from the Abelian group
HomA(M,N). It is obvious that BanA is preadditive.

Next we show that finite biproducts exist in BanA. Given (M, ‖ • ‖M ), (N, ‖ •
‖N ) ∈ BanA, we set
(5.1) (M, ‖ • ‖M )⊕ (N, ‖ • ‖N ) := (M ⊕N, ‖ • ‖M⊕N ),
where ‖(m,n)‖M⊕N := ‖m‖M + ‖n‖N for m ∈ M and n ∈ N . It is easy to verify
that this gives the biproduct in BanA.

We have shown that BanA is an additive category.
Next given a morphism ϕ : (M, ‖ • ‖M )→ (N, ‖ • ‖N ) in BanA, we construct its

kernel (kerϕ, ‖ • ‖kerϕ) as the kernel of the underlying homomorphism of A-modules
of ϕ endowed with the subgroup semi-norm induced from ‖ • ‖M as in Definition 2.3.
It is easy to verify that (kerϕ, ‖ • ‖kerϕ) is the kernel of ϕ in BanA.

We can similarly construct the cokernels. To be more precise, let ϕ : (M, ‖ •
‖M ) → (N, ‖ • ‖N ) be a morphism in BanA, then the cokerϕ = {N/ϕ(M)} with
quotient norm.

We have shown that BanA is a pre-Abelian category.
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Observe that given a morphism ϕ : (M, ‖•‖M )→ (N, ‖•‖N ) in BanA, its image
is given by Imϕ = ϕ(M) with the subspace norm induced from N ; its coimage is
M/ ker f with the residue norm. The morphism ϕ is admissible if the natural map

M/ ker f → ϕ(M)
is an isomorphism in BanA.

It remains to show that pullbacks preserve admissible epimorphisms and
pushouts preserve admissible monomorphisms. We first handle the case of ad-
missible epimorphisms. Consider a Cartesian square in BanA:

M U

V W

p

q � f

g

with g being an admissible epimorphism. We need to show that p is also an
admissible epimorphism, namely U ∼= M/ ker p.

We define α : U ⊕ V → W , α = (f,−g), then there is a natural isomorphism
j : M → kerα. Let us write i : kerα→ U ⊕ V the natural morphism. Then

q = πV ◦ i ◦ j, p = πU ◦ i ◦ j,
where πU : U ⊕ V → U, πV : U ⊕ V → V are the natural morphisms. We may
assume that M = kerα and j is the identity. Then it is obvious that p is surjective
on the underlying sets. In order to compute the quotient norm on M/ ker p, we need
a more explicit description of ker p ⊆ kerα. We know that

kerα = {(u, v) ∈ U ⊕ V : f(u) = g(v)}
with the subspace norm induced from the product norm on U ⊕ V defined in (5.1).
Then

ker p = {(u, v) ∈ U ⊕ V : u = 0, g(v) = 0}.
It follows that for (u, v) ∈ kerα,

inf
(u′,v′)∈ker p

‖(u, v) + (u′, v′)‖U⊕V = inf
v′∈ker g

(‖v + v′‖V ) + ‖x‖U ,

where ‖•‖U and ‖•‖V denote the norms on U and V respectively. By our assumption
that g is an admissible epimorphism, there is a constant C > 0 so that

inf
v′∈ker g

(‖v + v′‖V ) ≤ C‖g(v)‖W

for any v ∈ V . As f is bounded, we can also find a constant C ′ > 0 so that for any
(u, v) ∈ kerα,

‖g(v)‖W = ‖f(u)‖W ≤ C ′‖u‖U .
It follows that p is admissible epimorphism.

It remains to check that the pushforwards preserve admissible monomorphisms.
Consider a co-Cartesian diagram

W U

V M

g

f q

p

with g being an admissible monomorphism. We need to show that p is an adimissible
monomorphism. This boils down to the following: p is injective with closed image
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and the norms on p(V ) obtained in the obvious ways are equivalent. As in the case
of pullbacks, we may let α : W → U ⊕ V be the morphism (g,−f) and assume
that M = cokerα. It is then easy to see that p is injective. The proof that the two
norms on p(V ) are equivalent is parallel to the argument in the pull-back case, and
we omit it.

It remains to verify that p(V ) is closed in W . Consider the admissibly coexact
sequence in BanA:

W
α−→ U ⊕ V π−→M → 0.

It is also admissibly coexact in the category of semi-normed A-modules. Include
details later. Let xn ∈ V be a sequence so that p(xn) → y ∈ M . We may write
y = π(u, v) for some (u, v) ∈ U ⊕ V . Then

π(−u, xn − v)→ 0

as n → ∞. From the strict coexact sequence, we can find a sequence wn ∈ W so
that

(−u− g(wn), xn − v + f(wn))→ 0
as n→∞. Then g(wn)→ −u in U and hence there is w ∈W so that wn → w ∈W
and g(w) = −u. But then xn → x and p(x) = y. �

Definition 5.8. Let (A, ‖ • ‖A) be a normed ring. A Banach A-algebra is a pair
(B, ‖ • ‖B) such that (B, ‖ • ‖B) is a Banach A-module and (B, ‖ • ‖B) is a Banach
ring.

A morphism of Banach A-algebras is a bounded A-algebra homomorphism. The
category of Banach A-algebras is denoted by BanAlgA.

Definition 5.9. Let A be a normed ring. A Banach A-algebra B is said to be finite
if B is finite as a Banach A-module. A morphism of finite Banach A-algebras is
a morphism in BanAlgA. The category of finite Banach A-algebras is denoted by
BanAlgfA.

6. Berkovich spectra

Definition 6.1. Let (A, ‖•‖A) be a Banach ring. A semi-norm | • | on A is bounded
if there is a constant C > 0 such that for any f ∈ A, |f | ≤ C‖f‖A.

Write SpA for the set of bounded semi-valuations on A. We call SpA the
Berkovich spectrum of A.

We endow SpA with the weakest topology such that for each f ∈ A, the map
SpA→ R≥0 sending ‖ • ‖ to ‖f‖ is continuous.

It is sometimes preferable to denote an element ‖ • ‖ in SpA by a single letter
x. In this case, we write |f(x)| = ‖f‖ for any f ∈ A.

Given a bounded homomorphism ϕ : A → B of Banach rings, we define
Spϕ : SpB → SpA as follows: given a bounded semi-valuation ‖ • ‖ on B, we define
Spϕ(‖ • ‖) as the bounded semi-valuation on A sending f ∈ A to ‖ϕ(f)‖.

Observe that there is a natural map of sets:

(6.1) SpA→ {p ∈ SpecA : p is closed.}

sending each bounded semi-valuation to its kernel. The fiber over a closed ideal
p ∈ SpecA is identified with the set of bounded valuations on A/p. Here boundedness
is with respect to the residue norm.
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Remark 6.2. In the literature, it is more common to denote SpA byM(A).

Lemma 6.3. Let (A, ‖ • ‖A) be a Banach ring. Then for any x ∈ SpA, we have
|f(x)| ≤ ρ(f) ≤ ‖f‖A.

Proof. Let ‖ • ‖x be the bounded semi-valuation corresponding to x. Then
there is a constant C > 0 such that

‖ • ‖x ≤ C‖ • ‖A.
It follows that for any n ∈ N,

‖f‖nx = ‖fn‖x ≤ C‖fn‖A.
Taking n-th root and letting n→∞, we find

‖f‖x ≤ ρ(f).
The inequality ρ(f) ≤ ‖f‖A follows from the definition of ρ. �

Example 6.4. If (k, | • |) is a complete valuation field, then Sp k is a single point
| • |.

To see this, let ‖ • ‖ ∈ Sp k, then by Lemma 6.3,
‖f‖ ≤ |f |

for any f ∈ k. If f 6= 0, the same inequality applied to f−1 implies that ‖f‖ = |f |.
When f = 0, the equality is trivial.

Example 6.5. Let {Ki}i∈I be a family of complete valuation fields. Recall that∏
i∈I Ki is defined in Example 4.12. Then Sp

∏
i∈I Ki is homeomorphic to the

Stone–Čech compactification of the discrete set I.
To see this, we first identify the set of proper closed ideals in

∏
i∈I Ki with the

set of filters on I.
We first introduce a notation: for each J ⊆ I, we write aJ ∈

∏
i∈I Ki for the

element
aJ,i =

{0, if i ∈ J ;
1, if i 6∈ J.

Givena proper closed ideal a ⊆
∏
i∈I Ki, we define a filter Φa = {J ⊆ I : aJ ∈ a}.

Conversely, given a filter Φ on I, we denote by aΦ the closed ideal of
∏
i∈I Ki gener-

ated by aJ for all J ∈ Φ. These maps are inverse to each other and order preserving.
In particular, the maximal ideals of

∏
i∈I Ki are identified with ultrafilters of I by

Corollary 4.7.
Next we show that all prime ideals of

∏
i∈I Ki are maximal. In fact, take

p ∈ Spec
∏
i∈I Ki and suppose that there is a maximal ideal m properly containing

p. Let J ∈ Φm \ Φp so that aJ ∈ m \ p. As I \ J 6∈ Φm, we have aI\J 6∈ m. But
aJ · aI\J = 0. This contradicts the fact that aJ 6∈ p and aI\J 6∈ p.

So we have shown that as a set Spec
∏
i∈I Ki is identified with the Stone–Čech

compactification of I.
Next we show taht if m ∈ Spec

∏
i∈I Ki, then the residue norm on

∏
i∈I Ki/m

is multiplicative. In fact, for each f ∈
∏
i∈I Ki, we have

‖π(f)‖∏
i∈I

Ki/m
= inf
J∈Φm

sup
i∈J
‖f‖.

Here π :
∏
i∈I Ki →

∏
i∈I Ki/m is the natural map and ‖ • ‖ denotes the norm on∏

i∈I Ki defined in Example 4.12. It follows immediately that the residue norm
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on
∏
i∈I Ki/m is multiplicative. In particular, by Example 6.4, Sp

∏
i∈I Ki and

Spec
∏
i∈I Ki are identified as sets under the natural map (6.1).

It remains to identify the topologies. But this is easy: for any ultrafilter Φ on I,
let m = mΦ, then ‖π(aJ)‖ = 0 for J ∈ Φ and ‖π(aJ)‖ = 1 otherwise.

Proposition 6.6. Let ϕ : A→ B be a bounded homomorphism of Banach rings,
then Spϕ : SpB → SpA is continuous.

Proof. For each f ∈ A, we define evf : SpA → R by sending ‖ • ‖ to ‖f‖.
It suffices to show that for any f ∈ A, the map Spϕ ◦ evf is continuous. But the
composition is just the map sending ‖ • ‖ ∈ SpB to ‖ϕ(f)‖. It is continuous by
definition of the topology on SpB as ϕ is bounded. �

Definition 6.7. Let (A, ‖ • ‖A) be a Banach ring. For each x ∈ SpA corresponding
to a bounded semi-valuation ‖ • ‖x on A, there is a natural induced valuation on
Frac ker ‖•‖x. We write H (x) for the completion of Frac ker ‖•‖x with the induced
valuation. The complete valuation field H (x) is called the complete residue field of
A at x. We write χx : A→H (x) the canonical map.

We will write f(x) for the residue class of f in H (x).

Observe that for any f ∈ A, |f(x)| is exactly the valuation of f(x) with respect
to the valuation on H (x).

Definition 6.8. Let A be a Banach ring. The Gelfand transform of A is the
homomorphism

A→
∏

x∈SpA
H (x).

Here the product is defined in Example 4.12.
We will denote the Gelfand transform as f 7→ f̂ = (f(x))x∈SpA.

By Lemma 6.3, the Gelfand transform is well-defined.

Proposition 6.9. Let (A, ‖ • ‖A) be a Banach ring. Then the Gelfand transform

A→
∏

x∈SpA
H (x)

is bounded. In fact, the Gelfand transform is contractive.

Proof. This follows simply from Lemma 6.3. �

Proposition 6.10. Let (A, ‖ • ‖) be a Banach ring. Then SpA is empty if and
only if A = 0.

Proof. If A = 0, SpA is clearly empty. Conversely, suppose that SpA is
empty. Assume that A 6= 0. For any maximal ideal m, by Corollary 4.7, A/m is a
Banach ring and SpA/m is a subset of SpA. So we may assume that A is a field.
Let S be the set of bounded semi-norms on A. Then S is non-empty as ‖ • ‖ ∈ S.
By Zorn’s lemma, we can take a minimal element | • | ∈ S. Up to replacing A by
the completion with respect to | • |, we may assume that | • | is a norm on A. As A
is a field, we may further assume that | • | = ‖ • ‖.

We claim that ‖ • ‖ is multiplicative. As A is a field, it suffices to show that
‖f−1‖ = ‖f‖−1 for any non-zero f ∈ A. We may assume that ‖f‖−1 < ‖f−1‖.
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Let r be a positive real number. Let ϕ : A→ A{r−1T}/(T − f) be the natural
map. The map is injective as A is a field. We endow A{r−1T}/(T − f) with the
quotient semi-norm induced by ‖ • ‖r and still denote this semi-norm by ‖ • ‖r.

We claim that f − T is not invertible in A{r−1T} for the choice r = ‖f−1‖−1.
From this, it follows that

‖ϕ(f)‖r = ‖T‖r ≤ r < ‖f‖.

The last step is our assumption. This contradicts our choice of ‖ • ‖.
In order to prove the claim, we need to show that ‖ • ‖ is power multiplicative

first. Assuming this, it is obvious that
∞∑
i=0
|f−i|ri =

∞∑
i=0
|f−1|i|f−1|−i

diverges.
It remains to show that ‖ • ‖ is power multiplicative. Suppose that is f ∈ A so

that ‖fn‖ < ‖f‖n for some n > 1. We claim that f −T is not invertible in A{r−1T}
for the choice r = ‖fn‖1/n. From this,

‖ϕ(f)‖r = ‖T‖r ≤ r < ‖f‖.

This contradicts our choice of ‖ • ‖. The claim amounts to the divergence of
∞∑
i=0
‖f−i‖ri.

For a general i ≥ 0, we write i = pn + q for p, q ∈ N and q ≤ n − 1. Then
‖f i‖ ≤ ‖fn‖p‖fq‖. So

‖f−i‖ri ≥ ‖f i‖−1‖fn‖p+n
−1q ≥ ‖fn‖n

−1q‖fq‖−1.

It therefore follows that |f−i|ri admits a positive lower bound, and we conclude. �

Corollary 6.11. Let A be a Banach ring. Then an element f ∈ A is invertible if
and only if f(x) 6= 0 for all x ∈ SpA.

Proof. The direct implication is trivial. Assume that f(x) 6= 0 for all x ∈ SpA.
We claim that f 6∈ m for any maximal ideal m in A. From this, it follows that f is
invertible in A.

By Corollary 4.7, A/m is a Banach ring. It follows from Proposition 6.10 that
there is a non-trival bounded semi-valuation on A/m, which lifts to a bounded
semi-valuation on A. �

Corollary 6.12. Let (A, ‖ • ‖A) be a Banach ring. Then for any f ∈ A, we have

ρ(f) = sup
x∈SpA

|f(x)|.

Proof. We have already shown ρ(f) ≥ supx∈SpA |f(x)| in Lemma 6.3. To
verify the reverse inequality, take f ∈ A and r ∈ R>0, it suffices to show that if
|f(x)| < r for all x ∈ SpA, then ρ(f) ≤ r.

Consider the Banach ring B = A{rT}. By Lemma 6.3 again, |T (x)| ≤ ‖T‖r−1 =
r−1 for all x ∈ SpB. Therefore, for any x ∈ SpB, |(fT )(x)| < 1. Hence, (1 −
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fT )(x) 6= 0 for all x ∈ SpB. By Corollary 6.11, 1− fT is invertible in B. But this
happens exactly when

∞∑
i=0
‖f i‖Ar−i

is convergent. It follows that ρ(f) ≤ r. �

Theorem 6.13. Let (A, ‖ • ‖) be a Banach ring. Then SpA is a compact Hausdorff
space.

Proof. We first show that SpA is Hausdorff. Take x1, x2 ∈ A, x1 6= x2. In
other words, we can find f ∈ A so that |f(x1)| 6= |f(x2)|. We may assume that
|f(x1)| < |f(x2)|. Take a real number r > 0 so that

|f(x1)| < r < |f(x2)|.

Then {x ∈ SpA : |f(x)| < r} and {x ∈ SpA : |f(x)| > r} are disjoint neighbour-
hoods of x1 and x2.

Next we show that SpA is compact. By Proposition 6.9 and Proposition 6.6,
we can define a continuous map

Sp
∏

x∈SpA
H (x)→ SpA.

The map is clearly surjective: for any x ∈ SpA, the valuation on H (x) induces
a semi-valuation on

∏
x∈SpA H (x), which is clearly bounded. The image of this

semi-valuation in SpA is just x.
So it suffices to show that Sp

∏
x∈SpA H (x) is compact. This follows from

Example 6.5. �

7. Open mapping theorem

Let (k, | • |) be a complete non-trivially valued field. All results in this section
fail when k is trivially valued.

Proposition 7.1. Let A be a normed k-algebra and f : (M, ‖ • ‖M )→ (N, ‖ • ‖N )
be an A-homomorphism of normed A-modules. Then f is bounded if and only if f
is continuous.

Proof. The direct implication follows from Proposition 2.7. Assume that f is
continuous. We may assume that A = k.

Assume that f is not bounded. Fix a ∈ k with |a| ∈ (0, 1). This is possible as k
is non-trivially valued. Then we can find a sequence mi ∈M such that ‖f(mi)‖N >
|a|−i‖mi‖M . Up to replace mi by a scalar multiple, we may assume that ‖mi‖M ∈
[1, |a|−1): if ‖mi‖M ≥ 1, choose n ∈ N such that |a|−n ≤ ‖mi‖M < |a|−n−1, then
replace mi with anmi. The case |x| < 1 is similar. Then ‖f(aimi)‖N > ‖mi‖M ≥ 1
while ‖aimi‖M < |a|n|a|−1 → 0. This is a contradiction. �

Theorem 7.2 (Open mapping theorem). Let (V, ‖ • ‖V ), (W, ‖ • ‖W ) be Banach
k-spaces and L : V →W be a bounded and surjective k-homomorphism. Then L is
open.

Proof. We write V0 = {v ∈ V : ‖v‖V < 1}. Similarly define W0.
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Step 1. We claim that there is a constant C > 0 such that for all w′ ∈ W ,
there is v′ ∈ V such that

‖v′‖V ≤ C‖w′‖W , ‖w′ − L(v′)‖W < 1/2.
As k is non-trivially valued, we can take c ∈ k with |c| ∈ (0, 1), so

V =
⋃
n∈N

cnV0.

As L is surjective, we have
W =

⋃
n∈N

cnL(V0).

By Baire’s category theorem, we may assume that L(V0) has non-empty interior.
Take w ∈W and r > 0 so that

{w′ ∈W : ‖w − w′‖W < r} ⊆ L(V0).

Take d ∈W0 and c′ ∈ k× so that |c′| < r, then w + c′d ∈ L(V0). It follows that

c′d ∈ L(V0) + L(V0) ⊆ L(V0) + L(V0) = L(V0).
So

W0 ⊆ L(c′−1V0).
It suffices to take C = |c′−1|.

Step 2. Now given w ∈W0, we want to show that w ∈ L({v ∈ V : ‖v‖V < C}).
This will finish the argument: as k is non-trivially valued, this implies that L(V0)
contains an open neighbourhood of 0.

From Step 1, we can construct v1 ∈ V with ‖v1‖V < C and ‖w−L(v1)‖W < 1/2.
Repeat this process, we can vn ∈ V inductively so that

‖vn‖V < 21−nC, ‖w − L(v1 + · · ·+ vn)‖W < 2−n.
We set v =

∑∞
i=1 vi. Then v ∈ V and Av = w by continuity. Moreover,

‖v‖V ≤ max
n
‖vn‖V < C.

�

Corollary 7.3. Let A be a Banach k-algebra and M be a normed A-module.
Assume that M̂ is a finite A-module, then M is complete.

Proof. Take x1, . . . , xn ∈ M̂ so that π : An → M̂ sending (a1, . . . , an) to∑n
i=1 aixi is surjective. By open mapping theorem Theorem 7.2,

∑n
i=1 Ǎxi is a

neighbourhood of 0 in M̂ . So

xj ∈M +
n∑
i=1

Ǎxi.

It follows from (a version of) Nakayama’s lemma that M = M̂ . �

Corollary 7.4. Let A be a Banach k-algebra and M be a Noetherian Banach
A-module. Let N be a submodule of M . Then N is closed in M .

In particular, if A is Noetherian, then all ideals of A are closed.

Proof. As M is noetherian, N̄ is a finite A-module. In particular, N is
complete by Corollary 7.3. Hence, N is closed in M . �
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Corollary 7.5. A bounded epimorphism of Banach k-algebras f : A → B is
admissible.

Proof. Replacing A by A/ ker f , we may assume that f is bijective. It follows
from Theorem 7.2 that f is a homeomorphism. The inverse of f is therefore
continuous, and hence bounded by Proposition 7.1. �

Corollary 7.6 (Closed graph theorem). Let L : V →W be a k-linear map between
k-Banach spaces. The following are equivalent:

(1) L is bounded.
(2) The graph of L is closed.

Proof. (1) =⇒ (2) is trivial.
Assume (2). Let p1 : V ×W → V , p2 : V ×W →W be the natural projections

and q : G→ V the restriction of p1 to the graph G of L. Observe that L is a closed
subspace of V ×W , hence a Banach space. By open mapping theorem Theorem 7.2,
q is an open mapping. In particular, the map r : V → G sending v ∈ V to (v, Lv) is
bounded. It follows that L = p2 ◦ r is also bounded. �

8. Properties of Banach algebras over a field

Let (k, | • |) be a complete non-trivially valued non-Archimedean valued field.

Proposition 8.1. Let A,B be Banach k-algebras and ϕ : A→ B be a k-algebra
homomorphism. Assume that there is a family {Ii} of ideals in B satisfying

(1) Each Ii is closed in B and each inverse image ϕ−1(Ii) is closed in A.
(2) For each Ii, dimk B/Ii is finite.
(3)

⋂
i∈I Ii = 0.

Then ϕ is continuous.

Observe that when A and B are both noetherian, Condition (1) is automatically
satisfied.

Proof. For each i ∈ I, we write πi : B → B/Ii the projection. Let ψi : A→
B/Ii denote πi ◦ ϕ. Let ψ̄i : A/ kerψi → B/Ii the injective map induced by ψi. We
know that A/ kerψi and B/Ii are both finite dimensional. We endow them with
the residue norm. Then ψ̄i is continuous. It follows that ψi is also continuous.

By the closed graph theorem Corollary 7.6, it suffices to verify the following
claim: let ai ∈ A be a sequence with limit 0 and ϕ(ai)→ b ∈ B, then b = 0. From
the continuity of ψ̄i, we know that b ∈ Ii for all i ∈ I, it follows that b = 0 by our
assumption. �

Lemma 8.2. Let A be a Noetherian k-Banach algebra and M,N be Banach A-
modules, which are finite as A-modules. Let f : M → N be an A-linear map. Then
f is bounded.

Proof. Choose n ∈ N and an A-linear epimorphism π : An →M . It is clear
that π is bounded. Similarly, π ◦ f is also bounded. By open mapping theorem
Theorem 7.2, π is open, so ϕ is continuous and hence bounded by Proposition 7.1. �

Proposition 8.3. Let A be a Noetherian k-Banach algebra. Then any finite
A-module M admits a complete A-module norm. Such norms are unique up to
equivalence.
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Proof. The uniqueness follows from Lemma 8.2. As for the existence, take
n ∈ N and an A-linear epimorphism π : An →M . By Corollary 7.4, kerAn is closed
in An, it suffices to take the residue norm on M . �

Proposition 8.4. Let (A, ‖•‖A) be a Noetherian k-Banach algebra and ϕ : A→ B
be a finite k-algebra homomorphism from A to a k-algebra B. Then B is Noetherian
and admits a complete A-algebra norm such that ϕ is admissible. All complete
k-algebra norms on B such that ϕ is bounded are equivalent.

Proof. The uniqueness follows from Proposition 8.3.
As ϕ is finite, B is a finite A-module. So by Proposition 8.3, we can endow B

with a complete A-module norm | • | such that ϕ is contractive.
We claim that there is a constant C > 0 such that

|xy| ≤ C|x| · |y|
for all x, y ∈ B.

Assuming this claim, it suffices to define

‖x‖ := sup
y∈B,y 6=0

|xy|
|y|

for x ∈ B.
It remains to establish the claim. Let b1, . . . , bn be generators of B as an

A-module. Let C ′ = maxi,j=1,...,n |bibj |. Choose η > 1 such that for each x ∈ B,
there is an equation

x =
n∑
j=1

ϕ(aj)bj , max
j=1,...,n

‖aj‖A ≤ η|x|.

The existence of η follows from the construction of | • | in Proposition 8.3. Let
C = C ′η2. Then for any x1, x2 ∈ B, we write

xi =
n∑
j=1

ϕ(aij)bj , i = 1, 2.

We compute
|x1x2| ≤ max

i,j=1,...,n
|ϕ(a1i)ϕ(a2j)bibj | ≤ C ′ max

i=1,...,n
|a1i| max

j=1,...,n
|a2j | ≤ C|x1| · |x2|.

�

Proposition 8.5. Let k be a complete valuation field and A be a Banach k-algebra.
Let K be a finite normal extension of k.

(1) If K/k is separable (or equivalently Galois), we have a natural homeomor-
phism

Sp(A⊗k K)/Gal(K/k) ∼−→ SpA.
(2) If K/k is purely inseparable, we have a natural homeomorphism

Sp(A⊗k K) ∼−→ SpA.

Proof. In both cases, the inclusion A→ A⊗k K induces a morphism
Sp(A⊗k K)→ SpA.

In the first case, Gal(K/k) clearly acts on SpA⊗k K preserving each fiber: given a
bounded semi-valuation ‖ • ‖x on A⊗k K corresponding to a point x ∈ Sp(A⊗k K)



9. MAXIMUM SPECTRA 25

and σ ∈ Gal(K/k), then σx corresponds to the bounded semi-valuation ‖ • ‖σx on
A⊗k K so that

‖f‖σx = ‖σ−1(f)‖x.
It follows that the maps in both cases are well-defined. We observe that the fiber
of a point x ∈ SpA under Sp(A ⊗k K) → SpA can be identified with the image
of Sp H (x) ⊗k K in SpA ⊗k K. Observe that Sp H (x) ⊗k K is just the set of
maximal ideals When K/k is Galois, Gal(K/k) acts transitively. If K/k is purely
inseparable, then H (x)⊗k K is a local ring. �

Corollary 8.6. Let k be a complete valuation field and A be a Banach k-algebra.
Then we have a canonical identification

SpA⊗̂kk̂alg/Gal(ksep/k) ∼−→ SpA.

Proof. This follows from Proposition 8.5. Add details later. �

Definition 8.7. Let A be a Banach k-algebra. A closed subset Γ ⊆ SpA is called
a boundary of A if for any f ∈ A,

sup
x∈SpA

|f(x)| = sup
x∈Γ
|f(x)|.

If there is a minimal boundary of A, we call it the Shilov boundary of A.

9. Maximum spectra

Let (k, | • |) a complete non-Archimedean valued field.

Definition 9.1. For any k-algebra A, we write
Spmk A := {m ∈ SpmA : A/m is algebraic over k} .

For any x ∈ Spmk A and any f ∈ A, we write f(x) for the residue of f in A/mx,
where mx is the maximal ideal corresponding to x. We write |f(x)| for the valuation
of f(x) with respect to the extended valuation induced from the given valuation on
k.

Definition 9.2. Let A be a k-algebra. For each f ∈ A, we write |f |sup for the
supremum of |f(x)| for all x ∈ Spmk A if Spmk A is non-empty and 0 otherwise.

Definition 9.3. Let f be a monic polynomial in k[X], we expand f = Xn +
a1X

n−1 + · · ·+ an ∈ k[X], then we define σ(f) := maxi=1,...,n |ai|1/i.

Definition 9.4. Let L be a reduced integral k-algebra. We define the spectral
norm | • |sp on L as follows: given a non-zero x ∈ L, take a minimal polynomial
Xn + a1X

n−1 + · · ·+ an ∈ k[X] of x over k. Then we set
|x|sp := max

i=1,...,n
|ai|1/i.

Proposition 9.5. Let f, g be monic polynomials in k[X], then
σ(fg) = max{σ(f), σ(g)}.

Proof. Replacing k by a finite extension, we may assume that f and g split
into linear factors ai and bj . Then it is straightforward to show that

σ(f) =
∏
i

ai, σ(g) =
∏
j

bj , σ(fg) =
∏
i

ai ·
∏
j

bj .

The assertion follows. �
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Proposition 9.6. Let L be a reduced integral k-algebra. Then | • |sp is a power-
multiplicative norm on L, and it extends the norm on k.

Proof. It is clear that | • |sp extends the valuation on k. In order to show
that | • |sp is a power-multiplicative norm on L, we may assume that L is finite
dimensional over k. Then we can find finite field extensions L1, . . . , Lt of k such that
L =

⊕t
i=1 Li. By Proposition 9.5, we can immediately reduce to the case where

L/k is a finite field extension. In this case, the result is well-known. Expand. �

Proposition 9.7. Let L be a reduced integral k-algebra. For any p ∈ SpecL, write
πp : L→ L/p the residue map. Then for any y ∈ L,

|y|sp = max
p∈SpecL

|πp(y)|sp.

Proof. Fix y ∈ L. For any p ∈ SpecL, let qp ∈ k[X] be the minimal polynomial
of πp(y) over k. Let q ∈ k[X] be the minimal polynomial of y over k. Then clearly
qp divides q for all p ∈ SpecL. In particular, there are only finitely many different
polynomials among qp (p ∈ SpecL), say q1, . . . , qr. Define q′ = q1 · · · qr ∈ k[X].
Then for f ∈ k[X], f(y) = 0 if and only if πp(f(y)) = 0 for all p ∈ SpecL as L is
reduced. The latter condition is equivalent to that q′|f . It follows that q′ = q. Now
by Proposition 9.5,

|y|sp = σ(q) = max
i=1,...,r

σ(qi) = max
p∈SpecL

|πp(y)|sp.

�

Proposition 9.8. Let ϕ : B → A be a homomorphism of commutative k-algebras.
Then for any f ∈ B,

|ϕ(f)|sup ≤ |f |sup.

Proof. Of course, we can assume that Spmk A 6= ∅. Let x ∈ Spmk A, then
ϕ−1x ∈ Spmk B. But for any f ∈ B, |ϕ(f)(x)| = |f(ϕ−1x)|. We conclude. �

Proposition 9.9. Let A be a k-algebra. Let M be the set of minimal prime ideals
in A and let πp : A → A/p be the canonical residue map for all p ∈M. Then for
any f ∈ A,
(9.1) |f |sup = sup

p∈M
|πp(f)|sup.

In particular, if A be a reduced integral k-algebra. Then | • |sup = | • |sp on A.

Proof. By Proposition 9.8,
sup
p∈M
|πp(f)|sup ≤ |f |sup.

In order to show the reverse inequality, let x ∈ Spmk A. Take p ∈ M such that
x ⊇ p. Clearly, πp(x) ∈ Spmk A/p and

|f(x)| = |πp(f)(πp(x))| .
In particular,

|f(x)| ≤ |πp(f)|sup ≤ sup
p∈M
|πp(f)|sup.

Take sup with respect to x, we conclude (9.1).
When A is a reduced and integral k-algebra, all prime ideals of A are minimal.

The final assertion follows from Proposition 9.7. �
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Definition 9.10. Let A be a Banach k-algebra. We say that maximal modulus
principle holds for A if for any f ∈ A, there is x ∈ Spmk A such that |f(x)| = |f |sup.

Proposition 9.11. Let ϕ : B → A be an injective integral torsion-free homomor-
phism of Banach k-algebras. Assume that B is a normal integral domain.

(1) Fix f ∈ A. Let fn +ϕ(b1)fn−1 + · · ·+ϕ(bn) = 0 be the minimal equation
of f over A. Then

|f |sup = max
i=1,...,n

|bi|1/isup.

(2) Assume that maximal modulus principle holds for B, then it holds for A
as well.

(3) Suppose that |bb′|sup = |b|sup|b′|sup for all b, b′ ∈ B. Then |ϕ(b)f |sup =
|b|sup|f |sup for all b ∈ B and f ∈ A.

Proof. (1) We first show the inequality

|f |sup ≤ max
i=1,...,n

|bi|1/isup.

Of course, we can assume that Spmk A 6= ∅. For all x ∈ Spmk A, we have
0 = f(x)n+ϕ(b1)f(x)n−1+· · ·+ϕ(bn) = f(x)n+b1(ϕ−1x)f(x)n−1+· · ·+bn(ϕ−1(x)).
Then we in fact have that

|f(x)| ≤ max
i=1,...,n

|bi(ϕ−1x)|1/isup.

Assume that to the contrary that
|f(x)|i > |bi(ϕ−1x)|

for all i = 1, . . . , n. Then
|bi(ϕ−1x)f(x)n−i| < |f(x)|n = |f(x)n|.

It follows that
|b1(ϕ−1x)f(x)n−1 + · · ·+ bn(ϕ−1(x))| < |f(x)n|.

This is a contradiction.
It remains to argue that

(9.2) |f |sup ≥ max
i=1,...,n

|bi|1/isup.

Next let A′ = B[f ]. We argue that A′ → A is an isometry with respect to
| • |sup. If Spmk A

′ is empty, then the assertion follows from Proposition 9.8. Assume
that SpmmA

′ is non-empty. Take y ∈ Spmk A
′. By [Stacks, Tag 00GQ], there is a

maximal ideal x ∈ SpmA lying over y. As the induced map A′/y → A/x is integral,
we find x ∈ Spmk A. So the map Spmk A→ Spmk A

′ is surjective. If follows that
A′ → A is an isometry with respect to | • |sup.

In order to argue (9.2), we may assume that A = B[f ]. Let q ∈ B[X] denote the
minimal polynomial of f over A. Then A = B[X]/(q). Let y ∈ Spmk B, we write
fy for the residue class of f in A/yA and write f̄y for the residue class in (A/yA)red.
Similarly, let qy denote the residue class of q in B/y[X]. As y is contained in some
Spmk A, we see that

|f |sup = sup
y∈Spmk B

|fy|sup = sup
y∈Spmk B

|f̄y|sup.

https://stacks.math.columbia.edu/tag/00GQ
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For y ∈ Spmk B, we decompose qy into prime factors qn1
1 · · · qnr

r in B/y[X]. Then
A/yA ∼= B/y[X]/(qy)

and

(A/yA)red ∼=
r⊕
i=1

B/y[X]/(qi).

We endow
⊕r

i=1B/y[X]/(qi) with the spectral norm over B/y. If f̄i denotes the
residue class of f̄y in B/y[X]/(qi), by Proposition 9.9 and Proposition 9.5,

|f̄y|sup = max
i=1,...,r

|f̄i|sp = max
i=1,...,r

σ(qi) = σ(qy).

Therefore,
|f |sup = sup

y∈Spmk B
σ(qy) = max

i=1,...,n
|bi|1/nsup .

(2) Take a non-zero f ∈ A. Using the notations in (1), we can find y ∈ Spmk B
such that

|f̄y|sup = σ(qy) = |f |sup.

As A/yA contains only finitely many maximal ideals, there is x ∈ Spmk A such that
|f̄y|sup = |f(x)|. So

|f |sup = |f(x)|.
(3) Consider f ∈ A and let fn + b1f

n−1 + · · ·+ bn = 0 be its minimal integral
equation over B. Then f is of degree n over FracB as well, hence so is bf for any
non-zero b ∈ B. So the minimal integral equation of bf is

(bf)n + bb1(bf)n−1 + · · ·+ bnbn = 0.
By (1), we compute

|bf |sup = max
i=1,...,n

|bibi|1/isup = |b|sup max
i=1,...,n

|bi|1/isup = |b|sup|f |sup.

Also, |bf |sup = |b|sup|f |sup is trivial for b = 0. We conclude. �

10. Miscellany

Lemma 10.1. Let (A, | • |) be a valued integral domain such that Ã is Noetherian
and N-2. Assume that |A×| is a group. Let (B, ‖ • ‖) be a faithfully normed
A-algebra such that

(1) ‖ • ‖ is power-multiplicative.
(2) The A-rank of B is finite.
(3) B̊ is integral over Å.

Then B̃ is finite as Ã-module.

Proof. We want to apply Proposition 8.1 in Commutative algebras to the
canonical injection map ψ : Ã→ B̃. The map ψ is integral as B̊ is integral over Å.
The conditions are easily verified. Add details. �
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