Ymir

Contents

Banach rings 5

1. Introduction 5
2. Semi-normed Abelian groups 5
3. Semi-normed rings 7
4. Banach rings 8
5. Semi-normed modules 14
6. Berkovich spectra 17
7. Open mapping theorem 21
8. Properties of Banach algebras over a field 23
9. Maximum spectra 25
10. Miscellany 28
Bibliography 29

Banach rings

1. Introduction

This section conerns the theory of Banach algebras. Our references are [Ber12] and [BGR84].

In this chapter, all rings are assumed to be commutative.

2. Semi-normed Abelian groups

Definition 2.1. Let A be an Abelian group. A semi-norm on A is a function $\|\bullet\|: A \rightarrow[0, \infty]$ satisfying
(1) $\|0\|=0$;
(2) $\|f-g\| \leq\|f\|+\|g\|$ for all $f, g \in A$.

A semi-norm $\|\bullet\|$ on A is a norm if moreover the following conditions is satisfied:
(0) if $\|f\|=0$ for some $f \in A$, then $f=0$.

We write

$$
\operatorname{ker}\|\bullet\|=\{a \in A:\|a\|=0\}
$$

A semi-norm $\|\bullet\|$ on A is non-Archimedean or ultra-metric if Condition (2) can be replaced by
(2') $\|f-g\| \leq \max \{\|f\|,\|g\|\}$ for all $f, g \in A$.
Definition 2.2. A semi-normed Abelian group (resp. normed Abelian group) is a pair $(A,\|\bullet\|)$ consisting of an Abelian group A and a semi-norm (resp. norm) $\|\bullet\|$ on A. When $\|\bullet\|$ is clear from the context, we also say A is a semi-normed Abelian group (resp. normed Abelian group).
Definition 2.3. Let $\left(A,\|\bullet\|_{A}\right)$ be a semi-normed Abelian group and $B \subseteq A$ be a subgroup. Then we define the quotient semi-norm $\|\bullet\|_{A / B}$ on A / B as follows:

$$
\|a+B\|_{A / B}:=\inf \left\{\|a+b\|_{A}: b \in B\right\}
$$

for all $a+B \in A / B$.
We define the subgroup semi-norm on B as follows:

$$
\|b\|_{B}=\|b\|_{A}
$$

for all $b \in B$.
Definition 2.4. Let A be an Abelian group and $\|\bullet\|,\|\bullet\|^{\prime}$ be two seminorms on A. We say $\|\bullet\|$ and $\|\bullet\|^{\prime}$ are equivalent if there is a constant $C>0$ such that

$$
C^{-1}\|f\| \leq\|f\|^{\prime} \leq C\|f\|
$$

for all $f \in A$.

Definition 2.5. Let $\left(A,\|\bullet\|_{A}\right),\left(B,\|\bullet\|_{B}\right)$ be semi-normed Abelian groups. A homomorphism $\varphi: A \rightarrow B$ is said to be
(1) bounded if there is a constant $C>0$ such that $\|\varphi(f)\|_{B} \leq C\|f\|_{A}$ for any $f \in A$;
(2) admissible if the quotient semi-norm on $A / \operatorname{ker} \varphi$ is equivalent to the subspace semi-norm on $\operatorname{Im} \varphi$.

Observe that an admissible homomorphism is always bounded.
Next we study the topology defined by a semi-norm.
Lemma 2.6. Let $(A,\|\bullet\|)$ be a semi-normed Abelian group. Define

$$
d(a, b)=\|a-b\|
$$

for $a, b \in A$. Then $\|\bullet\|$ is a pseudo-metric on A. This psuedo-metric is a metric if and only if $\|\bullet\|$ is a norm.

Let \hat{A} be the metric completion of A, then there is a norm $\|\bullet\|$ on \hat{A} inducing its metric. Moreover, the natural homomorphism $A \rightarrow \hat{A}$ is an isometric homomorphism with dense image.

Proof. This is clear from the definitions.
We always endow A with the topology induced by the psuedo-metric d.
Proposition 2.7. Let $f: A \rightarrow B$ be a homomorphism between semi-normed Abelian groups. Assume that f is bounded, then it is continuous.

The converse is not true.
Proof. Clear from the definition.
Proposition 2.8. Let $(A,\|\bullet\|)$ be a normed Abelian group and B be a subgroup of A. Assume that there is $\epsilon \in(0,1)$ such that for each $a \in A$, there is $b \in B$ such that

$$
\|a+b\| \leq \epsilon\|a\|
$$

Then B is dense in A.
Proof. Assume to the contrary that there exists $a \in A$ so that

$$
c:=\inf _{b \in B}\|a-b\|>0
$$

Choose $b_{1} \in B$ so that

$$
\left\|a+b_{1}\right\|<\epsilon^{-1} c
$$

By our hypothesis, there is $b_{2} \in B$ such that

$$
\left\|a+b_{1}+b_{2}\right\| \leq \epsilon\left\|a+b_{1}\right\|<c
$$

This is a contradiction.
Definition 2.9. Let $(A,\|\bullet\|)$ be a semi-normed Abelian group. The normed Abelian $\operatorname{group}(\hat{A},\|\bullet\|)$ constructed in Lemma 2.6 is called the completion of $(A,\|\bullet\|)$.

3. Semi-normed rings

Definition 3.1. Let A be a ring. A semi-norm $\|\bullet\|$ on A is a semi-norm $\|\bullet\|$ on the underlying additive group satisfying the following extra properties:
(3) $\|1\|=1$;
(4) for any $f, g \in A,\|f g\| \leq\|f\| \cdot\|g\|$.

A semi-norm $\|\bullet\|$ on A is called power-multiplicative if $\|f\|^{n}=\left\|f^{n}\right\|$ for all $f \in A$ and $n \in \mathbb{N}$.

A semi-norm $\|\bullet\|$ on A is called multiplicative if $\|f g\|=\|f\|\|g\|$ for all $f, g \in A$.
Definition 3.2. A semi-normed ring (resp. normed ring) is a pair $(A,\|\bullet\|)$ consisting of a ring A and a semi-norm (resp. norm) $\|\bullet\|$ on A. When $\|\bullet\|$ is clear from the context, we also say A is a semi-normed ring (resp. normed ring).
Definition 3.3. Let $(A,\|\bullet\|)$ be a semi-normed ring. An element $a \in A$ is multiplicative if $a \notin \operatorname{ker}\|\bullet\|$ and for any $x \in A$,

$$
\|a x\|=\|a\| \cdot\|x\|
$$

Definition 3.4. Let $(A,\|\bullet\|)$ be a normed ring. An element $a \in A$ is power-bounded if $\left\{\left|a^{n}\right|: n \in \mathbb{N}\right\}$ is bounded in \mathbb{R}. The set of power-bounded elements in A is denoted by \AA.

An element $a \in A$ is called topologically nilpotent if $a^{n} \rightarrow 0$ as $n \rightarrow \infty$. The set of topologically nilpotent elements in A is denoted by \check{A}.
Proposition 3.5. Let $(A,\|\bullet\|)$ be a non-Archimedean normed ring. Then \AA is a subring of A and \check{A} is an ideal in \AA. Moreover, \AA, \check{A} are open and closed in A.

Proof. Choose $a, b \in \AA$, by definition, there is a constant $C>0$ so that for any $n \in \mathbb{N}$,

$$
\left\|a^{n}\right\| \leq C, \quad\left\|b^{n}\right\| \leq C
$$

It follows that

$$
\left\|(a b)^{n}\right\| \leq\left\|a^{n}\right\| \cdot\left\|b^{n}\right\| \leq C^{2}
$$

and

$$
\left\|(a-b)^{n}\right\| \leq \max _{i=0, \ldots, n}\left\|a^{i} b^{n-i}\right\| \leq C^{2}
$$

So \AA is a subring.
Next we show that \check{A} is an ideal in \AA. On the other hand, take $c \in \check{A}$, then

$$
\left\|(a c)^{n}\right\| \leq\left\|a^{n}\right\| \cdot\left\|c^{n}\right\| \leq C\left\|c^{n}\right\|
$$

But $\left\|c^{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, hence $a c \in \check{A}$.
On the other hand, consider $c, d \in \check{A}$, we need to show $c-d \in \check{A}$. Choose $C>0$ so that

$$
\left\|a^{n}\right\| \leq C, \quad\left\|b^{n}\right\| \leq C
$$

for all $n \in \mathbb{N}$. Fix $\epsilon>0$, then there is $m \in \mathbb{N}$ so that for any $k \geq m$,

$$
\left\|a^{k}\right\| \leq \epsilon C^{-1}, \quad\left\|b^{k}\right\| \leq \epsilon C^{-1}
$$

In particular, for $k \geq 2 m$, we have

$$
\left\|(a-b)^{k}\right\| \leq \max _{i=0, \ldots, k}\left\|a^{i}\right\| \cdot\left\|b^{k-i}\right\| \leq \epsilon
$$

It follows that $a-b \in \check{A}$. This proves that \check{A} is an ideal in \AA.

In order to see \check{A} is open and closed in A, observe that it is a subgroup of A, so it suffices to show that \check{A} is open in A. It suffices to show that

$$
\{a \in A:\|a\|<1\} \subseteq \check{A}
$$

But this is obvious, if $\|a\|<1$, then $\left\|a^{n}\right\| \leq\|a\|^{n}$ for all $n \in \mathbb{N}$, it follows that $a^{n} \rightarrow 0$ as $n \rightarrow \infty$, namely, $a \in \check{A}$.

As \check{A} is a subgroup of \AA, it follows that \AA is both open and closed.
Definition 3.6. Let $(A,\|\bullet\|)$ be a non-Archimedean normed ring. We define the reduction of A as $\tilde{A}=\AA / \tilde{A}$. The map $\AA \rightarrow \tilde{A}$ is called the reduction map. We usually denote the reduction map by $a \mapsto \tilde{a}$.

This definition makes sense thanks to Proposition 3.5.
Definition 3.7. Let A be a ring. A semi-valuation on A is a multiplicative seminorm on A. A semi-valuation on A is a valuation on A if its underlying semi-norm of Abelian groups is a norm.

Definition 3.8. A semi-valued ring (resp. valued ring) is a pair $(A,\|\bullet\|)$ consisting of a ring A and a semi-valuation (resp. valuation) $\|\bullet\|$ on A. When $\|\bullet\|$ is clear from the context, we also say A is a semi-valued ring (resp. valued ring).

A semi-valued ring (resp. valued ring) $(A,\|\bullet\|)$ is called a semi-valued field (resp. valued field) if A is a field.

4. Banach rings

Definition 4.1. A Banach ring is a normed ring that is complete with respect to the metric defined in Lemma 2.6.

Definition 4.2. A Banach ring $\left(A,\|\bullet\|_{A}\right)$ is uniform if $\|\bullet\|_{A}$ is power-multiplicative.
Definition 4.3. Let A be a semi-normed ring. There is an obvious ring structure on the completion \hat{A} of A defined in Definition 2.9. We call the resulting Banach ring the completion of A.
Proposition 4.4. Let $(A,\|\bullet\|)$ be a Banach ring and $f \in A$. Assume that $\|f\|<1$, then $1-f$ is invertible.

Proof. Define

$$
g=\sum_{i=0}^{\infty} f^{i}
$$

From our assumption, the series converges and $g \in A$. It is elementary to check that g is the inverse of $1-f$.

In the non-Archimedean case, we have a stronger result:
Proposition 4.5. Let $(A,\|\bullet\|)$ be a non-Archimedean Banach ring and $f \in \check{A}$. Then $1-f$ is invertible. Moreover, $(1-f)^{-1}$ can be written as $1+z$ for some $z \in \check{A}$.

Proof. Define

$$
g=\sum_{i=0}^{\infty} f^{i}
$$

From our assumption, the series converges and $g \in A$. It is elementary to check that g is the inverse of $1-f$. Moreover, in view of Proposition 3.5 as for any $i \geq 1$, $f^{i} \in \check{A}$, the same holds for their sum, we conclude the final assertion.

Corollary 4.6. Let $(A,\|\bullet\|)$ be a Banach ring. Then the set of invertible elements in A is open.

Proof. Let $x \in A$ be an invertible element. It suffices to show that for any $y \in A,|y|<1 /\left(\left\|x^{-1}\right\|\right), y+x$ is invertible. For this purpose, it suffices to show that $1+x^{-1} y$ is invertible. But this follows from Proposition 4.4.

Corollary 4.7. Let A be a Banach ring and \mathfrak{m} be a maximal ideal in A. Then \mathfrak{m} is closed.

Proof. The closure $\overline{\mathfrak{m}}$ is obviously an ideal in A. We need to show that $\mathfrak{m} \neq A$. Namely, 1 is not in the closure of \mathfrak{m}. But clearly, \mathfrak{m} is contained in the set of non-invertible elements, the latter being closed by Corollary 4.6. So we conclude.
Lemma 4.8. Let A be a non-Archimedean Banach ring. An element $a \in \AA$ is a unit in \AA if and only if \tilde{a} is a unit in \tilde{A}.

Proof. The direct implication is trivial. Conversely, assume that $a \in \AA$ and there is an element $b \in \AA$ such that

$$
\tilde{a} \tilde{b}=1
$$

Then $1-a b \in \check{A}$. It follows from Proposition 4.5 that $a b$ is a unit in \AA and hence a is a unit in \AA.

Definition 4.9. Let $(A,\|\bullet\|)$ be a Banach ring. We define the spectral radius $\rho=\rho_{A}: A \rightarrow[0, \infty)$ as follows:

$$
\rho(f)=\inf _{n \geq 1}\left\|f^{n}\right\|^{1 / n}, \quad f \in A .
$$

Lemma 4.10. Let $(A,\|\bullet\|)$ be a Banach ring. Then for any $f \in A$, we have

$$
\rho(f)=\lim _{n \rightarrow \infty}\left\|f^{n}\right\|^{1 / n}
$$

Proof. This follows from the multiplicative version of Fekete's lemma.
Example 4.11. The ring \mathbb{C} with its usual norm $|\bullet|$ is a Banach ring. In fact, $(\mathbb{C},|\bullet|)$ is a complete valued field.
Example 4.12. Let $\left\{\left(A_{i},\|\bullet\|_{i}\right\}_{i \in I}\right.$ be a family of Banach rings. We define their product $\prod_{i \in I} A_{i}$ as the following Banach ring: as a set it consists of all elements $f=\left(f_{i}\right)_{i \in I}$ with

$$
\|f\|:=\sup _{i \in I}\left\|f_{i}\right\|_{i}<\infty
$$

The norm is given by $\|\bullet\|$. It is easy to verify that $\prod_{i \in I} A_{i}$ is indeed a Banach ring.
Example 4.13. For any Banach ring $(A,\|\bullet\|)$, any $n \in \mathbb{N}$ and any $r=\left(r_{1}, \ldots, r_{n}\right) \in$ $\mathbb{R}_{>0}^{n}$, we define $A\left\langle r^{-1} z\right\rangle=A\left\langle r_{1}^{-1} z_{1}, \ldots, r_{n}^{-1} z_{n}\right\rangle$ as the subring of $A\left[\left[z_{1}, \ldots, z_{n}\right]\right]$ consisting of formal power series

$$
f=\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} z^{\alpha}, \quad a_{\alpha} \in A
$$

such that

$$
\|f\|_{r}:=\sum_{\alpha \in \mathbb{N}^{n}}\left\|a_{\alpha}\right\| r^{\alpha}<\infty
$$

We will verify in Proposition 4.14 that $\left(A\left\langle r^{-1} z\right\rangle,\|\bullet\|_{r}\right)$ is a Banach ring.
When $r=(1, \ldots, 1)$, we omit r^{-1} from our notations.

Proposition 4.14. In the setting of Example 4.13, $\left(A\left\langle r^{-1} z\right\rangle,\|\bullet\|_{r}\right)$ is a Banach ring.

Proof. By induction, we may assume that $n=1$.
It is obvious that $\|\bullet\|_{r}$ is a norm on the undelrying Abelian group. To see that $\|\bullet\|_{r}$ is a norm on the ring $A\left\langle r^{-1} z\right\rangle$, we need to verify the condition in Definition 3.1. Condition (3) in Definition 3.1 is obvious. Let us consider Condition (4). Let

$$
f=\sum_{i=0}^{\infty} a_{i} z^{i}, \quad g=\sum_{j=0}^{\infty} b_{j} z^{j}
$$

be two elements in $A\left\langle r^{-1} z\right\rangle$. Then

$$
f g=\sum_{k=0}^{\infty}\left(\sum_{i+j=k} a_{i} b_{j}\right) z^{k} .
$$

We compute

$$
\|f g\|_{r}=\sum_{k=0}^{\infty}\left\|\sum_{i+j=k} a_{i} b_{j}\right\| r^{k} \leq \sum_{k=0}^{\infty}\left(\sum_{i+j=k}\left\|a_{i}\right\| \cdot\left\|b_{j}\right\|\right) r^{k}=\|f\|_{r} \cdot\|g\|_{r}
$$

It remains to verify that $A\left\langle r^{-1} z\right\rangle$ is complete.
For this purpose, take a Cauchy sequence

$$
f^{b}=\sum_{i=0}^{\infty} a_{i}^{b} z^{i} \in A\left\langle r^{-1} z\right\rangle
$$

for $b \in \mathbb{N}$. Then for each i, the coefficients $\left(a_{i}^{b}\right)_{b}$ is a Cauchy sequence in A. Let a_{i} be the limit of a_{i}^{b} as $b \rightarrow \infty$ and set

$$
f=\sum_{i=0}^{\infty} a_{i} z^{i} \in A[[z]]
$$

We need to show that $f \in A\left\langle r^{-1} z\right\rangle$ and $f^{b} \rightarrow f$.
Fix a constant $\epsilon>0$. There is $m=m(\epsilon)>0$ such that for all $j \geq m$ and all $k \geq 0$, we have

$$
\sum_{i=0}^{\infty}\left\|a_{i}^{j+k}-a_{i}^{j}\right\| r^{i}<\epsilon / 2
$$

In particular, for any $s>0$, we have

$$
\sum_{i=0}^{s}\left\|a_{i}-a_{i}^{j}\right\| r^{i} \leq \sum_{i=0}^{s}\left\|a_{i}-a_{i}^{j+k}\right\| r^{i}+\sum_{i=0}^{s}\left\|a_{i}^{j}-a_{i}^{j+k}\right\| r^{i} \leq \sum_{i=0}^{s}\left\|a_{i}-a_{i}^{j+k}\right\| r^{i}+\epsilon / 2
$$

When k is large enough, we can guarantee that

$$
\sum_{i=0}^{s}\left\|a_{i}-a_{i}^{j+k}\right\| r^{i}<\epsilon / 2
$$

So

$$
\sum_{i=0}^{s}\left\|a_{i}-a_{i}^{j}\right\| r^{i} \leq \epsilon
$$

Let $s \rightarrow \infty$, we find

$$
\left\|f-f^{j}\right\|_{r} \leq \sum_{i=0}^{\infty}\left\|a_{i}-a_{i}^{j}\right\| r^{i} \leq \epsilon
$$

In particular, $\|f\|_{r}<\infty$ and $f^{j} \rightarrow f$ as $j \rightarrow \infty$.
Example 4.15. For any non-Archimedean Banach ring $(A,\|\bullet\|)$, any $n \in \mathbb{N}$ and any $r=\left(r_{1}, \ldots, r_{n}\right) \in \mathbb{R}_{>0}^{n}$, we define $A\left\{r^{-1} T\right\}=A\left\{r_{1}^{-1} T_{1}, \ldots, r_{n}^{-1} T_{n}\right\}$ as the subring of $A\left[\left[T_{1}, \ldots, T_{n}\right]\right]$ consisting of formal power series

$$
f=\sum_{\alpha \in \mathbb{N}^{n}} a_{\alpha} T^{\alpha}, \quad a_{\alpha} \in A
$$

such that $\left\|a_{\alpha}\right\| r^{\alpha} \rightarrow 0$ as $|\alpha| \rightarrow \infty$. We set

$$
\|f\|_{r}:=\max _{\alpha \in \mathbb{N}^{n}}\left\|a_{\alpha}\right\| r^{\alpha}
$$

We will verify in Proposition 4.16 that $\left(A\left\langle r^{-1} T\right\rangle,\|\bullet\|_{r}\right)$ is a Banach ring.
The semi-norm $\|\bullet\|_{r}$ is called the Gauss norm.
Proposition 4.16. In the setting of Example 4.15, $\left(A\left\{r^{-1} T\right\},\|\bullet\|_{r}\right)$ is a Banach ring.

Moreover, if the norm $\|\bullet\|$ on A is a valuation, so is $\|\bullet\|_{r}$.
The second part is usually known as the Gauss lemma.
Proof. By induction on n, we may assume that $n=1$.
The proof of the fact that $\|\bullet\|_{r}$ is a norm is similar to that of Proposition 4.14. We leave the details to the readers.

Next we argue that $\left(A\left\{r^{-1} T\right\},\|\bullet\|_{r}\right)$ is complete. Take a Cauchy sequence

$$
f^{b}=\sum_{i=0}^{\infty} a_{i}^{b} T^{i} \in A\left\{r^{-1} T\right\}
$$

for $b \in \mathbb{N}$. As

$$
\left\|a_{i}^{b}-a_{i}^{b^{\prime}}\right\| r^{i} \leq\left\|f^{b}-f^{b^{\prime}}\right\|_{r}
$$

for any $i, b, b^{\prime} \geq 0$, it follows that for any $i \geq 0,\left\{a_{i}^{b}\right\}_{b}$ is a Cauchy sequence. Let $a_{i} \in A$ be its limit and set

$$
f=\sum_{i=0}^{\infty} a_{i} T^{i} \in A[[T]]
$$

We need to show that $f \in A\left\{r^{-1} T\right\}$ and $f^{b} \rightarrow f$.
Fix $\epsilon>0$. We can find $m=m(\epsilon)>0$ such that for all $j \geq m$ and all $k \geq 0$,

$$
\left\|f^{j}-f^{j+k}\right\|_{r} \leq \epsilon
$$

It follows that $\left\|a_{i}^{j}-a_{i}^{j+k}\right\| r^{i} \leq \epsilon$ for all $i \geq 0$. Let $k \rightarrow \infty$, we find

$$
\left\|a_{i}^{j}-a_{i}\right\| r^{i} \leq \epsilon
$$

for all $i \geq 0$. Fix $j \geq 0$, take i large enough so that $\left|a_{i}^{j}\right| r^{i}<\epsilon$. Then $\left\|a_{i}\right\| r^{i} \leq \epsilon$. So we find $f \in A\left\{r^{-1} T\right\}$. On the other hand,

$$
\left\|f-f^{j}\right\|_{r}=\max _{i}\left\|a_{i}^{j}-a_{i}\right\| r^{i} \leq \epsilon
$$

This proves that $f^{j} \rightarrow f$.

Now assume that $\|\bullet\|$ is a valuation, we verify that $\|\bullet\|_{r}$ is also a valuation. Again, we may assume that $n=1$. Take two elements $f, g \in A\left\{r^{-1} T\right\}$:

$$
f=\sum_{i=0}^{\infty} a_{i} T^{i}, \quad g=\sum_{j=0}^{\infty} b_{j} T^{j}
$$

As we have already shown $|f g|_{r} \leq|f|_{r}|g|_{r}$, it suffices to check the reverse inequality. For this purpose, choose the minimal indices i, j so that

$$
\|f\|_{r}=\left\|a_{i}\right\| r^{i}, \quad\|g\|_{r}=\left\|b_{j}\right\| r^{j}
$$

Write

$$
f g=\sum_{k=0}^{\infty}\left(\sum_{p+q=k} a_{p} b_{q}\right) T^{k}
$$

Then we claim that

$$
\left\|\sum_{p+q=k} a_{p} b_{q}\right\| r^{k}=\|f\|_{r}\|g\|_{r}
$$

when $k=i+j$. This implies the desired inequality. Of course, we may assume that $a_{i} \neq 0$ and $b_{j} \neq 0$ as otherwise there is nothing to prove. To verify our claim, it suffices to observe that for $(p, q) \neq(i, j), r+s=i+j$, say $p<i$ and $q>j$, we have

$$
\left\|a_{p} b_{q}\right\| r^{k}=\left\|a_{p}\right\| r^{p} \cdot\left\|b_{q}\right\| r^{q}<\left\|a_{i}\right\| r^{i} \cdot\left\|b_{j}\right\| r^{j}
$$

So

$$
\left\|a_{p} b_{q}\right\|<\left\|a_{i} b_{j}\right\| .
$$

Since the valuation on A is non-Archimedean, it follows that

$$
\left\|\sum_{p+q=k} a_{p} b_{q}\right\|=\left\|a_{i} b_{j}\right\| .
$$

Our claim follows.
Remark 4.17. More generally, it A is endowed with a semi-valuation $\|\bullet\|^{\prime}$, then the same procedure and the same proof produces a semi-valuation on $A\left\{r^{-1} T\right\}$.
Proposition 4.18. Let A, B be a non-Archimedean Banach ring and $f: A \rightarrow B$ be a continuous homomorphism. Then for any $b \in \stackrel{B}{B}$, there is a unique continuous homomorphism $F: A\{T\} \rightarrow B$ extending f and sending T to b.

Proof. From the continuity and the fact that $A[T]$ is dense in $A\{T\}, F$ is clearly unique. To prove the existence, we define F directly: consider $g=\sum_{i=0}^{\infty} a_{i} T^{i} \in$ $A\{T\}$, we define

$$
F(g):=\sum_{i=0}^{\infty} f\left(a_{i}\right) f^{i}
$$

As $f_{i} \in \AA$ and $a_{i} \rightarrow 0$, the right-hand side is well-defined. It is straightforward to check that F is a continuous homomorphism.

Proposition 4.19. For any non-Archimedean Banach ring $(A,\|\bullet\|)$, we have

$$
(A\{T\})^{\circ}=\AA\{T\}, \quad(A\{T\})^{\check{ }}=\check{A}\{T\} .
$$

For the definitions of \bullet and \bullet, we refer to Definition 3.4.

Proof. We first show that

$$
\AA\{T\} \subseteq(A\{T\})^{\circ}
$$

Let $f \in \AA\{T\}$. We expand f as

$$
f=\sum_{i=0}^{\infty} a_{i} T^{i}, \quad a_{i} \in \AA .
$$

Then for each $i, j \in \mathbb{N},\left\|a_{i} T^{i}\right\|_{1}^{j}=\left\|a_{i}\right\|^{j}$. So for each $i \in \mathbb{N}, a_{i} T^{i} \in(A\{T\})^{\circ}$. By Proposition 3.5, it follows that $f \in(A\{T\})^{\circ}$.

Next we prove the reverse inclusion. Take $f \in(A\{T\})^{\circ}$, suppose by contrary that $f \notin \AA\{T\}$. Expand f as

$$
f=\sum_{i=0}^{\infty} a_{i} T^{i}, \quad a_{i} \in A
$$

We can take a minimal $m \in \mathbb{N}$ so that $a_{m} \notin \AA$. Then $\sum_{i=0}^{m-1} a_{i} T^{i} \in \AA\{T\} \subseteq(A\{T\})^{\circ}$ by what we have proved. It follows that

$$
g:=f-\sum_{i=0}^{m-1} a_{i} T^{i}=\sum_{i=m}^{\infty} a_{i} T^{i} \in(A\{T\})^{\circ}
$$

Then it follows that

$$
\left\|g^{j}\right\| \geq\left\|a_{m}^{j}\right\|
$$

for any $j \in \mathbb{N}$. It follows that $a_{m} \in \AA$, which is a contradiction.
Next we show that

$$
\check{A}\{T\} \subseteq(A\{T\})
$$

Let $f \in \check{A}\{T\}$. We expand f as

$$
f=\sum_{i=0}^{\infty} a_{i} T^{i}, \quad a_{i} \in \check{A}
$$

Then for each $i, j \in \mathbb{N},\left\|a_{i} T^{i}\right\|_{1}^{j}=\left\|a_{i}\right\|^{j}$. So for each $i \in \mathbb{N}, a_{i} T^{i} \in(A\{T\})^{r}$. By Proposition 3.5, it follows that $f \in(A\{T\})^{2}$.

Conversely, take $f \in(A\{T\})^{\check{\prime}}$, suppose by contrary that $f \notin \check{A}\{T\}$. Expand f as

$$
f=\sum_{i=0}^{\infty} a_{i} T^{i}, \quad a_{i} \in A
$$

We can take a minimal $m \in \mathbb{N}$ so that $a_{m} \notin \check{A}$. Then $\sum_{i=0}^{m-1} a_{i} T^{i} \in \check{A}\{T\} \subseteq(A\{T\})^{\check{ }}$ by what we have proved. It follows that

$$
g:=f-\sum_{i=0}^{m-1} a_{i} T^{i}=\sum_{i=m}^{\infty} a_{i} T^{i} \in(A\{T\})^{2}
$$

Then it follows that

$$
\left\|g^{j}\right\| \geq\left\|a_{m}^{j}\right\|
$$

for any $j \in \mathbb{N}$. It follows that $a_{m} \in \check{A}$, which is a contradiction.

Corollary 4.20. For any non-Archimedean Banach ring $(A,\|\bullet\|)$, we have a canonical isomorphism

$$
\widetilde{A\{T\}} \cong \tilde{A}[T]
$$

The natural map $A\{T\}^{\circ} \rightarrow \widetilde{A\{T\}}$ corresponds to a homomorphism $\AA\{T\} \rightarrow \tilde{A}[T]$ extending the homomorphism $\AA \rightarrow \tilde{A}$ and sending T to T.

Proof. Let $f=\sum_{i=0}^{\infty} a_{i} T^{i} \in A\{T\}^{\circ}$. Then $a_{i} \in \AA$ by Proposition 4.19. But $\left\|a_{i}\right\| \rightarrow 0$ as $i \rightarrow \infty$, so $a_{i} \in \check{A}$ for almost all i. It follows that the image of f in $\widetilde{A\{T\}}$ is the same as the image of an element from $\AA[T]$. On the other hand, for each $f \in \tilde{A}[T]$, we can expand $f=a_{N} T^{N}+\cdots+a_{1} T^{1}+a_{0}$ with $a_{N} \in \tilde{A}$. Lift each a_{i} to $b_{i} \in \AA$. Then the image of $b_{N} T^{N}+\cdots+b_{1} T^{1}+b_{0}$ under the reduction corresponds to f. The assertions follow.

Corollary 4.21. Let $(A,\|\bullet\|)$ be a non-Archimedean Banach ring. An element $f=\sum_{i=0}^{\infty} a_{i} T^{i} \in \AA\{T\}$ is a unit in $\AA\{T\}$ if and only if a_{0} is a unit in \AA and $a_{i} \in \check{A}$ for all $i>0$.

Proof. By Proposition 4.16, we know that $A\{T\}$ is complete. According to Lemma 4.8 and Proposition 4.19, f is a unit in $\AA\{T\}$ if and only if $\sum_{i=0}^{\infty} \tilde{a}_{i} T^{i}$ is a unit in $\tilde{A}[T]$. By Lemma 4.8 again, a_{0} is a unit in A if and only if $\tilde{a_{0}}$ is a unit in \tilde{A}. So we are reduced to argue that units in $\tilde{A}[T]$ are exactly units in \tilde{A}. This follows from the general fact about units in polynomial rings over a reduced ring.

Lemma 4.22. Let A, B be Banach rings and $f, g: A \rightarrow B$ be bounded homomorphisms. Then the equalizer $\operatorname{Eq}(f, g)$ of f and g is a Banach subring of A.

If C ia a Banach ring, A, B are moreover Banach C-algebras and f, g are moerover bounded homomorphism of Banach C-algebras, then $\operatorname{Eq}(f, g)$ is a Banach C-subalgebra of A.

Proof. As an equalizer of ring homomorphisms, $\operatorname{Eq}(f, g)$ is a subring of A. We can realize $\operatorname{Eq}(f, g)=\operatorname{ker}(f-g)$, so $\operatorname{Eq}(f-g)$ is a closed subring of A, hence a Banach subring with respect to the subspace norm.

The second assertion is proved similarly.

5. Semi-normed modules

Definition 5.1. Let $\left(A,\|\bullet\|_{A}\right)$ be a normed ring. A semi-normed A-module (resp. normed A-module) is a pair $\left(M,\|\bullet\|_{M}\right)$ consisting of an A-module M and a seminorm (resp. norm) on the underlying Abelian group of M such that there is a constant $C>0$ such that

$$
\|f m\|_{M} \leq C\|f\|_{A}\|m\|_{M}
$$

for all $f \in A$ and $m \in M$. In case $\|\bullet\|_{A}$ is non-Archimedean, we require that $\|\bullet\|_{M}$ is also non-Archimedean.

We say the semi-normed A-module (resp. normed A-module) M is faithful if we can take $C=1$.

When $\|\bullet\|_{M}$ is clear from the context, we say M is a semi-normed A-module (resp. normed A-module).

An A-module homomorphism $\varphi: M \rightarrow N$ between two semi-normed A-modules M and N is bounded if the homomorphism of the underlying semi-normed Abelian groups is bounded in the sense of Definition 2.5.

A Banach A-module is a normed A-module which is complete with respect to the metric Lemma 2.6.

We denote by $\mathcal{B} \mathrm{an}_{A}$ the category of Banach A-modules with bounded A-module homomorphisms as morphisms.
Definition 5.2. Let A be a Banach ring and $\left(M,\|\bullet\|_{M}\right),\left(N, \|\right.$ bullet $\left.\|_{N}\right)$ be two Banach A-modules. Define their direct sum as the Banach A-module $(M \oplus N, \| \bullet$ $\|_{M \oplus N}$), where for $m \in M, n \in N$, we set

$$
\|(m, n)\|_{M \oplus N}:=\max \left\{\|m\|_{M},\|n\|_{N}\right\} .
$$

This definition extends immediately to finite direct sums of Banach A-modules.
Definition 5.3. Let A be a Banach ring. A Banach A-module M is said to be finite if there is $n \in \mathbb{N}$ and an admissible epimorphism $A^{n} \rightarrow M$.

A morphism between finite A modules M and N is a morphism $M \rightarrow N$ in $\mathcal{B} \mathrm{an}_{A}$. We write $\mathcal{\mathcal { B }} \mathrm{Bn}_{A}^{f}$ for the category of finite Banach A-modules.

Definition 5.4. Let A be a semi-normed ring and M be a semi-normed A-module. There is an obvious \hat{A}-module structure on the completion \hat{M} of A defined in Definition 2.9. We call the resulting Banach module the completion of M.
Definition 5.5. Let A be a non-Archimedean semi-normed ring. Consider seminormed A-modules $\left(M,\|\bullet\|_{M}\right)$ and $\left(N,\|\bullet\|_{N}\right)$. We define the tensor product of $\left(M,\|\bullet\|_{M}\right)$ and $\left(N,\|\bullet\|_{N}\right)$ as the semi-normed A-module $\left(M \otimes N,\|\bullet\|_{M \otimes N}\right)$, where

$$
\|x\|_{M \otimes N}=\inf \max _{i}\left(\left\|m_{i}\right\|_{M} \cdot\left\|n_{i}\right\|_{N}\right)
$$

where the infimum is taken over all decompositions $x=\sum_{i} m_{i} \otimes n_{i}$.
Definition 5.6. Let A be a non-Archimedean Banach ring. Consider semi-normed A modules M and M, we define the complete tensor product of M and N as the metric completion $M \hat{\otimes}_{A} N$ of the tensor product of M and N defined in Definition 5.5.
Theorem 5.7. Let $\left(A,\|\bullet\|_{A}\right)$ be a normed ring. Then $\mathcal{B a n} A_{A}$ is a quasi-Abelian category.

Proof. We first observe that $\mathcal{B a n}_{A}$ is preadditive, as for any $M, N \in \mathcal{B} \mathrm{Bn}_{A}$, $\operatorname{Hom}_{\mathcal{B a n}}^{A}$ (M, N) can be given the group structure inherited from the Abelian group $\operatorname{Hom}_{A}(M, N)$. It is obvious that $\mathcal{B a n} A$ is preadditive.

Next we show that finite biproducts exist in $\mathcal{B} \mathrm{Ba}_{A}$. Given $\left(M,\|\bullet\|_{M}\right),(N, \| \bullet$ $\left.\|_{N}\right) \in \mathcal{B a n}_{A}$, we set

$$
\begin{equation*}
\left(M,\|\bullet\|_{M}\right) \oplus\left(N,\|\bullet\|_{N}\right):=\left(M \oplus N,\|\bullet\|_{M \oplus N}\right) \tag{5.1}
\end{equation*}
$$

where $\|(m, n)\|_{M \oplus N}:=\|m\|_{M}+\|n\|_{N}$ for $m \in M$ and $n \in N$. It is easy to verify that this gives the biproduct in $\mathcal{B a n}_{A}$.

We have shown that $\mathcal{B} \mathrm{an}_{A}$ is an additive category.
Next given a morphism $\varphi:\left(M,\|\bullet\|_{M}\right) \rightarrow\left(N,\|\bullet\|_{N}\right)$ in $\mathcal{B} \mathrm{Bn}_{A}$, we construct its kernel ($\operatorname{ker} \varphi,\|\bullet\|_{\operatorname{ker} \varphi}$) as the kernel of the underlying homomorphism of A-modules of φ endowed with the subgroup semi-norm induced from $\|\bullet\|_{M}$ as in Definition 2.3. It is easy to verify that $\left(\operatorname{ker} \varphi,\|\bullet\|_{\operatorname{ker} \varphi}\right)$ is the kernel of φ in $\mathcal{B a n} A_{A}$.

We can similarly construct the cokernels. To be more precise, let $\varphi:(M, \| \bullet$ $\left.\|_{M}\right) \rightarrow\left(N,\|\bullet\|_{N}\right)$ be a morphism in $\mathcal{B} \operatorname{an}_{A}$, then the $\operatorname{coker} \varphi=\{N / \overline{\varphi(M)}\}$ with quotient norm.

We have shown that $\mathcal{B a n}{ }_{A}$ is a pre-Abelian category.

Observe that given a morphism $\varphi:\left(M,\|\bullet\|_{M}\right) \rightarrow\left(N,\|\bullet\|_{N}\right)$ in $\mathcal{B} \mathrm{Bn}_{A}$, its image is given by $\operatorname{Im} \varphi=\overline{\varphi(M)}$ with the subspace norm induced from N; its coimage is $M / \operatorname{ker} f$ with the residue norm. The morphism φ is admissible if the natural map

$$
M / \operatorname{ker} f \rightarrow \overline{\varphi(M)}
$$

is an isomorphism in $\mathcal{B} \mathrm{an}_{A}$.
It remains to show that pullbacks preserve admissible epimorphisms and pushouts preserve admissible monomorphisms. We first handle the case of admissible epimorphisms. Consider a Cartesian square in \mathcal{B} an $_{A}$:

with g being an admissible epimorphism. We need to show that p is also an admissible epimorphism, namely $U \cong M / \operatorname{ker} p$.

We define $\alpha: U \oplus V \rightarrow W, \alpha=(f,-g)$, then there is a natural isomorphism $j: M \rightarrow$ ker α. Let us write $i:$ ker $\alpha \rightarrow U \oplus V$ the natural morphism. Then

$$
q=\pi_{V} \circ i \circ j, \quad p=\pi_{U} \circ i \circ j
$$

where $\pi_{U}: U \oplus V \rightarrow U, \pi_{V}: U \oplus V \rightarrow V$ are the natural morphisms. We may assume that $M=\operatorname{ker} \alpha$ and j is the identity. Then it is obvious that p is surjective on the underlying sets. In order to compute the quotient norm on $M / \operatorname{ker} p$, we need a more explicit description of $\operatorname{ker} p \subseteq \operatorname{ker} \alpha$. We know that

$$
\operatorname{ker} \alpha=\{(u, v) \in U \oplus V: f(u)=g(v)\}
$$

with the subspace norm induced from the product norm on $U \oplus V$ defined in (5.1). Then

$$
\operatorname{ker} p=\{(u, v) \in U \oplus V: u=0, g(v)=0\}
$$

It follows that for $(u, v) \in \operatorname{ker} \alpha$,

$$
\inf _{\left(u^{\prime}, v^{\prime}\right) \in \operatorname{ker} p}\left\|(u, v)+\left(u^{\prime}, v^{\prime}\right)\right\|_{U \oplus V}=\inf _{v^{\prime} \in \operatorname{ker} g}\left(\left\|v+v^{\prime}\right\|_{V}\right)+\|x\|_{U}
$$

where $\|\bullet\|_{U}$ and $\|\bullet\|_{V}$ denote the norms on U and V respectively. By our assumption that g is an admissible epimorphism, there is a constant $C>0$ so that

$$
\inf _{v^{\prime} \in \operatorname{ker} g}\left(\left\|v+v^{\prime}\right\|_{V}\right) \leq C\|g(v)\|_{W}
$$

for any $v \in V$. As f is bounded, we can also find a constant $C^{\prime}>0$ so that for any $(u, v) \in \operatorname{ker} \alpha$,

$$
\|g(v)\|_{W}=\|f(u)\|_{W} \leq C^{\prime}\|u\|_{U} .
$$

It follows that p is admissible epimorphism.
It remains to check that the pushforwards preserve admissible monomorphisms. Consider a co-Cartesian diagram

with g being an admissible monomorphism. We need to show that p is an adimissible monomorphism. This boils down to the following: p is injective with closed image
and the norms on $p(V)$ obtained in the obvious ways are equivalent. As in the case of pullbacks, we may let $\alpha: W \rightarrow U \oplus V$ be the morphism $(g,-f)$ and assume that $M=$ coker α. It is then easy to see that p is injective. The proof that the two norms on $p(V)$ are equivalent is parallel to the argument in the pull-back case, and we omit it.

It remains to verify that $p(V)$ is closed in W. Consider the admissibly coexact sequence in $\mathcal{B a n}_{A}$:

$$
W \xrightarrow{\alpha} U \oplus V \xrightarrow{\pi} M \rightarrow 0
$$

It is also admissibly coexact in the category of semi-normed A-modules. Include details later. Let $x_{n} \in V$ be a sequence so that $p\left(x_{n}\right) \rightarrow y \in M$. We may write $y=\pi(u, v)$ for some $(u, v) \in U \oplus V$. Then

$$
\pi\left(-u, x_{n}-v\right) \rightarrow 0
$$

as $n \rightarrow \infty$. From the strict coexact sequence, we can find a sequence $w_{n} \in W$ so that

$$
\left(-u-g\left(w_{n}\right), x_{n}-v+f\left(w_{n}\right)\right) \rightarrow 0
$$

as $n \rightarrow \infty$. Then $g\left(w_{n}\right) \rightarrow-u$ in U and hence there is $w \in W$ so that $w_{n} \rightarrow w \in W$ and $g(w)=-u$. But then $x_{n} \rightarrow x$ and $p(x)=y$.

Definition 5.8. Let $\left(A,\|\bullet\|_{A}\right)$ be a normed ring. A Banach A-algebra is a pair $\left(B,\|\bullet\|_{B}\right)$ such that $\left(B,\|\bullet\|_{B}\right)$ is a Banach A-module and $\left(B,\|\bullet\|_{B}\right)$ is a Banach ring.

A morphism of Banach A-algebras is a bounded A-algebra homomorphism. The category of Banach A-algebras is denoted by $\mathcal{B} a n \mathcal{A l g}{ }_{A}$.

Definition 5.9. Let A be a normed ring. A Banach A-algebra B is said to be finite if B is finite as a Banach A-module. A morphism of finite Banach A-algebras is a morphism in $\mathcal{B} \operatorname{Ban} \mathcal{A l g}{ }_{A}$. The category of finite Banach A-algebras is denoted by $\mathcal{B a n} \mathcal{A l g}{ }_{A}^{f}$.

6. Berkovich spectra

Definition 6.1. Let $\left(A,\|\bullet\|_{A}\right)$ be a Banach ring. A semi-norm $|\bullet|$ on A is bounded if there is a constant $C>0$ such that for any $f \in A,|f| \leq C\|f\|_{A}$.

Write $\operatorname{Sp} A$ for the set of bounded semi-valuations on A. We call $\operatorname{Sp} A$ the $B e r k o v i c h ~ s p e c t r u m ~ o f ~ A . ~$

We endow $\operatorname{Sp} A$ with the weakest topology such that for each $f \in A$, the map $\operatorname{Sp} A \rightarrow \mathbb{R}_{\geq 0}$ sending $\|\bullet\|$ to $\|f\|$ is continuous.

It is sometimes preferable to denote an element $\|\bullet\|$ in $\operatorname{Sp} A$ by a single letter x. In this case, we write $|f(x)|=\|f\|$ for any $f \in A$.

Given a bounded homomorphism $\varphi: A \rightarrow B$ of Banach rings, we define $\operatorname{Sp} \varphi: \operatorname{Sp} B \rightarrow \operatorname{Sp} A$ as follows: given a bounded semi-valuation $\|\bullet\|$ on B, we define $\operatorname{Sp} \varphi(\|\bullet\|)$ as the bounded semi-valuation on A sending $f \in A$ to $\|\varphi(f)\|$.

Observe that there is a natural map of sets:

$$
\begin{equation*}
\operatorname{Sp} A \rightarrow\{\mathfrak{p} \in \operatorname{Spec} A: \mathfrak{p} \text { is closed. }\} \tag{6.1}
\end{equation*}
$$

sending each bounded semi-valuation to its kernel. The fiber over a closed ideal $\mathfrak{p} \in \operatorname{Spec} A$ is identified with the set of bounded valuations on A / \mathfrak{p}. Here boundedness is with respect to the residue norm.

Remark 6.2. In the literature, it is more common to denote $\mathrm{Sp} A$ by $\mathcal{M}(A)$.
Lemma 6.3. Let $\left(A,\|\bullet\|_{A}\right)$ be a Banach ring. Then for any $x \in \operatorname{Sp} A$, we have

$$
|f(x)| \leq \rho(f) \leq\|f\|_{A}
$$

Proof. Let $\|\bullet\|_{x}$ be the bounded semi-valuation corresponding to x. Then there is a constant $C>0$ such that

$$
\|\bullet\|_{x} \leq C\|\bullet\|_{A}
$$

It follows that for any $n \in \mathbb{N}$,

$$
\|f\|_{x}^{n}=\left\|f^{n}\right\|_{x} \leq C\left\|f^{n}\right\|_{A}
$$

Taking n-th root and letting $n \rightarrow \infty$, we find

$$
\|f\|_{x} \leq \rho(f)
$$

The inequality $\rho(f) \leq\|f\|_{A}$ follows from the definition of ρ.
Example 6.4. If $(k,|\bullet|)$ is a complete valuation field, then $\operatorname{Sp} k$ is a single point - \bullet.

To see this, let $\|\bullet\| \in \operatorname{Sp} k$, then by Lemma 6.3,

$$
\|f\| \leq|f|
$$

for any $f \in k$. If $f \neq 0$, the same inequality applied to f^{-1} implies that $\|f\|=|f|$. When $f=0$, the equality is trivial.
Example 6.5. Let $\left\{K_{i}\right\}_{i \in I}$ be a family of complete valuation fields. Recall that $\prod_{i \in I} K_{i}$ is defined in Example 4.12. Then $\mathrm{Sp} \prod_{i \in I} K_{i}$ is homeomorphic to the Stone-Čech compactification of the discrete set I.

To see this, we first identify the set of proper closed ideals in $\prod_{i \in I} K_{i}$ with the set of filters on I.

We first introduce a notation: for each $J \subseteq I$, we write $a_{J} \in \prod_{i \in I} K_{i}$ for the element

$$
a_{J, i}= \begin{cases}0, & \text { if } i \in J \\ 1, & \text { if } i \notin J\end{cases}
$$

Givena proper closed ideal $\mathfrak{a} \subseteq \prod_{i \in I} K_{i}$, we define a filter $\Phi_{\mathfrak{a}}=\left\{J \subseteq I: a_{J} \in \mathfrak{a}\right\}$. Conversely, given a filter Φ on I, we denote by \mathfrak{a}_{Φ} the closed ideal of $\prod_{i \in I} K_{i}$ generated by a_{J} for all $J \in \Phi$. These maps are inverse to each other and order preserving. In particular, the maximal ideals of $\prod_{i \in I} K_{i}$ are identified with ultrafilters of I by Corollary 4.7.

Next we show that all prime ideals of $\prod_{i \in I} K_{i}$ are maximal. In fact, take $\mathfrak{p} \in \operatorname{Spec} \prod_{i \in I} K_{i}$ and suppose that there is a maximal ideal \mathfrak{m} properly containing \mathfrak{p}. Let $J \in \Phi_{\mathfrak{m}} \backslash \Phi_{\mathfrak{p}}$ so that $a_{J} \in \mathfrak{m} \backslash \mathfrak{p}$. As $I \backslash J \notin \Phi_{\mathfrak{m}}$, we have $a_{I \backslash J} \notin \mathfrak{m}$. But $a_{J} \cdot a_{I \backslash J}=0$. This contradicts the fact that $a_{J} \notin \mathfrak{p}$ and $a_{I \backslash J} \notin \mathfrak{p}$.

So we have shown that as a set $\operatorname{Spec} \prod_{i \in I} K_{i}$ is identified with the Stone-Čech compactification of I.

Next we show taht if $\mathfrak{m} \in \operatorname{Spec} \prod_{i \in I} K_{i}$, then the residue norm on $\prod_{i \in I} K_{i} / \mathfrak{m}$ is multiplicative. In fact, for each $f \in \prod_{i \in I} K_{i}$, we have

$$
\|\pi(f)\|_{\prod_{i \in I} K_{i} / \mathfrak{m}}=\inf _{J \in \Phi_{\mathfrak{m}}} \sup _{i \in J}\|f\|
$$

Here $\pi: \prod_{i \in I} K_{i} \rightarrow \prod_{i \in I} K_{i} / \mathfrak{m}$ is the natural map and $\|\bullet\|$ denotes the norm on $\prod_{i \in I} K_{i}$ defined in Example 4.12. It follows immediately that the residue norm
on $\prod_{i \in I} K_{i} / \mathfrak{m}$ is multiplicative. In particular, by Example 6.4, $\mathrm{Sp} \prod_{i \in I} K_{i}$ and Spec $\prod_{i \in I} K_{i}$ are identified as sets under the natural map (6.1).

It remains to identify the topologies. But this is easy: for any ultrafilter Φ on I, let $\mathfrak{m}=\mathfrak{m}_{\Phi}$, then $\left\|\pi\left(a_{J}\right)\right\|=0$ for $J \in \Phi$ and $\left\|\pi\left(a_{J}\right)\right\|=1$ otherwise.
Proposition 6.6. Let $\varphi: A \rightarrow B$ be a bounded homomorphism of Banach rings, then $\operatorname{Sp} \varphi: \operatorname{Sp} B \rightarrow \operatorname{Sp} A$ is continuous.

Proof. For each $f \in A$, we define $\operatorname{ev}_{f}: \operatorname{Sp} A \rightarrow \mathbb{R}$ by sending $\|\bullet\|$ to $\|f\|$. It suffices to show that for any $f \in A$, the $\operatorname{map} \operatorname{Sp} \varphi \circ \mathrm{ev}_{f}$ is continuous. But the composition is just the map sending $\|\bullet\| \in \operatorname{Sp} B$ to $\|\varphi(f)\|$. It is continuous by definition of the topology on $\operatorname{Sp} B$ as φ is bounded.

Definition 6.7. Let $\left(A,\|\bullet\|_{A}\right)$ be a Banach ring. For each $x \in \operatorname{Sp} A$ corresponding to a bounded semi-valuation $\|\bullet\|_{x}$ on A, there is a natural induced valuation on Frac ker $\|\bullet\|_{x}$. We write $\mathscr{H}(x)$ for the completion of Frac ker $\|\bullet\|_{x}$ with the induced valuation. The complete valuation field $\mathscr{H}(x)$ is called the complete residue field of A at x. We write $\chi_{x}: A \rightarrow \mathscr{H}(x)$ the canonical map.

We will write $f(x)$ for the residue class of f in $\mathscr{H}(x)$.
Observe that for any $f \in A,|f(x)|$ is exactly the valuation of $f(x)$ with respect to the valuation on $\mathscr{H}(x)$.

Definition 6.8. Let A be a Banach ring. The Gelfand transform of A is the homomorphism

$$
A \rightarrow \prod_{x \in \operatorname{Sp} A} \mathscr{H}(x)
$$

Here the product is defined in Example 4.12.
We will denote the Gelfand transform as $f \mapsto \hat{f}=(f(x))_{x \in \operatorname{Sp} A}$.
By Lemma 6.3, the Gelfand transform is well-defined.
Proposition 6.9. Let $\left(A,\|\bullet\|_{A}\right)$ be a Banach ring. Then the Gelfand transform

$$
A \rightarrow \prod_{x \in \operatorname{Sp} A} \mathscr{H}(x)
$$

is bounded. In fact, the Gelfand transform is contractive.
Proof. This follows simply from Lemma 6.3.
Proposition 6.10. Let $(A,\|\bullet\|)$ be a Banach ring. Then $\operatorname{Sp} A$ is empty if and only if $A=0$.

Proof. If $A=0, \operatorname{Sp} A$ is clearly empty. Conversely, suppose that $\operatorname{Sp} A$ is empty. Assume that $A \neq 0$. For any maximal ideal \mathfrak{m}, by Corollary $4.7, A / \mathfrak{m}$ is a Banach ring and $\operatorname{Sp} A / \mathfrak{m}$ is a subset of $\operatorname{Sp} A$. So we may assume that A is a field. Let S be the set of bounded semi-norms on A. Then S is non-empty as $\|\bullet\| \in S$. By Zorn's lemma, we can take a minimal element $|\bullet| \in S$. Up to replacing A by the completion with respect to $|\bullet|$, we may assume that $|\bullet|$ is a norm on A. As A is a field, we may further assume that $|\bullet|=\|\bullet\|$.

We claim that $\|\bullet\|$ is multiplicative. As A is a field, it suffices to show that $\left\|f^{-1}\right\|=\|f\|^{-1}$ for any non-zero $f \in A$. We may assume that $\|f\|^{-1}<\left\|f^{-1}\right\|$.

Let r be a positive real number. Let $\varphi: A \rightarrow A\left\{r^{-1} T\right\} /(T-f)$ be the natural map. The map is injective as A is a field. We endow $A\left\{r^{-1} T\right\} /(T-f)$ with the quotient semi-norm induced by $\|\bullet\|_{r}$ and still denote this semi-norm by $\|\bullet\|_{r}$.

We claim that $f-T$ is not invertible in $A\left\{r^{-1} T\right\}$ for the choice $r=\left\|f^{-1}\right\|^{-1}$. From this, it follows that

$$
\|\varphi(f)\|_{r}=\|T\|_{r} \leq r<\|f\|
$$

The last step is our assumption. This contradicts our choice of $\|\bullet\|$.
In order to prove the claim, we need to show that $\|\bullet\|$ is power multiplicative first. Assuming this, it is obvious that

$$
\sum_{i=0}^{\infty}\left|f^{-i}\right| r^{i}=\sum_{i=0}^{\infty}\left|f^{-1}\right|^{i}\left|f^{-1}\right|^{-i}
$$

diverges.
It remains to show that $\|\bullet\|$ is power multiplicative. Suppose that is $f \in A$ so that $\left\|f^{n}\right\|<\|f\|^{n}$ for some $n>1$. We claim that $f-T$ is not invertible in $A\left\{r^{-1} T\right\}$ for the choice $r=\left\|f^{n}\right\|^{1 / n}$. From this,

$$
\|\varphi(f)\|_{r}=\|T\|_{r} \leq r<\|f\|
$$

This contradicts our choice of $\|\bullet\|$. The claim amounts to the divergence of

$$
\sum_{i=0}^{\infty}\left\|f^{-i}\right\| r^{i}
$$

For a general $i \geq 0$, we write $i=p n+q$ for $p, q \in \mathbb{N}$ and $q \leq n-1$. Then $\left\|f^{i}\right\| \leq\left\|f^{n}\right\|^{p}\left\|f^{q}\right\|$. So

$$
\left\|f^{-i}\right\| r^{i} \geq\left\|f^{i}\right\|^{-1}\left\|f^{n}\right\|^{p+n^{-1} q} \geq\left\|f^{n}\right\|^{n^{-1} q}\left\|f^{q}\right\|^{-1}
$$

It therefore follows that $\left|f^{-i}\right| r^{i}$ admits a positive lower bound, and we conclude.
Corollary 6.11. Let A be a Banach ring. Then an element $f \in A$ is invertible if and only if $f(x) \neq 0$ for all $x \in \operatorname{Sp} A$.

Proof. The direct implication is trivial. Assume that $f(x) \neq 0$ for all $x \in \operatorname{Sp} A$. We claim that $f \notin \mathfrak{m}$ for any maximal ideal \mathfrak{m} in A. From this, it follows that f is invertible in A.

By Corollary 4.7, A / \mathfrak{m} is a Banach ring. It follows from Proposition 6.10 that there is a non-trival bounded semi-valuation on A / \mathfrak{m}, which lifts to a bounded semi-valuation on A.

Corollary 6.12. Let $\left(A,\|\bullet\|_{A}\right)$ be a Banach ring. Then for any $f \in A$, we have

$$
\rho(f)=\sup _{x \in \operatorname{Sp} A}|f(x)|
$$

Proof. We have already shown $\rho(f) \geq \sup _{x \in \operatorname{Sp} A}|f(x)|$ in Lemma 6.3. To verify the reverse inequality, take $f \in A$ and $r \in \mathbb{R}_{>0}$, it suffices to show that if $|f(x)|<r$ for all $x \in \operatorname{Sp} A$, then $\rho(f) \leq r$.

Consider the Banach ring $B=A\{r T\}$. By Lemma 6.3 again, $|T(x)| \leq\|T\|_{r^{-1}}=$ r^{-1} for all $x \in \operatorname{Sp} B$. Therefore, for any $x \in \operatorname{Sp} B,|(f T)(x)|<1$. Hence, $(1-$
$f T)(x) \neq 0$ for all $x \in \operatorname{Sp} B$. By Corollary $6.11,1-f T$ is invertible in B. But this happens exactly when

$$
\sum_{i=0}^{\infty}\left\|f^{i}\right\|_{A} r^{-i}
$$

is convergent. It follows that $\rho(f) \leq r$.
Theorem 6.13. Let $(A,\|\bullet\|)$ be a Banach ring. Then $\operatorname{Sp} A$ is a compact Hausdorff space.

Proof. We first show that $\operatorname{Sp} A$ is Hausdorff. Take $x_{1}, x_{2} \in A, x_{1} \neq x_{2}$. In other words, we can find $f \in A$ so that $\left|f\left(x_{1}\right)\right| \neq\left|f\left(x_{2}\right)\right|$. We may assume that $\left|f\left(x_{1}\right)\right|<\left|f\left(x_{2}\right)\right|$. Take a real number $r>0$ so that

$$
\left|f\left(x_{1}\right)\right|<r<\left|f\left(x_{2}\right)\right|
$$

Then $\{x \in \operatorname{Sp} A:|f(x)|<r\}$ and $\{x \in \operatorname{Sp} A:|f(x)|>r\}$ are disjoint neighbourhoods of x_{1} and x_{2}.

Next we show that $\mathrm{Sp} A$ is compact. By Proposition 6.9 and Proposition 6.6, we can define a continuous map

$$
\mathrm{Sp} \prod_{x \in \operatorname{Sp} A} \mathscr{H}(x) \rightarrow \operatorname{Sp} A
$$

The map is clearly surjective: for any $x \in \operatorname{Sp} A$, the valuation on $\mathscr{H}(x)$ induces a semi-valuation on $\prod_{x \in \operatorname{Sp} A} \mathscr{H}(x)$, which is clearly bounded. The image of this semi-valuation in $\operatorname{Sp} A$ is just x.

So it suffices to show that $\operatorname{Sp} \prod_{x \in \operatorname{Sp} A} \mathscr{H}(x)$ is compact. This follows from Example 6.5.

7. Open mapping theorem

Let $(k,|\bullet|)$ be a complete non-trivially valued field. All results in this section fail when k is trivially valued.

Proposition 7.1. Let A be a normed k-algebra and $f:\left(M,\|\bullet\|_{M}\right) \rightarrow\left(N,\|\bullet\|_{N}\right)$ be an A-homomorphism of normed A-modules. Then f is bounded if and only if f is continuous.

Proof. The direct implication follows from Proposition 2.7. Assume that f is continuous. We may assume that $A=k$.

Assume that f is not bounded. Fix $a \in k$ with $|a| \in(0,1)$. This is possible as k is non-trivially valued. Then we can find a sequence $m_{i} \in M$ such that $\left\|f\left(m_{i}\right)\right\|_{N}>$ $|a|^{-i}\left\|m_{i}\right\|_{M}$. Up to replace m_{i} by a scalar multiple, we may assume that $\left\|m_{i}\right\|_{M} \in$ $\left[1,|a|^{-1}\right)$: if $\left\|m_{i}\right\|_{M} \geq 1$, choose $n \in \mathbb{N}$ such that $|a|^{-n} \leq\left\|m_{i}\right\|_{M}<|a|^{-n-1}$, then replace m_{i} with $a^{n} m_{i}$. The case $|x|<1$ is similar. Then $\left\|f\left(a^{i} m_{i}\right)\right\|_{N}>\left\|m_{i}\right\|_{M} \geq 1$ while $\left\|a^{i} m_{i}\right\|_{M}<|a|^{n}|a|^{-1} \rightarrow 0$. This is a contradiction.

Theorem 7.2 (Open mapping theorem). Let $\left(V,\|\bullet\|_{V}\right),\left(W,\|\bullet\|_{W}\right)$ be Banach k-spaces and $L: V \rightarrow W$ be a bounded and surjective k-homomorphism. Then L is open.

Proof. We write $V_{0}=\left\{v \in V:\|v\|_{V}<1\right\}$. Similarly define W_{0}.

Step 1. We claim that there is a constant $C>0$ such that for all $w^{\prime} \in W$, there is $v^{\prime} \in V$ such that

$$
\left\|v^{\prime}\right\|_{V} \leq C\left\|w^{\prime}\right\|_{W}, \quad\left\|w^{\prime}-L\left(v^{\prime}\right)\right\|_{W}<1 / 2
$$

As k is non-trivially valued, we can take $c \in k$ with $|c| \in(0,1)$, so

$$
V=\bigcup_{n \in \mathbb{N}} c^{n} V_{0}
$$

As L is surjective, we have

$$
W=\bigcup_{n \in \mathbb{N}} c^{n} L\left(V_{0}\right)
$$

By Baire's category theorem, we may assume that $\overline{L\left(V_{0}\right)}$ has non-empty interior. Take $w \in W$ and $r>0$ so that

$$
\left\{w^{\prime} \in W:\left\|w-w^{\prime}\right\|_{W}<r\right\} \subseteq \overline{L\left(V_{0}\right)}
$$

Take $d \in W_{0}$ and $c^{\prime} \in k^{\times}$so that $\left|c^{\prime}\right|<r$, then $w+c^{\prime} d \in \overline{L\left(V_{0}\right)}$. It follows that

$$
c^{\prime} d \in \overline{L\left(V_{0}\right)}+\overline{L\left(V_{0}\right)} \subseteq \overline{L\left(V_{0}\right)+L\left(V_{0}\right)}=\overline{L\left(V_{0}\right)} .
$$

So

$$
W_{0} \subseteq \overline{L\left(c^{\prime-1} V_{0}\right)}
$$

It suffices to take $C=\left|c^{\prime-1}\right|$.
Step 2. Now given $w \in W_{0}$, we want to show that $w \in L\left(\left\{v \in V:\|v\|_{V}<C\right\}\right)$. This will finish the argument: as k is non-trivially valued, this implies that $L\left(V_{0}\right)$ contains an open neighbourhood of 0 .

From Step 1, we can construct $v_{1} \in V$ with $\left\|v_{1}\right\|_{V}<C$ and $\left\|w-L\left(v_{1}\right)\right\|_{W}<1 / 2$. Repeat this process, we can $v_{n} \in V$ inductively so that

$$
\left\|v_{n}\right\|_{V}<2^{1-n} C, \quad\left\|w-L\left(v_{1}+\cdots+v_{n}\right)\right\|_{W}<2^{-n}
$$

We set $v=\sum_{i=1}^{\infty} v_{i}$. Then $v \in V$ and $A v=w$ by continuity. Moreover,

$$
\|v\|_{V} \leq \max _{n}\left\|v_{n}\right\|_{V}<C
$$

Corollary 7.3. Let A be a Banach k-algebra and M be a normed A-module. Assume that \hat{M} is a finite A-module, then M is complete.

Proof. Take $x_{1}, \ldots, x_{n} \in \hat{M}$ so that $\pi: A^{n} \rightarrow \hat{M}$ sending $\left(a_{1}, \ldots, a_{n}\right)$ to $\sum_{i=1}^{n} a_{i} x_{i}$ is surjective. By open mapping theorem Theorem 7.2, $\sum_{i=1}^{n} \check{A} x_{i}$ is a neighbourhood of 0 in \hat{M}. So

$$
x_{j} \in M+\sum_{i=1}^{n} \check{A} x_{i} .
$$

It follows from (a version of) Nakayama's lemma that $M=\hat{M}$.
Corollary 7.4. Let A be a Banach k-algebra and M be a Noetherian Banach A-module. Let N be a submodule of M. Then N is closed in M.

In particular, if A is Noetherian, then all ideals of A are closed.
Proof. As M is noetherian, \bar{N} is a finite A-module. In particular, N is complete by Corollary 7.3. Hence, N is closed in M.

Corollary 7.5. A bounded epimorphism of Banach k-algebras $f: A \rightarrow B$ is admissible.

Proof. Replacing A by $A /$ ker f, we may assume that f is bijective. It follows from Theorem 7.2 that f is a homeomorphism. The inverse of f is therefore continuous, and hence bounded by Proposition 7.1.

Corollary 7.6 (Closed graph theorem). Let $L: V \rightarrow W$ be a k-linear map between k-Banach spaces. The following are equivalent:
(1) L is bounded.
(2) The graph of L is closed.

Proof. $(1) \Longrightarrow(2)$ is trivial.
Assume (2). Let $p_{1}: V \times W \rightarrow V, p_{2}: V \times W \rightarrow W$ be the natural projections and $q: G \rightarrow V$ the restriction of p_{1} to the graph G of L. Observe that L is a closed subspace of $V \times W$, hence a Banach space. By open mapping theorem Theorem 7.2, q is an open mapping. In particular, the map $r: V \rightarrow G$ sending $v \in V$ to $(v, L v)$ is bounded. It follows that $L=p_{2} \circ r$ is also bounded.

8. Properties of Banach algebras over a field

Let $(k,|\bullet|)$ be a complete non-trivially valued non-Archimedean valued field.
Proposition 8.1. Let A, B be Banach k-algebras and $\varphi: A \rightarrow B$ be a k-algebra homomorphism. Assume that there is a family $\left\{I_{i}\right\}$ of ideals in B satisfying
(1) Each I_{i} is closed in B and each inverse image $\varphi^{-1}\left(I_{i}\right)$ is closed in A.
(2) For each $I_{i}, \operatorname{dim}_{k} B / I_{i}$ is finite.
(3) $\bigcap_{i \in I} I_{i}=0$.

Then φ is continuous.
Observe that when A and B are both noetherian, Condition (1) is automatically satisfied.

Proof. For each $i \in I$, we write $\pi_{i}: B \rightarrow B / I_{i}$ the projection. Let $\psi_{i}: A \rightarrow$ B / I_{i} denote $\pi_{i} \circ \varphi$. Let $\bar{\psi}_{i}: A / \operatorname{ker} \psi_{i} \rightarrow B / I_{i}$ the injective map induced by ψ_{i}. We know that $A / \operatorname{ker} \psi_{i}$ and B / I_{i} are both finite dimensional. We endow them with the residue norm. Then $\bar{\psi}_{i}$ is continuous. It follows that ψ_{i} is also continuous.

By the closed graph theorem Corollary 7.6, it suffices to verify the following claim: let $a_{i} \in A$ be a sequence with limit 0 and $\varphi\left(a_{i}\right) \rightarrow b \in B$, then $b=0$. From the continuity of $\bar{\psi}_{i}$, we know that $b \in I_{i}$ for all $i \in I$, it follows that $b=0$ by our assumption.

Lemma 8.2. Let A be a Noetherian k-Banach algebra and M, N be Banach A modules, which are finite as A-modules. Let $f: M \rightarrow N$ be an A-linear map. Then f is bounded.

Proof. Choose $n \in \mathbb{N}$ and an A-linear epimorphism $\pi: A^{n} \rightarrow M$. It is clear that π is bounded. Similarly, $\pi \circ f$ is also bounded. By open mapping theorem Theorem 7.2, π is open, so φ is continuous and hence bounded by Proposition 7.1.

Proposition 8.3. Let A be a Noetherian k-Banach algebra. Then any finite A-module M admits a complete A-module norm. Such norms are unique up to equivalence.

Proof. The uniqueness follows from Lemma 8.2. As for the existence, take $n \in \mathbb{N}$ and an A-linear epimorphism $\pi: A^{n} \rightarrow M$. By Corollary 7.4, ker A^{n} is closed in A^{n}, it suffices to take the residue norm on M.

Proposition 8.4. Let $\left(A,\|\bullet\|_{A}\right)$ be a Noetherian k-Banach algebra and $\varphi: A \rightarrow B$ be a finite k-algebra homomorphism from A to a k-algebra B. Then B is Noetherian and admits a complete A-algebra norm such that φ is admissible. All complete k-algebra norms on B such that φ is bounded are equivalent.

Proof. The uniqueness follows from Proposition 8.3.
As φ is finite, B is a finite A-module. So by Proposition 8.3, we can endow B with a complete A-module norm $|\bullet|$ such that φ is contractive.

We claim that there is a constant $C>0$ such that

$$
|x y| \leq C|x| \cdot|y|
$$

for all $x, y \in B$.
Assuming this claim, it suffices to define

$$
\|x\|:=\sup _{y \in B, y \neq 0} \frac{|x y|}{|y|}
$$

for $x \in B$.
It remains to establish the claim. Let b_{1}, \ldots, b_{n} be generators of B as an A-module. Let $C^{\prime}=\max _{i, j=1, \ldots, n}\left|b_{i} b_{j}\right|$. Choose $\eta>1$ such that for each $x \in B$, there is an equation

$$
x=\sum_{j=1}^{n} \varphi\left(a_{j}\right) b_{j}, \quad \max _{j=1, \ldots, n}\left\|a_{j}\right\|_{A} \leq \eta|x|
$$

The existence of η follows from the construction of $|\bullet|$ in Proposition 8.3. Let $C=C^{\prime} \eta^{2}$. Then for any $x_{1}, x_{2} \in B$, we write

$$
x_{i}=\sum_{j=1}^{n} \varphi\left(a_{i j}\right) b_{j}, \quad i=1,2
$$

We compute

$$
\left|x_{1} x_{2}\right| \leq \max _{i, j=1, \ldots, n}\left|\varphi\left(a_{1 i}\right) \varphi\left(a_{2 j}\right) b_{i} b_{j}\right| \leq C^{\prime} \max _{i=1, \ldots, n}\left|a_{1 i}\right| \max _{j=1, \ldots, n}\left|a_{2 j}\right| \leq C\left|x_{1}\right| \cdot\left|x_{2}\right|
$$

Proposition 8.5. Let k be a complete valuation field and A be a Banach k-algebra. Let K be a finite normal extension of k.
(1) If K / k is separable (or equivalently Galois), we have a natural homeomorphism

$$
\operatorname{Sp}\left(A \otimes_{k} K\right) / \operatorname{Gal}(K / k) \xrightarrow{\sim} \operatorname{Sp} A .
$$

(2) If K / k is purely inseparable, we have a natural homeomorphism

$$
\operatorname{Sp}\left(A \otimes_{k} K\right) \xrightarrow{\sim} \operatorname{Sp} A .
$$

Proof. In both cases, the inclusion $A \rightarrow A \otimes_{k} K$ induces a morphism

$$
\operatorname{Sp}\left(A \otimes_{k} K\right) \rightarrow \operatorname{Sp} A
$$

In the first case, $\operatorname{Gal}(K / k)$ clearly acts on $\operatorname{Sp} A \otimes_{k} K$ preserving each fiber: given a bounded semi-valuation $\|\bullet\|_{x}$ on $A \otimes_{k} K$ corresponding to a point $x \in \operatorname{Sp}\left(A \otimes_{k} K\right)$
and $\sigma \in \operatorname{Gal}(K / k)$, then σx corresponds to the bounded semi-valuation $\|\bullet\|_{\sigma x}$ on $A \otimes_{k} K$ so that

$$
\|f\|_{\sigma x}=\left\|\sigma^{-1}(f)\right\|_{x}
$$

It follows that the maps in both cases are well-defined. We observe that the fiber of a point $x \in \operatorname{Sp} A$ under $\operatorname{Sp}\left(A \otimes_{k} K\right) \rightarrow \operatorname{Sp} A$ can be identified with the image of $\operatorname{Sp} \mathscr{H}(x) \otimes_{k} K$ in $\operatorname{Sp} A \otimes_{k} K$. Observe that $\operatorname{Sp} \mathscr{H}(x) \otimes_{k} K$ is just the set of maximal ideals When K / k is Galois, $\operatorname{Gal}(K / k)$ acts transitively. If K / k is purely inseparable, then $\mathscr{H}(x) \otimes_{k} K$ is a local ring.

Corollary 8.6. Let k be a complete valuation field and A be a Banach k-algebra. Then we have a canonical identification

$$
\operatorname{Sp} A \hat{\otimes}_{k} \widehat{k^{\mathrm{alg}}} / \operatorname{Gal}\left(k^{\mathrm{sep}} / k\right) \xrightarrow{\sim} \operatorname{Sp} A
$$

Proof. This follows from Proposition 8.5. Add details later.
Definition 8.7. Let A be a Banach k-algebra. A closed subset $\Gamma \subseteq \operatorname{Sp} A$ is called a boundary of A if for any $f \in A$,

$$
\sup _{x \in \operatorname{Sp} A}|f(x)|=\sup _{x \in \Gamma}|f(x)| .
$$

If there is a minimal boundary of A, we call it the Shilov boundary of A.

9. Maximum spectra

Let $(k,|\bullet|)$ a complete non-Archimedean valued field.
Definition 9.1. For any k-algebra A, we write

$$
\operatorname{Spm}_{k} A:=\{\mathfrak{m} \in \operatorname{Spm} A: A / \mathfrak{m} \text { is algebraic over } k\} .
$$

For any $x \in \operatorname{Spm}_{k} A$ and any $f \in A$, we write $f(x)$ for the residue of f in A / \mathfrak{m}_{x}, where \mathfrak{m}_{x} is the maximal ideal corresponding to x. We write $|f(x)|$ for the valuation of $f(x)$ with respect to the extended valuation induced from the given valuation on k.

Definition 9.2. Let A be a k-algebra. For each $f \in A$, we write $|f|_{\text {sup }}$ for the supremum of $|f(x)|$ for all $x \in \operatorname{Spm}_{k} A$ if $\operatorname{Spm}_{k} A$ is non-empty and 0 otherwise.

Definition 9.3. Let f be a monic polynomial in $k[X]$, we expand $f=X^{n}+$ $a_{1} X^{n-1}+\cdots+a_{n} \in k[X]$, then we define $\sigma(f):=\max _{i=1, \ldots, n}\left|a_{i}\right|^{1 / i}$.

Definition 9.4. Let L be a reduced integral k-algebra. We define the spectral norm $|\bullet|_{\text {sp }}$ on L as follows: given a non-zero $x \in L$, take a minimal polynomial $X^{n}+a_{1} X^{n-1}+\cdots+a_{n} \in k[X]$ of x over k. Then we set

$$
|x|_{\mathrm{sp}}:=\max _{i=1, \ldots, n}\left|a_{i}\right|^{1 / i}
$$

Proposition 9.5. Let f, g be monic polynomials in $k[X]$, then

$$
\sigma(f g)=\max \{\sigma(f), \sigma(g)\}
$$

Proof. Replacing k by a finite extension, we may assume that f and g split into linear factors a_{i} and b_{j}. Then it is straightforward to show that

$$
\sigma(f)=\prod_{i} a_{i}, \quad \sigma(g)=\prod_{j} b_{j}, \sigma(f g)=\prod_{i} a_{i} \cdot \prod_{j} b_{j} .
$$

The assertion follows.

Proposition 9.6. Let L be a reduced integral k-algebra. Then $|\bullet|_{\text {sp }}$ is a powermultiplicative norm on L, and it extends the norm on k.

Proof. It is clear that $|\bullet|_{\text {sp }}$ extends the valuation on k. In order to show that $|\bullet|_{\text {sp }}$ is a power-multiplicative norm on L, we may assume that L is finite dimensional over k. Then we can find finite field extensions L_{1}, \ldots, L_{t} of k such that $L=\bigoplus_{i=1}^{t} L_{i}$. By Proposition 9.5 , we can immediately reduce to the case where L / k is a finite field extension. In this case, the result is well-known. Expand.

Proposition 9.7. Let L be a reduced integral k-algebra. For any $\mathfrak{p} \in \operatorname{Spec} L$, write $\pi_{\mathfrak{p}}: L \rightarrow L / \mathfrak{p}$ the residue map. Then for any $y \in L$,

$$
|y|_{\mathrm{sp}}=\max _{\mathfrak{p} \in \operatorname{Spec} L}\left|\pi_{\mathfrak{p}}(y)\right|_{\mathrm{sp}}
$$

Proof. Fix $y \in L$. For any $\mathfrak{p} \in \operatorname{Spec} L$, let $q_{\mathfrak{p}} \in k[X]$ be the minimal polynomial of $\pi_{\mathfrak{p}}(y)$ over k. Let $q \in k[X]$ be the minimal polynomial of y over k. Then clearly $q_{\mathfrak{p}}$ divides q for all $\mathfrak{p} \in \operatorname{Spec} L$. In particular, there are only finitely many different polynomials among $q_{\mathfrak{p}}(\mathfrak{p} \in \operatorname{Spec} L)$, say q_{1}, \ldots, q_{r}. Define $q^{\prime}=q_{1} \cdots q_{r} \in k[X]$. Then for $f \in k[X], f(y)=0$ if and only if $\pi_{\mathfrak{p}}(f(y))=0$ for all $\mathfrak{p} \in \operatorname{Spec} L$ as L is reduced. The latter condition is equivalent to that $q^{\prime} \mid f$. It follows that $q^{\prime}=q$. Now by Proposition 9.5,

$$
|y|_{\mathrm{sp}}=\sigma(q)=\max _{i=1, \ldots, r} \sigma\left(q_{i}\right)=\max _{\mathfrak{p} \in \operatorname{Spec} L}\left|\pi_{\mathfrak{p}}(y)\right|_{\mathrm{sp}}
$$

Proposition 9.8. Let $\varphi: B \rightarrow A$ be a homomorphism of commutative k-algebras. Then for any $f \in B$,

$$
|\varphi(f)|_{\text {sup }} \leq|f|_{\text {sup }}
$$

Proof. Of course, we can assume that $\operatorname{Spm}_{k} A \neq \emptyset$. Let $x \in \operatorname{Spm}_{k} A$, then $\varphi^{-1} x \in \operatorname{Spm}_{k} B$. But for any $f \in B,|\varphi(f)(x)|=\left|f\left(\varphi^{-1} x\right)\right|$. We conclude.
Proposition 9.9. Let A be a k-algebra. Let \mathfrak{M} be the set of minimal prime ideals in A and let $\pi_{\mathfrak{p}}: A \rightarrow A / \mathfrak{p}$ be the canonical residue map for all $\mathfrak{p} \in \mathfrak{M}$. Then for any $f \in A$,

$$
\begin{equation*}
|f|_{\text {sup }}=\sup _{\mathfrak{p} \in \mathfrak{M}}\left|\pi_{\mathfrak{p}}(f)\right|_{\text {sup }} \tag{9.1}
\end{equation*}
$$

In particular, if A be a reduced integral k-algebra. Then $|\bullet|_{\text {sup }}=|\bullet|_{\text {sp }}$ on A.
Proof. By Proposition 9.8,

$$
\sup _{\mathfrak{p} \in \mathfrak{M}}\left|\pi_{\mathfrak{p}}(f)\right|_{\text {sup }} \leq|f|_{\text {sup }}
$$

In order to show the reverse inequality, let $x \in \operatorname{Spm}_{k} A$. Take $\mathfrak{p} \in \mathfrak{M}$ such that $x \supseteq \mathfrak{p}$. Clearly, $\pi_{\mathfrak{p}}(x) \in \operatorname{Spm}_{k} A / \mathfrak{p}$ and

$$
|f(x)|=\left|\pi_{\mathfrak{p}}(f)\left(\pi_{\mathfrak{p}}(x)\right)\right|
$$

In particular,

$$
|f(x)| \leq\left|\pi_{\mathfrak{p}}(f)\right|_{\sup } \leq \sup _{\mathfrak{p} \in \mathfrak{M}}\left|\pi_{\mathfrak{p}}(f)\right|_{\text {sup }}
$$

Take sup with respect to x, we conclude (9.1).
When A is a reduced and integral k-algebra, all prime ideals of A are minimal. The final assertion follows from Proposition 9.7.

Definition 9.10. Let A be a Banach k-algebra. We say that maximal modulus principle holds for A if for any $f \in A$, there is $x \in \operatorname{Spm}_{k} A$ such that $|f(x)|=|f|_{\text {sup }}$.
Proposition 9.11. Let $\varphi: B \rightarrow A$ be an injective integral torsion-free homomorphism of Banach k-algebras. Assume that B is a normal integral domain.
(1) Fix $f \in A$. Let $f^{n}+\varphi\left(b_{1}\right) f^{n-1}+\cdots+\varphi\left(b_{n}\right)=0$ be the minimal equation of f over A. Then

$$
|f|_{\mathrm{sup}}=\max _{i=1, \ldots, n}\left|b_{i}\right|_{\mathrm{sup}}^{1 / i}
$$

(2) Assume that maximal modulus principle holds for B, then it holds for A as well.
(3) Suppose that $\left|b b^{\prime}\right|_{\text {sup }}=|b|_{\text {sup }}\left|b^{\prime}\right|_{\text {sup }}$ for all $b, b^{\prime} \in B$. Then $|\varphi(b) f|_{\text {sup }}=$ $|b|_{\text {sup }}|f|_{\text {sup }}$ for all $b \in B$ and $f \in A$.

Proof. (1) We first show the inequality

$$
|f|_{\mathrm{sup}} \leq \max _{i=1, \ldots, n}\left|b_{i}\right|_{\mathrm{sup}}^{1 / i}
$$

Of course, we can assume that $\operatorname{Spm}_{k} A \neq \emptyset$. For all $x \in \operatorname{Spm}_{k} A$, we have
$0=f(x)^{n}+\varphi\left(b_{1}\right) f(x)^{n-1}+\cdots+\varphi\left(b_{n}\right)=f(x)^{n}+b_{1}\left(\varphi^{-1} x\right) f(x)^{n-1}+\cdots+b_{n}\left(\varphi^{-1}(x)\right)$.
Then we in fact have that

$$
|f(x)| \leq \max _{i=1, \ldots, n}\left|b_{i}\left(\varphi^{-1} x\right)\right|_{\text {sup }}^{1 / i}
$$

Assume that to the contrary that

$$
|f(x)|^{i}>\left|b_{i}\left(\varphi^{-1} x\right)\right|
$$

for all $i=1, \ldots, n$. Then

$$
\left|b_{i}\left(\varphi^{-1} x\right) f(x)^{n-i}\right|<|f(x)|^{n}=\left|f(x)^{n}\right|
$$

It follows that

$$
\left|b_{1}\left(\varphi^{-1} x\right) f(x)^{n-1}+\cdots+b_{n}\left(\varphi^{-1}(x)\right)\right|<\left|f(x)^{n}\right| .
$$

This is a contradiction.
It remains to argue that

$$
\begin{equation*}
|f|_{\text {sup }} \geq \max _{i=1, \ldots, n}\left|b_{i}\right|_{\text {sup }}^{1 / i} \tag{9.2}
\end{equation*}
$$

Next let $A^{\prime}=B[f]$. We argue that $A^{\prime} \rightarrow A$ is an isometry with respect to $|\bullet|_{\text {sup }}$. If $\operatorname{Spm}_{k} A^{\prime}$ is empty, then the assertion follows from Proposition 9.8. Assume that $\operatorname{Spm}_{m} A^{\prime}$ is non-empty. Take $y \in \operatorname{Spm}_{k} A^{\prime}$. By [Stacks, Tag 00GQ], there is a maximal ideal $x \in \operatorname{Spm} A$ lying over y. As the induced map $A^{\prime} / y \rightarrow A / x$ is integral, we find $x \in \operatorname{Spm}_{k} A$. So the map $\operatorname{Spm}_{k} A \rightarrow \operatorname{Spm}_{k} A^{\prime}$ is surjective. If follows that $A^{\prime} \rightarrow A$ is an isometry with respect to $|\bullet|_{\text {sup }}$.

In order to argue (9.2), we may assume that $A=B[f]$. Let $q \in B[X]$ denote the minimal polynomial of f over A. Then $A=B[X] /(q)$. Let $y \in \operatorname{Spm}_{k} B$, we write f_{y} for the residue class of f in $A / y A$ and write \bar{f}_{y} for the residue class in $(A / y A)^{\text {red }}$. Similarly, let q_{y} denote the residue class of q in $B / y[X]$. As y is contained in some $\operatorname{Spm}_{k} A$, we see that

$$
|f|_{\text {sup }}=\sup _{y \in \operatorname{Spm}_{k} B}\left|f_{y}\right|_{\text {sup }}=\sup _{y \in \operatorname{Spm}_{k} B}\left|\bar{f}_{y}\right|_{\text {sup }}
$$

For $y \in \operatorname{Spm}_{k} B$, we decompose q_{y} into prime factors $q_{1}^{n_{1}} \cdots q_{r}^{n_{r}}$ in $B / y[X]$. Then

$$
A / y A \cong B / y[X] /\left(q_{y}\right)
$$

and

$$
(A / y A)^{\mathrm{red}} \cong \bigoplus_{i=1}^{r} B / y[X] /\left(q_{i}\right)
$$

We endow $\bigoplus_{i=1}^{r} B / y[X] /\left(q_{i}\right)$ with the spectral norm over B / y. If \bar{f}_{i} denotes the residue class of \bar{f}_{y} in $B / y[X] /\left(q_{i}\right)$, by Proposition 9.9 and Proposition 9.5,

$$
\left|\bar{f}_{y}\right|_{\text {sup }}=\max _{i=1, \ldots, r}\left|\bar{f}_{i}\right|_{\mathrm{sp}}=\max _{i=1, \ldots, r} \sigma\left(q_{i}\right)=\sigma\left(q_{y}\right)
$$

Therefore,

$$
|f|_{\text {sup }}=\sup _{y \in \operatorname{Spm}_{k} B} \sigma\left(q_{y}\right)=\max _{i=1, \ldots, n}\left|b_{i}\right|_{\mathrm{sup}}^{1 / n}
$$

(2) Take a non-zero $f \in A$. Using the notations in (1), we can find $y \in \operatorname{Spm}_{k} B$ such that

$$
\left|\bar{f}_{y}\right|_{\text {sup }}=\sigma\left(q_{y}\right)=|f|_{\text {sup }}
$$

As $A / y A$ contains only finitely many maximal ideals, there is $x \in \operatorname{Spm}_{k} A$ such that $\left|\bar{f}_{y}\right|_{\text {sup }}=|f(x)|$. So

$$
|f|_{\text {sup }}=|f(x)|
$$

(3) Consider $f \in A$ and let $f^{n}+b_{1} f^{n-1}+\cdots+b_{n}=0$ be its minimal integral equation over B. Then f is of degree n over $\operatorname{Frac} B$ as well, hence so is $b f$ for any non-zero $b \in B$. So the minimal integral equation of $b f$ is

$$
(b f)^{n}+b b_{1}(b f)^{n-1}+\cdots+b^{n} b_{n}=0
$$

By (1), we compute

$$
|b f|_{\text {sup }}=\max _{i=1, \ldots, n}\left|b^{i} b_{i}\right|_{\text {sup }}^{1 / i}=|b|_{\text {sup }} \max _{i=1, \ldots, n}\left|b_{i}\right|_{\text {sup }}^{1 / i}=|b|_{\text {sup }}|f|_{\text {sup }}
$$

Also, $|b f|_{\text {sup }}=|b|_{\text {sup }}|f|_{\text {sup }}$ is trivial for $b=0$. We conclude.

10. Miscellany

Lemma 10.1. Let $(A,|\bullet|)$ be a valued integral domain such that \tilde{A} is Noetherian and $\mathrm{N}-2$. Assume that $\left|A^{\times}\right|$is a group. Let $(B,\|\bullet\|)$ be a faithfully normed A-algebra such that
(1) $\|\bullet\|$ is power-multiplicative.
(2) The A-rank of B is finite.
(3) $\stackrel{\circ}{B}$ is integral over \AA.

Then \tilde{B} is finite as \tilde{A}-module.
Proof. We want to apply Proposition 8.1 in Commutative algebras to the canonical injection map $\psi: \tilde{A} \rightarrow \tilde{B}$. The map ψ is integral as $\stackrel{\circ}{ }$ is integral over \AA. The conditions are easily verified. Add details.

Bibliography

[Ber12] V. G. Berkovich. Spectral theory and analytic geometry over nonArchimedean fields. 33. American Mathematical Soc., 2012.
[BGR84] S. Bosch, U. Güntzer, and R. Remmert. Non-Archimedean analysis. Vol. 261. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. A systematic approach to rigid analytic geometry. Springer-Verlag, Berlin, 1984, pp. xii+436. URL: https: //doi.org/10.1007/978-3-642-52229-1.
[Stacks] T. Stacks Project Authors. Stacks Project. http : / / stacks . math . columbia. edu. 2020.

