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Complex analytic local algebras

1. Introduction

In this chapter, we study the notion of complex analytic local algberas (Ana-
lytische Stellenalgebren in German) in the sense of [GR71]. Most of the materials in
this chapter are standard, but the proofs are scattered in tons of papers and books.

2. Ring of convergent power series

Definition 2.1. For any n ∈ N, let C{z1, . . . , zn} denote the subring of C[[z1, . . . , zn]]
consisting of

f =
∑
α∈Nn

aαz
α, aα ∈ C,

which is convergent in a neighbourhood of 0: there is ε > 0 such that for any
x1, . . . , xn ∈ C with |xi| < ε,

∑
α aαx

α is a convergent power series. We will write
f(0) for a0,...,0.

Definition 2.2. Fix n ∈ N and t = (t1, . . . , tn) ∈ Rn>0. For any f ∈ C[[z1, . . . , zn]]
with an expansion

f =
∑
α∈Nn

aαz
α, aα ∈ C,

we define
‖f‖t :=

∑
α∈Nn

|aα|tα ∈ [0,∞].

We define

C〈t−1z〉 = C〈t−1
1 z1, . . . , t

−1
n zn〉 := {f ∈ C[[z1, . . . , zn]] : ‖f‖t <∞} .

We write
|f | =

∑
α∈Nn

|aα|zα ∈ R[[z1, . . . , zn]].

The construction here is a special case of Example 4.13 in Banach rings.
Observe that (C〈t−1z〉, ‖ • ‖t) is a normed C-vector space. We write

(2.1) C{z1, . . . , zn} =
⋃

t∈Rn
>0

C〈t−1z〉.

We write ε : C{z1, . . . , zn} → C for the unique C-algebra homomorphism sending zi
to 0 for all i = 1, . . . , n. We call this map the augmentation map of C{z1, . . . , zn}.

Proposition 2.3. Let n ∈ N and f ∈ C[[z1, . . . , zn]]. Then the following are
equivalent:

(1) f ∈ C{z1, . . . , zn};
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6 COMPLEX ANALYTIC LOCAL ALGEBRAS

(2) There exists C,N ∈ R>0 such that

|f |(x1, . . . , xn) ≤ C
∑
α∈Nn

N |α|xα

for all x1, . . . , xn ∈ R≥0.

If the condition in (2) is satisfied for a specific C and N , we say that g admits
an upper bound of type (C,N).

Proposition 2.4 (Cauchy coefficients estimate). Let

f =
∑
α∈Nn

aαz
α ∈ C〈t−1z〉.

Then for any α ∈ Nn,

|aα| ≤
‖f‖t
tα

.

Proof. This follows from the definition. �

Proposition 2.5. (C〈t−1z〉, ‖ • ‖t) is a C-Banach algebra.

Proof. This is a special case of Example 4.13 in Banach rings. �

Lemma 2.6. For any n ∈ N, an element f ∈ C{z1, . . . , zn} is a unit if and only if
f(0) 6= 0.

Proof. In fact, as C{z1, . . . , zn} is a subring of C[[z1, . . . , zn]], a unit f in
C{z1, . . . , zn} is also a unit in C[[z1, . . . , zn]], hence f(0) 6= 0.

Conversely, assume that f ∈ C{z1, . . . , zn} and f(0) 6= 0, then

lim
t→0+

‖1− f(0)−1f‖t = 0.

So by Proposition 4.4 in the chapter Banach Rings, a−1f is a unit in C〈t−1z〉 when
t is small enough. As C〈t−1z〉 is a subring of C{z1, . . . , zn}, it follows that f(0)−1f
is invertible in C{z1, . . . , zn}, hence so is f . �

Theorem 2.7. Let m,n ∈ N.
(1) The ring C{z1, . . . , zn} is local, and the maximal ideal is given by conver-

gent power series without constant terms.
(2) Any homomorphism of C-algebras F : C{z1, . . . , zn} → C{w1, . . . , wm} is

local.

Proof. (1) This follows from Lemma 2.6 and [Stacks, Tag 00E9].
(2) Suppose it is not the case. As z1, . . . , zn generate the maximal ideal in

C{z1, . . . , zn} by (1), at least one of F (z1), . . . , F (zn) is not in the maximal ideal of
C{w1, . . . , wm}. We may assume that it is F (z1), namely

F (z1) = a+O(w)
with a ∈ C×. As F is a C-algebra homomorphism, F (z1 − a) = F (z1)− a is a unit.
This contradicts the fact that z1 − a is a unit. �

Lemma 2.8. Let m,n ∈ N and g1, . . . , gm ∈ C{w1, . . . , wn}. Assume that gi(0) = 0
for all i = 1, . . . ,m. Then the formal substitution

F : C[[z1, . . . , zm]]→ C[[w1, . . . , wn]]

https://stacks.math.columbia.edu/tag/00E9


2. RING OF CONVERGENT POWER SERIES 7

sending zi to gi restricts to a homomorphism of C-algebras

F : C{z1, . . . , zm} → C{w1, . . . , wn}.

Proof. Fix t ∈ Rm>0. Take s ∈ Rn>0 so that ‖gi‖s ≤ ti for i = 1, . . . ,m. This
is possible as gi(0) = 0. Then we claim that F sends C〈t−1z〉 to C〈s−1w〉. This
implies our lemma.

To prove the assertion, let f ∈ C〈t−1z〉, which we expand as

f =
∑
α∈Nm

aαz
α.

Then

‖F (f)‖s =
∞∑
j=0
‖
∑
|α|=j

aαg
α‖s ≤

∑
α

|aα| · ‖g‖αs ≤ ‖f‖t.

Here the first inequality follows from Proposition 2.5. �

Conversely, we have

Lemma 2.9. Let m,n ∈ N. Then any homomorphism of C-algebras

F : C{z1, . . . , zm} → C{w1, . . . , wn}

is the restriction of a substitution homomorphism

C[[z1, . . . , zm]]→ C[[w1, . . . , wn]].

In particular, F is uniquely determined by F (z1), . . . , F (zm).

Proof. Let gi = F (zi). It follows from Theorem 2.7 that gi ∈ m, the maximal
ideal in C[[w1, . . . , wn]]. Let G : C{z1, . . . , zm} → C{w1, . . . , wn} be the substitution
homomorphism sending zi to gi. Then F andG agrees on C[z1, . . . , zm]. In particular,
for any f ∈ C{z1, . . . , zm} and a ∈ N if we write f1 the sum of the homogeneous
parts of f of degree no more than a and f2 = f − f1, we see that f2 ∈ ma+1

1 , where
m1 is the maximal ideal of C{z1, . . . , zm}. It follows that (F − G)(f1) = 0 and
(F −G)(f2) ∈ ma+1, the latter is a consequence of Theorem 2.7. As a is arbitrary,
we find that

(F −G)(f) ∈
∞⋂
a=1

ma ⊆
∞⋂
a=1

ma2 ,

where m2 is the maximal ideal in C[[w1, . . . , wn]]. As C[[w1, . . . , wn]] is Noetherian,
it follows from Krull’s intersection theorem [Stacks, Tag 00IP] that

⋂∞
a=1 m

a
2 = 0, so

F = G. �

We prove a few elementary results about the structure of the ring C{z1, . . . , zn}.
In the following sections, we will develop deeper structures after developing the
Weierstrass theory.

Proposition 2.10. For any n ∈ N, the ring C{z1, . . . , zn} is an integral domain.

Proof. It suffices to observe that C{z1, . . . , zn} is a subring of C[[z1, . . . , zn]].
�

Theorem 2.11. For any n ∈ N, the ring C{z1, . . . , zn} is strictly Henselian.

https://stacks.math.columbia.edu/tag/00IP
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Proof. As the residue field of C{z1, . . . , zn} is C by Theorem 2.7, it suffices to
show that C{z1, . . . , zn} is Henselian. Take a monic polynomial f ∈ C{z1, . . . , zn}[w],
say

f = wb + f1w
b−1 + · · ·+ fb, fi ∈ C{z1, . . . , zn}.

Suppose that ā ∈ C is a simple root of f̄ = wb + f1(0)wb−1 + · · ·+ fb(0). We want
to lift find a ∈ C{z1, . . . , zn} such that f(a) = 0 and a(0) = ā. As C is algebraically
closed, we can prove a stronger result: suppose that

f̄ = (w − c1)b1 · · · (w − ct)bt

for some ci ∈ C and bi ∈ Z>0. Then we claim that there are monic polynomials
gi ∈ C{z1, . . . , zn}[w] such that ḡi = (w − ci)bi for all i = 1, . . . , t and f = g1 · · · gt.

We make an induction on t. When t = 1, there is nothing to prove, so assume
that t > 1 and the theorem has been proved for t−1. We may assume that c1 = 0. By
Weierstrass preparation theorem Theorem 4.3, we can find a Weierstrass polynomial
h ∈ C{z1, . . . , zn}[w] of degree b1 and a monic polynomial k ∈ C{z1, . . . , zn}[w]
such that f = hk. By the inductive hypothesis, we can find monic polynomials
g2, . . . , gt ∈ C{z1, . . . , zn}[w] such that ḡi = (w − ci)bi for all i = 2, . . . , t and
k = g2 · · · gt. It suffices to take g1 = h. �

3. Weierstrass division and excellence of the ring of formal power series

Definition 3.1. Let n ∈ N and f ∈ C{z1, . . . , zn}, we say f has order e in zn for
some e ∈ N if we expand f as

f =
∞∑
i=0

fiz
i
n

with fi ∈ C{z1, . . . , zn−1}, then f0(0) = · · · = fe−1(0) = 0 while fe(0) 6= 0.
If fi(0) = 0 for all i, we say f has order ∞ in zn. We will write ordzn

f for the
order of f in zn.

Theorem 3.2 (Weierstrass division theorem). Let n ∈ N and g ∈ C{z1, . . . , zn}.
Assume that ordzn

g <∞. Then for any f ∈ C{z1, . . . , zn} there is q ∈ C{z1, . . . , zn}
and r ∈ C{z1, . . . , zn−1}[w] with degzn

r < ordzn
g such that

f = qg + r.

Moreoer, q and r are uniquely determined.

Remark 3.3. The restriction ordzn g < ∞ is not too severe. In fact, given any
non-zero g, we can always find an invertible n× n matrix A, so that if we consider
gA−1 defined in the obvious way, we have ordzn

gA−1 <∞.

Proof. Fix ε ∈ (0, 1).
Choose a small enough t = (t1, . . . , tn) ∈ Rn>0 so that f, g ∈ C〈t−1z〉. This is

possible by (2.1). We expand g as

(3.1) g =
∞∑
i=0

aiz
i
n

with ai ∈ C{z1, . . . , zn−1}. We decompose g into

g = g1 + z
ordzn g
n g2, g1 =

ordzn g−1∑
i=0

aiz
i
n, g2 =

∞∑
i=ordzn g

aiz
i−ordzn g
n .
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Then our assumption implies that g2 is a unit in C{z1, . . . , zn} and by (2.1) again,
choosing t small enough, we may assume that g−1

2 ∈ C〈t−1z〉. Then

‖gg−1
2 − zordzn g

n ‖t = ‖g1g
−1
2 ‖t ≤ ‖g1‖t · ‖g−1

2 ‖t.
As limt→0+ ‖g1‖t = 0 by our assumption, taking t small enough, we can also
guarantee that

‖gg−1
2 − zordzn g

n ‖t ≤ t
ordzn g
n ε.

We define vj ∈ C〈t−1z〉 for j ∈ N as follows: v0 = f and

vj+1 = (zordzn g
n − gg−1

2 )vj,1,
where vj,1 is defined from vj in the same way g1 is defined from g.

Observe that
‖vj,1‖t ≤ t

− ordzn g
n ‖vj‖t.

It follows that
‖vj+1‖t ≤ ε‖vj‖t.

In particular,

w =
∞∑
j=0

vj

converges in C〈t−1z〉 by Proposition 2.5. Now we can define q = g−1
2 w2 and r = w1.

Again w1, w2 are defined from w using the same way g1, g2 are defined from g. It
follows that

f =
∞∑
j=0

(vj − vj+1) =
∞∑
j=0

(gg−1
2 w2 + w1) = qg + r.

We conclude the existence part.
As for the uniqueness, suppose that qg + r = 0 for some q ∈ C{z1, . . . , zn} and

r ∈ C{z1, . . . , zn−1}[zn] with deg r < ordzn
g. We want to deduce q = r = 0. Take

t ∈ Rn>0 small enough, we may assume that q, g, r ∈ C〈t−1z〉. Expand g as in (3.1),
we may assume that a−1

ordzn g
∈ C〈t−1

1 z1, . . . , t
−1
n−1zn−1〉. We can then write

a−1
ordzn g

g = z
ordzn g
n + h

for some h ∈ C〈t−1z〉, h(0) = 0. Fix ε ∈ (0, 1). Choose t small enough, we can then
guarantee that

‖h‖t ≤ tbnε.
Now

qaordzn g
z

ordzn g
n + r = −qhaordzn g

.

If we set M = ‖qaordzn g
‖tt

ordzn g
n , then we see immediately

M = ‖qaordzn g
z

ordzn g
n ‖t ≤ ‖qaordzn g

z
ordzn g
n + r‖t = ‖qhaordzn g

‖t ≤Mε.

It follows that M = 0 and hence qaordzn g
= 0. It follows that q = 0 by Proposi-

tion 2.10. Therefore, r = 0 as well. �

Proposition 3.4. Let n ∈ N and g ∈ C{z1, . . . , zn}. Assume that ordzn
g < ∞.

Then there is a canonical isomorphism
C{z1, . . . , zn}/gC{z1, . . . , zn}

∼−→ C{z1, . . . , zn−1}ordzn g

of C{z1, . . . , zn−1}-modules.
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Proof. Given any f ∈ C{z1, . . . , zn}, we consider the Weierstrass division
f = qg + r as in Theorem 3.2. Write

r = r0 + r1zn + · · ·+ rordzn g−1z
ordzn g−1
n .

Then we map f to (r0, . . . , rordzn g−1). Clearly, this defines the isomorphism as in
the proposition. �

As an application of Weierstrass theory, we prove a few results about the
structure of the ring C{z1, . . . , zn}.

Theorem 3.5. For any n ∈ N, the ring C{z1, . . . , zn} is a noetherian integral
domain.

Proof. We make an induction on n to prove that C{z1, . . . , zn} is noetherian.
The case n = 0 is trivial. So assume n > 0 and that the theorem has been proved
for all smaller values of n. Let f ∈ C{z1, . . . , zn} be a non-zero element. It suffices
to show that C{z1, . . . , zn}/fC{z1, . . . , zn} is noetherian. By Remark 3.3, we may
assume that ordzn

f <∞. According to Proposition 3.4, we know that
C{z1, . . . , zn}/fC{z1, . . . , zn} ∼= C{z1, . . . , zn−1}c

for some c ∈ N as C{z1, . . . , zn−1}-modules. By the inductive hypothesis and Hilbert
basis theorem, the quotient ring is noetherian. �

Proposition 3.6. Let n ∈ N. Then the m-adic completion of the ring C{z1, . . . , zn}
is canonically isomorphic to C[[z1, . . . , zn]], where m is the maximal ideal of
C{z1, . . . , zn}.

Proof. Let m1 be the maximal ideal in C[z1, . . . , zn]. It suffices to observe
that we have canonical identifications

C[z1, . . . , zn]/mn1
∼−→ C{z1, . . . , zn}/mn

for any n ∈ N. So in particular, the m-adic completion of C{z1, . . . , zn} is isomorphic
to the m1-adic completion of C[z1, . . . , zn], which is C{z1, . . . , zn}. �

Corollary 3.7. Let n ∈ N. Then the Krull dimension of C{z1, . . . , zn} is n.

Proof. This follows from Proposition 3.6 and [Stacks, Tag 07NV]. �

Theorem 3.8. For any n ∈ N, the ring C{z1, . . . , zn} is regular. In particular, it is
a UFD.

Proof. We have computed that the completion of C{z1, . . . , zn} is C[[z1, . . . , zn]]
in Proposition 3.6. The regularity of C{z1, . . . , zn} follows from the regularity of the
completion by descent [Stacks, Tag 07NY]. It is a UFD by Auslander–Buchsbaum
theorem. �

Proposition 3.9. Let A be a complex analytic local algebra. Then A is an excellent,
strictly Henselian.

Proof. This follows from the corresponding results in Theorem 3.11 and
Theorem 2.11. �

We recall the following criterion.

Theorem 3.10. Let k be a field of characteristic 0 and R be a regular ring containing
k. Suppose that there is n ∈ N such that

https://stacks.math.columbia.edu/tag/07NV
https://stacks.math.columbia.edu/tag/07NY
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(1) for any maixmal ideal m of R, the residue R/m is algebraic over k and the
height of m is n;

(2) there exists D1, . . . , Dn ∈ Derk(R) and x1, . . . , xn ∈ R such that Dixj =
δij for all i, j = 1, . . . , n.

Then R is excellent.

Proof. We refer to [Mat80, Theorem 102]. �

Theorem 3.11. For any n ∈ N, the ring C{z1, . . . , zn} is excellent.

Proof. This is an immediate consequence of Theorem 3.10. �

4. Weierstrass preparation theorem

Definition 4.1. Let n ∈ Z>0. A Weierstrass polynomial in n variables is a monic
polynomial

ω = zbn + a1z
b−1
n + · · ·+ ab ∈ C{z1, . . . , zn−1}[zn]

such that ai(0) = 0 for all i = 0, . . . , b.

Observe that by definition, ordzn ω = b.

Lemma 4.2. Let ω ∈ C{z1, . . . , zn−1}[zn] be a Weierstrass polynomial and g ∈
C{z1, . . . , zn}. Assume that ωg ∈ C{z1, . . . , zn−1}[zn], then g ∈ C{z1, . . . , zn−1}[zn].

Proof. By the division theorem of polynomial rings, we can write
ωg = qω + r

for some q, r ∈ C{z1, . . . , zn−1}[zn], degzn
r < degzn

ωg. But we can write ωg = ω ·g.
From the uniqueness part of Theorem 3.2, we know that q = g, so g is a polynomial
in zn. �

Theorem 4.3 (Weierstrass preparation theorem). Let n ∈ Z>0 and g ∈
C{z1, . . . , zn}. Assume that ordzn

g < ∞, then there is a unique Weierstrass
polynomial ω ∈ C{z1, . . . , zn−1}[zn] of degree ordzn

g and a unit e ∈ C{z1, . . . , zn}
such that g = eω.

Moreover, if g ∈ C{z1, . . . , zn−1}[zn], then so is e.

Proof. By Theorem 3.2, we can write

z
ordzn g
n = qg + r

for q ∈ C{z1, . . . , zn} and r ∈ C{z1, . . . , zn−1}[zn] with degzn
r < ordzn g. Write

g =
∑∞
i=0 aiz

i
n for some ai ∈ C{z1, . . . , zn−1}. Define ḡ =

∑∞
i=0 ai(0)zin, set

e′ := z
− ordzn g
n ḡ ∈ C[zn]. Then e′(0) 6= 0. Similarly define q̄ and r̄, then we have

z
ordzn g
n = q̄ḡ + r̄.

Or
1 = q̄e′ + r̄.

From the uniqueness part of Theorem 3.2, we conclude that q̄ = e′−1, namely q is a
unit. Now

g = q−1(zordzn g
n − r)

is the desired decomposition. When g ∈ C{z1, . . . , zn−1}[zn], so is e, as can be seen
from Lemma 4.2.
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It remains to prove the uniqueness: if e is a unit in C{z1, . . . , zn}, ω, ω′ are two
Weierstrass polynomials and eω = ω′, then we need to show that e = 1. It follows
from Lemma 4.2 that e is a polynomial in zn. Setting z1 = · · · = zn−1 = 0, we find
that ē is a power of zn. As e is a unit, it follows that ē = 1. On the other hand,
clearly e is a monic polynomial, it follows that e = 1. �

Definition 4.4. Let n ∈ Z>0 and g ∈ C{z1, . . . , zn}. Assume that ordzn
g < ∞.

The Weierstrass polynomial constructed in Theorem 4.3 is called the Weierstrass
polynomial of g.

Corollary 4.5. Let n ∈ Z>0 and g ∈ C{z1, . . . , zn}. Assume that ordzn
g < ∞.

Let ω be the Weierstrass polynomial of g. Then the injection
C{z1, . . . , zn−1}[zn]→ C{z1, . . . , zn}

induces an isomorphism of C-algebras
C{z1, . . . , zn−1}[zn]/ωC{z1, . . . , zn−1}[zn]→ C{z1, . . . , zn}/gC{z1, . . . , zn}.

Proof. The morphism is surjective by Theorem 3.2 and injective by Lemma 4.2.
�

5. Complex analytic local algebras

Definition 5.1. A complex analytic local algebra is a C-algebra A such that A 6= 0
and there exists some n ∈ N and an ideal I in C{z1, . . . , zn} such that

A ∼= C{z1, . . . , zn}/I
as C-algebras. The augmentation map of C{z1, . . . , zn} induces a C-algebra homo-
morphism ε : A→ C called the augmentation map of A.

A morphism between complex analytic local algebras A and B is a C-algebra
homomorphism A→ B.

The category of complex analytic local algebras is denoted by C-LA.

Proposition 5.2. Let A be an object in C-LA and f : B → C be a morphism in
C-LA. Then

(1) A is local with residue field C.
(2) f is a local homomorphism.

Proof. (1) This follows immediately from Theorem 2.7.
(2) This follows from the same arguments as Theorem 2.7 (2). �

Observe that a complex analytic local algebra is always local with residue field
C and a morphism in C-LA is always a local homomorphism. We will write mA for
the maximal ideal in A.

Lemma 5.3. Let A be a complex analytic local algebra and n ∈ N, then there is a
natural bijection

HomC-LA(C{z1, . . . , zn}, A) ∼= mnA
sending a morphism f to (f(z1), . . . , f(zn)).

Proof. As a morphism f : C{z1, . . . , zn} → A is necessarily local, we see that
f(zi) ∈ A for all i = 1, . . . , n. So the map HomC-LA(C{z1, . . . , zn}, A) → mnA is
well-defined. Conversely, given w1, . . . , wn ∈ mA, we claim that there is a unique
morphism f : C{z1, . . . , zn} → A in C-LA sending zi to wi.
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The uniqueness follows from Lemma 2.9, so let us consider only the existence.
Let C{z1, . . . , zm} → A be a surjective morphism. Lift wi to w′i ∈ C{z1, . . . , zm}, it
suffices to construct a morphism C{z1, . . . , zn} → C{z1, . . . , zm} sending zi to w′i.
So we may assume that A = C{z1, . . . , zm}. In this case, the result follows from
Lemma 2.8. �

Theorem 5.4. Let ϕ : A→ B be a morphism of complex analytic local algebras.
Then the following are equivalent:

(1) B is a quasi-finite over A;
(2) B is finite over A.

Reproduce the part on SGA1 about quasi-finite noetherian local ring homomor-
phisms

Proof. (2) =⇒ (1): This is trivial.
(1) =⇒ (2): It suffices to show that mAB is an ideal of definition of B.
Step 1. We reduce to the case where A = C{t1, . . . , tm} and B = {x1, . . . , xn}

for some m,n ∈ N.
Write A = C{t1, . . . , tm}/I for some m ∈ N and some ideal I. Then B is

finite (resp. quasi-finite) over A if and only if it is finite (resp. quasi-finite) over
C{t1, . . . , tm}. So we may assume that A = C{t1, . . . , tm}.

Write B = C{x1, . . . , xn}/(f1, . . . , fp) for some n, p ∈ N and f1, . . . , fp ∈
C{x1, . . . , xn}. Let u1, . . . , um be the images of t1, . . . , tm in B. By assump-
tion, (u1, . . . , um) is an ideal of definition of B. Lift u1, . . . , um to v1, . . . , vm ∈
C{x1, . . . , xn}. We define a C-algebra homomorphism

Φ : C{t1, . . . , tm, s1, . . . , sp} → C{x1, . . . , xn}

sending ti to vi and sj to fj for i = 1, . . . ,m and j = 1, . . . , p. The existence of Φ is
guaranteed by Lemma 5.3.

We have a commutative diagram

C{t1, . . . , tm, s1, . . . , sp} C{x1, . . . , xn}

A B

Φ

ϕ

.

In order to show that ϕ is finite, it suffices to show that Φ is. But we know that Φ
is also quasi-finite, so we have finished the reduction.

Step 2. Assume that we have done the reduction as in Step 1. We will prove
the theorem.

Take r ∈ Z>0 so that
mrB ⊆ mAB.

For i = 1, . . . , n, we can then write

(5.1) xri =
m∑
j=1

ujλji, λ1i, . . . , λmi ∈ B,

where uj is the image of tj in B for j = 1, . . . ,m.
We claim that xα with α = (α1, . . . , αm) ∈ Nm satisfying αj < r for all

j = 1, . . . ,m generates B as A-module. We temporarily write
∑′
α∈Nm for summation

over such indices.



14 COMPLEX ANALYTIC LOCAL ALGEBRAS

Let
f =

∑
α∈Nm

aαx
α, aα ∈ C

be a general element in B. We want to express f as an A-linear combination of the
desired basis. Let

ρ(f) :=
′∑

α∈Nm

aαx
α.

Then we can write

f =ρ(f) +
n∑
i=1

xriσi(f),

σi(f) =
∑

α=(α1,...,αm)∈Nm

α1<r, ,αi−1<r,αi≥r

aαx
α1
1 · · ·x

αi−1
i−1 x

αi−r
i x

αi+1
i+1 · · ·x

αn
n for i = 1, . . . , n.

Substituting (5.1), we find

(5.2) f = ρ(f) +
m∑
j=1

ujsj(f), sj(f) =
n∑
i=1

λjiσi(f) for j = 1, . . . ,m.

Applying (5.2) to sj(f), we obtain that

sj(f) = ρ(sj(f)) +
m∑
j′=1

uj′sj′(sj(f))

for j = 1, . . . ,m. Substituting back to (5.2), we find

f = ρ(f) +
m∑
j=1

ujρ(sj(f)) +
m∑

j1,j2=1
uj1uj2sj1(sj2(f)).

By iterating the same procedure, we find that for each p ∈ N,

f = ρ(f) +
m∑
j1=1

uj1ρ(sj1(f)) + · · ·+
m∑

j1,...,jp=1
uj1 · · ·ujp

ρ(sj1 · · · sjp
(f)) +Rp,

where

Rp =
m∑

j1,...,jp,jp+1=1
uj1 · · ·ujp+1sj1 · · · sjp

(f) ∈ mp+1
B .

Now we can write f −Rp as
′∑

α∈Nm

u(p)
α (f)xα, u(p)

α (f) ∈ C[u1, . . . , um]

is a polynomial of degree p. Moreover, we can lift u(p)
α (f) to a polynomial v(p)

α (f) of
degree p in t1, . . . , tm and v(p+1)

α (f)− v(p)
α (f) is homogeneous of degree p+ 1. So

we can define
vα(f) := lim

p→∞
v(p)
α (f)

in C[[t1, . . . , tm]] and

f =
′∑

α∈Nm

ϕ(v(p)
α (f))xα
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in C[[x1, . . . , xn]]. It suffices to show that vα(f) ∈ A.
We first reduce to the case λji admits an upper bound of type (1, 1) for all

j = 1, . . . ,m, i = 1, . . . , n.
We can take (C,N) ∈ Z2

>0 so that λji admits an upper bound of type (C,N)
for all j = 1, . . . ,m, i = 1, . . . , n. Define automorphisms ψ : B → B and χ : A→ A
by

ψ(xi) = N−1xi, χ(tj) = CNrtj

for all j = 1, . . . ,m, i = 1, . . . , n. Let ϕ′ : A→ B be ψ ◦ ϕ ◦ χ. Denote u′j = ϕ′(tj)
for j = 1, . . . ,m and

xri =
m∑
j=1

u′jλ
′
ji

for all i = 1, . . . , n. Then λ′ji admits an upper bounded of type (1, 1). So we can
deduce the results for ϕ from the results for ϕ′.

Now after the reduction, we observe that for c1, . . . , cn ∈ R≥0,

|sj(f)|(c1, . . . , cn) ≤
n∑
i=1
|λji|·|σi(f)| ≤

n∑
i=1

∑
γ∈Nn

cγ
∑

β∈Nn//β1,...,βi−1<r,βi≥r

|aβ |cβc−ri


for j = 1, . . . ,m. Take (D,M) ∈ Z2

>0 such that f admits an upper bound of type
(D,M). Then we can futher bound the coefficients of cα in |sj(f)|(c1, . . . , cn) by
m∑
i=1

∑
r≤βi≤αi+r

0≤βq≤αq for q 6=i

|aβ | ≤ nD
(
M |α|+r + nM |α|+r−1 + · · ·+ n|α|Mr

)
= DnMrM

|α|+1 − n|α|1
M − n

.

We may take M ≥ n + 1, so that the last expression is bounded from above
by DnMr+1+|α|. Then we find that sj(f) admits an upper bound of type
(DnMr+1,M) for all j = 1, . . . ,m. So sj1 · · · sjp

(f) admits an upper bound of
type ((DnMr+1)p,M) for all p ∈ N and j1, . . . , jp = 1, . . . ,m. It follows that vα(f)
admits an upper bound of type (DM |α|, nMr+1) for all α = (α1, . . . , αm) ∈ Nm,
αi = 0, . . . , r − 1 for i = 1, . . . ,m. We conclude by Proposition 2.3.

�

Corollary 5.5. Let A be a complex local analytic algebra, n ∈ N and x1, . . . , xn
a system of parameters in A. Let ϕ : C{X1, . . . , Xn} → A be the C-algebra
homomorphism sending Xi to xi for i = 1, . . . , n. Then

(1) ϕ is surjective if and only if x1, . . . , xn generates mA;
(2) ϕ is injective if and only if dimA = n;
(3) ϕ is bijective if and only if A is a regular local ring and x1, . . . , xn is a

regular system of parameters.

The existence of ϕ is guaranteed by Lemma 5.3.

Proof. Observe that A is quasi-finite over C{X1, . . . , Xn}, hence finite by
Theorem 5.4.

(1) The direct implication is trivial. Assume that x1, . . . , xn generates mA.
Then ϕ is surjective modulo the maximal ideal of C{X1, . . . , Xn}. It follows from
Nakayama’s lemma that ϕ is surjective.

(2) As ϕ is finite, it is integral. By going up, ϕ is injective if and only if
dimC{X1, . . . , Xn} = dimA.
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(3) This follows from (1) and (2). �

Lemma 5.6. Let A be an integral complex analytic local algebra and B be a finite
torsion-free A-algebra. Then for any maximal ideal m of B, Bm is equidimensional
of dimension dimA.

Proof. By Theorem 2.11, Bm is finite over A by [Stacks, Tag 04GG](10). It
is clearly torsion-free as A-module. So we may assume that B is local. We will
identify A with a subring of B.

Let p be a minimal prime ideal of B and q = p∩A. Then Bp is finite torsion-free
over Aq and

pBp ∩Aq = qAq

is the maximal ideal in Aq. By going-up, pBp is the maximal ideal in Bp. As it is
clearly minimal, we find that dimBp = 0. So dimAq = 0. So p is necessarily the
minimal prime ideal 0 in A. Namely, p ∩A = 0. But then B/p is finite over A and
A→ B/p is injective. In particular, dimB/p = dimA. �

Definition 5.7. Let A1, A2 be complex analytic local algebras, an analytic tensor
product of A1 and A2 is a complex analytic local algebra A together with morphisms
A1 → A and A2 → A such that for any complex analytic local algebra C, the
induced map

HomC-LA(A,C)→ HomC-LA(A1, C)×HomC-LA(A2, C)

is bijective.
As analytic tensor product is unique up to unique isomorphism, so we can

choose a specific analytic tensor product A1⊗A2 and call it the analytic tensor
product of A1 and A2.

More generally, let B be a complex analytic local algebra and A1, A2 ∈ C-LA\B
(the under-slice of B). An analytic tensor product of A1 and A2 over B is a complex
analytic local algebra A over B together with morphisms A1 → A and A2 → A in
C-LA\B such that the induced map

HomC-LA(A,C)→ HomC-LA\B
(A1, C)×HomC-LA\B

(A2, C)

is bijective.
As analytic tensor product is unique up to unique isomorphism, so we can

choose a specific analytic tensor product A1⊗BA2 and call it the analytic tensor
product of A1 and A2 over B.

By definition, there are natural morphisms

A1 ⊗A2 → A1⊗A2.

The simplest example is

Lemma 5.8. For any m,n ∈ N, we have

C{z1, . . . , zm}⊗C{z1, . . . , zn} ∼= C{z1, . . . , zm+n}

as complex analytic local algebras.

Proof. This is a simple consequence of Lemma 5.3 and Yoneda’s lemma. �

https://stacks.math.columbia.edu/tag/04GG
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Lemma 5.9. Assume that fi : Ai → Bi are surjective (i.e. the underlying
homomorphisms of algebras are surjective) morphisms in C-LA for i = 1, 2. Let
Ii be the kernel of fi as homomorphisms of algebras. If A1⊗A2 exists, then so is
B1⊗B2 and

B1⊗B2 ∼= A1⊗A2/(I1 ⊗ 1 + 1⊗ I2)(A1⊗A2).

Proof. That A1⊗A2/(I1 ⊗ 1 + 1 ⊗ I2)(A1⊗A2) is a complex analytic local
algebra follows from our assumption. That it represents B1⊗B2 follows from general
abstract nonsense. Include details �

Corollary 5.10. Let A1, A2 be complex analytic local algebras, then A1⊗A2 exists.

Proof. This is a consequence of Lemma 5.9 and Lemma 5.8. �

Theorem 5.11. Let A1, A2 be complex analytic local algebras, then there are
natural isomorphisms

A1⊗̂CA2
∼−→ (A1⊗A2)̂.

Here on the right-hand side, we take the adic completion with respect to the
maximal ideal in A1⊗A2.

Proof. Observe that the existence of a morphism A1⊗̂A2 → (A1⊗A2)̂ follows
from the universal property.

When A1 and A2 are both rings of convergent power series, this result follows
from Lemma 5.8 and Proposition 3.6.

In general, represent
A1 = C{z1, . . . , zm}/I1, A2 = C{w1, . . . , wn}/I2.

Then we have a commutative diagram

C{z1, . . . , zm}⊗̂CC{w1, . . . , wn} (C{z1, . . . , zm}⊗C{w1, . . . , wn})̂

A1⊗̂CA2 (A1⊗A2)̂

.

We already know tha the upper arrow is an isomorphism, it suffices to identify
the kernels of the two vertical maps. The kernel of the right vertical map before
completion is given by Lemma 5.9, namely, the ideal generated by I1 ⊗ 1 + 1⊗ I2.
Accordingly, the kernel of the right vertical map is the closure of the ideal generated
by I1 ⊗ 1 + 1 ⊗ I2 by [Stacks, Tag 0ARZ]. On the other hand, it follows from
[Stacks, Tag 0ARZ] that the kenrel of the left vertical map is the closure of the ideal
generated by I1 ⊗ 1 + 1⊗ I2. We conclude. �

Theorem 5.12. Let B be a complex analytic local algebra and A1, A2 ∈ C-LA\B .
Then A1⊗BA2 exists. Moreover, there is a natural identification of adic rings

A1⊗̂BA2
∼−→ (A1⊗BA2)̂.

Here on the right-hand side, we take the adic completion with respect to the
maximal ideal in A1⊗BA2.

Proof. Observe that we have a natural map B⊗B → B: at the level of functor
of points, we simply define

hB → hB⊗B

https://stacks.math.columbia.edu/tag/0ARZ
https://stacks.math.columbia.edu/tag/0ARZ
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by sending an arrow f : B → C in C-LA to (f, f) ∈ hB⊗B(C). We claim that
B⊗B → B is surjective. In fact, it is easy to construct a section B → B⊗B, which
at the level of functor of points, sends a pair of morphisms (f1 : B → C, f2 : B → C)
in C-LA to f1.

It follows from general abstract nonsense that the tensor product
(A1⊗A2)⊗B⊗BB

represents A1⊗BA2. So we are reduced to the case where B → A2 is surjective. Let
I denote the kernel of the map B → A2. We denote by J the image of I in A1. It
is obvious that A1/JA1 is the desired tensor product.

In order to compute the completed local ring, we similarly reduce to the case
where B → A2 is surjective with kernel I. In this case, A1⊗BA2 is the quotient
of A1 by the ideal generated by I. So after taking completion, (A1⊗BA2)̂ is the
quotient of Â1 by the closed ideal generated by I by [Stacks, Tag 0ARZ]. On the
other hand, A1⊗̂BA2 is also the quotient of Â1 by the closed ideal generated by I
by [Stacks, Tag 0AMZ]. We conclude. �

Remark 5.13. One should remark that in general, the completed tensor products
of local rings are not local.

https://stacks.math.columbia.edu/tag/0ARZ
https://stacks.math.columbia.edu/tag/0AMZ
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