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Commutative algebras

1. Introduction

2. Graded commutative algebra

Let G be an Abelian group. We write the group operation of G multiplicatively
and denote the identity of G as 1.

Definition 2.1. Let A be an Abelian group. A G-grading on A is a coproduct
decomposition

A =
⊕
g∈G

Ag

of Abelian groups such that Ag ⊆ A. An Abelian group with a G-grading is called
a G-graded Abelian group.

An element a ∈ A is said to be homogeneous if there is g ∈ G such that a ∈ Ag.
If a is furthermore non-zero, we write g = ρ(a). We set ρ(0) = 0. We will write
ρ(A) for the set of ρ(a) when a runs over all homogeneous elements in A.

A G-graded homomorphism between G-graded Abelian groups A and B is a
homogeneous of the underlying Abelian groups f : A→ B such that f(Ag) ⊆ Bg
for any g ∈ G.

The category of G-graded Abelian groups is denoted by AbG.

Remark 2.2. A usual Abelian group A can be given the trivial G-grading: A0 = A
and Ag = 0 for g ∈ G, g 6= 0. In this way, we find a fully faithful embedding

Ab→ AbG.
When we regard an Abelian group as a G-graded Abelian group and there are no
natural gradings, we always understand that we are taking the trivial G-grading.

More generally, let G′ be a subgroup of G. Then any G′-graded Abelian group
can be canonically identified with a G-graded Abelian group: for the extra pieces in
the grading, we simply put 0.

Conversely, if G′ be a subgroup of G and A is a G-graded Abelian group, we
write

AG
′

:=
⊕
g∈G′

Ag.

This is a G′-graded Abelian group.
The same remark applies to all the other constructions in this section, which

we will not repeat.

Definition 2.3. A G-graded ring is a commutative ring A endowed with a G-grading:

A =
⊕
g∈G

Ag

5



6 COMMUTATIVE ALGEBRAS

as Abelian groups and such that
(1) AgAh ⊆ Agh for any g, h ∈ G;
(2) 1 ∈ A1.

A G-graded homomorphism of G-graded rings A and B is a ring homomorphism
f : A→ B such that f(Ag) ⊆ Bg for each g ∈ G. A G-graded subring of a G-graded
ring B is a subring A of B such that the grading on B restricts to a grading on A.

The category of G-graded rings is denoted by RingG.

Example 2.4. Let A be a G-graded ring, n ∈ N and g = (g1, . . . , gn) ∈ Gn. Then
there is a unique G-grading on A[T1, . . . , Tn] extending the grading on A and such
that ρ(Ti) = gi for i = 1, . . . , n. We will denote A[T1, . . . , Tn] with this grading as
A[g−1

1 T1, . . . , g
−1
n Tn] or simply A[g−1T ].

Example 2.5. Let A be a G-graded ring and S be a multiplicative subset of A
consisting of homogeneous elements, then S−1A has a natural G-grading. To see this,
recall the construction of S−1A in [Stacks, Tag 00CM]. One defines an equivalence
relation on A × S: (x, s) ∼ (y, t) if there is u ∈ S such that (xt − ys)u = 0. For
each g ∈ G, we define (S−1A)g as the set of (x, s) for all s ∈ S and x ∈ Agρ(s). It is
easy to verify that this is a well-defined G-grading on S−1A. Add details.

In particular, if f ∈ A is a non-zero homogeneous element, then we define Af
as S−1f with S = {fn : n ∈ N}.

Definition 2.6. Let A be a G-graded ring. A G-homogeneous ideal in A is an ideal
I in G such that if a ∈ A can be written as

a =
∑
g∈G

ag, ag ∈ Ag

with almost all ag = 0, then ag ∈ I.

Example 2.7. Let A be a G-graded ring and n ∈ N and a1, . . . , an be homogeneous
elements in A. Then a1, . . . , an generate a G-homogeneous ideal (a1, . . . , an) as
follows:

(a1, . . . , an)g =
n∑
i=1

Agρ(ai)−1ai

for any g ∈ G.

Lemma 2.8. Let f : A→ B be a G-homomorphism of G-graded rings. Then ker f
is a G-homogeneous ideal in A.

Proof. We need to show that
ker f =

∑
g∈G

(ker f) ∩Ag.

Take x ∈ ker f , we can write x as∑
g∈G

ag, ag ∈ Ag

and almost all ag’s are 0. Then

f(x) =
∑
g∈G

f(ag), f(ag) ∈ Bg.

It follows that f(ag) = 0 for each g ∈ G and hence ag ∈ (ker f) ∩Ag. �

https://stacks.math.columbia.edu/tag/00CM
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Definition 2.9. Let A be a G-graded ring and I be a G-homogeneous ideal in A.
Then we define a G-grading on A/I as follows: for any g ∈ G

(A/I)g := (Ag + I)/I.

Proposition 2.10. Let A be a G-graded ring and I be a G-homogeneous ideal in
A. Then the construction in Definition 2.9 defines a grading on A/I. The natural
map π : A→ A/I is a G-homomorphism.

For any G-graded ring B and any G-homomorphism f : A → B such that
I ⊆ kerA, there is a unique G-homomorphism f ′ : A/I → B such that f ′ ◦ π = f .

Proof. We first argue that for different g, h ∈ G, (A/I)g∩(A/I)h = 0. Suppose
x ∈ (A/I)g∩(A/I)h, we can lift x to both yg+ig ∈ A and yh+ih ∈ A with yg, yh ∈ A
and ig, ih ∈ I. It follows that yg − yh ∈ I. But I is a G-homogeneous ideal, so it
follows that yg, yh ∈ I and hence x = 0.

Next we argue that
A/I =

∑
g∈G

(A/I)g.

Lift an element x ∈ A/I by a ∈ A, we represent a as

a =
∑
g∈G

ag, ag ∈ Ag

with almost all ag’s equal to 0. Then x can be represented as

x =
∑
g∈G

π(ag).

We have shown that the construction in Definition 2.9 gives a G-grading on A. It is
clear from the definition that π is a G-homomorphism.

Next assume that B and f are given as in the proposition. Then there is a
ring homomorphism f ′ : A/I → B such that f = f ′ ◦ π. We need to argue that
f ′ is a G-homomorphism. For this purpose, take g ∈ G, x ∈ (A/I)g, we need to
show that f ′(x) ∈ Bg. Lift x to y + i with y ∈ Ag and i ∈ I, then we know that
f ′(x) = π(y + i) = π(y) ∈ Bg. �

Definition 2.11. Let A be a G-graded ring.
Let M an A-module which is also a G-graded Abelian group. We say M is a

G-graded A-module if for each g, h ∈ G, we have

AgMh ⊆Mgh.

A G-graded homomorphism of G-graded A-modules M and N is an A-module
homomorphism f : M → N which is at the same time a homomorphism of the
underlying G-graded Abelian groups.

The category of G-graded A-modules is denoted byModGA.
A G-graded A-algebra is a G-graded ring B together with a G-graded ring

homomorphism A→ B such that B is also a G-graded A-module.
A G-graded homomorphism between G-graded A-algebras B and C is a G-

graded homomorphism between the underlying G-graded rings that is at the same
time a G-graded homomorphism of G-graded A-modules.

Observe that G-homogeneous ideals of A are G-graded submodules of A. Also
observe thatModGZ is isomorphic to AbG.
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Proposition 2.12. Let A be a G-graded ring. ThenModGA is an Abelian category
satisfying AB5.

Proof. We first show thatModGA is preadditive. Given M,N ∈ ModGA, we
can regard HomModG

A
(M,N) as a subgroup of HomA(M,N). It is easy to see that

this givesModGA an enrichment over Ab.
Next we show that ModGA is additive. The zero object is clearly given by 0

with the trivial grading. Given M,N ∈ModGA, we define

(M ⊕N)g := Mg ⊕Ng, g ∈ G.

This construction makes M ⊕ N a G-graded A-module. It is easy to verify that
M ⊕N is the biproduct of M and N .

Next we show that ModGA is pre-Abelian. Given an arrow f : M → N in
ModGA, we need to define its kernel and cokernel. We define

(ker f)g := (ker f) ∩Mg

and (coker f)g as the image of Ng for any g ∈ G. It is straightforward to verify that
these are kernels and cokernels.

Next, given a monomorphism f : M → N , it is obvious that the map f is
injective and f can be identified with the kenrel of the natural map N/ Im f . A dual
argument shows that an epimorphism is the cokernel of some morphism as well.

The AB5 condition is easily verified. Expand the details of this argument! �

Next we define the tensor product of G-graded modules.

Definition 2.13. Let A be a G-graded ring and M,N be G-graded A-modules.
We define a G-grading on M ⊗A N as follows: for any g ∈ G, (M ⊗A N)g is defined
as the image of

∑
h∈GMh ×Ngh−1 in M ⊗A N . We always endow M ⊗A N with

this G-grading.

Verify the universal property; show that this is indeed a grading

Example 2.14. This is a continuition of Example 2.5. Let A be a G-graded ring
and S be a multiplicative subset of A consisting of homogeneous elements. Consider
a G-graded A-module M . We define a G-grading on S−1M . Recall that S−1M can
be realized as follows: one defines an equivalence relation on M × S: (x, s) ∼ (y, t)
if there is u ∈ S such that (xt − ys)u = 0. For each g ∈ G, we define (S−1M)g
as the set of (x, s) for all s ∈ S and x ∈ Mgρ(s). It is easy to verify that this is
a well-defined G-grading on S−1M and S−1M is a G-graded S−1A-module. Add
details.

Example 2.15. Let A be a G-graded ring and g ∈ G. We define g−1A as the
G-graded A-module:

(g−1A)h = Ag−1h

for any h ∈ G. Observe that 1 ∈ (g−1A)g.

Definition 2.16. Let A be a G-graded ring and M be a G-graded A-module. We
say M is free if there exists a family {gi}i∈I in G such that

M =
∐
i∈I

g−1
i A.
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Definition 2.17. Let f : A→ B be a G-graded homomorphism of G-graded rings.
We say f is finite (resp. finitely generated, resp. integral) if it is finite (resp. finitely
generated, resp. integral) as a usual ring map.

Proposition 2.18. Let f : A → B be a G-graded homomorphism of G-graded
rings. Then

(1) f is finite if and only if there are n ∈ N, g1, . . . , gn ∈ G and a surjective
G-graded homomorphism

n⊕
i=1

(g−1
i A)n → B

of graded A-modules.
(2) f is finitely generated if and only if there are n ∈ N, g1, . . . , gn ∈ G and a

surjective G-graded A-algebra homomorphism
A[g−1

1 T1, . . . , g
−1
n Tn]→ B.

(3) f is integral if and only if for any non-zero homogeneous element b ∈ B,
there is n ∈ N and homogeneous elements a1, . . . , an ∈ A such that

bn + f(a1)bn−1 + · · ·+ f(an) = 0.
(4) A non-zero homogeneous element b ∈ B is integral over A if there is n ∈ N

and homogeneous elements a1, . . . , an ∈ A such that
bn + f(a1)bn−1 + · · ·+ f(an) = 0.

Proof. (1) The non-trivial direction is the direct implication. Assume that
f is finite. Take b1, . . . , bn ∈ B so that

∑n
i=1 f(A)bi = B. Up to replacing the

collection {bi}i by the finite collection of non-zero homogeneous components of the
bi’s, we may assume that each bi is homogeneous. We define gi = ρ(bi) and the map⊕n

i=1(g−1
i A)n → B sends 1 at the i-th place to bi.

(2) The non-trivial direction is the direct implication. Suppose f is finitely
generated, say by b1, . . . , bn. Up to replacing the collection {bi}i by the finite
collection of non-zero homogeneous components of the bi’s, we may assume that
each bi is homogeneous. Then we define gi = ρ(bi) for i = 1, . . . , n and the A-algebra
homomorphism A[g−1

1 T1, . . . , g
−1
n Tn]→ B sends Ti to bi for i = 1, . . . , n.

(3) Assume that f is integral, then for any non-zero homogeneous element b ∈ B,
we can find a1, . . . , an ∈ A such that

bn + f(a1)bn−1 + · · ·+ f(an) = 0.
Obviously, we can replace ai by its component in ρ(b)i for i = 1, . . . , n and the
equation remains true.

The reverse direction follows from [Stacks, Tag 00GO].
(4) This is argued in the same way as (3). �

Definition 2.19. A G-graded ring A is a G-graded field if
(1) A 6= 0.
(2) A does not admit any non-zero proper G-homogeneous ideals.

Proposition 2.20. Let A be a non-zero G-graded ring. Then the following condi-
tions are equivalent:

(1) A is a G-graded field.

https://stacks.math.columbia.edu/tag/00GO
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(2) Any non-zero homogeneous element in A is invertible.

Proof. Assume that A is a G-graded field. Let a ∈ A be a non-zero ho-
mogeneous element. Consider the G-homogeneous ideal (a) generated by a as in
Example 2.7. As a 6= 0, it follows that (a) = 1. Hence, a is invertible.

Conversely, suppose that any non-zero homogeneous element in A is invertible.
If I is a non-zero G-homogeneous ideal in A. There is a non-zero homogeneous
element a ∈ I. But we know that a is invertible and hence I = A. �

Definition 2.21. A G-graded ring A is an integral domain if for any non-zero
homogeneous elements a, b ∈ A, ab 6= 0.

Lemma 2.22. Let A be a G-graded integral domain. Let S denote the set of
non-zero homogeneous elemnts in A. Then S−1A is a graded field. The natural
map A→ S−1A is injective.

Recall that S−1A is defined in Example 2.5.

Proof. By Proposition 2.20, it suffices to show that each non-zero homoge-
neous element in S−1A is invertible. Such an element has the form a/s for some
homogeneous element a ∈ A and s ∈ S. As A is a G-graded integral domain, a is
invertible and hence s/a ∈ S−1A.

In general, the kernel of the localzation map is given by {a ∈ A : there is s ∈
S such that sa = 0}. As A→ S−1A is a G-graded homomorphism, the kernel is in
addition a G-homogeneous ideal in A by Lemma 2.8. So it suffices to show that each
homogeneous element in the kenrel vanishes: if a ∈ A is a homogeneous element
and there is s ∈ S such that sa = 0, then a = 0. Otherwise, a is invertible by
Proposition 2.20, which is a contradiction. �

Definition 2.23. Let A be a G-graded integral domain. We call the graded field
defined in Lemma 2.22 the fraction G-graded field of A and denote it by FracGA.

Definition 2.24. Let A be a G-graded ring. A proper G-homogeneous ideal I in
A is called prime if the G-graded ring A/I is a G-graded integral domain.

Proposition 2.25. Let A be a G-graded ring and I be a proper homogeneous ideal
in A. Then the following are equivalent:

(1) I is a G-graded prime ideal in A.
(2) For any homogeneous elements a, b ∈ A satisfying ab ∈ I, at least one of a

and b lies in I.

Proof. Assume that I is a G-graded prime ideal in A. Let a, b ∈ A be
homogeneous elements satisfying ab ∈ I. Let ā, b̄ be the images of a, b in A/I. Then
ā, b̄ are homogeneous and āb̄ = 0. So at least one of ā and b̄ is zero. That is, a or b
lies in I.

Conversely, assume that the conditon in (2) is satisfied. Take x, y ∈ A/I with
xy = 0. We need to show that at least one of x and y is 0. Lift x and y to a + i
and b+ i′ in A with a, b being homogeneous and i, i′ ∈ I. Then ab ∈ I and hence
a ∈ I or b ∈ I. It follows that x = 0 or y = 0. �

Definition 2.26. Let A be a G-graded ring and p be a prime G-homogeneousideal
in A. Then we define the G-graded localization AGp of A at p as S−1A, where S is
the set of homogeneous elements in A \ p.
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Similarly, let M be a G-graded A-module. We define the G-graded localization
MG

p as S−1M .

Recall that S−1A and S−1M are defined in Example 2.5 and Example 2.14.

Definition 2.27. Let A be a G-graded ring.
A G-homogeneous ideal I in A is said to be maximal if it is proper, and it is

not contained in any other proper G-homogeneous ideals.
We call A a G-graded local ring if it has a unique maximal homogeneous ideal.

This ideal is called the maximal G-homogeneous ideal of A.

Proposition 2.28. Let A be a G-graded ring and I be a G-homogeneous ideal in
A. Then the following are equivalent:

(1) I is a maximal G-homogeneous ideal in A;
(2) A/I is a G-graded field.

In particular, a maximal G-homogeneous ideal is a prime G-homogeneousideal.

Proof. Assume (1). Then I is a proper ideal, so A/I is non-zero. Suppose
that A/I has a proper G-homogeneous ideal J , it lifts to an ideal J ′ of A. We claim
that J ′ is G-homogeneous. In fact, we set J ′g := {x ∈ Ag : x+ I ∈ J} for g ∈ G, we
need to show that

J ′ =
∑
g∈G

J ′g.

For any j ∈ J ′, we can expand j + I as
∑
g∈G ag + I with ag ∈ Ag and almost all

ag’s are 0. We take i ∈ I so that

j = i+
∑
g∈G

ag.

The desired equation follows. But then it follows that J ′ = I and hence J = 0.
Assume (2). Then I is a proper ideal in A. If J is a G-homogeneous proper

ideal of A containing I, then J/I is a G-homogeneous proper ideal of A/I. It follows
that J/I = 0 and hence J = I. �

Corollary 2.29. Let A be a non-zero G-graded ring, then A admits a prime
G-homogeneousideal.

Proof. By our assumption, 0 is a proper ideal in A. By Zorn’s lemma, A
admits a maximal G-homogeneous ideal, which is prime by Proposition 2.28. �

Proposition 2.30. Let A be a G-graded ring and a ∈ A be a homogeneous element.
Then a is a unit in A if and only if a is not contained in any maximal G-homogeneous
ideal of A.

Proof. The direct implication is trivial. Assume that a is not a unit. Then the
ideal (a) generated by a is G-homogeneous. By Zorn’s lemma, there is a maximal
G-homogeneous ideal containing (a). �

Lemma 2.31. Let f : A → B be a G-graded homomorphism of G-graded rings.
Let b1, . . . , bn ∈ B be a finite set of homogeneous elements integral over A, then
there is a G-graded A-subalgebra B′ ⊆ B containing b1, . . . , bn such that A→ B′ is
finite.
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Proof. We may assume that none of the bi’s is zero. By Proposition 2.18, we
can find m1, . . . ,mn ∈ N and homogeneous elements ai,j ∈ A for i = 1, . . . , n and
j = 1, . . . ,mi such that

bmii + f(ai,1)bmi−1
i + · · ·+ f(ai,mi) = 0

for i = 1, . . . , n. It suffices to take B′ as the A-submodule generated by ai,j for
i = 1, . . . , n and j = 1, . . . ,mi. �

Proposition 2.32. Let f : A→ B be an injective integral G-graded homomorphism
of G-graded rings. Then for any prime G-homogeneousideal p in A, there is a prime
G-homogeneousideal p′ in B such that p = f−1p′.

Proof. We may assume that A 6= 0, as otherwise there is nothing to prove.
It suffices to show that pBp 6= Bp. Include a proof We could localize that

p and assume that p is a maximal G-homogeneous ideal. Include details about
localization It suffices then to show that pB 6= B. Assume by contrary that we can
write 1 =

∑n
i=1 fibi for some homogeneous elements fi ∈ p and some homogeneous

elements bi ∈ B. Let B′ be a G-graded subring of B containg A and b1, . . . , bn and
such that A→ B′ is finite. The existence of B′ is guaranteed by Lemma 2.31. Then
we find immediately B′ = mAB

′. Then B′ = 0 by the graded Nakayama’s lemma.
Include details So A = 0, which is a contradiction. �

Lemma 2.33. Let A be a G-graded ring. Then the following are equivalent:
(1) A is a G-graded local ring;
(2) There is a proper homogeneous ideal I in A such that any non-invertible

homogeneous element in A is contained in I.
In fact, I in (2) is just the maximal G-homogeneous ideal in A.

Proof. Assume that (1) holds, let I be the maximal G-homogeneous ideal of
A. Let a be a non-invertible homogeneous element in A. Then the image of a in
A/I is invertible by Proposition 2.28 and Proposition 2.20.

Assume (2). We show that I is the maximal G-homogeneous ideal in A. By
Proposition 2.28, it suffices to show that A/I is a graded field. By Proposition 2.20,
we need to show that any non-zero homogeneous element b ∈ A/I is invertible. Lift
b to a+ i ∈ A with a ∈ A homogeneous and i ∈ I. If a is not invertible, then a ∈ I
by the assumption hence b = 0. This is a contradiction. �

Lemma 2.34. Let k be a G-graded field and A be a graded k-algebra. Suppose
that ρ(A) = ρ(k), then

(1) For any g ∈ G, there is a natural isomorphism
Ag ∼= A1 ⊗k1 kg.

(2) The map I 7→ I ∩ A1 is a bijection between the set of G-homogeneous
ideals (resp. prime G-homogeneousideals) in A and ideals (resp. prime
ideals) in A1.

Proof. (1) Take g ∈ ρ(A). As ρ(A) = ρ(k), we can take a non-zero homoge-
neous element b ∈ kg. Then b and b−1 induces inverse bijections between A1 and
Ag.

(2) The part about ideals can be proved in the same way as (1). The part about
prime ideals follows easily. �
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Proposition 2.35. Let k be a G-graded field and M be a G-graded A-module.
Then M is free as G-graded A-module.

Proof. We may assume thatM 6= 0. Let {mi}i∈I be a maximal set of non-zero
homogeneous elements in M such that the corresponding homomorphism

F :=
⊕
i∈I

(ρ(f))−1k →M

is injective. The existence of {mi}i∈I follows from Zorn’s lemma.
If f ∈M/F is a non-zero homogeneous element, then we get a homomorphism

(ρ(f))−1k → M/F . This map is necessarily injective as (ρ(f))−1k does not have
non-zero proper graded submodules. This contradicts the definition of F . �

Corollary 2.36. Let k be a G-graded field, C be a G-graded k-algebra. Consider
a G-graded homomorphism of G-graded k-algebras f : A→ B. Then the following
are equivalent:

(1) f is finite (resp. finitely generated);
(2) f ⊗k C is finite (resp. finitely generated).

Proof. (1) =⇒ (2): This implication is trivial.
(2) =⇒ (1): By Proposition 2.35, this implication follows from fpqc descent

[Stacks, Tag 02YJ]. �

Definition 2.37. Let K be a G-graded field. A G-graded subring A ⊆ K is a
G-graded valuation ring in K if

(1) A is a local G-graded ring;
(2) the natural map FracGA→ K is an isomorphism;
(3) For any non-zero homogeneous element f ∈ K, either f ∈ A or f−1 ∈ A.

Definition 2.38. Let K be a G-graded field and A,B be G-graded local subrings
of K. We say B dominates A if A ⊆ B and mB ∩A = mA, where mA and mB are
the maximal G-homogeneous ideals in A and B.

Proposition 2.39. Let K be a G-graded field and A ⊆ K be a G-graded local
subring. Then the following are equivalent:

(1) A is a G-graded valuation ring in K.
(2) A is maximal among the G-graded local subrings of K with respect to the

order of domination.

Proof. Assume (1). We may assume that A 6= K. Then A is not a G-graded
field as FracG = K. Let m be a maximal G-homogeneous ideal in A. Then m 6= 0.

We argue first that A is a G-graded local ring. Assume the contrary. Let m′ 6= m
be maximal G-homogeneous ideal in A. Choose non-zero homogeneous elements
x, y ∈ A with x ∈ m′ \m, y ∈ m \m′. Then x/y 6∈ A as otherwise x = (x/y)y ∈ m.
Similarly, y/x 6∈ A. This is a contradiction.

Next suppose that A′ is a G-graded local subring of K dominating A. Let
x ∈ A′ be a non-zero homogeneous element, we need to show that x ∈ A. If not,
we have x−1 ∈ A and as x−1 is not a unit, x−1 ∈ mA. But then x−1 ∈ mA′ , the
maximal G-homogeneous ideal in A′. This contradicts the fact that x ∈ A′.

Assume (2). Take a homogeneous element x ∈ K \ A, we need to argue that
x−1 ∈ A. Let A′ denote the minimal G-homogeneous subring of K containing A
and x. It is easy to see that A′ is the usual subring generated by A and x.

https://stacks.math.columbia.edu/tag/02YJ
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By our assumption, there is no G-graded prime ideal of A′ lying over mA, as
otherwise, if p is such an ideal, the G-graded local subring A′Gp of K dominates A.

In other words, the G-graded ring A′/mAA′ does not have any homogeneous
prime ideals and hence A′ = mAA

′ by Corollary 2.29.
We can therefore write

1 =
d∑
i=0

tix
i

with some homogeneous elements ti ∈ mA. In particular,

(1− t0)(x−1)d −
d∑
i=1

ti(x−1)d−i = 0.

So x−1 is integral over A. Let A′′ be the subring of K generated by A and x−1.
Then A → A′′ is finite and there is a G-homgeneous prime ideal m′′ of A′′ lying
over mA by Proposition 2.32. By our assumption, A = A′′Gm′′ and hence x−1 ∈ A.

It remains to verify that FracGA = K. Suppose that it is not the case, let
B ⊆ K be a G-graded local subring dominating A. Take a homogeneous element
t ∈ K that is not in FracGA. Observe that t can not be transcendental over A,
as otherwise A[t] ∈ K is a G-graded subring, and we can localize it at the prime
G-homogeneousgenerated by t and mA. We get a G-graded local ring dominating A
that is different from A.

So t is algebraic over A. We can then take a non-zero homogeneous a ∈ A
such that at is integral over A. The ring A′ ⊆ K generated by A and ta is a
G-graded subring and A → A′ is finite. By Proposition 2.32, tehre is a prime G-
homogeneousideal m′ of A′ lifting mA. But then A′Gm′ dominates A and so A = A′Gm′ .
It follows that t ∈ FracGA, which is a contradiction. �

Corollary 2.40. Let K be a G-graded field. Any G-graded local subring B ⊆ K is
dominated by a G-graded valuation subring of K.

Proof. This follows from Proposition 2.39 and Zorn’s lemma. �

In the next lemma, graded rings are written additively.

Lemma 2.41. Let n ∈ N andR = Z[1−1A1, . . . , n
−1An] be the Z-graded polynomial

ring in n-variables. Consider a ring homomorphism
Φ : R[T0, n

−1T1, (n+ 1)−1T2, . . . , (2n− 1)−1Tn]→ R[T ]
sending T0 to T and Ti to T i−1(Tn + A1T

n−1 + · · ·+ An) for i = 1, . . . , n. Then
for all l ∈ N, there are homogeneous polynomials Gl ∈ R[n−1T1, . . . , (2n− 1)−1Tn]
and Hl ∈ R[T0] of degree l such that degT0 Hl ≤ n− 1 and T l0 −Gl −Hl ∈ ker Φ.

Proof. Fix l ≥ 0, consider a polynoimal Gl ∈ R[n−1T1, . . . , (2n − 1)−1Tn]
homogeneous of degree l such that Φ(T l0 −Gl) has the minimal possible degree. We
have to show that this degree is less than n. If not, say the leading term is cT a
with a ≥ n and c ∈ R is a homogeneous element. Observe the leading term of the
image of Ti in R[T ] is Tn+i−1 for i = 1, . . . , n. We can always find a monomial
Q in T1, . . . , Tn such that the leading term of its image in R[T ] is T a. Then set
G′l = Gl − cQ, we find that deg Φ(G′l) < deg Φ(Gl). This is a contradiction.

Now we can write
Φ(T l0 −Gl) = cn−1T

n−1 + · · ·+ c0.
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It suffices to take Hl = cn−1T
n−1
0 + · · ·+ c0. �

3. Graded algebraic geometry

Let G be an Abelian group. We write the group operation of G multiplicatively
and denote the identity of G as 1.

Definition 3.1. Let A be a G-graded ring. We define the G-graded affine spectrum
SpecG(A) as follows: as a set SpecG(A) consists of all prime G-homogeneousideals
of A; we endow SpecG(A) with the Zariski topology, whose base consists of sets of
the form

D(f) :=
{
p ∈ SpecG(A) : f 6∈ p

}
for all homogeneous elements f ∈ A.

Lemma 3.2. Let k be a G-graded field and A be a finitely generated G-graded
k-algebra. Then SpecG(A) has only finitely many maximal points.

Proof. Take a G-graded field K/k such that ρ(A) ⊆ ρ(K). By Lemma 2.34,
the statement of the lemma holds for A⊗kk′. But each generic point of an irreducible
component of SpecG(A) can be lifted to a generic point of an irreducible component
in SpecG(A⊗k k′). �

4. Graded Riemann–Zariski spaces

Let G be an Abelian group. Let k be a G-graded field and K/k be a G-graded
field extension.

Definition 4.1. We let PK/k denote the set of G-graded valuation rings O of K
with G-graded fraction field K such that k ⊆ O. If there is a risk of confusion, we
write PG

K/k instead.
We endow PK/k with the weakest topology with respect to which {O ∈ PK/k :

f ∈ O} is open for any homogeneous element f ∈ K.
The space PK/k is called the Riemann–Zariski space of K/k.
Given an inclusion of G-graded fields i : L → K over k, we have a natural

continuous map i# : PK/k → PL/k sending O to i−1(O) ∩K.

Given X ⊆ PK/k and A ⊆ K consisting of homogeneous elements, we write

X{A} := {O ∈ X : f ∈ O for all non-zero f ∈ A} ,
X{{A}} := {O ∈ X : f ∈ mO for all non-zero f ∈ A} ,

where mO is the maximal G-homogeneous ideal of O. When A consists of finitely
many elements f1, . . . , fn, we will write X{f1, . . . , fn} and X{{f1, . . . , fn}} instead.
When A ⊆ K consists of non-homogeneous elements as well, X{A} means X{B},
where B is the set of homogeneous elements in A.

Definition 4.2. An affine subset of PK/k is a subset of PK/k of the form: PK/k{F}
for some finite set F of homogeneous elements in K.

Lemma 4.3. Let X ⊆ PK/k and f ∈ K be a non-zero homogeneous element. Then

X \X{f} = X{{f−1}}.
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Proof. We first observe that X{f} ∩X{{f−1}} = ∅. Otherwise, let O be a
G-graded valuation ring in this intersection, then f ∈ O and f−1 ∈ mO. So 1 ∈ mO,
which is a contradiction.

To show that X{f} ∪X{{f−1}} = X, we may assume that X = PK/k. Let
O ∈ PK/k. We need to show that f ∈ O or f−1 ∈ mO.

By definition, either f ∈ O or f−1 ∈ O. We may assume that f 6∈ O and
f−1 ∈ O. If f−1 6∈ mO, then f−1 is invertible in O by Lemma 2.33. In particular,
f ∈ O, which is a contradiction. �

Lemma 4.4. Let A ⊆ K be a subset of K, then PK/k{A} is quasi-compact.
Proof. By our convention, we may assume that A consists of homogeneous

elements.
We may replace A by the G-graded subring generated of K generated by A. So

we may assume that A is a G-graded subring of K.
Write X = PK/k{A}. By definition, a sub-base for the topology on X is given

by X{f} for all non-zero homogeneous elements f ∈ K.
By Alexander sub-base theorem and Lemma 4.3, in order to show that X is

quasi-compact, it suffices to show that if F ⊆ K consists of homogeneous elements
and if for any finite subset F0 ⊆ F , X{{F0}} 6= ∅, then X{{F}} is non-empty. We
assume by contrary that X{{F}} is empty.

Let B be the G-graded subring of K generated by A and F . Let m be the
G-homogeneous ideal of B generated by elements in F . We claim that m = B.
Otherwise, let p be a maximal G-homogeneous ideal of B containing m, then we
can find a G-graded valuation subring O of K dominating BGp . The existence of O
is guaranteed by Proposition 2.39. It follows that O ∈ {{F}}.

We write 1 = b1f1 +· · ·+bnfn for some n ∈ Z>0, b1, . . . , bn ∈ B and f1, . . . , fn ∈
F . Then X{{f1, . . . , fn}} is empty. �

Lemma 4.5. Let A ⊆ B ⊆ K be G-graded k-subalgebras of K. Assume that both
A and B are finitely generated over k. Then the following are equivalent:

(1) PK/k{A} = PK/k{B};
(2) B is finite over A;
(3) B is integral over A.

Proof. (3) =⇒ (1): Let O ∈ PK/k{A} and x ∈ B a non-zero homogeneous
element, we need to show that x ∈ O. If not, x−1 ∈ mO by Lemma 4.3. As x is
integral over A, we can find n ∈ Z>0, homogeneous elements a1, . . . , an ∈ A such
that

bn + a1b
n−1 + · · ·+ a0 = 0

by Proposition 2.18. So
1 = −b−n

(
a1b

n−1 + · · ·+ a0
)
∈ mO,

which is a contradiction.
(1) =⇒ (3): Suppose x ∈ B is a homogeneous element which is not integral

over A. The existence of x is guaranteed by Proposition 2.18. Then x−1 is not
invertible in C = A[1/x]: otherwise, we can find n ∈ N, a1, . . . , an ∈ A such that

(anx−n + an−1x
1−n + · · ·+ a0)x−1 = 1

or equivalently,
xn+1 = a0x

n + · · ·+ an.
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This contradicts the fact that x is not integral. In particular, there is a maximal
G-homogeneous ideal p containing x−1 by Proposition 2.30. Let O be a G-graded
valuation ring of K dominating CGp , whose existence is guaranteed by Corollary 2.40.
But then x−1 lies in the maximal ideal of O and hence x 6∈ O by Lemma 4.3. It
follows that B 6⊆ O.

(2) ≡ (3): This followss from [Stacks, Tag 02JJ].
�

Definition 4.6. Let X be an open subset of PK/k. A Laurent covering of X is a
covering of X of the form

{X{f ε1
1 , . . . , f εnn } : εi = ±1 for i = 1, . . . , n} ,

where n ∈ Z>0, f1, . . . , fn ∈ K are homogeneous. We say the Laurent covering is
generated by f1, . . . , fn.

Definition 4.7. Let X be an open subset of PK/k. A rational covering of X is a
covering of the form: {

X

{
f1

fi
, . . . ,

fn
fi

}
: i = 1, . . . , n

}
,

where n ∈ Z>0, f1, . . . , fn ∈ K are non-zero homogeneous elements. We say the
rational covering is generated by f1, . . . , fn.

Lemma 4.8. Let X be an open subset of PK/k. Any finite covering U of X by
open subsets of the form X{A} for some finite set of homogeneous elements A ⊆ K
has a refinement which is a Laurent covering of X.

Proof. Step 1. We show that U admits a refinement by a rational covering.
We may assume that there is n ∈ Z>0 such that U consists of U1, . . . , Um below:

Ui = X{fi1, . . . , fin}
with fij ∈ K being non-zero and homogeneous for i = 1, . . . ,m and j = 1, . . . , n. In
addition, we may assume that fin = 1 for i = 1, . . . ,m.

Let

J :=
{
α = (α1, . . . , αm) ∈ Nm : 1 ≤ αi ≤ n for i = 1, . . . ,m; max

i=1,...,m
αi = n

}
.

We claim that the rational covering generated by gα = f1α1 · · · fmαm with α =
(α1, . . . , αm) ∈ J refines U .

Given α = (α1, . . . , αm) ∈ J , we consider the set
Vα = X {gβ/gα : β ∈ J} .

Let i ∈ {1, . . . ,m} such that ji = n. We claim that
Vα ⊆ Ui.

Suppose it is not the case, let O ∈ Vα not lying in Ui, we need to verify that fik ∈ O
for k = 1, . . . , n. Take l 6= i so that O ∈ Ul. So fljl ∈ O. On the other hand, if
β ∈ J with βl = n and βk = αk for k 6= l, we have f−1

ljl
= gβ/gα ∈ O, so fljl is

invertible in O.
Fix k = 1, . . . , n, consider γ ∈ J given by γi = k, γl = n and γp = αp otherwise.

Then gγ/gα = fik/fljl ∈ O and fik ∈ O.
Step 2. It remains to show that each rational convering generated by non-zero

homogeneous elements f1, . . . , fn ∈ K admits a refinement by Laurent coverings.

https://stacks.math.columbia.edu/tag/02JJ
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We claim that the Laurent covering of X generated by gij = fi/fj with 1 ≤ i <
j ≤ n refines the given covering. Let V be a subset of the form

V = X{gεijij : 1 ≤ i < j ≤ n}
for some εij = ±1 for 1 ≤ i < j ≤ n. We need to show that V is contained in a set
in U .

For 1 ≤ i, j ≤ n and i 6= j, we write i � j if i < j and εij = 1 or i > j and
εji = −1. This is an ordering on {1, . . . , n}. Choose a maixmal element i. Then
fj/fi ∈ O for all O ∈ V , so

V ⊆ X {f1/fi, . . . , fn/fi} .
�

5. Strictness in graded Riemann–Zariski spaces

In this section, graded will mean R>0-graded unless we explicitly state the
grading. Similarly, a graded Riemann–Zariski space without specifying the grading
means the R>0-graded one.

Let H be a subgroup of R>0. Fix graded field extension K/k.

Definition 5.1. Consider the natural continuous map
ψHK/k : PK/k → PKH/kH

defined by sending a graded valuation ring O to OH .
A quasi-compact open subset U of PK/k is H-strict if U is the preimage of

some quasi-compact open subset U ′ of PKH/kH .

Lemma 5.2. Let U ⊆ PK/k be a quasi-compact open subset. The following are
equivalent:

(1) U is H-strict;
(2) U is

√
ρ(k×) ·H-strict.

Proof. (1) =⇒ (2): This is trivial.
(2) =⇒ (1): Let S ⊆ L

√
ρ(k×)·H be a finite set. For any f ∈ S, we can find a

non-zero homogeneous element af ∈ k and nf ∈ Z>0 such that affnf ∈ LH . We
let S′ = {affnf }f∈S , then

PL/K{S} = PL/K{S′}.
�

Lemma 5.3. Let A be a graded k-subalgebra of K. Then
ψHK/k

(
PK/k{A}

)
= PKH/kH{AH}.

In particular, ψHK/k is a surjective open map.

Proof. The inclusion
ψHK/k

(
PK/k{A}

)
⊆ PKH/kH{AH}

is obvious. Conversely, let O ∈ PKH/kH{AH}. We set
B = A · O.

Observe that for h ∈ H, Bh = Ah, so
B ∩KH = O, mOB ∩ O = mO.
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In particular, there is a prime homogeneous ideal p of B with p ∩ O = mO. Take
a graded valuation ring O′ ∈ PK/k dominating BR>0

p . The existence of O′ follows
from Corollary 2.40. Moreover, O′ ∩KH = O the left-hand side dominates O. But
then

O′ ∈ PK/k{A}
and ψHK/k(O′) = O. �

Corollary 5.4. Suppose that n ∈ N and f1, . . . , fn is a finite set of non-zero
homogeneous elements in K. Then the following are equivalent:

(1) PK{f1, . . . , fn} is H-strict;
(2) ρ(f) ∈

√
ρ(k×) ·H.

Proof. (2) =⇒ (1): This follows from Lemma 5.2.
(2) =⇒ (1): Let A be the graded k-algebra generated by f1, . . . , fn. By

Lemma 5.3, PK/k{f1, . . . , fn} = PK/k{A} is H-strict if and only if it coincides with
PK/k{AH}. By Lemma 4.5, the latter is equivalent to that A is integral over AH .
But then it is clear that

ρ(A) ⊆
√
ρ(AH)

and (1) follows. �

Corollary 5.5. The natural map
P
K
√
ρ(k×)·H/k

→ PKH/kH

is a homeomorphism.

Proof. We may assume that ρ(K×) ⊆
√
ρ(k×) ·H and identify the given

map with ψHK/k. We know that ψHK/k is open by Lemma 5.3. It is continuous by
construction. So it remains to argue that ψHK/k is bijective.

By Lemma 5.3 again, we know that ψHK/k is surjective. On the other hand, if
| • | is the valuation corresponding to O ∈ PKH/kH , it is clear that the extension to
K = K

√
ρ(k×)·H is unique: if f is a non-zero homogeneous element in K, then we

can find a non-zero homogeneous element a ∈ K, a non-zero homogeneous element
g ∈ KH and an integer n ∈ Z>0 such that

fn = ag.

The valuation is uniquely determined at a and g, hence so is its value at f . �

Proposition 5.6. The fibers of
ψHK/k : PK/k → PKH/kH

are connected.

Proof. Let O ∈ PKH/kH and X = ψH,−1
K/k ({O}). We need to show that X is

connected.
Assume to the contrary that X is the disjoint union of two non-empty open

subsets U and V .
Step 1. We show that X is quasi-compact.
We set

Y =
{
O′ ∈ PKH/kH : O′ ⊇ O

}
,

XY =
{
O′ ∈ PK/k : O′ ⊇ O

}
.
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In other words, XY = ψH,−1
K/k (Y ). Observe that Y and XY are both quasi-compact

by Lemma 4.4.
Observe that O is a closed point in Y :

Y \ {O} =
⋃
f

Y {f},

where f runs over all non-zero homogeneous elements of K not lying in O. It follows
that X is closed in XY . In particular, X is quasi-compact.

In particular, U and V are both quasi-compact.
Step 2. We reduce to the case where H ⊇ ρ(k×),

√
H = H and ρ(K×)/H is

finitely generated.
By Step 1, U and V can be both covered by finitely many sets of the form

X{f1, . . . , fn} with f1, . . . , fn ∈ K being some homogeneous elements. Let H ′ be
the subgroup of R>0 generated by H and ρ(fi) for the fi’s to guarantee that the
inverse image of {O} in PKH′/k is not connected. It suffices to prove the theorem
with KH′ in place of K. Moreover, by Corollary 5.5, we may assume that H ⊇ ρ(k×)
and
√
H = H.

In particular, ρ(K×)/H is locally free of finite rank. Let n be its rank.
Step 3. We provide a contradiction when n = 1.
We claim that in this case, K = KH [g−1T, gT−1] for some g ∈ ρ(K×) \H.
In fact, let g ∈ ρ(K×) \ H and take f ∈ Kg. Then we have an obvious

ρ(K×)-graded ring homomorphism

KH [g−1T, gT−1]→ K

sending T to f . But KH [g−1T, gT−1] is clearly a ρ(K×)-graded field. So this map
is injective. It is an isomorphism by Lemma 2.34.

Observe that a basis of the topology on X is given by sets of the form
X{aT i, bT−j} with a, b ∈ KH and i, j ∈ Z>0. Up to replacing aT i by ajT ij

and bT−j by biT−ij , we may assume that i = j.
We cover U and V by W1, . . . ,Wl and Wl+1, . . . ,Wm repsectively such that

Wi = X{aiT ki , biT−ki},

where ai, bi ∈ KH and ki ∈ Z>0 for i = 1, . . . ,m. By the same argument as above,
we may guarantee that k1 = · · · = km, and we call this common value k.

Let | • | be the valuation determined by O, we may assume that |a1| ≤ |ai| for
all i = 1, . . . ,m. Then U, V are both contained in X{a1T

k} so X{a1T
k} = X and

a1 = 0.
If Wi ∩W1 6= ∅ for some i = 2, . . . ,m, then aib1 ∈ O and W ′1 := W1 ∪Wi is the

same as X{max{b1, bi}T−k}, where max{b1, bi} is one of b1 and bi such that the
valuation under | • | is smaller. We could remove Wi from the list and replace W1
with W ′1. Repeating this process, we may guarantee that W1 is disjoint with all
other Wi’s.

But then W1 is an open and closed subset of X contained in U . So b1 6= 0. We
claim that the set W1 = X{b1T

−k} is not closed: consider

O′1 :=
{
O[xT k, yT−k] : x, y are homogeneous elements in K such that |y| < |b1|, |x| ≤ |b1|−1}

and

O′2 :=
{
O[xT k, yT−k] : x, y are homogeneous elements in K such that |y| ≤ |b1|, |x| ≤ |b1|−1} .
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Extend them to graded valuation rings O1 and O2 of K. These extensions exist and
are unique by Corollary 5.5. Then O1 6∈ W1 while O2 ∈ W1. But O2 contains O1
so O1 is a specialization of O2. This is a contradiction.

Step 4. We argue the general case by induction on n > 1. Assume that we
have shown the result for smaller n.

Choose a subgroup L of ρ(K×) such that L ⊇ H and ρ(K×)/L ∼= Z. We can
factorize ψHK/k as

PK/k

ψLK/k−−−→ PKL/k

ψH
KL/k−−−−→ PKH/k.

Both maps have connected fibers, hence so is their composition. �

6. The birational categories

In this section, graded will mean R>0-graded unless we explicitly state the
grading.

Fix graded field extension K/k. Let H be a subgroup of R>0.

Definition 6.1. The category TK/k is the full subcategory of the category T op/PK/k
consisting of objects X → PK/k satisfying

(1) X is quasi-compact and quasi-separated;
(2) X → PK/k is a local homeomorphism.

We will also say X is an object of TK/k.
Let X be an object of TK/k. A chart of X is a quasi-compact open subset U

of X such that U → PK/k is a homeomorphism onto an open subset of PK/k. An
atlas is a finite covering of X by charts.

Recall that a topological space is quasi-compact if each quasi-compact open
subset is retrocompact.

Example 6.2. Each quasi-compact open subset U of PK/k can be identified with
an object in TK/k using the natural inclusion.

The only non-trivial point is to show that U is quasi-seaprated. For this, it
suffices to show that PK/k is quasi-separated. This follows from the fact that the
intersection of two affine open subsets is still affine.

Definition 6.3. Let X be an object of TK/k.
A chart U of X is H-strict if its image in PK/k is H-strict.
An atlas {Ui}i∈I of X is H-strict if Ui, Ui ∩ Uj are H-strict for all i, j ∈ I.
We say X is H-strict if it admits an H-strict altas.
A quasi-compact open subset of X is H-strict if it is H-strict as an object of

TK/k.

The notion of H-strictness of a quasi-compact open subset of PK/k in Defini-
tion 6.3 is the same as in Definition 5.1.

Observe that X is H-strict if and only if
X = Y ×PKH/kH PK/k

for some object Y in PKH/kH . The fiber product is taken in T op. We will say X
is the base change of Y to K/k in this case. The base change is clearly functorial.
The natural map X → Y is denoted by ψHK/k.

Proposition 6.4. The base change TKH/kH → TK/k is fully faithful.
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In particular, for each H-strict object X ∈ TK/k, there is a unique object (up to
canonical isomorphisms) TKH/kH whose base change to K/k is X. We will denote
this object by XH .

Proof. Let Y, Y ′ ∈ TKH/kH and X,X ′ be their base changes to K/k. We let
f : X → X ′ be a morphism in TK/k.

We are looking for a dotted morphism making the diagram below commutative:

X Y PKH/kH

X ′ Y ′

ψHK/k

f

ψHK/k

As ψHK/k : X → Y is open and surjective by Lemma 5.3, it suffices to show that
set-theorically the dotted map exists and is unique.

Let Z be a fiber of ψHK/k : X → Y , then Z is connected by Proposition 5.6. The
image of Z in PKH/kH is a single point, so the image of Z in Y ′ is a discrete set.
As Z is connected, its image in Y ′ is a single point. This shows the existence and
uniqueness of the dotted map. �

Proposition 6.5. Let F/K be a graded extension of fields. Consider an object Y
(resp. X) in PF/k (resp. PK/k) and a continuous map Y → X making the following
diagram commutative:

Y PF/k

X PK/k

,

where the horizontal maps are the maps in the definition of X and Y , the map on
the right-hand side is the restriction map. We assume that Y and X are H-strict,
then there is a unique continuous map Y H → XH making the following diagram
commutative:

Y PF/k

Y H PFH/kH

X PK/k

XH PKH/kH

.

Proof. The uniqueness follows from the surjectivity of Y → Y H . The latter
follows from Lemma 5.3.

The existence follows from the same arguments as Proposition 6.4. �

Proposition 6.6. Let X be anH-strict object of TK/k, then there is a bijection from
the set of quasi-compact open subsets of XH to the set of H-strict quasi-compact
open subsets of X.
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The forward direction sends V to V ×XH X.

Proof. It suffices to establish a quasi-inverse functor.
Let U be an H-sstrict quasi-compact open susbet of X. By Proposition 6.4, we

can find a continuous map UH → XH inducing the inclusion map U → X by base
change. Consider the commutative diagram

U X PK/k

UH XH PH
K/k

.

Observe that UH → XH is injective as U → X is. So UH is a quasi-compact open
subset of XH . This construction is functorial in U .

This functor is clearly quasi-inverse to the given functor. �

7. The birational category à la Temkin

The gradings refer to R>0-grading in this section. Let k be a graded field.

Definition 7.1. The category birk is defined as follows:
(1) the objects are pairs (X,K), where K is a graded field extension of k and

X is an object in TK/k;
(2) a morphism

(X,K)

to (Y, L) is a pair (h, i), where h : X → Y is a continuous map and
i : L → K is an embedding of G-graded fields such that the following
diagram commutes:

X PK/k

Y PL/k

h i# ;

(3) the composition of morphisms (h, i) and (h′, i′) is (h ◦ h′, i ◦ i′).

We will always omit i from our notations.
We observe that there is a final object in birk: X is a single point, K = k.

Definition 7.2. Let (X,K), (Y, L) ∈ birk and h : (X,K)→ (Y,L) be a morphism.
We say the morphism is separated (resp. proper) if X → Y ×PL/k PK/k is injective
(resp. bijective).

Here the fiber product is in the category of topological spaces.
We say (X,K) ∈ birk is separated (resp. proper) if the morphism to the final

object is separated (resp. proper).

Observe that X → Y ×PL/k PK/k is automatically an open embedding (resp. a
homeomorphism).



24 COMMUTATIVE ALGEBRAS

8. Miscellany

Proposition 8.1. Let R be a noetherian N-2 integral domain. Let ψ : R→ S be a
ring homomorphism such that S is reduced, torsion-free as R-module and has finite
rank as R-module. Then ψ is finite.

[BGR84, Page 122]. Reproduce the argument later.

Proof. As ψ is injective by assumption, we may assume that R is a subring
of S and ψ is identity. The ring SR\{0} = FracS is a finite-dimensional reduced
FracR-algebra, hence as a ring, FracS is the product of finitely many finite field
extensions of FracR, say K1, . . . ,Kt. As R is N-2, the integral closure Ri of R in
Ki is finite as R-module for i = 1, . . . , t. As S is integral over R, we have

S ⊆ R1 × · · · ×Rt.
Since R is noetherian, we conclude that S is finite as R-module. �

Lemma 8.2. Let R be a commutative ring. A polynomial a0 +a1X+ · · ·+anX
n ∈

R[X] is a unit if and only if a0 is a unit in R and a1, . . . , an are nilpotents.

Lemma 8.3. Let f : A→ B be a homomorphism of noetherian rings, M be a finite
B-module and J be an ideal of B such that A→ B/J is of finite type. Then

{x ∈ SpecB/J : M is f -flat at x}
is open in SpecB/J .

If moreover, A is an integral domain, then there is f 6= 0 in A such that Mf is
A-flat at all prime idelas of Spec(B/J)f .

Proof. This is a well-known result, for a proof we refer to [Kie67, Satz 1]. �
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