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Berkovich analytic spaces

1. Introduction

The main references of this chapter: [Ber93], [Ber12], [Tem04], [Tem00], [Duc18].

2. The category of Berkovich analytic spaces

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

Definition 2.1. Let X be a locally Hausdorff space and τ be a net of compact
subsets. A kH-affinoid atlas A on X with the net τ is a map which assigns

(1) to each V ∈ τ , a kH -affinoid algebra AV and a homeomorphism ϕV :
SpAV → V ;

(2) to each U, V ∈ τ , U ⊆ V , a morphism of kH -affinoid algebras αV/U :
AV → AU representing a kH -affinoid domain SpAU in SpAV such that
the following diagram commutes

SpAU SpAV

U V

ϕU

SpαV/U

ϕV
.

The triple (X,A, τ) as above is called a kH-analytic space.
A morphism between atlases A and A′ on X with the net τ is an assignment that

with each V ∈ τ , one associates a morphism of kH -affinoid algebras βV : AV → A′V
such that

(1) for each V ∈ τ , the following diagram is commutative:

SpA′V SpAV

V

ϕ′V

Sp βV

ϕV

;

(2) for each U, V ∈ τ , U ⊆ V , the following diagram is commutative:

AV AU

A′V A′U

αV/U

βV βU

α′V/U

Here we have denoted the data associated with A′ with a prime. In this way, the
atlases on X with the net τ form a category.
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6 BERKOVICH ANALYTIC SPACES

We remind the readers that by our convention a compact space is Hausdorff.
By Condition (2), itW ⊆ U ⊆ V are three sets in τ , then αV/U ◦αU/W = αV/W .

Remark 2.2. As a convention, we will denote the atlas by capital letters in
caligraphic font and the affinoid algebras by the same letter in roman font. We
will usually omit the maps ϕU ’s by identifying SpAU with U . We will say U is a
kH -affinoid domain in V .

Remark 2.3. Our definition is a special case of the original definitions in [Ber93].
This seems to be the most important case though.

Lemma 2.4. Let (X,A, τ) be a kH -analytic space, U ∈ τ and W is a kH -affinoid
domain in U . Then for any V ∈ τ containing W , W is a kH -affinoid domain in V .

Proof. As τ |U∩V is a net and W is compact, we can find U1, . . . , Un ∈ τU∩V
with W ⊆ U1 ∪ · · · ∪Un. As W , Ui are kH -affinoid domains in U , Wi = W ∩Ui is a
kH -affinoid domain in Ui for all i = 1, . . . , n by Corollary 13.12 in Affinoid algebras.
It follows from Corollary 10.7 and Corollary 13.12 in Affinoid algebras that Wi and
Wi ∩Wj are both kH -affinoid domains in V for i, j = 1, . . . , n. So W is a compact
kH -analytic domain in V .

By Proposition 13.25 in Affinoid algebras,

AW := ker

 n∏
i=1

AWi →
n∏

i,j=1
AWi∩Wj


is kH -affinoid and SpAW → SpA induces a hoemomorphism SpAW → W by
Proposition 10.6 in Affinoid algebras. By Proposition 13.25 in Affinoid algebras
again, W is affinoid in V . �

Definition 2.5. Let (X,A, τ) be a kH -analytic space. We define τ̄ as the set of all
W ⊆ X such that there is U ∈ τ containing W and W is kH -affinoid in U .

Lemma 2.6. Let (X,A, τ) be a kH -analytic space. Then τ̄ is a net on X and there
is a kH -affinoid atlas A on X with the net τ̄ extending A. Moreover, the kH -affinoid
atlas A on X with the net τ̄ extending A is unique up to a canonical isomorphism.

Proof. Step 1. We first show that τ̄ is a net. Let U, V ∈ τ̄ and x ∈ U ∩ V .
Take U ′, V ′ ∈ τ containing U and V respectively. Take n ∈ Z>0 andW1, . . . ,Wn ∈ τ
such that

(1) x ∈W1 ∩ · · · ∩Wn;
(2) W1 ∪ · · · ∪Wn is a neighbourhood of x in U ′ ∩ V ′.

This is possible because τ |U ′∩V ′ is a quasi-net by assumption.
By Lemma 2.4, U (resp. V ) and W1, . . . ,Wn are kH -affinoid domains in U ′

(resp. V ′).
According to Corollary 13.12 in Affinoid algebras, Ui := U ∩Wi (resp. Vi :=

V ∩Wi) is a kH -affinoid domain in Wi for i = 1, . . . , n. By Corollary 13.12 in
Affinoid algebras again, Ui ∩ Vi is a kH -affinoid domain in Wi for i = 1, . . . , n. So
Ui ∩ Vi ∈ τ̄ |U∩V for i = 1, . . . , n. But

n⋃
i=1

Ui ∩ Vi = (U ∩ V ) ∩
n⋃
i=1

Wi,
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so
⋃n
i=1 Ui ∩ Vi is a neighbourhood of x in U ∩ V and x ∈

⋂n
i=1 Ui ∩ Vi. It follows

that τ̄ is a net.
Step 2. We extend the kH -affinoid atlas A.
For each V ∈ τ̄ , we fix a V ′ ∈ τ containing V .
By Lemma 2.4, V is a kH -affinoid domain in V ′. Let AV ′ → AV be the

morphism of kH -affinoid algebras representing the kH -affinoid domain V in SpAV ′ .
We define the homeomorphism ϕV : SpAV → V as the morphism induced by
SpAV → SpA.

For U, V ∈ τ̄ with U ⊆ V , we want to define αV/U : AV → AU . We handle
two cases. When V ∈ τ , as τ |U ′∩V is a quasi-net, we can find n ∈ Z>0 and
U1, . . . , Un ∈ τ |U ′∩V such that

U =
n⋃
i=1

Ui.

By Lemma 2.4, U1, . . . , Un are kH -affinoid domains in U ′ and in V . By Theo-
rem 13.19 in Affinoid algebras,

AU
∼−→ ker

 n∏
i=1

AUi
→

n∏
i,j=1

AUi∩Uj

 .

So the morphism αV/Ui
: AV → AUi and AV/Ui∩Uj

: αV/Ui
: AV → AUi∩Uj for

i = 1, . . . , n and j = 1, . . . , n induces a morphism αV/U : AV → AU . Observe that
αV/U represents the kH -affinoid domain U in V , so it is independent of the choice
of U1, . . . , Un.

More generally, when V ∈ τ̄ , we have constructed a morphism αV ′/U : AV ′ →
AU representing the kH -affinoid domain U in V ′, it follows that U is a kH -affinoid
domain in V , and we therefore get the desired morphism αV/U : AV → AU .

It is easy to verify that the constructions gives a kH -affinoid atlas with the net
τ̄ extending A. The uniqueness of the extension is immediate. �

Definition 2.7. Let (X,A, τ) and (X ′,A′, τ ′) be kH -analytic spaces. A strong
morphism ϕ : (X,A, τ)→ (X ′,A′, τ ′) is a pair consisting of

(1) a continuous map ϕ : X → X ′ such that for each V ∈ τ , there is V ′ ∈ τ ′
with ϕ(V ) ⊆ V ′;

(2) for each V ∈ τ , V ′ ∈ τ ′ with ϕ(V ) ⊆ V ′, a morphism of kH -affinoid spectra
ϕV/V ′ : V → V ′

such that for each V,W ∈ τ , V ′,W ′ ∈ τ ′ satisfying V ⊆ W , W ′ ⊆ W ′, ϕ(V ) ⊆ V ′
and ϕ(W ) ⊆W ′, the following diagram commutes:

V V ′

W W ′

ϕV/V ′

ϕW/W ′

.

Recall our convention Remark 2.2, the morphism ϕV/V ′ means a morphism
A′V ′ → AV of kH -affinoid algebras making the following diagram commutative

SpAV SpA′V ′

V V ′

ϕV ϕ′
V ′

ϕ

.
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We will continue our identifications as in Remark 2.2 to simplify our notations.

Proposition 2.8. Let (X,A, τ) and (X ′,A′, τ ′) be kH -analytic spaces. Let ϕ :
(X,A, τ)→ (X ′,A′, τ ′) be a strong morphism. Then ϕ extends uniquely to a strong
morphism ϕ : (X, Ā, τ̄)→ (X ′,A′, τ ′).

Proof. Let U ∈ τ̄ , U ′ ∈ τ ′ with ϕ(U) ⊆ U ′. Take V ∈ τ and V ′ ∈ τ ′

containing U and U ′ respectively. By Lemma 2.4, U (resp. V ) is a kH -affinoid
domain in V (resp. V ′). Take W ∈ τ ′ with ϕ(V ) ⊆ W ′. Then in particular,
ϕ(U) ⊆W ′. As τ ′|V ′∩W ′ is a quasi-net and ϕ(U) is compact, we can find n ∈ Z>0
and W1, . . . ,Wn ∈ τ ′|V ′∩W such that

ϕ(U) ⊆W1 ∪ · · · ∪Wn.

Now Wi is a kH -affinoid domain in W ′ by Lemma 2.4, so Vi := ϕ−1
V/W ′(Wi) is an

affinoid domain in V by Corollary 13.12 in Affinoid algebras, and we have an induced
morphism Vi →Wi for i = 1, . . . , n. This morphism in turn induces a morphism of
kH -affinoid spectra

Ui := U ∩ Vi → U ′i := U ′ ∩Wi → U ′

for i = 1, . . . , n. These morphisms are compatible on their intersections by construc-
tion. So by Theorem 13.19 in Affinoid algebras, they glue together to a morphism of
kH -affinoid spectra ϕ̄U/U ′ : U → U ′. It is easy to see that this construction defines
a strong morphism.

As for the uniqueness, it suffices to show that the morphism Ui → U ′i is uniquely
determined for i = 1, . . . , n. In other words, we need to show that the dotted arrow
that makes the following diagram commutes is unique:

Ui U ′i

V W ′
ϕV/W ′

for i = 1, . . . , n. It suffices to apply the universal property of the kH -affinoid domain
U ′i →W ′. �

Definition 2.9. Let (X,A, τ), (X ′,A′, τ ′), (X ′′,A′′, τ ′′) be kH -analytic spaces. Let
ϕ : (X,A, τ)→ (X ′,A′, τ ′), ψ : (X ′,A′, τ ′)→ (X ′′,A′′, τ ′′)

be strong morphisms. We will define their composition χ = ψ ◦ ϕ as follows. The
underlying map of topological spaces is just the composition of the unlerlying maps
of topological spaces corresponding to ψ and ϕ.

Let ϕ̄ and ψ̄ be the extensions of ϕ and ψ to τ̄ and τ ′ as in Proposition 2.8.
Given V ∈ τ and V ′′ ∈ τ ′′ with χ(V ) ⊆ V ′′, we need to define a morphism

of kH -affinoid spectra χV/V ′′ : V → V ′′. Take V ′ ∈ τ ′ and U ′′ ∈ τ ′′ such that
ϕ(V ) ⊆ V ′ and ψ(V ′) ⊆ U ′′. Since χ(V ) ⊆ U ′′ ∩ V ′′ and V is compact, we can
take n ∈ Z>0 and V ′′1 , . . . , V

′′
n ∈ τ ′′|U ′′∩V ′′ with χ(V ) ⊆ V ′′1 ∪ · · · ∪ V ′′n . Then

V ′i := ψ−1
V ′/U ′′(V

′′
i ) and Vi := ϕ−1

V/V ′(V
′
i ) are kH -affinoid domains in V ′ and V

respectively for i = 1, . . . , n and V = V1 ∪ · · · ∪ Vn. The morphisms ϕ̄ and ψ̄ then
induce a morphism Vi → V ′′i → V of kH -affinoid spectra. These morphisms are
clearly compatible on the intersections and hence induce a morphism V → V ′′ of
kH -affinoid spectra by Theorem 13.19 in Affinoid algebras.

It is easy to verify that ψ ◦ ϕ is a strong morphism.
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In this way, we get a category kH -Ãn of kH -analytic spaces.

Definition 2.10. Let (X,A, τ) and (X ′,A′, τ ′) be kH -analytic spaces. A strong
morphism ϕ : (X,A, τ)→ (X ′,A′, τ ′) is said to be a quasi-isomorphism if

(1) ϕ is a homeomorphism between X and X ′;
(2) for any pair V ∈ τ and V ′ ∈ τ ′ with ϕ(V ) ⊆ V ′, SpϕV/V ′ identifies V

with an affinoid domain in V ′.

Lemma 2.11. Let (X,A, τ) and (X ′,A′, τ ′) be kH -analytic spaces and ϕ :
(X,A, τ) → (X ′,A′, τ ′) be a strong morphism. Then for any V ∈ τ̄ and V ′ ∈ τ ′,
the intersection V ∩ ϕ−1(V ′) is a compact kH -analytic domain in V .

Proof. Take U ′ ∈ τ ′ with ϕ(V ) ⊆ U ′. As τ |U ′∩V ′ is a quasi-net, we can find
n ∈ Z>0 and U ′1, . . . , U ′n ∈ τ |U ′∩V ′ with ϕ(V ) ⊆ U ′1 ∪ · · · ∪ U ′n and

V ∩ ϕ−1(V ′) =
n⋃
i=1

ϕ−1
V/U (U ′i).

�

Lemma 2.12. The system of quasi-isomorphisms in kH -Ãn is a right multiplicative
system.

For the notion of right multiplicative system, we refer to [Stacks, Tag 04VC].

Proof. We verify the three axioms as in [Stacks, Tag 04VC].
RMS1. The identity is clear a quasi-isomorphism. It remains to verify that

the composition of quasi-isomorphisms is still a quasi-isomorphism.
Take ϕ,ψ as in Definition 2.9. We will use the same notations as in Definition 2.9.

We need to show that V → V ′′ identifies V with a kH -affinoid domain in V ′′. From
the construction, we know that ϕ identifies Vi with a kH -affinoid domain in V ′i
and ψ identifies V ′i with a kH -affinoid domain in V ′′i for i = 1, . . . , n. In particular,
χ(V ) is a compact kH -analytic domain in V ′′. It follows from Proposition 13.25 in
Affinoid algebras that χ(V ) is a kH -affinoid domain in V ′′.

RMS2. If ϕ : (X,A, τ) → (X ′,A′, τ ′) and f : (X̃ ′, Ã′, τ̃ ′) → (X ′,A′, τ ′)
are given strong morphisms of kH -analytic spaces and g is a quasi-isomorphism,
then there are kH -analytic space (X̃, Ã, τ̃) and strong morphisms ϕ̃ : (X̃, Ã, τ̃)→
(X̃ ′, Ã′, τ̃ ′) and f : (X̃, Ã, τ̃) → (X,A, τ) such that f is a quasi-isomorphism and
the following diagram commutes:

(X̃, Ã, τ̃) (X̃ ′, Ã′, τ̃ ′)

(X,A, τ) (X ′,A′, τ ′)

ϕ̃

f g

ϕ

.

We may assume that X̃ ′ = X ′. Then τ̃ ′ ⊆ τ ′. We let X̃ = X. Let τ̃ be the family
of all V ∈ τ̄ for which there is Ṽ ′ ∈ τ̃ ′ with ϕ(V ) ⊆ Ṽ ′. By Lemma 2.11, τ̃ is a net
on X̃. The kH -atlas Ā defines a kH -affinoid atlas Ã with the net τ̃ . The strong
morphism ϕ̄ induces ϕ̃. The morphism f is the canonical quasi-isomorphism. It is
immediate that these constructions satisfy the desired conditions.

RMS3. If ϕ,ψ : (X,A, τ)→ (X ′,A′, τ ′) are strong morphisms of kH -analytic
spaces and there is a quasi-isomorphism g : (X ′,A′, τ ′)→ (X̃ ′, Ã′, τ̃ ′) of kH -analytic

https://stacks.math.columbia.edu/tag/04VC
https://stacks.math.columbia.edu/tag/04VC
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spaces such that g ◦ ϕ = g ◦ ψ, then there is a quasi-isomorphism f : (X̃, Ã, τ̃)→
(X,A, τ) with ϕ ◦ f = ψ ◦ f .

We will in fact show that ϕ = ψ. It is clear that they coincide as maps of
topological spaces. Let V ∈ τ , V ′ ∈ τ ′ such that ϕ(V ) ⊆ V ′. Take Ṽ ′ ∈ τ̃ ′ with
g(V ′) ⊆ Ṽ ′. Then we have two morphisms of k-affinoid spectra ϕV/V ′ , ψV/V ′ : V →
V ′ such that their compositions with g

V ′/Ṽ ′
coincide. As V ′ is an affinoid domain

in Ṽ ′, it follows that ϕV/V ′ = ψV/V ′ by the universal property. �

Definition 2.13. The category kH -An is the right category of fractions of kH -Ãn
with respect to the system of quasi-isomorphisms. A morphism in kH -An is called
a morphism between kH -analytic spaces.

We refer to [Stacks, Tag 04VB] for the definition of right category of fractions.
For later references, we explicitly write down the morphisms in kH -An.

Lemma 2.14. Let ϕ : (X,A, τ)→ (X ′,A′, τ ′) be a morphism of kH -analytic spaces.
We define a partial order on the set of nets on X: τ1 � τ0 if τ1 ⊆ τ0. Then the set
of nets is a directed set and

HomkH -An ((X,A, τ), (X ′,A′, τ ′)) = lim−→
σ�τ

Hom
kH -Ãn ((X,Aσ, σ), (X ′,A′, τ ′))

in the category of sets, where Aσ is induced by A. The transition maps are all
injective.

Proof. This follows immediately from the definition. �

Definition 2.15. Let (X,A, τ) be a kH -analytic space. We say a subset W ⊆ X is
τ -special if it is compact and there exist n ∈ Z>0 and a covering W = W1∪ · · ·∪Wn

with Wi ∈ τ , Wi ∩Wj ∈ τ for all i, j = 1, . . . , n and the natural map
AWi⊗̂kAWj → AWi∩Wj

is an admissible epimorphism.
The covering W1, . . . ,Wn is called a τ -special covering of W .

Under our convention, the assumption means that Wi ∩Wj → Wi ×Wj is a
closed immersion of kH -affinoid spectra.

Example 2.16. Let (X,A, τ) be a kH -analytic space. Suppose that V ∈ τ and W
is a compact kH -analytic domain in V . Let n ∈ Z>0 and W = W1 ∪ · · · ∪Wn with
Wi ∈ τ , Wi ∩Wj ∈ τ for all i, j = 1, . . . , n. Then {Wi}i is a τ -special covering of
W . This follows from Corollary 13.14 in Affinoid algebras.

Lemma 2.17. Let (X,A, τ) be a kH -analytic space and W be a τ -special subset
of X. If U, V ∈ τ |W , then U ∩ V ∈ τ̄ and the natural map

AU ⊗̂kAV → AU∩V

is an admissible epimorphism.

Proof. Let n ∈ Z>0 and W1, . . . ,Wn be a τ -special covering of W . As U ∩Wi

and V ∩Wi are compact for i = 1, . . . , n, we can find mi ∈ Z>0 (resp. ki ∈ Z>0)
and finite coverings Ui1, . . . , Uimi ∈ τ of U ∩Wi (resp. Vi1, . . . , Viki ∈ τ of V ∩Wi).

Observe that Uik ∩Vjl is a kH -affinoid domain in U ∩V , hence Uik ∩Vjl ∈ τ̄ for
any i, j = 1, . . . , n, k = 1, . . . ,mi and l = 1, . . . , kl. By Proposition 12.3 in Affinoid

https://stacks.math.columbia.edu/tag/04VB
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algebras, Uik ∩ Vjl → Uik × Vjl is a closed immersion since Wi ∩Wj →Wi ×Wj is
by our assumption.

Consider the finite convering

U := {Uik × Vjl : i, j = 1, . . . , n; k = 1, . . . ,mi; l = 1, . . . , kl}

of U × V . For each tuple (i, j, k, l), AUik∩Vjl
is a finite AUik×Vjl

-algebra. By
Theorem 14.1 in Affinoid algebras, we can construct a finite AU×V -algebra AU∩V
inducing all of these AUik∩Vjl

’s. By Proposition 8.1 in Affinoid algebras, AU∩V is
kH -affinoid.

As U is a finite kH -affinoid covering of U × V , {AUik∩Vjl
}i,k,j,l is a finite kH -

affinoid covering of U ∩ V by Corollary 13.12 in Affinoid algebras. In particular, we
have a natural homeomorphism

SpAU∩V
∼−→ U ∩ V.

Observe that AU ⊗̂kAV → AU∩V is surjective. We endow AU∩V with the structure
of finite AU ⊗̂kAV -Banach algebras by Proposition 9.10 in Affinoid algebras. Then
AU ⊗̂kAV → AU∩V is an admissible epimorphism by Proposition 9.7 in Affinoid
algebras.

On the other hand U ∩ V is a compact kH -analytic domain in U , so by
Proposition 13.25 in Affinoid algebras, U ∩ V is a kH -affinoid in U . In partic-
ular, U ∩ V ∈ τ̄ . �

Lemma 2.18. Let (X,A, τ) be a kH -analytic space and W ⊆ X be a τ -special
set. Then for any finite covering {Wi}i∈I of W with Wi ∈ τ for i ∈ I, the Banach
k-algebra

AW := ker
(∏
i∈I

AWi → AWi∩Wj

)
does not depend on the choice of {Wi}i∈I up to canonical isomorphisms.

Moreover, we have a canonical map W → SpAW , which does not depend on
the choice of the covering modulo the canonical isomorphism between AW .

Proof. It follows from Lemma 2.17 that the covering {Wi}i∈I is τ -special. It
suffices to apply the same argument of Lemma 13.22 in Affinoid algebras. �

Definition 2.19. Let (X,A, τ) be a kH -analytic space. Let τ̂ denote the collection
of τ̄ -special subsets W ⊆ X such that

(1) AW is k-affinoid;
(2) the natural map W → SpAW is bijective;
(3) there is a τ̄ -special covering {Wi}i∈I of W such that Wi is a k-affinoid

domain in W for i ∈ I.
The sets from τ̂ are called kH-affinoid domains in (X,A, τ).

Observe that W is kH -affinoid and Wi is a kH -affinoid domain in W by Corol-
lary 13.20 in Affinoid algebras. Condition (3) holds for any τ̄ -special covering.

Proposition 2.20. Let (X,A, τ) be a kH -analytic space. Then τ̂ is a net. For any
net σ on X contained in τ̄ , we have σ̂ = τ̂ .

Moreover, ˆ̂τ = τ̂ .
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Proof. Let U, V ∈ τ̂ . Take τ̄ -special coverings {Ui}i∈I , {Vj}j∈J of U and V
respectively. In order to show that τ̂ |U∩V is a quasi-net, it suffices to show that
τ̂ |Ui∩Vj is for any i ∈ I and j ∈ J . This follows simply from the fact that τ̄ |Ui∩Vj is
a quasi-net. Similarly, as τ̂ is a quasi-net as τ̄ is. So τ̂ is a net.

Let σ be a net on X contained in τ̄ . By Lemma 2.17, it suffices to verify that
for any V ∈ τ̄ , there are n ∈ Z>0 and U1, . . . , Un ∈ σ̄ with V = U1 ∪ · · · ∪ Un. As σ
is a net on X, we can find m ∈ Z>0, W1, . . . ,Wm ∈ σ such that

V ⊆W1 ∪ · · · ∪Wm.

As V,Wj ∈ τ̄ for j = 1, . . . ,m, by Lemma 2.5 in Topology and bornology, we can
find U1, . . . , Un ∈ τ̄ such that V = U1 ∪ · · · ∪ Un and each Ui is contained in some
Wj . Since Wj ∈ σ for j = 1, . . . ,m, it follows that Ui ∈ σ̄ for i = 1, . . . , n.

By Lemma 2.17,
τ̂ = τ̂ .

Let V ∈ ˆ̂
V . Let {Vi}i∈I be a τ̂ -special covering of V . For each i ∈ I, take a τ̄ -special

covering {Vij}j∈Ji
of Vi. Then {Vij}i,j is a τ̄ -special covering of V . It follows that

V ∈ τ̂ . �

Proposition 2.21. Let (X,A, τ) be a kH -analytic space. There is a kH -analytic
atlas Â on X with the net τ̂ extending A. Moreover, Â is unique up to a canonical
isomorphism.

Proof. For each V ∈ τ̂ , Fix a τ̄ -special covering {Vi}i∈IV
.

We define AV using this covering as in Lemma 2.18. By definition, the canonical
map V → SpAV is a homeomorphism.

Next take U, V ∈ τ̂ with U ⊆ V . We want to identify U with a kH -affinoid
domain in V . First assume that U ∈ τ , then U ∩ Vi is a kH -affinoid domain in Vi
for i ∈ IV by Lemma 2.17. Hence, U is a kH -affinoid domain in V . If we only know
U ∈ τ̂ , we know that Ui is a kH -affinoid domain in V for any i ∈ IU . It follows that
U is a kH -affinoid domain in V by Proposition 13.25 in Affinoid algebras.

The uniqueness is immediate. �

Definition 2.22. Let (X,A, τ) be a kH -analytic space. A τ̂ -special set is called a
kH-special domain in X.

Observe that a kH -special domain inherits a structure of kH -analytic space from
(X,A, τ).

Proposition 2.23. Let ϕ : (X,A, τ)→ (X ′,A′, τ ′) be a morphism of kH -analytic
spaces. Then for any kH -affinoid domains V ⊆ X and V ′ ⊆ X ′, the intersection
V ∩ ϕ−1(V ′) is a kH -special domain in X.

Proof. By Proposition 2.20, we may assume that ϕ is a strong morphism. In
this case, it suffices to apply Lemma 2.11. �

Lemma 2.24. Let (X,A, τ) and (X ′,A′, τ ′) be kH -analytic spaces. Let ϕ :
(X,A, τ) → (X ′,A′, τ ′) be a strong morphism. Then ϕ extends uniquely to a
strong morphism ϕ : (X, Â, τ̂)→ (X ′, Â′, τ̂ ′).

Proof. Let V ∈ τ̂ and V ′ ∈ τ̂ ′ with ϕ(V ) ⊆ V ′. We want to define ϕV/V ′ :
V → V ′ of kH -affinoid spectra. By Proposition 2.8, we may extend ϕ uniquely to
τ̄ . Take a τ̄ -special covering of V , we may reduce to the case where V ∈ τ̄ . Take
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W ′ ∈ τ ′ such that ϕ(V ) ⊆W ′. As τ |W ′∩V ′ is a quasi-net, we can find n ∈ Z>0 and
W1, . . . ,Wn ∈ τ ′|V ′∩W such that ϕ(V ) ⊆ W1 ∪ · · · ∪Wn. Considering the inverse
images of Wi’s and Wi ∩Wj ’s using Lemma 2.17, we are reduced to the case where
V ′ ∈ τ ′. This is already handled in Proposition 2.8. The uniqueness of the extension
is clear. �

Proposition 2.25. Let (X,A, τ), (X ′,A′, τ ′) be kH -analytic spaces.
(1) There is a canonical bijection between

HomkH -An((X,A, τ), (X ′,A′, τ ′))

and the set of pairs consisting of
(a) a continuous map ϕ : X → X ′ such that for all x ∈ X, there exist

n ∈ Z>0, neighbourhoods V1 ∪ · · · ∪ Vn of x and V ′1 ∪ · · · ∪ V ′n of ϕ(x)
with x ∈ V1 ∩ · · · ∩ Vn and ϕ(Vi) ⊆ V ′i for i = 1, . . . , n, where Vi ⊆ X
and V ′i ⊆ X ′ are kH -affinoid domains;

(b) for each pair of kH -affinoid domains V ⊆ X, V ′ ⊆ X ′ with ϕ(V ) ⊆ V ′,
a morphism of kH -affinoid spectra ϕV/V ′ : V → V ′

such that if V,W ⊆ X and V ′,W ′ ⊆ X ′ are kH -affinoid domains with
ϕ(V ) ⊆ V ′, ϕ(W ) ⊆W ′, the diagram below commutes

V V ′

W W ′

ϕV/V ′

ϕW/W ′

.

(2) Under the bijection in (1), an isomorphism corresponds to the pair where
ϕ is a hoemomorphism such that ϕ(τ̂) = τ̃ ′ and for any V ∈ τ̂ , ϕV/ϕ(V ) is
an isomorphism of kH -affinoid spectra.

Proof. (2) follows immediately from (1). So it suffices to prove (1).
We construct the forward map. Let ϕ : (X,A, τ)→ (X ′,A′, τ ′) be a morphism.

Take a subnet σ of τ̄ such that ϕ is represented by a strong morphism

ϕ : (X,Aσ, σ)→ (X ′,A′, τ ′).

By Lemma 2.24, this extends to a strong morphism

ϕ : (X, Âσ, σ̂)→ (X ′, Â′, τ̂ ′).

We get an injective map from the first set into the second set.
Conversely, we need to show that any given map from the second map comes

from the first set. It suffices to show that

σ :=
{
V ∈ τ̂ : ϕ(V ) ⊆ V ′ for some V ′ ∈ τ̂ ′

}
is a net. Take x ∈ X and neighbourhoods V1 ∪ · · · ∪ Vn of x and V ′1 ∪ · · · ∪ V ′n of
ϕ(x) as in the statement of (1). Then Vi ∈ σ, so we conclude. �

In practice, we do not distinguish a kH -analytic space from the isomorphic
kH -analytic spaces. In particular, we will write (X,A, τ) as X and always endow it
with the strucutre (X, Â, τ̂) of kH -analytic space. If necessarily, we will write |X|
for the underlying topological space.

Corollary 2.26. The natural functor kH -Aff → kH -An is fully faithful.
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Proof. Let X = SpA be a kH -affinoid spectrum. We endow it with the net
τ = {X}. The kH -atlas with the net τ assigns X ∈ τ with A. It is easily verified
that this is a functor. By Proposition 2.25, the functor is fully faithful. �

Definition 2.27. A kH-affinoid space is an object of kH -An lying in the essential
image of the functor kH -Aff → kH -An.

The category of kH -affinoid spaces is denoted by kH -Aff.

The notation for the category of kH -affinoid spaces is the same as the notation for
the category of kH -affinoid spectra, as the two categories are canonically equivalent.

Definition 2.28. A kH -analytic space X is good if any point x ∈ X admits a
kH -affinoid neighbourhood.

Example 2.29. Fix n ∈ N. Let Ank denote the set of all semi-valuations on
k[T1, . . . , Tn] whose restriction to k coincides with the given valuation on k. We
provide Ank with the weakest topology such that for any f ∈ k[T1, . . . , Tn], the map
| • | 7→ |f | is continuous.

Observe that as a topological space,

(2.1) Ank
∼−→ lim−→ r ∈ Rn>0 Sp k{r−1T}.

As a set, this is clear: if | • | ∈ Ank , we take r = (|T1|, . . . , |Tn|), then | • | ≤ ‖ • ‖r, so
| • | ∈ Sp k{r−1T}. As ⋂

r∈Rn
>0

k{r−1T} = k[T1, . . . , Tn],

so the topology on the right-hand side of (2.1) is the weakest topology making
| • | 7→ |f | continuous for any f ∈ k[T1, . . . , Tn]. It follows immediately that (2.1) is
an identification of topological spaces.

It is clear that Ank has a structure of good kH -analytic space.

Proposition 2.30. Let X be a kH -analytic space, x ∈ X and U be a neighbourhood
of x in X. Then there is a neighbourhood V of x in X contained in U such that V
is open connected locally compact paracompact and Hausdorff. Moreover, we can
guarantee that V̄ ⊆ U and V is a countable union of kH -affinoid domains.

Proof. Take n ∈ Z>0 and kH -affinoid spaces V1, . . . , Vn containing x and
V1 ∪ · · · ∪ Vn is a neighbourhood of x in X. If we have proved the proposition for Vi
in place of X and U ∩ Vi in place of U for i = 1, . . . , n, namely, if we have found
open connected locally compact paracompact and Hausdorff sets Wi containing x
and contained in U ∩ Vi whose closure in Vi is contained in U ∩ Vi, then we can take
V = W1 ∪ · · · ∪Wn.

So we may assume that X is a kH -affinoid space, say X = SpA. Choose a
kH -rational neighbourhood

W = SpA{r−1 f

g
}

of x in U , where n ∈ N, f = (f1, . . . , fn) ∈ An, r ∈
√
|k×| ·H

n, g ∈ A and
f1, . . . , fn, g generate the unit ideal in A. This is possible by Corollary 10.9 and
Proposition 10.13 in Affinoid algebras. Take δ > 0 so that x ∈ SpA{((1− δ)r)−1 f

g }.



2. THE CATEGORY OF BERKOVICH ANALYTIC SPACES 15

Choose a strictly increasing sequence εi ∈ (0, 1) ∩
√
|k×| ·H converging to 1− δ/2

for i ∈ Z>0. Let

Wi = SpA
{

(εir)−1 f

g

}
for i ∈ Z>0. Then Wi lies in the interior of Wi+1 for i ∈ Z>0. Choose a connected
component Vi of Wi so that V1 ⊆ V2 ⊆ · · · and x ∈ V :=

⋃∞
i=1 Vi. If x ∈ Vi for

some i ∈ Z>0, then x lies in the topological interior of Vi+1. Hence, x lies in the
interior of V . By construction, V is open connected paracompact locally compact
and Hausdorff. Moreover, V̄ ⊆ U by our construction. �

Proposition 2.31. Let {Xi}i∈I be a family of kH -analytic spaces. Suppose that
for i, j ∈ I, we are given a kH -analytic domain Xij ⊆ Xi and an isomorphism
νij : Xij → Xji satisfying the cocycle condition: Xii = Xi, νij(Xij∩Xil) = Xji∩Xjl

and νil = νjl ◦ νij on Xij ∩Xil for i, j, l ∈ I.
Assume that either of the followinig conditions holds:
(1) Xij is open in Xi for all i, j ∈ I;
(2) for any i ∈ I, all Xij ’s are closed in Xi and the number of j ∈ I with

Xij 6= ∅ is finite.
Then there is a kH -analytic space X and morphisms µi : Xi → X for i ∈ I such
that

(1) µi is an isomorphism of Xi with a kH -analytic domain in X;
(2) X =

⋃
i∈I µi(Xi);

(3) µi(Xij) = µi(Xi) ∩ µj(Xj) for i, j ∈ I;
(4) µi = µj ◦ νij on Xij for i, j ∈ I.

The spaceX is unique up to a canonical isomorphism. Moreover, under Condition (1),
µi(Xi) is open in X for i ∈ I; under Condition (2), µi(Xi) is closed in X for i ∈ I.

Under both conditions, if all Xi’s are Hausdorff (resp. paracompact), then so is
X.

We will call X the gluing of the Xi’s along the Xij ’s.

Proof. By Proposition 3.12, the uniquenss of X is clear.
Let

X̃ =
∐
i∈I

Xi

in kH -An. Observe that
|X̃| =

∐
i∈I
|Xi|

in the category T op. The system νij ’s defines an equivalence relation R on |X̃|. Let
|X| = |X̃|/R and µi : |Xi| → |X| be the induced map for i ∈ I.

Under Condition (1), µi(|Xi|) is open in |X| for i ∈ I. Under Condition (2),
µi(|Xi|) is closed in X for i ∈ I.

Under both conditions, the map µi induces a homeomorphism |Xi| → µi(|Xi|)
for i ∈ I. If all |Xi|’s are Hausdorff (resp. paracompact), so is |X|.

All these claims follow from well-known results in general topology.
We will endow |X| with a structure of kH -analytic space. Let τ be the set of

V ⊆ |X| for which there is i ∈ I such that V ⊆ µi(Xi) and µ−1
i (V ) is a kH -affinoid

domain in Xi. Then τ is a net on X. There is an obvious k-affinoid atlas on X with
the net τ . All properties in the proposition are satisfied by X = (|X|,A, τ). �
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Definition 2.32. Let X be a kH -analytic space and x ∈ X, take a kH -affinoid
domain SpA in X containing x, we define the completed residue field H (x) of x in
X as the completed residue field of x in SpA.

By Corollary 13.16 in Affinoid algebras, H (x) does not depend on the choice
of SpA up to an isomorphism of complete valuation fields over k.

3. Analytic domains

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

Definition 3.1. Let X be a kH -analytic space. A subset Y ⊆ X is called a
kH-analytic domain if for any y ∈ Y , there exist n ∈ Z>0, kH -affinoid domains
V1, . . . , Vn contained in Y such that

(1) y ∈ V1 ∩ · · · ∩ Vn;
(2) V1 ∪ · · · ∪ Vn is a neighbourhood of y in Y .

Observe that the net of kH -affinoid domains in X that are contained in Y form
a net on Y . In particular, Y inherits a kH -analytic space structure from X, and we
have a canonical morphism Y → X in kH -An.

Lemma 3.2. Let X be a kH -analytic space, Y be a kH -analytic domain in X and
x ∈ Y . Then the completed residue field of x in X is the same as the completed
residue field of x in Y modulo isomorphisms of completed valuation fields over k.

Proof. This follows immediately from Corollary 13.16 in Affinoid algebras. �

Proposition 3.3. Let X be a k-analytic space and x ∈ X. Let λ ∈ H̃ (x) be a
non-zero homogeneous element. Then we can find a k-affinoid domain SpB of x in
X and an inveritble function f ∈ B such that

λ = f̃(x).

If X is good, we may assume that SpB is a k-affinoid neighbourhood of x in X.

Proof. We may assume that X is k-affinoid, say X = SpA. Let χx : A →
H (x) be the character corresponding to x. Let | • |x be the bounded semi-valuation
on A corresponding to x. As FracA/ ker | • |x is dense in H (x) by definition, we
can find g, h ∈ A such that g(x) 6= 0, h(x) 6= 0 and

λ = g̃(x)/h̃(x).

Let Y be the open k-analytic domain in X defined by g(x) 6= 0 and h(x) 6= 0. We
take a k-affinoid domain SpB of X containing x such that SpB ⊆ Y . If X is good,
we may assume that SpB is a neighbourhood of x in X. Then the images of g and
h in B are invertible by Corollary 6.11 in Banach rings. Now f = g/h ∈ B satisfies
our assumptions. �

Example 3.4. Let X be a kH -analytic space. Then any open subset U of X is a
kH -analytic domain.

In fact, for x ∈ U , take V1, . . . , Vn as in Definition 3.1. By Proposition 10.13
in Affinoid algebras, up to replacing Vi’s by kH -Laurent domains in them, we may
guarantee that Vi ⊆ U for all i = 1, . . . , n.
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Proposition 3.5. Let X, X ′ be kH -analytic spaces and ϕ : X ′ → X a morphism
of kH -analytic spaces.

(1) Let Y,Z be kH -analytic domains in X, then so is Y ∩ Z.
(2) Let Y be a kH -analytic domain in X, then ϕ−1(Y ) is a kH -analytic domain

in X ′.

Proof. (1) Let x ∈ Y ∩ Z. Take kH -affinoid domains V1, . . . , Vn contained in
Y and kH -affinoid domains W1, . . . ,Wm contained in Z such that

x ∈ V1 ∩ · · · ∩ Vn, x ∈W1 ∩ · · · ∩Wm

and V1 ∪ · · · ∪ Vn is a neighbourhood of x in Y , W1 ∪ · · · ∪Wm is a neighbourhood
of x in Z. For each i = 1, . . . , n and j = 1, . . . ,m, τ̂ |Vi∩Wj

is a quasi-net, so we can
find a neighbourhood of x in Vi∩Wj of the form U ij1 ∪ · · · ∪U ijmij

with U ij1 , . . . , U ijmij

being kH -affinoid domains in X containing x. Then each element in the collection
{U ijk } contains x and the union is a neighbourhood of x in Y ∩ Z.

(2) Let x′ ∈ ϕ−1(Y ) and x = ϕ(x′). By Proposition 2.25, we can find n ∈ Z>0,
kH -affinoid domains V ′1 , . . . , V ′n on X ′ and kH -affinoid domains V1, . . . , Vn on X
such that

x′ ∈ V ′1 ∩ · · · ∩ V ′n, x ∈ V1 ∩ · · · ∩ Vm,
ϕ(V ′i ) ⊆ Vi for i = 1, . . . , n,

and V ′1 ∪ · · · ∪V ′n (resp. V1 ∪ · · · ∪Vn) is a neighbourhood of x′ (resp. x) in X ′ (resp.
X). Take kH -affinoid domains W1, . . . ,Wm in X contained in Y , each containing x
such that W1 ∪ · · · ∪Wm is a neighbourhood of x in Y .

Then for each i = 1, . . . , n, j = 1, . . . ,m, we can find kH -affinoid domains
W k
ij for k = 1, . . . , rij contained in Wj ∩ Vi and containing x such that ∪kW k

ij is a
neighbourhood of x in Wj ∩ Vi. Thus, ∪j,kW k

ij is a neighbourhood of x in Vi ∩ Y .
Then Ukij := ϕ−1(V kij) ∩ V ′i is a kH -affinoid domain in V ′i by Corollary 13.12 in
Affinoid algebras. Moreover, ∪j,kUkij is a neighbourhood of x′ in V ′i ∩Y ′. So ∪i,j,kUkij
is a neighbourhood of x′ in Y ′. �

Proposition 3.6. Let X be a kH -analytic space and Y be a kH -analytic domain in
X. Then for any kH -analytic space Z and any morphism ϕ : Z → X whose image
is contained in Y , there is a unique morphism ψ : Z → Y such that the following
diagram commutes:

Z

Y X

ψ
ϕ .

Proof. The uniqueness of ψ is obvious. We only need to prove the existence.
This is an immediate consequence of Proposition 2.25 and Proposition 3.5.

To be more precise, assume that ϕ is given by a data as in Proposition 2.25,
we only have to show that each kH -affinoid domain V in X, V ∩ Y is a kH -affinoid
domain in Y . This follows from Proposition 3.5. �

Corollary 3.7. Let ϕ : X ′ → X be a morphism of kH -analytic spaces and Y be a
kH -analytic domain in X. Then X ′×Y X in the category kH -An exists and ϕ−1(Y )
represents X ′ ×Y X.

Proof. This follows from Proposition 3.6 and Proposition 3.5. �
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Corollary 3.8. Let SpB be a kH -affinoid space, then we have a functorial isomor-
phism

HomkH -An(SpB,A1
k) ∼−→ B.

Proof. As SpB is compact as a topological space, its image in A1
k is contained

in Sp k{r−1T} for some r > 0. By Proposition 3.6, we have natural bijections

HomkH -An(SpB,A1
k) ∼−→ lim−→

r>0
HomkH -An(SpB, Sp k{r−1T}) ∼−→ lim−→

r>0
Homk-AffAlg(k{r−1T}, B).

By Corollary 6.5 in Affinoid algebras, the right-hand side is identified with B. �

Proposition 3.9. Let X be a kH -analytic space, Y be a kH -analytic domain in X.
For a subset Z ⊆ Y , the following are equivalent:

(1) Z be a kH -analytic domain in X;
(2) Z is a kH -analytic domain in Y .

Proof. (1) =⇒ (2): Let z ∈ Z, we can find n ∈ Z>0 and kH -affinoid
domains V1, . . . , Vn in X containing x and contained in Z such that V1 ∪ · · · ∪ Vn is
a neighbourhood of z in Z. But observe that V1, . . . , Vn are kH -affinoid domains in
Y as well, so we conclude.

(2) =⇒ (1): This follows from the same argument. It suffices to observe that
a kH -affinoid domain in Y is necessarily kH -affinoid in X, as can be seen from
Definition 2.19. �

Definition 3.10. Let X,Y be kH -analytic spaces and ϕ : Y → X be a morphism.
We say ϕ is an open immersion if ϕ(Y ) is open in X and ϕ induces an isomorphism
between Y and ϕ(Y ) as kH -analytic spaces.

By Example 3.4, ϕ(Y ) is a kH -analytic domain in X and by Proposition 3.6,
we have a morphism of kH -analytic spaces Y → ϕ(Y ).

Proposition 3.11. Let X be a kH -analytic space and Y be a kH -analytic domain
in X. Assume that Y is a kH -affinoid space, then Y is a kH -affinoid domain in X.

Proof. As Y is a kH -affinoid space, we know that |Y | is compact. Take finitely
many kH -affinoid domains V1, . . . , Vn in X such that

Y = V1 ∪ · · · ∪ Vn.

Then V1, . . . , Vn are kH -affinoid domains in Y : let SpD → Y be a morphism of
kH -affinoid spectra, whose image lies in Vi for some i = 1, . . . , n. Consider the
following commutative diagram

SpD

Vi Y X

By Proposition 3.6, there is a unique dotted morphism making the outer triangle
commutative, hence making the whole diagram commutative. We have therefore
shown that Vi is a kH -affinoid domain in Y .

So the covering {V1, . . . , Vn} of Y satisfies the assumptions in Definition 2.19
and Y is kH -affinoid. �
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Proposition 3.12. Let X be a kH -analytic space and {Yi}i∈I be a family of kH -
analytic domains in X which forms a quasi-net on X. Then for any kH -analytic
space X ′, the following sequence is exact

HomkH -An(X,X ′)→
∏
i∈I

HomkH -An(Yi, X ′) ⇒
∏
i,j∈I

HomkH -An(Yi ∩ Yj , X ′).

Proof. Let {ϕi : Yi → X ′}i∈I be a family of morphisms such that ϕi, ϕj
coincides on Yi ∩ Yj for i, j ∈ I. We need to glue the ϕi’s into a single morphism
ϕ : X → X ′. Clearly, the underlying maps glue together to a continuous map
ϕ : X → X ′ by Lemma 2.2 in Topology and bornology.

Let τ be the collection of kH -affinoid domains V in X such that there is i ∈ I
and a kH -affinoid domain V ′ ⊆ X ′ with V ⊆ Yi and ϕi(V ) ⊆ V ′. Then τ is a net
on X, and we have a morphism X → X ′. �

4. Berkovich site

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

Lemma 4.1. Let X be a kH -analytic space. Consider the category C of kH -analytic
domains in X, where the morphisms are inclusions of kH -analytic domains. For
each Y ∈ C, consider the set of coverings Cov(Y ) consisting of all {Yi → Y }i∈I such
that Yi is a kH -analytic domain in Y and {Yi}i∈I is a quasi-net on Y . The class of
coverings {Cov(Y )}Y defines a Grothendieck pretopology.

Proof. It suffices to verify the axioms in [Stacks, Tag 03NH].
(1) An isomorphism Y ′ → Y in C is in Cov(Y ).
This is trivial as an isomorphism in C is necessarily identity.
(2) If {Yi → Y }i∈I and {Yij → Yi}j∈Ji

for all i ∈ I are in Cov(Y ) and Cov(Yi)
respectively, then {Yij → Y }i,j is in Cov(Y ).

By Proposition 3.9, Yij is a kH -analytic domain in Y for any i ∈ I, j ∈ Ij . It
suffices to show that {Yij}i,j is a quasi-net on Y . Let y ∈ Y , we can find finitely
many elements among {Yi}i∈I , say Y1, . . . , Yn so that y ∈ Yi for each i = 1, . . . , n
and Y1 ∪ · · · ∪ Yn is a neighbourhood of y in Y . Similarly, for each i = 1, . . . , n, we
can find finitely many Yi1, . . . , Yiji

among {Yij}j∈Ji
so that y is contained in each

of them and Yi1 ∪ · · · ∪ Yiji
is a neighbourhood of y in Yi. Then each element in

{Yij}i=1,...,n;j=1,...,ji
contains y and the union is a neighbourhood of y in Y .

(3) If {Yi → Y }i∈I lies in Cov(Y ) and Z → Y is a kH -analytic domain in Y ,
then the fiber products Yi ×Y Z exist and {Yi ×Y Z → Z}i∈I lies in Cov(Z).

By Corollary 3.7, Yi ×Y Z exists and is represented by the inverse image of
Z in Yi, which is a kH -analytic domain in Yi by Proposition 3.5. It is clear that
{Yi ×Y Z}i∈I is a quasi-net on Z. �

Definition 4.2. Let X be a kH -analytic space. We will write the site constructed in
Lemma 4.1 as X and call it the Berkovich site ofX. The corresponding Grothendieck
topology is called the Berkovich Grothencieck topology. The topos Sh(X) associated
with X is called the Berkovich topos of X.

Observe that the Berkovich Grothendieck topology is subcanonical by Proposi-
tion 3.12.

https://stacks.math.columbia.edu/tag/03NH
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Definition 4.3. Let X be a kH -analytic space. We define a sheaf of rings OX on
X as follows: let Y be a kH -analtic domain in X, we set

OX(Y ) = HomkH -An(X,A1
k).

By Corollary 3.8 and Proposition 3.12, OX defines a sheaf of rings. We call OX the
structure sheaf of X. The corresponding ringed site (X,OX) is called the Berkovich
ringed site. The induced ringed topos (Sh(X),OX) is called the Berkovich ringed
topos.

Given any morphism f : Y → X of kH -analytic spaces, we have an induced
morphism of the corresponding ringed sites, still denoted by ϕ.
Definition 4.4. Let X be a kH -analytic space. An OX -moduleM is coherent if
there is an admissible covering {Yi}i∈I of X such thatM|Yi

is isomorphic to the
cokernel of a homomorphism of finite free OVi -modules.
Example 4.5. Let A be a kH -affinoid algebra and M be a fintie A-module. Then
M induces a coherent sheaf of OSpA-modules M̃ as follows:

M̃(V ) = M ⊗A AV .
Conversely, we can reformulate Kiehl’s theorem.

Theorem 4.6. Let A be a kH -affinoid algebra and M be a coherent sheaf of
OSpA-modules. Set M = H0(X,M), then M is a finite A-modue, and we have a
canonical isomorphism

M̃
∼−→M.

The left-hand side is defined in Example 4.5.

Proof. This is just a reformulation of Theorem 14.1 in Affinoid algebras. �

Corollary 4.7. Let ϕ : SpB → SpA be a morphism of kH -affinoid spaces. Then
the following are equivalent:

(1) ϕ∗OSpB is a coherent OSpA-module;
(2) B is a finite Banach A-module.

Proof. Observe that for any kH -affinoid domain SpC in SpA,
ϕ∗OSpB(SpC) = OSpB(ϕ−1(SpC)) = OSpB(SpC⊗̂AB) = C⊗̂AB

∼−→ C ⊗A B.
Here we applied Corollary 13.12 in Affinoid algebras and Proposition 9.6 in Affinoid
algebras. So ϕ∗OSpB ∼= B̃.

From this (2) trivially implies (1).
Conversely, assume (1), let B = H0(SpA,ϕ∗OSpB). By Theorem 4.6, B is

a finite A-module. Let B′ denote the ring B endowed with the finite Banach
A-algebra structure as in Proposition 9.10 in Affinoid algebras. We need to show
that the identity map B′ → B is admissible. Observe that the identity map is
bounded by Proposition 9.4 in Affinoid algebras. By Proposition 10.5 in Affinoid
algebras, it suffices to show that the induced map SpB → SpB′ is surjective. Let
ϕ′ : SpB′ → SpA be the natural morphism of kH -affinoid spaces. Then

ϕ∗(OSpB) ∼−→ ϕ′∗(OSpB′).
It follows that ϕ−1(x) = ϕ′−1(x) for any x ∈ SpA. We conclude. �

Corollary 4.8. Let ϕ : SpB → SpA be a morphism of kH -affinoid spaces. Then
the following are equivalent:
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(1) ϕ∗OSpB is a coherent OSpA-module and OSpA → ϕ∗OSpB is surjective;
(2) A→ B is an admissible epimorphism.

Proof. Assume (2). By Corollary 4.7, ϕ∗OSpB is a coherent OSpA-module. To
see that OSpA → ϕ∗OSpB is surjective, it suffices to show that for each kH -affinoid
space SpC in SpA,

C → C ⊗A B
is surjective. This follows from the assumption.

Assume (1). We know that B is a finite Banach A-module. In particular,
A→ B is admissible by Proposition 9.7 in Affinoid algebras. As OSpA → ϕ∗OSpB
is surjective, by Theorem 4.6, A→ B is surjective. Include details �

Definition 4.9. Let SpA be a kH -affinoid space andM = M̃ is a coherent sheaf
of OX -modules on X, where M is a finite A-module. The support SuppM ofM is
the closed subset SpA/AnnA(M) of SpA.

Let X be a kH -analytic space andM be a coherent sheaf of OX -modules. Then
the support SuppM ofM is a subset of X such that a point x ∈ X lies in SuppM
if and only if for some kH -affinoid domain V in X containing x, x ∈ SuppM|V .

Here AnnA(M) is the annihilator of M in A.
Lemma 4.10. Let X be a kH -analytic space andM be a coherent sheaf of OX -
modules. Take x ∈ SuppM|V and a kH -affinoid domain V in X containing x. Then
x ∈ SuppM|V .

Proof. By assumption, there is a kH -affinoid domain U in X containing x
such that x ∈ SuppM|U .

Let W ⊆ U ∩ V be a kH -affinoid domain in X containing x. We claim that
x ∈ SuppM|W . Let M = H0(U,M), then M ⊗AU

AW = H0(W,M). By [Stacks,
Tag 07T8] and Theorem 13.18 in Affinoid algebras,

AnnAU
(M)⊗AU

AW = AnnAW
(M ⊗AU

AW )
and Supp(M|W ) = Supp(M|U ) ∩W . The claim follows. We may assume that
U ⊆ V . In this case, the same argument shows that x ∈ SuppM|V . �

Proposition 4.11. Let X be a Hausdorff kH -analytic space. Then the following
are equivalent:

(1) X is paracompact;
(2) X admits a locally finite covering by kH -affinoid domains.

Note that the covering in (2) is necessarily a G-covering.

Proof. Assume (1). Then (2) follows from Proposition 3.2 in Topology and
bornology. We take B to the collection of finite unions of kH -affinoid domains that
contain an open subset of X.

Assume (2). Let {Xi}i∈I be a locally finite covering of X by kH -affinoid domains.
Define an equivalence relation on I generated by i ∼ j if Xi ∩Xj 6= ∅. We say Xi

and Xj are elementarily linked in this case. Fix C ∈ I/ ∼ and i ∈ C. For any
n ∈ Z>0, Cn denotes the union of Xj where j and i are linked through a chain of
elementary links of length at most n. As the covering is locally finite, we see that
Cn is compact. So

XC =
∞⋃
i=1

Ci

https://stacks.math.columbia.edu/tag/07T8


22 BERKOVICH ANALYTIC SPACES

is σ-compact. The space X is clearly the coproduct of XC ’s, hence paracompact by
Proposition 3.2 in Topology and bornology. �

Proposition 4.12. The category kH -An admits finite limits.

Proof. By general abstract nonsense, it suffices to show that kH -An admits
finite fiber products.

Let ϕ : Y → X and f : X ′ → X be morphisms of kH -affinoid spaces. We want
to construct Y ×X X ′.

Step 1. We assume that X,Y,X ′ are all paracompact and Hausdorff.
By Proposition 4.11, we can find a locally finite G-covering {Xi}i∈I of X

consisting of kH -affinoid domains in X. By Proposition 4.11 again, we can find a
locally finite G-covering {Yij}j ϕ−1(Xi) consisting of kH -affinoid domains in Y and
a locally finite G-covering {X ′il}l consisting of kH -affinoid domains in X ′ for each
i ∈ I.

We can glue Yij ×Xi X
′
il’s by Proposition 2.31 to get a kH -analytic space Y ′.

By Proposition 3.12, Y ′ represents the fiber product Y ×X X ′.
Step 2. Assume only that X is a paracompact and Hausdorff.
Take open paracompact Hausdorff coverings {Yi}i∈I of Y and {X ′j}j∈J of X ′.

The existence of these coverings follows from Proposition 2.30. Similar to Step 1, we
glue the Yi×XX ′j ’s along the open subsets (Yi∩Yk)×X (X ′j∩X ′l)’s by Proposition 2.31,
we get a locally Hausdorff kH -analytic space Y ′. Then by Proposition 3.12 again,
Y ′ represents the fiber product Y ×X X ′.

Step 3. We handle the general case.
Take a covering {Xi}i∈I by open paracompact Hausdorff subsets. Let Y ′ be

the gluing of ϕ−1(Xi)×Xi
f−1(Xi)’s along ϕ−1(Xi ∩Xj)×Xi∩Xj

f−1(Xi ∩Xj)’s by
Proposition 2.31. Then by Proposition 3.12 again, Y ′ represents the fiber product
Y ×X X ′. �

Remark 4.13. The original proof in [Ber93] doees not make any sense to me.
Please contact me if you understand the details of Berkovich’s argument.

In a similar vein, we prove

Proposition 4.14. If K/k is an analytic field extension, then there is a natural
functor of base extension kH -An→ KH -An extending the functor kH -Aff → KH -Aff
defined by SpA 7→ SpA⊗̂kK.

We will denote the image of a kH -analytic space X by XK .

Proof. Fix a kH -analytic space X, we want to construct functorially a KH -
analytic space XK .

Step 1. We assume that X is paracompact and Hausdorff.
By Proposition 4.11, we can find a locally finite G-covering {Xi}i∈I of X

consisting of kH -affinoid domains in X. We can glue Xi,K ’s by Proposition 2.31 to
get XK .

Step 2. In general, let {Yi}i∈I be an open covering of X by paracompact
Hausdorff subsets. We glue Yi,K ’s by Proposition 2.31 to get XK .

These constructions are clearly functorial and defines a functor kH -An →
KH -An. �
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5. Closed immersions

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

Lemma 5.1. Let ϕ : Y → X be a morphism of kH -analytic spaces. Then the
following are equivalent:

(1) for any x ∈ X, there are n ∈ Z>0 and kH -affinoid domains V1, . . . , Vn in
X containing x such that V1 ∪ · · · ∪ Vn is a neighbourhood of x in X and
the restriction ϕ−1(Vi)→ Vi is a closed immersion for any i = 1, . . . , n;

(2) for any kH -affinoid domain V in X, ϕ−1(V )→ V is a closed immersion.

Recall that closed immersions between kH -affinoid spaces are defined in Defini-
tion 12.1 in Affinoid algebras.

The statement in [Ber93, Lemma 1.3.7] is not correct.

Proof. Only (1) =⇒ (2) is non-trivial. Assume (1). Let τ be the collections
of V ⊆ X satisfying (2). Then we claim that τ is a net.

Observe that τ is a quasi-net by our assumption. To see that it is a net, take
U, V ∈ τ and x ∈ U ∩ V , then we can find n ∈ Z>0 and kH -affinoid domains
W1, . . . ,Wn in U ∩ V containing x such that W1 ∪ · · · ∪Wn is a neighbourhood
of x in U ∩ V . In order to show that τ |U∩V is a quasi-net, it suffices to show
that ϕ−1(Wi) → Wi is a closed immersion for i = 1, . . . , n. This follows from
Proposition 12.3 in Affinoid algebras.

Let V be a kH -affinoid domain in X. By (1) and the compactness of V , we
can find n ∈ Z>0 and V1, . . . , Vn ∈ τ such that V ⊆ V1 ∪ · · · ∪ Vn. According to
Lemma 2.5 in Topology and bornology, we can find m ∈ Z>0 and U1, . . . , Um ∈ τ
such that

V = U1 ∪ · · · ∪ Um
and each Uj is contained in some Vi, where j = 1, . . . ,m and i = 1, . . . , n. By
Proposition 12.3 in Affinoid algebras again, Uj ∈ τ for each j = 1, . . . ,m. It suffices
to apply Corollary 4.8 to conclude that V ∈ τ . �

Definition 5.2. Let ϕ : Y → X be a morphism of kH -analytic spaces. We say ϕ is
a closed immersion if the equivalent conditions in Lemma 5.1 are satisfied.

Observe that this definition extends Definition 12.1 in Affinoid algebras.

Proposition 5.3. Let ϕ : Y → X, ψ : Z → X be a morphism of kH -analytic spaces.
Assume that ϕ : Y → X is a closed immersion. Consider the Cartesian diagram

Z ×X Y Y

Z X

� ϕ

ψ

.

Then Z ×X Y → Z is a closed immersion.

Proof. Taking a G-covering of Z, we may assume that Z is compact. We
could cover the images of Z in X by finitely many kH -affinoid domains V1, . . . , Vn
in X, considering their preimages in Z, we could reduce to the case where the image
of Z in X is contained in a kH -affinoid domain. We could then assume that X
is a kH -affinoid space and hence so is Y . By taking a G-covering of Z again, we
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may assume that Z is affinoid. It suffices to apply Proposition 12.3 in Affinoid
algebras. �

Proposition 5.4. Let ϕ : Y → X be a morphism of kH -analytic spaces. Then the
following are equivalent:

(1) ϕ is a closed immersion;
(2) for any G-covering {Xi}i∈I of X, the restriction of ϕ to ϕ−1(Xi)→ Xi is

a closed immersion for all i ∈ I;
(3) for some G-covering {Xi}i∈I of X, the restriction of ϕ to ϕ−1(Xi)→ Xi

is a closed immersion for all i ∈ I.

In other words, being a closed immersion is a G-local property on the target.

Proof. Assume (1). Let {Xi}i∈I be a G-covering of X. Then the restriction
of ϕ to ϕ−1(Xi)→ Xi is a closed immersion for all i ∈ I by Proposition 5.3. So (2)
holds.

(2) trivially implies (3).
Assume (3). Using the fact that (1) implies (2) as we already proved, we may

refine the G-covering {Xi}i∈I and assume that each Xi is kH -affinoid. It follows
from Lemma 5.1 that ϕ is a closed immersion, so (1) holds. �

Corollary 5.5. Let H ′ ⊇ H is a subgroup of R>0. Let ϕ : Y → X be a morphism
of kH -analytic spaces. Then the following are equivalent:

(1) ϕ is a closed immersion;
(2) ϕ is a closed immersion when view as a morphism of kH′ -affinoid spaces.

Proof. By Proposition 5.4, we may assume that X is kH -affinoid. In this case,
Y is also kH -affinoid and the result is clear. �

Corollary 5.6. Let ϕ : Y → X be a morphism of kH -analytic spaces and K/k be
an analytic field extension.

(1) If ϕ is a closed immersion, so is ϕK ;
(2) If K = kr for some k-free polyray r and ϕK is a closed immersion, then so

is ϕ.

Proof. By Proposition 5.4, we may assume that X is a kH -affinoid space in
both cases. Then so is Y . Now (1) is obvious and (2) follows from Proposition 3.11
in Affinoid algebras. �

Proposition 5.7. Let ϕ : X → Y , ψ : Y → Z be closed immersions of kH -affinoid
spaces. Then ψ ◦ ϕ : X → Z is also a closed immersion.

Proof. By Proposition 5.4, we may assume that Z is kH -affinoid, so Y and X
are also kH -affinoid. In this case, the result is clear, as the composition of admissible
epimorphisms is clearly admissible epimorphic. �

Proposition 5.8. Let ϕ : Y → X be a morphism of kH -analytic spaces. Then the
following are equivalent:

(1) ϕ is a closed immersion;
(2) ϕ∗OY is a coherent OX -module and OX → ϕ∗OY is surjective.

Proof. As both properties are G-local on X, we may assume that X is a
kH -affinoid space and hence so is Y . This result then follows from Corollary 4.8. �
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6. Separated morphisms

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.
Definition 6.1. Let ϕ : X → Y be a morphism of kH -analytic spaces. The
diagonal morphism of f is the morphism ∆ϕ = ∆X/Y : X → X ×Y X defined as
follows: let {Yi}i∈I be a G-covering of Y by kH -affinoid domains and {Xij}j∈Ji be
a G-covering of ϕ−1(Yi) by kH -affinoid domains in X. Then we have a diagonal
morphism ∆Xij/Yi

: Xij → Xij ×Yi
Xij defined by the codiagonal morphism of

kH -affinoid algebras. The induced morphisms Xij → X ×Y X can be glued together
by Proposition 3.12 to get ∆ϕ. By Proposition 3.12 does not depend on the choices
of the G-coverings.
Definition 6.2. A morphism ϕ : X → Y of kH -analytic spaces is separated if
∆X/Y : X → X ×Y X is a closed immersion.
Example 6.3. A morphism between kH -affinoid spaces is always separated. This
follows from Example 12.2 in Affinoid algebras by base change.
Proposition 6.4. Let ϕ : Y → X, ψ : Z → X be a morphism of kH -analytic spaces.
Assume that ϕ : Y → X is separated. Consider the Cartesian diagram

Z ×X Y Y

Z X

� ϕ

ψ

.

Then Z ×X Y → Z is separated.
Proof. By general abstract nonsense, we have a Cartesian diagram

Z ×X Y (Z ×X Y )×Z (Z ×X Y ) = Z ×X (Y ×X Y )

Y Y ×X Y

∆Z×X Y/Z

�
∆Y/X

.

So the assertion follows from Proposition 5.3. �

Proposition 6.5. Let ϕ : Y → X be a morphism of kH -analytic spaces. Then the
following are equivalent:

(1) ϕ is separated;
(2) for any G-covering {Xi}i∈I of X, the restriction of ϕ to ϕ−1(Xi)→ Xi is

separated for all i ∈ I;
(3) for some G-covering {Xi}i∈I of X, the restriction of ϕ to ϕ−1(Xi)→ Xi

is separated for all i ∈ I.
Proof. (1) =⇒ (2) by Proposition 6.4.
(2) =⇒ (3) is trivial.
Assume (3). Let Yi = ϕ−1(Xi). Then Yi×Xi

Yi is a G-covering of Y ×X Y , and
we have a Cartesian diagram

Yi Yi ×Xi
Yi

Y Y ×X Y

∆Yi/Xi

�
∆Y/X
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for i ∈ I. So the assertion follows from Proposition 5.4. �

Proposition 6.6. Let ϕ : X → Y , ψ : Y → Z be separated morphisms of
kH -affinoid spaces. Then ψ ◦ ϕ : X → Z is also separated.

Proof. We have a Cartesian diagram

X ×Y X X ×Z X

Y Y ×Z Y

ψ

�
∆Y/Z

.

By Proposition 6.4, ψ : X ×Y X → X ×Z X is a closed immersion. On the other
hand, ∆X/Z : X → X ×Z X factorizes as ψ ◦∆X/Y . It follows from Proposition 5.7
that ∆X/Z is a closed immersion. �

Proposition 6.7. Let H ′ ⊇ H is a subgroup of R>0. Let ϕ : Y → X be a morphism
of kH -analytic spaces. Then the following are equivalent:

(1) ϕ is separated;
(2) ϕ is separated when view as a morphism of kH′ -affinoid spaces.

Proof. This follows immediately from Corollary 5.5. �

Proposition 6.8. Let ϕ : Y → X be a morphism of kH -analytic spaces and K/k
be an analytic field extension.

(1) If ϕ is separated, so is ϕK ;
(2) If K = kr for some k-free polyray r and ϕK is separated, then so is ϕ.

We will prove later on that the assumption in (2) is unnecessary.

Proof. This follows immediately from Corollary 5.6. �

7. Analytic germs

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

Definition 7.1. A punctured kH-analytic space (X,x) is a kH -analytic space X
together with a point x ∈ X.

A morphism between punctured kH -analytic spaces (X,x) and (Y, y) is a mor-
phism ϕ : X → Y of kH -analytic spaces sending x to y.

The category of punctured kH -analytic spaces is denoted by kH -An∗.

Definition 7.2. A morphism of punctured kH -analytic spaces (X,x)→ (Y, y) is
said to be separated (resp. a closed immersion) is the underlying morphism of
kH -analytic spaces is separated (resp. a closed immersion).

Definition 7.3. The category kH -Ger is the category of right fractions of kH -An∗
with respect to the system of morphisms

ϕ : (X,x)→ (Y, y)

that induces an isomorphism of X with an open neighbourhood of y in Y in k-Ger.
When we view (X,x) as an object in kH -Ger, we write it as Xx. An object in

kH -Ger is called a kH -analytic germ.
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Be careful, we require ϕ to induce an isomorphism in k-Ger instead of kH -Ger,
although eventually, we will show that these notions coincide.

By definition,
HomkH -Ger(Xx, Yy) = lim−→

U

HomkH -An∗((U, x), (Y, y)),

where U runs over all open neighbourhoods of x in X.

Definition 7.4. A kH -analytic germ Xx is good if x admits an affinoid neighbour-
hood in X.

Note that this condition does not depend on the representative (X,x). To see
this, let U ⊆ x be an open subset containing x. We need to show that if x admits
a kH -affinoid neighbourhood in X, then it admits one in U . This follows from
Proposition 10.13 in Affinoid algebras.

Definition 7.5. A morphism of kH -analytic germs ϕ : Xx → Yy is saied to be
separated (resp. boundaryless, a closed immersion) if it is induced by a separated
morphism (resp. boundaryless, resp. a closed immersion) of punctured kH -analytic
spaces (U, x)→ (Y, y), where U is an open neighbourhood of x in X.

Definition 7.6. Let Xx be a kH -analytic germ. A kH-analytic domain in Xx is a
kH -analytic germ Vx, where V is a kH -analytic domain in X containing x.

We say a finite family of kH -analytic germs {Vix}i∈I covers Xx if there is a
representative (X,x) of Xx such that Vix can be represented by a kH -analytic
domain Vi ∈ X for i ∈ I and

X =
⋃
i∈I

Vi.

Definition 7.7. Let φ : Yy → Xx be a morphism of kH -analytic germs and Vx be
a kH -analytic domain in Xx. Represent φ by a morphism φ : (Y, y)→ (X,x) and
represent Vx by a kH -analytic domain in X. Then the kH -analytic domain φ−1(V )
in Y determines a kH -analytic germ φ−1(V )y, which does not depend on the choices
we made. This kH -analytic germ is denoted by φ−1(Vx).

Recall that φ−1(V ) is a kH -analytic domain in Y by Proposition 3.5.

Definition 7.8. Let X be a good kH -analytic space and x ∈ X, we define
OX,x := lim−→

V

AV ,

where V runs over all kH -affinoid neighbourhoods of x in X. Include the definition
of affinoid neighbourhoods

Observe that kH -affinoid neighbourhoods of x in X are cofinal in the directed
set of k-affinoid neighbourhoods of x in X. This follows from Proposition 10.13 in
Affinoid algebras. So we may let V runs over all k-affinoid neighbourhoods of x in
X as well.

Example 7.9. Let Xx be a kH -analytic germ. Take a kH -affinoid domain SpA of
X containing x. Given r ∈

√
|k×| ·H

n and f ∈ An, we write
Xx{r−1f} :=

(
SpA{r−1f}

)
x
.

Then Xx{r−1f} is a kH -analytic germ. Observe that Xx{r−1f} is independent of
the choice of SpA. This construction depends only on the classes of f in OnX,x.
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Given f̄ ∈ OnX,x, we define Xx{r−1f̄} = Xx{r−1f} for any f ∈ An lifting f̄ as
above.

8. Reduction

Let (k, | • |) be a complete non-Archimedean valued field and H be a subgroup
of R>0 such that |k×| ·H 6= {1}.

In this section, when we do not specify the grading of a graded object, we mean
it is R>0-graded. In particular k̃ means k̃R>0 .

Definition 8.1. Let X = SpA be a k-affinoid space and x ∈ X, we define the
reduction (̃X,x) of X at x as follows: let χx : A → H (x) be the character
corresponding to x, we define

(̃X,x) := P
H̃ (x)/k̃

{
χ̃x(Ã)

}
⊆ P

H̃ (x)/k̃.

Observe that (̃X,x) is an affine open subset of P
H̃ (x)/k̃. This follows from

Corollary 11.11 in Affinoid algebras.

Lemma 8.2. Let X = SpA, U = SpB be a k-affinoid spaces and x ∈ X. Let
ι : U → X be an isomorphism of U with an open neighbourhood of x. We still write
ι−1(x) ∈ U as x. Then the natural morphism

(̃U, x) = (̃X,x).

Proof. We first recall that H (x) does not depend on if we view x as in SpA
or in SpB by Corollary 13.16 in Affinoid algebras.

Observe that the morphism χx : B →H (x) is boundaryless with respect to A
by Proposition 15.9 in Affinoid algebras. By Proposition 15.2 in Affinoid algebras,
χ̃x(B̃) is finite over χ̃x(Ã). By Lemma 4.5 in Commutative algebras, we have

P
H̃ (x)/k̃

{
χ̃x(Ã)

}
= P

H̃ (x)/k̃

{
χ̃x(B̃)

}
.

�

Definition 8.3. LetXx be a good k-analytic germs. Take an affinoid neighbourhood
U of x in X, then we define

X̃x := (̃U, x) ⊆ P
H̃ (x)/k̃.

By Lemma 8.2, X̃x depends only on Xx.
The construction is clearly functorial in Xx.

Lemma 8.4. Let Xx be a good k-analytic germ and Yx be a k-analytic domain in
Xx. Then Yx can be covered by finitely many k-analytic domains in Xx of the form

Xx

{
r−1f

}
,

where n ∈ N, f = (f1, . . . , fn) ∈ O×X,x is a tuple of invertible elements and ri =
|fi(x)|.

Proof. We may assume that X is k-affinoid, say X = SpA. By Corollary 12.8
in Affinoid algebras, Y can be covered by finitely many k-rational domains in
X, say of the form SpA{r−1g/h}, where m ∈ N, r = (r1, . . . , rm) ∈ Rm>0, g =
(g1, . . . , gm) ∈ Am, h ∈ A and g1, . . . , gm, h generates the unit ideal. We may
assume that Y = SpA{r−1g/h}.
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By shrinking X, we may assume that h is invertible. Set fi = gi/h, then

Y = SpA{r−1
1 f1, . . . , r

−1
m fm}.

By further shrinking X, it suffices to consider those i with |fi(x)| = ri. �

Lemma 8.5. LetXx be a good k-analytic germ. Given n ∈ N and f = (f1, . . . , fn) ∈
O×X,x, then

˜Xx{r−1f} = X̃x

{
χ̃x(f̃1), . . . , χ̃x(f̃n)

}
,

where r = (r1, . . . , rn) and ri = |fi(x)| for i = 1, . . . , n.

Proof. We may assume that X is k-affinoid, say X = SpA. By induction on
n, we may assume that n = 1. Consider the admissible epimorphism

φ : A{r−1T} → A{r−1f}

sending T to f . By Theorem 11.10 in Affinoid algebras,

φ̃ : Ã[r−1T ]→ ˜A{r−1f}

is finite. Let χx : A{r−1f} →H (x) be the character defined by x.
Then χ̃x( ˜A{r−1f}) is finite over χ̃x(Ã)[f̃ ]. So the assertion follows from

Lemma 4.5 in Commutative algebras. �

Lemma 8.6. Let Xx be a good k-analytic germs and Yx be a good k-analytic
domain in Xx. Then we can find n ∈ N, f1, . . . , fn ∈ O×X,x such that

Ỹx = X̃x

{
χ̃x(f̃1), . . . , χ̃x(f̃n)

}
.

In particular, we can identify Ỹx with an open susbet of X̃x.

Proof. The same argument as in Lemma 8.4 that we can assume thatX = SpA
and Y = SpA{r−1f} for some n ∈ N, r = (r1, . . . , rn) ∈ Rn>0, f = (f1, . . . , fn) ∈ An
with ri = |fi(x)| for i = 1, . . . , n. So the assertion follows from Lemma 8.5. �

Lemma 8.7. Let Xx be a good k-analytic germ, n ∈ Z>0 and Y1x, . . . , Ynx be a
covering of Xx by good k-analytic domains. Then

X̃x =
n⋃
i=1

Ỹix.

Proof. Observe that we are free to replace {Yix}i by its refinements by cov-
erings by good k-analytic domains. We may assume that X is k-affinoid, say
X = SpA. Then by Lemma 13.3 in Affinoid algebras, we may assume that the
covering is k-rational and is generated by r−1

1 f1, . . . , r
−1
n fn. Up to shrinking X, we

may guarantee that |fi(x)| = ri for i = 1, . . . , n. In this case, the assertion follows
from Lemma 8.5. �

Lemma 8.8. Let φ : Yy → Xx be a morphism of good k-analytic germs. Let X ′x
be a good k-analytic domain in Xx and set Y ′y = φ−1(X ′x), then

Ỹ ′y = φ̃−1(X̃ ′x).
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Proof. By Lemma 8.4, we may find m ∈ Z>0, n1, . . . , nm ∈ N, gi1, . . . , gini
∈

O×X,x for i = 1, . . . ,m such that X ′x is covered by X{r−1
i1 gi1, . . . , r

−1
ini
gini
} for i =

1, . . . ,m, where rij = |gij(x)| for i = 1, . . . ,m, j = 1, . . . , ni.
Then Y ′x is covered by Y {r−1

i1 g
′
i1, . . . , r

−1
ini
g′ini
} for i = 1, . . . ,m, where g′ij is the

image of gij in O×Y,y for i = 1, . . . ,m, j = 1, . . . , ni.
By Lemma 8.5, we have

X̃ ′x =
m⋃
i=1

X̃x {χ̃x(g̃i1), . . . , χ̃x(g̃ini)}

and

Ỹ ′y =
m⋃
i=1

Ỹy

{
χ̃y(g̃′i1), . . . , χ̃y(g̃′ini

)
}
.

Our assertion is now clear. �

Definition 8.9. Let Xx be a k-analytic germ. By Lemma 8.6, the reduction defines
a functor from the category of good k-analytic germs in Xx (with inclusions as the
morphisms) to the category of open affine subsets of P

H̃ (x)/k̃. We define

X̃x := lim−→
Yx

Ỹx,

where Yx runs over the filtered category of good k-analytic germs in Xx and the
colimit is taken in the category T

H̃ (x)/k̃.

The object X̃x is called its reduction of Xx.

Theorem 8.10. Let Xx be a k-analytic germ. Then the reduction functor
k-Ger→ T

H̃ (x)/k̃

establishes a bijection between the k-analytic domains and non-empty quasi-compact
open subsets of X̃x.

This bijection commutes with finite unions and finite intersections.

In [Tem04], the author forgot the non-emptyness assumption.

Proof. The last assertion is obvious by construction.
Step 1. We prove the theorem under the additional assumption that Xx is

good.
Step 1.1. Let l,m ∈ N and f = (f1, . . . , fl) ∈ OlX,x, g = (g1, . . . , gm) ∈ OmX,x.

Assume that
X̃x{f̃} ⊆ X̃x{g̃},

then we prove that
Xx{r−1f} ⊆ Xx{s−1g},

where r = (r1, . . . , rl), s = (s1, . . . , sm),
ri = |fi(x)|, sj = |gj(x)|

for i = 1, . . . , l, j = 1, . . . ,m.
We may assume thatX is k-affinoid, sayX = SpA and f1, . . . , fl, g1, . . . , gm ∈ A.

Let χx : A→H (x) be the character of x. Let

B = χ̃x(Ã) ⊆ H̃ (x).
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By definition,
X̃x = P

H̃ (x){B}.
By Lemma 8.5, we have

˜Xx{r−1f} =X̃x{B[f̃ ]},
˜Xx{r−1f, s−1g} =X̃x{B[f̃ , g̃]}.

The right-hand sides are equal by our assumption, so by Lemma 4.5 in Commutative
algebras, B[f̃ , g̃] is finite over B[f̃ ]. We take monic polynomials of g̃j over B[f̃ ]:

Tnj + ãj,1T
n−1 + · · ·+ ãj,nj ∈ B[f̃ ][T ]

with ãj,1, . . . , ãj,nj
homogeneous of degree |gj(x)|1, . . . , |gj(x)|nj respectively. This is

possible by Proposition 2.18 in Commutative algebras. We lift ãj,k to aj,k ∈ A{r−1f}
with ρ(aj,k) = ρ(gj)k for j = 1, . . . ,m, k = 1, . . . , nj . It follows that∣∣(gnj

j + aj,1g
n−1
j + · · ·+ aj,nj

)
(x)
∣∣ < |gj(x)|n

for j = 1, . . . ,m. Up to shrinking X, we may assume that this inequality holds
everywhere on X{r−1f}.

By then |gj(y)| ≤ |gj(x)| for any y ∈ X{r−1f}. Our assertion follows.
Step 1.2. Suppose that Yx is a k-analytic domain in Xx with Ỹx = X̃x, then

Yx = Xx.
We may assume that X is k-affioid, say X = SpA.
By Lemma 8.4, we can write Yx as a finite union of Vi,x := Xx{r−1

i fi} for
i = 1, . . . ,m, where ni ∈ N, fi = (fi1, . . . , fini

) ∈ O×,ni

X,x and ri = (ri1, . . . , rini
) with

rij = |fij(x)|.
According to Lemma 8.7, Ṽi,x for i = 1, . . . ,m covers X̃x.
By Lemma 4.8 in Commutative algebras, we can refine this covering to a Laurent

covering
U :=

{
Ũj = X̃x{g̃j1

1 , . . . , g̃
jl

l }
}
j=(j1,...,jl)∈{±1}l

,

where l ∈ N and g̃1, . . . , g̃l are homogeneous elements in H̃ (x). Lift g̃1, . . . , g̃l to
g1, . . . , gl ∈ A. We consider the k-Laurent covering of X generated by

ρ(g̃1)−1g1, . . . , ρ(g̃l)−1gl.

The reduction of this covering is clearly U . By Step 1.1, the germs of U at x is a
refinement of {V1,x, . . . , Vm,x}, so the latter is a covering of Xx, namely Xx

∼−→ Yx.
Step 1.3. We prove that each quasi-compact open subset Ỹx of X̃x is the

reduction of some k-analytic domain Yx in Xx.
We can write

Ỹx =
m⋃
i=1

X̃x{f̃i1, . . . , f̃ini
},

where m ∈ Z>0, n1, . . . , nm ∈ N, f̃ij ∈ H̃ (x) are homogeneous elements for
i = 1, . . . ,m, j = 1, . . . , ni. Lift f̃ij to fij ∈ OX,x, it suffices to take

m⋃
i=1

Xx

{
r−1
i1 fi1, . . . , r

−1
ini
fini

}
,

where rij = |fij(x)| for i = 1, . . . ,m, j = 1, . . . , ni.
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Step 1.4. Suppose that Yx, Zx are k-analytic domains in Xx with Ỹx = Z̃x.
Then we prove that Yx = Zx.

Take p, q ∈ N, good k-analytic domains Y 1
x , . . . , Y

p
x in Yx and good k-analytic

domains Z1
x, . . . , Z

p
x in Zx such that

Ỹx =
p⋃
i=1

Ỹ ix =
q⋃
i=1

Z̃ix.

Therefore, for any i = 1, . . . , p, { ˜Y ix ∩ Z
j
x}j=1,...,q is a covering of Ỹ ix . By Step 1.2,

{Y ix ∩ Zjx}j=1,...,q is a covering of Y ix for i = 1, . . . , p. So Yx ⊆ Zx. By symmetry
Yx = Zx.

We have finshed the proof when Xx is good.
Step 2. We handle the general case.
Step 2.1. We prove that each quasi-compact open subset Ỹx of X̃x is the

reduction of some k-analytic domain Yx in Xx.
Take p ∈ N, good k-analytic domains X1

x, . . . , X
p
x in Xx such that

X̃x =
p⋃
i=1

X̃i
x.

By Step 1, Ỹx ∩ X̃i
x ca be lifted to a k-analytic domain Y ix in Xi

x for i = 1, . . . , p.
The union of Y ix ’s for i = 1, . . . , p is a lifting of Ỹx.

Step 2.2. Suppose that Yx, Zx are k-analytic domains in Xx with Ỹx = Z̃x.
Then we prove that Yx = Zx.

For each i = 1, . . . , p, we have
˜Yx ∩Xi

x = Ỹx ∩ X̃i
x = Z̃x ∩ X̃i

x = ˜Zx ∩Xi
x.

By Step 1, Yx ∩Xi
x = Zx ∩Xi

x coincides for i = 1, . . . , p, so Yx = Zx. �

Corollary 8.11. Let ϕ : Yy → Xx be a morphism of k-analytic germs, then the
following are equivalent:

(1) ϕ is a closed immersion;
(2) ϕ̃ : Ỹy → X̃x is an isomorphism and ϕ is represented by a G-locally closed

immersion.

Include the notion of G-locally closed immersion somewhere

Proof. (1) =⇒ (2): This is obvious.
(2) =⇒ (1): After shrinking X and Y , we can take a k-analytic domain X ′ in

X, a neighbourhood Y ′ of y in Y such that ϕ(Y ′) ⊆ X ′ and the restriction Y ′ → X ′

is a closed immersion. It suffices to show that ϕ is boundaryless at y. In other
words, we need to show that X ′x = Xx. By Theorem 8.10, this is equivalent to
X̃ ′x = X̃x. By (1) =⇒ (2) direction of this corollary, X̃ ′x = Ỹ ′y . But clearly Ỹy = Ỹ ′y .
So our assertion follows. �

Lemma 8.12. Let Yy → Xx, Zz → Xx be morphisms of k-analytic germs. Let
T = Y ×X Z. Take a point t ∈ T whose image in Y is y and whose image in Z is z.
Then the natural map

T̃t ∼=
(
Ỹy ×P

H̃ (y)/k̃H̃ (t)/k̃
)
×(

X̃x×P
H̃ (x)/k̃

H̃ (t)/k̃
) (Z̃z ×P

H̃ (z)/k̃H̃ (t)/k̃
)
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is a homeomorphism.

Existence of t needs to be proved somewhere following Ducros

Proof. As both sides commute with colimits, we may assume that X,Y, Z are
all k-affinoid, say X = SpA, Y = SpB and Z = SpC.

Let χx : A → H (x) (resp. χy : B → H (y), resp. χz : C → H (z)) be the
character corresponding to x (resp. y, resp. z). Let Ã0 (resp. B̃0, resp. C̃0) be the
image of χ̃x(Ã) (resp. χ̃y(B̃), resp. χ̃z(C̃)) in H̃ (t). The character corresponding
to t is given by

χt : B⊗̂AC →H (t).
So

T̃t = P
H̃ (t)/k̃

{Im χ̃t} .

As B̃ ⊗Ã C̃ → B̃⊗̂AC is finite by Lemma 11.13 in Affinoid algebras, by Lemma 4.5
in Commutative algebras, we have

T̃t = P
H̃ (t)/k̃

{
D̃0
}
,

where D̃0 is the image of the natural map B̃ ⊗Ã C̃ → H̃ (t),
We are supposed to prove that

P
H̃ (t)/k̃

{
D̃0
} ∼= P

H̃ (t)/k̃
{B̃0} ×P

H̃ (t)/k̃
{Ã0} P

H̃ (t)/k̃
{C̃0}.

Equivalently,
P

H̃ (t)/k̃

{
D̃0
} ∼= P

H̃ (t)/k̃
{B̃0, C̃0}.

This is obvious as D̃0 is generated by B̃0 and C̃0. �

Corollary 8.13. Let Yy → Xx be a morphism of k-analytic germs and Vx be a
k-analytic domain in Xx. Let Wy = Yy ×Xx

Vx. Then W̃y is the preimage of Ṽy in
Ỹy.

Proof. This follows immediately from Corollary 8.11. �

Corollary 8.14. Let ϕ : Yy → Xx be a morphism of k-analytic germs, then the
following are equivalent:

(1) ϕ is separated;
(2) ϕ̃ : Ỹy → X̃x is separated.

Proof. Observe that the diagonal morphism ∆Y/X : Y → Y ×XY is a G-locally
closed immersion, so by Corollary 8.11, ϕ is separated if and only if

∆̃Y/X : Ỹy → ˜(Y ×X Y )(y,y)

is an isomorphism.
By Lemma 8.12, the natural map

Z̃z → Ỹy ×X′ Ỹy
is a homeomorphism, where

X ′ = X̃x ×P
H̃ (x)/k̃

P
H̃ (y)/k̃.
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Thus, ∆̃Y/X is an isomorphism if and only if Ỹy → X ′ is injective, namely, Ỹy → X̃x

is separated. �

Lemma 8.15. Let Xx be a good k-analytic germ. Then the following are equivalent:
(1) x admits a k-affinoid neighbourhood V in X which admits a kH -analytic

strucutre;
(2) X̃x is an H-strict affine open subset of P

H̃ (x)/k̃.

If Temkin’s argument of Lemma 9.1 is OK, we can remove the good assumption!

Proof. Assume (1). Let V = SpA be as in (1). Let χx : A → H (x) be the
character defined by x. It follows from Theorem 8.4 in Affinoid algebras that χ̃x(Ã)

is contained in H̃ (x)
√
|k×|·H

. It follows that X̃x is H-strict by Corollary 5.4 in
Commutative algebras.

Assume (2). Take n ∈ N and non-zero homogeneous elements f1, . . . , fn ∈ H̃ (x)
with degree r1, . . . , rn ∈ H such that

X̃x = P
H̃ (x)/k̃{f1, . . . , fn}.

By assumption, Xx is good. ∗ So we can find a k-affinoid neighbourhood V of
x in X. Up to shrinking V = SpB, we make find inveritble elements h1, . . . , hn in
B such that h̃i(x) = fi for i = 1, . . . , n.

Let h : V → Ank be the morphism induced by h1, . . . , hn. Include the functor of
points of An Let t = h(x) and W be the affinoid domain in Ank defined ny |Ti| ≤ ri
for i = 1, . . . , n. We have a commutative diagram

(V, x) (Ank , t)

(W, t)

h

.

Also observe that the morphism of k-analytic germs Xx → (Ank )t factorizes through
Wt, as can be seen on the level of reduction. So up to shrinking V , we can find a
k-affinoid neighbourhood W ′ of t in Ank such that h(V ) ⊆W ∩W ′. We may assume
that W ′ is a kH -analytic domain. As Ṽx = X̃x is the preimage of ˜(W ∩W ′)t = W̃t,
the morphism V → W ∩ W ′ is boundaryless at x. As W ∩ W ′ is kH -analytic,
it follows from Proposition 15.5 in Affinoid algebras that x admits a kH -affinoid
neighbourhood in X. �

Corollary 8.16. Let Xx be a k-analytic germ. The following are equivalent:
(1) the germ Xx is kH -analytic;
(2) the reduction X̃x is H-strict.

We say Xx is kH -analytic in the sense that it lies in the essential image of
kH -Ger→ k-Ger.

Proof. (1) =⇒ (2) follows immediately from Lemma 8.15.

∗Assume that Lemma 9.1 is correct, by Theorem 9.2, the germ Xx is automatically good.
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Assume (2). Let {Ui}i∈I be an H-strict atals of X̃x. For each i ∈ I, we can
find a k-analytic domain Xi,x in Xx such that Ui = X̃i,x by Theorem 8.10. By
Theorem 8.10,

˜Xi,x ∩Xj,x = Ui ∩ Uu
for all i, j ∈ I. So we may assume that X̃x is an H-strict quasi-compact open subset
of P

H̃ (x)/k̃.

Cover X̃x by finitely many H-strict affine open subset V1, . . . , Vm. By Theo-
rem 8.10, we can lift Vi to a kH -analytic germWi,x in Xx for i = 1, . . . ,m. Morevoer
Wi,x∩Wj,x is kH -analytic for any j = 1, . . . ,m. It follows thatXx is kH -analytic. �

Definition 8.17. Let Xx be a kH -analytic germ. We define

X̃x

H
:=
(
X̃x

)H
.

This makes sense by Corollary 8.16.

Proposition 8.18. Let Yy, Xx be kH -analytic germs. Then for any morphism
Yy → Xx in k-Ger, there is a unique continuous map Ỹy

H
→ X̃x

H
making the

diagram commutative:

Ỹy X̃x

Ỹy
H

X̃x

H

P
H̃ (y)/k̃ P

H̃ (x)/k̃

P
H̃ (y)

H
/k̃H

P
H̃ (x)

H
/k̃H

Proof. This follows immediately from Proposition 6.5 in Commutative algebras.
�

Proposition 8.19. Let Xx be a k-analytic germ. If Xx lies in the essential image
of kH -Ger→ k-Ger, then the kH -analytic germ whose image in k-Ger is isomorphic
to Xx is unique up to a canonical isomorphism in kH -Ger.

Proof. Let τ = {Vi,x}i∈I be a kH -affinoid atlas defining the kH -analytic
structure on Xx. Let Vx be a k-analytic domain in Xx that admits a kH -analytic
structure. By Corollary 8.16, Ṽx and Ṽi,x are all H-strict. But

˜Vx ∩ Vi,x = Ṽx ∩ Ṽi,x,

so Vx∩Vi,x admits a kH -analytic strucutre. But Vi,x is separated so the kH -analytic
structure is unique. Therefore, Vx ∩ Vi,x is kH -analytic with respect to τ for any
i ∈ I. So Vx is H-strict with respect to τ . �

Corollary 8.20. Let X be a k-analytic space. Assume that X admits a kH -analytic
structure, then the kH -analytic structure is unique up to a unique isomorphism.
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Proof. This is a consequence of Proposition 8.19. �

Theorem 8.21. Let H ′ ⊇ H be a subgroup of R>0. The natural functor
kH -An→ kH′ -An

is fully faithful.

Proof. We may assume that H ′ = R>0. It suffices to prove the result at the
level of germs, namely, it suffices to show that

kH -Ger→ k-Ger
is fully faithful.

Let Xx, Yy be kH -analytic germs and suppose that we are given a morphism
Yy → Xx in k-Ger. Let Vx be a kH -analytic domain in Xx. We need to show that
Wy := Yy ×Xx

Vx is a kH -analytic domain in Yy. We draw the Cartesian diagram:

Wy Vx

Yy Xx

�

By Corollary 8.16, X̂x, Ŷy are H-strict and by Proposition 8.18, the preimage of
Ṽx in Ŷx is open quasi-compact and H-strict. But this preimage is just W̃y by
Corollary 8.13, so we conclude that Wy is kH -analytic by Corollary 8.16. �

Corollary 8.22. Let X be a k-analytic space. Then there is at most one kH -analytic
space X ′ up to isomorphisms in kH -An whose image under

kH -An→ k-An
is isomorphic to X.

In particular, we can and will view kH -analytic spaces as k-analytic spaces that
admit (necessarily unique) structures of kH -analytic spaces.

Proof. This follows immediately from Theorem 8.21. �

9. Some results whose proofs I do not understand

We introduce a lemma allowing one to tell when the gluing of two affinoid spaces
in a suitable position is good.

Lemma 9.1. This is probably problematic, we will avoid using this result! Let X
be a separated compact k-analytic space and x ∈ X. Assume that

(1) X̃x ⊆ P
H̃ (x)/k̃ is an affine subset;

(2) X is the union of two k-affinoid domains Y = SpB and Z = SpC both
containing x;

(3) there is a non-zero homogeneous element λ ∈ H̃ (x) such that

Ỹx = X̃x{λ}, Z̃x = X̃x{λ−1}.
Then Xx is good.

This proof does not make much sense to me. I am just reproducing the arguments
of Temkin. Need some reflection!
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Proof. We observe that we are free to shrink X to k-analytic domains of the
following form: Y ′ ∪ Z ′, where Y ′ and Z ′ are k-affinoid neighbourhoods of x in Y
and Z respectively. We will express this procedure as shrinking X.

Step 1. We show that after shrinking X, we may assume that Y ∩ Z = SpA,
where

A = B{tf−1} = C{t−1g}

for some f ∈ B and g ∈ C and ρA(f − g) < t := ρ(λ) and λ = f̃(x).
By Proposition 3.3, up to shrinking X, we can find f ∈ B, g ∈ C both invertible

such that
λ = f̃(x) = g̃(x).

It therefore follows that
|(f − g)(x)| < t.

After shrinking X, we can make sure that

sup
y∈Y ∩Z

|(f − g)(y)| < t.

After shrinking X, we can guarantee that

sup
y∈Y
|f(y)| ≤ t, inf

z∈Z
|g(z)| ≥ t.

Why? This is not an open condition on Y or Z!!!!
In particular,

Y ∩ Z ⊆ Y {tf−1} ∩ Z{t−1g}.
This relies on the unjustified claim

By Lemma 8.5, we have

˜Y {tf−1}x = ˜Z{t−1g}x = ˜(Y ∩ Z)x.

Applying Theorem 8.10, we can find k-affinoid neighbourhoods Y ′ = SpB′ and
Z ′ = SpC ′ of x in Y and Z respectively such that

Y ′ ∩ Z = Y ′{tf−1}, Y ∩ Z ′ = Z ′{t−1g}.

As Y ′ ∩ Z ′ is a k-affinoid neighbourhood of x in Y ∩ Z, we can find a k-Laurent
neighbourhood W of x in Y ∩ Z which is contained in Y ′ ∩ Z ′ and which is of the
form

(Y ∩ Z)
{
s−1u, s′v−1} ,

where n,m ∈ N, s = (s1, . . . , sn) ∈ Rn>0, s′ = (s′1, . . . , s′m) ∈ Rm>0 and u =
(u1, . . . , un) ∈ An, v = (v1, . . . , vm) ∈ Am. This follows from Proposition 10.13 in
Affinoid algebras.

As Y ′ ∩ Z = Y ′{tf−1} is a k-Weierstrass domain in Y ′, by Proposition 10.5 in
Affinoid algebras, we can find u′i, v′j ∈ B′ sufficiently close to ui, vj over Y ′ ∩ Z for
i = 1, . . . , n, j = 1, . . . ,m so that Y ′′ := Y ′{s−1u′, s′v′−1} is a neighbourhood of x
in Y ′. Similarly, we can find Z ′′ = Z ′{s−1u′′, s′v′′−1} for suitable perturbations of
u and v. Moreover,

W = Y ′′ ∩ (Y ′ ∩ Z) = Z ′′ ∩ (Y ∩ Z ′).

It follows that W = Y ′′{tf−1} = Z ′′{t−1g} = Y ′′ ∩ Z ′′. Replacing Y and Z by Y ′′
and Z ′′ and X by Y ′′ ∪ Z ′′, we reduce to the situation stated in this step.
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Step 2. We show that after shrinking X, we may guarantee that there are
admissible epimorphisms

(9.1)
k{r−1T, t−1S1, pS2} → B, Ti 7→ fi for i = 1, . . . , n, S1 7→ f, S2 7→ f−1,

k{r−1T, q−1S1, tS2} → C, Ti 7→ gi for i = 1, . . . , n, S1 7→ g, S2 7→ g−1,

where n ∈ N, p < t < q, r = (r1, . . . , rn) ∈ Rn>0, f1, . . . , fn ∈ B, g1, . . . , gn ∈ C and
‖fi − gi‖ < ri for i = 1, . . . , n; ‖f − g‖ < t,

where the norm ‖ • ‖ on A is the quotient norm A induced by
k{r−1T, t−1S1, tS2} → B, Ti 7→ fi for i = 1, . . . , n, S1 7→ f, S2 7→ f−1.

In order to guarantee that r in both morphisms are the same, we need an argument
as in Step 1, which is problematic! This is unfortunately essential to Step 3. I
cannot make sense of this proof anymore!

As X̃x is affine, we can write it as
P

H̃ (x)/k̃ {α1, . . . , αm}

for some non-zero homogeneous elements αi ∈ H̃ (x) for i = 1, . . . ,m.
By Proposition 3.3, after shrinking X, we may assume that αi = f̃i(x) for some

invertible fi ∈ B for i = 1, . . . ,m.
Let ri = |ρ(fi)| for i = 1, . . . ,m. Set

D = k{r−1T, t−1S1, pS2}.
Let φ : D → B be the first morphism in the beginning of this step and χx : B →
H (x) be the character corresponding to x. Then ϕ := χx ◦ φ satisfies

ϕ̃(D̃) = k̃[α1, . . . , αm, λ].

On the other hand, Ỹx = P
H̃ (x)/k̃{α1, . . . , αm, λ} by Lemma 8.5. It follows from

Lemma 4.5 in Commutative algebras and Proposition 15.2 in Affinoid algebras that
χx is inner with respect to D. It follows from Proposition 15.2 in Affinoid algebras
that φ can be extended to a continuous epimorphism

k{r−1T, t−1S1, pS2, U1, . . . , Ua} → B, Ui 7→ ui for i = 1, . . . , a
with |ui(x)| < 1 for i = 1, . . . , a.

As Y ∩ Z is a k-Weierstrass domain in Z, we can find g1, . . . , gm, g
′ ∈ C close

enough to f1, . . . , fm, f on Y ∩ Z. Up to shrinking Z, we may also guarantee that
they are close on Z. In particular, we can replace g by g′ but guaranteeing that
Y ∩ Z = Z{t−1g} still holds.

Similarly, one constructs
k{r−1T, q−1S1, tS2, V1, . . . , Vb} → C, Vi 7→ vi for i = 1, . . . , b

with |vi(x)| < 1 for i = 1, . . . , b. By perturbation, we can find u′1, . . . , u
′
a ∈ C,

v′1, . . . , v
′
b close to u1, . . . , ua and v1, . . . , vb on Y ∩ Z such that

Y ′ = Y {v′1, . . . , v′b}, Z ′ = Z{u′1, . . . , u′a}
are neighbourhoods of x in Y and Z respectively. Up to replacing Y and Z by Y ′
and Z ′, we conclude this step.

Step 3. We show that X is k-affinoid after the reduction in Step 2.
We first assume that the two maps in (9.1) are both isomorphisms.
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Let B+ denote the subspace of B consisting of elements of the form:∑
α∈Nn

∞∑
j=0

λα,jf
αf j .

Let C− denote the subspace of C consisting of elements of the form:∑
α∈Nn

0∑
j=−∞

λα,jg
αgj .

We observe that each element A = B+ + C−. Take a ∈ A and expand

a =
∑
α∈Nn

∞∑
j=−∞

λν,jf
αf j .

Then

a =
∑
α∈Nn

0∑
j=−∞

λν,jf
αf j +

∑
α∈Nn

∞∑
j=1

λν,jf
αf j

is the desired decomposition.
In particular, for i = 1, . . . , n, we can write

fi − gi = bi + ci, f − g = b+ c

with b, b1, . . . , bn ∈ B+, c, c1, . . . , cn ∈ C−. Then hi := fi − bi and h := f − b are
contained in D := B ∩ C. It follows that

k{r−1T, t−1S, pS−1} → B, Ti 7→ hi for i = 1, . . . , n, S 7→ h,

k{r−1T, q−1S, tS} → C, Ti 7→ hi for i = 1, . . . , n, S 7→ h,

are isomorphisms. It follows that D ∼= k{r−1T, pS−1, q−1S} and X ∼= SpD.
Now we handle the general case. Let

A′ = k{r−1T, t−1S, tS−1}
and consider the epimorphism

A′ → A, Ti 7→ fi for i = 1, . . . , n;S 7→ f.

We can find preimages G1, . . . , Gn, G ∈ A′ of g1, . . . , gn, g such that the norms of
Ti −Gi and S −G are small enough. THen the map

k{r−1T, t−1S, tS−1} → A′, Ti 7→ Gi, S 7→ G

is an isomorphism. Let
B′ =k{r−1T, t−1S, pS−1},
C ′ =k{r−1G, q−1G, tG−1}.

Set Y ′ = SpB′ and Z ′ = SpC ′. By construction, we have canonical isomorphisms
Y ′{S−1} ∼= Z ′{G} ∼= SpA′.

By the previous case, X ′ obtained by gluing Y ′ and Z ′ along SpA′ is k-affinoid.
The homomorphisms B′ → A and C ′ → A factorize through B and C and gives
closed immersions Y → Y ′, Z → Z ′. The latter gives rise to a closed immersion
Y ∩Z → Y ′∩Z ′. Hence, we get a closed immersion X → X ′. So X is k-affinoid. �

Theorem 9.2. This is probably problematic, we will avoid using this result! Let
Xx be a k-analytic germ. Then the following are equivalent:
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(1) Xx is good;
(2) X̃x is an affine open subset of P

H̃ (x)/k̃.

Proof. (1) =⇒ (2). This follows from the definition.
(2) =⇒ (1). In proving this direction, we are free to replace X by its k-analytic

domain that contains x in the interior. We will express this procedure simply as
shrinking X.

By Corollary 8.14, we may assume that X is a compact separated k-analytic
space. Let {Yi}i∈I be a finite k-affinoid covering of X. After shrinking X, we may
assume that x ∈ Yi for each i ∈ I.

By Theorem 8.10, {Ỹi,x}i∈I is a finite affine covering of X̃x.
By Lemma 4.8 in Commutative algebras, we can find a Laurent covering

V =
{
X̃x{f±1

1 , . . . , f±1
n }

}
of X̃x refining {Ỹi,x}i∈I , where n ∈ N and f1, . . . , fn are homogeneous elements in
H̃ (x). According to Theorem 8.10, we can lift each element in V to a k-analytic
domain Vi,x in Xx. After shrinking X, we may assume that X = V1 ∪ · · · ∪ Vn.

By induction on n, we reduce easily to the case n = 1. Now it suffices to apply
Lemma 9.1. �
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