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Global properties of complex analytic spaces

1. Introduction

2. Topological properties of complex analytic spaces

Proposition 2.1. Let X be a Hausdorff complex analytic space. Then the following
are equivalent:

(1) X is paracompact;
(2) Each connected component of X is σ-compact;
(3) Each connected component of X is Lindelöf;
(4) X admits a compact exhaustion.

Proof. (1)⇔ (2): This follows from Proposition 3.2 in Topology and bornology.
(2) ⇔ (3): This follows from Proposition 5.2 in Topology and bornology.
(3) ⇔ (4): This follows from Proposition 5.2 in Topology and bornology. �

Lemma 2.2. Let f : X → Y be a proper surjective morphism of complex analytic
spaces. Then the following are equivalent:

(1) X is paracompact and Hausdorff;
(2) Y is paracompact and Hausdorff.

Proof. (1) =⇒ (2): This follows from Theorem 3.3 in Topology and bornol-
ogy.

(2) =⇒ (1): We may assume that Y is connected. Then X is Hausdorff as f is
separated. By Proposition 2.1, Y is σ-compact. It follows that X is also σ-compact.
In particular, each connected component of X is also σ-compact. In particular, X
is paracompact. �

3. Holomorphically convex hulls

Definition 3.1. Let X be a complex analytic space and M be a subset of X, we
define the holomorphically convex hull of M in X as

M̂X :=
{
x ∈ X : |f(x)| ≤ sup

y∈M
|f(y)| for all f ∈ OX(X)

}
.

Proposition 3.2. Let X be a complex analytic space and M be a subset of X.
Then the following properties hold:

(1) M̂X is closed in X;

(2) M ⊆ M̂X and ̂̂MX
X

= M̂X ;
(3) If M ′ is another subset of X containing M , then M̂X ⊆ M̂ ′

X
;

(4) If f : Y → X is a morphism of complex analytic spaces, then

̂f−1(M)
Y
⊆ f−1(M̂X);
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(5) If X ′ is another complex analytic space and M ′ is a subset of X ′, then

M̂ ×M ′
X×X′

⊆ M̂X × M̂ ′
X′

;

(6) If M ′ is another subset of X and M̂X = M , M̂ ′
X

= M ′, then

M̂ ∩M ′
X

= M ∩M ′.

Proof. (1), (2), (3), (4), (5) are obvious by definition.
(6) is a consequence of (3). �

Example 3.3. Let Q be a compact cube in Cn for some n ∈ N, then Q̂Cn = Q.
In fact, by Proposition 3.2(5), we may assume that n = 1. Given p ∈ C \ Q,

we can take a closed disk T ⊆ C centered at a ∈ C such that Q ⊆ T while p 6∈ T .
Consider z − a ∈ OC(C), then

|f(p)| > sup
q∈Q
|f(q)|.

So p 6∈ Q̂C.

4. Stones

Definition 4.1. Let X be a complex analytic space. A stone in X is a pair (P, π)
consisting of

(1) a non-empty compact set P in X and
(2) a morphism π : X → Cn for some n ∈ N

such that there is a compact tube Q in Cn and an open set W in X such that
P = π−1(Q) ∩W .

We call P 0 := π−1(IntQ)∩W the analytic interior of the stone (P, π). It clearly
does not depend on the choice of W .

We observe that P̂X ∩W = P . In fact, P ⊆ π−1(Q), so

P̂X ⊆ π−1(Q̂Cn) = π−1(Q) = P ∩W = P.

Here we applied Proposition 3.2 and Example 3.3.
In general, P 0 ⊆ IntP , but they can be different.

Theorem 4.2. Let X be a Hausdorff complex analytic space and K ⊆ X be a
compact subset. Then the following are equivalent:

(1) There is an open neighbourhood W of K in X such that K̂X ∩ W is
compact;

(2) There is an open relative compact neighbourhood W of K in X such that
∂W ∩ K̂ = ∅;

(3) There is a stone (P, π) in X with K ⊆ P 0.

Proof. (1) =⇒ (2): This is trivial, in fact, we may assume that W in (1) is
relatively compact in X.

(2) =⇒ (3): As K̂X is closed by Proposition 3.2(1) and ∂W ∩ K̂X = ∅, given
p ∈ ∂W , we can find h ∈ OX(X) such that

sup
x∈K
|h(x)| < 1 < |h(p)|.
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We will denote the left-hand side by |h|K . Up to raising h to a power, we may
assume that

max{|Reh(p)|, | Im h(p)|} > 1.
As ∂W is compact, we can find finitely many sections h1, . . . , hm ∈ OX(X) so that

max
j=1,...,m

{|Rehj |K , | Im hj |K} < 1, max
j=1,...,m

{|Rehj(p)|, | Im hj(p)|} > 1.

Let
Q := {(z1, . . . , zm) ∈ Cm : |Re zi| ≤ 1, | Im zi| ≤ 1 for all i = 1, . . . ,m} .

The sections h1, . . . , hm defines a homomorphism π : X → Cm by Theorem 4.2 in
The notion of complex analytic spaces. Obviously, P = π−1(Q) ∩W satisfies our
assumptions.

(3) =⇒ (1): Let W be the open set as in Definition 4.1. As P̂X ∩W = P and
K ⊆ P , we have

K̂ ∩W ⊆ P ∩W = P.

As P is compact, so is K̂ ∩W . �

Theorem 4.3. Let X be a Hausdorff complex analytic space and (P, π : X → Cn)
be a stone in X. Let Q be the tube in Cm as in Definition 4.1. Then there are open
neighbourhoods U and V of P and Q in X and Cn respectively with π(U) ⊆ V and
P = π−1(Q) ∩ U such that π|U : U → V is proper.

Proof. Let W ⊆ X be the open set as in Definition 4.1. We may assume that
W is relatively compact. Then ∂W and π(∂W ) are also compact. As ∂W ∩ π−1(Q)
is empty, we know that V := Cn \ π(∂W ) is an open neighbourhood of Q. The set
U := W ∩ π−1(V ) = W \ π−1(π(∂W )) is open in X and π(U) ⊆ V . Observe that
π|U : U → V is proper by Lemma 4.6 in Topology and bornology.

Furthermore,
π−1(Q) ∩ U = π−1(Q) ∩

(
W \

(
π−1(Q) ∩ π−1π(∂W )

))
.

But π−1Q ∩ π−1π(∂W ) is empty as Q ∩ π(∂W ) is. It follows that π−1(Q) ∩ U = P
and hence U is a neighbourhood of P . �

Definition 4.4. Let X be a complex analytic space. Let (P, π : X → Cn),
(P ′, π′ : X → Cn′) be two stones on X. We say (P, π) is contained in (P ′, π′) if the
following conditions are satisfied:

(1) P lies in the analytic interior of P ′;
(2) n′ ≥ n and there is q ∈ Cn′−n such that if Q ⊆ Cn, Q′ ⊆ Cn′ be the tubes

as in Definition 4.1, then
Q× {q} ⊆ Q′.

(3) There is a morphism ϕ : X → Cn′−n such that
π′ = (π, ϕ).

We formally write (P, π) ⊆ (P ′, π′) in this case. Clearly, this defines a partial order
on the set of stones on X.

Definition 4.5. Let X be a complex analytic space. An exhaustion of X by stones
is a sequence (Pi, πi)i∈Z>0 of stones such that

(1) (Pi, πi) ⊆ (Pi+1, πi+1) for all i ∈ Z>0;
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(2)

X =
∞⋃
i=1

P 0
i .

We say X is weakly holomorphically convex if it there is an exhaustion of X by
stones.

Theorem 4.6. Let X be a Hausdorff complex analytic space. Consider the following
conditions:

(1) X is weakly holomorphically convex;
(2) For any compact subset K ⊆ X, there is an open set W ⊆ X such that

K̂X ∩W is compact.
Then (1) =⇒ (2). If X is paracompact, then (2) =⇒ (1).

Proof. (1) =⇒ (2): It suffices to observe that K ⊆ P 0
j when j is large enough

and apply Theorem 4.2.
Assume that X is paracompact. (2) =⇒ (1): Let (Ki) a compact exhaustion

of X. We construcct the stones (Pi, πi)i∈Z>0 so that
Ki ⊆ P 0

i

for all i ∈ Z>0 inductively. Let P1 be an arbitrary stone in X such that K1 ⊆ P 0
1 .

The existence of P1 is guaranteed by Theorem 4.2.
Assume that we have constructed (Pi−1, πi−1 : X → Cni−1) for i ≥ 2. Let

Qi−1 ⊆ Cni−1 be the associated tube. By Theorem 4.2 again, take a stone (Pi, π∗i :
X → Cn) with Ki ∪ Pi−1 ⊆ P 0

i . Let Q∗i ⊆ Cn be the associated tube. Let W be an
open subset of X with

Pi = π∗,−1
i (Q∗i ) ∩W.

Choose a tube Q′i ⊆ Cni−1 with Qi−1 ⊆ IntQ′i so that
πi−1(Pi) ⊆ IntQ′i.

Let πi := (πi−1, π
∗
i ) : X → Cni−1+n and Qi := Q′i × Q∗i . Then (Pi, πi) is a stone

and (Pi−1, πi−1) ⊆ (Pi, πi). �

5. Holomorphical separable spaces

Definition 5.1. Let X be a complex analytic space. We say X is holomorphically
separable if for any x, y ∈ X with x 6= y, there is f ∈ OX(X) with f(x) 6= f(y).

Here we regard f as a continuous function X → C. In particular, a holomorphi-
cally separable space is Hausdorff.

Definition 5.2. Let X be a complex analytic space. We say X is holomorphically
convex if |X| is Hausdorff and for any compact set K ⊆ X, K̂X .

We say X is weakly holomorphically convex if for any quasi-compact set K ⊆ X,
the connected components of K̂X are all quasi-compact.

Proposition 5.3. Let X be a holomorphically convex complex analytic space.
Then Xred is holomorphically convex.

Proof. This follows immediately from the definition. �

Proposition 5.4. Let X be a Hausdorff complex analytic space. Consider the
following conditions:
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(1) X is holomorphically convex;
(2) For any sequence xi ∈ X (i ∈ Z>0) without accumulation points, there is

f ∈ OX(X) such that |f(xi)| is unbounded.
Then (2) =⇒ (1) if X is paracompact.

Proof. (2) =⇒ (1): By Proposition 2.1, each connected component of
X is Lindelöf. For a Lindelöf Hausdorff space, sequential compactness implies
compactness.

�

Corollary 5.5. Let n ∈ N and Ω be a domain in Cn. Assume that for each p ∈ ∂Ω,
there is a holomorphic function f on an open neighbourhood U of Ω̄ such that
f(p) = 0 and f is non-zero on Ω. Then Ω is holomorphically convex.

Proof. Let xi ∈ Ω (i ∈ Z>0) be a sequence without accumulation points in
Ω. We need to construct f ∈ OΩ(Ω) such that (|f(xi)|)i∈Z>0 is unbounded. This
is clear if xi itself is unbounded. Assume that xi is bounded. Then up to passing
to a subsequence, we may assume that xi → p ∈ ∂Ω as i→∞. The inverse of the
function f in our assumption of the corollary works. �

6. Stein sets

Definition 6.1. Let X be a complex analytic space and P be a closed subset of
X. We say P is a Stein set in X if for any coherent OU -module F for some open
neighbourhood U of P in X, we have

Hi(P,F) = 0 for all i ∈ Z>0.

A coherent OP -module is a coherent OU -module for some open neighbourhood
U of P in X. Two coherent OP -modules are isomorphic if there is a small enough
open neighbourhood V of P in X such that they are isomorphic when restricted to
V . In particular, OP denotes the coherent OP -module defined by OX on X.

The germ-wise notions obviously make sense for coherent OP -modules.

The given condition is usually known as Cartan’s Theorem B. It implies Cartan’s
Theorem A:

Theorem 6.2 (Cartan’s Theorem A). Let X be a complex analytic space and P
be a Stein set in X. Let F be a coherent OU -module for some open neighbourhood
U of P in X. Then H0(P,F) generates Fx for each x ∈ P .

Proof. Fix x ∈ P . Let M be the coherent ideal sheaf on U consisting of
holomorphic functions vanishing at x. Then FM is a coherent OU -module. It
follows from Theorem B that

H0(P,F)→ H0(P,F/FM)

is surjective. Note that we can identify this map with the natural map

H0(P,F)→ Fx/mxFx.

Let e1, . . . , em be a basis of Fx/mxFx. Lift them to s1, . . . , sm ∈ H0(P,F). By
Nakayama’s lemma, s1x, . . . , smx generate the OX,x-module Fx. �
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Corollary 6.3. Let X be a complex analytic space and P be a quasi-compact
Stein set in X. Let F be a coherent OP -module. Then there is n ∈ Z>0 and an
epimorphism

OnP → F .

Proof. By Theorem 6.2, we can find an open covering {Ui}i∈I of P such that
there are homomorphisms

hi : OniP → F
for some ni ∈ Z>0, which is surjective on Ui for each i ∈ I. By the quasi-compactness
of P , we may assume that I is a finite set. Then it suffices to set n =

∑
i∈I ni and

consider the epimorphism OnP → F induced by the hi’s. �

Theorem 6.4. Let X be a complex analytic space and P ⊆ X be a set with the
following properties:

(1) there is an open neighbourhood U of P in X, a domain V in Cm for some
m ∈ N and a finite holomorphic morphism τ : U → V ;

(2) There exists a compact tube in Cm contained in V such that P = τ−1(Q).
Then P is a compact Stein set in X.

Proof. As P = τ−1(Q) and τ is proper, we see that P is compact.
It remains to show that P is a Stein set in X. Let F be a coherent OP -module.
Step 1. We first reduce to the case where F is defined by a coherent OU -module.
Take an open neighbourhood U ′ of P in X contained in U such that F is defined

by a coherent OU ′ -module. By Lemma 4.2 in Topology and bornology, we can take
an open neighbourhood V ′ of Q in V such that τ−1(V ′) ⊆ U ′. The restriction of τ
to τ−1(V ′)→ V ′ is again finite.

Step 2. By Leray spectral sequence,

Hi(P,F) ∼= Hi(Q, (τ |P )∗F)

for all i ≥ 0. By Corollary 4.9 in Morphisms between complex analytic spaces,
(τ |P )∗F is a coherent OQ-module, so we are reduced to show that Q is a Stein set
in Cm, which is well-known. �

Definition 6.5. Let X be a Hausdorff complex analytic space and F be a coherent
OX -module. A Stein exhaustion of X relative to F is a compact exhaustion (Pi)i∈Z>0

such that the following conditions are satisfied:
(1) Pi is a Stein set in X for each i ∈ Z>0;
(2) the C-vector space H0(Pi,F) admits a semi-norm | • |i such that the

restriction map
H0(X,F)→ H0(Pi,F)

has dense image with respect to the topological defined by | • |i for each
i ∈ Z>0;

(3) The restriction map

H0(Pi+1,F)→ H0(Pi,F)

is bounded for each i ∈ Z>0;
(4) Let i ∈ Z≥2. Suppose that (sj)j∈Z>0 is a Cauchy sequence in H0(Pi,F),

then the restricted sequence sj |Pi−1 has a limit in H0(Pi−1,F);
(5) Let i ∈ Z≥2. If s ∈ H0(Pi,F) and |s|i = 0, then s|Pi−1 = 0.
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A Stein exhaustion of X is a compact exhaustion of X that is a Stein exhaustion
of X relative to any coherent OX -module.

Theorem 6.6. Let X be a Hausdorff complex analytic space and F be a coherent
OX -module. Assume that (Pi)i∈Z>0 is a Stein exhaustion of X relative to F . Then

Hq(X,F) = 0 for any q ∈ Z>0.

Proof. When q ≥ 2, this follows from the general facts proved in Lemma 5.4
in Topology and bornology. We will assume that q = 1.

We may assume that X is connected. First observe that X is necessarily
paracompact. This follows from Proposition 3.2 in Topology and bornology. In
particular, we can take a flabby resolution

0→ F → G0 → G1 → · · · .
Taking global sections, we get a complex

0→ H0(X,F) i−→ H0(X,G0) d0−→ H0(X,G1) d1−→ H0(X,G2) d2−→ · · · .
We need to show that ker d1 = Im d0. Let α ∈ ker d1. We need to construct
β ∈ H0(X,G0) with d0β = α.

We take semi-norms |• |i on H0(Pi,F) for each i ∈ Z>0 satisfying the conditions
in Definition 6.5. We may furthermore assume that the restriction H0(Pi+1,F)→
H0(Pi,F) is a contraction for each i ∈ Z>0.

For each j ∈ Z≥2, we will construct βj ∈ H0(Pj ,G0) and δj ∈ H0(Pj−1,F) such
that

(1) (d0|Pj )βj = α|Pj ;
(2) (βj+1 + δj+1)|Pj−1 = (βj + δj)|Pj−1 .

It suffices to take β ∈ H0(X,G0) as the section defined by the βj + δj ’s.
We first construct βj . Choose a sequence β′j ∈ H0(Pj ,G0) with

(d0|Pj )β′j = α|Pj
for each j ∈ Z>0. This is possible because Pj is Stein. We define βj satisfying
Condition (1) for j ∈ Z>0 inductively. We begin with β1 = β′1. Assume that
β1, . . . , βj have been constructed. Let

γ′j := β′j+1|Pj − βj .
Then

(d0|Pj )γ′j = 0.
It follows that γ′j ∈ H0(Pj ,F). Take γj ∈ H0(X,F) with

|γ′j − γj |Pj |j ≤ 2−j .
Define

βj+1 = β′j+1 − γi|Pj+1 .

Then clearly βj+1 satisfies (1).
Next we construct the sequence δj .
We observe that for each j ∈ Z>0,∣∣βj+1|Pj − βj

∣∣
j
≤ 2−j .

Let
sjk := βj+k|Pj − βj ∈ H0(Pj ,F)
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for all j ∈ Z>0 and k ∈ N. By definition,
sjk − s

j+1
k−1|Pj = βj+1|Pj − βj

for all j ∈ Z>0 and k ∈ Z>0.
We claim that (sjk|Pj−1)k converges in H0(Pj−1,F) as k →∞. By our assump-

tion, it suffices to show that (sjk)k is a Cauchy sequence in H0(Pj ,F) for each
j ∈ Z>1. We first compute∣∣βj+l|Pj − βj+l−1|Pj

∣∣
j
≤
∣∣βj+l|Pj+l−1 − βj+l−1

∣∣
j+l−1 ≤ 21−j−l

for all l ∈ Z>0 and j ∈ Z>0. As a consequence for k′ > k ≥ 1, we have

|sjk − s
j
k′ |j ≤

k∑
l=k+1

21−j−l ≤ 21−j+k.

So we conclude our claim.
Let δj be the limit of sjk|Pj−1 as k →∞ for each j ∈ Z≥2. Then

lim
k→∞

(
sjk − s

j+1
k−1

)
|Pj−1 = (δj − δj+1) |Pj−1

for each j ∈ Z≥2. The desired identity is clear. �

7. Analytic blocks

Definition 7.1. Let X be a Hausdorff complex analytic space. A stone (P, π :
X → Cn) on X is an analytic block in X if there are open neighbourhoods U and
V of P and Q in X and Y respectively, where Q ⊆ Cn denotes the tube associated
with the stone, such that

(1) π(U) ⊆ V ;
(2) P = π−1(Q) ∩ U ;
(3) U → V induced by π is a finite morphism.

Recall that by Theorem 4.3, we can always assume that U → V is proper.

Proposition 7.2. Let X be a Hausdorff complex analytic space and (P, π) be an
analytic block in X. Then P is a compact Stein set in X.

Proof. This follows from Theorem 6.4 applied to U → V in Definition 7.1. �

Proposition 7.3. Let X be a complex analytic space such that each compact
analytic set in X is finite, then every stone in X is an analytic block in X.

Proof. Let (P, π : X → Cn) be a stone in X. We consider the proper
morphism τ : U → V as in Theorem 4.3. Each fiber of τ is a compact subset of
U and hence a compact subset of X. By our assumption, it is finite. It suffices to
apply Proposition 4.5 in Topology and bornology to conclude that τ is finite. �

8. Holomorphically spreadable spaces

Definition 8.1. Let X be a complex analytic space. We say X is holomorphically
spreadable if |X| is Hausdorff and for any x ∈ X, we can find an open neighbourhood
U of x in X such that

{y ∈ U : f(x) = f(y) for all f ∈ OX(X)} = {x}.

A holomorphically separable space is clearly holomorphically spreadable.
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Proposition 8.2. Let X be a holomorphically spreadable complex analytic space
and x ∈ X. Then there exist finitely many f1, . . . , fn ∈ OX(X) such that x is an
isolated point of W (f1, . . . , fn).

Proof. By induction on dimxX, it suffices to prove the following claim: if A
is an analytic set in X and a ∈ A such that dimaA ≥ 1. Then there is f ∈ OX(X)
such that dima(A ∩W (f)) = dimaA− 1.

To prove the claim, let A1, . . . , Ak be the irreducible components of A. We
may assume that all of them contain a. Choose aj ∈ Aj for each j = 1, . . . , k
so that a, a1, . . . , ak are pairwise different. Then there is a function f ∈ OX(X)
with f(a) = 0 while f(aj) 6= 0 for j = 1, . . . , k. Then a ∈ W (f) while f |Aj is not
identically 0. By Krulls Hauptidealsatz, dima(Aj ∩W (f)) = dimaAj − 1 for all
j = 1, . . . , k. Observe that A ∩W (f) and

⋃k
j=1(Aj ∩W (f)) coincide near a, so

dima(A∩W (f)) = max
j=1,...,k

dima(Aj ∩W (f)) = max
j=1,...,k

(dimaAj − 1) = dimaA− 1.

�

Proposition 8.3. Let X be an irreducible holomorphically spreadable complex
analytic space. Then X has countable basis.

The statement of this proposition in [Fis76, Proposition 0.37] is clearly wrong. I
do not understand the argument of either [Jur59] or [Gra55], where they claim that
this result holds for connected holomorphically spreadable complex analytic spaces.

Proof. We may assume that X is connected. Recall that by Corollary 8.6 in
Local properties of complex analytic spaces, X is locally connected. Let F : X →
COX(X) be the map sending x ∈ X to (f(x))f∈OX(X). By our assumption, F is
continuous and has discrete fibers. In particular, for each x ∈ X, we may assume
take finitely many f1, . . . , fn ∈ OX(X) so that the induced morphism F ′ : X → Cn
is quasi-finite at x. By Corollary 2.13 in Analytic sets, we can find a nowhere dense
analytic set A in X such that the map X \ A→ Cn induced by F ′ is quasi-finite.
Now we endow OX(X) with the compact-open topology. It is a metric space. By
Proposition 6.2 in Topology and bornology, X \A has countable basis. It follows
that OX(X \ A) is a separable metric space. Hence, so it OX(X). In particular,
there is a continous map with discrete fibers

X → Cω.

It follows again from Proposition 6.2 in Topology and bornology thatX has countable
basis. �

Proposition 8.4. Let X be a holomorphically spreadable complex analytic space.
Then any compact analytic set A in X is finite.

Proof. Let B be a connected component of A and p ∈ B. We need to show
that B = {p}. Take finitely many f1, . . . , fn ∈ OX(X) so that p is an isolated point
of W (f1, . . . , fn). This is possible by Proposition 8.2. As fi vanishes on B for each
i = 1, . . . , n, we have B = {p}. �

Corollary 8.5. Let X be a complex analytic space and A be a compact analytic
subset of X. Suppose that there exists an analytic block (P, π : X → Cn) in X with
A ⊆ P , then A is finite.
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Proof. Take U ⊆ X,V ⊆ Cn as in Definition 7.1 so that U → V is finite.
Then U is clearly holomorphically spreadable. By Proposition 8.4, A is finite. �

9. Holomorphically complete spacs

Definition 9.1. Let X be a complex analytic space. An exhaustion of X by analytic
blocks is an exhaustion of X by stones (Pi, πi)i∈Z>0 such that (Pi, πi) is an analytic
block for each i ∈ Z>0.

We say X is holomorphically complete if X is Hausdorff and there is an exhaus-
tion of X by analytic stones.

Theorem 9.2. Let X be a Hausdorff complex analytic space. Then the following
are equivalent:

(1) X is holomorphically complete;
(2) X is weakly holomorphically convex and every compact analytic subset of

X is finite.

Proof. (1) =⇒ (2): X is weakly holomorphically convex by definition. Each
compact analytic subset A of X is contained in some analytic block, hence finite by
Corollary 8.5.

(2) =⇒ (1): This follows from Proposition 7.3. �

Lemma 9.3. Let X be a complex manifold and I be a coherent subsheaf of OlX
for some l ∈ Z>0. Then I(X) is a closed subspace of OX(X)l endowed with the
compact-open topology.

Proof. Let (fj ∈ I(X))j∈Z>0 be a sequence with a limit f ∈ OlX(X). Let
x ∈ X. It suffices to show that fx ∈ Ix. Observe that fx is the limit of fjx as
j →∞. As OX,x is noetherian, the submodule Ix of Olx is closed by Corollary 7.4
in Banach rings. We conclude. �

Definition 9.4. Let X be a complex analytic space and F be a coherent OX -module.
Let (P, π : X → Cn) be an analytic block on X with a non-zero associated tube
Q ⊆ Cn.

Choose U ⊆ X,V ⊆ Cn as in Definition 7.1 so that τ : U → V induced by
π is finite. Then G := τ∗(F|U ) is a coherent OV -module. By Corollary 6.3, we
can find l ∈ Z>0 and an epimorphism OlQ → G|Q. It induces an epimorphism
ε : H0(Q,OCn)l → H0(Q,G) ∼−→ H0(P,F). We define a semi-norm |• | on H0(P,F)
as the quotient semi-norm induced by the sup seminorm on H0(Q,OCn)l.

A seminorm on H0(P,F) defined in this way is called a good semi-norm on
H0(P,F) with respect to (P, π).

Lemma 9.5. Let X be a complex analytic space and F be a coherent OX -module.
Let (P, π) be an analytic block on X. A good semi-norm on H0(P,F) induces a
metric on H0(P 0,F).

Proof. We need to show that if |s| = 0 for some s ∈ H0(P,F), then s|P 0 = 0,
where P 0 is the analytic interior of P .

We use the same notations as in Definition 9.4. We can take h ∈ H0(Q,OCn)l
and hj ∈ ker ε for each j ∈ Z>0 so that ε(h) = s and ‖hj−h‖L∞ → 0. So hj |Q → h|Q
with respect to the compact-open topology. From Lemma 9.3, we conclude that the
image of h|IntQ is 0. Namely, s vanishes on P 0 = τ−1(IntQ). �
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Lemma 9.6. Let X be a complex analytic space and F be a coherent OX -module.
Let (P, π : X → Cn) be an analytic block on X with a non-zero associated tube
Q ⊆ Cn. Consider the epimorphism of sheaves

OlQ → π∗(F|P )

as in Definition 9.4 and endow H0(P 0,F) with the metric induced by the corre-
sponding good semi-norm. Let

Q1 ⊆ Q2 ⊆ · · ·
be a compact exhaustion of IntQ by tubes with the same centers in Cn. We get an
induced map

εj : H0(Qj ,OlCn)→ π∗(F|P )(Qj)
for each j ∈ Q>0. We therefore get good semi-norms | • |j on H0(P 0,F) for each
j ∈ Z>0. Let

d(s1, s2) :=
∞∑
j=1

2−j |s1 − s2|j
1 + |s1 − s2|j

for each s1, s2 ∈ H0(P 0,F). Then d is a metric on H0(P 0,F) and H0(P 0,F) is a
Fréchet space with respect to this topology.

Moreover, the topology does not depend on the choice of π, ε and the exhaustion.

Proof. By Lemma 9.5, each |• |ν is a norm on H0(P 0,F). It follows that d is a
metric. Next we show thatH0(P 0,F) is Fréchet. Let (sj)j∈Z>0 be a Cauchy sequence
in H0(P 0,F). We can find bounded sequences (fjk ∈ H0(Qk,OlCn))k∈Z>0 so that
εk(fjk) = sj |π−1(Qk)∩P (k ∈ Z>0) for each jZ>0. By Montel’s theorem, there is a
subsequence of (fjk)j which converges uniformly on Qk−1 to fk ∈ H0(Qk−1,OlCn).
Then εk−1(fk+1)|IntQk−1 = εk−1(fk)|IntQk−1 for each k ∈ Z≥2. So we can glue the
fk’s to s ∈ H0(P 0,F). Clearly, sk → s as k →∞.

Next we show that the topology is independent of the choice of π, ε and
the exhaustion. The independence of the exhaustion is obvious. We prove the
other two independence. Let (P, π′ : X → Cn′) be another analytic block with
π′ = (π, ϕ) : X → Cn × Cm, n′ = n + m. Let Q∗ ⊆ Cm be a tube such that
ϕ(P ) ⊆ Q∗. Then P = π′−1(Q×Q∗) ∩ U . We can find an open neighbourhood U ′
of P in X and V ′ of Q×Q∗ in Cn′ for which the induced map τ ′ : U ′ → V ′ is finite
by Definition 7.1. Fix an epimorphism Ol′Cn′ |Q×Q∗ → π′∗(F|P ) for some l′ ∈ Z>0.
Construct an exhanstion of IntQ× IntQ∗ of the product type: (Qj ×Q∗j )j∈Z>0 as
in the lemma. Let d′ denote the induced metric on H0(IntP,F).

We will show that d′ and d induce the same topology. Let e1, . . . , el ∈
H0(Q,OlCn) be the standard basis. Let e′1, . . . , e′l be the preimages of ε(e1), . . . , ε(el) ∈
π∗(F|P )(Q) = π′∗(F|P )(Q × Q∗) in OCn′ (Q × Q∗)l′ under ε′. Further, for
f ∈ OCn(Qj), we denote by f ′ ∈ OCn′ (Qj × Q∗j ) the holomorphic extension
of f to Qj × Q∗j constant along {q} × Q∗j for each q ∈ Qj for each j ∈ Z>0. The
norms of

OCn(Qj)l → OCn′ (Qj ×Q
∗
j )l,

l∑
i=1

fiei 7→
l∑
i=1

f ′ie
′
i

for j ∈ Z>0 are bounded by a constant independent of j. Therefore, the identity
map

(H0(P 0,F), d)→ (H0(P 0,F), d′)
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is continuous. By open mapping theorem, the map is a homeomorphism. �

Theorem 9.7. Let X be a complex analytic space and (P, π) ⊆ (P ′, π′) be two
analytic blocks on X and F be a coherent OX -module, then the restriction map

H0(P ′,F)→ H0(P,F)
with respect to any good semi-norms.

Proof. We claim that there exists an analytic block (P1, π) such that
(P, π) ⊆ (P1, π) ⊆ (P ′, π′).

Assume this claim, then we have a decomposition of the restriction map
H0(P ′,F)→ H0(P 0

1 ,F)→ H0(P,F).
The first map is continuous if we endow H0(P 0

1 ,F) with the topology induced by
π′, the second is continuous if we endow H0(P 0

1 ,F) with the topology induced by
π. These topologies are identical by Lemma 9.6. Our assertion follows.

To argue the claim, let us write π : X → Cn and π′ = (π, ϕ) : X → Cn × Cm.
Take q ∈ Cm with Q×{q} ⊆ IntQ′. Let Q′′ := Q′ ∩ (Cn×{q}) and identify it with
a subset of Cn. Let Q∗ be the image of Q′ under the projection Cn+m → Cm.

Choose open neighbourhoods U ⊆ P ′0, V ⊆ Q′ of P and Q respectively such
that τ : U → V is finite and U ∩ π−1(Q) = P . Take a tube Q1 ⊆ Cn such that

Q ⊆ IntQ1 ⊆ Q1 ⊆ IntQ′′.
Now it suffices to set P1 := π−1(Q1) ∩ U . �

Corollary 9.8. Let X be a complex analytic space and F be a coherent OX -
module. Let (P, π) ⊆ (P ′, π′) be analytic blocks in X. Then for any Cauchy
sequence (sj)j∈Z>0 in H0(P ′,F), the restriction sequence (sj |P )j∈Z>0 has a limit in
H0(P,F).

Proof. Choose an analytic block (P1, π) such that
(P, π) ⊆ (P1, π) ⊆ (P ′, π′).

The existence of the block (P1, π) is argued in the proof of Theorem 9.7. We have a
decomposition of the restriction map

H0(P ′,F)→ H0(P 0
1 ,F)→ H0(P,F).

The first map is bounded, so the images of (sj)j∈Z>0 in H0(P 0
1 ,F) is a Cauchy

sequence. As we have shown that H0(P 0
1 ,F) is a Fréchet space in Lemma 9.6, the

sequence converges. As the second map is also continuous, it follows that (sj |P )j∈Z>0

has a limit in H0(P,F). �

Lemma 9.9. Let X be a complex analytic space and F be a coherent OX -module.
Let (P, π : X → Cn) ⊆ (P ′, π′ : X → Cn × Cm) be analytic blocks in X with
tubes Q and Q′. Choose U ′ ⊆ X and V ′ ⊆ Cn+m of P ′ and Q′ respectively as in
Definition 7.1 such that U ′ → V ′ is finite. Set

Q1 := (Q× Cm) ∩Q′, P1 = π′−1(Q1) ∩ U ′.
Then (P1.π

′) is an analytic block in X with block Q1 and H0(P ′,F)→ H0(P1,F)
has dense image. Here we take an epsimorphism

Ol
′

Cn+m |Q′ → (τ ′(F|U ′))Q′
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and it induces
Ol
′

Cn+m |Q1 → (τ ′(F|U ′))Q1
,

which in turn induces a good semi-norm on H0(P1,F). This is the semi-norm we
are using.

Moreover, there is a compact set P̃ ⊆ X disjoint from P such that

P1 = P ∪ P̃ .

Proof. We have a commutative diagram in the category of topological linear
spaces:

H0(Q′,OlCm+n) H0(P ′,F)

H0(Q1,OlCm+n) H0(P1,F)

.

In order to show that the right vertical map has dense image, it is enough to
show that the map on the left-hand side has dense images, which is the Runge
approximation.

For the last assertion, as Q1 = (Q× Cm) ∩Q′, we have

P1 = π−1(Q) ∩ P ′.

As P ⊆ P ′ and P ⊆ π−1(Q), it follows that P ⊆ P1. But there is an open
neighbourhood U of P in X so that P = π−1(Q) ∩ U . Hence, P̃ = P1 \ P is
compact. �

Theorem 9.10 (Runge approximation). Let X be a complex analytic space and
F be a coherent OX -module. Let (P, π : X → Cn) ⊆ (P ′, π′ : X → Cn × Cm) be
analytic blocks in X with tubes Q and Q′. Then the map

H0(P ′,F)→ H0(P,F)

has dense image with respect to a good semi-norm.

Proof. We use the notations of Lemma 9.9. We extend Q,Q1, Q
′ to tubes

Q̂, Q̂1, Q̂
′ and get P̂ , P̂1, P̂ ′ corresponding to the original P, P1, P

′. The restriction
map

H0(P̂1
0
,F)→ H0(P̂ 0,F)

is a continuous morphism of Fréchet spaces.
Let s ∈ H0(P,F) be a section. Lift s to s1 ∈ H0(P1,F). Up to a suitable

modification of the tubes, we can extend s1 to ŝ1 ∈ H0(P̂1,F). Then there is
a sequence (sj ∈ H0(P̂ ′,F))j∈Z>0 such that sj |P̂1

→ ŝ1 as j → ∞ in H0(P̂1,F).
It follows that sj |P̂ 0 → ŝ1|P̂ 0 in H0(P̂ 0,F). It follows that sj |P → s1|P = s sa
j →∞. �

Theorem 9.11. Let X be a complex analytic space. Each exhaustion of X by
analytic blocks is a Stein exhaustion.

Proof. Let (Pi, πi)i∈Z>0 be an exhaustion of X by analytic blocks. Take a
coherent OX -module F .

We verify the conditions in Definition 6.5. By Theorem 6.4, Pi is a compact
Stein set for each i ∈ Z>0. So (1) is satisfied.
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On H0(Pi,F), we fix a good semi-norm | • |i for each i ∈ Z>0. We may assume
that H0(Pi+1,F)→ H0(Pi,F) is contractive for i ∈ Z>0.

We have already verified (3), (4) and (5).
We verify (2). It suffices to show that

H0(X,F)→ H0(P1,F)
has dense image. Let s ∈ H0(P1,F) and δ > 0. By Theorem 9.10, we can find
si ∈ H0(Pi,F) for i ∈ Z>0 such that s1 = s,

|si+1|Pi − si|i < 2−iδ
for i ∈ Z>0. By Corollary 9.8, (sj |Pi)j∈Z>0 has a limit ti ∈ H0(Pi,F) for each
i ∈ Z>0. As H0(Pi+1,F)→ H0(Pi,F) is continuous for i ∈ Z>0, the ti+1|Pi ’s are
compatible and defines t ∈ H0(X,F). It is easy to see that |t|P1 − s|1 < δ. Thus
condition (2) is satisfied. �

10. Stein spaces

Definition 10.1. Let X be a complex analytic space. We say that X is a Stein
space if X is a Stein set in X and |X| is paracompact and Hausdorff.

Definition 10.2. Let X be a complex analytic space. An effective formal 0-cycle
on X consists of

(1) A disrete set D ⊆ X;
(2) An integer nx for each x ∈ D.

We write the effective formal 0-cycle as
∑
x∈D nxx. We define the ideal sheaf

OX(−
∑
x∈D nxx) of an effective formal 0-cycle as

∑
x∈D nxx as

OX(−
∑
x∈D

nxx)(U) =
{
f ∈ H0(U,OX) : fx ∈ mnxx for each x ∈ D ∩ U

}
for each open subset U ⊆ X.

Observe that OX(−
∑
x∈D nxx) is a coherent OX -module. In fact, the problem

is local, so we may assume that D is finite. In this case, D is an effective 0-cycle
and the result is clear.

Lemma 10.3. Let X be a complex analytic space and
∑
x∈D nxx be an effective

formal 0-cycle on X. Assume that

H0(X,OX)→ H0(X,OX/OX(−
∑
x∈D

nxx))

is surjective. Suppose that for each x ∈ D, we assign gx ∈ OX,x. Then there is
f ∈ H0(X,OX) such that

fx − gx ∈ mnxx
for all x ∈ D.

Proof. We define s ∈ H0(X,OX/OX(−
∑
x∈D nxx)) by sx = gx for each

x ∈ D. Lift s to f ∈ H0(X,OX). Then f clearly satisfies the required properties. �

Proposition 10.4. Let X be a complex analytic space. Assume that H1(X, I) = 0
for each coherent ideal sheaf I on X. Let (xi ∈ X)i∈Z>0 be a sequence without
accumulation points and (ci)i∈Z>0 be a sequence in C. Then there is f ∈ OX(X)
with f(xi) = ci for each i ∈ Z>0.
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Proof. Consider the formal cycle
∑∞
i=1 xi. Apply Lemma 10.3 with gxi =

ci. �

Theorem 10.5. Let X be a paracompact Hausdorff complex analytic space. Then
the following are equivalent:

(1) X is a Stein space;
(2) For any coherent ideal sheaf I on X, we have H1(X, I) = 0;
(3) X is holomorphically separable and holomorphically convex;
(4) X is holomorphically spreadable and weakly holomorphically convex;
(5) X is holomorphically complete;
(6) X is weakly holomorphically convex and every compact analytic subset of

X is finite.

Proof. (1) =⇒ (2): This is trivial.
(2) =⇒ (3): X is holomorphicaly convex by Proposition 10.4 and Proposi-

tion 5.4. X is holomorphically separable by Proposition 10.4.
(3) =⇒ (4): X is holomorphically spreadable and weakly holomorphically

convex by definition.
(4) =⇒ (5): This follows from Theorem 9.2 and Proposition 8.4.
(5) =⇒ (1): This follows from Theorem 9.11 and Theorem 6.6.
(5) ⇔ (6): This is just Theorem 9.2. �

Lemma 10.6. Let b ∈ Z>0 and f : X → Y be a b-sheeted branched covering
of complex analytic spaces. Assume that Y is normal. Then the following are
equivalent:

(1) X is Stein;
(2) Y is Stein.

The corresponding statement in Narasimhan is not correct. It is not clear to me
if this holds for a general finite surjective morphism between paracompact normal
Hausdorff complex analytic spaces.

Proof. By Lemma 2.2, X is paracompact and Hausdorff if and only if Y is
paracompact and Hausdorff.

(2) =⇒ (1): This follows from Leray’s spectral sequence.
(1) =⇒ (2): We may assume that X is connected. By Theorem 10.5, it suffices

to verify that Y is holomorphically convex and every analytic set in Y is finite.
Let (yi ∈ Y )i∈Z>0 be a sequence without accumulation points. We can lift the

sequence to (xi ∈ X)i∈Z>0 without accumulation points. By Proposition 10.4, we
can find g ∈ OX(X) such that (|g(xi)|)i∈Z>0 is unbounded. Let χg ∈ OY (Y )[w]
be the characteristic polynomial of g. As χg(g) = 0, it follows that at least one
coefficient of χg is unbounded along (yi)i∈Z>0 . By Proposition 5.4, we conclude that
Y is holomorphically convex.

Let T be an analytic set in Y . Then so is f−1(T ). As X is Stein, f−1(T ) is
finite, hence so is T . �

Corollary 10.7. Let f : X → Y be a finite surjective morphism of normal complex
analytic spaces. Then the following are equivalent:

(1) X is Stein;
(2) Y is Stein.
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Proof. By Lemma 2.2, X is paracompact and Hausdorff if and only if Y is
paracompact and Hausdorff. We may assume that Y is connected.

(2) =⇒ (1): This follows from Leray’s spectral sequence.
(1) =⇒ (2): Observe that Y is irreducible, so there is a connected component

X ′ of X so that the restriction X ′ → Y is surjective. Then X ′ → Y is a branched
covering by Corollary 4.40 in Morphisms between complex analytic spaces. But
X ′ is Stein as it is a connected component of a Stein space. We conclude using
Lemma 10.6. �

Lemma 10.8. Let X be a reduced complex analytic space whose normalization X̄
is Stein. Then for any reduced closed analytic subspace Y of X, Ȳ is also Stein.

Proof. By Lemma 2.2, X is paracompact and Hausdorff. We write π : X̄ → X
for the normalization morphism. Let Y 1 = π−1(Y ), the preimage is endowed with
a structure of a closed analytic subspace of X. It follows that Y 1 is Stein. Its
normalization Y 1 is then Stein, as the normalization morphism is finite. We have
commutative diagram induced by the universal property of the normalization:

Y 1 Y

Y

.

The natural morphism Y 1 → Y is a finite as it is the composition of two finite
coverings. Then morphism Ȳ → Y is finite, so Y 1 → Y is finite. But its image
contains a dense open subset of Ȳ , so Y 1 → Ȳ is surjective. Observe that Ȳ is
paracompact and Hausdorff by the same arguments as in Lemma 10.6. Now we can
apply Corollary 10.7 to conclude that Ȳ is Stein. �

Corollary 10.9. Let X be a complex analytic space. Then the following are
equivalent:

(1) X is Stein;
(2) Xred is Stein;
(3) The normalization Xred is Stein.

The equivalence of (1) and (2) is due to Grauert [Gra60]. Here we follow the
simplified approach in [GR77]. The difficult direction (3) implies (2) is claimed
in [GR77], where the proof is nonsense. We follow the argument of Narasimhan
[Nar62]. We remind the readers that the statements and the arguments in [Nar62]
contain several (fixable) mistakes.

Proof. By Lemma 2.2, X is paracompact and Hausdorff if and only if Xred is.
(1) =⇒ (2): This follows from Leray’s spectral sequence.
(2) =⇒ (1): By Theorem 10.5(3), it suffices to show that the restriction map

H0(X,OX)→ H0(Xred,OXred) is surjective.
Let I be the nilradical of OX . It is coherent by Cartan–Oka theorem. For each

i ∈ Z>0, we have a short exact sequence
0→ Ii/Ii+1 → OX/Ii+1 → OX/Ii → 0.

As Ii/Ii+1 is a coherent OXred -module, we conclude that

ϕi : H0(X,OX/Ii+1)→ H0(X,OX/Ii)
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is surjective for each i ∈ Z>0. Let h1 ∈ H0(X,OX/I) = H0(Xred,OXred). We want
to lift it to h ∈ H0(X,OX).

We successively lift h1 to hi ∈ H0(X,OX/Ii) for each i ∈ Z>0. Let Xi =
X \ Supp Ii of each i ∈ Z>0. Then clearly

X =
∞⋃
i=1

Xi.

It is easy to see that
hi+1|Xi = hi|Xi

for each i ∈ Z>0. It follows that we can glue the hi|Xi ’s to h ∈ H0(X,OX) which
restricts to h1.

(2) =⇒ (3): This follows from Leray’s spectral sequence as Xred → Xred is
finite by Proposition 7.8 in Local properties of complex analytic spaces.

(3) =⇒ (2): We may assume that X is reduced.
Step 1. We first observe that it suffices to prove in the case where dimX <∞.

For each k ∈ Z>0, we let Xk denote the union of the irreducible components of
dimension ≤ k. Then clearly, Xk is an analytic set in X. We endow it with the
reduced induced structure. Then dimXk ≤ k. The normalization Xk of Xk is
a disjoint union of certain connected components of X̄ and hence Stein for each
k ∈ Z>0. It follows that Xk is Stein if the special case is established.

Let D ⊆ X be a countable infinite set without accumulation points. For each
k ∈ Z>0, we set Dk = D∩Xk and Ek+1 = Dk+1 \Dk. Further we let E1 = D1. We
write the points of D as (xi ∈ X)i∈Z>0 . Let h : D → C be the map sending xi to i
for each i ∈ Z>0. For each k ∈ Z>0, hk denotes the restriction of h to Dk.

As X1 is Stein, we can construct f1 ∈ OX1(X1) with f1|E1 = h1 by Propo-
sition 10.4. As E2 ∪ X1 is an analytic subset in X2, we can find f2 ∈ OX2(X2)
extending f1 and such that f2|E2 = h2. We continue in the obvious way and
construct fk ∈ OXk(Xk) for each k ∈ Z>0 compatible with each other. Then the
fk’s glue to give f ∈ OX(X) unbounded on D. We conclude that X is Stein by
Proposition 5.4.

Step 2. We assume that dimX <∞.
Let I be a coherent ideal sheaf on X. By Theorem 10.5, it suffices to show that

H1(X, I) = 0.

We may assume that X is connected. We make an induction on dimX. There is
nothing to prove if dimX = 0. Assume that dimX > 0.

We write π : X̄ → X for the normalization morphism. Let W be the conductor
ideal of OX . Let F := π∗(WI). Observe that F is a coherent OX̄ -module. By
Leray spectral sequence,

H1(X,π∗F) ∼= H1(X̄,F) = 0.

Let Y := SuppOX/W ⊆ XSing. Then Y is an analytic set in X. We endow
Y with the reduced induced structure, then Y is Stein by Lemma 10.8 and our
inductive hypothesis.

Observe that π∗F can be identified with a subsheaf of W · OX ⊆ I. Let
S = (I/π∗F)|Y . Then we have

H1(X, I/π∗F) ∼= H1(Y,S) = 0.



22 GLOBAL PROPERTIES OF COMPLEX ANALYTIC SPACES

Consider the short exact sequence

0→ π∗F → I → I/π∗F → 0.

We conclude that
H1(X, I) = 0.

�

Corollary 10.10. Let X be a complex analytic space. Then the following are
equivalent:

(1) X is Stein;
(2) Each irreducible component of Xred is Stein if we endow it with the reduced

induced structure.

Proof. This follows immediately from Corollary 10.9. �

Corollary 10.11. Let f : X → Y be a finite morphism between complex analytic
spaces. Then

(1) if Y is Stein, so is X;
(2) if f is surjective and X is Stein, then Y is also Stein.

This result is due to Narasimhan [Nar62], although the statement and the proof
in [Nar62] are both incorrect.

Proof. Observe that X is paracompact and Hausdorff as in the proof of
Lemma 10.6. By Corollary 10.9, we may assume that X and Y are reduced.

(1) Observe that X is paracompact and Hausdorff as f is proper. The fact that
X is Stein follows from Leray’s spectral sequence.

(2) Observe that Y is by paracompact and Hausdorff by Lemma 2.2. We may
assume that Y is irreducible by Corollary 10.10. Up to replacing X by one of its
irreducible components whose image under f is Y , we may assume that X is also
irreducible.

By Corollary 4.34 in Morphisms between complex analytic spaces, we can find
a commutative diagram

X̄ Ȳ

X Y

f̄

f

.

By Corollary 10.9, we are reduced to show that X̄ is Stein if and only if Ȳ is. But
f̄ : X̄ → Ȳ is clearly finite and surjective. So it suffices to apply Corollary 10.7. �

11. Flat locus

Proposition 11.1. Let X be a reduced complex analytic space, x ∈ X and U be
an open neighbourhood of x in X. Consider the following conditions:

(1) All irreducible components of U pass through x;
(2) U is OX -previlaged at x.

Then (1) implies (2).

[Fri67] also claims that if U is Stein, then (2) implies (1). I cannot figure out a
proof.
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Proof. (1) =⇒ (2): Let s ∈ H0(U,F) with sx = 0. We want to show that
s = 0. By (1), we may assume that X is irreducible. Then Xreg is connected by
Corollary 4.38 in Morphisms between complex analytic spaces. As sx = 0, s vanishes
on a non-empty open subset of Xreg by Theorem 6.8 in Local properties of complex
analytic spaces. It follows that s|Xreg = 0 by Identitätssatz. Hence, s = 0.

�

Proposition 11.2. Let X be a complex analytic space, x ∈ X and F be a coherent
OX -module. There is an open neighbourhood U of x in X and finitely many analytic
sets Y1, . . . , Ym in X containing x having the following property: a neighbourhood
V of x in X contained in U is F-previlaged at x if U ∩ Yi is F|Yi-previlaged at x
for each i = 1, . . . ,m.

Proof. Step 1. Let
0→ G → F → H

be an exact sequence of coherent OX -modules. Suppose that we have proved the
proposition with G and H in place of F , let us show that the proposition also holds
for F . Let U ′, Y ′1 , . . . , Y ′m′ and U ′′, Y ′′1 , . . . , Y ′′m′′ be the data in the proposition with
respect to G and H respectively. We let U := U ′ ∩ U ′′, m = m′ +m′′ and

Y1 = Y ′1 ∩ U, . . . , Ym′ = Y ′m′ ∩ U, Ym′+1 = Y ′′1 ∩ U, . . . , Ym′+m′′ = Y ′′m′′ ∩ U.

It follows from Proposition 7.2 in Topology and bornology that these data have the
desired property.

Step 2. By Jordan–Hölder theorem, we can find an open neighbourhood U of
x in X and a finite chain of coherent OU -modules

0 = F0 → F1 → · · · → Fn = F|U
such that Fi/Fi−1 is isomorphic to OYi∩U for some irreducible reduced closed
analytic subspace of X passing through x for i = 1, . . . , n. By Step 1, it suffices to
handle the case F = OYi for some i = 1, . . . , n.

Step 3. Let Y be an analytic set in X endowed with the reduced induced
structure passing through x. Let V be a neighbourhood of x in X. We need to show
that V is OY -previlaged at x if V ∩ Y is OY -previlaged at x. But both conditions
are defined by the injectivity of

H0(V ∩ Y,OY ) ∼= H0(V,OY )→ OY,x.

We conclude. �

Proposition 11.3. Let X be a complex analytic space and A be a real semi-analytic
set in X. Let F be a coherent OX -module. Then any x ∈ A admits a fundamental
system of neighbourhoods in A which are F-previlaged at x.

Proof. Let U, Y1, . . . , Ym be as in Proposition 11.2. Let B be a fundamental
system of neighbourhoods of x in A given by Proposition 8.4 in Topology and
bornology.

We claim that for any V ∈ B contained in U , V is F -previlaged at x. This claim
finishes the proof. In fact, by Proposition 8.4 in Topology and bornology, V admits
a fundamental system BV of neighbourhoods in X such that for W ∈ BV , W ∩ Yi is
OYi -previlaged at x for i = 1, . . . ,m. By Proposition 11.2, W is F-previlaged at x.
But then V is clearly F-previlaged at x as well. �
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Proposition 11.4. Let X be a complex analytic space and A be a real semi-analytic
Stein set in X. Let F be a coherent OA-module. Consider an increasing net (Fj)j∈J
of coherent OA-submodules of F , then for any x ∈ A, there is a neighbourhood W
of x in A such that (Fj |W )j∈J is eventually constant.

For us the meaning of Stein set is weaker than in [Fri67].

Proof. As OX,x is noetherian, the net (Fj,x)j∈J is eventually constant. We
may assume that it is actually constant. Take j0 ∈ J . Take an open neighbourhood
W of x in A which is F/Fj0-previlaged at x. The existence of W follows from
Proposition 11.3.

We have a commutative diagram

0 H0(W,Fj0) H0(W,F) H0(W,F/Fj0)

0 Fj0,x Fx (F/Fj0)x

with exact rows. We know that the last vertical map is injective. It follows that
H0(W,Fj0) = H0(W,F).

So for any j ≥ j0,
H0(W,Fj0) = H0(W,Fj).

So for any b ∈W , j ≥ j0, we have
Fj,b = H0(A,Fj) · OX,b = H0(W,Fj) · OX,b = H0(A,Fj0) · OX,b,

where the first equality follows from Theorem 6.2. That is (Fj |W )j∈J is eventually
constant. �

Corollary 11.5. Let X be a complex analytic space and A be a real semi-analytic
Stein set in X. Let F be a coherent OA-module. Consider a subset E of H0(A,F).
The OX -submodule of F generated by E is coherent.

Proof. The result is clear when E is finite. In general, we can write E as the
union of all finite subsets of E. We then apply Proposition 11.4. �

Theorem 11.6. Let X be a complex analytic space and A be a quasi-compact real
semi-analytic Stein set in X. Then H0(A,OX) is noetherian.

Proof. Let I be an ideal of H0(A,OX). By Corollary 11.5, the ideal sheaf I
on A generated by I is coherent. As A is quasi-compact, we can find a family of
elements f1, . . . , fn in I such that for any x ∈ A, Ix is generated by f1,x, . . . , fn,x
as an OX,x-module. In other words, OnA → I defined by f1, . . . , fn is surjective. It
follows that

H0(A,OX)n → H0(X, I) = I

defined by f1, . . . , fn is surjective. Namely, I is generated by f1, . . . , fn as an
H0(A,OX)-module. �

Lemma 11.7. Let X be a complex analytic space and A be a quasi-compact real
semi-analytic Stein set in X. Consider the map

A→ SpmH0(A,OX)
sending x ∈ A to the kernel nx of the evaluation map H0(A,OX)→ C at x.
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If F is a coherent OA-module, we have a natural isomorphism
H0(A,F )̂nx

∼−→ F̂x.

Proof. If suffices to observe that for each n ∈ N, we have
H0(A,F)/nnxH0(A,F) ∼−→ H0(A,F/nnxF) ∼−→ F/nnxF .

�

Corollary 11.8. Let f : X → Y be a morphism of complex analytic spaces, x ∈ X
and F be a coherent OX -module. Let A be a quasi-compact real semi-analytic
Stein set in A and B be a quasi-compact real semi-analytic Stein set in Y such that
f(A) ⊆ B. Then the following are equivalent:

(1) F is f -flat at x ∈ X;
(2) H0(A,F) is flat at nx with respect to H0(B,OB)→ H0(A,OA).

Proof. By Theorem 11.6, H0(A,F), H0(B,OB) are both noetherian, so the
morphisms

H0(A,F)nx → H0(A,F )̂nx , H0(B,OY )ny → H0(B,OY )̂ny
are both faithfully flat by [Stacks, Tag 00MC], where y = f(x). The assertion now
follows from Lemma 11.7. �

Lemma 11.9. Let X be a complex analytic space. Then any x ∈ X has a
fundamental system of compact real semi-analytic Stein neighbourhoods.

Proof. We may assume that X = Cn for some n ∈ N. It then suffices to take
polycylinders. �

Lemma 11.10. Let Y be a reduced complex analytic space, n ∈ N and D ⊆ Rn
be an open subset. Set X = Y ×D and f : X → Y denotes the projection. Let F
be a coherent OX -module, x = (y, z) ∈ X. THen there is an open neighbourhood
V of y in Y and a thin analytic set T in V such that F is f -flat at (y′, z) for any
y′ 6∈ V \ T .

Proof. Let L be a Stein real semi-analytic compact neighbourhood of y in Y .
We know that H0(L,OL) is noetherian by Theorem 11.6. Consider the minimal
prime ideals p1, . . . , pr of this ring. Let Y1, . . . , Yr be the analytic sets defined in a
neighbourhood of L by these ideals. Discarding the overlaps Yi ∩ Yj for i 6= j, we
may assume that H0(L,OL) is integral. Let I ⊆ OX be the ideal sheaf of Y × {z}.
Let K = L × {z}. Then K is a compact real semi-analytic compact subset of X.
Let I = H0(K, I), B = H0(K,OK) and M = H0(K,F). As the comopsition

H0(L,OL)→ H0(K,OX)→ H0(K,OX)/H0(K, I)
is an isomorphism, by Lemma 8.3 in Commutative algebras, we can find a non-zero
element h ∈ H0(L,OL) such that Mh is A-flat in all primes of V (Ih).

Now consider the analytic set T defined in a neighbourhood of L by h. Then
for y′ ∈ L \ T , F is f -flat at (y′, z) by Corollary 11.8. �

Theorem 11.11. Let f : X → Y be a morphism of complex analytic spaces and F
be a coherent OX -module, then

{x ∈ X : F is f -flat at x}
is co-analytic in X.

https://stacks.math.columbia.edu/tag/00MC
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This theorem was first proved by Frisch in [Fri67]. Here we are following the
simplified proof of Kiehl [Kie67].

Proof. The problem is local on X. We may assume that X is Hausdorff. Fix
x ∈ X and y = f(x). We show that the non-flat locus of F is analytic at x.

The problem is local on X, we may assume that X = Y ×Cn for some n ∈ N. Let
B be a semi-analytic Stein neighbourhood of y in Y , whose existence is guaranteed
by Lemma 11.9. Take A = B ×∆n ⊆ X. Write D = A×B A ⊆ X ×Y X.

Consider the commutative diagram:

X ×Y X X

X Y

p1

p2 � f

f

.

Let F̃ ′ = p∗1F . By Proposition 5.2 in Morphisms between complex analytic spaces,
the non-flat locus of F is the pull-back of the non-flat locus of F ′ with respect to
the diagonal morphism. It suffices to prove that the intersection of ∆X/Y (X) with
the non-flat locus of F ′ is analytic in X ×Y X. Let J be the ideal of the diagonal
∆X/Y : X → X ×Y X of X ×Y X and J = H0(D,J ). We apply Lemma 8.3 in
Commutative algebras. It follows that there is an ideal I in H0(D,OD) such that

Spec(D/I) ∩ Spec(D/J) =
{
m ∈ Spec(D/J) : H0(D,F ′) is not flat at m
with respect to H0(A,OA)→ H0(D,OD)

}
.

But by Corollary 11.8,{
x ∈ ∆X/Y (B) : F ′ is not p2-flat at x

}
=
{
x ∈ ∆X/Y (B) : nx ⊇ I

}
.

The right-hand side is analytic at x since I is finitely generated by Theorem 11.6.
We conclude. �

Lemma 11.12. Let f : X → Y be a morphism of complex analytic spaces. Suppose
that Y is reduced and X has a countable basis. Then the following are equivalent:

(1) f(X) is negligible in Y ;
(2) f admits no sections on an open subset V of Y .

Here we say a subset of Y is negligible if its intersection with Y reg is an at most
countable union of connected locally closed submanifolds with empty interior.

Proof. The problem is local on Y . We may assume that Y is a complex model
space. Then we reduce to the case where Y is a complex manifold. We may also
assume that X is reduced. Then X is a locally finite union of locally closed complex
manifolds such that f |Xi has constant rank. So we may assume that f : X → Y is
a morphism of connected complex manifolds of constant rank. Therefore, f(X) is a
submanifold of Y and f is a submersion onto f(X). In this case, f(X) is negligible
if and only if its interior is empty. In other words, f is nowhere a submersion. The
assertion follows. �

Theorem 11.13 (Generic flatness). Let f : X → Y be a morphism of complex
analytic spaces and F be a coherent OX -module. Assume that Y is reduced and X
has countable basis. Then the image of the non-flat locus in Y is negligible.
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Proof. The problem is local on X and Y thanks to the assumption that X
has a countable basis. As in the proof of Theorem 11.11, we may assume that
X = Y × D, where D is a domain in Cn for some n ∈ N and f : X → Y is the
projection. Let Z be the non-flat locus of F with respect to f .

By Lemma 11.12, it suffices to verifty that for any open subset V ⊆ Y and any
morphism g : V → D, the graph of ϕ is not contained in Z. Let D′ be the image of

V ×D → Cn, (y, z) 7→ z − g(y).
Then the morphism V ×D → V ×D′ sending (y, z) to (y, z − h(y)) transforms the
graph of g into V × {0}. We are reduced to the standard situation in Lemma 11.10.

�

12. Grauert’s proper image theorem

In the proof, an open Stein neighbourhood refers to an open neighbourhood
which is a Stein space. Namely, we require the paracompactness.

Theorem 12.1 (Grauert). Let f : X → Y be a morphism of complex analytic
spaces and F be a coherent OX -module, then Rif∗F is coherent for i ∈ Z≥0.

Consider to reformulate the proof using hypercoverings

Proof. The problem is local on Y , so we may assume that Y is a complex
model space. Then we reduce immediately to the case where Y is an open subset of
CN for some N ∈ N.

Step 1. We construct a free resolution.
Let y0 ∈ Y , we can find an open Stein neighbourhood V∗ of y0 in Y and finitely

many relative charts Uk → ∆nk × V∗ with nk ∈ N for k = 0, . . . , k∗ so that

f−1(V∗) =
k∗⋃
k=0

Uk.

For each r ∈ (0, 1] and open subset V ⊆ V∗, we write Uk(r, V ) for the inverse image
of ∆nk(r)× V in Uk for k = 0, . . . , k∗. We let U(r, V ) = {Uk(r, V )}k=0,...,k∗ . Take
r∗ ∈ (0, 1) so that

f−1(V ) =
k∗⋃
k=0

Uk(r, V )

for all r ∈ [r∗, 1]. When V is Stein, so are U1(r, V ), . . . , Uk∗(r, V ), so U(r, V ) is a
Stein covering of f−1(V ) for r ∈ [r∗, 1]. It follows that

Hq(f−1(V ),F) ∼= Ȟq(U(r, V ),F)
for all q ∈ Z≥0 by [Stacks, Tag 03OW].

For each n ∈ N, we write

Dn :=
{

(k0, . . . , kn) ∈ Zn+1
≥0 : k0 < k1 < · · · < kn ≤ k∗

}
and

D =
∞⋃
n=0

Dn.

We introduce a partial order on D: for α = (α0, . . . , αn) ∈ D, β = (β0, . . . , βm) ∈ D,
we write α ⊆ β if {α0, . . . , αn} ⊆ {β0, . . . , βm}.

https://stacks.math.columbia.edu/tag/03OW
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For α = (α0, . . . , αn) ∈ D, r ∈ [r∗, 1] and V an open Stein subset of V , we write

Uα(r, V ) :=
n⋃
j=0

Uαj (r, V ), ∆α(r) =
n∏
j=0

∆αj (r).

Clearly, we have a morphism

Uα(r, V )→ ∆α(r)× V.

If α, β ∈ D and α ⊆ β, we write

παβ : ∆β(r)× V → ∆α(r)× V

for the canonical projection.
Consider the Abelian category A(r, V ) consisting of coherent O∆α(r)×V -modules

Gα for all α ∈ D and compatible transition morphisms ϕβα : Gα → παβ∗Gβ whenever
α, β ∈ D with α ⊆ β. We will omit ϕβα from our notations if there is no risk of
confusion.

Observe that we have an obvious element j∗F ∈ A(r, V ) associated with F
whose components are just the pushforwards of the restrictions of F .

An object G = (Gα)α∈D ∈ A(r, V ) is free if each Gα is free of finite rank for all
α ∈ D.

Given such an object G = (Gα)α∈D ∈ A(r, V ) and n ∈ N, we define

Čn(r, V,G) :=
∏
α∈Dn

H0(∆α(r)× V,Gα),

which is an H0(V,OY )-module. We have an obvious differential

δ : Čn(r, V,G)→ Čn+1(r, V,G)

sending (ξα)α∈Dn to δξ with

(δξ)β =
n+1∑
i=0

(−1)iϕββi(ξβi).

Suppose that we are given G = (Gα, ϕβα) ∈ A(r, V ) and εα : Sα → Gα for each
α ∈ D, where Sα is a free O∆α(r)×V -module of finite rank. Then we claim that
there is a free system R = (Rα, ψβα) ∈ A(r, V ) and a morphism θ : R → G so that

Im θα ⊇ Im εα

for all α ∈ ∆.
To prove this claim, for each γ ∈ D, we define Rγ = (Rγα, ϕ

γ
βα) ∈ A(r, V ) as

follows:
Rγα =

{
0, if γ 6⊆ α;π∗γαSγ , otherwise.

We have an obvious morphism Rγ → G. We define R as the componentwise
direct sum of Rγ for all γ ∈ ∆. Then the natural morphism R → G satisfies our
requirements.

As a consequence, for any relative compact Stein open subset V ′ ⊆ V∗ and
r′ ∈ [r∗, 1), we can find a free resolution of j∗F in A(r′, V ′).

Take r∗∗ ∈ (r∗, 1). After possibly shrinking V∗, we may assume that we have a
free resolution of j∗F in A(r∗∗, V∗):

· · · → R2 → R1 → R0 → j∗F → 0.
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For any open subset V ⊆ V∗, r ∈ [r∗, r∗∗], we consider the double complex
(Čl(r, V ;Rk))l,k. Let Č•(r, V ) be the associated complex. For each n ∈ N, we
regard V 7→ Čn(r, V ) as an OV ∗ -module, which is denoted by Čn(r). Observe that
Čn(r) = 0 if n > k∗. We have a natural morphism of complexes

Č(r)→ Č(r, j∗F).

We claim that this morphism is a quasi-isomorphism. To see this, let V be a Stein
open subset of V∗, we need to show that

Č(r, V )→ Č(r, V, j∗F)

is an isomorphism. This follows immediately from Cartan’s Theorem B.
In particular,

(Rqf∗F)|V∗ ∼= Hq(Č(r))

for all q ∈ N.
Step 2. The induction scheme.
We take r∗, r∗∗, V∗ as in Step 1. Fix r ∈ [r∗, r∗∗]. Fix a compact subset Q∗ of

V∗.
For any n ∈ Z, n ∈ [−1, k∗], consider the assertion A(n): there is a Stein open

subset Vn of V∗ such that Q∗ ⊆ Vn and a number rn ∈ (r∗, r∗∗], a complex L• of
free OUn -modules of finite rank whose non-zero terms are in degree [n, k∗], and an
n-quasi-isomorphism of complexes σ : L• → Č(rn).

We will by abuse of languages, denote the composition L• → Č(rn)→ Č(r) by
σ as well for any r ∈ [r∗, rn]. Clearly, this does not affect the validity of A(n).

Write K•(r) for the mapping cone of L• → Č(r). For each open subset V ⊆ Vn,
we write Km(r, V ) = H0(V,Km(r)). We write Zn−1(r) and Zn−1(r, V ) for the
kernels of Kn−1(r)→ Kn(r) and Kn−1(r, V )→ Kn(r, V ) respectively.

We consider the assertion B(n − 1): under the hypothesis of A(n), for any
Stein open set V ′ b Vn and any pair of real numbers r < r′, r, r′ ∈ [r∗, rn], there
is a continuous morphism of OV ′-modules τ : Kn−1(r)→ Zn−1(r′) such that the
following diagram commutes:

Kn−1(r) Zn−1(r′)

Zn−1(r)

τ

.

We will prove A(n) +B(n) =⇒ B(n− 1) and A(n) +B(n− 1) =⇒ A(n− 1)
in Step 3.

Here we make some preparations.
Let V be an open subset of V∗ and g ∈ H0(∆m(r)× V,O∆m(r)×V ). We expand

g =
∑
α∈Nm

aαz
α, aα ∈ H0(V,OV ).

For each compact subset Q ⊆ V and ρ ∈ (0, r), we write

‖g‖ρQ :=
∑
α∈Nm

‖aα‖L∞(Q)ρ
|α|.
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The families ‖•‖ρQ for various ρ and Q defines the Fréchet topology on H0(∆m(r)×
V,O∆m(r)×V ). When ρ = r and Q = V , the same deifnition applies, and we get a
semi-norm.

Observe that if 0 < r′ < r′′ < r, then for any g ∈ H0(∆m(r)× V,O∆m(r)×V ),
we can uniquely expand it as

g =
∑
α∈Nm

aα(z/r′′)α

with ‖aα‖L∞(Q) ≤ ‖g‖r′′Q for any compact subsetQ ⊆ V . Moreover,
∑
α∈N ‖(t/r′′)α‖r′V <

∞.
Consider a finite number of disks ∆k1(r), . . . ,∆km(r), we write

K(r, V ) :=
m∏
j=1

H0(∆kj (r)× V,O∆kj (r)×V ).

For f = (fj) ∈ K(r, V ), we let

‖f‖ρQ := max
j=1,...,m

‖fj‖ρQ

for each ρ ∈ (0, r) and a compact set Q ⊆ V . We then conclude the following:
if 0 < r′ < r′′ < r. Then there is a countable family (ei)i∈I with the following
properties: for any open subset V ′ ⊆ V , any f ∈ K(r, V ′) can be uniquely expanded
into

f =
∑
i∈I

aiei

with ai ∈ H0(V ′,OV ) and ‖ai‖L∞(Q) ≤ ‖f‖r′′Q for any compact set Q ⊆ V ′.
Moreover, ∑

i∈I
‖ei‖r′V <∞.

We consider another assertion C(n) again under the assumption of A(n): For
any Stein open V ′ b Vn+1 and any pair r, r′ ∈ [r∗, rn+1] with r′ < r, there is
a continuous OV ′-module τ : Kn(r) → Zn(r′) such that the following diagram
commutes:

Kn−1(r) Zn−1(r′)

Zn−1(r)

τ

and there is acountable family (ei)i∈I of elements in Kn(r, V ′) and r̃ ∈ (r′, r) such
that

(1) for any open subset V ′′ ⊆ V ′, any r ∈ Kn(r, V ′′) can be uniquely expanded
into

f =
∑
i∈I

aiei

with ai ∈ H0(V ′′,OV ′) and ‖ai‖Q ≤ ‖f‖r̃Q for any compact set Q ⊆ V ′′;
(2) ∑

i∈I
‖τei‖r′V ′ <∞.
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We observe that A(n+ 1) +B(n) =⇒ C(n). In fact, choose a Stein open Ṽ so
that V ′ b Ṽ b Vn+1 and real numbers r̃, ρ, ρ′ so that r′ < ρ′ < ρ < r̃ < r. By B(n),
we find τ̃ : Kn(ρ)→ Zn(ρ′) over Ṽ . Consider the commutative diagram

Kn(r) Kn(ρ) Zn(ρ′) Zn(r′)

Zn(r) Zn(ρ)

τ̃

.

We claim that τ : Kn(r) → Zn(r′) has the required properties. W ehave already
shown the first condition. The second condition follows from the fact that τ̃ is
bounded.

Step 3. We prove the induction steps.
Step 3.1. We show that A(n) +B(n) =⇒ B(n− 1).
Let r′ < r be real numbers in [r∗, rn]. Let V ′ be a realtive compact Stein open

subset of Vn. Choose a real number r′′ ∈ (r′, r) and a Stein open set V ′′ such that

V ′ b V ′′ b Vn.

Let τ : Kn(r)→ Zn(r′′) and (ei ∈ Kn(r, V ′′))i∈I be obtained by C(n). We have∑
i∈I
‖τei‖r′′V ′′ <∞.

By A(n), the map δ : Kn−1(r′′, V ′′) → Zn(r′′, V ′′) is continuous and surjective
and hence open by Banach’s open mapping theorem. We can find M > 0 and
ξi ∈ Kn−1(r′′, V ′′) with δξi = τei and ‖ξi‖r′V ′ ≤M‖τei‖r′′V ′′ . We find that∑

i∈I
‖ξi‖r′V ′ <∞.

We have a continuous OV ′ -morphism

h : Kn(r)→ Kn−1(r′),
∑
i∈I

aiei 7→
∑
i∈I

aiξi

making the following diagram commutative:

Kn(r) Zn(r)

Kn−1(r′) Zn(r′)

h

δ

.

Now τ := β − hδ : Kn−1(r) → Zn−1(r′) satisfies B(n − 1), where β : Kn−1(r) →
Kn−1(r′) is the composition of h with Kn−1(r)→ Kn(r).

Step 3.2, We show that A(n) +B(n− 1) =⇒ A(n− 1).
Let Vn−1 be a Stein open subset of V∗ so that

Q∗ ⊆ Vn−1 b Vn.

Let rn−1 ∈ (r∗, rn). By A(n), for any ρ ∈ [rn−1, rn], we have a commutative diagram

Ln Ln+1 · · ·

· · · Čn−1(ρ) Čn(ρ) Čn+1(ρ) · · ·

σn

αn

.
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For each Stein open set V ⊆ Vn, we have an epimorphism H0(V, kerαn) →
Hn(Č(ρ, V )). Over Vn−1, we need to find a free sheaf of finite rank Ln−1 and
morphisms αn−1 : Ln−1 → Ln and σn−1 : Ln−1 → Čn−1(rn−1) so that

(1) αnαn−1 = 0, σnαn−1 = δσn−1;
(2) for any Stein open V ⊆ Vn−1, the induced morphism

H0(V, kerαn/ Imαn−1)→ Hn(Č(rn−1, V ))
is an isomorphism and

H0(C, kerαn−1)→ Hn−1(Č(rn−1, V ))
is an epimorphism.

It is sufficient to construct Ln−1 and a morphism Ln−1 → Zn−1(rn−1) such
that for each Stein open subset V ⊆ Vn−1, the sum of the image of ω and the image
of δ : Č(rn−1, V )→ Ž(rn−1, V ) is Ž(rn−1, V ).

Let r′ ∈ (rn−1, rn). For any Stein open V ⊆ Vn, the restriction Č(rn, V ) →
Č(r′, V ) is a quasi-isomorphism. Therefore, the sum of the images of Žn−1(rn, V )→
Žn−1(r′, V ) and Čn−1(r′, V )→ Žn−1(r′, V ) is Žn−1(r′, V ).

Consider a Stein open set V ′ of V∗ so that
Vn−1 b V

′ b Vn

and r ∈ (r′, rn). By C(n − 1), we find a projection τ : Kn−1(r) → Zn−1(r′) over
V ′, a family (ei)i∈I of elements in Kn−1(r, V ′) and a real number r̃ ∈ (r′, r) such
that C(n− 1)(1) holds and ∑

i∈I
‖τei‖r′V ′ <∞.

As
Im(Kn−1(rn) β−→ Kn−1(r) τ−→ Zn−1(r)) ⊇ Im(Zn−1(rn) Z−→

n−1
(r′)),

it follows that the sum of the images of Kn−1(rn, V ′)
τβ−−→ Žn−1(r′, V ′) and

Čn−2(r′, V ′) → Žn−1(r′, V ′) is Žn−1(r′, V ′). By open mapping theorem, we cna
find M > 0, ξi ∈ Kn−1(rn, V ′) and ηi ∈ Čn−2(r′, V ′) so that

τξi + ∂ηi = τei

and
max

{
‖ξi‖rVn−1 , ‖ηi‖rn−1Vn−1

}
≤M‖τei‖r′V ′

for each i ∈ I. It follows that ∑
i∈I
‖ξi‖rVn−1 <∞

and ∑
i∈I
‖ηi‖rn−1Vn−1 =: M1 <∞.

Take a finite subset J ⊆ I such that∑
i∈I\J

‖ηi‖rn−1Vn−1 < 1/2.

We define Ln−1 = OJVn−1
and ω : Ln−1 → Žn−1(rn−1) is the morphism sending

the canonical generators (gj)j∈J of Ln−1 to (β′τβξj)j∈J , where β′ : Žn−1(r′) →
Žn−1(rn−1) is the restriction map.
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We need to verify that the map ω satisfies our required properties.
We first show the following: for any open set V ⊆ Vn−1 and any element

f ∈ Kn−1(r, V ), there are elements f1 ∈ Kn−1(r, V ), g ∈ H0(V,Ln−1) and η ∈
Čn−1(rn−1, V ) such that

β′τ(f) = ω(g) + δη + β′τ(f1)

and
‖f1‖rQ ≤ 2−1‖f‖r̃Q, ‖g‖Q ≤ ‖f‖r̃Q, ‖η‖rn−1Q ≤M1‖f‖r̃Q

for any compact subset Q ⊆ V .
In fact, expand f as

f =
∑
i∈I

aiei

with ai ∈ H0(V mOV ) and ‖a1‖Q ≤ ‖f‖r̃Q for any compact subset Q ⊆ V . We let
f1 =

∑
i∈I\J aiξi, g =

∑
i∈J aigi and η =

∑
i∈I aiηi, then

‖f1‖rQ ≤
∑
i∈I\J

‖ai‖Q · ‖ξi‖rQ ≤ ‖f‖r̃Q
∑
i∈I\J

‖ξi‖rQ ≤ 2−1‖f‖r̃Q

and

‖g‖Q = max
i∈J
‖ai‖Q ≤ ‖f‖r̃Q, ‖η‖rn−1Q ≤

∑
i∈I
‖ai‖Q · ‖ηi‖rn−1Q ≤M1‖f‖r̃Q.

Our claim follows.
Finally, let us vefity that ω satisfies the desired properties. Let V be a Stein open

subset of Vn−1 and f ∈ Kn−1(r, V ). By iterating the claim, we find g ∈ H0(V,Ln−1)
and η ∈ Čn−2(rn−1, V ) so that

β′τ(f) = ω(g) + ∂η.

As Č(r, V )→ Č(rn−1, V ) is a quasi-isomorphism, we find that

Žn−1(r, V )⊕ Čn−2(rn−1, V )→ Žn−1(rn−1, V )

is surjective. It follows that

H0(V,Ln−1)⊕ Čn−1(rn−1, V ) ω⊕δ−−−→ Žn−1(rn−1, V )

is surjective. So A(n− 1) holds.
Step 4. From A(−1), we have a complex of locally free OV -modules for some

open neighbourhood V of y0 in Y and a complex

0→ L−1 → L0 → · · · → Lk∗ → 0

such that
Hq(L•) ∼= (Rqf∗F)|V

for each q ∈ N. It follows that Rqf∗F is coherent. �

Corollary 12.2 (Cartan–Serre). Let X be a compact complex analytic space and
F be a coherent OX -module. Then dimCH

n(X,F) <∞ for each n ∈ N.

Proof. This follows immediately from Theorem 12.1 with Y = C0. �

Corollary 12.3. Let f : X → Y be a proper morphism. Assume that Z is an
analytic set in X, then f(Z) is an analytic set in Y .
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Proof. We may assume that Z = X. Then f(X) = Supp f∗OX . But f∗OX is
coherent by Theorem 12.1, so f(X) is an analytic set in Y . �

Corollary 12.4 (Generic flatness). Let f : X → Y be a proper morphism of
complex analytic space and F be a coherent OX -module. Assume that Y is reduced.
Then the image of the non-flat locus of F in Y is a nowhere dense analytic subset.

Proof. The problem is local on Y , we may assume that Y is a complex
model space. In particular, Y has countable basis. After further shrinking Y , we
may assume that X is covered by finitely many relative charts. In particular, X
has countable basis. The image of the flat locus of F in Y is an analytic set by
Corollary 12.3 and Theorem 11.11. It is nowhere dense by Theorem 11.13 and the
fact that Y is a Baire space. �
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