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Berkovich analytic spaces

1. Introduction

The main references of this chapter: | 1, 1 L1 L1 1 ]

2. The category of Berkovich analytic spaces

Let (k,| @) be a complete non-Archimedean valued field and H be a subgroup
of R such that |k*|- H # {1}.

Definition 2.1. Let X be a locally Hausdorff space and 7 be a net of compact
subsets. A kg-affinoid atlas A on X with the net 7 is a map which assigns
(1) to each V' € 7, a ky-affinoid algebra Ay and a homeomorphism ¢y :
Sp AV — V;
(2) to each U,V € 7, U C V, a morphism of kg-affinoid algebras ay,y :
Ay — Ay representing a kg-affinoid domain Sp Ay in Sp Ay such that
the following diagram commutes

S
Sp Ay 22 Sp Ay

LPU LPV :
U———V

The triple (X, A, 7) as above is called a kg-analytic space.
A morphism between atlases A and A’ on X with the net 7 is an assignment that

with each V' € 7, one associates a morphism of kg-affinoid algebras gy : Ay — A},
such that

(1) for each V € 7, the following diagram is commutative:

SpAf, 222 gp Ay

(2) for each U,V € 7, U C V, the following diagram is commutative:

v/ u
AV%AU

J{BV / lﬂu
A

Ay u ’
14 AU

Here we have denoted the data associated with A’ with a prime. In this way, the
atlases on X with the net 7 form a category.

5



6 BERKOVICH ANALYTIC SPACES

We remind the readers that by our convention a compact space is Hausdorff.
By Condition (2), it W C U C V are three sets in 7, then ay/y oy, w = ay w.

Remark 2.2. As a convention, we will denote the atlas by capital letters in
caligraphic font and the affinoid algebras by the same letter in roman font. We
will usually omit the maps ¢y ’s by identifying Sp Ay with U. We will say U is a
kp-affinoid domain in V.

Remark 2.3. Our definition is a special case of the original definitions in [Ber93].
This seems to be the most important case though.

Lemma 2.4. Let (X, A, 7) be a ky-analytic space, U € 7 and W is a ky-affinoid
domain in U. Then for any V € 7 containing W, W is a ky-affinoid domain in V.

PROOF. As 7|yny is a net and W is compact, we can find Uy, ...,U, € Tynv
with W C UL U---UU,. As W, U; are kg-affinoid domains in U, W; = WNU; is a
kg-affinoid domain in U; for all ¢ = 1,...,n by Corollary 13.12 in Affinoid algebras.

It follows from Corollary 10.7 and Corollary 13.12 in Affinoid algebras that W; and
Wi N W; are both kg-affinoid domains in V for 4,5 = 1,...,n. So W is a compact
kg-analytic domain in V.

By Proposition 13.25 in Affinoid algebras,

AW := ker ﬁAWz — ﬁ AWiﬁWj

i=1 i,j=1

is kpy-affinoid and Sp Ay — Sp A induces a hoemomorphism Sp Ay — W by
Proposition 10.6 in Affinoid algebras. By Proposition 13.25 in Affinoid algebras
again, W is affinoid in V. O

Definition 2.5. Let (X, A, 1) be a kg-analytic space. We define T as the set of all
W C X such that there is U € 7 containing W and W is kg-affinoid in U.

Lemma 2.6. Let (X, A, 7) be a ky-analytic space. Then 7 is a net on X and there
is a ky-affinoid atlas A on X with the net 7 extending A. Moreover, the kp-affinoid
atlas A on X with the net 7 extending A is unique up to a canonical isomorphism.

PrOOF. Step 1. We first show that T isanet. Let U,V e Tandx e UNV.
Take U’, V' € 7 containing U and V respectively. Taken € Z~g and Wq,..., W,, € 7
such that

(1) zeWinN---NWy;
(2) Wiy U---UW, is a neighbourhood of z in U' N V".

This is possible because 7|y/ny- is a quasi-net by assumption.

By Lemma 2.4, U (resp. V) and Wy,..., W, are kg-affinoid domains in U’
(resp. V).

According to Corollary 13.12 in Affinoid algebras, U; :== U NW; (resp. V; :=
V N W;) is a ky-affinoid domain in W; for ¢ = 1,...,n. By Corollary 13.12 in
Affinoid algebras again, U; N'V; is a ky-affinoid domain in W; for i =1,...,n. So
U NV, eTlyav for i =1,...,n. But
YUuvinvi=wnv)nJw
i=1

=1
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so Ji—, U;NV; is a neighbourhood of z in UNV and z € ([, U; NV;. It follows
that T is a net.

Step 2. We extend the kgy-affinoid atlas A.

For each V € 7, we fix a V' € 7 containing V.

By Lemma 2.4, V is a kg-affinoid domain in V’/. Let Ay, — Ay be the
morphism of kg-affinoid algebras representing the kg-affinoid domain V' in Sp Ay.
We define the homeomorphism ¢y : Sp Ay — V' as the morphism induced by
Sp Ay — Sp A.

For U,V € 7 with U C V, we want to define ay,y : Ay — Ay. We handle
two cases. When V € 7, as 7|ynv is a quasi-net, we can find n € Zso and
Ui,...,U, € T|uqy such that

U=JU.
i=1

By Lemma 2.4, Uy,...,U, are kg-affinoid domains in U’ and in V. By Theo-
rem 13.19 in Affinoid algebras,

n n
AU - ker l_IAUI — H AU,;F‘IUj
i=1 ij=1
So the morphism ay,y, : Ay — Ay, and Ay y,nu; : avyu, @ Av — Ay,nu; for
i=1,...,nand j=1,...,n induces a morphism ay,; : Ay — Ay. Observe that
ay,y represents the ky-affinoid domain U in V, so it is independent of the choice
OfUl,...7Un.
More generally, when V' € 7, we have constructed a morphism ay 7 : Ay —
Ay representing the kgy-affinoid domain U in V', it follows that U is a kgy-affinoid
domain in V', and we therefore get the desired morphism ay iy : Ay — Ay
It is easy to verify that the constructions gives a kg-affinoid atlas with the net
7 extending 4. The uniqueness of the extension is immediate. ([l

Definition 2.7. Let (X, A,7) and (X', A’,7’) be ky-analytic spaces. A strong
morphism ¢ : (X, A,7) = (X', A’,7’) is a pair consisting of
(1) a continuous map ¢ : X — X’ such that for each V € 7, there is V' € 7/
with (V) C V’;
(2) foreach V e 7, V' € 7/ with ¢(V) C V', a morphism of kp-affinoid spectra
QOV/V' V- V/
such that for each VW € 7, V!, W' € 7/ satisfying V C W, W C W' (V) C V'
and (W) C W', the following diagram commutes:

Pv/v!
—_—

v |4

Pw w!
—_—

w w’

Recall our convention Remark 2.2, the morphism ¢y/y+ means a morphism
Al — Ay of ky-affinoid algebras making the following diagram commutative

SpAy —— Sp A,

J{S"V lﬁo/vl :

V—2 v
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We will continue our identifications as in Remark 2.2 to simplify our notations.

Proposition 2.8. Let (X, A,7) and (X', A’,7") be ky-analytic spaces. Let ¢ :
(X, A7) = (X, A, 7") be a strong morphism. Then ¢ extends uniquely to a strong
morphism ¢ : (X, A4,7) = (X', A, 7).

PROOF. Let U € 7, U’ € 7/ with ¢(U) C U’. Take V € 7 and V' € 7/
containing U and U’ respectively. By Lemma 2.4, U (resp. V) is a kg-affinoid
domain in V (resp. V’). Take W € 7/ with ¢(V) C W’'. Then in particular,
o(U) CW'. As 7'|yaw- is a quasi-net and ¢(U) is compact, we can find n € Z~g
and Wy,..., W, € 7’'|yaw such that

p(U)CWiU---UW,.

Now W; is a kgy-affinoid domain in W’ by Lemma 2.4, so V; := go‘_,/lw/(Wi) is an
affinoid domain in V' by Corollary 13.12 in Affinoid algebras, and we have an induced
morphism V; — W; for ¢ = 1,...,n. This morphism in turn induces a morphism of
ky-affinoid spectra

Up=U0UNnV, = U =UnNW, > U

for i =1,...,n. These morphisms are compatible on their intersections by construc-
tion. So by Theorem 13.19 in Affinoid algebras, they glue together to a morphism of
kp-affinoid spectra oy yr : U — U’'. Tt is easy to see that this construction defines
a strong morphism.

As for the uniqueness, it suffices to show that the morphism U; — U/ is uniquely
determined for ¢ = 1,...,n. In other words, we need to show that the dotted arrow
that makes the following diagram commutes is unique:

U; > Uz/

Vv Pvw! W,
fori =1,...,n. It suffices to apply the universal property of the kg-affinoid domain
Ul — W' O

Definition 2.9. Let (X, A, 7), (X', A, "), (X", A”,7") be ky-analytic spaces. Let
(P: (X,.A7T)_>(XI,A/,T/)7 w: (X/,A/,T/)%(X//,A”?TH)

be strong morphisms. We will define their composition x = ¥ o ¢ as follows. The
underlying map of topological spaces is just the composition of the unlerlying maps
of topological spaces corresponding to ¥ and .

Let ¢ and 1 be the extensions of ¢ and 1 to 7 and 7/ as in Proposition 2.8.

Given V € 7 and V" € 7”7 with x(V) C V", we need to define a morphism
of kp-affinoid spectra xy vy : V. — V". Take V' € 7" and U"” € 7" such that
(V) C V" and (V') C U”. Since x(V) CU”"NV" and V is compact, we can
take n € Zso and V{',... V)" € 7"'|yrayr with x(V) C V" U---U V. Then
V! = @/J;}/U,,(Vi”) and V; = cp‘_//lv,(Vi’) are kg-affinoid domains in V/ and V'
respectively for i =1,...,nand V = V; U---UV,. The morphisms % and 1 then
induce a morphism V; — V — V of kpy-affinoid spectra. These morphisms are
clearly compatible on the intersections and hence induce a morphism V — V" of
kg-affinoid spectra by Theorem 13.19 in Affinoid algebras.

It is easy to verify that ¥ o ¢ is a strong morphism.
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In this way, we get a category k‘H—.;Gl of ky-analytic spaces.

Definition 2.10. Let (X, A, 7) and (X', A’,7") be kg-analytic spaces. A strong
morphism ¢ : (X, A,7) — (X', A’,7') is said to be a quasi-isomorphism if
(1) ¢ is a homeomorphism between X and X';
(2) for any pair V € 7 and V' € 7/ with (V) C V', Spyy v/ identifies V
with an affinoid domain in V”.

Lemma 2.11. Let (X,A,7) and (X', A’,7') be ky-analytic spaces and ¢ :
(X, A, 1) = (X', A',7") be a strong morphism. Then for any V € 7 and V' € 7/,
the intersection V N p~1(V’) is a compact kg-analytic domain in V.

PROOF. Take U’ € 7/ with p(V) C U’. As 7|y/ay is a quasi-net, we can find
n € Zso and Uy,..., U], € Tlyray with (V) CUj U---U U], and

Vine US"V/U
O

Lemma 2.12. The system of quasi-isomorphisms in k H-.;lvn is a right multiplicative
system.

For the notion of right multiplicative system, we refer to [ , Tag 04V C].

PRrROOF. We verify the three axioms as in [ , Tag 04VC].

RMS1. The identity is clear a quasi-isomorphism. It remains to verify that
the composition of quasi-isomorphisms is still a quasi-isomorphism.

Take ¢, ¥ as in Definition 2.9. We will use the same notations as in Definition 2.9.
We need to show that V — V' identifies V with a kp-affinoid domain in V”. From
the construction, we know that ¢ identifies V; with a ky-affinoid domain in V/
and ¢ identifies V; with a kg-affinoid domain in V;}” for ¢ = 1,...,n. In particular,
x(V) is a compact kg-analytic domain in V. Tt follows from Proposition 13.25 in
Affinoid algebras that x(V) is a kg-affinoid domain in V.

RMS2. If ¢ : (X, A7) — (X, A7) and f : (X', A7) = (X', A7)
are given strong morphisms of kg-analytic spaces and g is a quasi-isomorphism,
then there are kpy-analytic space (X, A, 7) and strong morphisms & : (X, A,7) —
()7’,:47,;’) and f: (X, A,7) — (X, A,7) such that f is a quasi-isomorphism and
the following diagram commutes:

(X, A7) T (XA T)

f lg

(X, A7) = (X, A7)

We may assume that X =X . Then 7 C 7. We let X = X. Let 7 be the family
of all V € 7 for which there is V/ € 7/ with ¢(V) C V’. By Lemma 2.11, 7 is a net
on X. The ky-atlas A defines a ky-affinoid atlas A with the net 7. The strong
morphism ¢ induces ¢. The morphism f is the canonical quasi-isomorphism. It is
immediate that these constructions satisfy the desired conditions.

RMS3. If p,¢: (X, A, 7) = (X', A, 7) are strong morphisms of kp-analytic
spaces and there is a quasi-isomorphism g : (X', A’, 7) — ()’(Y’, :47, 77’) of kg-analytic


https://stacks.math.columbia.edu/tag/04VC
https://stacks.math.columbia.edu/tag/04VC
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spaces such that g o ¢ = g o, then there is a quasi-isomorphism f : (X, A, 7) —
(X, A, 7) with po f =4 o f.

We will in fact show that ¢ = 1. It is clear that they coincide as maps of
topological spaces. Let V € 7, V' € 7/ such that (V) C V'. Take V' € 7/ with
g(V") C V', Then we have two morphisms of k-affinoid spectra v v/, Yy v 1V —
V'’ such that their compositions with Gy /v coincide. As V' is an affinoid domain

in ﬁ it follows that ¢y /v = 1y ,y+ by the universal property. (]

Definition 2.13. The category kx-An is the right category of fractions of k’H—;Gl
with respect to the system of quasi-isomorphisms. A morphism in kg-An is called
a morphism between kp-analytic spaces.

We refer to | , Tag 04VB] for the definition of right category of fractions.
For later references, we explicitly write down the morphisms in kg-An.

Lemma 2.14. Let ¢ : (X, A,7) = (X', A’,7') be a morphism of ky-analytic spaces.
We define a partial order on the set of nets on X: 7 < 719 if 71 C 75. Then the set
of nets is a directed set and
Homyg,,an (X, A, 7), (X, A", 7)) = lim Hom, = = (X, A;,0), (X', A", 7))
o1
in the category of sets, where A, is induced by A. The transition maps are all
injective.

ProoF. This follows immediately from the definition. (]

Definition 2.15. Let (X,.A,7) be a kgy-analytic space. We say a subset W C X is
T-special if it is compact and there exist n € Z~ o and a covering W =Wy U---UW,,
with Wy e 7, W;NW; € 7 for all 4,5 = 1,...,n and the natural map

Aw, @k Aw, — Aw.nw;

is an admissible epimorphism.
The covering Wy, ..., W, is called a 7-special covering of W.

Under our convention, the assumption means that W; N W; — W; x W, is a
closed immersion of kg-affinoid spectra.

Example 2.16. Let (X, A, 7) be a ky-analytic space. Suppose that V' € 7 and W
is a compact kx-analytic domain in V. Let n € Z~g and W =W, U ---U W,, with
Wi er, WyNnW; erforalli,j=1,...,n. Then {W;}; is a 7-special covering of
W. This follows from Corollary 13.14 in Affinoid algebras.

Lemma 2.17. Let (X, A, 7) be a ky-analytic space and W be a 7-special subset
of X. If U,V € 7|w, then UNV € 7 and the natural map

Ay®rAv — Aunv
is an admissible epimorphism.
PROOF. Let n € Z~o and Wy, ..., W, be a 7-special covering of W. As UNW;
and V N W; are compact for i = 1,...,n, we can find m; € Z~q (resp. k; € Zxg)
and finite coverings Uj1, ..., Uim, € T of UNW; (resp. Vi1,...,Vik, € T of VN,

Observe that U, NV is a kp-affinoid domain in U NV, hence Uy, N'Vj; € T for
anyi,j=1,...,n,k=1,...,m;and [ =1,..., k. By Proposition 12.3 in Affinoid


https://stacks.math.columbia.edu/tag/04VB
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algebras, Usy, NV — U X Vjy is a closed immersion since W; N W; — W; x W is
by our assumption.
Consider the finite convering

U={UypxVy:ij=1....mk=1...,m;l=1,...k}

of U x V. For each tuple (i,j,k,1), Av,.nv,, is a finite Ay, xv,-algebra. By
Theorem 14.1 in Affinoid algebras, we can construct a finite Ay xy-algebra Ayny
inducing all of these Ay, nv;,’s. By Proposition 8.1 in Affinoid algebras, Ayny is
k-affinoid.

As U is a finite ky-affinoid covering of U x V, {Ay,,.nv;, }ik,ju is a finite ky-
affinoid covering of U NV by Corollary 13.12 in Affinoid algebras. In particular, we
have a natural homeomorphism

Sp Apnv = uUnv.

Observe that Ay®pAy — Ayny is surjective. We endow Apny with the structure
of finite Ay &y, Ay -Banach algebras by Proposition 9.10 in Affinoid algebras. Then
Ay®rAy — Ayny is an admissible epimorphism by Proposition 9.7 in Affinoid
algebras.

On the other hand U NV is a compact ky-analytic domain in U, so by
Proposition 13.25 in Affinoid algebras, U NV is a kgy-affinoid in U. In partic-
ular, UNV € 7. O

Lemma 2.18. Let (X, A, 7) be a kg-analytic space and W C X be a 7-special
set. Then for any finite covering {W;};c; of W with W; € 7 for i € I, the Banach
k-algebra

AW := ker <H AWI — AWiij)

icl
does not depend on the choice of {W;};cr up to canonical isomorphisms.

Moreover, we have a canonical map W — Sp Ay, which does not depend on
the choice of the covering modulo the canonical isomorphism between Ay .

PrOOF. It follows from Lemma 2.17 that the covering {W;},es is T-special. It
suffices to apply the same argument of Lemma 13.22 in Affinoid algebras. ([l

Definition 2.19. Let (X, .A,7) be a kgy-analytic space. Let 7 denote the collection
of T-special subsets W C X such that
(1) Aw is k-affinoid;
(2) the natural map W — Sp Ay is bijective;
(3) there is a 7T-special covering {W;}ier of W such that W; is a k-affinoid
domain in W for i € I.

The sets from 7 are called kg -affinoid domains in (X, A, 7).

Observe that W is kg-affinoid and W; is a ky-affinoid domain in W by Corol-
lary 13.20 in Affinoid algebras. Condition (3) holds for any 7-special covering.

Proposition 2.20. Let (X,.A,7) be a ky-analytic space. Then 7 is a net. For any
net o on X contained in 7, we have & = 7.
Moreover, 7 = 7.
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PrROOF. Let U,V € 7. Take 7-special coverings {U;}icr, {V;}jes of U and V
respectively. In order to show that 7|yny is a quasi-net, it suffices to show that
7|u,nv; is for any i € I and j € J. This follows simply from the fact that 7
a quasi-net. Similarly, as 7 is a quasi-net as 7 is. So 7 is a net.

Let o be a net on X contained in 7. By Lemma 2.17, it suffices to verify that
for any V' € 7, there are n € Z~qg and Uy, ..., U, € g withV =U;U---UU,. As o
is a net on X, we can find m € Z~g, W1,...,W,, € o such that

VWU -UW,,.

U;NV; is

AsV,W;eTfor j=1,...,m, by Lemma 2.5 in Topology and bornology, we can
find Uy,...,U, € T such that V =U; U---UU, and each U; is contained in some
W;. Since W; € o for j =1,...,m, it follows that U; € ¢ fori =1,...,n.
By Lemma 2.17,
Fot.
Let V € V. Let {Vi}ier be a 7-special covering of V. For each i € I, take a T-special
covering {V;;};es; of V;. Then {V;;};; is a T-special covering of V. It follows that
Ver -

Proposition 2.21. Let (X, A, 7) be a kg-analytic space. There is a kg-analytic
atlas A on X with the net 7 extending A. Moreover, A is unique up to a canonical
isomorphism.

PRrROOF. For each V' € 7, Fix a T-special covering {V; }ier, -

We define Ay using this covering as in Lemma 2.18. By definition, the canonical
map V — Sp Ay is a homeomorphism.

Next take U,V € 7 with U C V. We want to identify U with a kg-affinoid
domain in V. First assume that U € 7, then U NV} is a ky-affinoid domain in V;
for ¢ € Iy by Lemma 2.17. Hence, U is a kg-affinoid domain in V. If we only know
U € 7, we know that U; is a ky-affinoid domain in V for any i € I;. It follows that
U is a ky-affinoid domain in V' by Proposition 13.25 in Affinoid algebras.

The uniqueness is immediate. (I

Definition 2.22. Let (X,.A,7) be a ky-analytic space. A 7-special set is called a
kr-special domain in X.

Observe that a kp-special domain inherits a structure of kg-analytic space from
(X, A 7).
Proposition 2.23. Let ¢ : (X, A,7) — (X', A’,7') be a morphism of kpy-analytic
spaces. Then for any kg-affinoid domains V' C X and V' C X', the intersection
VN Y(V') is a kg-special domain in X.

PRrOOF. By Proposition 2.20, we may assume that ¢ is a strong morphism. In
this case, it suffices to apply Lemma 2.11. |

Lemma 2.24. Let (X, A,7) and (X', A',7") be kg-analytic spaces. Let ¢ :
(X, A, 7) = (X', A',7') be a strong morphism. Then ¢ extends uniquely to a
strong morphism ¢ : (X, A, 7) = (X', A, 77).

PROOF. Let V € 7 and V' € 7/ with (V) C V/. We want to define oy v
V — V' of kg-affinoid spectra. By Proposition 2.8, we may extend ¢ uniquely to
7. Take a T-special covering of V', we may reduce to the case where V' € 7. Take
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W' € 7/ such that (V) C W'. As 7|lw/nv’ is a quasi-net, we can find n € Zso and
Wi,...,W, € 7/|viaw such that (V) C Wy U---UW,. Considering the inverse
images of W;’s and W; N W;’s using Lemma 2.17, we are reduced to the case where
V' € 7/. This is already handled in Proposition 2.8. The uniqueness of the extension
is clear. O

Proposition 2.25. Let (X, A, 1), (X', A", 7’) be kg-analytic spaces.

(1) There is a canonical bijection between
HomkH-An((Xa A, T)a (le A/a 7-/))

and the set of pairs consisting of

(a) a continuous map ¢ : X — X’ such that for all x € X, there exist
n € Zso, neighbourhoods V1 U--- UV, of x and V] U--- UV of p(x)
withz e Vin---NV, and p(V;) CV/ fori=1,...,n, where V; C X
and V/ C X’ are ky-affinoid domains;

(b) for each pair of kp-affinoid domains V' C X, V! C X’ with (V) C V’,
a morphism of kg-affinoid spectra oy, v/ : V — V’

such that if V,;W C X and V', W’ C X' are ky-affinoid domains with

(V) C V', (W) C W', the diagram below commutes

Pv/v!

v

|

w

V/
Pw/w! W,
(2) Under the bijection in (1), an isomorphism corresponds to the pair where

¢ is a hoemomorphism such that ¢(7) = 7/ and for any V' € 7, oy /,(v) is
an isomorphism of kg-affinoid spectra.

PRrROOF. (2) follows immediately from (1). So it suffices to prove (1).
We construct the forward map. Let ¢ : (X, A,7) = (X', A, 7') be a morphism.
Take a subnet o of T such that ¢ is represented by a strong morphism

0 (X, Ag,0) = (X', A', 7).
By Lemma 2.24, this extends to a strong morphism
0 (X, A;,6) = (X, A, 7).

We get an injective map from the first set into the second set.
Conversely, we need to show that any given map from the second map comes
from the first set. It suffices to show that

o= {VG%:Q@(V)QV’ forsomeV’G;’}

is a net. Take z € X and neighbourhoods V3 U---UV,, of z and V] U--- UV, of
©(x) as in the statement of (1). Then V; € o, so we conclude. O

In practice, we do not distinguish a kpy-analytic space from the isomorphic
kpg-analytic spaces. In particular, we will write (X, A, 7) as X and always endow it
with the strucutre (X,.A, #) of ky-analytic space. If necessarily, we will write | X |
for the underlying topological space.

Corollary 2.26. The natural functor kg-Aff — kgy-An is fully faithful.
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PROOF. Let X = Sp A be a ky-affinoid spectrum. We endow it with the net
7 = {X}. The kgy-atlas with the net 7 assigns X € 7 with A. It is easily verified
that this is a functor. By Proposition 2.25, the functor is fully faithful. O

Definition 2.27. A ky-affinoid space is an object of kp-An lying in the essential
image of the functor kgy-Aff — kg-An.
The category of kg-affinoid spaces is denoted by kg-Aff.

The notation for the category of kg-affinoid spaces is the same as the notation for
the category of ky-affinoid spectra, as the two categories are canonically equivalent.

Definition 2.28. A kpy-analytic space X is good if any point x € X admits a
kg-affinoid neighbourhood.

Example 2.29. Fix n € N. Let A} denote the set of all semi-valuations on
k[Ty,...,T,]) whose restriction to k coincides with the given valuation on k. We
provide A} with the weakest topology such that for any f € k[T4,...,T;], the map
| @ | — |f| is continuous.

Observe that as a topological space,

(2.1) A} — limr € R%, Sp k{r—1T}.

As a set, this is clear: if | o | € A7, we take r = (|T1], ..., |Ty|), then |o | < || o ||, so
|e| € Spk{r~'T}. As

() k{r'T}=k[Ty,..., T,

reRY,

so the topology on the right-hand side of (2.1) is the weakest topology making
| o | — |f| continuous for any f € k[T1,...,Ty]. It follows immediately that (2.1) is
an identification of topological spaces.

It is clear that A} has a structure of good kp-analytic space.

Proposition 2.30. Let X be a kz-analytic space, x € X and U be a neighbourhood
of  in X. Then there is a neighbourhood V of = in X contained in U such that V'
is open connected locally compact paracompact and Hausdorff. Moreover, we can
guarantee that V C U and V is a countable union of kz-affinoid domains.

PROOF. Take n € Z-y and kgy-affinoid spaces Vi,...,V,, containing x and
Vi U---UV, is a neighbourhood of x in X. If we have proved the proposition for V;
in place of X and U NV; in place of U for i = 1,...,n, namely, if we have found
open connected locally compact paracompact and Hausdorff sets W; containing x
and contained in U N'V; whose closure in V; is contained in U N'V;, then we can take
V=Wiu---uw,.

So we may assume that X is a kg-affinoid space, say X = Sp A. Choose a
kg-rational neighbourhood

W:SpA{r_lg}
of x in U, where n € N, f = (f1,...,fn) € A", 1r € \/|kx|-Hn, g € A and

fi,--+5 fn,g generate the unit ideal in A. This is possible by Corollary 10.9 and
Proposition 10.13 in Affinoid algebras. Take § > 0 so that = € Sp A{((1 — (5)7“)_15}.



2. THE CATEGORY OF BERKOVICH ANALYTIC SPACES 15

Choose a strictly increasing sequence ¢; € (0,1) N y/|k*| - H converging to 1 — §/2
for ¢ € Z~q. Let

W; SpA{(eﬂ’)lg}

for i € Z~o. Then W; lies in the interior of W;41 for ¢ € Z~(. Choose a connected
component V; of W; so that Vi C Vo, C -+ andz € V := Jo, V;. If z € V] for
some ¢ € Z~q, then x lies in the topological interior of V;;. Hence, z lies in the
interior of V. By construction, V' is open connected paracompact locally compact
and Hausdorff. Moreover, VCcu by our construction. O

Proposition 2.31. Let {X;};c; be a family of ky-analytic spaces. Suppose that
for 4,7 € I, we are given a kp-analytic domain X;; C X; and an isomorphism
v+ Xij — X satisfying the cocycle condition: X;; = X, v3;(Xi;NXy) = X;:N X5
and vy = vj oy on X5 N Xy for 4, 5,0 € 1.
Assume that either of the followinig conditions holds:
(1) X;; is open in X; for all 4,j € I;
(2) for any i € I, all X;;’s are closed in X; and the number of j € I with
X;; # 0 is finite.
Then there is a ky-analytic space X and morphisms u; : X; — X for i € I such
that
(1) p; is an isomorphism of X; with a kp-analytic domain in X;
(2) X = Uie] Mi(Xi)Q
(3) pi(Xij) = pa(Xi) Ny (X;) for i, j € I
(4) Hi = [y © Vij on Xij for Z,] el.
The space X is unique up to a canonical isomorphism. Moreover, under Condition (1),
1i(X;) is open in X for ¢ € I; under Condition (2), u;(X;) is closed in X for ¢ € I.
Under both conditions, if all X;’s are Hausdorfl (resp. paracompact), then so is
X.

We will call X the gluing of the X;’s along the Xj;’s.

PROOF. By Proposition 3.12, the uniquenss of X is clear.

Let
X=][x
il
in kg-An. Observe that
X[ =]]1xi
iel

in the category Top. The system v;;’s defines an equivalence relation R on \f( |. Let
|X| = |X|/R and pu; : |X;| — |X| be the induced map for i € I.

Under Condition (1), u;(]X;]) is open in |X| for ¢ € I. Under Condition (2),
wi(|X;]) is closed in X for i € I.

Under both conditions, the map p; induces a homeomorphism |X;| — p; (| X;|)
for i € I. If all | X;|’s are Hausdorff (resp. paracompact), so is | X]|.

All these claims follow from well-known results in general topology.

We will endow |X| with a structure of kp-analytic space. Let 7 be the set of
V C |X]| for which there is i € T such that V C p;(X;) and ;' (V) is a kg-affinoid
domain in X;. Then 7 is a net on X. There is an obvious k-affinoid atlas on X with
the net 7. All properties in the proposition are satisfied by X = (| X|, A, 7). O
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Definition 2.32. Let X be a ky-analytic space and x € X, take a ky-affinoid
domain Sp A in X containing x, we define the completed residue field 7 (x) of x in
X as the completed residue field of = in Sp A.

By Corollary 13.16 in Affinoid algebras, 52 (x) does not depend on the choice
of Sp A up to an isomorphism of complete valuation fields over k.

3. Analytic domains

Let (k,| e |) be a complete non-Archimedean valued field and H be a subgroup
of R such that |k*|- H # {1}.

Definition 3.1. Let X be a kgy-analytic space. A subset ¥ C X is called a
kg -analytic domain if for any y € Y, there exist n € Z~q, kg-affinoid domains
Vi,...,V, contained in Y such that

(D yeVin--N;

(2) V1 U---UV, is a neighbourhood of y in Y.

Observe that the net of kg-affinoid domains in X that are contained in Y form
a net on Y. In particular, Y inherits a ky-analytic space structure from X, and we
have a canonical morphism Y — X in ky-An.

Lemma 3.2. Let X be a ky-analytic space, Y be a ky-analytic domain in X and
x € Y. Then the completed residue field of x in X is the same as the completed
residue field of z in Y modulo isomorphisms of completed valuation fields over k.

PRrOOF. This follows immediately from Corollary 13.16 in Affinoid algebras. O

e~

Proposition 3.3. Let X be a k-analytic space and z € X. Let A € 52(z) be a
non-zero homogeneous element. Then we can find a k-affinoid domain Sp B of z in
X and an inveritble function f € B such that

A= f(x).
If X is good, we may assume that Sp B is a k-affinoid neighbourhood of z in X.

PrOOF. We may assume that X is k-affinoid, say X = Sp A. Let x, : A —
A (x) be the character corresponding to z. Let | e |, be the bounded semi-valuation
on A corresponding to x. As Frac A/ ker| e |, is dense in .#(x) by definition, we
can find g, h € A such that g(x) # 0, h(z) # 0 and

A= g(x)/h(x).
Let Y be the open k-analytic domain in X defined by g(x) # 0 and h(z) # 0. We
take a k-affinoid domain Sp B of X containing x such that Sp B C Y. If X is good,
we may assume that Sp B is a neighbourhood of = in X. Then the images of g and
h in B are invertible by Corollary 6.11 in Banach rings. Now f = g/h € B satisfies
our assumptions. ([l

Example 3.4. Let X be a kgy-analytic space. Then any open subset U of X is a
kp-analytic domain.

In fact, for x € U, take V1,...,V,, as in Definition 3.1. By Proposition 10.13
in Affinoid algebras, up to replacing V;’s by kp-Laurent domains in them, we may
guarantee that V; C U foralli=1,...,n.
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Proposition 3.5. Let X, X’ be ky-analytic spaces and ¢ : X’ — X a morphism
of ky-analytic spaces.
(1) Let Y, Z be kpy-analytic domains in X, then so is Y N Z.
(2) Let Y be a ky-analytic domain in X, then ¢~1(Y) is a ky-analytic domain
in X’.

Proor. (1) Let z € Y N Z. Take ky-affinoid domains Vi, ...,V contained in
Y and kg-affinoid domains W4, ..., W,, contained in Z such that

2 e€VinN--NV,, z€Win--- AW,

and V3 U--- UV, is a neighbourhood of z in Y, W7 U ---U W, is a neighbourhood
of zin Z. For eachi=1,...,nand j =1,...,m, 7ly;nw, is a quasi-net, so we can
find a neighbourhood of = in V; N W; of the form Ulij U---u Urir{u with Ulij, cee Uf;{ij
being kp-affinoid domains in X containing x. Then each element in the collection
{U,?} contains z and the union is a neighbourhood of z in Y N Z.

(2) Let 2’ € ¢~ 1(Y) and = = ¢(z'). By Proposition 2.25, we can find n € Z~g,
kp-affinoid domains V{,..., V! on X’ and kg-affinoid domains Vi,...,V, on X
such that

Zdevin---nV., zeVin---NVy,
e(V/YCV,fori=1,...,n,

and V/U-- UV, (resp. V1 U---UV,) is a neighbourhood of ' (resp. x) in X’ (resp.
X). Take kg-affinoid domains W7y, ..., W,, in X contained in Y, each containing x
such that Wy U--- U W, is a neighbourhood of z in Y.

Then for each ¢ = 1,...,n, j = 1,...,m, we can find ky-affinoid domains
Wi’;- for k=1,...,r contained in W; NV; and containing x such that UkWi’; is a
neighbourhood of z in W; N'V;. Thus, Uj,kWZ@ is a neighbourhood of z in V; NY.
Then UZ-’E’- = ga_l(Vi’;-) NV/ is a kg-affinoid domain in V; by Corollary 13.12 in
Affinoid algebras. Moreover, U; x U} is a neighbourhood of 2" in V/ NY”. So U, ; xU;
is a neighbourhood of z’ in Y. O

Proposition 3.6. Let X be a ky-analytic space and Y be a kg-analytic domain in
X. Then for any kpy-analytic space Z and any morphism ¢ : Z — X whose image
is contained in Y, there is a unique morphism v : Z — Y such that the following

diagram commutes:
wx

Y — X

PROOF. The uniqueness of 1 is obvious. We only need to prove the existence.
This is an immediate consequence of Proposition 2.25 and Proposition 3.5.

To be more precise, assume that ¢ is given by a data as in Proposition 2.25,
we only have to show that each kg-affinoid domain V in X, V NY is a ky-affinoid
domain in Y. This follows from Proposition 3.5. O

Corollary 3.7. Let ¢ : X’ — X be a morphism of kg-analytic spaces and Y be a
kgr-analytic domain in X. Then X’ xy X in the category kp-An exists and =1 (Y)
represents X’ xy X.

Proor. This follows from Proposition 3.6 and Proposition 3.5. (]
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Corollary 3.8. Let Sp B be a kpy-affinoid space, then we have a functorial isomor-
phism
Homy,,-4n(Sp B, A}) — B.

PROOF. As Sp B is compact as a topological space, its image in A} is contained
in Sp k{r~1T} for some r > 0. By Proposition 3.6, we have natural bijections

Homy,,-an(Sp B, A}) — @HomkH_An(Sp B,Spk{r 'T}) = ligHomk_AffAlg(k{r_lT},B).
r>0 r>0

By Corollary 6.5 in Affinoid algebras, the right-hand side is identified with B. O

Proposition 3.9. Let X be a ky-analytic space, Y be a kpg-analytic domain in X.
For a subset Z C Y, the following are equivalent:

(1) Z be a ky-analytic domain in X;

(2) Z is a kg-analytic domain in Y.

PrROOF. (1) = (2): Let z € Z, we can find n € Zs( and kp-affinoid
domains Vi,...,V, in X containing = and contained in Z such that V3 U---UV,, is
a neighbourhood of z in Z. But observe that Vi,...,V,, are kg-affinoid domains in
Y as well, so we conclude.

(2) = (1): This follows from the same argument. It suffices to observe that
a ky-affinoid domain in Y is necessarily kg-affinoid in X, as can be seen from
Definition 2.19. ([l

Definition 3.10. Let X,Y be kgy-analytic spaces and ¢ : Y — X be a morphism.
We say @ is an open immersion if p(Y') is open in X and ¢ induces an isomorphism
between Y and ¢(Y) as kg-analytic spaces.

By Example 3.4, p(Y) is a kg-analytic domain in X and by Proposition 3.6,
we have a morphism of kg-analytic spaces Y — ¢(Y).

Proposition 3.11. Let X be a kg-analytic space and Y be a kg-analytic domain
in X. Assume that Y is a kg-affinoid space, then Y is a kg-affinoid domain in X.

PROOF. AsY is a ky-affinoid space, we know that |Y| is compact. Take finitely
many kg-affinoid domains Vi,...,V, in X such that

Y=VU---UV,.

Then Vi,...,V, are kg-affinoid domains in Y: let Sp D — Y be a morphism of
kg-affinoid spectra, whose image lies in V; for some ¢ = 1,...,n. Consider the
following commutative diagram

SpD

By Proposition 3.6, there is a unique dotted morphism making the outer triangle
commutative, hence making the whole diagram commutative. We have therefore
shown that V; is a kgy-affinoid domain in Y.

So the covering {V1,...,V,} of Y satisfies the assumptions in Definition 2.19
and Y is ky-affinoid. O

Vi
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Proposition 3.12. Let X be a ky-analytic space and {Y;};er be a family of kg-
analytic domains in X which forms a quasi-net on X. Then for any ky-analytic
space X', the following sequence is exact

Homy, - an (X, X') = [ [Homp-an (Vi, X') =[] Hompyoan (Y N Y5, X).
el i,j€I

PrOOF. Let {; : Y; = X'},c; be a family of morphisms such that ¢;, ¢;
coincides on Y; NYj for 4,j € I. We need to glue the ¢;’s into a single morphism
¢ : X = X'. Clearly, the underlying maps glue together to a continuous map
¢: X — X' by Lemma 2.2 in Topology and bornology.

Let 7 be the collection of kp-affinoid domains V' in X such that there is 7 €
and a kg-affinoid domain V' C X’ with V CY; and ¢;(V) C V'. Then 7 is a net
on X, and we have a morphism X — X'. O

4. Berkovich site

Let (k,| ®|) be a complete non-Archimedean valued field and H be a subgroup
of R+ such that |k*|- H # {1}.

Lemma 4.1. Let X be a ky-analytic space. Consider the category C of kp-analytic
domains in X, where the morphisms are inclusions of ky-analytic domains. For
each Y € C, consider the set of coverings Cov(Y’) consisting of all {Y; — Y },¢ such
that Y; is a kg-analytic domain in Y and {Y;};cs is a quasi-net on Y. The class of
coverings {Cov(Y)}y defines a Grothendieck pretopology.

ProoF. It suffices to verify the axioms in [ , Tag 03NH].

(1) An isomorphism Y’ — Y in C is in Cov(Y).

This is trivial as an isomorphism in C is necessarily identity.

(2) If {Y; = Y}icr and {Y;; — Yi}jey, for all i € I are in Cov(Y') and Cov(Y;)
respectively, then {Y;; — Y}, ; is in Cov(Y).

By Proposition 3.9, Y;; is a kg-analytic domain in Y for any ¢ € I, j € I;. It
suffices to show that {Yj;}; ; is a quasi-net on Y. Let y € Y, we can find finitely

many elements among {Y; }ier, say Y1,...,Y, sothat y € Y; foreach i =1,...,n
and Y7 U---UY, is a neighbourhood of y in Y. Similarly, for each i =1,...,n, we
can find finitely many Y;1,...,Y;;, among {Y;;};cJ, so that y is contained in each

of them and Y;; U---UYj;, is a neighbourhood of y in Y;. Then each element in
{Yi;}i=1,..nyj=1,..j, contains y and the union is a neighbourhood of y in Y.

(3) If {Y; — Y}ieq lies in Cov(Y) and Z — Y is a ky-analytic domain in Y,
then the fiber products Y; Xy Z exist and {Y; Xy Z — Z};cr lies in Cov(Z).

By Corollary 3.7, Y; Xy Z exists and is represented by the inverse image of
Z in Y;, which is a kg-analytic domain in Y; by Proposition 3.5. It is clear that
{Y; Xy Z}ier is a quasi-net on Z. O

Definition 4.2. Let X be a ky-analytic space. We will write the site constructed in
Lemma 4.1 as X and call it the Berkovich site of X. The corresponding Grothendieck
topology is called the Berkovich Grothencieck topology. The topos Sh(X) associated
with X is called the Berkovich topos of X.

Observe that the Berkovich Grothendieck topology is subcanonical by Proposi-
tion 3.12.
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Definition 4.3. Let X be a kg-analytic space. We define a sheaf of rings Ox on
X as follows: let Y be a kg-analtic domain in X, we set

Ox(Y) = Homy,,-an(X, Aj).
By Corollary 3.8 and Proposition 3.12, Ox defines a sheaf of rings. We call Ox the
structure sheaf of X. The corresponding ringed site (X, Ox) is called the Berkovich
ringed site. The induced ringed topos (Sh(X), Ox) is called the Berkovich ringed
topos.

Given any morphism f : Y — X of ky-analytic spaces, we have an induced
morphism of the corresponding ringed sites, still denoted by .

Definition 4.4. Let X be a kg-analytic space. An Ox-module M is coherent if
there is an admissible covering {Y;}ier of X such that M|y, is isomorphic to the
cokernel of a homomorphism of finite free Oy,-modules.

Example 4.5. Let A be a kpy-affinoid algebra and M be a fintie A-module. Then
M induces a coherent sheaf of Og}, 4-modules M as follows:

M(V)=M®, Ay.
Conversely, we can reformulate Kiehl’s theorem.

Theorem 4.6. Let A be a kgy-affinoid algebra and M be a coherent sheaf of
Osp a-modules. Set M = H°(X, M), then M is a finite A-modue, and we have a
canonical isomorphism ~
M = M.
The left-hand side is defined in Example 4.5.
PRrROOF. This is just a reformulation of Theorem 14.1 in Affinoid algebras. O

Corollary 4.7. Let ¢ : Sp B — Sp A be a morphism of ky-affinoid spaces. Then
the following are equivalent:

(1) ¢+Osp B is a coherent Ogp, 4-module;
(2) B is a finite Banach A-module.

PrOOF. Observe that for any kp-affinoid domain SpC in Sp A,
(,O*OSPB(SPO) = OspB(@il(Sp O)) e OspB(SpC®AB) - C®AB = C ®a B.
Here we applied Corollary 13.12 in Affinoid algebras and Proposition 9.6 in Affinoid

algebras. So ¢,Ogpp = B.

From this (2) trivially implies (1).

Conversely, assume (1), let B = H(Sp A, 9.Osp ). By Theorem 4.6, B is
a finite A-module. Let B’ denote the ring B endowed with the finite Banach
A-algebra structure as in Proposition 9.10 in Affinoid algebras. We need to show
that the identity map B’ — B is admissible. Observe that the identity map is
bounded by Proposition 9.4 in Affinoid algebras. By Proposition 10.5 in Affinoid
algebras, it suffices to show that the induced map Sp B — Sp B’ is surjective. Let
¢’ : Sp B’ — Sp A be the natural morphism of kg-affinoid spaces. Then

¢+(OspB) — ¢L(Osp 7).
It follows that ¢~ !(z) = ¢'~1(x) for any x € Sp A. We conclude. O

Corollary 4.8. Let ¢ : Sp B — Sp A be a morphism of kg-affinoid spaces. Then
the following are equivalent:
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(1) v+Osp B is a coherent Og;, 4-module and Ogp, 4 — . Osp, B is surjective;
(2) A — B is an admissible epimorphism.

PrOOF. Assume (2). By Corollary 4.7, ¢.Os,, g is a coherent Ogp, 4-module. To
see that Ogp 4 — ¢.Ogp, B is surjective, it suffices to show that for each kp-affinoid
space SpC in Sp A,

C—-C®usB
is surjective. This follows from the assumption.

Assume (1). We know that B is a finite Banach A-module. In particular,
A — B is admissible by Proposition 9.7 in Affinoid algebras. As Ogp a = ¢+Osp B
is surjective, by Theorem 4.6, A — B is surjective. Include details (I

Definition 4.9. Let Sp A be a ky-affinoid space and M = M is a coherent sheaf
of Ox-modules on X, where M is a finite A-module. The support Supp M of M is
the closed subset Sp A/Ann4 (M) of Sp A.

Let X be a kp-analytic space and M be a coherent sheaf of Ox-modules. Then
the support Supp M of M is a subset of X such that a point z € X lies in Supp M
if and only if for some kg-affinoid domain V' in X containing x, x € Supp M|y .

Here Ann 4 (M) is the annihilator of M in A.

Lemma 4.10. Let X be a ky-analytic space and M be a coherent sheaf of Ox-
modules. Take x € Supp M|y and a kg-affinoid domain V' in X containing 2. Then
x € Supp M|y.

ProOOF. By assumption, there is a kg-affinoid domain U in X containing x
such that x € Supp M|y .

Let W C UNYV be a kg-affinoid domain in X containing x. We claim that
x € Supp M|w. Let M = H°(U, M), then M ®4, Aw = H(W, M). By | ,
Tag 07T8] and Theorem 13.18 in Affinoid algebras,

AIIIIAU (M) XAy AW = AnnAW(M R Ay Aw)

and Supp(M|w) = Supp(M|y) N W. The claim follows. We may assume that
U C V. In this case, the same argument shows that x € Supp M|y . O

Proposition 4.11. Let X be a Hausdorff kx-analytic space. Then the following
are equivalent:

(1) X is paracompact;

(2) X admits a locally finite covering by kp-affinoid domains.

Note that the covering in (2) is necessarily a G-covering.

PROOF. Assume (1). Then (2) follows from Proposition 3.2 in Topology and
bornology. We take B to the collection of finite unions of kg-affinoid domains that
contain an open subset of X.

Assume (2). Let {X;};cr be a locally finite covering of X by kg-affinoid domains.
Define an equivalence relation on I generated by i ~ j if X; N X; # (. We say X;
and X, are elementarily linked in this case. Fix C € I/ ~ and ¢ € C. For any
n € Zsq, C,, denotes the union of X; where j and 7 are linked through a chain of
elementary links of length at most n. As the covering is locally finite, we see that
C,, is compact. So

XC:GCi

i=1
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is o-compact. The space X is clearly the coproduct of X¢’s, hence paracompact by
Proposition 3.2 in Topology and bornology. ([

Proposition 4.12. The category kg-An admits finite limits.

PROOF. By general abstract nonsense, it suffices to show that kg-An admits
finite fiber products.

Let ¢:Y — X and f: X’ — X be morphisms of kg-affinoid spaces. We want
to construct Y x x X'.

Step 1. We assume that X,Y, X’ are all paracompact and Hausdorff.

By Proposition 4.11, we can find a locally finite G-covering {X;}ier of X
consisting of ky-affinoid domains in X. By Proposition 4.11 again, we can find a
locally finite G-covering {Y;;}; ¢~ 1(X;) consisting of kg-affinoid domains in Y and
a locally finite G-covering { X/, }; consisting of kp-affinoid domains in X’ for each
1€ 1.

We can glue Y;; xx, X/,’s by Proposition 2.31 to get a ky-analytic space Y.
By Proposition 3.12, Y’ represents the fiber product Y x x X’.

Step 2. Assume only that X is a paracompact and Hausdorff.

Take open paracompact Hausdorff coverings {Y;}ier of Y and {X};e of X'.
The existence of these coverings follows from Proposition 2.30. Similar to Step 1, we
glue the Y; x x X}’s along the open subsets (Y;NY}) x x (X;NX])’s by Proposition 2.31,
we get a locally Hausdorff kp-analytic space Y’. Then by Proposition 3.12 again,
Y’ represents the fiber product Y x x X’.

Step 3. We handle the general case.

Take a covering {X;};,cr by open paracompact Hausdorff subsets. Let Y’ be
the gluing of ¢~ (X;) xx, f~1(X;)’s along ¢~ H(X; N X;) x x,nx, [T (XiNX;)’s by
Proposition 2.31. Then by Proposition 3.12 again, Y’ represents the fiber product
Y Xx X'. O

Remark 4.13. The original proof in | ] doees not make any sense to me.
Please contact me if you understand the details of Berkovich’s argument.

In a similar vein, we prove

Proposition 4.14. If K/k is an analytic field extension, then there is a natural
functor of base extension ky-An — K g-An extending the functor ky-Aff — K- Aff
defined by Sp A — Sp A&, K.

We will denote the image of a ky-analytic space X by Xg.

PROOF. Fix a ky-analytic space X, we want to construct functorially a Kp-
analytic space X .

Step 1. We assume that X is paracompact and Hausdorff.

By Proposition 4.11, we can find a locally finite G-covering {X;}ic; of X
consisting of kp-affinoid domains in X. We can glue X; x’s by Proposition 2.31 to
get Xg.

Step 2. In general, let {Y;};cr be an open covering of X by paracompact
Hausdorft subsets. We glue Y; g’s by Proposition 2.31 to get Xg.

These constructions are clearly functorial and defines a functor kgy-An —
KH—AH. O
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5. Closed immersions

Let (k,|®|) be a complete non-Archimedean valued field and H be a subgroup
of Rsq such that |k*| - H # {1}.

Lemma 5.1. Let ¢ : Y — X be a morphism of ky-analytic spaces. Then the
following are equivalent:

(1) for any x € X, there are n € Z~( and kp-affinoid domains V1,...,V, in
X containing x such that V3 U--- UV, is a neighbourhood of x in X and
the restriction ¢ ~1(V;) — V; is a closed immersion for any i = 1,...,n;

(2) for any ky-affinoid domain V in X, =1 (V) — V is a closed immersion.

Recall that closed immersions between kg-affinoid spaces are defined in Defini-
tion 12.1 in Affinoid algebras.
The statement in | , Lemma 1.3.7] is not correct.

PrOOF. Only (1) = (2) is non-trivial. Assume (1). Let 7 be the collections
of V C X satisfying (2). Then we claim that 7 is a net.

Observe that 7 is a quasi-net by our assumption. To see that it is a net, take
UV € 7and x € UNV, then we can find n € Z~¢ and kpg-affinoid domains
Wi,..., Wy in U NV containing x such that W7 U --- U W, is a neighbourhood
of z in UNV. In order to show that 7|yny is a quasi-net, it suffices to show
that ¢~ 1(W;) — W; is a closed immersion for i = 1,...,n. This follows from
Proposition 12.3 in Affinoid algebras.

Let V be a ky-affinoid domain in X. By (1) and the compactness of V, we
can find n € Zsg and Vi,...,V,, € 7 such that V. C V3 U---UV,. According to

Lemma 2.5 in Topology and bornology, we can find m € Z~g and Uy,..., U, € T
such that

V=UU---UU,
and each Uj is contained in some V;, where j = 1,...,m and ¢ = 1,...,n. By
Proposition 12.3 in Affinoid algebras again, U; € 7 for each j = 1,...,m. It suffices
to apply Corollary 4.8 to conclude that V' € 7. O

Definition 5.2. Let ¢ : Y — X be a morphism of ky-analytic spaces. We say ¢ is
a closed immersion if the equivalent conditions in Lemma 5.1 are satisfied.

Observe that this definition extends Definition 12.1 in Affinoid algebras.

Proposition 5.3. Let ¢ : Y — X, 9 : Z — X be a morphism of ky-analytic spaces.
Assume that ¢ : Y — X is a closed immersion. Consider the Cartesian diagram

ZxxY —Y

| o I

zZ " .x

Then Z xx Y — Z is a closed immersion.

PRrOOF. Taking a G-covering of Z, we may assume that Z is compact. We
could cover the images of Z in X by finitely many kg-affinoid domains V7,...,V,
in X, considering their preimages in Z, we could reduce to the case where the image
of Z in X is contained in a kpy-affinoid domain. We could then assume that X
is a kg-affinoid space and hence so is Y. By taking a G-covering of Z again, we
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may assume that Z is affinoid. It suffices to apply Proposition 12.3 in Affinoid
algebras. (]

Proposition 5.4. Let ¢ : Y — X be a morphism of ky-analytic spaces. Then the
following are equivalent:
(1) ¢ is a closed immersion;
(2) for any G-covering {X;};er of X, the restriction of p to ¢~ 1(X;) — X; is
a closed immersion for all ¢ € I;
(3) for some G-covering {X;}ics of X, the restriction of p to o~ 1(X;) — X;
is a closed immersion for all 7 € I.

In other words, being a closed immersion is a G-local property on the target.

ProOF. Assume (1). Let {X;}icr be a G-covering of X. Then the restriction
of p to ¢ 1(X;) — X; is a closed immersion for all i € I by Proposition 5.3. So (2)
holds.

(2) trivially implies (3).

Assume (3). Using the fact that (1) implies (2) as we already proved, we may
refine the G-covering {X;};c; and assume that each X; is ky-affinoid. It follows
from Lemma 5.1 that ¢ is a closed immersion, so (1) holds. ]

Corollary 5.5. Let H' D H is a subgroup of R~g. Let ¢ : Y — X be a morphism
of ky-analytic spaces. Then the following are equivalent:

(1) ¢ is a closed immersion;

(2) ¢ is a closed immersion when view as a morphism of kg-affinoid spaces.

PrOOF. By Proposition 5.4, we may assume that X is ky-affinoid. In this case,
Y is also kg-affinoid and the result is clear. O

Corollary 5.6. Let ¢ : Y — X be a morphism of ky-analytic spaces and K/k be
an analytic field extension.
(1) If ¢ is a closed immersion, so is pk;
(2) If K = k, for some k-free polyray r and ¢k is a closed immersion, then so
is .
PRrROOF. By Proposition 5.4, we may assume that X is a ky-affinoid space in

both cases. Then so is Y. Now (1) is obvious and (2) follows from Proposition 3.11
in Affinoid algebras. [l

Proposition 5.7. Let p: X — Y ¢ :Y — Z be closed immersions of kg-affinoid
spaces. Then ¥ o ¢ : X — Z is also a closed immersion.

PRrROOF. By Proposition 5.4, we may assume that Z is ky-affinoid, so Y and X
are also kg-affinoid. In this case, the result is clear, as the composition of admissible
epimorphisms is clearly admissible epimorphic. [l

Proposition 5.8. Let ¢ : Y — X be a morphism of ky-analytic spaces. Then the
following are equivalent:

(1) ¢ is a closed immersion;

(2) ¢«Oy is a coherent Ox-module and Ox — ¢.Oy is surjective.

PrOOF. As both properties are G-local on X, we may assume that X is a
kp-affinoid space and hence so is Y. This result then follows from Corollary 4.8. O
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6. Separated morphisms

Let (k,|®|) be a complete non-Archimedean valued field and H be a subgroup
of Rsq such that |k*| - H # {1}.

Definition 6.1. Let ¢ : X — Y be a morphism of kgy-analytic spaces. The
diagonal morphism of f is the morphism A, = Ax/y : X — X Xy X defined as
follows: let {Y;};cr be a G-covering of Y by kpg-affinoid domains and {X;;},cs, be
a G-covering of o~ 1(Y;) by kg-affinoid domains in X. Then we have a diagonal
morphism Ay, /y, : Xij — Xij Xy, Xj; defined by the codiagonal morphism of
kp-affinoid algebras. The induced morphisms X;; — X Xy X can be glued together
by Proposition 3.12 to get A,. By Proposition 3.12 does not depend on the choices
of the G-coverings.

Definition 6.2. A morphism ¢ : X — Y of kgy-analytic spaces is separated if
Ax/y : X — X xy X is a closed immersion.

Example 6.3. A morphism between kp-affinoid spaces is always separated. This
follows from Example 12.2 in Affinoid algebras by base change.

Proposition 6.4. Let ¢ : Y — X, ¥ : Z — X be a morphism of ky-analytic spaces.
Assume that ¢ : Y — X is separated. Consider the Cartesian diagram

IZxxY —Y

| o I~
Z7—" X
Then Z xx Y — Z is separated.
PROOF. By general abstract nonsense, we have a Cartesian diagram

z

AZ><XY/
ZIxxY —/— (ZXXY) Xz(ZXXY):ZXX(YXXY)

! 0 |

A
Y Y/x Y xyY

So the assertion follows from Proposition 5.3. O

Proposition 6.5. Let ¢ : Y — X be a morphism of ky-analytic spaces. Then the
following are equivalent:
(1) ¢ is separated;
(2) for any G-covering {X;};er of X, the restriction of p to p~1(X;) — X is
separated for all i € I;
(3) for some G-covering {X;}icr of X, the restriction of ¢ to o= 1(X;) — X;
is separated for all 7 € I.

PRrROOF. (1) = (2) by Proposition 6.4.

(2) = (3) is trivial.

Assume (3). Let Y; = ¢~ 1(X;). Then Y; x x, Y; is a G-covering of Y xx Y, and
we have a Cartesian diagram

Ayi/Xi
Y 2% Y xx, Vi

Lo

A
Y 25 vk Y
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for ¢ € I. So the assertion follows from Proposition 5.4. a

Proposition 6.6. Let ¢ : X — Y, ¢ : Y — Z be separated morphisms of
k-affinoid spaces. Then ¥ o ¢ : X — Z is also separated.

PrROOF. We have a Cartesian diagram

Xxy X Y5 Xxz X

Lo

A
Yy 2 Ly x,Y

By Proposition 6.4, ¢ : X xy X — X xz X is a closed immersion. On the other
hand, Ax,7 : X — X xz X factorizes as 1) o Ax/y. It follows from Proposition 5.7
that Ax,z is a closed immersion. O

Proposition 6.7. Let H' D H is a subgroup of R~g. Let ¢ : Y — X be a morphism
of ky-analytic spaces. Then the following are equivalent:

(1) ¢ is separated;

(2) ¢ is separated when view as a morphism of ky/-affinoid spaces.

Proor. This follows immediately from Corollary 5.5. ]

Proposition 6.8. Let ¢ : Y — X be a morphism of kgy-analytic spaces and K/k
be an analytic field extension.

(1) If o is separated, so is @;

(2) If K =k, for some k-free polyray r and g is separated, then so is ¢.

We will prove later on that the assumption in (2) is unnecessary.

Proor. This follows immediately from Corollary 5.6. t

7. Analytic germs

Let (k,| ®|) be a complete non-Archimedean valued field and H be a subgroup
of R-q such that |k*| - H # {1}.

Definition 7.1. A punctured kg-analytic space (X, x) is a ky-analytic space X
together with a point x € X.

A morphism between punctured kp-analytic spaces (X, z) and (Y, y) is a mor-
phism ¢ : X — Y of ky-analytic spaces sending = to y.

The category of punctured kg-analytic spaces is denoted by kg-An,.

Definition 7.2. A morphism of punctured kp-analytic spaces (X, z) — (Y,y) is
said to be separated (resp. a closed immersion) is the underlying morphism of
kg-analytic spaces is separated (resp. a closed immersion).

Definition 7.3. The category kg-Ger is the category of right fractions of kg-An,
with respect to the system of morphisms

¢ (X,z) = (Y,y)
that induces an isomorphism of X with an open neighbourhood of y in Y in k-Ger.

When we view (X, ) as an object in ky-Ger, we write it as X,. An object in
ky-Ger is called a kg-analytic germ.
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Be careful, we require ¢ to induce an isomorphism in k-Ger instead of kg-Ger,
although eventually, we will show that these notions coincide.
By definition,

HomkH-ger(X-T’ Yy) = hﬂ Homyp,;-an, ((Ua 13)7 (Y7 y))v
U

where U runs over all open neighbourhoods of z in X.

Definition 7.4. A kp-analytic germ X, is good if x admits an affinoid neighbour-
hood in X.

Note that this condition does not depend on the representative (X, z). To see
this, let U C z be an open subset containing x. We need to show that if x admits
a kp-affinoid neighbourhood in X, then it admits one in U. This follows from
Proposition 10.13 in Affinoid algebras.

Definition 7.5. A morphism of kgy-analytic germs ¢ : X, — Y, is saied to be
separated (resp. boundaryless, a closed immersion) if it is induced by a separated
morphism (resp. boundaryless, resp. a closed immersion) of punctured kg-analytic
spaces (U, z) — (Y,y), where U is an open neighbourhood of z in X.

Definition 7.6. Let X, be a ky-analytic germ. A kg-analytic domain in X, is a
kg-analytic germ V,,, where V is a ky-analytic domain in X containing z.

We say a finite family of kgy-analytic germs {V;, }ier covers X, if there is a
representative (X, z) of X, such that V;, can be represented by a kpg-analytic
domain V; € X for i € I and

X:Uw

i€l
Definition 7.7. Let ¢ : Y, — X, be a morphism of kgy-analytic germs and V, be
a kp-analytic domain in X,. Represent ¢ by a morphism ¢ : (Y,y) — (X, z) and
represent V,, by a kpy-analytic domain in X. Then the kg-analytic domain ¢=1(V)
in Y determines a kg-analytic germ ¢—*(V'),, which does not depend on the choices
we made. This ky-analytic germ is denoted by ¢=1(V,,).

Recall that ¢~1(V) is a ky-analytic domain in Y by Proposition 3.5.
Definition 7.8. Let X be a good kg-analytic space and x € X, we define
Ox o = lim Ay,
%
where V' runs over all kg-affinoid neighbourhoods of z in X. Include the definition
of affinoid neighbourhoods

Observe that kg-affinoid neighbourhoods of x in X are cofinal in the directed
set of k-affinoid neighbourhoods of z in X. This follows from Proposition 10.13 in
Affinoid algebras. So we may let V' runs over all k-affinoid neighbourhoods of = in
X as well.

Example 7.9. Let X, be a ky-analytic germ. Take a kp-affinoid domain Sp A of
X containing z. Given r € \/|k*|- H and f € A", we write

X r ' f) = (Sp A{r_lf})z )

Then X, {r~1f} is a ky-analytic germ. Observe that X,{r~!f} is independent of
the choice of Sp A. This construction depends only on the classes of f in O% ,.
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Given f € O% ., we define X {r~'f} = X {r~'f} for any f € A" lifting f as
above.

8. Reduction
Let (k,| o |) be a complete non-Archimedean valued field and H be a subgroup
of R such that |k*|- H # {1}.
In this section, when we do not specify the grading of a graded object, we mean
it is Ryo-graded. In particular k means k®>o.
Definition 8.1. Let X = Sp A be a k-affinoid space and = € X, we define the

reduction (X,z) of X at x as follows: let x, : A — J(x) be the character
corresponding to x, we define

e~

Observe that (X, ) is an affine open subset of P ) This follows from
Corollary 11.11 in Affinoid algebras.
Lemma 8.2. Let X = SpA, U = Sp B be a k-affinoid spaces and z € X. Let
t: U — X be an isomorphism of U with an open neighbourhood of x. We still write
t=Y(z) € U as z. Then the natural morphism

(Ua x) - (va)

ProOF. We first recall that .7 (z) does not depend on if we view z as in Sp A
or in Sp B by Corollary 13.16 in Affinoid algebras.

Observe that the morphism y,, : B — J#(x) is boundaryless with respect to A
by Proposition 15.9 in Affinoid algebras. By Proposition 15.2 in Affinoid algebras,

Xz(B) is finite over Xz(A). By Lemma 4.5 in Commutative algebras, we have
P%/fc {XCE(A)} = P%/fc {Xm(B)} .

O

Definition 8.3. Let X, be a good k-analytic germs. Take an affinoid neighbourhood
U of x in X, then we define

X, =Uz)CP

(@) )k

By Lemma 8.2, )’(Z depends only on X,.
The construction is clearly functorial in X,.

Lemma 8.4. Let X, be a good k-analytic germ and Y, be a k-analytic domain in
X,. Then Y, can be covered by finitely many k-analytic domains in X, of the form

Xo {r 7' f},
where n € N, f = (f1,...,fn) € (’))X(’m is a tuple of invertible elements and r; =
PrROOF. We may assume that X is k-affinoid, say X = Sp A. By Corollary 12.8
in Affinoid algebras, Y can be covered by finitely many k-rational domains in
X, say of the form Sp A{r~'g/h}, where m € N, r = (ry,...,7) € R7, g =
(g1,---,9m) € A™, h € A and g1,...,gm,h generates the unit ideal. We may
assume that Y = Sp A{r—1g/h}.



8. REDUCTION 29

By shrinking X, we may assume that h is invertible. Set f; = g;/h, then
Y =SpA{ri ' f1,. ... fm)-
By further shrinking X, it suffices to consider those i with |f;(z)| = ;. O

Lemma 8.5. Let X, be a good k-analytic germ. Givenn € Nand f = (f1,..., fn) €
0%, then

XA} = X A (). ()}
where r = (rq,...,7r,) and r; = |fi(z)| for i =1,... n.

PrOOF. We may assume that X is k-affinoid, say X = Sp A. By induction on
n, we may assume that n = 1. Consider the admissible epimorphism

¢ A{rIT} — A{r~1f}
sending T" to f. By Theorem 11.10 in Affinoid algebras,
1 Ar'T) - A{r1f}
is finite. Let xggﬂ_lf} — J(x) be the character defined by z.

Then Y, (A{r—1f}) is finite over x,(A)[f]. So the assertion follows from
Lemma 4.5 in Commutative algebras. ([

Lemma 8.6. Let X, be a good k-analytic germs and Y, be a good k-analytic
domain in X,. Then we can find n € N, fi,..., f, € O , such that

Yo = Xo {Xa(f)s- o Xa ()}
In particular, we can identify 37; with an open susbet of )/(:;

PRrROOF. The same argument as in Lemma 8.4 that we can assume that X = Sp A
andY = Sp A{r~'f} forsomen € N, r = (r1,...,r,) € R, f = (f1,..., fn) € A"
with 7; = |fi(z)| for i = 1,...,n. So the assertion follows from Lemma 8.5. O

Lemma 8.7. Let X, be a good k-analytic germ, n € Z~¢ and Yi,,..., Y, be a
covering of X, by good k-analytic domains. Then

n
i=1
PROOF. Observe that we are free to replace {Y;; }; by its refinements by cov-

erings by good k-analytic domains. We may assume that X is k-affinoid, say
X = SpA. Then by Lemma 13.3 in Affinoid algebras, we may assume that the

covering is k-rational and is generated by ri L, , 71 f. Up to shrinking X, we
may guarantee that |f;(z)| =r; for ¢ = 1,...,n. In this case, the assertion follows
from Lemma 8.5. U

Lemma 8.8. Let ¢ : Y, = X, be a morphism of good k-analytic germs. Let X/,
be a good k-analytic domain in X, and set Y, = ¢~'(X7), then

Y)=d7'(X0).
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PRrROOF. By Lemma 8.4, we may find m € Zsg, n1,...,nm €N, gi1,...,gin, €
0%, fori=1,...,m such that X; is covered by X{ritga,. .. ,T;Lligmi} for i =
1,...,m, where r;; = |g;j(x)| fori=1,....m, j=1,...,n,.

Then Y is covered by Y{r;;' g}y, ... ,rijlliggm} for i =1,...,m, where g;; is the
image of g;j in Oy fori=1,....,m,j=1,...,n;.

By Lemma 8.5, we have

X} = Xe {N=@00)s - Xe (Gim,)}
i=1
and

m
V= U {%e, Wei) )
Our assertion is now clear. O

Definition 8.9. Let X, be a k-analytic germ. By Lemma 8.6, the reduction defines
a functor from the category of good k-analytic germs in X, (with inclusions as the
morphisms) to the category of open affine subsets of P% i We define
)/(vw =1 i/;,
v

where Y, runs over the filtered category of good k-analytic germs in X, and the
colimit is taken f the category T% e
The object X, is called its reduction of X,.

Theorem 8.10. Let X, be a k-analytic germ. Then the reduction functor

k-Ger — T%/ﬁ

establishes a bijection between the k-analytic domains and non-empty quasi-compact

open subsets of X,.
This bijection commutes with finite unions and finite intersections.

In | ], the author forgot the non-emptyness assumption.

PROOF. The last assertion is obvious by construction.

Step 1. We prove the theorem under the additional assumption that X, is
good.

Step 1.1. Let [,m € Nand f = (f1,...,fi) € Okx ., 9= (g1,---,9m) € O% .
Assume that

XaAf} € X9},
then we prove that
X, {r 1} € Xofs g},
where 7 = (r1,...,71), s = (S1,...,Sm),

ri=fi(@)l, 55 =lg;(@)|
fore=1,...,0,j=1,...,m.
We may assume that X is k-affinoid, say X = Sp Aand f1,..., fi,91,---,9m € A.
Let x, : A — 7 (x) be the character of z. Let

—_~—

B =x,(A) C A (x).
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By definition,

X,=P B}.

7t
By Lemma 8.5, we have

X {r ' f} =X {BIf]},

Xo{r=1f,s71g} =X {B[f,3]}.
The right-hand sides are equal by our assumption, so by Lemma 4.5 in Commutative
algebras, B[f, §] is finite over B[f]. We take monic polynomials of §; over B[f]:

T + G T" "+ +ay0, € BIf][T]
with @;1,...,a;,, homogeneous of degree |g;(2)[*, ..., |g;(x)|™ respectively. This is
possible by Proposition 2.18 in Commutative algebras. We lift a5, to aj, € A{r=f}
with p(a; k) = p(g;)* for j=1,...,m, k=1,...,n;. It follows that

[(9)7 + ajng; ™ 4+ ajn,) (2)] < |g;(@)]"
for j = 1,...,m. Up to shrinking X, we may assume that this inequality holds
everywhere on X {r—1f}.

By then |g;(y)| < |g;(z)| for any y € X{r~!f}. Our assertion follows. -

Step 1.2. Suppose that Y, is a k-analytic domain in X, with Y, = X, then
Y, = X,.

We may assume that X is k-affioid, say X = Sp A.

By Lemma 8.4, we can write Y, as a finite union of V;, := Xx{ri_lfi} for
i=1,....,m,wheren; €N, f; = (fir,..., fin,) € O;(’Z’ and r; = (r1, ..., Tin,) with
ri = £ (@) B N

According to Lemma 8.7, V; , for i = 1,...,m covers X,.

By Lemma 4.8 in Commutative algebras, we can refine this covering to a Laurent
covering

U:Z{U'Z)?; ~j17""~jl} ’
] {a 9i'} =gt €LY

where [ € N and gy, ..., § are homogeneous elements in . (z). Lift §1,...,q to
g1,---,q1 € A. We consider the k-Laurent covering of X generated by

p(31) " g1, p(@) g
The reduction of this covering is clearly Y. By Step 1.1, the germs of U at = is a
refinement of {V 4. .., Vin.}, S0 the latter is a covering of X, namely X, — Y.
Step 1.3. We prove that each quasi-compact open subset }7; of )/(Vx is the
reduction of some k-analytic domain Y, in X,.
We can write

m
YI = UXJJ{fila"'7fin7;}7
i=1

where m € Z-g, ni,...,nym € N, ﬁ; € J(x) are homogeneous elements for
i=1,...,m,j=1,...,n: Lift f;; to fi; € Ox,, it suffices to take

m

-1 1
U X'L {ril fil’ e 7ri’nifi7li} ’
i=1

where r;; = |fi;(z)| fori=1,...,m,j=1,...,n,.
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Step 1.4. Suppose that Y,, Z, are k-analytic domains in X, with Z = Z
Then we prove that Y, = Z,.

Take p,q € N, good k-analytic domains Y,!,...,Y? in Y, and good k-analytic
domains Z},..., ZP in Z, such that

P q
v, =Jvi=Jz.
i=1 i=1

Therefore, for any i = 1,...,p, {YinN Z%}jzl,m’q is a covering of Y. By Step 1.2,
{YinZi}—1, 4 is a covering of Y/ for i = 1,...,p. So Y, C Z,. By symmetry
Y, =Z,.

We have finshed the proof when X, is good.

Step 2. We handle the general case. . .

Step 2.1. We prove that each quasi-compact open subset Y, of X, is the
reduction of some k-analytic domain Y, in X,.

Take p € N, good k-analytic domains X}, ..., X2 in X, such that

— P —
X, =Jxi
i=1

.....

By Step 1, if; N )/(\:; ca be lifted to a k-analytic domain Y} in X for i =1,...,p.
The union of Y,\’s for i = 1,...,p is a lifting of ?;

Step 2.2. Suppose that Y,, Z, are k-analytic domains in X, with i’; = Z
Then we prove that Y, = Z,.

For each i = 1,...,p, we have
Y,NXi=Y,NX.=2Z,NX. =Z,N XL
By Step 1, Y, N X! = Z, N X! coincides for i = 1,...,p, so Y, = Z,. O

Corollary 8.11. Let ¢ : Y, — X, be a morphism of k-analytic germs, then the
following are equivalent:
(1) ¢ is a closed immersion;
(2) ¢: Z — X, is an isomorphism and ¢ is represented by a G-locally closed
immersion.

Include the notion of G-locally closed immersion somewhere

PROOF. (1) = (2): This is obvious.

(2) = (1): After shrinking X and Y, we can take a k-analytic domain X’ in
X, a neighbourhood Y” of  in Y such that ¢(Y”) C X’ and the restriction Y/ — X’
is a closed immersion. It suffices to show that ¢ is boundaryless at y. In other
words, we need to show that X! = X,. By Theorem 8.10, this is equivalent to
)?ZC = X,. By (1) = (2) direction of this corollary, ),(Z = ZJ’ But clearly ?y = ?y’
So our assertion follows. O

Lemma 8.12. Let Y, — X,, Z, — X, be morphisms of k-analytic germs. Let

T =Y xx Z. Take a point t € T whose image in Y is y and whose image in Z is z.
Then the natural map

Tt & (YU X P%/k%(ﬂ/k’) X(;(\;XPN ~;?(—t/)/];) (Zz X P%/%jf(t)/k‘)

7 (z) )k
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is a homeomorphism.
Existence of t needs to be proved somewhere following Ducros

PROOF. As both sides commute with colimits, we may assume that X,Y, Z are
all k-affinoid, say X =Sp A, Y =SpB and Z =SpC.

Let xz : A = J(x) (vesp. Xy : B = H(y), resp. x. : C — H#(z)) be the
character corresponding to x (resp. y, resp. z). Let Ao (resp. By, resp. Cy) be the
image of X, (A) (resp. Xy (B), resp. x(C)) in jf( ). The character corresponding
to t is given by

Xt ¢ B®AC — %(t)
So

T, = Pg?(?f/k {Im x¢} -

As B ®3 C — B&4C is finite by Lemma 11.13 in Affinoid algebras, by Lemma 4.5

in Commutative algebras, we have

T=P o Do}

P

where Dy is the image of the natural map B ® z C — (1),
We are supposed to prove that

{Co}.

%(t)/k{ 0} = Mk{ 0} x P Bz

Equivalently,
Do} = j?(t//k{ 3o, Co}-
This is obvious as Dy is generated by B and Cp. [l

Corollary 8.13. Let Y, — X, be a morphism of k-analytic germs and V, be a
k-analytic domain in X,. Let W, =Y, xx, V,. Then W), is the preimage of V} in
Y,.

Proor. This follows immediately from Corollary 8.11. ]

Corollary 8.14. Let ¢ : Y, — X, be a morphism of k-analytic germs, then the
following are equivalent:

(1) ¢ is separated;
(2) ¢:Y, —» X, is separated.

PRrROOF. Observe that the diagonal morphism Ay, x : Y — Y xxY is a G-locally
closed immersion, so by Corollary 8.11, ¢ is separated if and only if

Ay/x : ?; — (Y Xx Y)(%y)

is an isomorphism.
By Lemma 8.12, the natural map

Z, — Yy X x Yy
is a homeomorphism, where

X X Xp/f( 5% P%/}}
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— _ —~ -
Thus, Ay, x is an isomorphism if and only if Y, — X' is injective, namely, Y, — X,
is separated. O

Lemma 8.15. Let X, be a good k-analytic germ. Then the following are equivalent:

(1) x admits a k-affinoid neighbourhood V' in X which admits a kg-analytic
s’tvrucutre;

(2) X, is an H-strict affine open subset of P%/%.

If Temkin’s argument of Lemma 9.1 is OK, we can remove the good assumption!

Proor. Assume (1). Let V = Sp A be as in (1). Let x, : A — J(x) be the
character defined by x. It follows from Theorem 8.4 in Affinoid algebras that x (A)

VIkx|-H

is contained in J¢(x) . Tt follows that X, is H-strict by Corollary 5.4 in
Commutative algebras.

Assume (2). Take n € N and non-zero homogeneous elements f1,..., f, € J(x)
with degree r1,...,r, € H such that

By assumption, X, is good. * So we can find a k-affinoid neighbourhood V' of
zin X. Up tg\s&rinking V = Sp B, we make find inveritble elements hq,...,h, in
B such that h;(z) = f; fori=1,...,n.

Let h : V — A} be the morphism induced by hi, ..., h,. Include the functor of
points of An Let ¢t = h(x) and W be the affinoid domain in A} defined ny |T;| < r;
fori=1,...,n. We have a commutative diagram

(V,$) # (szt)
(W, 1)

Also observe that the morphism of k-analytic germs X, — (A}); factorizes through
W4, as can be seen on the level of reduction. So up to shrinking V', we can find a
k-affinoid neighbourhood W' of ¢ in A} such that h(V) C W NW’'. We may assume
that W’ is a kg-analytic domain. As ?I = )?m is the preimage of (W NW'); = ﬁ//t,
the morphism V. — W N W’ is boundaryless at x. As W N W’ is ky-analytic,
it follows from Proposition 15.5 in Affinoid algebras that x admits a kg-affinoid
neighbourhood in X. O

Corollary 8.16. Let X, be a k-analytic germ. The following are equivalent:
(1) the germ X, is kp-analytic;
(2) the reduction X, is H-strict.

We say X, is kgy-analytic in the sense that it lies in the essential image of
kg-Ger — k-Ger.

PRrROOF. (1) = (2) follows immediately from Lemma 8.15.

*Assume that Lemma 9.1 is correct, by Theorem 9.2, the germ X is automatically good.
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Assume (2). Let {U;}icr be an H-strict atals of X,. For each i € I, we can
find a k-analytic domain X, in X, such that U; = X, ; by Theorem 8.10. By
Theorem 8.10,

Xia N Xj)a; =U;, N0,
for all 4,5 € I. So we may assume that )71 is an H-strict quasi-compact open subset
of P——

Cover X, by finitely many H-strict affine open subset Vi,...,V,,. By Theo-
rem 8.10, we can lift V; to a ky-analytic germ W; , in X, fori =1,..., m. Morevoer

Wi NW; » is kg-analytic for any j = 1,...,m. It follows that X, is kg-analytic. [
Definition 8.17. Let X, be a ky-analytic germ. We define

—~H —~\H

X = (%)
This makes sense by Corollary 8.16.

Proposition 8.18. Let Y,, X, be kgy-analytic germs. Then for any morphism

~H ~H
Y, — X, in k-Ger, there is a unique continuous map Y, — X, making the
diagram commutative:

Y, Xo
» / By /
Y, > Xo
P e k Lol

—~—H _ P/—\-/H ~
H(y) [kH H(x) kT

PRrROOF. This follows immediately from Proposition 6.5 in Commutative algebras.
O

Proposition 8.19. Let X, be a k-analytic germ. If X, lies in the essential image
of ky-Ger — k-Ger, then the kpy-analytic germ whose image in k-Ger is isomorphic
to X, is unique up to a canonical isomorphism in kg-Ger.

PRrROOF. Let 7 = {V;;}ier be a ky-affinoid atlas defining the kpy-analytic
structure on X,. Let V. be a ﬁ—analyﬁi& domain in X, that admits a kgy-analytic
structure. By Corollary 8.16, V,, and V; , are all H-strict. But

Vwm‘/i,w:?a:m‘?i\;7

so VNV, admits a ky-analytic strucutre. But V;  is separated so the kg-analytic
structure is unique. Therefore, V, N'V; , is kg-analytic with respect to 7 for any
1€ 1. So V, is H-strict with respect to 7. O

Corollary 8.20. Let X be a k-analytic space. Assume that X admits a kg-analytic
structure, then the kg-analytic structure is unique up to a unique isomorphism.
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PRrROOF. This is a consequence of Proposition 8.19. ([

Theorem 8.21. Let H' O H be a subgroup of R~g. The natural functor
kg-An — kg-An
is fully faithful.
PRrROOF. We may assume that H' = R. It suffices to prove the result at the
level of germs, namely, it suffices to show that
kg-Ger — k-Ger

is fully faithful.

Let X, Y, be kg-analytic germs and suppose that we are given a morphism
Y, — X, in k-Ger. Let V, be a ky-analytic domain in X,. We need to show that
Wy =Y, xx, V, is a kg-analytic domain in Y,. We draw the Cartesian diagram:

Wy ——V,

| o |

Y, — X,

By Corollary 8.16, )/(\x, }/f; are H-strict and by Proposition 8.18, the preimage of
Ve in Y, is open quasi-compact and H-strict. But this preimage is just W, by
Corollary 8.13, so we conclude that W), is kg-analytic by Corollary 8.16. O

Corollary 8.22. Let X be a k-analytic space. Then there is at most one kg-analytic
space X’ up to isomorphisms in kg-An whose image under

kH—.An — k-An
is isomorphic to X.

In particular, we can and will view kpg-analytic spaces as k-analytic spaces that
admit (necessarily unique) structures of kg-analytic spaces.

ProoF. This follows immediately from Theorem 8.21. (]

9. Some results whose proofs I do not understand

We introduce a lemma allowing one to tell when the gluing of two affinoid spaces
in a suitable position is good.

Lemma 9.1. This is probably problematic, we will avoid using this result! Let X
be a separated compact k-analytic space and x € X. Assume that

(1) X, C P,}/f\(;)/fc is an affine subset;
(2) X is the union of two k-affinoid domains Y = Sp B and Z = Sp C both

containing z;

(3) there is a non-zero homogeneous element A € 5 (x) such that
Yo = XN, Zo=X. {07}
Then X, is good.

This proof does not make much sense to me. I am just reproducing the arguments
of Temkin. Need some reflection!
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PrOOF. We observe that we are free to shrink X to k-analytic domains of the
following form: Y’ U Z’, where Y’ and Z' are k-affinoid neighbourhoods of z in Y’
and Z respectively. We will express this procedure as shrinking X.

Step 1. We show that after shrinking X, we may assume that Y N Z = Sp A,
where

A=B{tf~'} =C{t"'g}

for some f € Band g € C and pa(f —g) <t:=p(A\) and A = f(x).
By Proposition 3.3, up to shrinking X, we can find f € B, g € C both invertible
such that

It therefore follows that
I(f —g)(@)| <t

After shrinking X, we can make sure that

sup |(f — 9)(y)] < t.
yeEYNZ

After shrinking X, we can guarantee that
sup |f(y)| <t inf [g(z)| > .
yey 2€Z

Why? This is not an open condition on Y or Z!!!!
In particular,

YNZCY{tfynz{t g}

This relies on the unjustified claim
By Lemma 8.5, we have

Y{tf 1} = Z{t g}, = (YN 2),.

Applying Theorem 8.10, we can find k-affinoid neighbourhoods Y’ = Sp B’ and
7' =SpC’ of x in Y and Z respectively such that

Y'NnZ=Y'{tf '}, Ynz =2z{t""g}.

As Y' N Z' is a k-affinoid neighbourhood of z in Y N Z, we can find a k-Laurent
neighbourhood W of z in Y N Z which is contained in Y’ N Z’ and which is of the
form

YNZ){s u,sv"},
where n,m € N, s = (s1,...,8,) € Ry, s’ = (s,...,s],) € RZ) and u =
(u1,...,up) € A" v = (v1,...,vy) € A™. This follows from Proposition 10.13 in
Affinoid algebras.

AsY'NZ =Y'{tf~'} is a k-Weierstrass domain in Y’ by Proposition 10.5 in
Affinoid algebras, we can find uj,v; € B sufficiently close to u;,v; over YN Z for
i=1,...,n,7=1,...,mso that Y := Y'{s~ !/, s'v'~1} is a neighbourhood of =
in Y’. Similarly, we can find Z” = Z'{s~1u", s’'v"~1} for suitable perturbations of
u and v. Moreover,

W=Y"nY'nZ)=2Z"nYynz.

It follows that W =Y"{tf~'} = Z"{t71g} = Y" N Z". Replacing Y and Z by Y
and Z" and X by Y U Z”, we reduce to the situation stated in this step.
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Step 2. We show that after shrinking X, we may guarantee that there are
admissible epimorphisms

0.1) E{r7'T,t7181,pS2} = B, Ty~ fifori=1,...,n,8 — f, S f1,
K{r—'T,q7'S1,tS:} = C, Ty gifori=1,....,n,8 +g,S+ g ",
wherene N, p<t<q,r=(r,...,rn) €RYy, fi,....fn€B, g1,...,9n € C and
Ifi —gill <rifori=1,....n; |f—gl <t
where the norm || || on A is the quotient norm A induced by
E{r7'T t7151,tS} - B, Ty~ fifori=1,...,n,8 +— f, Sy f L.

In order to guarantee that r in both morphisms are the same, we need an argument
as in Step 1, which is problematic! This is unfortunately essential to Step 3. I
cannot Illilke sense of this proof anymore!

As X, is affine, we can write it as

P%/% {041,...7am}

for some non-zero homogeneous elements «; € #(x) for i =1,...,m.

—

By Proposition 3.3, after shrinking X, we may assume that «; = f;(x) for some
invertible f; € Bfori=1,...,m.
Let r; = |p(f:;)] for i =1,...,m. Set

D = k{r~'T,t7181,pSs}.

Let ¢ : D — B be the first morphism in the beginning of this step and y, : B —
(x) be the character corresponding to x. Then ¢ := y, o ¢ satisfies

@(D) = kfaq, ..., am, A

On the other hand, Y, = P%/%{al, oy @, A} by Lemma 8.5. It follows from
Lemma 4.5 in Commutative algebras and Proposition 15.2 in Affinoid algebras that
Xz is inner with respect to D. It follows from Proposition 15.2 in Affinoid algebras

that ¢ can be extended to a continuous epimorphism
K{r T, t71S1,pSs,Ur,...,Us} = B, Ui u;fori=1,....a
with |u;(z)| < 1fori=1,...,a.

AsY N Z is a k-Weierstrass domain in Z, we can find g1,...,¢m,g € C close
enough to fi1,..., fm, f on Y NZ. Up to shrinking Z, we may also guarantee that
they are close on Z. In particular, we can replace g by ¢’ but guaranteeing that
Y NZ=Z{t g} still holds.

Similarly, one constructs

K{r—'T,q7'S1,tS,V1,....,Vis} = C, Vi w;fori=1,....b
with |v;(z)] < 1 for ¢ = 1,...,b. By perturbation, we can find u},...,u, € C,
vi,...,vp close to ug, ..., ue and vy,...,v, on Y N Z such that
Y =Y{vy,...,v}, Z'=Z{u,. .. u}

are neighbourhoods of x in Y and Z respectively. Up to replacing Y and Z by Y’
and Z’, we conclude this step.

Step 3. We show that X is k-affinoid after the reduction in Step 2.

We first assume that the two maps in (9.1) are both isomorphisms.
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Let B denote the subspace of B consisting of elements of the form:

Z ZAa,jfafj'

a€Nm =0

Let C_ denote the subspace of C' consisting of elements of the form:

0
Z Z /\a,jgagj'

aeN"™ j=—c0
We observe that each element A = By + C_. Take a € A and expand

a= Y Y Ao

aeN" j=—oc0
Then
0 0o
a= 2 2 Al P+ 3D hafF
a€eN™ j=—o0 aeN? j=1
is the desired decomposition.
In particular, for i = 1,...,n, we can write

fi—gi=bitc, [f—g=btc
with b,b1,...,b, € By, ¢,c1,...,¢, € C_. Then h; :== f; —b; and h := f — b are
contained in D := BN C. It follows that
E{r7'T,t7'S,pS™'} = B, Ty~ h;fori=1,...,n,8 h,
E{r~'T,q'S,tS} = C, Ty~ hifori=1,...,n,8 h,
are isomorphisms. It follows that D = k{r—1T,pS~! ¢S} and X = Sp D.
Now we handle the general case. Let

A =k{r T, t718,tS~ '}

and consider the epimorphism
A=A Ty fifori=1,...,n;S— f.
We can find preimages G1,...,G,,G € A’ of g1,...,gn, g such that the norms of
T; — G; and S — G are small enough. THen the map
E{r T, t7'5,tS7 '} = A, Ti— G, S — G

is an isomorphism. Let

B’ =k{r 'T,t7'8,pS~1},

C' =k{r 'G,q¢ 'G,tG™'}.
Set Y/ = Sp B’ and Z’ = Sp C’. By construction, we have canonical isomorphisms

Y'{S™'} = 7/{G} =SpA.
By the previous case, X’ obtained by gluing Y’ and Z’ along Sp A’ is k-affinoid.
The homomorphisms B’ — A and C' — A factorize through B and C and gives

closed immersions Y — Y’, Z — Z’. The latter gives rise to a closed immersion
YNZ — Y'NZ'. Hence, we get a closed immersion X — X’. So X is k-affinoid. O

Theorem 9.2. This is probably problematic, we will avoid using this result! Let
X, be a k-analytic germ. Then the following are equivalent:
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(1) X, is good;

(2) X, is an affine open subset of P%//}'

PROOF. (1) = (2). This follows from the definition.

(2) = (1). In proving this direction, we are free to replace X by its k-analytic
domain that contains z in the interior. We will express this procedure simply as
shrinking X .

By Corollary 8.14, we may assume that X is a compact separated k-analytic
space. Let {Y;};cr be a finite k-affinoid covering of X. After shrinking X, we may
assume that = € Y; for each i € I. -

By Theorem 8.10, {Y; 5 }icr is a finite affine covering of X,.

By Lemma 4.8 in Commutative algebras, we can find a Laurent covering

v= {5

of X, refining {Y; ,}ier, where n € N and fi,. .., f, are homogeneous elements in

(). According to Theorem 8.10, we can lift each element in V to a k-analytic

domain V; ; in X,. After shrinking X, we may assume that X =V, U---UVj,.
By induction on n, we reduce easily to the case n = 1. Now it suffices to apply

Lemma 9.1. O
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