Ymir

Contents

Global properties of complex analytic spaces		5
1.	Introduction	5
2.	Topological properties of complex analytic spaces	5
3.	Holomorphically convex hulls	5
4.	Stones	6
5.	Holomorphical separable spaces	8
6.	Stein sets	9
7.	Analytic blocks	12
8.	Holomorphically spreadable spaces	12
9.	Holomorphically complete spacs	14
10.	Stein spaces	18
11.	Flat locus	22
12.	Grauert's proper image theorem	27
Bibliography		35

Global properties of complex analytic spaces

1. Introduction

2. Topological properties of complex analytic spaces

Proposition 2.1. Let X be a Hausdorff complex analytic space. Then the following are equivalent:

(1) X is paracompact;

(2) Each connected component of X is σ -compact;

(3) Each connected component of X is Lindelöf;

(4) X admits a compact exhaustion.

PROOF. (1) \Leftrightarrow (2): This follows from Proposition 3.2 in Topology and bornology. (2) \Leftrightarrow (3): This follows from Proposition 5.2 in Topology and bornology.

(3) \Leftrightarrow (4): This follows from Proposition 5.2 in Topology and bornology.

Lemma 2.2. Let $f: X \to Y$ be a proper surjective morphism of complex analytic spaces. Then the following are equivalent:

(1) X is paracompact and Hausdorff;

(2) Y is paracompact and Hausdorff.

PROOF. (1) \implies (2): This follows from Theorem 3.3 in Topology and bornology.

(2) \implies (1): We may assume that Y is connected. Then X is Hausdorff as f is separated. By Proposition 2.1, Y is σ -compact. It follows that X is also σ -compact. In particular, each connected component of X is also σ -compact. In particular, X is paracompact.

3. Holomorphically convex hulls

Definition 3.1. Let X be a complex analytic space and M be a subset of X, we define the holomorphically convex hull of M in X as

$$\hat{M}^X := \left\{ x \in X : |f(x)| \le \sup_{y \in M} |f(y)| \text{ for all } f \in \mathcal{O}_X(X) \right\}.$$

Proposition 3.2. Let X be a complex analytic space and M be a subset of X. Then the following properties hold:

- (1) \hat{M}^X is closed in X; (2) $M \subseteq \hat{M}^X$ and $\widehat{\hat{M}^X}^X = \hat{M}^X$;
- (3) If M' is another subset of X containing M, then $\hat{M}^X \subseteq \hat{M'}^X$;
- (4) If $f: Y \to X$ is a morphism of complex analytic spaces, then

$$\widehat{f^{-1}(M)}^Y \subseteq f^{-1}(\hat{M}^X);$$

(5) If X' is another complex analytic space and M' is a subset of X', then

$$\widehat{M \times M'}^{X \times X'} \subseteq \widehat{M}^X \times \widehat{M'}^{X'};$$

(6) If M' is another subset of X and $\hat{M}^X = M$, $\hat{M'}^X = M'$, then

$$\widehat{M \cap M'}^X = M \cap M'.$$

PROOF. (1), (2), (3), (4), (5) are obvious by definition. (6) is a consequence of (3).

Example 3.3. Let Q be a compact cube in \mathbb{C}^n for some $n \in \mathbb{N}$, then $\hat{Q}^{\mathbb{C}^n} = Q$.

In fact, by Proposition 3.2(5), we may assume that n = 1. Given $p \in \mathbb{C} \setminus Q$, we can take a closed disk $T \subseteq \mathbb{C}$ centered at $a \in \mathbb{C}$ such that $Q \subseteq T$ while $p \notin T$. Consider $z - a \in \mathcal{O}_{\mathbb{C}}(\mathbb{C})$, then

$$|f(p)| > \sup_{q \in Q} |f(q)|.$$

So $p \notin \hat{Q}^{\mathbb{C}}$.

4. Stones

Definition 4.1. Let X be a complex analytic space. A *stone* in X is a pair (P, π) consisting of

(1) a non-empty compact set P in X and

(2) a morphism $\pi: X \to \mathbb{C}^n$ for some $n \in \mathbb{N}$

such that there is a compact tube Q in \mathbb{C}^n and an open set W in X such that $P = \pi^{-1}(Q) \cap W$.

We call $P^0 := \pi^{-1}(\operatorname{Int} Q) \cap W$ the analytic interior of the stone (P, π) . It clearly does not depend on the choice of W.

We observe that $\hat{P}^X \cap W = P$. In fact, $P \subseteq \pi^{-1}(Q)$, so

$$\hat{P}^X \subseteq \pi^{-1}(\hat{Q}^{\mathbb{C}^n}) = \pi^{-1}(Q) = P \cap W = P.$$

Here we applied Proposition 3.2 and Example 3.3.

In general, $P^0 \subseteq \operatorname{Int} P$, but they can be different.

Theorem 4.2. Let X be a Hausdorff complex analytic space and $K \subseteq X$ be a compact subset. Then the following are equivalent:

- (1) There is an open neighbourhood W of K in X such that $\hat{K}^X \cap W$ is compact;
- (2) There is an open relative compact neighbourhood W of K in X such that $\partial W \cap \hat{K} = \emptyset$;
- (3) There is a stone (P, π) in X with $K \subseteq P^0$.

PROOF. (1) \implies (2): This is trivial, in fact, we may assume that W in (1) is relatively compact in X.

(2) \longrightarrow (3): As \hat{K}^X is closed by Proposition 3.2(1) and $\partial W \cap \hat{K}^X = \emptyset$, given $p \in \partial W$, we can find $h \in \mathcal{O}_X(X)$ such that

$$\sup_{x \in K} |h(x)| < 1 < |h(p)|.$$

We will denote the left-hand side by $|h|_{K}$. Up to raising h to a power, we may assume that

$$\max\{|\operatorname{Re} h(p)|, |\operatorname{Im} h(p)|\} > 1$$

As ∂W is compact, we can find finitely many sections $h_1, \ldots, h_m \in \mathcal{O}_X(X)$ so that

$$\max_{j=1,\dots,m} \{ |\operatorname{Re} h_j|_K, |\operatorname{Im} h_j|_K \} < 1, \quad \max_{j=1,\dots,m} \{ |\operatorname{Re} h_j(p)|, |\operatorname{Im} h_j(p)| \} > 1.$$

Let

$$Q := \{(z_1, \dots, z_m) \in \mathbb{C}^m : |\operatorname{Re} z_i| \le 1, |\operatorname{Im} z_i| \le 1 \text{ for all } i = 1, \dots, m\}.$$

The sections h_1, \ldots, h_m defines a homomorphism $\pi : X \to \mathbb{C}^m$ by Theorem 4.2 in The notion of complex analytic spaces. Obviously, $P = \pi^{-1}(Q) \cap W$ satisfies our assumptions.

(3) \implies (1): Let W be the open set as in Definition 4.1. As $\hat{P}^X \cap W = P$ and $K \subseteq P$, we have

$$\hat{K} \cap W \subseteq P \cap W = P.$$

As P is compact, so is $\hat{K} \cap W$.

Theorem 4.3. Let X be a Hausdorff complex analytic space and $(P, \pi : X \to \mathbb{C}^n)$ be a stone in X. Let Q be the tube in \mathbb{C}^m as in Definition 4.1. Then there are open neighbourhoods U and V of P and Q in X and \mathbb{C}^n respectively with $\pi(U) \subseteq V$ and $P = \pi^{-1}(Q) \cap U$ such that $\pi|_U : U \to V$ is proper.

PROOF. Let $W \subseteq X$ be the open set as in Definition 4.1. We may assume that W is relatively compact. Then ∂W and $\pi(\partial W)$ are also compact. As $\partial W \cap \pi^{-1}(Q)$ is empty, we know that $V := \mathbb{C}^n \setminus \pi(\partial W)$ is an open neighbourhood of Q. The set $U := W \cap \pi^{-1}(V) = W \setminus \pi^{-1}(\pi(\partial W))$ is open in X and $\pi(U) \subseteq V$. Observe that $\pi|_U : U \to V$ is proper by Lemma 4.6 in Topology and bornology.

Furthermore,

$$\pi^{-1}(Q) \cap U = \pi^{-1}(Q) \cap \left(W \setminus \left(\pi^{-1}(Q) \cap \pi^{-1}\pi(\partial W)\right)\right).$$

But $\pi^{-1}Q \cap \pi^{-1}\pi(\partial W)$ is empty as $Q \cap \pi(\partial W)$ is. It follows that $\pi^{-1}(Q) \cap U = P$ and hence U is a neighbourhood of P.

Definition 4.4. Let X be a complex analytic space. Let $(P, \pi : X \to \mathbb{C}^n)$, $(P', \pi' : X \to \mathbb{C}^{n'})$ be two stones on X. We say (P, π) is contained in (P', π') if the following conditions are satisfied:

- (1) P lies in the analytic interior of P';
- (2) $n' \ge n$ and there is $q \in \mathbb{C}^{n'-n}$ such that if $Q \subseteq \mathbb{C}^n$, $\mathbb{Q}' \subseteq \mathbb{C}^{n'}$ be the tubes as in Definition 4.1, then

$$Q \times \{q\} \subseteq Q'.$$

(3) There is a morphism $\varphi: X \to \mathbb{C}^{n'-n}$ such that

$$\pi' = (\pi, \varphi).$$

We formally write $(P, \pi) \subseteq (P', \pi')$ in this case. Clearly, this defines a partial order on the set of stones on X.

Definition 4.5. Let X be a complex analytic space. An exhaustion of X by stones is a sequence $(P_i, \pi_i)_{i \in \mathbb{Z}_{>0}}$ of stones such that

(1) $(P_i, \pi_i) \subseteq (P_{i+1}, \pi_{i+1})$ for all $i \in \mathbb{Z}_{>0}$;

(2)

$$X = \bigcup_{i=1}^{\infty} P_i^0.$$

We say X is weakly holomorphically convex if it there is an exhaustion of X by stones.

Theorem 4.6. Let X be a Hausdorff complex analytic space. Consider the following conditions:

- (1) X is weakly holomorphically convex;
- (2) For any compact subset $K \subseteq X$, there is an open set $W \subseteq X$ such that $\hat{K}^X \cap W$ is compact.

Then (1) \implies (2). If X is paracompact, then (2) \implies (1).

PROOF. (1) \implies (2): It suffices to observe that $K \subseteq P_j^0$ when j is large enough and apply Theorem 4.2.

Assume that X is paracompact. (2) \implies (1): Let (K_i) a compact exhaustion of X. We construct the stones $(P_i, \pi_i)_{i \in \mathbb{Z}_{>0}}$ so that

 $K_i \subseteq P_i^0$

for all $i \in \mathbb{Z}_{>0}$ inductively. Let P_1 be an arbitrary stone in X such that $K_1 \subseteq P_1^0$. The existence of P_1 is guaranteed by Theorem 4.2.

Assume that we have constructed $(P_{i-1}, \pi_{i-1} : X \to \mathbb{C}^{n_{i-1}})$ for $i \geq 2$. Let $Q_{i-1} \subseteq \mathbb{C}^{n_{i-1}}$ be the associated tube. By Theorem 4.2 again, take a stone $(P_i, \pi_i^* : X \to \mathbb{C}^n)$ with $K_i \cup P_{i-1} \subseteq P_i^0$. Let $Q_i^* \subseteq \mathbb{C}^n$ be the associated tube. Let W be an open subset of X with

$$P_i = \pi_i^{*,-1}(Q_i^*) \cap W.$$

Choose a tube $Q'_i \subseteq \mathbb{C}^{n_{i-1}}$ with $Q_{i-1} \subseteq \operatorname{Int} Q'_i$ so that

$$\pi_{i-1}(P_i) \subseteq \operatorname{Int} Q'_i.$$

Let $\pi_i := (\pi_{i-1}, \pi_i^*) : X \to \mathbb{C}^{n_{i-1}+n}$ and $Q_i := Q'_i \times Q_i^*$. Then (P_i, π_i) is a stone and $(P_{i-1}, \pi_{i-1}) \subseteq (P_i, \pi_i)$.

5. Holomorphical separable spaces

Definition 5.1. Let X be a complex analytic space. We say X is holomorphically separable if for any $x, y \in X$ with $x \neq y$, there is $f \in \mathcal{O}_X(X)$ with $f(x) \neq f(y)$.

Here we regard f as a continuous function $X \to \mathbb{C}$. In particular, a holomorphically separable space is Hausdorff.

Definition 5.2. Let X be a complex analytic space. We say X is holomorphically convex if |X| is Hausdorff and for any compact set $K \subseteq X$, \hat{K}^X .

We say X is weakly holomorphically convex if for any quasi-compact set $K \subseteq X$, the connected components of \hat{K}^X are all quasi-compact.

Proposition 5.3. Let X be a holomorphically convex complex analytic space. Then X^{red} is holomorphically convex.

PROOF. This follows immediately from the definition. \Box

Proposition 5.4. Let X be a Hausdorff complex analytic space. Consider the following conditions:

- (1) X is holomorphically convex;
- (2) For any sequence $x_i \in X$ $(i \in \mathbb{Z}_{>0})$ without accumulation points, there is $f \in \mathcal{O}_X(X)$ such that $|f(x_i)|$ is unbounded.

Then (2) \implies (1) if X is paracompact.

PROOF. (2) \implies (1): By Proposition 2.1, each connected component of X is Lindelöf. For a Lindelöf Hausdorff space, sequential compactness implies compactness.

Corollary 5.5. Let $n \in \mathbb{N}$ and Ω be a domain in \mathbb{C}^n . Assume that for each $p \in \partial \Omega$, there is a holomorphic function f on an open neighbourhood U of $\overline{\Omega}$ such that f(p) = 0 and f is non-zero on Ω . Then Ω is holomorphically convex.

PROOF. Let $x_i \in \Omega$ $(i \in \mathbb{Z}_{>0})$ be a sequence without accumulation points in Ω . We need to construct $f \in \mathcal{O}_{\Omega}(\Omega)$ such that $(|f(x_i)|)_{i \in \mathbb{Z}_{>0}}$ is unbounded. This is clear if x_i itself is unbounded. Assume that x_i is bounded. Then up to passing to a subsequence, we may assume that $x_i \to p \in \partial\Omega$ as $i \to \infty$. The inverse of the function f in our assumption of the corollary works. \Box

6. Stein sets

Definition 6.1. Let X be a complex analytic space and P be a closed subset of X. We say P is a Stein set in X if for any coherent \mathcal{O}_U -module \mathcal{F} for some open neighbourhood U of P in X, we have

$$H^i(P,\mathcal{F}) = 0 \quad \text{for all } i \in \mathbb{Z}_{>0}.$$

A coherent \mathcal{O}_P -module is a coherent \mathcal{O}_U -module for some open neighbourhood U of P in X. Two coherent \mathcal{O}_P -modules are isomorphic if there is a small enough open neighbourhood V of P in X such that they are isomorphic when restricted to V. In particular, \mathcal{O}_P denotes the coherent \mathcal{O}_P -module defined by \mathcal{O}_X on X.

The germ-wise notions obviously make sense for coherent \mathcal{O}_P -modules.

The given condition is usually known as *Cartan's Theorem B*. It implies *Cartan's Theorem A*:

Theorem 6.2 (Cartan's Theorem A). Let X be a complex analytic space and P be a Stein set in X. Let \mathcal{F} be a coherent \mathcal{O}_U -module for some open neighbourhood U of P in X. Then $H^0(P, \mathcal{F})$ generates \mathcal{F}_x for each $x \in P$.

PROOF. Fix $x \in P$. Let \mathcal{M} be the coherent ideal sheaf on U consisting of holomorphic functions vanishing at x. Then \mathcal{FM} is a coherent \mathcal{O}_U -module. It follows from Theorem B that

$$H^0(P,\mathcal{F}) \to H^0(P,\mathcal{F}/\mathcal{FM})$$

is surjective. Note that we can identify this map with the natural map

$$H^0(P,\mathcal{F}) \to \mathcal{F}_x/\mathfrak{m}_x\mathcal{F}_x.$$

Let e_1, \ldots, e_m be a basis of $\mathcal{F}_x/\mathfrak{m}_x \mathcal{F}_x$. Lift them to $s_1, \ldots, s_m \in H^0(P, \mathcal{F})$. By Nakayama's lemma, s_{1x}, \ldots, s_{mx} generate the $\mathcal{O}_{X,x}$ -module \mathcal{F}_x . **Corollary 6.3.** Let X be a complex analytic space and P be a quasi-compact Stein set in X. Let \mathcal{F} be a coherent \mathcal{O}_P -module. Then there is $n \in \mathbb{Z}_{>0}$ and an epimorphism

$$\mathcal{O}_P^n \to \mathcal{F}$$

PROOF. By Theorem 6.2, we can find an open covering $\{U_i\}_{i \in I}$ of P such that there are homomorphisms

$$h_i: \mathcal{O}_P^{n_i} \to \mathcal{F}$$

for some $n_i \in \mathbb{Z}_{>0}$, which is surjective on U_i for each $i \in I$. By the quasi-compactness of P, we may assume that I is a finite set. Then it suffices to set $n = \sum_{i \in I} n_i$ and consider the epimorphism $\mathcal{O}_P^n \to \mathcal{F}$ induced by the h_i 's. \Box

Theorem 6.4. Let X be a complex analytic space and $P \subseteq X$ be a set with the following properties:

- (1) there is an open neighbourhood U of P in X, a domain V in \mathbb{C}^m for some $m \in \mathbb{N}$ and a finite holomorphic morphism $\tau : U \to V$;
- (2) There exists a compact tube in \mathbb{C}^m contained in V such that $P = \tau^{-1}(Q)$.

Then P is a compact Stein set in X.

PROOF. As $P = \tau^{-1}(Q)$ and τ is proper, we see that P is compact.

It remains to show that P is a Stein set in X. Let \mathcal{F} be a coherent \mathcal{O}_P -module. **Step 1**. We first reduce to the case where \mathcal{F} is defined by a coherent \mathcal{O}_U -module. Take an open neighbourhood U' of P in X contained in U such that \mathcal{F} is defined

by a coherent $\mathcal{O}_{U'}$ -module. By Lemma 4.2 in Topology and bornology, we can take an open neighbourhood V' of Q in V such that $\tau^{-1}(V') \subseteq U'$. The restriction of τ to $\tau^{-1}(V') \to V'$ is again finite.

Step 2. By Leray spectral sequence,

$$H^i(P,\mathcal{F}) \cong H^i(Q,(\tau|_P)_*\mathcal{F})$$

for all $i \geq 0$. By Corollary 4.9 in Morphisms between complex analytic spaces, $(\tau|_P)_*\mathcal{F}$ is a coherent \mathcal{O}_Q -module, so we are reduced to show that Q is a Stein set in \mathbb{C}^m , which is well-known.

Definition 6.5. Let X be a Hausdorff complex analytic space and \mathcal{F} be a coherent \mathcal{O}_X -module. A Stein exhaustion of X relative to \mathcal{F} is a compact exhaustion $(P_i)_{i \in \mathbb{Z}_{>0}}$ such that the following conditions are satisfied:

- (1) P_i is a Stein set in X for each $i \in \mathbb{Z}_{>0}$;
- (2) the \mathbb{C} -vector space $H^0(P_i, \mathcal{F})$ admits a semi-norm $|\bullet|_i$ such that the restriction map

$$H^0(X,\mathcal{F}) \to H^0(P_i,\mathcal{F})$$

has dense image with respect to the topological defined by $|\bullet|_i$ for each $i \in \mathbb{Z}_{>0}$;

(3) The restriction map

$$H^0(P_{i+1},\mathcal{F}) \to H^0(P_i,\mathcal{F})$$

is bounded for each $i \in \mathbb{Z}_{>0}$;

- (4) Let $i \in \mathbb{Z}_{\geq 2}$. Suppose that $(s_j)_{j \in \mathbb{Z}_{>0}}$ is a Cauchy sequence in $H^0(P_i, \mathcal{F})$, then the restricted sequence $s_j|_{P_{i-1}}$ has a limit in $H^0(P_{i-1}, \mathcal{F})$;
- (5) Let $i \in \mathbb{Z}_{\geq 2}$. If $s \in H^0(P_i, \mathcal{F})$ and $|s|_i = 0$, then $s|_{P_{i-1}} = 0$.

A Stein exhaustion of X is a compact exhaustion of X that is a Stein exhaustion of X relative to any coherent \mathcal{O}_X -module.

Theorem 6.6. Let X be a Hausdorff complex analytic space and \mathcal{F} be a coherent \mathcal{O}_X -module. Assume that $(P_i)_{i \in \mathbb{Z}_{>0}}$ is a Stein exhaustion of X relative to \mathcal{F} . Then

$$H^q(X,\mathcal{F}) = 0 \quad \text{for any } q \in \mathbb{Z}_{>0}.$$

PROOF. When $q \ge 2$, this follows from the general facts proved in Lemma 5.4 in Topology and bornology. We will assume that q = 1.

We may assume that X is connected. First observe that X is necessarily paracompact. This follows from Proposition 3.2 in Topology and bornology. In particular, we can take a flabby resolution

$$0 \to \mathcal{F} \to \mathcal{G}^0 \to \mathcal{G}^1 \to \cdots$$

Taking global sections, we get a complex

$$0 \to H^0(X, \mathcal{F}) \xrightarrow{i} H^0(X, \mathcal{G}^0) \xrightarrow{d_0} H^0(X, \mathcal{G}^1) \xrightarrow{d_1} H^0(X, \mathcal{G}^2) \xrightarrow{d_2} \cdots$$

We need to show that $\ker d_1 = \operatorname{Im} d_0$. Let $\alpha \in \ker d_1$. We need to construct $\beta \in H^0(X, \mathcal{G}^0)$ with $d_0\beta = \alpha$.

We take semi-norms $|\bullet|_i$ on $H^0(P_i, \mathcal{F})$ for each $i \in \mathbb{Z}_{>0}$ satisfying the conditions in Definition 6.5. We may furthermore assume that the restriction $H^0(P_{i+1}, \mathcal{F}) \to$ $H^0(P_i, \mathcal{F})$ is a contraction for each $i \in \mathbb{Z}_{>0}$.

For each $j \in \mathbb{Z}_{\geq 2}$, we will construct $\beta_j \in H^0(P_j, \mathcal{G}^0)$ and $\delta_j \in H^0(P_{j-1}, \mathcal{F})$ such that

(1)
$$(d_0|_{P_i})\beta_j = \alpha|_{P_i};$$

(2) $(\beta_{j+1} + \delta_{j+1})|_{P_{j-1}} = (\beta_j + \delta_j)|_{P_{j-1}}.$

It suffices to take $\beta \in H^0(X, \mathcal{G}^0)$ as the section defined by the $\beta_j + \delta_j$'s. We first construct β_j . Choose a sequence $\beta'_j \in H^0(P_j, \mathcal{G}^0)$ with

$$(d_0|_{P_i})\beta'_i = \alpha|_{P_i}$$

for each $j \in \mathbb{Z}_{>0}$. This is possible because P_j is Stein. We define β_j satisfying Condition (1) for $j \in \mathbb{Z}_{>0}$ inductively. We begin with $\beta_1 = \beta'_1$. Assume that β_1, \ldots, β_j have been constructed. Let

$$\gamma'_j := \beta'_{j+1}|_{P_j} - \beta_j.$$

Then

$$(d_0|_{P_i})\gamma_i' = 0$$

It follows that $\gamma'_i \in H^0(P_j, \mathcal{F})$. Take $\gamma_j \in H^0(X, \mathcal{F})$ with

$$|\gamma_j' - \gamma_j|_{P_j}|_j \le 2^{-j}$$

Define

$$\beta_{j+1} = \beta'_{j+1} - \gamma_i |_{P_{j+1}}.$$

Then clearly β_{j+1} satisfies (1).

Next we construct the sequence δ_j .

We observe that for each $j \in \mathbb{Z}_{>0}$,

$$\left|\beta_{j+1}\right|_{P_j} - \beta_j\Big|_j \le 2^{-j}.$$

Let

$$s_k^j := \beta_{j+k}|_{P_j} - \beta_j \in H^0(P_j, \mathcal{F})$$

for all $j \in \mathbb{Z}_{>0}$ and $k \in \mathbb{N}$. By definition,

$$s_k^j - s_{k-1}^{j+1}|_{P_j} = \beta_{j+1}|_{P_j} - \beta_j$$

for all $j \in \mathbb{Z}_{>0}$ and $k \in \mathbb{Z}_{>0}$.

We claim that $(s_k^j|_{P_{j-1}})_k$ converges in $H^0(P_{j-1}, \mathcal{F})$ as $k \to \infty$. By our assumption, it suffices to show that $(s_k^j)_k$ is a Cauchy sequence in $H^0(P_j, \mathcal{F})$ for each $j \in \mathbb{Z}_{>1}$. We first compute

$$\left|\beta_{j+l}\right|_{P_j} - \beta_{j+l-1}\left|_{P_j}\right|_j \le \left|\beta_{j+l}\right|_{P_{j+l-1}} - \beta_{j+l-1}\left|_{j+l-1} \le 2^{1-j-l}\right|_{j+l-1} \le 2^{1-j-l}$$

for all $l \in \mathbb{Z}_{>0}$ and $j \in \mathbb{Z}_{>0}$. As a consequence for $k' > k \ge 1$, we have

$$|s_k^j - s_{k'}^j|_j \le \sum_{l=k+1}^k 2^{1-j-l} \le 2^{1-j+k}.$$

So we conclude our claim.

Let δ_j be the limit of $s_k^j|_{P_{j-1}}$ as $k \to \infty$ for each $j \in \mathbb{Z}_{\geq 2}$. Then

$$\lim_{k \to \infty} \left(s_k^j - s_{k-1}^{j+1} \right) |_{P_{j-1}} = \left(\delta_j - \delta_{j+1} \right) |_{P_{j-1}}$$

for each $j \in \mathbb{Z}_{\geq 2}$. The desired identity is clear.

7. Analytic blocks

Definition 7.1. Let X be a Hausdorff complex analytic space. A stone $(P, \pi : X \to \mathbb{C}^n)$ on X is an *analytic block* in X if there are open neighbourhoods U and V of P and Q in X and Y respectively, where $Q \subseteq \mathbb{C}^n$ denotes the tube associated with the stone, such that

(1)
$$\pi(U) \subseteq V;$$

(2)
$$P = \pi^{-1}(Q) \cap U$$

(3) $U \to V$ induced by π is a finite morphism.

Recall that by Theorem 4.3, we can always assume that $U \to V$ is proper.

Proposition 7.2. Let X be a Hausdorff complex analytic space and (P, π) be an analytic block in X. Then P is a compact Stein set in X.

PROOF. This follows from Theorem 6.4 applied to $U \rightarrow V$ in Definition 7.1. \Box

Proposition 7.3. Let X be a complex analytic space such that each compact analytic set in X is finite, then every stone in X is an analytic block in X.

PROOF. Let $(P, \pi : X \to \mathbb{C}^n)$ be a stone in X. We consider the proper morphism $\tau : U \to V$ as in Theorem 4.3. Each fiber of τ is a compact subset of U and hence a compact subset of X. By our assumption, it is finite. It suffices to apply Proposition 4.5 in Topology and bornology to conclude that τ is finite. \Box

8. Holomorphically spreadable spaces

Definition 8.1. Let X be a complex analytic space. We say X is holomorphically spreadable if |X| is Hausdorff and for any $x \in X$, we can find an open neighbourhood U of x in X such that

$$\{y \in U : f(x) = f(y) \text{ for all } f \in \mathcal{O}_X(X)\} = \{x\}.$$

A holomorphically separable space is clearly holomorphically spreadable.

Proposition 8.2. Let X be a holomorphically spreadable complex analytic space and $x \in X$. Then there exist finitely many $f_1, \ldots, f_n \in \mathcal{O}_X(X)$ such that x is an isolated point of $W(f_1, \ldots, f_n)$.

PROOF. By induction on $\dim_x X$, it suffices to prove the following claim: if A is an analytic set in X and $a \in A$ such that $\dim_a A \ge 1$. Then there is $f \in \mathcal{O}_X(X)$ such that $\dim_a (A \cap W(f)) = \dim_a A - 1$.

To prove the claim, let A_1, \ldots, A_k be the irreducible components of A. We may assume that all of them contain a. Choose $a_j \in A_j$ for each $j = 1, \ldots, k$ so that a, a_1, \ldots, a_k are pairwise different. Then there is a function $f \in \mathcal{O}_X(X)$ with f(a) = 0 while $f(a_j) \neq 0$ for $j = 1, \ldots, k$. Then $a \in W(f)$ while $f|_{A_j}$ is not identically 0. By Krulls Hauptidealsatz, $\dim_a(A_j \cap W(f)) = \dim_a A_j - 1$ for all $j = 1, \ldots, k$. Observe that $A \cap W(f)$ and $\bigcup_{j=1}^k (A_j \cap W(f))$ coincide near a, so

$$\dim_a(A \cap W(f)) = \max_{j=1,\dots,k} \dim_a(A_j \cap W(f)) = \max_{j=1,\dots,k} (\dim_a A_j - 1) = \dim_a A - 1.$$

Proposition 8.3. Let X be an irreducible holomorphically spreadable complex analytic space. Then X has countable basis.

The statement of this proposition in [Fis76, Proposition 0.37] is clearly wrong. I do not understand the argument of either [Jur59] or [Gra55], where they claim that this result holds for connected holomorphically spreadable complex analytic spaces.

PROOF. We may assume that X is connected. Recall that by Corollary 8.6 in Local properties of complex analytic spaces, X is locally connected. Let $F: X \to \mathbb{C}^{\mathcal{O}_X(X)}$ be the map sending $x \in X$ to $(f(x))_{f \in \mathcal{O}_X(X)}$. By our assumption, F is continuous and has discrete fibers. In particular, for each $x \in X$, we may assume take finitely many $f_1, \ldots, f_n \in \mathcal{O}_X(X)$ so that the induced morphism $F': X \to \mathbb{C}^n$ is quasi-finite at x. By Corollary 2.13 in Analytic sets, we can find a nowhere dense analytic set A in X such that the map $X \setminus A \to \mathbb{C}^n$ induced by F' is quasi-finite. Now we endow $\mathcal{O}_X(X)$ with the compact-open topology. It is a metric space. By Proposition 6.2 in Topology and bornology, $X \setminus A$ has countable basis. It follows that $\mathcal{O}_X(X \setminus A)$ is a separable metric space. Hence, so it $\mathcal{O}_X(X)$. In particular, there is a continous map with discrete fibers

$$X \to \mathbb{C}^{\omega}.$$

It follows again from Proposition 6.2 in Topology and bornology that X has countable basis. $\hfill \Box$

Proposition 8.4. Let X be a holomorphically spreadable complex analytic space. Then any compact analytic set A in X is finite.

PROOF. Let B be a connected component of A and $p \in B$. We need to show that $B = \{p\}$. Take finitely many $f_1, \ldots, f_n \in \mathcal{O}_X(X)$ so that p is an isolated point of $W(f_1, \ldots, f_n)$. This is possible by Proposition 8.2. As f_i vanishes on B for each $i = 1, \ldots, n$, we have $B = \{p\}$.

Corollary 8.5. Let X be a complex analytic space and A be a compact analytic subset of X. Suppose that there exists an analytic block $(P, \pi : X \to \mathbb{C}^n)$ in X with $A \subseteq P$, then A is finite.

PROOF. Take $U \subseteq X, V \subseteq \mathbb{C}^n$ as in Definition 7.1 so that $U \to V$ is finite. Then U is clearly holomorphically spreadable. By Proposition 8.4, A is finite. \Box

9. Holomorphically complete space

Definition 9.1. Let X be a complex analytic space. An exhaustion of X by analytic blocks is an exhaustion of X by stones $(P_i, \pi_i)_{i \in \mathbb{Z}_{>0}}$ such that (P_i, π_i) is an analytic block for each $i \in \mathbb{Z}_{>0}$.

We say X is holomorphically complete if X is Hausdorff and there is an exhaustion of X by analytic stones.

Theorem 9.2. Let X be a Hausdorff complex analytic space. Then the following are equivalent:

- (1) X is holomorphically complete;
- (2) X is weakly holomorphically convex and every compact analytic subset of X is finite.

PROOF. (1) \implies (2): X is weakly holomorphically convex by definition. Each compact analytic subset A of X is contained in some analytic block, hence finite by Corollary 8.5.

(2)
$$\implies$$
 (1): This follows from Proposition 7.3.

Lemma 9.3. Let X be a complex manifold and \mathcal{I} be a coherent subsheaf of \mathcal{O}_X^l for some $l \in \mathbb{Z}_{>0}$. Then $\mathcal{I}(X)$ is a closed subspace of $\mathcal{O}_X(X)^l$ endowed with the compact-open topology.

PROOF. Let $(f_j \in \mathcal{I}(X))_{j \in \mathbb{Z}_{>0}}$ be a sequence with a limit $f \in \mathcal{O}_X^l(X)$. Let $x \in X$. It suffices to show that $f_x \in \mathcal{I}_x$. Observe that f_x is the limit of f_{jx} as $j \to \infty$. As $\mathcal{O}_{X,x}$ is noetherian, the submodule \mathcal{I}_x of \mathcal{O}_x^l is closed by Corollary 7.4 in Banach rings. We conclude.

Definition 9.4. Let X be a complex analytic space and \mathcal{F} be a coherent \mathcal{O}_X -module. Let $(P, \pi : X \to \mathbb{C}^n)$ be an analytic block on X with a non-zero associated tube $Q \subseteq \mathbb{C}^n$.

Choose $U \subseteq X, V \subseteq \mathbb{C}^n$ as in Definition 7.1 so that $\tau : U \to V$ induced by π is finite. Then $\mathcal{G} := \tau_*(\mathcal{F}|_U)$ is a coherent \mathcal{O}_V -module. By Corollary 6.3, we can find $l \in \mathbb{Z}_{>0}$ and an epimorphism $\mathcal{O}_Q^l \to \mathcal{G}|_Q$. It induces an epimorphism $\epsilon : H^0(Q, \mathcal{O}_{\mathbb{C}^n})^l \to H^0(Q, \mathcal{G}) \xrightarrow{\sim} H^0(P, \mathcal{F})$. We define a semi-norm $|\bullet|$ on $H^0(P, \mathcal{F})$ as the quotient semi-norm induced by the sup seminorm on $H^0(Q, \mathcal{O}_{\mathbb{C}^n})^l$.

A seminorm on $H^0(P, \mathcal{F})$ defined in this way is called a *good semi-norm* on $H^0(P, \mathcal{F})$ with respect to (P, π) .

Lemma 9.5. Let X be a complex analytic space and \mathcal{F} be a coherent \mathcal{O}_X -module. Let (P, π) be an analytic block on X. A good semi-norm on $H^0(P, \mathcal{F})$ induces a metric on $H^0(P^0, \mathcal{F})$.

PROOF. We need to show that if |s| = 0 for some $s \in H^0(P, \mathcal{F})$, then $s|_{P^0} = 0$, where P^0 is the analytic interior of P.

We use the same notations as in Definition 9.4. We can take $h \in H^0(Q, \mathcal{O}_{\mathbb{C}^n})^l$ and $h_j \in \ker \epsilon$ for each $j \in \mathbb{Z}_{>0}$ so that $\epsilon(h) = s$ and $\|h_j - h\|_{L^{\infty}} \to 0$. So $h_j|_Q \to h|_Q$ with respect to the compact-open topology. From Lemma 9.3, we conclude that the image of $h|_{\operatorname{Int} Q}$ is 0. Namely, s vanishes on $P^0 = \tau^{-1}(\operatorname{Int} Q)$. **Lemma 9.6.** Let X be a complex analytic space and \mathcal{F} be a coherent \mathcal{O}_X -module. Let $(P, \pi : X \to \mathbb{C}^n)$ be an analytic block on X with a non-zero associated tube $Q \subseteq \mathbb{C}^n$. Consider the epimorphism of sheaves

$$\mathcal{O}_Q^l \to \pi_*(\mathcal{F}|_P)$$

as in Definition 9.4 and endow $H^0(P^0, \mathcal{F})$ with the metric induced by the corresponding good semi-norm. Let

$$Q_1 \subseteq Q_2 \subseteq \cdots$$

be a compact exhaustion of $\mathrm{Int}\,Q$ by tubes with the same centers in $\mathbb{C}^n.$ We get an induced map

$$\epsilon_j : H^0(Q_j, \mathcal{O}^l_{\mathbb{C}^n}) \to \pi_*(\mathcal{F}|_P)(Q_j)$$

for each $j \in \mathbb{Q}_{>0}$. We therefore get good semi-norms $|\bullet|_j$ on $H^0(P^0, \mathcal{F})$ for each $j \in \mathbb{Z}_{>0}$. Let

$$d(s_1, s_2) := \sum_{j=1}^{\infty} 2^{-j} \frac{|s_1 - s_2|_j}{1 + |s_1 - s_2|_j}$$

for each $s_1, s_2 \in H^0(P^0, \mathcal{F})$. Then d is a metric on $H^0(P^0, \mathcal{F})$ and $H^0(P^0, \mathcal{F})$ is a Fréchet space with respect to this topology.

Moreover, the topology does not depend on the choice of π , ϵ and the exhaustion.

PROOF. By Lemma 9.5, each $|\bullet|_{\nu}$ is a norm on $H^0(P^0, \mathcal{F})$. It follows that d is a metric. Next we show that $H^0(P^0, \mathcal{F})$ is Fréchet. Let $(s_j)_{j \in \mathbb{Z}_{>0}}$ be a Cauchy sequence in $H^0(P^0, \mathcal{F})$. We can find bounded sequences $(f_{jk} \in H^0(Q_k, \mathcal{O}_{\mathbb{C}^n}^l))_{k \in \mathbb{Z}_{>0}}$ so that $\epsilon_k(f_{jk}) = s_j|_{\pi^{-1}(Q_k)\cap P}$ $(k \in \mathbb{Z}_{>0})$ for each $j\mathbb{Z}_{>0}$. By Montel's theorem, there is a subsequence of $(f_{jk})_j$ which converges uniformly on Q_{k-1} to $f_k \in H^0(Q_{k-1}, \mathcal{O}_{\mathbb{C}^n}^l)$. Then $\epsilon_{k-1}(f_{k+1})|_{\mathrm{Int} Q_{k-1}} = \epsilon_{k-1}(f_k)|_{\mathrm{Int} Q_{k-1}}$ for each $k \in \mathbb{Z}_{\geq 2}$. So we can glue the f_k 's to $s \in H^0(P^0, \mathcal{F})$. Clearly, $s_k \to s$ as $k \to \infty$.

Next we show that the topology is independent of the choice of π , ϵ and the exhaustion. The independence of the exhaustion is obvious. We prove the other two independence. Let $(P, \pi' : X \to \mathbb{C}^{n'})$ be another analytic block with $\pi' = (\pi, \varphi) : X \to \mathbb{C}^n \times \mathbb{C}^m$, n' = n + m. Let $Q^* \subseteq \mathbb{C}^m$ be a tube such that $\varphi(P) \subseteq Q^*$. Then $P = \pi'^{-1}(Q \times Q^*) \cap U$. We can find an open neighbourhood U'of P in X and V' of $Q \times Q^*$ in $\mathbb{C}^{n'}$ for which the induced map $\tau' : U' \to V'$ is finite by Definition 7.1. Fix an epimorphism $\mathcal{O}_{\mathbb{C}^{n'}}^{l'}|_{Q \times Q^*} \to \pi'_*(\mathcal{F}|_P)$ for some $l' \in \mathbb{Z}_{>0}$. Construct an exhaustion of $\operatorname{Int} Q \times \operatorname{Int} Q^*$ of the product type: $(Q_j \times Q_j^*)_{j \in \mathbb{Z}_{>0}}$ as in the lemma. Let d' denote the induced metric on $H^0(\operatorname{Int} P, \mathcal{F})$.

We will show that d' and d induce the same topology. Let $e_1, \ldots, e_l \in H^0(Q, \mathcal{O}_{\mathbb{C}^n}^l)$ be the standard basis. Let e'_1, \ldots, e'_l be the preimages of $\epsilon(e_1), \ldots, \epsilon(e_l) \in \pi_*(\mathcal{F}|P)(Q) = \pi'_*(\mathcal{F}|_P)(Q \times Q^*)$ in $\mathcal{O}_{\mathbb{C}^{n'}}(Q \times Q^*)^{l'}$ under ϵ' . Further, for $f \in \mathcal{O}_{\mathbb{C}^n}(Q_j)$, we denote by $f' \in \mathcal{O}_{\mathbb{C}^{n'}}(Q_j \times Q_j^*)$ the holomorphic extension of f to $Q_j \times Q_j^*$ constant along $\{q\} \times Q_j^*$ for each $q \in Q_j$ for each $j \in \mathbb{Z}_{>0}$. The norms of

$$\mathcal{O}_{\mathbb{C}^n}(Q_j)^l \to \mathcal{O}_{\mathbb{C}^{n'}}(Q_j \times Q_j^*)^l, \quad \sum_{i=1}^l f_i e_i \mapsto \sum_{i=1}^l f_i' e_i'$$

for $j \in \mathbb{Z}_{>0}$ are bounded by a constant independent of j. Therefore, the identity map

$$(H^0(P^0,\mathcal{F}),d) \to (H^0(P^0,\mathcal{F}),d')$$

is continuous. By open mapping theorem, the map is a homeomorphism.

Theorem 9.7. Let X be a complex analytic space and $(P, \pi) \subseteq (P', \pi')$ be two analytic blocks on X and \mathcal{F} be a coherent \mathcal{O}_X -module, then the restriction map

$$H^0(P',\mathcal{F}) \to H^0(P,\mathcal{F})$$

with respect to any good semi-norms.

PROOF. We claim that there exists an analytic block (P_1, π) such that

$$(P,\pi) \subseteq (P_1,\pi) \subseteq (P',\pi').$$

Assume this claim, then we have a decomposition of the restriction map

$$H^0(P',\mathcal{F}) \to H^0(P_1^0,\mathcal{F}) \to H^0(P,\mathcal{F}).$$

The first map is continuous if we endow $H^0(P_1^0, \mathcal{F})$ with the topology induced by π' , the second is continuous if we endow $H^0(P_1^0, \mathcal{F})$ with the topology induced by π . These topologies are identical by Lemma 9.6. Our assertion follows.

To argue the claim, let us write $\pi : X \to \mathbb{C}^n$ and $\pi' = (\pi, \varphi) : X \to \mathbb{C}^n \times \mathbb{C}^m$. Take $q \in \mathbb{C}^m$ with $Q \times \{q\} \subseteq \operatorname{Int} Q'$. Let $Q'' := Q' \cap (\mathbb{C}^n \times \{q\})$ and identify it with a subset of \mathbb{C}^n . Let Q^* be the image of Q' under the projection $\mathbb{C}^{n+m} \to \mathbb{C}^m$.

Choose open neighbourhoods $U \subseteq P'^0$, $V \subseteq Q'$ of P and Q respectively such that $\tau: U \to V$ is finite and $U \cap \pi^{-1}(Q) = P$. Take a tube $Q_1 \subseteq \mathbb{C}^n$ such that

$$Q \subseteq \operatorname{Int} Q_1 \subseteq Q_1 \subseteq \operatorname{Int} Q''.$$

Now it suffices to set $P_1 := \pi^{-1}(Q_1) \cap U$.

Corollary 9.8. Let X be a complex analytic space and \mathcal{F} be a coherent \mathcal{O}_X -module. Let $(P,\pi) \subseteq (P',\pi')$ be analytic blocks in X. Then for any Cauchy sequence $(s_j)_{j\in\mathbb{Z}_{>0}}$ in $H^0(P',\mathcal{F})$, the restriction sequence $(s_j|_P)_{j\in\mathbb{Z}_{>0}}$ has a limit in $H^0(P,\mathcal{F})$.

PROOF. Choose an analytic block (P_1, π) such that

$$(P,\pi) \subseteq (P_1,\pi) \subseteq (P',\pi').$$

The existence of the block (P_1, π) is argued in the proof of Theorem 9.7. We have a decomposition of the restriction map

$$H^0(P',\mathcal{F}) \to H^0(P_1^0,\mathcal{F}) \to H^0(P,\mathcal{F}).$$

The first map is bounded, so the images of $(s_j)_{j \in \mathbb{Z}_{>0}}$ in $H^0(P_1^0, \mathcal{F})$ is a Cauchy sequence. As we have shown that $H^0(P_1^0, \mathcal{F})$ is a Fréchet space in Lemma 9.6, the sequence converges. As the second map is also continuous, it follows that $(s_j|_P)_{j \in \mathbb{Z}_{>0}}$ has a limit in $H^0(P, \mathcal{F})$.

Lemma 9.9. Let X be a complex analytic space and \mathcal{F} be a coherent \mathcal{O}_X -module. Let $(P, \pi : X \to \mathbb{C}^n) \subseteq (P', \pi' : X \to \mathbb{C}^n \times \mathbb{C}^m)$ be analytic blocks in X with tubes Q and Q'. Choose $U' \subseteq X$ and $V' \subseteq \mathbb{C}^{n+m}$ of P' and Q' respectively as in Definition 7.1 such that $U' \to V'$ is finite. Set

$$Q_1 := (Q \times \mathbb{C}^m) \cap Q', \quad P_1 = \pi'^{-1}(Q_1) \cap U'.$$

Then (P_1,π') is an analytic block in X with block Q_1 and $H^0(P',\mathcal{F}) \to H^0(P_1,\mathcal{F})$ has dense image. Here we take an epsimorphism

$$\mathcal{O}_{\mathbb{C}^{n+m}}^{l'}|_{Q'} \to (\tau'(\mathcal{F}|_{U'}))_{Q'}$$

and it induces

$$\mathcal{O}_{\mathbb{C}^{n+m}}^{l'}|_{Q_1} \to (\tau'(\mathcal{F}|_{U'}))_{Q_1}$$

which in turn induces a good semi-norm on $H^0(P_1, \mathcal{F})$. This is the semi-norm we are using.

Moreover, there is a compact set $\tilde{P} \subseteq X$ disjoint from P such that

$$P_1 = P \cup \tilde{P}.$$

PROOF. We have a commutative diagram in the category of topological linear spaces:

$$\begin{array}{ccc} H^0(Q', \mathcal{O}^l_{\mathbb{C}^{m+n}}) & \longrightarrow & H^0(P', \mathcal{F}) \\ & & & \downarrow \\ & & & \downarrow \\ H^0(Q_1, \mathcal{O}^l_{\mathbb{C}^{m+n}}) & \longrightarrow & H^0(P_1, \mathcal{F}) \end{array}$$

In order to show that the right vertical map has dense image, it is enough to show that the map on the left-hand side has dense images, which is the Runge approximation.

For the last assertion, as $Q_1 = (Q \times \mathbb{C}^m) \cap Q'$, we have

$$P_1 = \pi^{-1}(Q) \cap P'.$$

As $P \subseteq P'$ and $P \subseteq \pi^{-1}(Q)$, it follows that $P \subseteq P_1$. But there is an open neighbourhood U of P in X so that $P = \pi^{-1}(Q) \cap U$. Hence, $\tilde{P} = P_1 \setminus P$ is compact.

Theorem 9.10 (Runge approximation). Let X be a complex analytic space and \mathcal{F} be a coherent \mathcal{O}_X -module. Let $(P, \pi : X \to \mathbb{C}^n) \subseteq (P', \pi' : X \to \mathbb{C}^n \times \mathbb{C}^m)$ be analytic blocks in X with tubes Q and Q'. Then the map

$$H^0(P',\mathcal{F}) \to H^0(P,\mathcal{F})$$

has dense image with respect to a good semi-norm.

PROOF. We use the notations of Lemma 9.9. We extend Q, Q_1, Q' to tubes $\hat{Q}, \hat{Q}_1, \hat{Q}'$ and get $\hat{P}, \hat{P}_1, \hat{P}'$ corresponding to the original P, P_1, P' . The restriction map

$$H^0(\hat{P_1}^0,\mathcal{F}) \to H^0(\hat{P}^0,\mathcal{F})$$

is a continuous morphism of Fréchet spaces.

Let $s \in H^0(P,\mathcal{F})$ be a section. Lift s to $s_1 \in H^0(P_1,\mathcal{F})$. Up to a suitable modification of the tubes, we can extend s_1 to $\hat{s_1} \in H^0(\hat{P_1},\mathcal{F})$. Then there is a sequence $(s^j \in H^0(\hat{P'},\mathcal{F}))_{j \in \mathbb{Z}_{>0}}$ such that $s^j|_{\hat{P_1}} \to \hat{s_1}$ as $j \to \infty$ in $H^0(\hat{P_1},\mathcal{F})$. It follows that $s^j|_{\hat{P}^0} \to \hat{s_1}|_{\hat{P}^0}$ in $H^0(\hat{P}^0,\mathcal{F})$. It follows that $s^j|_P \to s_1|_P = s$ sa $j \to \infty$.

Theorem 9.11. Let X be a complex analytic space. Each exhaustion of X by analytic blocks is a Stein exhaustion.

PROOF. Let $(P_i, \pi_i)_{i \in \mathbb{Z}_{>0}}$ be an exhaustion of X by analytic blocks. Take a coherent \mathcal{O}_X -module \mathcal{F} .

We verify the conditions in Definition 6.5. By Theorem 6.4, P_i is a compact Stein set for each $i \in \mathbb{Z}_{>0}$. So (1) is satisfied.

On $H^0(P_i, \mathcal{F})$, we fix a good semi-norm $|\bullet|_i$ for each $i \in \mathbb{Z}_{>0}$. We may assume that $H^0(P_{i+1}, \mathcal{F}) \to H^0(P_i, \mathcal{F})$ is contractive for $i \in \mathbb{Z}_{>0}$.

We have already verified (3), (4) and (5).

We verify (2). It suffices to show that

 $H^0(X,\mathcal{F}) \to H^0(P_1,\mathcal{F})$

has dense image. Let $s \in H^0(P_1, \mathcal{F})$ and $\delta > 0$. By Theorem 9.10, we can find $s_i \in H^0(P_i, \mathcal{F})$ for $i \in \mathbb{Z}_{>0}$ such that $s_1 = s$,

$$|s_{i+1}|_{P_i} - s_i|_i < 2^{-i}\delta$$

for $i \in \mathbb{Z}_{>0}$. By Corollary 9.8, $(s_j|_{P_i})_{j\in\mathbb{Z}_{>0}}$ has a limit $t_i \in H^0(P_i, \mathcal{F})$ for each $i \in \mathbb{Z}_{>0}$. As $H^0(P_{i+1}, \mathcal{F}) \to H^0(P_i, \mathcal{F})$ is continuous for $i \in \mathbb{Z}_{>0}$, the $t_{i+1}|_{P_i}$'s are compatible and defines $t \in H^0(X, \mathcal{F})$. It is easy to see that $|t|_{P_1} - s|_1 < \delta$. Thus condition (2) is satisfied.

10. Stein spaces

Definition 10.1. Let X be a complex analytic space. We say that X is a Stein space if X is a Stein set in X and |X| is paracompact and Hausdorff.

Definition 10.2. Let X be a complex analytic space. An *effective formal* 0-cycle on X consists of

- (1) A disrete set $D \subseteq X$;
- (2) An integer n_x for each $x \in D$.

We write the effective formal 0-cycle as $\sum_{x \in D} n_x x$. We define the *ideal sheaf* $\mathcal{O}_X(-\sum_{x \in D} n_x x)$ of an effective formal 0-cycle as $\sum_{x \in D} n_x x$ as

$$\mathcal{O}_X(-\sum_{x\in D} n_x x)(U) = \left\{ f \in H^0(U, \mathcal{O}_X) : f_x \in \mathfrak{m}_x^{n_x} \text{ for each } x \in D \cap U \right\}$$

for each open subset $U \subseteq X$.

Observe that $\mathcal{O}_X(-\sum_{x\in D} n_x x)$ is a coherent \mathcal{O}_X -module. In fact, the problem is local, so we may assume that D is finite. In this case, D is an effective 0-cycle and the result is clear.

Lemma 10.3. Let X be a complex analytic space and $\sum_{x \in D} n_x x$ be an effective formal 0-cycle on X. Assume that

$$H^0(X, \mathcal{O}_X) \to H^0(X, \mathcal{O}_X/\mathcal{O}_X(-\sum_{x \in D} n_x x))$$

is surjective. Suppose that for each $x \in D$, we assign $g_x \in \mathcal{O}_{X,x}$. Then there is $f \in H^0(X, \mathcal{O}_X)$ such that

$$f_x - g_x \in \mathfrak{m}_x^{n_x}$$

for all $x \in D$.

PROOF. We define $s \in H^0(X, \mathcal{O}_X/\mathcal{O}_X(-\sum_{x \in D} n_x x))$ by $s_x = g_x$ for each $x \in D$. Lift s to $f \in H^0(X, \mathcal{O}_X)$. Then f clearly satisfies the required properties. \Box

Proposition 10.4. Let X be a complex analytic space. Assume that $H^1(X, \mathcal{I}) = 0$ for each coherent ideal sheaf \mathcal{I} on X. Let $(x_i \in X)_{i \in \mathbb{Z}_{>0}}$ be a sequence without accumulation points and $(c_i)_{i \in \mathbb{Z}_{>0}}$ be a sequence in \mathbb{C} . Then there is $f \in \mathcal{O}_X(X)$ with $f(x_i) = c_i$ for each $i \in \mathbb{Z}_{>0}$.

PROOF. Consider the formal cycle $\sum_{i=1}^{\infty} x_i$. Apply Lemma 10.3 with $g_{x_i} = c_i$.

Theorem 10.5. Let X be a paracompact Hausdorff complex analytic space. Then the following are equivalent:

- (1) X is a Stein space;
- (2) For any coherent ideal sheaf \mathcal{I} on X, we have $H^1(X, \mathcal{I}) = 0$;
- (3) X is holomorphically separable and holomorphically convex;
- (4) X is holomorphically spreadable and weakly holomorphically convex;
- (5) X is holomorphically complete;
- (6) X is weakly holomorphically convex and every compact analytic subset of X is finite.

PROOF. (1) \implies (2): This is trivial.

(2) \implies (3): X is holomorphically convex by Proposition 10.4 and Proposition 5.4. X is holomorphically separable by Proposition 10.4.

(3) \implies (4): X is holomorphically spreadable and weakly holomorphically convex by definition.

(4) \implies (5): This follows from Theorem 9.2 and Proposition 8.4.

- (5) \implies (1): This follows from Theorem 9.11 and Theorem 6.6.
- (5) \Leftrightarrow (6): This is just Theorem 9.2.

Lemma 10.6. Let $b \in \mathbb{Z}_{>0}$ and $f : X \to Y$ be a *b*-sheeted branched covering of complex analytic spaces. Assume that Y is normal. Then the following are equivalent:

- (1) X is Stein;
- (2) Y is Stein.

The corresponding statement in Narasimhan is not correct. It is not clear to me if this holds for a general finite surjective morphism between paracompact normal Hausdorff complex analytic spaces.

PROOF. By Lemma 2.2, X is paracompact and Hausdorff if and only if Y is paracompact and Hausdorff.

(2) \implies (1): This follows from Leray's spectral sequence.

(1) \implies (2): We may assume that X is connected. By Theorem 10.5, it suffices to verify that Y is holomorphically convex and every analytic set in Y is finite.

Let $(y_i \in Y)_{i \in \mathbb{Z}_{>0}}$ be a sequence without accumulation points. We can lift the sequence to $(x_i \in X)_{i \in \mathbb{Z}_{>0}}$ without accumulation points. By Proposition 10.4, we can find $g \in \mathcal{O}_X(X)$ such that $(|g(x_i)|)_{i \in \mathbb{Z}_{>0}}$ is unbounded. Let $\chi_g \in \mathcal{O}_Y(Y)[w]$ be the characteristic polynomial of g. As $\chi_g(g) = 0$, it follows that at least one coefficient of χ_g is unbounded along $(y_i)_{i \in \mathbb{Z}_{>0}}$. By Proposition 5.4, we conclude that Y is holomorphically convex.

Let T be an analytic set in Y. Then so is $f^{-1}(T)$. As X is Stein, $f^{-1}(T)$ is finite, hence so is T.

Corollary 10.7. Let $f : X \to Y$ be a finite surjective morphism of normal complex analytic spaces. Then the following are equivalent:

- (1) X is Stein;
- (2) Y is Stein.

PROOF. By Lemma 2.2, X is paracompact and Hausdorff if and only if Y is paracompact and Hausdorff. We may assume that Y is connected.

(2) \implies (1): This follows from Leray's spectral sequence.

(1) \implies (2): Observe that Y is irreducible, so there is a connected component X' of X so that the restriction $X' \to Y$ is surjective. Then $X' \to Y$ is a branched covering by Corollary 4.40 in Morphisms between complex analytic spaces. But X' is Stein as it is a connected component of a Stein space. We conclude using Lemma 10.6.

Lemma 10.8. Let X be a reduced complex analytic space whose normalization \bar{X} is Stein. Then for any reduced closed analytic subspace Y of X, \bar{Y} is also Stein.

PROOF. By Lemma 2.2, X is paracompact and Hausdorff. We write $\pi : \overline{X} \to X$ for the normalization morphism. Let $Y^1 = \pi^{-1}(Y)$, the preimage is endowed with a structure of a closed analytic subspace of X. It follows that Y^1 is Stein. Its normalization $\overline{Y^1}$ is then Stein, as the normalization morphism is finite. We have commutative diagram induced by the universal property of the normalization:

The natural morphism $\overline{Y^1} \to Y$ is a finite as it is the composition of two finite coverings. Then morphism $\overline{Y} \to Y$ is finite, so $\overline{Y^1} \to \overline{Y}$ is finite. But its image contains a dense open subset of \overline{Y} , so $\overline{Y^1} \to \overline{Y}$ is surjective. Observe that \overline{Y} is paracompact and Hausdorff by the same arguments as in Lemma 10.6. Now we can apply Corollary 10.7 to conclude that \overline{Y} is Stein.

Corollary 10.9. Let X be a complex analytic space. Then the following are equivalent:

- (1) X is Stein;
- (2) X^{red} is Stein;
- (3) The normalization $\overline{X^{\text{red}}}$ is Stein.

The equivalence of (1) and (2) is due to Grauert [Gra60]. Here we follow the simplified approach in [GR77]. The difficult direction (3) implies (2) is claimed in [GR77], where the proof is nonsense. We follow the argument of Narasimhan [Nar62]. We remind the readers that the statements and the arguments in [Nar62] contain several (fixable) mistakes.

PROOF. By Lemma 2.2, X is paracompact and Hausdorff if and only if $\overline{X^{\text{red}}}$ is.

(1) \implies (2): This follows from Leray's spectral sequence.

(2) \implies (1): By Theorem 10.5(3), it suffices to show that the restriction map $H^0(X, \mathcal{O}_X) \to H^0(X^{\text{red}}, \mathcal{O}_{X^{\text{red}}})$ is surjective.

Let \mathcal{I} be the nilradical of \mathcal{O}_X . It is coherent by Cartan–Oka theorem. For each $i \in \mathbb{Z}_{>0}$, we have a short exact sequence

$$0 \to \mathcal{I}^i / \mathcal{I}^{i+1} \to \mathcal{O}_X / \mathcal{I}^{i+1} \to \mathcal{O}_X / \mathcal{I}^i \to 0.$$

As $\mathcal{I}^i/\mathcal{I}^{i+1}$ is a coherent $\mathcal{O}_{X^{\mathrm{red}}}$ -module, we conclude that

$$\varphi_i: H^0(X, \mathcal{O}_X/\mathcal{I}^{i+1}) \to H^0(X, \mathcal{O}_X/\mathcal{I}^i)$$

is surjective for each $i \in \mathbb{Z}_{>0}$. Let $h_1 \in H^0(X, \mathcal{O}_X/\mathcal{I}) = H^0(X^{\text{red}}, \mathcal{O}_{X^{\text{red}}})$. We want to lift it to $h \in H^0(X, \mathcal{O}_X)$.

We successively lift h_1 to $h_i \in H^0(X, \mathcal{O}_X/\mathcal{I}^i)$ for each $i \in \mathbb{Z}_{>0}$. Let $X_i = X \setminus \text{Supp } \mathcal{I}^i$ of each $i \in \mathbb{Z}_{>0}$. Then clearly

$$X = \bigcup_{i=1}^{\infty} X_i.$$

It is easy to see that

$$h_{i+1}|_{X_i} = h_i|_{X_i}$$

for each $i \in \mathbb{Z}_{>0}$. It follows that we can glue the $h_i|_{X_i}$'s to $h \in H^0(X, \mathcal{O}_X)$ which restricts to h_1 .

(2) \implies (3): This follows from Leray's spectral sequence as $\overline{X^{\text{red}}} \rightarrow X^{\text{red}}$ is finite by Proposition 7.8 in Local properties of complex analytic spaces.

(3) \implies (2): We may assume that X is reduced.

Step 1. We first observe that it suffices to prove in the case where dim $X < \infty$. For each $k \in \mathbb{Z}_{>0}$, we let X_k denote the union of the irreducible components of dimension $\leq k$. Then clearly, X_k is an analytic set in X. We endow it with the reduced induced structure. Then dim $X_k \leq k$. The normalization $\overline{X_k}$ of X_k is a disjoint union of certain connected components of \overline{X} and hence Stein for each $k \in \mathbb{Z}_{>0}$. It follows that X_k is Stein if the special case is established.

Let $D \subseteq X$ be a countable infinite set without accumulation points. For each $k \in \mathbb{Z}_{>0}$, we set $D_k = D \cap X_k$ and $E_{k+1} = D_{k+1} \setminus D_k$. Further we let $E_1 = D_1$. We write the points of D as $(x_i \in X)_{i \in \mathbb{Z}_{>0}}$. Let $h : D \to \mathbb{C}$ be the map sending x_i to i for each $i \in \mathbb{Z}_{>0}$. For each $k \in \mathbb{Z}_{>0}$, h_k denotes the restriction of h to D_k .

As X_1 is Stein, we can construct $f_1 \in \mathcal{O}_{X_1}(X_1)$ with $f_1|_{E_1} = h_1$ by Proposition 10.4. As $E_2 \cup X_1$ is an analytic subset in X_2 , we can find $f_2 \in \mathcal{O}_{X_2}(X_2)$ extending f_1 and such that $f_2|_{E_2} = h_2$. We continue in the obvious way and construct $f_k \in \mathcal{O}_{X_k}(X_k)$ for each $k \in \mathbb{Z}_{>0}$ compatible with each other. Then the f_k 's glue to give $f \in \mathcal{O}_X(X)$ unbounded on D. We conclude that X is Stein by Proposition 5.4.

Step 2. We assume that dim $X < \infty$.

Let \mathcal{I} be a coherent ideal sheaf on X. By Theorem 10.5, it suffices to show that

 $H^1(X,\mathcal{I}) = 0.$

We may assume that X is connected. We make an induction on dim X. There is nothing to prove if dim X = 0. Assume that dim X > 0.

We write $\pi : \overline{X} \to X$ for the normalization morphism. Let \mathcal{W} be the conductor ideal of \mathcal{O}_X . Let $\mathcal{F} := \pi^*(\mathcal{WI})$. Observe that \mathcal{F} is a coherent $\mathcal{O}_{\overline{X}}$ -module. By Leray spectral sequence,

$$H^1(X, \pi_*\mathcal{F}) \cong H^1(\bar{X}, \mathcal{F}) = 0.$$

Let $Y := \operatorname{Supp} \mathcal{O}_X / \mathcal{W} \subseteq X^{\operatorname{Sing}}$. Then Y is an analytic set in X. We endow Y with the reduced induced structure, then Y is Stein by Lemma 10.8 and our inductive hypothesis.

Observe that $\pi_*\mathcal{F}$ can be identified with a subsheaf of $\mathcal{W} \cdot \overline{\mathcal{O}_X} \subseteq \mathcal{I}$. Let $\mathcal{S} = (\mathcal{I}/\pi_*\mathcal{F})|_Y$. Then we have

$$H^1(X, \mathcal{I}/\pi_*\mathcal{F}) \cong H^1(Y, \mathcal{S}) = 0.$$

Consider the short exact sequence

$$0 \to \pi_* \mathcal{F} \to \mathcal{I} \to \mathcal{I}/\pi_* \mathcal{F} \to 0.$$

We conclude that

$$H^1(X,\mathcal{I}) = 0.$$

Corollary 10.10. Let X be a complex analytic space. Then the following are equivalent:

- (1) X is Stein;
- (2) Each irreducible component of X^{red} is Stein if we endow it with the reduced induced structure.

PROOF. This follows immediately from Corollary 10.9. $\hfill \Box$

Corollary 10.11. Let $f: X \to Y$ be a finite morphism between complex analytic spaces. Then

- (1) if Y is Stein, so is X;
- (2) if f is surjective and X is Stein, then Y is also Stein.

This result is due to Narasimhan [Nar62], although the statement and the proof in [Nar62] are both incorrect.

PROOF. Observe that X is paracompact and Hausdorff as in the proof of Lemma 10.6. By Corollary 10.9, we may assume that X and Y are reduced.

(1) Observe that X is paracompact and Hausdorff as f is proper. The fact that X is Stein follows from Leray's spectral sequence.

(2) Observe that Y is by paracompact and Hausdorff by Lemma 2.2. We may assume that Y is irreducible by Corollary 10.10. Up to replacing X by one of its irreducible components whose image under f is Y, we may assume that X is also irreducible.

By Corollary 4.34 in Morphisms between complex analytic spaces, we can find a commutative diagram

$$\begin{array}{ccc} \bar{X} & \stackrel{\bar{f}}{\longrightarrow} & \bar{Y} \\ \downarrow & & \downarrow \\ X & \stackrel{f}{\longrightarrow} & Y \end{array}$$

By Corollary 10.9, we are reduced to show that \bar{X} is Stein if and only if \bar{Y} is. But $\bar{f}: \bar{X} \to \bar{Y}$ is clearly finite and surjective. So it suffices to apply Corollary 10.7. \Box

11. Flat locus

Proposition 11.1. Let X be a reduced complex analytic space, $x \in X$ and U be an open neighbourhood of x in X. Consider the following conditions:

(1) All irreducible components of U pass through x;

(2) U is \mathcal{O}_X -previlaged at x.

Then (1) implies (2).

[Fri67] also claims that if U is Stein, then (2) implies (1). I cannot figure out a proof.

11. FLAT LOCUS

PROOF. (1) \implies (2): Let $s \in H^0(U, \mathcal{F})$ with $s_x = 0$. We want to show that s = 0. By (1), we may assume that X is irreducible. Then X^{reg} is connected by Corollary 4.38 in Morphisms between complex analytic spaces. As $s_x = 0$, s vanishes on a non-empty open subset of X^{reg} by Theorem 6.8 in Local properties of complex analytic spaces. It follows that $s|_{X^{\text{reg}}} = 0$ by Identitätssatz. Hence, s = 0.

Proposition 11.2. Let X be a complex analytic space, $x \in X$ and \mathcal{F} be a coherent \mathcal{O}_X -module. There is an open neighbourhood U of x in X and finitely many analytic sets Y_1, \ldots, Y_m in X containing x having the following property: a neighbourhood V of x in X contained in U is \mathcal{F} -previlaged at x if $U \cap Y_i$ is $\mathcal{F}|_{Y_i}$ -previlaged at x for each $i = 1, \ldots, m$.

PROOF. Step 1. Let

 $0 \to \mathcal{G} \to \mathcal{F} \to \mathcal{H}$

be an exact sequence of coherent \mathcal{O}_X -modules. Suppose that we have proved the proposition with \mathcal{G} and \mathcal{H} in place of \mathcal{F} , let us show that the proposition also holds for \mathcal{F} . Let $U', Y'_1, \ldots, Y'_{m'}$ and $U'', Y''_1, \ldots, Y''_{m''}$ be the data in the proposition with respect to \mathcal{G} and \mathcal{H} respectively. We let $U := U' \cap U'', m = m' + m''$ and

$$Y_1 = Y'_1 \cap U, \dots, Y_{m'} = Y'_{m'} \cap U, Y_{m'+1} = Y''_1 \cap U, \dots, Y_{m'+m''} = Y''_{m''} \cap U.$$

It follows from Proposition 7.2 in Topology and bornology that these data have the desired property.

Step 2. By Jordan–Hölder theorem, we can find an open neighbourhood U of x in X and a finite chain of coherent \mathcal{O}_U -modules

$$0 = \mathcal{F}_0 \to \mathcal{F}_1 \to \dots \to \mathcal{F}_n = \mathcal{F}|_U$$

such that $\mathcal{F}_i/\mathcal{F}_{i-1}$ is isomorphic to $\mathcal{O}_{Y_i\cap U}$ for some irreducible reduced closed analytic subspace of X passing through x for $i = 1, \ldots, n$. By Step 1, it suffices to handle the case $\mathcal{F} = \mathcal{O}_{Y_i}$ for some $i = 1, \ldots, n$.

Step 3. Let Y be an analytic set in X endowed with the reduced induced structure passing through x. Let V be a neighbourhood of x in X. We need to show that V is \mathcal{O}_Y -previlaged at x if $V \cap Y$ is \mathcal{O}_Y -previlaged at x. But both conditions are defined by the injectivity of

$$H^0(V \cap Y, \mathcal{O}_Y) \cong H^0(V, \mathcal{O}_Y) \to \mathcal{O}_{Y,x}.$$

We conclude.

Proposition 11.3. Let X be a complex analytic space and A be a real semi-analytic set in X. Let \mathcal{F} be a coherent \mathcal{O}_X -module. Then any $x \in A$ admits a fundamental system of neighbourhoods in A which are \mathcal{F} -previlaged at x.

PROOF. Let U, Y_1, \ldots, Y_m be as in Proposition 11.2. Let \mathcal{B} be a fundamental system of neighbourhoods of x in A given by Proposition 8.4 in Topology and bornology.

We claim that for any $V \in \mathcal{B}$ contained in U, V is \mathcal{F} -previlaged at x. This claim finishes the proof. In fact, by Proposition 8.4 in Topology and bornology, V admits a fundamental system \mathcal{B}_V of neighbourhoods in X such that for $W \in \mathcal{B}_V, W \cap Y_i$ is \mathcal{O}_{Y_i} -previlaged at x for $i = 1, \ldots, m$. By Proposition 11.2, W is \mathcal{F} -previlaged at x. But then V is clearly \mathcal{F} -previlaged at x as well.

Proposition 11.4. Let X be a complex analytic space and A be a real semi-analytic Stein set in X. Let \mathcal{F} be a coherent \mathcal{O}_A -module. Consider an increasing net $(\mathcal{F}_j)_{j \in J}$ of coherent \mathcal{O}_A -submodules of \mathcal{F} , then for any $x \in A$, there is a neighbourhood W of x in A such that $(\mathcal{F}_j|_W)_{j \in J}$ is eventually constant.

For us the meaning of Stein set is weaker than in [Fri67].

PROOF. As $\mathcal{O}_{X,x}$ is noetherian, the net $(\mathcal{F}_{j,x})_{j\in J}$ is eventually constant. We may assume that it is actually constant. Take $j_0 \in J$. Take an open neighbourhood W of x in A which is $\mathcal{F}/\mathcal{F}_{j_0}$ -previlaged at x. The existence of W follows from Proposition 11.3.

We have a commutative diagram

with exact rows. We know that the last vertical map is injective. It follows that

$$H^0(W, \mathcal{F}_{j_0}) = H^0(W, \mathcal{F}).$$

So for any $j \ge j_0$,

$$H^0(W, \mathcal{F}_{j_0}) = H^0(W, \mathcal{F}_j).$$

So for any $b \in W$, $j \ge j_0$, we have

$$\mathcal{F}_{j,b} = H^0(A, \mathcal{F}_j) \cdot \mathcal{O}_{X,b} = H^0(W, \mathcal{F}_j) \cdot \mathcal{O}_{X,b} = H^0(A, \mathcal{F}_{j_0}) \cdot \mathcal{O}_{X,b},$$

where the first equality follows from Theorem 6.2. That is $(\mathcal{F}_j|_W)_{j\in J}$ is eventually constant.

Corollary 11.5. Let X be a complex analytic space and A be a real semi-analytic Stein set in X. Let \mathcal{F} be a coherent \mathcal{O}_A -module. Consider a subset E of $H^0(A, \mathcal{F})$. The \mathcal{O}_X -submodule of \mathcal{F} generated by E is coherent.

PROOF. The result is clear when E is finite. In general, we can write E as the union of all finite subsets of E. We then apply Proposition 11.4.

Theorem 11.6. Let X be a complex analytic space and A be a quasi-compact real semi-analytic Stein set in X. Then $H^0(A, \mathcal{O}_X)$ is noetherian.

PROOF. Let I be an ideal of $H^0(A, \mathcal{O}_X)$. By Corollary 11.5, the ideal sheaf \mathcal{I} on A generated by I is coherent. As A is quasi-compact, we can find a family of elements f_1, \ldots, f_n in I such that for any $x \in A$, \mathcal{I}_x is generated by $f_{1,x}, \ldots, f_{n,x}$ as an $\mathcal{O}_{X,x}$ -module. In other words, $\mathcal{O}_A^n \to \mathcal{I}$ defined by f_1, \ldots, f_n is surjective. It follows that

$$H^0(A, \mathcal{O}_X)^n \to H^0(X, \mathcal{I}) = I$$

defined by f_1, \ldots, f_n is surjective. Namely, I is generated by f_1, \ldots, f_n as an $H^0(A, \mathcal{O}_X)$ -module.

Lemma 11.7. Let X be a complex analytic space and A be a quasi-compact real semi-analytic Stein set in X. Consider the map

$$A \to \operatorname{Spm} H^0(A, \mathcal{O}_X)$$

sending $x \in A$ to the kernel \mathfrak{n}_x of the evaluation map $H^0(A, \mathcal{O}_X) \to \mathbb{C}$ at x.

If \mathcal{F} is a coherent \mathcal{O}_A -module, we have a natural isomorphism

$$H^0(A,\mathcal{F})_{\mathfrak{n}_x} \xrightarrow{\sim} \hat{\mathcal{F}}_x.$$

PROOF. If suffices to observe that for each $n \in \mathbb{N}$, we have

$$H^0(A,\mathcal{F})/\mathfrak{n}_x^n H^0(A,\mathcal{F}) \xrightarrow{\sim} H^0(A,\mathcal{F}/\mathfrak{n}_x^n\mathcal{F}) \xrightarrow{\sim} \mathcal{F}/\mathfrak{n}_x^n\mathcal{F}.$$

Corollary 11.8. Let $f : X \to Y$ be a morphism of complex analytic spaces, $x \in X$ and \mathcal{F} be a coherent \mathcal{O}_X -module. Let A be a quasi-compact real semi-analytic Stein set in A and B be a quasi-compact real semi-analytic Stein set in Y such that $f(A) \subseteq B$. Then the following are equivalent:

- (1) \mathcal{F} is f-flat at $x \in X$;
- (2) $H^0(A, \mathcal{F})$ is flat at \mathfrak{n}_x with respect to $H^0(B, \mathcal{O}_B) \to H^0(A, \mathcal{O}_A)$.

PROOF. By Theorem 11.6, $H^0(A, \mathcal{F})$, $H^0(B, \mathcal{O}_B)$ are both noetherian, so the morphisms

$$H^0(A,\mathcal{F})_{\mathfrak{n}_x} \to H^0(A,\mathcal{F})_{\mathfrak{n}_x}, \quad H^0(B,\mathcal{O}_Y)_{\mathfrak{n}_y} \to H^0(B,\mathcal{O}_Y)_{\mathfrak{n}_y}$$

are both faithfully flat by [Stacks, Tag 00MC], where y = f(x). The assertion now follows from Lemma 11.7.

Lemma 11.9. Let X be a complex analytic space. Then any $x \in X$ has a fundamental system of compact real semi-analytic Stein neighbourhoods.

PROOF. We may assume that $X = \mathbb{C}^n$ for some $n \in \mathbb{N}$. It then suffices to take polycylinders.

Lemma 11.10. Let Y be a reduced complex analytic space, $n \in \mathbb{N}$ and $D \subseteq \mathbb{R}^n$ be an open subset. Set $X = Y \times D$ and $f : X \to Y$ denotes the projection. Let \mathcal{F} be a coherent \mathcal{O}_X -module, $x = (y, z) \in X$. Then there is an open neighbourhood V of y in Y and a thin analytic set T in V such that \mathcal{F} is f-flat at (y', z) for any $y' \notin V \setminus T$.

PROOF. Let L be a Stein real semi-analytic compact neighbourhood of y in Y. We know that $H^0(L, \mathcal{O}_L)$ is noetherian by Theorem 11.6. Consider the minimal prime ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_r$ of this ring. Let Y_1, \ldots, Y_r be the analytic sets defined in a neighbourhood of L by these ideals. Discarding the overlaps $Y_i \cap Y_j$ for $i \neq j$, we may assume that $H^0(L, \mathcal{O}_L)$ is integral. Let $\mathcal{I} \subseteq \mathcal{O}_X$ be the ideal sheaf of $Y \times \{z\}$. Let $K = L \times \{z\}$. Then K is a compact real semi-analytic compact subset of X. Let $I = H^0(K, \mathcal{I}), B = H^0(K, \mathcal{O}_K)$ and $M = H^0(K, \mathcal{F})$. As the comopsition

$$H^0(L, \mathcal{O}_L) \to H^0(K, \mathcal{O}_X) \to H^0(K, \mathcal{O}_X)/H^0(K, \mathcal{I})$$

is an isomorphism, by Lemma 8.3 in Commutative algebras, we can find a non-zero element $h \in H^0(L, \mathcal{O}_L)$ such that M_h is A-flat in all primes of $V(I_h)$.

Now consider the analytic set T defined in a neighbourhood of L by h. Then for $y' \in L \setminus T$, \mathcal{F} is f-flat at (y', z) by Corollary 11.8.

Theorem 11.11. Let $f: X \to Y$ be a morphism of complex analytic spaces and \mathcal{F} be a coherent \mathcal{O}_X -module, then

$$\{x \in X : \mathcal{F} \text{ is } f \text{-flat at } x\}$$

is co-analytic in X.

This theorem was first proved by Frisch in [Fri67]. Here we are following the simplified proof of Kiehl [Kie67].

PROOF. The problem is local on X. We may assume that X is Hausdorff. Fix $x \in X$ and y = f(x). We show that the non-flat locus of \mathcal{F} is analytic at x.

The problem is local on X, we may assume that $X = Y \times \mathbb{C}^n$ for some $n \in \mathbb{N}$. Let B be a semi-analytic Stein neighbourhood of y in Y, whose existence is guaranteed by Lemma 11.9. Take $A = B \times \Delta^n \subseteq X$. Write $D = A \times_B A \subseteq X \times_Y X$.

Consider the commutative diagram:

$$\begin{array}{cccc} X \times_Y X & \xrightarrow{p_1} & X \\ & \downarrow^{p_2} & & \downarrow^f \\ & X & \xrightarrow{f} & Y \end{array}$$

Let $\tilde{F}' = p_1^* \mathcal{F}$. By Proposition 5.2 in Morphisms between complex analytic spaces, the non-flat locus of \mathcal{F} is the pull-back of the non-flat locus of \mathcal{F}' with respect to the diagonal morphism. It suffices to prove that the intersection of $\Delta_{X/Y}(X)$ with the non-flat locus of \mathcal{F}' is analytic in $X \times_Y X$. Let \mathcal{J} be the ideal of the diagonal $\Delta_{X/Y} : X \to X \times_Y X$ of $X \times_Y X$ and $J = H^0(D, \mathcal{J})$. We apply Lemma 8.3 in Commutative algebras. It follows that there is an ideal I in $H^0(D, \mathcal{O}_D)$ such that

$$\operatorname{Spec}(D/I) \cap \operatorname{Spec}(D/J) = \left\{ \mathfrak{m} \in \operatorname{Spec}(D/J) : H^0(D, \mathcal{F}') \text{ is not flat at } \mathfrak{m} \\ \text{with respect to } H^0(A, \mathcal{O}_A) \to H^0(D, \mathcal{O}_D) \right\}.$$

But by Corollary 11.8,

$$\left\{x \in \Delta_{X/Y}(B) : \mathcal{F}' \text{ is not } p_2\text{-flat at } x\right\} = \left\{x \in \Delta_{X/Y}(B) : \mathfrak{n}_x \supseteq I\right\}.$$

The right-hand side is analytic at x since I is finitely generated by Theorem 11.6. We conclude.

Lemma 11.12. Let $f : X \to Y$ be a morphism of complex analytic spaces. Suppose that Y is reduced and X has a countable basis. Then the following are equivalent:

- (1) f(X) is negligible in Y;
- (2) f admits no sections on an open subset V of Y.

Here we say a subset of Y is *negligible* if its intersection with Y^{reg} is an at most countable union of connected locally closed submanifolds with empty interior.

PROOF. The problem is local on Y. We may assume that Y is a complex model space. Then we reduce to the case where Y is a complex manifold. We may also assume that X is reduced. Then X is a locally finite union of locally closed complex manifolds such that $f|_{X_i}$ has constant rank. So we may assume that $f: X \to Y$ is a morphism of connected complex manifolds of constant rank. Therefore, f(X) is a submanifold of Y and f is a submersion onto f(X). In this case, f(X) is negligible if and only if its interior is empty. In other words, f is nowhere a submersion. The assertion follows.

THEOREM 11.13 (Generic flatness). Let $f : X \to Y$ be a morphism of complex analytic spaces and \mathcal{F} be a coherent \mathcal{O}_X -module. Assume that Y is reduced and X has countable basis. Then the image of the non-flat locus in Y is negligible. PROOF. The problem is local on X and Y thanks to the assumption that X has a countable basis. As in the proof of Theorem 11.11, we may assume that $X = Y \times D$, where D is a domain in \mathbb{C}^n for some $n \in \mathbb{N}$ and $f : X \to Y$ is the projection. Let Z be the non-flat locus of \mathcal{F} with respect to f.

By Lemma 11.12, it suffices to verify that for any open subset $V \subseteq Y$ and any morphism $g: V \to D$, the graph of φ is not contained in Z. Let D' be the image of

$$V \times D \to \mathbb{C}^n$$
, $(y, z) \mapsto z - g(y)$.

Then the morphism $V \times D \to V \times D'$ sending (y, z) to (y, z - h(y)) transforms the graph of g into $V \times \{0\}$. We are reduced to the standard situation in Lemma 11.10.

12. Grauert's proper image theorem

In the proof, an open Stein neighbourhood refers to an open neighbourhood which is a Stein space. Namely, we require the paracompactness.

THEOREM 12.1 (Grauert). Let $f: X \to Y$ be a morphism of complex analytic spaces and \mathcal{F} be a coherent \mathcal{O}_X -module, then $R^i f_* \mathcal{F}$ is coherent for $i \in \mathbb{Z}_{>0}$.

Consider to reformulate the proof using hypercoverings

PROOF. The problem is local on Y, so we may assume that Y is a complex model space. Then we reduce immediately to the case where Y is an open subset of \mathbb{C}^N for some $N \in \mathbb{N}$.

Step 1. We construct a free resolution.

Let $y_0 \in Y$, we can find an open Stein neighbourhood V_* of y_0 in Y and finitely many relative charts $U_k \to \Delta^{n_k} \times V_*$ with $n_k \in \mathbb{N}$ for $k = 0, \ldots, k_*$ so that

$$f^{-1}(V_*) = \bigcup_{k=0}^{k_*} U_k.$$

For each $r \in (0, 1]$ and open subset $V \subseteq V_*$, we write $U_k(r, V)$ for the inverse image of $\Delta^{n_k}(r) \times V$ in U_k for $k = 0, \ldots, k_*$. We let $\mathcal{U}(r, V) = \{U_k(r, V)\}_{k=0,\ldots,k_*}$. Take $r_* \in (0, 1)$ so that

$$f^{-1}(V) = \bigcup_{k=0}^{k_*} U_k(r, V)$$

for all $r \in [r_*, 1]$. When V is Stein, so are $U_1(r, V), \ldots, U_{k_*}(r, V)$, so $\mathcal{U}(r, V)$ is a Stein covering of $f^{-1}(V)$ for $r \in [r_*, 1]$. It follows that

$$H^q(f^{-1}(V),\mathcal{F}) \cong \check{H}^q(\mathcal{U}(r,V),\mathcal{F})$$

for all $q \in \mathbb{Z}_{>0}$ by [Stacks, Tag 03OW].

For each $n \in \mathbb{N}$, we write

$$D_n := \left\{ (k_0, \dots, k_n) \in \mathbb{Z}_{\geq 0}^{n+1} : k_0 < k_1 < \dots < k_n \le k_* \right\}$$

and

$$D = \bigcup_{n=0}^{\infty} D_n.$$

We introduce a partial order on D: for $\alpha = (\alpha_0, \ldots, \alpha_n) \in D$, $\beta = (\beta_0, \ldots, \beta_m) \in D$, we write $\alpha \subseteq \beta$ if $\{\alpha_0, \ldots, \alpha_n\} \subseteq \{\beta_0, \ldots, \beta_m\}$. For $\alpha = (\alpha_0, \ldots, \alpha_n) \in D$, $r \in [r_*, 1]$ and V an open Stein subset of V, we write

$$U_{\alpha}(r,V) := \bigcup_{j=0}^{n} U_{\alpha_j}(r,V), \quad \Delta^{\alpha}(r) = \prod_{j=0}^{n} \Delta^{\alpha_j}(r).$$

Clearly, we have a morphism

$$U_{\alpha}(r, V) \to \Delta^{\alpha}(r) \times V.$$

If $\alpha, \beta \in D$ and $\alpha \subseteq \beta$, we write

$$\pi_{\alpha\beta}: \Delta^{\beta}(r) \times V \to \Delta^{\alpha}(r) \times V$$

for the canonical projection.

Consider the Abelian category $\mathcal{A}(r, V)$ consisting of coherent $\mathcal{O}_{\Delta^{\alpha}(r) \times V}$ -modules \mathcal{G}_{α} for all $\alpha \in D$ and compatible transition morphisms $\varphi_{\beta\alpha} : \mathcal{G}_{\alpha} \to \pi_{\alpha\beta*}\mathcal{G}_{\beta}$ whenever $\alpha, \beta \in D$ with $\alpha \subseteq \beta$. We will omit $\varphi_{\beta\alpha}$ from our notations if there is no risk of confusion.

Observe that we have an obvious element $j_*\mathcal{F} \in \mathcal{A}(r, V)$ associated with \mathcal{F} whose components are just the pushforwards of the restrictions of \mathcal{F} .

An object $\mathcal{G} = (\mathcal{G}_{\alpha})_{\alpha \in D} \in \mathcal{A}(r, V)$ is free if each \mathcal{G}_{α} is free of finite rank for all $\alpha \in D$.

Given such an object $\mathcal{G} = (\mathcal{G}_{\alpha})_{\alpha \in D} \in \mathcal{A}(r, V)$ and $n \in \mathbb{N}$, we define

$$\check{C}^n(r, V, \mathcal{G}) := \prod_{\alpha \in D_n} H^0(\Delta^\alpha(r) \times V, \mathcal{G}_\alpha),$$

which is an $H^0(V, \mathcal{O}_Y)$ -module. We have an obvious differential

$$\delta : \check{C}^n(r, V, \mathcal{G}) \to \check{C}^{n+1}(r, V, \mathcal{G})$$

sending $(\xi_{\alpha})_{\alpha \in D_n}$ to $\delta \xi$ with

$$(\delta\xi)_{\beta} = \sum_{i=0}^{n+1} (-1)^i \varphi_{\beta\beta_i}(\xi_{\beta_i}).$$

Suppose that we are given $\mathcal{G} = (\mathcal{G}_{\alpha}, \varphi_{\beta\alpha}) \in \mathcal{A}(r, V)$ and $\epsilon_{\alpha} : S_{\alpha} \to \mathcal{G}_{\alpha}$ for each $\alpha \in D$, where S_{α} is a free $\mathcal{O}_{\Delta^{\alpha}(r) \times V}$ -module of finite rank. Then we claim that there is a free system $\mathcal{R} = (\mathcal{R}_{\alpha}, \psi_{\beta\alpha}) \in \mathcal{A}(r, V)$ and a morphism $\theta : \mathcal{R} \to \mathcal{G}$ so that

$$\operatorname{Im} \theta_{\alpha} \supseteq \operatorname{Im} \epsilon_{\alpha}$$

for all $\alpha \in \Delta$.

To prove this claim, for each $\gamma \in D$, we define $\mathcal{R}^{\gamma} = (\mathcal{R}^{\gamma}_{\alpha}, \varphi^{\gamma}_{\beta\alpha}) \in \mathcal{A}(r, V)$ as follows:

$$\mathcal{R}^{\gamma}_{\alpha} = \{0, \text{ if } \gamma \not\subseteq \alpha; \pi^*_{\gamma\alpha} \mathcal{S}_{\gamma}, \text{ otherwise.}$$

We have an obvious morphism $\mathcal{R}^{\gamma} \to \mathcal{G}$. We define \mathcal{R} as the componentwise direct sum of \mathcal{R}^{γ} for all $\gamma \in \Delta$. Then the natural morphism $\mathcal{R} \to \mathcal{G}$ satisfies our requirements.

As a consequence, for any relative compact Stein open subset $V' \subseteq V_*$ and $r' \in [r_*, 1)$, we can find a free resolution of $j_*\mathcal{F}$ in $\mathcal{A}(r', V')$.

Take $r_{**} \in (r_*, 1)$. After possibly shrinking V_* , we may assume that we have a free resolution of $j_*\mathcal{F}$ in $\mathcal{A}(r_{**}, V_*)$:

$$\cdots \rightarrow \mathcal{R}^2 \rightarrow \mathcal{R}^1 \rightarrow \mathcal{R}^0 \rightarrow j_* \mathcal{F} \rightarrow 0.$$

For any open subset $V \subseteq V_*$, $r \in [r_*, r_**]$, we consider the double complex $(\check{C}^l(r, V; \mathcal{R}^k))_{l,k}$. Let $\check{C}^{\bullet}(r, V)$ be the associated complex. For each $n \in \mathbb{N}$, we regard $V \mapsto \check{C}^n(r, V)$ as an \mathcal{O}_{V^*} -module, which is denoted by $\check{C}^n(r)$. Observe that $\check{C}^n(r) = 0$ if $n > k_*$. We have a natural morphism of complexes

$$\check{C}(r) \to \check{C}(r, j_*\mathcal{F}).$$

We claim that this morphism is a quasi-isomorphism. To see this, let V be a Stein open subset of V_* , we need to show that

$$\check{C}(r,V) \to \check{C}(r,V,j_*\mathcal{F})$$

is an isomorphism. This follows immediately from Cartan's Theorem B. In particular,

$$(R^q f_* \mathcal{F})|_{V_*} \cong H^q(\check{C}(r))$$

for all $q \in \mathbb{N}$.

Step 2. The induction scheme.

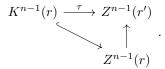
We take r_*, r_{**}, V_* as in Step 1. Fix $r \in [r_*, r_{**}]$. Fix a compact subset Q_* of V_* .

For any $n \in \mathbb{Z}$, $n \in [-1, k_*]$, consider the assertion A(n): there is a Stein open subset V_n of V_* such that $Q_* \subseteq V_n$ and a number $r_n \in (r_*, r_{**}]$, a complex \mathcal{L}^{\bullet} of free \mathcal{O}_{U_n} -modules of finite rank whose non-zero terms are in degree $[n, k_*]$, and an n-quasi-isomorphism of complexes $\sigma : \mathcal{L}^{\bullet} \to \check{C}(r_n)$.

We will by abuse of languages, denote the composition $\mathcal{L}^{\bullet} \to \check{C}(r_n) \to \check{C}(r)$ by σ as well for any $r \in [r_*, r_n]$. Clearly, this does not affect the validity of A(n).

Write $K^{\bullet}(r)$ for the mapping cone of $\mathcal{L}^{\bullet} \to \check{C}(r)$. For each open subset $V \subseteq V_n$, we write $K^m(r, V) = H^0(V, K^m(r))$. We write $Z^{n-1}(r)$ and $Z^{n-1}(r, V)$ for the kernels of $K^{n-1}(r) \to K^n(r)$ and $K^{n-1}(r, V) \to K^n(r, V)$ respectively.

We consider the assertion B(n-1): under the hypothesis of A(n), for any Stein open set $V' \in V_n$ and any pair of real numbers $r < r', r, r' \in [r_*, r_n]$, there is a continuous morphism of $\mathcal{O}_{V'}$ -modules $\tau : K^{n-1}(r) \to Z^{n-1}(r')$ such that the following diagram commutes:



We will prove $A(n) + B(n) \implies B(n-1)$ and $A(n) + B(n-1) \implies A(n-1)$ in Step 3.

Here we make some preparations.

Let V be an open subset of V_* and $g \in H^0(\Delta^m(r) \times V, \mathcal{O}_{\Delta^m(r) \times V})$. We expand

$$g = \sum_{\alpha \in \mathbb{N}^m} a_{\alpha} z^{\alpha}, \quad a_{\alpha} \in H^0(V, \mathcal{O}_V).$$

For each compact subset $Q \subseteq V$ and $\rho \in (0, r)$, we write

$$||g||_{\rho Q} := \sum_{\alpha \in \mathbb{N}^m} ||a_\alpha||_{L^{\infty}(Q)} \rho^{|\alpha|}$$

The families $\|\bullet\|_{\rho Q}$ for various ρ and Q defines the Fréchet topology on $H^0(\Delta^m(r) \times V, \mathcal{O}_{\Delta^m(r) \times V})$. When $\rho = r$ and Q = V, the same definition applies, and we get a semi-norm.

Observe that if 0 < r' < r'' < r, then for any $g \in H^0(\Delta^m(r) \times V, \mathcal{O}_{\Delta^m(r) \times V})$, we can uniquely expand it as

$$g = \sum_{\alpha \in \mathbb{N}^m} a_\alpha (z/r'')^\alpha$$

with $||a_{\alpha}||_{L^{\infty}(Q)} \leq ||g||_{r''Q}$ for any compact subset $Q \subseteq V$. Moreover, $\sum_{\alpha \in \mathbb{N}} ||(t/r'')^{\alpha}||_{r'V} < \infty$.

Consider a finite number of disks $\Delta^{k_1}(r), \ldots, \Delta^{k_m}(r)$, we write

$$K(r,V) := \prod_{j=1}^{m} H^0(\Delta^{k_j}(r) \times V, \mathcal{O}_{\Delta^{k_j}(r) \times V}).$$

For $f = (f_j) \in K(r, V)$, we let

$$||f||_{\rho Q} := \max_{j=1,\dots,m} ||f_j||_{\rho Q}$$

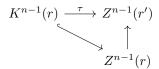
for each $\rho \in (0, r)$ and a compact set $Q \subseteq V$. We then conclude the following: if 0 < r' < r'' < r. Then there is a countable family $(e_i)_{i \in I}$ with the following properties: for any open subset $V' \subseteq V$, any $f \in K(r, V')$ can be uniquely expanded into

$$f = \sum_{i \in I} a_i e_i$$

with $a_i \in H^0(V', \mathcal{O}_V)$ and $||a_i||_{L^{\infty}(Q)} \leq ||f||_{r''Q}$ for any compact set $Q \subseteq V'$. Moreover,

$$\sum_{i\in I} \|e_i\|_{r'V} < \infty.$$

We consider another assertion C(n) again under the assumption of A(n): For any Stein open $V' \Subset V_{n+1}$ and any pair $r, r' \in [r_*, r_{n+1}]$ with r' < r, there is a continuous $\mathcal{O}_{V'}$ -module $\tau : K^n(r) \to Z^n(r')$ such that the following diagram commutes:



and there is a countable family $(e_i)_{i\in I}$ of elements in $K^n(r,V')$ and $\tilde{r}\in (r',r)$ such that

(1) for any open subset $V'' \subseteq V',$ any $r \in K^n(r,V'')$ can be uniquely expanded into

$$f = \sum_{i \in I} a_i e_i$$

with $a_i \in H^0(V'', \mathcal{O}_{V'})$ and $||a_i||_Q \le ||f||_{\tilde{r}Q}$ for any compact set $Q \subseteq V''$; (2)

$$\sum_{i\in I} \|\tau e_i\|_{r'V'} < \infty.$$

We observe that $A(n+1) + B(n) \implies C(n)$. In fact, choose a Stein open \tilde{V} so that $V' \in \tilde{V} \in V_{n+1}$ and real numbers \tilde{r}, ρ, ρ' so that $r' < \rho' < \rho < \tilde{r} < r$. By B(n), we find $\tilde{\tau} : K^n(\rho) \to Z^n(\rho')$ over \tilde{V} . Consider the commutative diagram

$$\begin{array}{cccc} K^{n}(r) & \longrightarrow & K^{n}(\rho) & \stackrel{\tilde{\tau}}{\longrightarrow} & Z^{n}(\rho') & \longrightarrow & Z^{n}(r') \\ \uparrow & & \uparrow & & & \\ Z^{n}(r) & \longrightarrow & Z^{n}(\rho) & & & \end{array} .$$

We claim that $\tau : K^n(r) \to Z^n(r')$ has the required properties. W ehave already shown the first condition. The second condition follows from the fact that $\tilde{\tau}$ is bounded.

Step 3. We prove the induction steps.

Step 3.1. We show that $A(n) + B(n) \implies B(n-1)$.

Let r' < r be real numbers in $[r_*, r_n]$. Let V' be a realtive compact Stein open subset of V_n . Choose a real number $r'' \in (r', r)$ and a Stein open set V'' such that

$$V' \Subset V'' \Subset V_n$$

Let $\tau: K^n(r) \to Z^n(r'')$ and $(e_i \in K^n(r, V''))_{i \in I}$ be obtained by C(n). We have

$$\sum_{i\in I} \|\tau e_i\|_{r''V''} < \infty.$$

By A(n), the map $\delta : K^{n-1}(r'', V'') \to Z^n(r'', V'')$ is continuous and surjective and hence open by Banach's open mapping theorem. We can find M > 0 and $\xi_i \in K^{n-1}(r'', V'')$ with $\delta \xi_i = \tau e_i$ and $\|\xi_i\|_{r'V'} \leq M \|\tau e_i\|_{r''V''}$. We find that

$$\sum_{i\in I} \|\xi_i\|_{r'V'} < \infty.$$

We have a continuous $\mathcal{O}_{V'}$ -morphism

$$h: K^n(r) \to K^{n-1}(r'), \quad \sum_{i \in I} a_i e_i \mapsto \sum_{i \in I} a_i \xi_i$$

making the following diagram commutative:

$$\begin{array}{cccc}
K^n(r) &\longleftarrow & Z^n(r) \\
\downarrow^h & \downarrow \\
K^{n-1}(r') &\stackrel{\delta}{\longrightarrow} & Z^n(r')
\end{array}$$

Now $\tau := \beta - h\delta : K^{n-1}(r) \to Z^{n-1}(r')$ satisfies B(n-1), where $\beta : K^{n-1}(r) \to K^{n-1}(r')$ is the composition of h with $K^{n-1}(r) \to K^n(r)$.

Step 3.2, We show that $A(n) + B(n-1) \implies A(n-1)$.

Let V_{n-1} be a Stein open subset of V_* so that

$$Q_* \subseteq V_{n-1} \Subset V_n.$$

Let $r_{n-1} \in (r_*, r_n)$. By A(n), for any $\rho \in [r_{n-1}, r_n]$, we have a commutative diagram

$$\begin{array}{ccc} \mathcal{L}^n & \stackrel{\alpha^n}{\longrightarrow} \mathcal{L}^{n+1} & \longrightarrow & \cdots \\ & \downarrow^{\sigma^n} & \downarrow & & & \cdot \\ & \cdots & \longrightarrow \check{C}^{n-1}(\rho) & \longrightarrow \check{C}^n(\rho) & \longrightarrow \check{C}^{n+1}(\rho) & \longrightarrow & \cdots \end{array}$$

For each Stein open set $V \subseteq V_n$, we have an epimorphism $H^0(V, \ker \alpha^n) \to H^n(\check{C}(\rho, V))$. Over V_{n-1} , we need to find a free sheaf of finite rank \mathcal{L}^{n-1} and morphisms $\alpha^{n-1} : \mathcal{L}^{n-1} \to \mathcal{L}^n$ and $\sigma^{n-1} : \mathcal{L}^{n-1} \to \check{C}^{n-1}(r_{n-1})$ so that

- (1) $\alpha^n \alpha^{n-1} = 0, \ \sigma^n \alpha^{n-1} = \delta \sigma^{n-1};$
- (2) for any Stein open $V \subseteq V_{n-1}$, the induced morphism

$$H^0(V, \ker \alpha^n / \operatorname{Im} \alpha^{n-1}) \to H^n(\check{C}(r_{n-1}, V))$$

is an isomorphism and

$$H^0(C, \ker \alpha^{n-1}) \to H^{n-1}(\check{C}(r_{n-1}, V))$$

is an epimorphism.

It is sufficient to construct \mathcal{L}^{n-1} and a morphism $\mathcal{L}^{n-1} \to Z^{n-1}(r_{n-1})$ such that for each Stein open subset $V \subseteq V_{n-1}$, the sum of the image of ω and the image of $\delta : \check{C}(r_{n-1}, V) \to \check{Z}(r_{n-1}, V)$ is $\check{Z}(r_{n-1}, V)$.

Let $r' \in (r_{n-1}, r_n)$. For any Stein open $V \subseteq V_n$, the restriction $\check{C}(r_n, V) \to \check{C}(r', V)$ is a quasi-isomorphism. Therefore, the sum of the images of $\check{Z}^{n-1}(r_n, V) \to \check{Z}^{n-1}(r', V)$ and $\check{C}^{n-1}(r', V) \to \check{Z}^{n-1}(r', V)$ is $\check{Z}^{n-1}(r', V)$.

Consider a Stein open set V' of V_* so that

$$V_{n-1} \Subset V' \Subset V_n$$

and $r \in (r', r_n)$. By C(n-1), we find a projection $\tau : K^{n-1}(r) \to Z^{n-1}(r')$ over V', a family $(e_i)_{i \in I}$ of elements in $K^{n-1}(r, V')$ and a real number $\tilde{r} \in (r', r)$ such that C(n-1)(1) holds and

$$\sum_{i\in I} \|\tau e_i\|_{r'V'} < \infty$$

 \mathbf{As}

$$\operatorname{Im}(K^{n-1}(r_n) \xrightarrow{\beta} K^{n-1}(r) \xrightarrow{\tau} Z^{n-1}(r)) \supseteq \operatorname{Im}(Z^{n-1}(r_n) \xrightarrow{Z} (r')),$$

it follows that the sum of the images of $K^{n-1}(r_n, V') \xrightarrow{\tau\beta} \check{Z}^{n-1}(r', V')$ and $\check{C}^{n-2}(r', V') \to \check{Z}^{n-1}(r', V')$ is $\check{Z}^{n-1}(r', V')$. By open mapping theorem, we can find M > 0, $\xi_i \in K^{n-1}(r_n, V')$ and $\eta_i \in \check{C}^{n-2}(r', V')$ so that

$$\tau\xi_i + \partial\eta_i = \tau e_i$$

and

$$\max\left\{\|\xi_i\|_{rV_{n-1}}, \|\eta_i\|_{r_{n-1}V_{n-1}}\right\} \le M \|\tau e_i\|_{r'V'}$$

for each $i \in I$. It follows that

$$\sum_{i\in I} \|\xi_i\|_{rV_{n-1}} < \infty$$

and

$$\sum_{i \in I} \|\eta_i\|_{r_{n-1}V_{n-1}} =: M_1 < \infty.$$

Take a finite subset $J \subseteq I$ such that

$$\sum_{i \in I \setminus J} \|\eta_i\|_{r_{n-1}V_{n-1}} < 1/2.$$

We define $\mathcal{L}^{n-1} = \mathcal{O}^J_{V_{n-1}}$ and $\omega : \mathcal{L}^{n-1} \to \check{Z}^{n-1}(r_{n-1})$ is the morphism sending the canonical generators $(g_j)_{j\in J}$ of \mathcal{L}^{n-1} to $(\beta'\tau\beta\xi_j)_{j\in J}$, where $\beta' : \check{Z}^{n-1}(r') \to \check{Z}^{n-1}(r_{n-1})$ is the restriction map. We need to verify that the map ω satisfies our required properties.

We first show the following: for any open set $V \subseteq V_{n-1}$ and any element $f \in K^{n-1}(r, V)$, there are elements $f_1 \in K^{n-1}(r, V)$, $g \in H^0(V, \mathcal{L}^{n-1})$ and $\eta \in \tilde{C}^{n-1}(r_{n-1}, V)$ such that

$$\beta' \tau(f) = \omega(g) + \delta \eta + \beta' \tau(f_1)$$

and

$$||f_1||_{rQ} \le 2^{-1} ||f||_{\tilde{r}Q}, \quad ||g||_Q \le ||f||_{\tilde{r}Q}, \quad ||\eta||_{r_{n-1}Q} \le M_1 ||f||_{\tilde{r}Q}$$

for any compact subset $Q \subseteq V$.

In fact, expand f as

$$f = \sum_{i \in I} a_i e_i$$

with $a_i \in H^0(Vm\mathcal{O}_V)$ and $||a_1||_Q \leq ||f||_{\tilde{r}Q}$ for any compact subset $Q \subseteq V$. We let $f_1 = \sum_{i \in I \setminus J} a_i \xi_i, g = \sum_{i \in J} a_i g_i$ and $\eta = \sum_{i \in I} a_i \eta_i$, then

$$\|f_1\|_{rQ} \le \sum_{i \in I \setminus J} \|a_i\|_Q \cdot \|\xi_i\|_{rQ} \le \|f\|_{\tilde{r}Q} \sum_{i \in I \setminus J} \|\xi_i\|_{rQ} \le 2^{-1} \|f\|_{\tilde{r}Q}$$

and

$$\|g\|_Q = \max_{i \in J} \|a_i\|_Q \le \|f\|_{\tilde{r}Q}, \quad \|\eta\|_{r_{n-1}Q} \le \sum_{i \in I} \|a_i\|_Q \cdot \|\eta_i\|_{r_{n-1}Q} \le M_1 \|f\|_{\tilde{r}Q}.$$

Our claim follows.

Finally, let us vefity that ω satisfies the desired properties. Let V be a Stein open subset of V_{n-1} and $f \in K^{n-1}(r, V)$. By iterating the claim, we find $g \in H^0(V, \mathcal{L}^{n-1})$ and $\eta \in \check{C}^{n-2}(r_{n-1}, V)$ so that

$$\beta'\tau(f) = \omega(g) + \partial\eta.$$

As $\check{C}(r, V) \to \check{C}(r_{n-1}, V)$ is a quasi-isomorphism, we find that

$$\check{Z}^{n-1}(r,V) \oplus \check{C}^{n-2}(r_{n-1},V) \to \check{Z}^{n-1}(r_{n-1},V)$$

is surjective. It follows that

$$H^0(V,\mathcal{L}^{n-1}) \oplus \check{C}^{n-1}(r_{n-1},V) \xrightarrow{\omega \oplus \delta} \check{Z}^{n-1}(r_{n-1},V)$$

is surjective. So A(n-1) holds.

Step 4. From A(-1), we have a complex of locally free \mathcal{O}_V -modules for some open neighbourhood V of y_0 in Y and a complex

$$0 \to \mathcal{L}^{-1} \to \mathcal{L}^0 \to \dots \to \mathcal{L}^{k_*} \to 0$$

such that

$$H^q(\mathcal{L}^{\bullet}) \cong (R^q f_* \mathcal{F})|_V$$

for each $q \in \mathbb{N}$. It follows that $R^q f_* \mathcal{F}$ is coherent.

Corollary 12.2 (Cartan–Serre). Let X be a compact complex analytic space and \mathcal{F} be a coherent \mathcal{O}_X -module. Then $\dim_{\mathbb{C}} H^n(X, \mathcal{F}) < \infty$ for each $n \in \mathbb{N}$.

PROOF. This follows immediately from Theorem 12.1 with $Y = \mathbb{C}^0$.

Corollary 12.3. Let $f : X \to Y$ be a proper morphism. Assume that Z is an analytic set in X, then f(Z) is an analytic set in Y.

PROOF. We may assume that Z = X. Then $f(X) = \text{Supp } f_*\mathcal{O}_X$. But $f_*\mathcal{O}_X$ is coherent by Theorem 12.1, so f(X) is an analytic set in Y.

Corollary 12.4 (Generic flatness). Let $f : X \to Y$ be a proper morphism of complex analytic space and \mathcal{F} be a coherent \mathcal{O}_X -module. Assume that Y is reduced. Then the image of the non-flat locus of \mathcal{F} in Y is a nowhere dense analytic subset.

PROOF. The problem is local on Y, we may assume that Y is a complex model space. In particular, Y has countable basis. After further shrinking Y, we may assume that X is covered by finitely many relative charts. In particular, X has countable basis. The image of the flat locus of \mathcal{F} in Y is an analytic set by Corollary 12.3 and Theorem 11.11. It is nowhere dense by Theorem 11.13 and the fact that Y is a Baire space.

Bibliography

- [Fis76] G. Fischer. Complex analytic geometry. Lecture Notes in Mathematics, Vol. 538. Springer-Verlag, Berlin-New York, 1976, pp. vii+201.
- [Fri67] J. Frisch. Points de platitude d'un morphisme d'espaces analytiques complexes. Invent. Math. 4 (1967), pp. 118–138. URL: https://doi.org/10. 1007/BF01425245.
- [GR77] H. Grauert and R. Remmert. Theorie der Steinschen Räume. Vol. 227. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin-New York, 1977, pp. xx+249.
- [Gra55] H. Grauert. Charakterisierung der holomorph vollständigen komplexen Räume. Math. Ann. 129 (1955), pp. 233–259. URL: https://doi.org/10. 1007/BF01362369.
- [Gra60] H. Grauert. Ein Theorem der analytischen Garbentheorie und die Modulräume komplexer Strukturen. Inst. Hautes Études Sci. Publ. Math. 5 (1960), p. 64. URL: http://www.numdam.org/item?id=PMIHES_1960_ _5__64_0.
- [Jur59] M. Jurchescu. On a theorem of Stoilow. Math. Ann. 138 (1959), pp. 332– 334. URL: https://doi.org/10.1007/BF01344153.
- [Kie67] R. Kiehl. Note zu der Arbeit von J. Frisch: "Points de platitude d'un morphisme d'espaces analytiques complexes". *Invent. Math.* 4 (1967), pp. 139–141. URL: https://doi.org/10.1007/BF01425246.
- [Nar62] R. Narasimhan. A note on Stein spaces and their normalisations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 16 (1962), pp. 327–333.
- [Stacks] T. Stacks Project Authors. Stacks Project. http://stacks.math. columbia.edu. 2020.