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The notion of complex analytic spaces

1. Introduction

We introduce the notion of complex analytic spaces in this section.

2. C-ringed space

Definition 2.1. A C-ringed space is a pair (X,OX) consisting of a topological
space X and a sheaf OX of C-algebras on X.

A morphism of C-ringed spaces f : (Y,OY ) → (X,OX) is a pair consisting
of a continuous map f : Y → X and a morphism of sheaves of C-algebras f# :
f−1OX → OY .

Given two morphisms of C-ringed spaces f : (Y,OY ) → (X,OX) and g :
(Z,OZ) → (Y,OY ), their composition is the morphism f ◦ g : (Z,OZ) → (X,OX)
consisting of the continuous map f ◦ g : Z → X and a morphism of sheaves
(f ◦ g)# = g# ◦ g−1f# : (f ◦ g)−1OX

∼−→ g−1f−1OX → OZ .
When there is no risk of confusion, we say X is a C-ringed space. In this case,

we write |X| for the topological space underlying X.

It is straightforward to verify that C-ringed spaces form a category, which we
denote by C-RS. Similarly, we denote by RS the category of ringed spaces defined
in [Stacks, Tag 0090].

In fact, by definition a C-ringed space is nothing but a morphism in the category
of ringed spaces X → C0, where C0 is a single point ∗ endowed with the sheaf
of rings OC0 with OC0(∗) = C. In terms of slice categories, we have a canonical
equivalence of categories

C-RS ≈ RS/C0.

From this identification, most of the basic results above C-RS follows, which we
will use freely.

There is an obvious faithful forget functor C-RS→ RS.

Definition 2.2. A locally C-ringed space is a C-ringed space (X,OX) which when
regarded as a ringed space is a locally ringed space.

A morphism between two locally C-ringed spaces is a morphism between the
underlying C-ringed spaces which is a morphism of locally ringed spaces at the same
time.

The category of locally C-ringed spaces is denoted by C-LRS.

We refer to [Stacks, Tag 01HA] for the notion of locally ringed spaces. Similar
to the case of C-ringed space, we have a canonical equivalence of categories

C-LRS ≈ LRS/C0.
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6 THE NOTION OF COMPLEX ANALYTIC SPACES

Example 2.3. Let n ∈ N, we define a sheaf of C-algebras OCn on Cn as follows: for
any open subset U ⊆ Cn, OCn(U) is the C-algebra of holomorphic functions on U .
It is easy to see that OCn is a sheaf and (Cn,OCn) is a C-ringed space. Moreover, it
is easy to show that (Cn,OCn) is a locally C-ringed space.

Proposition 2.4. Let n ∈ N, w ∈ Cn, then there is a natural isomorphism
OCn,w

∼= C{z1, . . . , zn}.

The ring on the right-hand side is defined in Definition 2.1 in the Complex
Analytic Local Algebras.

Proof. This is a well-known result from classical complex analysis. Include
details later. �

3. Complex model spaces and complex analytic spaces

Definition 3.1. Given any domain D in Cn, we can define a sheaf of C-algebras
OD on D as the restriction of OCn defined in Example 2.3 to D. Observe that
(D,OD) is a locally C-ringed space.

Definition 3.2. A complex model space is a C-ringed space (X,OX) such that
there exist

(1) a domain D in Cn for some n ∈ N and
(2) an ideal sheaf I in OD of finite type

such that thre is an isomorphism

(X,OX) ∼= (SuppOD/I, i−1(OD/I))

in the category of C-RS, where i : SuppOD/I → D is the inclusion map. Here OD
is the sheaf of C-algebras defined in Definition 3.1.

Clearly, (X,OX) is a locally C-ringed space.

Observe that X is always a Hausdorff space.

Definition 3.3. A complex analytic space is a locally C-ringed space (X,OX)
such that for any x ∈ X, there is an open neighbourhood U ⊆ X of x such
that (U,OU := OX |U ) is isomorphic to a complex model space in the sense of
Definition 3.2 in the category C-LRS.

When there is no risk of confusion, we also omit OX from the notation say X
is a complex analytic space.

A morphism between complex analytic spaces is a morphism of the underlying
C-ringed spaces. Such a morphism is also known as a holomorphic map.

The category of complex analytic spaces is denoted as C-An.

Observe that a morphism of complex analytic spaces is necessarily a morphism
of locally C-ringed spaces by Proposition 5.2 in Complex analytic local algebras.

Remark 3.4. Most authors require X to be Hausdorff as well. We do not follow
this convention. We require it whenever necessary.

Remark 3.5. Most of the authors require extra conditions in the definition of a
complex analytic space: σ-compactness, paracompactness, having countable basis
etc. We will not put these constraints in the definition, instead, we choose to include
them into the assumptions of the theorems.
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Proposition 3.6. Let X be a complex analytic space, x ∈ X. Then OX,x is a
complex analytic local algebra.

Recall that complex analytic local algebras are defined in Definition 5.1 in the
Complex Analytic Local Algebras.

Proof. The problem is local, so we may assume that X is a complex model
space. In this case, the result follows easily from Proposition 2.4. �

Let X be a complex analytic space. It is a sheaf of C-algebras. For any sheaf of
local C-algebras A on X, any open set U ⊆ X and any s ∈ AX(U). We want to
construct a function [s] : U → C.

Take x ∈ U , there is a canonical splitting
(3.1) Ax ∼= C⊕mx,

where mx is the maximal ideal of Ax. Then we define [s](x) as the image of sx in
the C-factor in (3.1). When there is no risk of confusion, we write s(x) instead of s.

Definition 3.7. Let X,A, U, x, s be as above. The value [s](x) ∈ C is called the
value of s at x. We sometimes denote it by s(x) as well.

Lemma 3.8. Let X be a complex analytic space. We denote by CX the sheaf
of continuous functions on X. The association s 7→ [s] in Definition 3.7 defines a
homomorphism of sheaves of C-algebras OX → CX .

When there is no risk of confusion, we also write s instead of [s].

Proof. We need to show that for any open set U ⊆ X and any s ∈ OX(U),
[s] is a continuous function on U .

We may clearly assume that U = X. The problem is local on X, so we may
assume that X is a complex model space in the sense of Definition 3.2 defined by a
coherent ideal I in a domain D in Cn. By further localizing, we may assume that s
can be lifted to a section f ∈ OD(D). Then [s] = f |X by definition. So the assertion
follows from the fact that a holomorphic function on a domain is continuous. �

4. The spaces Cn

Fix n ∈ N. In tihs section, we will study the complex analytic space Cn. We
will write z1, . . . , zn ∈ OCn(Cn) the coordinate functions.

Lemma 4.1. Given a = (a1, . . . , an) ∈ Cn, we have
ai = zi(a) = εa(zi)

for i = 1, . . . , n. Here εa : OCn,a → C is the augmentation map of OCn,a.

Proof. This follows by expanding the definitions. �

Given a complex analytic space X, we will construct a canonical map
(4.1) ϕ(X) : HomC-An(X,Cn)→ OX(X)n

as follows: given a morphism f : X → Cn, we let ϕi(f) = f∗(zi) ∈ OX(X) for
i = 1, . . . , n. Then we define ϕ(X)(f) = (ϕ1(f), . . . , ϕn(f)).

Theorem 4.2. Let X be a complex analytic space. Then the map (4.1) is bijective
and is functorial in X.
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Proof. The functoriality is clear. It suffices to show that (4.1) is bijective.
We first show that ϕ(X) is injective. Namely, ϕ(X)(f) determines the morphism

f : X → Cn. Take x ∈ X and a = f(x). By Lemma 4.1, we have

zi(f(x)) = εa(ϕi(f))

for i = 1, . . . , n. So set-theoretically, f is determined by ϕ(X)(f).
Let ai = zi(a) ∈ C for i = 1, . . . , n. Then z′i = zi − a for i = 1, . . . , n form a

regular system of parameters of OCn,a. Consider f#
x : OCn,a → OX,x, then

f#
x (z′i) = ϕi(f)x − ai

for i = 1, . . . , n. So ϕ(X)(f) uniquely determines f#
x (z′i). Now fx induces by

completion
ÔCn,a

∼= k[[z′1, . . . , z′n]]→ ÔX,x.
This map is uniquely determined by the f#

x (z′i)’s hence by ϕ(X)(f). In particular,
f#
x : OCn,a → OX,x is uniquely determined by ϕ(X)(f). Hence, the morphism f is
uniquely determined.

Next we show that ϕ is surjective. We first observe that ϕ induces a morphism
from the sheaf

(U ⊆ X) 7→ HomC-An(U,Cn)
on X to OnX . So the surjectivity of ϕ is local on X. It suffices to show that for
f1, . . . , fn ∈ OX(X), there exists a morphism from a neighbourhood U of x in X to
Cn such that ϕi(f)x = fi,x for all i = 1, . . . , n. Up to shrinking X, we may assume
that X is a closed subspace of an open subset V in Cm for some m ∈ N and fi
lifts to gi ∈ OU (U) for i = 1, . . . , n. Let g : U → Cn be the morphism induced by
(g1, . . . , gn). Then ϕi(g) = gi for i = 1, . . . , n. Let f : X → Cn be the morphism
induced by g. Then ϕi(f) = (ϕi(g))|X = gi|X = fi. �

5. Open and closed immersions

Definition 5.1. A morphism f : X → Y of complex analytic spaces is an open
immersion if it is an open immersion of locally ringed spaces.

Recall that an open immersion of locally ringed spaces is defined in [Stacks, Tag
01HE].

Example 5.2. Let X be a complex analytic space and U be an open subset of U .
Then U has a structure of complex anlaytic space induced from X. The inclusion
U ↪→ X is an open immersion. We say U is an open subspace of X.

Definition 5.3. A morphism f : X → Y of complex analytic spaces is a closed
immersion if it is a closed immersion of locally ringed spaces.

The kenrel of the canonical morphism OY → f∗OX is called the ideal of X in
Y .

Recall that a closed immersion of locally ringed spaces is defined in [Stacks, Tag
01HK]. Note that we have a short exact sequence

0→ I → OY → f∗OX → 0.

Later on, we will show that I is coherent after proving Oka’s coherence theorem.

https://stacks.math.columbia.edu/tag/01HE
https://stacks.math.columbia.edu/tag/01HE
https://stacks.math.columbia.edu/tag/01HK
https://stacks.math.columbia.edu/tag/01HK
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Example 5.4. Let X be a complex analytic space and I be a subsheaf of OX
locally generated by sections as a sheaf of OX -modules in the sense of [Stacks, Tag
01B2]. Set Z = SuppOX/I and let i : Z → X be the inclusion map. Let OZ be the
unique sheaf of rings on Z such that i∗OZ = OX/I, whose existence and uniqueness
is guaranteed by [Stacks, Tag 01AX]. Then (Z,OZ) is a complex analytic space and
i : Z → X is a closed immersion of complex analytic spaces. We say Z is the closed
subspace of X defined by I.

Example 5.5. Let X be a complex analytic space and x ∈ X. Then {x} is a closed
analytic subspace of X. In fact, it corresponds to the ideal mx.

Definition 5.6. A morphism f : X → Y of complex analytic spaces is an immersion
if it can be factorized aas j ◦ i where i is a closed immersion and j is an open
immersion.

We will show in ?? in ?? that our notion of immersion is the same as the general
notion of immersions in the sense of ringed spaces.

Definition 5.7. A morphism f : X → Y is a local immersion (resp. local iso-
morphism) at x ∈ X if there is an open neighbourhood U of x in X such that the
morphism U → Y induced by f is an immersion (resp. open immersion).

6. Weierstrass map

Definition 6.1. Let d ∈ N and B be a domain (non-empty open subset) in Cd.
Let ωj ∈ OB(B)[wj ] ⊆ OB(B)[w1, . . . , wk] be monic polynomials for j = 1, . . . , k
for some k ∈ N. We let A be the closed subspace of B × Ck defined by the ideal
generated by ω1, . . . , ωk. The projection map B×Ck → B induces a map π : A→ B.
The map π is called the Weierstrass map defined by ω1, . . . , ωk over B.

Theorem 6.2. Let d ∈ N and B be a domain in Cd. Let ωj ∈ OB(B)[wj ] ⊆
OB(B)[w1, . . . , wk] be monic polynomials of degree bj for j = 1, . . . , k for some
k ∈ N. Then the Weierstrass map π : A → B defined by ω1, . . . , ωk over B is
topologically finite and open.

Proof. We first prove that π : A → B is topologically finite. The only non-
trivial point is to show that π is closed. Let M be a closed subset in A and y be a
point in the closure of π(M) in B. Then we can find a sequence (yi, c1i, . . . , cki) ∈M
with yi ∈ B and (c1i, . . . , cki) ∈ Ck for i ∈ N such that yi → y in B as i→∞. Then
for each i ∈ N and j = 1, . . . , k, (yi, cji) is a solution to ωj(yi, •). By continuity of
roots, up to extracting a subsequence, we can find cj ∈ C such that cji → cj when
i→∞ for j = 1, . . . , k. It follows that y = π(y, c1, . . . , ck) ∈ π(M).

It remains to show that π is open. Take p = (q, c) ∈ A with q ∈ B and
c = (c1, . . . , ck) ∈ Ck. Let U be an open neighbourhood of p in A. We need to
show that π(U) contains an open neighbourhood of π(p). We may assume that
U = A ∩ (D ×W ), where D is an open neighbourhood of q in B and W is an open
neighbourhood of c in Ck.

By the proof of Theorem 2.11 in Complex analytic local algebras, chossing D
small enough, we may guarantee that there are monic polynomials ω′j , ω′′j ∈ O(B)[wj ]
and nj ∈ Z>0 such that

ωj |D×Ck = ω′jω
′′
j , ω′j(q, w) = (w − cj)nj

https://stacks.math.columbia.edu/tag/01B2
https://stacks.math.columbia.edu/tag/01B2
https://stacks.math.columbia.edu/tag/01AX
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for j = 1, . . . , k. Let A′ be the closed subspace of D × Ck defined by ω′1, . . . , ω′k.
Then A′ ⊆ A by construction. Let π′ : A′ → D be the natural projection. Then p is
the only point on π′−1(q). We claim that there is an open neighbourhood V ⊆ D of
q such that

A′ ∩ (V × Ck) ⊆ V ×W.
In fact, by Lemma 4.2 in Topology and bornology, we can find an open neighbourhood
V ⊆ D of q such that

π′−1(V ) ⊆ A′ ∩ (D ×W ).
But π′−1(V ) = A′ ∩ (V × Ck). So our claim follows.

It follows that V ⊆ π(U) and our assertion follows. �

Lemma 6.3. Let d ∈ N, B be a domain in Cd and
ω = wb + a1w

b−1 + · · ·+ ab ∈ OB(B)[w]
be a monic polynomial. Let π : A→ B be the Weierstrass map defined by ω over
B. For any y ∈ B and x1, . . . , xn be the distinct points in the fiber π−1(y). Then
for any fj ∈ Oxj

for j = 1, . . . , n, there exist germs qj ∈ Oxj
for j = 1, . . . , n and a

polynomial r ∈ Oy[w] with deg r < b such that
fj = ωxj

qj + rxj

for j = 1, . . . , n. The polynomial r and the germs q1, . . . , qn are uniquely determined.

Proof. We write
ω(y, w) = (w − c1)b1 · · · (w − cn)bn

with c1, . . . , cn with xi = (y, ci) for i = 1, . . . , n and b1, . . . , bn ∈ Z>0.
By Theorem 2.11 in Complex analytic local algebras, we can find ω1, . . . , ωn ∈

Oy[w] such that

ωxj = ω1xj · · ·ωnxj , ωj(y, w) = (w − cj)bj

for j = 1, . . . , n. We define

ej :=
∏
i6=j

ωi ∈ Oy[w]

for j = 1, . . . , n. Then ejxj
is a unit in Oxj

for j = 1, . . . , n as ej(xj) =
∏
i6=j(cj −

ci)bi 6= 0.
By Theorem 3.2 in Complex analytic local algebras, each germ fje

−1
jxj
∈ Oxj

can be written as
fje
−1
jxj

= ωjxj
q′j + rjxj

,

where q′j ∈ Oxj and rj ∈ Oy[w − cj ] with deg rj < bj for j = 1, . . . , n. Set
eij :=

∏
k 6=i,j ωk ∈ Oy[w] for any i, j = 1, . . . , n with i 6= j. For j = 1, . . . , n, we

define
qj := q′j −

∑
i 6=j

rixjeijxj

and
r = r1e1 + · · ·+ rtet ∈ Oy[w].

Then fj = ωxj
qj + rxj

for j = 1, . . . , n. This proves the uniqueness part.
Next we show the uniqueness. Assume that

0 = ωxj
qj + rxj
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with qj ∈ Oxj
for j = 1, . . . , n and r ∈ Oy[w] with degree less than b. We need to

show that r = 0. Assume by contrary that r 6= 0, then pj := r(ω1 · · ·ωj)−1 6= 0 for
j = 1, . . . , n. Now −rxj = (ω1 · · ·ωn)xjqj implies that pjxj = −qj(ωj+1 · · ·ωn)xj ∈
Oxj for j = 1, . . . , n. Since ωjxj ∈ Oy[w− cj ] is a Weierstrass polynomial, it follows
from Lemma 4.2 in Complex analytic local algebras and

r = p1ω1, pj−1 = pjωj for j = 2, . . . , n

that p1, . . . , pn are all polynomials in w. As r = pnω, we have a contradiction as
deg r < b. �

Theorem 6.4. Let d ∈ N, B be a domain in Cd and

ω = wb + a1w
b−1 + · · ·+ ab ∈ OB(B)[w]

be a monic polynomial. Let π : A→ B be the Weierstrass map defined by ω over
B. Then we have a natural isomorphism of OB-modules

ObB
∼−→ π∗OA.

Proof. We first define the map. Let V ⊆ B be an open subset and s =
(s0, . . . , sb−1) ∈ OB(V )b. The polynomial

∑b−1
j=0 sjw

j determines a section s′ ∈
OA(π−1(V )) = π∗OA(V ). The map s 7→ s′ is clearly defines a map of OB-modules
ObB

∼−→ π∗OA. In order to prove that this map is an isomorphism, it suffices to do
so for each germ. Let y ∈ B and x1, . . . , xn denote the points in the fiber π−1(b).
By Theorem 6.2 and Corollary 4.10 in Topology and bornology, we have a natural
identification

(π∗OA)y
∼−→

n∏
j=1
OA,xj

.

A germ g ∈ (π∗OA)y corresponds to (g1, . . . , gn) ∈
∏n
j=1OA,xj

. By Lemma 6.3, the
latter can be uniquely lifted to fj ∈ Oxj for j = 1, . . . , n such that if we define

r :=
b−1∑
j=0

rjw
j ∈ Oy[w],

then rxj restricts to gj for j = 1, . . . , n. This shows that the map of germs

Oby → (π∗OA)y

is bijective. �

7. Oka’s coherence theorem

This lemma needs to be placed elsewhere. Proof at CAS p58 needs to be
included

Lemma 7.1. Let X be a topological space and A be a Hausdorff sheaf of rings on
X (in the sense that the espace étalé of A is Hausdorff) such that all stalks of A
are integral domains. Then A is coherent if and only if for any open set V ⊆ X and
any section s ∈ A(X), AV /sAV is coherent at every x ∈ V where sx 6= 0.

Lemma 7.2 (Oka). For any n ∈ N, OCn is coherent.
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Proof. As a preparation, observe that OCn is a Hausdorff sheaf.
For any two germs si ∈ OCn,ai (i = 1, 2), we need to construct disjoint open

neighbourhoods Ui in the espace étalé of OCn of si. If a1 6= a2, the assertion is clear.
So assume that a1 = a2 = 0. We extend si to fi ∈ OCn(U) for a connected open
neighbourhood U ⊆ Cn of 0. Then {fx : x ∈ U} and {gx : x ∈ U} are disjoint: if
for some z ∈ U , fz = gz, then the same holds in a neighbourhood of z and so f = g
on U by Identitätssatz. Include the proof

We will prove the coherence of OCn by induction on n. The case n = 0 is trivial.
Assume that n > 0 and the theorem has been proved for all smaller n. We will
apply Lemma 7.1. Take an open set U ⊆ Cn and g ∈ OCn(U). We need to show
that OU/gOU is coherent at all x ∈ U with gx 6= 0.

Fix such a point x, which may be assumed to be 0. We may assume that
g(0) = 0 as otherwise, the stalk of OU/gOU at 0 is trivial. By perturbing the
coordinates, we may guarantee that g0(0, w) is not identically 0 for w ∈ C. By
Weierstrass preparation theorem Theorem 4.3 in Complex analytic local algebras,
there is a Weierstrass polynomial ω0 ∈ OCn−1,0[w] such that g0OCn,0 = ω0OCn,0.
Lift ω0 to ω ∈ OCn−1(B) for some neighbourhood B ⊆ Cn−1 of 0. In order to show
the coherence of OU/gOU near 0, it suffices to show that OB×C/ωOB×C near 0. Let
A ⊆ B × C be the closed subspace defined by ω and π : A→ B be the Weierstrass
map, then it suffices to show that OA is coherent near 0. By our inductive hypothesis,
OB is coherent. We claim that OA is also coherent. Let b be the degree of ω. We
recall that π is topologically finite by Theorem 6.2.

We first prove a special case: let p ∈ N and ϕ : OpA → OA be an OA-
homomorphism. We show that kerϕ is of finite type. By Theorem 6.4, π∗OpA
is coherent. So π∗ kerϕ is coherent by Corollary 4.10 in Topology and bornology. It
follows that kerϕ is of finite type.

Next let U ⊆ A be an open subset and s1, . . . , sp ∈ OA(U). We need to show
that the kernel of the assocaited map

OpU → OA|U
is of finite type. By Theorem 4.8 in Topology and bornology, for each x ∈ U , we
can find an open neighbourhood V of x in U such that π−1(V ) is the disjoint union
of open neighbourhoods U1, . . . , Un of the points in π−1(π(x)). We may assume
that x ∈ U1. Extend sj |U1 to s′j ∈ OA(π−1(V )) by setting its values to be 0 on
U2, . . . , Un for j = 1, . . . , p. Then ϕ extends to ϕ′ : Opπ−1(V ) → Oπ−1(V ) with the
same kernel over U1. By what we have proved, kerϕ′ is of finite type. Hence, so is
kerϕ. �

As a corollary, we have the important Oka’s coherence theorem.

Theorem 7.3. Let X be a complex analytic space, then OX is coherent.

Proof. The problem is local on X, so we may assume that X is a complex
model space, say there is a closed immersion into a domain D in Cn defined by an
ideal of finite type I. By Lemma 7.2, OD is coherent and hence I is coherent. It
follows that OD/I is coherent and hence OX is coherent. �

Corollary 7.4. LetX be a complex analytic space andM be a sheaf of OX -modules.
Then the following are equivalent:

(1) M is coherent;
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(2) M is of finite presentation.
IfM is a subsheaf of OX , then these conditions are further equivalent to:

(3) M is of finite type.

Proof. The equivalence between (1) and (2) follows from [Stacks, Tag 01BZ]
and Theorem 7.3.

The equivalence of (1) and (3) follows from [Stacks, Tag 01BY]. �

Corollary 7.5. Let f : X → Y be a morphism of complex analytic spaces andM
be a coherent sheaf of OY -modules. Then f∗M is coherent.

Proof. This follows from Corollary 7.4 and [Stacks, Tag 01BQ]. �

Definition 7.6. Let f : X → Y be a morphism of complex analytic spaces such
that f∗OX is coherent. We define the complex image space f(X) of f as the closed
subspace of Y defined by AnnOY

(f∗OX).

Here we need Theorem 7.3 to guarantee that AnnOY
(f∗OX) is coherent. Observe

that the support of OY /AnnOY
(f∗OX) is exactly f(X) in the set-theoretic sense.

Moreover, we have f factorizes canonically through a morphism X → Z.

Corollary 7.7. Let i : X → Y be a closed immersion. Then the ideal I of i is
coherent.

Proof. Recall that we have a short exact sequence

0→ I → OY → i∗OX → 0.

Then OY and OX are coherent by Theorem 7.3. Then i∗OX is coherent as the
zero-extension of a coherent sheaf. It follows that I is also coherent. �

Corollary 7.8. Let X be a complex analytic space. Then there are natural
bijections between the sets of

(1) closed subspaces of X;
(2) coherent ideal sheaves on X.

Proof. This follows from Corollary 7.7 and Example 5.4. �

8. Finite limits in the category of complex analytic spaces

The goal of this section is to show that the category of complex analytic spaces
admits finite limits.

As the category C-An admits a final object, namely C0, the existence of finite
limits is the same as the existence of fiber products by general abstract nonsense
[Stacks, Tag 002O].

We begin by considering direct products, namely fiber products over C0.

Lemma 8.1. Let m,n ∈ N. Then

Cm × Cn ∼= Cm+n.

Here × denotes the product in C-An.

Proof. By Yoneda lemma [Stacks, Tag 001P], it suffices to establish

hCm×Cn ∼= hCm+n ,

https://stacks.math.columbia.edu/tag/01BZ
https://stacks.math.columbia.edu/tag/01BY
https://stacks.math.columbia.edu/tag/01BQ
https://stacks.math.columbia.edu/tag/002O
https://stacks.math.columbia.edu/tag/001P
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where h• denotes the functor of points [Stacks, Tag 001O]. Take T ∈ C-An, then
there are isomorphisms

hCm×Cn(T ) ∼−→ hCm(T )× hCm(T ) ∼−→ (OT (T ))m+n ∼−→ hCm+n(T ),

which are all functorial in T . We conclude. �

Lemma 8.2. Let f : X → Y be a morphism in C-An. Let i : Z → Y be a closed
(resp. an open) immersion. Then the fiber product X ×Y Z exists. Moreover,
X ×Y Z → X is a closed (resp. an open) immersion and there is a natural
identification |X ×Y Z| ∼= |X| ×|Y | |Z|.

We can draw a Cartesian diagram

X ×Y Z X

Z Y

� f

i

Proof. When i is an open immersion, it suffices to take X ×Y Z as the open
subspace of X defined by f−1(i(Z)).

Let us consider the case where i is a closed immersion defined by a coherent
ideal sheaf I. It is a general result that X ×Y Z in the category LRS exists [Stacks,
Tag 01HQ]. Let us show that X ×Y Z is a closed complex analytic subspace of X
and conclude. To do so, recall that X ×Y Z is by construction a closed subspace of
X defined by J := Im (f∗I → f∗OY = OX). It suffices to show that J is of finite
type. By this is clear as I is of finite type.

The identification of the underlying topological space is obvious. �

Lemma 8.3. Let X, Y be complex analytic spaces. Consider open (resp. closed)
immersions X ′ → X and Y ′ → Y . If X × Y exists, then so is X ′ × Y ′ and the
natural morphism X ′ × Y ′ → X × Y is an open (resp. a closed) immersion.

Proof. We form the following large Cartesian diagram

Z X ′′ X ′

Y ′′ X × Y X

Y ′ Y C0

� �

� �

The existences of all but the lower right square are guaranteed by Lemma 8.2.
More precisely, we first define the upper right square and the lower left square by
Lemma 8.2. It follows from Lemma 8.2 that X ′′ → X×Y is an open (resp. a closed)
immersion. So we can apply Lemma 8.2 again to construct the upper left square.

It follows from general abstract nonsense that the big square is also Cartesian.
Moreover, by Lemma 8.2 again, Z → Y ′′ and Y ′′ → X × Y are both open (resp.
closed) immersions. It follows that Z → X × Y is also an open (resp. a closed)
immersion. �

Corollary 8.4. Let X, Y be complex model spaces. Then X × Y exists.

https://stacks.math.columbia.edu/tag/001O
https://stacks.math.columbia.edu/tag/01HQ
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Proof. By Lemma 8.3, we may assume that X and Y are both domains in
some Cm and Cn respectively. Then applying Lemma 8.3 again, we reduce to the
case where X = Cm and Y = Cn. This case is handled in Lemma 8.1. �

Corollary 8.5. Let X, Y be complex analytic spaces. Then X × Y exists in C-An.
Moreover, there is a natural identification |X × Y | ∼= |X| × |Y |.

Proof. Let
X =

⋃
i∈IX

Xi, X =
⋃
j∈IY

Yj

be open coverings of X by complex model spaces. Let K = IX × IY . For each
k = (i, j) ∈ K, we let Zk = Xi × Yj , whose existence is guaranteed by Corollary 8.4.
Take another k′ = (i′, j′) ∈ K, then

Zkk′ := Zk ∩ Zk′ = (Xi ×Xi′) ∩ (Yj × Yj′)

is an open subspace of Zk. It is clear that Zkk′ forms a glueing data. From the
general result [Stacks, Tag 01JB], we can glue Zk’s into a locally ringed space Z.
From the construction, |Z| = |X| × |Y | in the category of topological spaces, so |Z|
is Hausdorff. On the other hand, from the construction, locally Z is isomorphic
to some Zk, so Z is a complex analytic space. As Z is clearly the product in the
category of locally C-ringed spaces, we conclude that Z = X × Y in C-An. �

Corollary 8.6. The category C-An admits all finite limits. Moreover, finite limits
commute with the forgetful functor C-An→ T op.

Proof. By [Stacks, Tag 002O], Corollary 8.5 and the existence of a final
object in C-An (namely, C0), it suffices to show the existence of fiber products. In
other words, suppose that we are given three complex analytic spaces Z,X, Y and
morphisms X → Z and Y → Z in C-An, we need to prove the existence of X ×Z Y .
From the general abstract nonsense, we can define X ×Z Y = (X × Z)Y×Y,∆Y

Y :

X ×Y Z X × Z

Y Y × Y
�

∆Y

,

where ∆Y : Y → Y × Y is the diagonal morphism, which is a closed immersion, the
existence of X × Z is guaranteed by Corollary 8.5 and the existence of the fiber
product is guaranteed by Lemma 8.2.

In order to verify that finite limits commute with the forgetful functor C-An→
T op, it suffices to consider fiber products. By Lemma 8.2, we reduced to the case
of finite products. In this case, the result is proved in Corollary 8.5. �

Remark 8.7. It is important to remember that the forgetful functor C-An→ C-LRS
does not commute with finite limits, in contrast to the case of schemes [Stacks, Tag
01JN]. While the forgetful functor from the category of schemes Sch to T op does
not commute with finite limits.

These facts indicate that there are essential differences between the theory of
analytic spaces and the theory of schemes.

Definition 8.8. Let f : X → S be a morphism of complex analytic spaces and
s ∈ S. Then the fiber Xs or f−1{s} is the fiber product X ×S {s}. It is a closed

https://stacks.math.columbia.edu/tag/01JB
https://stacks.math.columbia.edu/tag/002O
https://stacks.math.columbia.edu/tag/01JN
https://stacks.math.columbia.edu/tag/01JN


16 THE NOTION OF COMPLEX ANALYTIC SPACES

analytic subspace of X by Example 5.5 and ...Include a lemma saying the base
change of closed immersion is closed immersion.

Next we study the local rings of fiber products.

Theorem 8.9. Let Y be an object in C-An and X1, X2 ∈ C-An/Y . Let (x1, x2)
be a point of X1 ×Y X2, namely, xi ∈ Xi for i = 1, 2 and the images of x1 and x2
in Y coincide, say y ∈ Y . Then there is a caonical isomorphism

OX1×Y X2,(x1,x2) ∼= OX1,x1⊗OY,y
OX2,x2 .

The analytic tensor product here is defined Definition 5.7 in the Complex
Analytic Local Algebras. We have shown its existence in Theorem 5.12 in the same
chapter.

Proof. Comparing the constructions of both sides, we see that it suffices to
prove the theorem in two special cases: when Y = C0 and when X2 → Y is a closed
immersion.

We first consider the case where Y = C0. As our problem is local, we may
assume that X1 and X2 are both complex model spaces. From the constructions,
we easily reduce to the case where X1 and X2 are both domains in Cm and Cn
respectively. In this case, the result is proved in Lemma 5.8 in the Complex Analytic
Local Algebras and Proposition 2.4.

Next we handle the case where X2 → Y is a closed immersion. This case is
immediately clear from the constructions of both sides. �
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