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Constructions of complex analytic spaces

1. Introduction

2. Analytic spectra

Proposition 2.1. Let S be a complex analytic space and A be an OS-module of
finite presentation. Then the presheaf FA on C-An/S defined by

FA(T p−→ S) = HomOT
(p∗A,OT )

is representable.

Proof. By the arguments of [Stacks, Tag 01JJ], the problem is local in S. So
we may assume that A has the following form

A = OS [X1, . . . , Xn]/I
for some n ∈ N and I ⊆ OS(S)[X1, . . . , Xn] an ideal sheaf of finite type.

Step 1. We first handle the case where A = OS [X1, . . . , Xn].
In this case, we claim that FA is represented by S × Cn. In fact, it suffices to

observe that
FA(T p−→ S) ∼−→ HomOT

(OT [X1, . . . , Xn],OT ) ∼−→ OT (T )n

= HomC-An(T,Cn) = HomC-An/S
(T, S × Cn).

From this proof, it is easy to see that the universal morphism is
η : OS×Cn [X1, . . . , Xn]→ OS×Cn

sending Xi to zi, the i-th coordinate of Cn.
Step 2. We handle the general case. We have a short exact sequence

0→ I → OS [X1, . . . , Xn]→ A→ 0.
For any p : T → S in C-An, we have an exact sequence

p∗I → OT [X1, . . . , Xn]→ p∗A → 0.
We then have

FA(T ) ∼−→{h ∈ HomOT
(OT [X1, . . . , Xn],OT ) : h|p∗I = 0}

∼−→
{
h ∈ FOS [X1,...,Xn](T ) : h|p∗I = 0

}
.

Let π : S × Cn → S be the projection. Then FA(T ) is represented by the closed
subspace of S × Cn defined by the ideal η(π∗I), which is clearly of finite type. �

Definition 2.2. Let S be a complex analytic space and A be an OS-module of
finite presentation. Then the complex analytic space representing the functor FA in
Proposition 2.1 is called the analytic spectrum of A. We denote it by Specan

S A. By
construction, there is a canonical morphism Specan

S A → S.
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6 CONSTRUCTIONS OF COMPLEX ANALYTIC SPACES

By definition, we have a universal morphism ξ ∈ FA(X) = HomOX
(AX ,OX)

with X = Specan
S A. It defines a morphism of ringed spaces X → (|S|,A). The pull-

back of an A-moduleM is denoted by M̃. The assignmentM 7→ M̃ is functorial
in M .

It is easy to see that Specan
S A is contravaraint in A.

Proposition 2.3. Let S be a complex analytic space and A be an OS-module of
finite presentation. Consider a morphism g : S′ → S of complex analytic spaces.
Then we have a Cartesian diagram

Specan
S′ g
∗A Specan

S A

S′ S

�
g

Proof. This is clear at the level of functor of points. �

Corollary 2.4. Let S be a complex analytic space and A be an OS-module of
finite presentation. Take s ∈ S. Then Specan

{s}As
∼−→ (Specan

S A)s.
Moreover, the universal morphism ASpecan

{s}As
→ OSpecan

{s}As
is the reduction of

the universal morphism ASpecan
S
A → OSpecan

S
A modulo ms.

Proof. This follows from Proposition 2.3. �

Proposition 2.5. Let S be a complex analytic space and A be an OS-module of
finite presentation. Take s ∈ S. Write X = Specan

S A and As := A⊗OS
OS,s. Then

the map from Xs to
{m ∈ SpmCAs : m ⊇ ms}

sending x ∈ Xs to the inverse image of mx with respect to As → OX,x is bijective.
If m corresponds to x ∈ Xs, then the natural homomorphism As → OX,x

factorizes through As,m → OX,x. The completion of the latter

Âs,m → ÔX,x
is an isomorphism.

Proof. By Corollary 2.4, we have natural bijections

Xs
∼−→ Hom{s}({s}, Xs)

∼−→ HomC-Alg(As/msAs,C).
This gives the desired bijection.

Next we prove the latter part. The problem is local on S, we may assume that
A = OS [X1, . . . , Xn]/I

for some n ∈ N and some ideal I of finite type in OS [X1, . . . , Xn]. Recall that the
universal morphism

η : OS×Cn [X1, . . . , Xn]→ OS×Cn

sends Xi to zi, the i-th coordinate of Cn.
By construction, we have

As
∼−→ OS,s[X1, . . . , Xn]/Is

and
OX,x = OS×Cn,x/Jx,
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where
Jx = ηx (IsOS×Cn,x[X1, . . . , Xn]) .

We have a commutative diagram with exact rows

0 Is OS,s[X1, . . . , Xn] As 0

0 Jx OS×Cn,x OX,x 0

.

The middle vertical map is induced by ηx. Let p be the inverse image of mS×Cn,x

under the vertical map in the middle. Then p is generated by ms and X1 −
x1, . . . , Xn−xn, where xi ∈ C is the value of zi at x for i = 1, . . . , n. By localization
and completion, we find a commutative diagram with exact rows

0 (̂Is)p (OS,s[X1, . . . , Xn])̂p (̂As)m 0

0 Ĵx ̂OS×Cn,x ÔX,x 0

.

Observe that

(OS,s[X1, . . . , Xn])̂p ∼= ÔS,s[[X1 − x1, . . . , Xn − xn]]

and
̂OS×Cn,x

∼= ÔS,s⊗̂k ̂OCn,(x1,...,xn) ∼= ÔS,s[[X1 − x1, . . . , Xn − xn]].
It is easy to see that the middle map is an isomorphism. As Jx is generated by Is,
the first vertical map is also an isomorphism. Our assertion follows. �

Corollary 2.6. Let S be a complex analytic space and A be a finite OS-algebra.
Write X = Specan

S A. Take s ∈ S. Then the fiber Xs is finite and is in bijection
with SpmCAs = SpmAs. If m corresponds to x ∈ Xs, then we have a natural
isomorphism

As,m
∼−→ OX,x.

Proof. We first observe that as As is a finite OS,s-algebra, its residue fields at
maximal primes are finite extensions of the residue field C of OS,s. So SpmCAs =
SpmAs.

As OS,s → As is finite, As is semi-local. On the other hand, by Proposition 2.5,

As,m → OX,x
is injective and OX,x is quasi-finite over OS,s. Then OX,x is finite over OS,s by
Theorem 5.4 in Complex analytic local algebras. It follows from Nakayama’s lemma
that As,m → OX,x is also surjective. �

Corollary 2.7. Let S be a complex analytic space and A be a finite OS-algebra.
Then the image of Specan

S A → S is SuppA.

Proof. This follows from Corollary 2.6 and the fact that SpmCAs = SpmAs
for all s ∈ S. �

Proposition 2.8. Let S be a complex analytic space and A be a finite OS-algebra.
Write f : Specan

S A for the structure map. Then we have the following assertions:
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(1) for all A-moduleM, the natural morphism

M→ f∗M̃

is an isomorphism,
In particular, A ∼−→ f∗OX .

(2) for all OX -module F , the canonical morphism

f̂∗F → F

is an isomorphism.
In particular, the category of A-modules is equivalent to the cateogory of OX -
modules.

Proof. By Corollary 3.8, f is topologically finite. Take s ∈ S. Let x1, . . . , xn
be the distinct points of f−1(s) and m1, . . . ,mn denote the maximal ideals of As
corresponding to x1, . . . , xn.

(1) By Corollary 4.10 in Topology and bornology and Corollary 2.6,

(f∗M̃)s ∼=
n∏
i=1

M̂xi
∼=

n∏
i=1
M̂s ⊗As OX,xi

∼=Ms ⊗As

n∏
i=1
As,mi

∼−→Ms.

(2) By Corollary 4.10 in Topology and bornology,

f∗Fs ∼=
n∏
i=1
Fxi

.

It follows that

f̃∗Mxi

∼= f∗Fs ⊗As
OX,xi

∼=
n∏
j=1
Fxj
⊗As

As,mi

for i = 1, . . . , n. But the only non-zero term is when j = i, so

f̃∗Mxi

∼= Fxi

for i = 1, . . . , n. �

Corollary 2.9. Let S be a complex analytic space and A be a finite OS-algebra.
Write f : Specan

S A for the structure map. Then for any coherent OX -moduleM,
f∗F is coherent.

Moreover, f∗ is exact from Coh(OX) to Coh(OY ).

Proof. The exactness of f∗ follows from Proposition 2.8.
We claim that up to shrinking S, we may assume thatM has a global presenta-

tion. Fix s ∈ S and let x1, . . . , xn be the distinct points of f−1(s).
For each j = 1, . . . , n, we can find an open neighbourhood Uj of xj in X,

pairwise disjoint and an exact sequence

Opj

Uj
→ Oqj

Uj
→M|Uj

→ 0

for some pj , qj ∈ Z>0. We may assume that p1 = · · · = pn and q1 = · · · = qn. We
denote the common values by p and q. Then U = U1 ∪ · · · ∪ Un is a neighbourhood
of f−1(s), and we have an exact sequence

OpU → O
q
U →M|U → 0.
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By Lemma 4.2 in Topology and bornology, we may assume that U = π−1(V ) for
some open neighbourhood V of s in S. The induced map f ′ : U → V is finite and
by Corollary 4.10 in Topology and bornology.

Now let us take a presentation

Op → Oq →M→ 0.

By Proposition 2.8, we have an exact sequence

f∗Op → f∗Oq → f∗M→ 0.

By Proposition 2.8 again, this can be written as

Ap → Aq → f∗M→ 0.

It follows that f∗M is coherent. �

Proposition 2.10. Let S be a complex analytic space and A, B be OS-algebras of
finite presentation. Assume that A is finite. Then we have a natural bijection

HomOS
(B,A) ∼−→ HomC-An/S

(Specan
S A,Specan

S B).

Proof. Let f : X := Specan
S A → S be the natural map. We construct the

bijection as

HomOS
(B,A) ∼−→ HomOS

(B, f∗OX) ∼−→ HomOX
(BX ,OX) ∼−→ HomC-An/S

(Specan
S A,Specan

S B).

The first map is a bijection by Proposition 2.8 �

Definition 2.11. Let S be a complex analytic space and E be an OS-module of
finite presentation. We define the vector bundle V(E) generated by E as

V(E) = Specan
S Sym E .

We have a natural projection V(E)→ S.

We remind the readers that we are following Grothendieck’s convention for
V(E), which is different from Fulton’s.

3. Analytic germs

Definition 3.1. A pointed complex analytic space is a pair (X,x) consisting of a
complex analytic space X and a point x ∈ X. A morphism between pointed complex
analytic spaces (X,x) and (Y, y) is a morphism f : X → Y of complex analytic
spaces such that f(x) = y. The category of pointed complex analytic spaces is
denoted by C-An∗.

The category of complex analytic germs C-Ger is the right category of fractions
of C-An with respect to the system of morphisms f : (X,x) → (Y, y) such that
f : X → Y is an open immersion. An element in C-Ger is called a complex analytic
germ. A complex analytic germ represented by (X,x) is denoted by Xx.

Given a complex analytic germ Xx, we write OX,x for the local ring of X
at x. Clearly, it does not depend on the choice of (X,x). Given any morphism
f : Xx → Yy of complex analytic germs, we have an obvious local homomorphism
f# : OY,y → OX,x.
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Definition 3.2. Given a complex analytic germ Xx, a closed subgerm of Xx is an
isomorphism class in C-Ger/Xx

of Yx represented by a closed analytic subspace of
X containing x for any representation (X,x) of Xx.

In particular, Xx is a closed subgerm of Xx. A closed subgerm Yy of Xx is
proper if Yy is different from Xx as subgerms.

Given a closed subgerm Yx of Xx, we have an induced surjective homomorphism
OX,x → OY,y. The kernel is denoted by I(Y, x) or IX(Y, x).

Theorem 3.3. The functor C-Gerop → C-LA defined in Definition 3.1 is an
equivalence.

Proof. Step 1. We show that the functor is faithfully.
In order words, let (X,x) and (Y, y) be two pointed complex analytic spaces

and f, g : (X,x)→ (Y, y) be two morphsims inducing the same map OY,y → OX,x,
then f and g coincide on a neighbourhood of x in X.

The question is open on Y , so we may reduce to the case where Y is a complex
model space. We then further reduce to the case where Y is a domain in Cn for
some n ∈ N and then to Y = Cn.

By Theorem 4.2 in The notion of complex analytic spaces, f and g can be
identified with systems (f1, . . . , fn) ∈ OX(X)n and (g1, . . . , gn) ∈ OX(X)n. The
assumption f#

x = g#
x menas fi,x = gi,x for i = 1, . . . , n. So fi = gi after shrinking

X. We conclude by Theorem 4.2 in The notion of complex analytic spaces again.
Step 2. We show that the functor is fully faithful.
In other words, let (X,x) and (Y, y) be two pointed complex analytic spaces and

ϕ : OY,y → OX,x be a morphism in C-LA. Then we can find an open neighbourhood
U of x in X and a morphism (U, x)→ (Y, y) inducing ϕ.

The problem is local on Y , so we may assuem that Y is a complex model space,
say Y is a closed subspace of a domain V in Cn defined by a coherent ideal I. We
write ψ : OV,y → OX,x the homomorphism induced by ϕ, we have a commutative
diagram

OV,y OY,y

OX,x

ψ

ϕ .

Let z1, . . . , zn be the coordinates on V . Let fi,x be the image of zi,x under ψ
for i = 1, . . . , n. Take an open neighbourhood U of x in X so that fi,x lifts to
fi ∈ OX(U) for i = 1, . . . , n. By Theorem 4.2 in The notion of complex analytic
spaces, f1, . . . , fn then defines a morphism g : U → Cn. Clearly g(x) = y. But
g#
x and ψ coincide on zi,y so g#

x = ψ as OV,y = C{z1,y − a1, . . . , zn,y − an} with
ai = ε(zi,y) for i = 1, . . . , n. Therefore, g#

x (Iy) = 0. Up to shrinking U , we may
guarantee that g(U) ⊆ V and g∗(I) = 0 on U . Namely, g factorizes through
f : U → Y and f∗x = ϕ.

Step 3. We show that the functor is essentially surjective.
In other words, let A be a complex analytic local algebra, then there is a pointed

complex analytic space (X,x) with OX,x ∼= A in C-LA.
We may assume that A = C{z1, . . . , zn}/I for some n ∈ N and ideal I in

C{z1, . . . , zn}. Then I is finitely generated as C{z1, . . . , zn} is noetherian. Take
finitely many generators f1, . . . , fm ∈ I. We extend f1, . . . , fm to g1, . . . , gm ∈
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OCn(U) for some open neighbourhood U of 0 in Cn. Then the closed subspace X of
U defined by f1, . . . , fm satisfies the required conditions. �

Corollary 3.4. Let f : X → Y be a morphism of complex analytic spaces and
x ∈ X. Then the following are equivalent:

(1) f is a local isomorphism;
(2) f#

x : OY,f(x) → OX,x is an isomorphism;

(3) f̂#
x : ÔY,f(x) → ÔX,x is an isomorphism.

Later on, we will see that Condition (3) means f is étale at x.

Proof. (1) ⇔ (2): This follows from Theorem 3.3.
(2) =⇒ (3): This is clear.
(3) =⇒ (2): As f#

x is quasi-finite, the mx-adic topology on OX,x coincides
with the mf(x)-adic topology on it regarded as an OY,f(x)-module. By Theorem 5.4
in Complex analytic local algebras, f#

x is finite. So

ÔX,x
∼−→ OX,x ⊗OY,f(x) ÔY,f(x).

So (2) follows from the fact that ÔY,f(x) is faithfully flat over OY,f(x), see [Stacks,
Tag 00MC]. �

Corollary 3.5. Let f : X → Y be a morphism of complex analytic spaces and
x ∈ X. Then the following are equivalent:

(1) f is a local immersion at x;
(2) f#

x : OY,f(x) → OX,x is surjective;

(3) f̂#
x : ÔY,f(x) → ÔX,x is surjective;

(4) OX,x/mf(x)OX,x
∼−→ C.

Proof. (1) =⇒ (2): This is clear.
(2) =⇒ (1): Let I be the kernel of f#

x . Up to shrinking X, we may assume
that I spreads to a coherent ideal sheaf I on Y . Let Y ′ be the closed analytic
subspace of Y defined by I. Up to shrinking X, we may assume that f factorizes
through f ′ : X → Y ′ by Theorem 3.3. But f ′#x is an isomorphism, so f ′ is a local
isomorphism by Corollary 3.4.

(2) ⇔ (3): This follows from the same arguments as in Corollary 3.4.
(2) ⇔ (4): This follows from Nakayama’s lemma. �

Corollary 3.6. Let f : X → Y be a morphism of complex analytic spaces. Then
the following are equivalent:

(1) f is an immersion;
(2) |f | induces a homeomorphism of |X| with a locally closed subset of |Y |

and for all x ∈ X, the homomorphism f#
c : OY,f(x) → OX,x is surjective.

The condition in (2) is the usual definition of an immersion of ringed spaces.
Our notion of immersion is usually called a locally closed immersion.

Proof. (1) =⇒ (2): This is clear by definition.
(2) =⇒ (1): We may clearly assume that f(X) is closed in Y . We need to show

that the kernel of OY → f∗OX is of finite type. This follows from Corollary 3.5. �

https://stacks.math.columbia.edu/tag/00MC
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Lemma 3.7. Let S be a complex analytic space and s ∈ S. For any finite OS,s-
algebra A, there is an open neighbourhood U of s in S and a finite OU -algebra such
that As ∼= A.

Proof. Let s ∈ S, as As is a finite OS,s-algebra, we can find finitely many
generators σ1,s, . . . , σn,s. As As is integral over OS,s, we can find unitary polyno-
mials Fi,s ∈ OS,s[Xi] such that Fi,s(σi,s) = 0 for i = 1, . . . , n. Take a sufficient
small neighbourhood U of s so that σi,s lifts to σi ∈ OS(U) and Fi,s lifts to
a unitary polynomial Fi ∈ H0(U,OS [Xi]) for i = 1, . . . , n. Up to shrinking U ,
we may guarantee that σ1, . . . , σn generate A|U at all points and Fi(σi) = 0 for
i = 1, . . . , n. Then B := OU [X1, . . . , Xn]/(F1, . . . , Fn) is coherent and we have
a surjective homomorphism B → A|U sneding Xi to σi for i = 1, . . . , n. As the
kenrel of this homomorphism is of finite ytpe, up to shrinking U , we may take
finitely many G1, . . . , Gm ∈ B(U) that generate the kernel. Lift G1, . . . , Gm to
H1, . . . ,Hm ∈ H0(U,OS [X1, . . . , Xm]), then

A|U ∼= OU [X1, . . . , Xn]/(F1, . . . , Fn, G1, . . . , Gm).

This follows from the same arguments of the proof of Theorem 3.3 Step 3. �

Corollary 3.8. Let S be a complex analytic space and A be a finite OS-algebra,
then the map Specan

S A → S is topologically finite.

Proof. By Corollary 2.6, the fibers of Specan
S A → S is finite. The map

Specan
S A → S is separated by construction. It remains to show that the map is

closed.
The problem is local on S. By the proof of Lemma 3.7, we can find a closed

immersion over S: Specan
S A → Specan

S B, where B = OS [X1, . . . , Xn]/(F1, . . . , Fn)
for some n ∈ N, where Fi is a unitary polynomial in OS(S)[Xi] for i = 1, . . . , n. It
suffices to show that Specan

S B → S is closed.
Observe that

Specan
S B ∼= Specan

S

n∏
j=1
OS [Xj ]/(Fj)

in An/S as can be seen from the functor of points. So the problem reduces to
showing that

Specan
S OS [X]/(F )→ S

for a unitary polynomial is closed. This is the classical continuity of roots. �

Next we describe the local structure of a complex analytic germ.

Theorem 3.9. Let Xx be a complex analytic germ, n ∈ Z>0 and f1, . . . , fn ∈ OX,x
be a system of parameters. We have a morphism Xx → Cn0 induced by f1, . . . , fn.
Then there is an open neighbourhood U of 0 in Cn and a finite OU -algebra A such
that A0 ∼= OX,x. The space Specan

U (A) admits a unique point x′ over 0 and Xx is
isomorphic to Specan

U (A)x′ in C-Ger/Cn
0
.

Proof. As f1, . . . , fn is a system of parameters, OX,x → OCn,0 is finite. By
Lemma 3.7, we can spread OX,x to a finite OU -algebra on an open neighbourhood
U of 0 in Cn. Let Y = Specan

U (A). It follows from Corollary 2.6 that Y has a unique
point x′ over 0. By Theorem 3.3, up to shrinking U , we may guarantee that Xx

and Yx′ are isomorphic over Cn0 . �
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Proposition 3.10. Let Xx be a complex analytic germ. The map Yx 7→ IX(Y, x)
defines a bijection between the set of closed subgerms of Xx and the set of ideals of
OX,x.

In particular, we can view a germ Yx as a closed subscheme SpecOX,x/IX(Y, x)
of SpecOX,x.

Proof. We construct a reverse map. Given an ideal I of OX,x, as OX,x is
noetherian, I is finitely generated. We can find an open neighbourhood U of x in X
and an ideal sheaf of finite type I of U with Ix = I. Let Y be the closed analytic
subspace of X defined by I. We associated Yx with I.

It is easy to verify that this map is the inverse of the given map. �

Definition 3.11. Let Xx be a complex analytic germ and Yx, Zx be two closed
subgerms of Xx. We say Yx is contained in Zx and write Yx ⊆ Zx if I(Y, x) ⊇
IX(Z, x). This defines a partial order on the set of closed subgerms of Xx.

Definition 3.12. A complex analytic germ Xx is integral if OX,x is integral.
We also say (X,x) is integral.

Theorem 3.13 (Nullstellensatz). Let Xx be an integral complex analytic germ and
Yy be a closed subgerm of Xx. Then the following are equivalent:

(1) Yx is a proper closed subgerm of Xx;
(2) |Y |x is a proper closed subgerm of |X|x.

Proof. (2) =⇒ (1): This is obvious.
(1) =⇒ (2): Consider a proper closed subgerm Yx of Xx. By Proposition 3.10,

I(Y, x) 6= 0.
Step 1. We reduce to the case I(Y, x) = (f) for some non-zero element

f ∈ OX,x.
Take a non-zero element f ∈ I(Y, x). Let Y ′x be the subgerm ofXx corresponding

to the ideal (f) of OX,x. Then Yx ⊆ Y ′x. It suffices to show that |Y ′|x 6= |X|x. We
may replace Y by Y ′.

Step 2. We prove that |Y |x 6= |X|x.
Note that f is not a zero-divisor as OX,x is integral. Write n = dimOX,x.

By Krulls Hauptidealsatz, dimOX,x/(f) = n− 1. Let f1, . . . , fn−1 be a system of
parameters ([Stacks, Tag 00KU]) of OX,x/(f). Lift them to f1, . . . , fn−1 ∈ OX,x.
Then (f1, . . . , fn−1, f) is a system of parameters of OX,x. Let ϕ : Xx → Cn0 and
ψ : Yx → Cn−1

0 be the morphisms defined by these systems of parameters. We then
have a commutative diagram in C-Ger:

Yx Xx

Cn−1
0 Cn0

ψ ϕ

It induces a commutative diagram of topological germs:

|Y |x |X|x

Cn−1
0 Cn0

|ψ| |ϕ|

https://stacks.math.columbia.edu/tag/00KU
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The morphism of topological germs of Cn−1
0 → Cn0 is clearly not an isomorphism,

so it suffices to show that |ϕ| : |X|x → Cn0 is surjective, in the sense that if we
represent |ϕ| by a morphism (U, x)→ (Cn, 0) from an open neighbourhood U of x
in X to Cn, then its image contains an open neighbourhood of 0 in Cn.

By Theorem 3.9, we may assume that X = Specan
X A for some finite OX -algebra

A and X has a unique point over 0. Then by Corollary 2.6, we have A0
∼−→ OX,x.

By Corollary 5.5 in Complex analytic local algebras, the natural homomorphism
ϕ# : OCn,0 = C{X1, . . . , Xn} → A0

is injective.
By Corollary 2.7, it remains to show that SuppA is a neighbourhood of s in S.

But the kernel of OS → A is 0 at s hence 0 in a neighbourhood of s since both OS
and A are coherent by Corollary 7.4 in The notion of complex analytic spaces. �

Corollary 3.14. Let Xx be a complex analytic germ and I, J be two ideals in OX,x.
We let W (I), W (J) denote the topological germs of the closed analytic subgerms of
Xx defined by I and J respectively. Then the following are equivalent:

(1) W (I) ⊆W (J);
(2) J ⊆

√
I.

Proof. If (2) is true, as OX,x is noetherian, we can find n ∈ Z>0 such that
Jn ⊆ I. Extend I, J to coherent ideals I,J on X up to shrinking X. Then
SuppOX/J ⊆ SuppOX/I. Hence, (1) holds.

Suppose that (1) holds. In order to prove (2), we may assume that I is prime.
Then the closed analytic subgerm Yx of Xx defined by I is integral. Let Zx denote
the closed analytic subgerm of Xx defined by J . The intersection Yx ∩ Zx of the
germs Yx and Zx is by definition the closed analytic subgerm of Xx defined by I +J .
Then

|Yx ∩ Zx| = |Y |x ∩ |Z|x = W (I).
By Theorem 3.13, Yx ⊆ Zx. Namely, (2) holds. �

Corollary 3.15. Let Xx be a complex analytic germ and Yx be a closed analytic
subgerm. Then the following are equivalent:

(1) |X|x = |Y |x;
(2) IX(Y, x) is nilpotent.

In particular, if these conditions hold, dimOY,x = dimOX,x.

Proof. This follows immediately from Corollary 3.14. �

Corollary 3.16. Let X be a complex analytic space and x ∈ X. Then the following
are equvalent:

(1) x is isolated in X;
(2) OX,x is artinian.

Proof. (1) simply means that Xx = {x}x. By Corollary 3.15, this holds if and
only if mx is nilpotent. As OX,x is noetherian, the latter is equivalent to that OX,x
is artinian. �

Corollary 3.17. Let X be a complex analytic space and Y be a closed analytic
subspace defined by a coherent ideal I. Then the following are equivalent:

(1) |X| = |Y |;
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(2) I is locally nilpotent.

Proof. This follows immediately from Corollary 3.15. �

Corollary 3.18. Let X be a complex analytic space and f ∈ OX(X). Then the
following are equivalent:

(1) f(x) = 0 for all x ∈ X;
(2) f is locally nilpotent.

Proof. This follows from Corollary 3.17, where we take I as the coherent ideal
generated by f . �

Corollary 3.19 (Rückert Nullstellensatz). Let X be a complex analytic space and
F be a coherent sheaf of OX -modules. Let f ∈ OX(X) be a function that vanishes
on SuppF . Then for any x ∈ X, there is an open neighbourhood U ⊆ X of x and
m ∈ Z>0 such that fmF|U = 0.

Proof. Let G be the annihilator sheaf of F :
G := ker (OX → HomOX

(F ,F)) ,
where the map OX → HomOX

(F ,F) sends a local section f of OX to the endo-
homomorphism of multiplying by f of F . Then G is a coherent sheaf by Oka’s
coherence theorem Theorem 7.3 in The notion of complex analytic spaces. Let Y
be the closed analytic subspace defined by G. By our assumption, f is everywhere
zero on Y , so f is locally nilpotent in OX/G ⊆ HomOX

(F ,F). �

Corollary 3.20. Let X be a complex analytic space and I and J be coherent ideal
sheaves on X. Then the following are equivalent:

(1) SuppOX/I ⊆ SuppOX/J ;
(2) For any x ∈ X, there is an open neighbourhood U of x in X and n ∈ Z>0

such that
Jn|U ⊆ I|U .

Proof. This follows immediately from Corollary 3.14. �

4. Analytic subsets

Definition 4.1. Let X be a complex analytic space. A subset A ⊆ X is analytic
at x ∈ X if there is an open neighbourhood U of x in X and finitely many
f1, . . . , fm ∈ OX(U) such that

A ∩ U = {x ∈ U : f1(x) = · · · = fm(x) = 0} .
We will denote the set on the right-hand side as NU (f1, . . . , fm). A subset A ⊆ X
is analytic in X if it is analytic at all x ∈ X.

A subset B ⊆ X is co-analytic in X if X \B is analytic in X.

We observe that given A ⊆ X, the set of points x ∈ X such that A is analytic
at x is open. Also observe that an analytic set is necessarily closed. Analytic sets
are clearly closed under finite intersection and finite unions.

Example 4.2. Let X be a complex analytic space. The underlying set of a closed
analytic subspace of X is an analytic set in X.

In particular, the support of a coherent sheaf of OX -modules is an analytic set
in X.
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Proposition 4.3. Let X be a complex analytic space and Y be a closed analytic
subspace of X. Then each analytic set A in Y is also an analytic set in X.

Conversely, if A is an analytic subset of X, then A ∩ Y is an analytic set in Y .

Proof. We prove the first part. Let A be an analytic set in Y . Then A is
closed in Y . It follows that A is closed in X. Let a ∈ A, we can find an open
neighbourhood V of a in Y and finitely many g1, . . . , gk ∈ OY (V ) such that

A ∩ V = NV (g1, . . . , gk).

Up to shrinking V , we may find a neighbourhood U of a in X with V = Y ∩ U and
f1, . . . , fk ∈ OX(U) lifting g1, . . . , gk. Then

A ∩ U = NU (f1, . . . , fk) ∩ Y.

So by Example 4.2, A ∩ U is analytic at a as a subset of X.
The second part is obvious. �

Definition 4.4. Let X be a complex analytic space and A ⊆ X be an analytic set.
We define the sheaf of ideals JA of A as the sheafification of the presheaf of ideals
on X defined by

U 7→ {f ∈ OX(U) : NU (f) ⊇M ∩ U}
for any open subset U ⊆ X.

Observe that JA is reduced.

Lemma 4.5. Let X be a complex analytic space and A,B ⊆ X be analytic sets.
Take x ∈ X. Then the following are equivalent:

(1) JA,x ⊆ JB,x;
(2) A ∩ U ⊇ B ∩ U for some neighbourhood U of x in X.

Proof. (2) =⇒ (1): This is trivial.
(1) =⇒ (2): Choose a neighbourhood U of x and finitely many f1, . . . , fk ∈

OX(U) such that A ∩ U = NU (f1, . . . , fk). Then f1,x, . . . , fk,x ∈ JA,x ⊆ JB,x.
Up to shrinking U , we may assume that f1, . . . , fk ∈ JB(U). It follows that
A ∩ U ⊇ B ∩ U . �

Lemma 4.6. Let X be a complex analytic space and A be an analytic set in X.
Take a ∈ A. Let I be a coherent ideal sheaf on X with Ia = JA,a. Then there is an
open neighbourhood U of a in X such that

W (I|U ) = A ∩ U.

The lemma tells that an analytic set can always be locally wrtten in the form
W (I) for some open set U ⊆ X and a coherent ideal I on U .

Proof. Choose an open neighbourhood U of x in X and finitely many sections
f1, . . . , fk ∈ JA(U) such that

I|U = OUf1 + · · ·+OUfk.

After shrinking U , we may assume that

A ∩ U = NU (g1, . . . , gl)
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for finitely many g1, . . . , gl ∈ JA(U). Then g1,a, . . . , gl,a ∈ JA,a = Ia. So up to
shrinking U , we can find equations for all j = 1, . . . , l:

gj =
k∑
i=1

aijfi

for some aij ∈ OX(U) with i = 1, . . . , k, j = 1, . . . , l. This implies that W (I|U ) ⊆
A ∩ U . The reverse inclusion is clear. �

5. Lasker–Noether decomposition

Definition 5.1. Let X be a complex analytic space. An analytic set A in X is
irreducible at a ∈ A if JA,a is a prime ideal in OX,a.

Definition 5.2. Let X be a complex analytic space, A be an analytic set in X and
a ∈ A. A local decomposition of A at a consists of an open neighbourhood U of a in
X and finitely many analytic sets A1, . . . , As in U such that

(1)
A ∩ U = A1 ∪ · · · ∪As;

(2) Ai is irreducible at a for i = 1, . . . , s;
(3) for any open neighbourhood V of a in U , Aj∩V 6⊂ Ak∩V for j, k = 1, . . . , s,

j 6= k.
We also say A1 ∪ · · · ∪As is a local decomposition of A ∩ U .

Proposition 5.3. Let X be a complex analytic space, A be an analytic set in X
and a ∈ A. Let

JA,a =
s⋂
j=1

pj

be the Lasker–Noether decomposition. Then there is a local decompose of A at a:

A ∩ U = A1 ∪ · · · ∪As
with JAj ,a = pj for j = 1, . . . , s.

Let A ∩ U ′ = A′1 ∪ · · · ∪ A′r be another local decomposition of A at a. Then
r = s and we can find an open neighbourhood W ⊆ U ∩ U ′ and a bijection
σ : {1, . . . , s} → {1, . . . , s} such that

A′j ∩W = Aσ(j) ∩W

for j = 1, . . . , s.

Proof. We first prove the existence part. Take an open neighbourhood U of a
in X and coherent ideal sheaves I1, . . . , Is on U such that

Ij,a = pj

for j = 1, . . . , s. Define

I =
s⋂
j=1
Ij .

Then Ia = JA,a. By Lemma 4.6, up to shrinking U , we may guarantee that

W (I) = A ∩ U.
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We set Aj = W (Ij) for j = 1, . . . , s. Then Aj is an analytic set in U and

A ∩ U = W (I) =
s⋃
j=1

W (Ij) = A1 ∪ · · · ∪As.

Observe that pj = Ij,a ⊆ JAj ,a for all j = 1, . . . , s. We need to prove the reverse
inclusion. Assume that this is not true, say it fails for j = 1. Then there is
g1 ∈ JA1,a \ p1. As pj 6⊂ p1 for j = 2, . . . , s, we can find gj ∈ pj \ p1 for j = 2, . . . , s.
Then

g1 · · · gs ∈ JA1,a ∩ · · · ∩ JAs,a = JA,a ⊆ p1.

This is a contradiction. So JAj ,a = pj for j = 1, . . . , s. We conclude that A ∩ U =
A1 ∪ · · · ∪As is a local decomposition by Lemma 4.5.

Next we prove the uniqueness statement. We take U ′ and A′1, . . . , A′r as in the
statement of the theorem. Then

JA,a = JA′1,a ∩ · · · ∩ JA′r,a.

By Lemma 4.5, we find that this is the Lasker–Noether decomposition of JA,a.
The uniqueness follows from the uniqueness of Lasker–Noether decomposition and
Lemma 4.5. �

Definition 5.4. Let X be a complex analytic space, A be an analytic set in X and
a ∈ A. Let

A ∩ U = A1 ∪ · · · ∪As
be a local decomposition of A at a. We call A1,a, . . . , As,a the prime components of
A at a.

By Proposition 5.3, the prime compoments are uniquely determined by the
germ of X at x.

Lemma 5.5. Let X be a complex analytic space, A be an analytic set in X and
a ∈ A. Let A1, . . . , As be the prime components of A at a. Then A1 is not contained
in A2 ∪ · · · ∪As.

Proof. If not, we have

JA1,a ⊇
s⋂
j=2
JAj ,a.

So

JA,a =
s⋂
j=2
JAj ,a.

This contradicts the uniqueness of the Lasker–Noether decomposition. �

Proposition 5.6. Let X be a complex analytic space, A be an analytic set in X
and a ∈ A. The following are equivalent:

(1) A is not irreducible at a;
(2) there is an open neighbourhood U of a in X and a decomposition

A ∩ U = A′ ∪A′′,

where A′ and A′′ are analytic sets in U such that A′a 6= Aa and A′′a 6= Aa.
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Proof. (1) =⇒ (2): Let A1,x, . . . , As,x be the prime components of A at a.
Then s ≥ 2. Take an open neighbourhood U of a in X such that A1,x, . . . , As,x lifts
to analytic subsets A1, . . . , As of U . It suffices to let A′ = A1 and A′′ = A2∪· · ·∪As.
By Lemma 5.5, A′ and A′′ satisfies the conditions in (2).

(2) =⇒ (1): We have JA,a 6= JA′,a and JA,a 6= JA′′,a. Take f ∈ JA′,a \ JA,a
and g ∈ JA′′,a \ JA,a. Then fg ∈ JA′,a ∩ JA′′,a = JA,a. So JA,a is not a prime
ideal. �

6. Diagonal morphism

Definition 6.1. Let f : X → Y be a morphism of complex analytic space. The
diagonal of f is by definition the morphism:

∆f = ∆X/Y : X → X ×Y X
induced by the identity maps X → X and X → X.

When Y = C0, we write ∆X instead of ∆X/C0 .

Example 6.2. Let n ∈ N. The diagonal morphism Cn → Cn × Cn is a closed
immersion corresponding to the ideal generated by p∗1z1−p∗2z1, . . . , p

∗
1zn−p∗2zn, where

p1, p2 : Cn × Cn → Cn are the two projections and z1, . . . , zn are the coordinates
on Cn.

This can be seen through the functor of points by Theorem 4.2 in The notion
of complex analytic spaces.

Proposition 6.3. Let f : X → Y be a morphism of complex analytic space. Then
∆X/Y is an immersion.

Proof. Step 1. We first reduce to the case Y = C0.
By general abstract nonsense, we have a commutative diagram

X X ×Y X X ×X

Y Y × Y

∆X/Y

∆X

�
∆Y

So in order to show that ∆X/Y is an immersion, it suffices to show that X and Y
are.

Step 2. We reduce to the case X = Cn for some n ∈ N.
We want to show that ∆X : X → X ×X is an immersion.
The problem is local on X, so we may assume that X is a complex model space,

say X is a closed analytic subspace of an open set U in Cn for some n ∈ N. Consider
the commutative diagram

X X ×X

U U × U

∆X

∆U

.

It suffices to show that ∆U is an immersion. As the problem is local, it suffices to
show that ∆Cn is an immersion.

Step 3. We show that ∆Cn is a closed immersion.
This is exactly Example 6.2. �
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7. Conormal sheaf

Definition 7.1. Let i : X → Y be an immersion of complex analytic spaces. The
conormal sheaf of f is a sheaf of OX -modules Cf = CX/Y with i∗CX/Y ∼= I/I2,
where I is the kernel of i−1OY → OX .

The conormal sheaf is defined up to a unique isomorphism. A choice of a
factorization of i into a closed immersion i′ : X → Z followed by an open immersion
j : Z → Y determines a realization of CX/Y . Namely, if J is the ideal sheaf of i′,
then CX/Y is (isomorphic to) i′∗J .

Proposition 7.2. Let i : X → Y be an immersion of complex analytic spaces.
Then CX/Y is coherent.

Proof. We may assume that i is a closed immersion defined by a coherent
ideal J . Then CX/Y ∼= i∗J is coherent by Corollary 7.5 in The notion of complex
analytic spaces. �

8. Kähler differentials

We will make free use of results and notations in [Stacks, Tag 08RL]. In
particular, for a morphism f : X → S of complex analytic spaces, ΩX/S denotes
the sheaf of Kähler differentials and dX/S : OX → ΩX/S denotes the universal
S-derivation.

Include principal parts etc. here

Proposition 8.1. Let f : X → S be a morphism of complex analytic spaces. Then
there is a canonical isomorphism

ΩX/S
∼−→ C∆X/S

.

Proof. We first define the map in question. Factorize ∆X/S as X → W →
X ×S X, where X → W is a closed immersion define by a coherent ideal I and
W → X ×S X is an open immersion. We have a short exact sequence

0→ CX/X×SX → ∆−1
X/S(OW /I2)→ OX → 0.

Let p1, p2 : X ×S X → X be the two projection maps. Then the natural maps
p#
i : p−1

i OX → OX×SX induce p−1
i OX → OW /I2 for i = 1, 2. Take ∆−1, we find

natural maps
si : OX → ∆−1(OW /J 2).

The difference d = s2 − s1 is clearly an S-derivation. By the universal property of
ΩX/S , we get a unique OX -linear map ΩX/S → CX/X×SX .

Now in order to verify
ΩX/S

∼−→ C∆X/S

is an isomorphism, it suffices to work on each stalk. This reduces the problem to the
corresponding problem of local rings, which is handled in [Stacks, Tag 08S2]. �

We will write P(1)
X/S for ∆−1(OW /J 2) introduced in the proof.

Corollary 8.2. Let f : X → S be a morphism of complex analytic spaces. Then
ΩX/S is coherent.

Proof. This follows from Proposition 8.1 and Proposition 7.2. �

https://stacks.math.columbia.edu/tag/08RL
https://stacks.math.columbia.edu/tag/08S2
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Proposition 8.3. Let f : X → Y , g : Y → S be morphisms of complex analytic
spaces. Then there is a canonical exact sequence

f∗ΩY/S → ΩX/S → ΩX/Y → 0.

Proof. The existence of the morphisms is obvious. To prove that the sequence
is exact, it suffices to localize along each x ∈ X. The result then follows from the
algebraic case [Stacks, Tag 01UX]. �

Proposition 8.4. Let X → S be a morphism of complex analytic spaces and
i : Z → X be an immersion. Then we have a canonical exact sequence

CZ/X → i∗ΩX/S → ΩZ/S → 0.

Proof. The existence of the morphisms is obvious. To prove that the sequence
is exact, it suffices to localize along each x ∈ X. The result then follows from the
algebraic case [Stacks, Tag 01UZ]. �

Proposition 8.5. Let f : X → S, g : S′ → S be morphisms of complex analytic
spaces. Consider the Cartesian diagram

X ′ X

S′ S

g′

f ′ � f

f

.

Then we have a canonical isomorphism

g′∗ΩX/S → ΩX′/S′ .

Proof. It suffices to show that the canonical morphism g′∗P(1)
X/S → P

(1)
X′/S′ is

an isomorphism. For this purpose, it suffices to prove it after localizing around
x′ ∈ X ′. But observe that the local rings of P(1)

X/S are finite over the corresponding
local rings of X, so the analytic tensor products reduce to usual tensor products.
The result then follows from the corresponding algebraic results. �

Corollary 8.6. Let f : X → S, g : X → S be morphisms of complex analytic
spaces. Consider the Cartesian diagram

X ×S Y X

Y S

p

q � f

g

.

Then we have a canonical isomorphism

p∗ΩX/S ⊕ q∗ΩY/S → ΩX×SY/S .

Proof. The existence of the morphism follows from [Stacks, Tag 08RU]. By
Proposition 8.5, the composition

p∗ΩX/S → ΩX×SY/S → ΩX×SY/Y

is an isomorphism. In particular, p∗ΩX/S → ΩX×SY/Y is injective. Similarly, we
have a natural isomorphism

q∗ΩY/S
∼−→ ΩX×SY/X

https://stacks.math.columbia.edu/tag/01UX
https://stacks.math.columbia.edu/tag/01UZ
https://stacks.math.columbia.edu/tag/08RU
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By Proposition 8.3, we have a short exact sequence
0→ p∗ΩX/S → ΩX×SY/S → q∗ΩY/S → 0,

which clearly splits. �

Example 8.7. Let n ∈ N. We claim that ΩCn is the free OCn -module generated by
dz1, . . . ,dzn, where z1, . . . , zn ∈ OCn(Cn) are the coordinates on Cn.

By Example 6.2, we know that ΩCn is generated by dz1, . . . ,dzn as an OCn-
module. Assume that there is x ∈ Cn, f1,x, . . . , fn,x ∈ OX,x such that

n∑
i=1

fi,x dzi = 0.

We need to show that fi,x = 0 for all i = 1, . . . , n. We may assume that x = 0.
Observe that

Ω1
Cn,0 ⊗OCn,0 C ∼−→ m0/m

2
0

by the algebraic results. Taking the residue of our linear relation at 0, we find
n∑
i=1

fi,0zi,0 ∈ m2
0.

As zi,0, . . . , zn,0 form a basis of m0/m
2
0, we have fi,0 = 0 for i = 1, . . . , n.
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