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Morphisms between complex analytic spaces

1. Introduction

2. Open morphisms

Definition 2.1. Let f : X → Y be a morphism of complex analytic spaces and
x ∈ X. We say f is open at x ∈ X if for any neighbourhood U of x in X, f(U) is a
neighbourhood of f(x) in Y .

Proposition 2.2. Let f : X → Y be a morphism of complex analytic spaces.
Assume that f is open at x ∈ X, then the kernel of f#

x : OY,f(x) → OX,x is
nilpotent.

The converse fails.

Proof. Let gf(x) ∈ OY,f(x) be an element in the kernel of f#
x . Up to shrinking

Y , we may spread gf(x) to g ∈ OY (Y ). Then f∗g vanishes in a neighbourhood
of x in X. As f is open at x, g vanishes in the neighbourhood f(U) of f(x). By
Corollary 3.18 in Constructions of complex analytic spaces, gf(x) is nilpotent. �

3. Quasi-finite morphisms

Definition 3.1. Let f : X → Y be a morphism of complex analytic spaces. We say
f is quasi-finite at x ∈ X if x is isolated in f−1(f(x)). We say f is quasi-finite if f
is quasi-finite at all x ∈ X.

This definition is purely topological. We will show that it is equivalent to an
analytic definition.

Proposition 3.2. Let f : X → Y be a morphism of complex analytic spaces and
x ∈ X. Then the following are equivalent:

(1) f is quasi-finite at x ∈ X;
(2) OX,x is quasi-finite over OY,f(x);
(3) OX,x is finite over OY,f(x).

Proof. (1) ⇔ (2): By Corollary 3.16 in Constructions of complex analytic
spaces, f is quasi-finite at x ∈ X if and only if OXf(x),x = OX,x/mf(x)OX,x is
artinian. In other words, OX,x/mf(x)OX,x is finite-dimensional over C. The latter
is equivalent to that OX,x is quasi-finite over OY,f(x).

(2)⇔ (3): This follows from Theorem 5.4 in Complex analytic local algebras. �

4. Finite morphisms

Definition 4.1. A morphism of complex analytic spaces f : X → Y is finite if its
underlying map of topological spaces is topologically finite.
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6 MORPHISMS BETWEEN COMPLEX ANALYTIC SPACES

We say a morphism of complex analytic spaces f : X → Y is finite at x ∈ X if
there is an open neighbourhood U of x in X and V of f(x) in Y such that f(U) ⊆ V
and the restriction U → V of f is finite.

Let S be a complex analytic space. A finite analytic space over S is a finite
morphism f : X → S of complex analytic spaces. A morphism between finite
analytic spaces over S is a morphism of complex analytic spaces over S.

Proposition 4.2. Let n ∈ N and D be an open neighbourhood of 0 in Cn. Let
X be a closed subspace of D which intersections {(0, . . . , 0)} × C at and only at 0.
Then there is a connected open product neighbourhood B ×W ⊆ Cn−1 × C of 0
in D such that the projection B ×W → B induces a finite morphism h : X ′ → B
with X ′ = X ∩ (B ×W ).

Proof. We will denote the coordinates on Cn−1 × C as (z, w).
Let I be the ideal of X in D. By our assumption, we can choose f0 ∈ I0

such that degw f0 < ∞ and f0(0) = 0. By Theorem 4.3 in Complex analytic
local algebras, we can find a Weierstrass polynomial ω0 = wb + a1w

b−1 + · · ·+ ab ∈
C{z1, . . . , zn−1}[w] such that f0 = eω0 for some unit e in C{z1, . . . , zn}. We choose a
product neighbourhood B×W ⊆ Cn−1×C of 0 in D such that ω0 can be represented
by ω ∈ OCn−1(B)[w] with ω|B×W ∈ I(B ×W ). Let π : A→ B be the Weierstrass
map defined by ω. Then π is finite by Theorem 6.2 in The notion of complex
analytic spaces. Up to shrinking B and W , we may assume that A ∩ (B ×W )→ B
is finite as well. Set X ′ := X ∩ (B ×W ). The restriction h : X ′ → B of π is then
finite. �

Corollary 4.3. Let n, k ∈ N and D be an open neighbourhood of 0 in Cn. Let X
be a closed subspace of D which intersections {(0, . . . , 0)} × Ck at and only at 0.
Then there is a connected open product neighbourhood B ×W ⊆ Cn−k × Ck of 0
in D such that the projection B ×W → B induces a finite morphism h : X ′ → B
with X ′ = X ∩ (B ×W ).

Proof. This follows from a repeted application of Proposition 4.2. �

Proposition 4.4. Let f : X → Y be a morphism of complex analytic spaces and
x ∈ X. Then the following are equivalent:

(1) f is quasi-finite at x;
(2) f is finite at x.

Proof. (2) =⇒ (1): This follows from This follows from Proposition 4.5 in
Topology and bornology.

(1) =⇒ (2): Write y = f(x). The assertion is local on both X and Y . So
we may assume that U and V are complex model spaces in domains W ⊆ Ck

and B ⊆ Cd respectively with x = 0 and y = 0. Moreover, we may assume that
{x} = f ′−1(y). We have the following commutative diagram:

U × V W ×B

U Γf

V B

f ′

,
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where Γf ′ denotes the graph of f ′ : U → V . As {x} = f ′−1(y), we have Ck × {0}
intersects Γf only at the origin. By Corollary 4.3, up to shrinking W and B, we
may guarantee that the projection W ×B → B induces a finite morphism Γf → B
and the pushforward under this map preserves coherence. Observe that U → Γf is
a biholomorphism, we conclude that f ′ is finite. �

Corollary 4.5. Let f : X → Y be a morphism of complex analytic spaces. The
following are equivalent:

(1) f is finite;
(2) f is quasi-finite and proper.

Proof. (1) =⇒ (2): This follows from Proposition 4.4.
(2) =⇒ (1): This follows from Proposition 4.5 in Topology and bornology. �

Corollary 4.6. Let f : X → Y be a morphism of complex analytic spaces. Then
the set

{x ∈ X : f is quasi-finite at x}
is open.

Proof. This follows from Proposition 4.4. �

Proposition 4.7. Let f : X → Y be a morphism of complex analytic spaces and
x ∈ X. Let n = dimx f

−1(f(x)). Then there is an open neighbourhood U of x in
X and a commutative diagram

U Y × Cn

Y

f |U ,

where the right vertical morphism is the projection such that U → Y × Cn is finite
at x.

Proof. Take an open neighbourhood U ′ of x in f−1(f(x)) and a morphism
U ′ → Cn finite at x. For example, we can take the morphism induced by the
spreading of a system of parameters f1,x, . . . , fn,x ∈ OU ′,x. Up to shrinking U ′, we
may assume that there is an open neighbourhood U of x in X with U ∩f−1(f(x)) =
U ′ and a morphism U → Cn extending U ′ → Cn. The induced morphism U →
Y × Cn satisfies our requirements. �

Theorem 4.8. Let S be a complex analytic space. Then the functor Specan
S defines

an anti-equivalence from the category of finite OS-algebras to the category of finite
analytic spaces over S.

Proof. We first observe that the functor is well-defined. This follows from
Corollary 3.8 in Constructions of complex analytic spaces.

The functor is fully faithful by Proposition 2.10 in Constructions of complex
analytic spaces. Suppose that f : X → S is a finite morphism of complex analytic
spaces. We need to show that X is isomorphic to Specan

S A for some finite OS-algebra
A in C-An/S .

By Proposition 2.8 in Constructions of complex analytic spaces, we necessarily
have A ∼= f∗OX . So we need to show that the natural morphism Specan

S f∗OX → X
over S is an isomorphism. The problem is local on S.
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Fix s ∈ S. Write x1, . . . , xn for the distinct points in f−1(s). Up to shrinking
S, we may assume that X is the disjoint union of V1, . . . , Vn, where Vi is an open
neighbourhood of xi in X. We need to show that X has the form Specan

S B for some
OS-algebra B in C-An/S .

It suffices to handle each Vi separately, so we may assume that f−1(s) = {x}
consists of a single point. Then OX,x is finite over OS,s by Proposition 3.2. Up to
shrinking S, we may assume that OX,x spreads out to a finite OS-algebra B. Let
X ′ = Specan

S B. There is a unique point x′ of X ′ over s and X ′x′ is isomorphic to
Xx over Ss. By Lemma 4.2 in Topology and bornology, up to shrinking S, we may
assume that X is isomorphic to X ′ over S. We conclude. �

Corollary 4.9. Let f : X → Y be a finite morphism of complex analytic spaces
andM be a coherent sheaf of OX -modules, then f∗M is coherent. Moreover, f∗ is
exact from Coh(OX) to Coh(OY ).

Proof. This follows from Corollary 2.9 in Constructions of complex analytic
spaces and Theorem 4.8. �

Corollary 4.10. Let X be a reduced complex analytic space. Then
(1) X̄ is normal;
(2) p : X̄ → X is finite and surjective;
(3) There is a nowhere dense analytic set Y in X such that p−1(Y ) is nowhere

dense in X̄ and the morphism X̄ \ p−1(Y ) → X \ Y induced by p is an
isomorphism.

Conversely, these conditions determines X̄ up to a unique isomorphism in C-An/X .

Proof. These properties are established in Proposition 7.8 in Local properties
of complex analytic spaces. We need to prove the uniqueness.

Let p : X ′ → X be a morphism satisfying the three conditions. We need to
show that X ′ is canonically isomorphic to X̄ in C-An/X . By (2) and Theorem 4.8,
it suffices to show that p∗OX′ is canonically isomorphic to ŌX . By (1), and the
universal property of normalization, there is a canonical morphism

p∗OX′ → ŌX

of OX -algebras. We will show that this map is an isomorphism.
The problem is local. Let x ∈ X. By (3) and Corollary 3.14 in Constructions

of complex analytic spaces, up to shrinking X, we can find f ∈ OX(X) such that
f(y) = 0 for all y ∈ Y and fx is a non-zero divisor in (p∗OX′)x. Up to shrinking X,
we may assume that fy is a non-zero divsior in (p∗OX′)y for all y ∈ X. By (3), we
have

OX |X\Y → (p∗OX′)|X\Y
is an isomorphism. It follows that

fp∗OX′ → OX

is injective. We then have an injective homomorphism:

p∗OX′ → OX
×f−−→ OX

×f−1

−−−→ OX [f−1].
For each y ∈ X, we deduce that (p∗OX′)y is in the total ring of fraction of OX,y[f−1

y ].
But (p∗OX′)y is finite and integral over OX,y, so is isomorphic to OX,y as OY,y-
algebras. �
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Corollary 4.11. Let f : X → Y be a finite morphism of complex analytic spaces.
Assume that x ∈ X is a point such that (f∗OX)f(x) is torsion-free as an OY,f(x)-
module and Y is integral at f(x). Then f is open at x.

Proof. If not, we can choose open neighbourhoods U of x in X and V of
y := f(x) in Y such that f(U) ⊆ V such that the induced morphism g : U → V is
finite and f(U) is not a neighbourhood of y in Y . Up to shrinking Y , we can find
h ∈ OY (Y ) such that hy 6= 0 while h vanishes on f(U). Observe that f(U) is an
analytic set in Y by Corollary 4.9. It follows from Corollary 3.18 in Constructions
of complex analytic spaces that there is t ∈ Z>0 such that

ht
y(g∗OU )y = 0.

As OY,y is integral, this implies that (g∗OU )y is torsion as an OY,f(x)-module. This is
a contradiction, as (f∗OX)y as an OY,f(x)-module is torsion-free by assumption. �

Lemma 4.12. Let X be an integral complex analytic space andM be a coherent
sheaf of OX -modules. Then

{x ∈ X :M is torsion-free at x}
is co-analytic in X.

Proof. It suffices to show that Supp T (M) is an analytic set in X. As X is
integral, T (M) is just the kernel of the morphismM→M∨∨. �

Corollary 4.13. Let f : X → Y be a finite morphism of complex analytic spaces.
Assume that Y is integral. Let x ∈ X be a point such that X is integral at x
and f is open at x, then there is an open neighbourhood U of x in X such that
f |U : U → Y is open.

Proof. Let y = f(x). The problem is local on Y . By Proposition 4.4, we may
assume that {x} = f−1(y). By Corollary 4.9, f∗OX is coherent. By Lemma 4.12, it
suffices to show that it is torsion-free.

Observe that (f∗OX)y
∼−→ OX,x. By Proposition 2.2, f#

x : OY,y → OX,x is
injective. As OX,x is integral by our assumption, we conclude. �

Lemma 4.14. Let f : X → Y be a finite morphism of reduced complex analytic
spaces and x ∈ X. Assume that x ∈ X, then there is a non-zero divisor h ∈ mf(x)
such that f#

x (h) is a non-zero divisor in OX,x.

Proof. By Proposition 4.4, the problem is local on X. We may assume that
X can be decomposed into irreducible components at x:

X = A1 ∪ · · · ∪As.

By Corollary 4.9, Bj := f(Aj) is an ananlytic set in Y for j = 1, . . . , s. By our
assumption, x is not an isolated point in Aj , so y is not an isolated point in Bj for
j = 1, . . . , s. Take a non-zero divisor h ∈ mY,y. Up to shrinking Y , we may assume
that h spreads to g ∈ OY (Y ). Observe that W (f∗g)∩Aj is not a neighbourhood of
x in Aj for all j = 1, . . . , s. So f#

x h is not a zero divisor. �

Theorem 4.15. Let f : X → Y be a finite morphism of complex analytic spaces
and y ∈ Y . Then

dimy f(X) = max
x∈f−1(y)

dimx X.
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The left-hand side makes sense because f(X) is an analytic set in Y by Corol-
lary 4.9.

Proof. We may assume that X and Y are reduced and f(X) = Y .
Step 1. We reduce to the case where f−1(y) = {x} for some x ∈ X.
Let x1, . . . , xt be the distinct points in f−1(y). The problem is local on Y . By

Theorem 4.8 in Topology and bornology and Proposition 4.4, up to shrinking Y ,
we may assume that X is the disjoint union of open neighbourhoods U1, . . . , Ut of
x1, . . . , xt and Uj → V is finite for each j = 1, . . . , t. It suffices to apply the special
case to each Uj → V for j = 1, . . . , t.

Step 2. We prove the theorem after the reduction in Step 1.
We make an induction on d := dimx X. There is nothing to prove when d = 0.

Assume that d ≥ 1. By Lemma 4.14, we can choose a non-zero divisor gy ∈ mY,gy

such that f#
x (gy) is a non-zero divisor in OX,x. Up to shrinking Y , we may assume

that g spreads to g ∈ OY (Y ). It suffices to apply our inductive hypothesis to
W (f#

x (gy)) ⊆W (gy). �

Corollary 4.16. Let f : X → Y be a finite open surjective morphism of complex
analytic spaces. Assume that A is a thin subset of X of order k ∈ Z>0, then f(A)
is a thin subset of Y of order k.

Proof. We may assume that X and Y are reduced. By Proposition 4.4 and
the fact that f is open, the problem is local on X, we may assume that A is an
analytic subset of X. Let x ∈ A. It suffices to handle the case where A is irreducible
at x and x is the only point in f−1(f(x)). By Corollary 4.9, f(A) is an irreducible
analytic subset of Y .

We may assume that Y is irreducible at y := f(x). Then

codimy(f(A), Y ) = dimy Y − dimy f(A).

By Theorem 4.15, dimy Y = dimx X, dimy f(A) = dimx A. It follows that

codimy(f(A), Y ) = dimx X − dimx A ≥ codimx(A,X) ≥ k.

�

Proposition 4.17. Let f : X → Y be a finite morphism of complex analytic spaces
and x ∈ X. Assume that Y is unibranch at f(x). Assume that dimx X = dimf(x) Y ,
then f is open at x.

Proof. We may assume that X and Y are both reduced. Let y = f(x). By
Proposition 4.4, we may assume that {x} = f−1(y). By Corollary 4.9, f(X) is an
analytic set in Y . By Theorem 4.15,

dimy f(X) = dimx X.

As Y is irreducible at f(x), we conclude that f(X)y = Xy and hence f(X) is a
neighbourhood of y. �

Corollary 4.18. Let f : X → Y be a quasi-finite morphism of equidimensional
complex analytic spaces of dimension d ∈ N. Assume that Y is unibranch. Then f
is open.

The corollary fails if Y is not unibranch.
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Proof. By Proposition 4.4, f is finite at all x ∈ X. It suffices to apply
Proposition 4.17. �

Corollary 4.19. Let f : X → Y be a morphism of complex analytic spaces and
x ∈ X. Then

dimx X − dimx f
−1(f(x)) ≤ dimf(x) Y.

If equality holds and Y is unibranch at f(x), then f is open at x.

Proof. Let y = f(x), m = dimx Xy and n = dimy Y . The problem is local on
X and Y , by Proposition 4.7, we may assume that there are morphisms

X → Y × Cm, Y → Cn

finite at x and y respective. In particular, the induced morphism

X → Cm+n

is finite at x and hence
dimx X ≤ m+ n.

This proves our inequality.
Assume that Y is unibranch at y and the equality holds. We want to show that

f is open at x. As our problem is again local, we may assume that X and Y are
connected.

Up to shrinkingX and Y , we can choose a domain U ⊆ Cm such thatX → Y ×U
is finite. We conclude using Proposition 4.17. �

Corollary 4.20. Let f : X → Y be a morphism of complex analytic spaces and
x ∈ X. Assume that X is equidimensional at x, Y is unibranch at f(x) and

dimx X − dimx f
−1(f(x)) = dimf(x) Y.

Then there is an open neighbourhood U of x in X such that U → Y induced by f
is open.

Proof. The problem is local on X. By Theorem 2.4 in Local properties of com-
plex analytic spaces, up to shrinking X, we may assume that X is equidimensional
of dimension dimx X. By Corollary 4.19,

dimx X − dimz f
−1(f(z)) ≤ dimf(z) Y

for all z ∈ X. But as dimz f
−1(f(z)) is upper semi-continuous, the set where

equality holds is open. Our assertion follows from Corollary 4.19. �

Lemma 4.21. Let f : X → Y be a finite open morphism of reduced complex
analytic spaces. Assume that Y is a complex manifold. Then f is a branched
covering.

Proof. The statement is local on Y , so we may assume that Y is an open
neighbourhood of 0 in Cn for some n ∈ N. By Proposition 4.4, we may assume that
π−1{0} consists of a single point and X is a closed analytic subspace of a domain
V in Cd for some d ∈ N. Replacing X by the graph of f , we may assume that X
is a closed analytic subspace of V × Y and f is the restriction of the projection
map V × Y → V . In this case, the result follows from the local description lemma.
Reproduce CAS p72! �
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Corollary 4.22. Let X be an equidimensional complex analytic space of dimension
d and x ∈ X. Then there is an open neighbourhood U of x in X and a connected
domain V ∈ Cd such that there is a branched covering U → V .

In fact, given any system of parameters f1, . . . , fd ∈ OX,x, we can define sch a
morphism sending x to 0 and the corresponding local ring homomorphism at x is

OCd,0 → OX,x

given by f1, . . . , fd.

Proof. This follows from Theorem 3.9 in Constructions of complex analytic
spaces, Lemma 4.21 and Corollary 4.18. �

Corollary 4.23. Let X be a complex analytic space and x ∈ X. Assume that X is
unibranch at x. Let f ∈ OX,x. We assume that f is not constant and dimx X ≥ 1,
then for any open neighbourhood U of x in X such that f spreads to g ∈ OX(U),
there is ε > 0 such that g takes all values c ∈ C with |c− f(x)| < ε.

Proof. We may assume that X is reduced and f(x) = 0. Then f is a non-
zero divisor in OX,x. We can find a system of parameters f, g1, . . . , gn−1 with
n = dimx X such that f, g1, . . . , gn−1 induce a branched covering X → V sending x
to 0 after shrinking X, where V is an open neighbourhood of 0 in Cn. This follows
from Corollary 4.22. As the branched covering is open by Proposition 4.17, we
conclude. �

Theorem 4.24. Let f : X → Y be a finite open surjective morphism of reduced
complex analytic spaces, then f is a branched covering.

Proof. Let x ∈ X and y = f(x). As f is open, it suffices to find open
neighbourhoods U of x in X and V of y in Y such that the morphism U → V
induced by f is a branched covering. We first take U small enough so that U can
be decomposed into prime components at x:

U = X1 ∪ · · · ∪Xs.

We can assume that Xi∩Xj is thin in U for i, j = 1, . . . , s, i 6= j. Up to shrinking U ,
we may assume that U → V is finite Proposition 4.4 for some open neighbourhood V
of y in Y . As f is open, we may take V = f(U). Observe that f(Xi) is analytic in V
for i = 1, . . . , s by Corollary 4.9. Moreover, f(Xi) is irreducible at y for i = 1, . . . , s.
By Theorem 2.4 in Local properties of complex analytic spaces, we may assume
that f(Xi) is equidimensional of dimension ni ∈ N for i = 1, . . . , s.

By Corollary 4.22, up to shrinking V , we may assume that there is a branched
covering ηi : f(Xi) → Vi, where Vi is a connected domain in Cni for i = 1, . . . , s.
By Lemma 4.21, ηi ◦ f |Xi

is a branched covering for i = 1, . . . , s. It follows that
Xi → π(Xi) is a branched covering for i = 1, . . . , s. This readily implies that f is a
branched covering. �

Definition 4.25. Let b ∈ Z>0, f : X → Y be a b-sheeted branched covering with
Y being a connected complex manifold. Let A be a thin set in X. Take a critical
locus T of f containing f(A).

Consider g ∈ OX(X \A). We define a monic polynomial

χg(w)(y) :=
∏

x∈f−1(y)

(w − g(x)) ∈ OY (Y \ T )[w].
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By Theorem 3.7 in Local properties of complex analytic spaces, χg can be uniquely
extended to χg ∈ OY (Y \ f(A))[w]. The monic polynomial χg is called the charac-
teristic polynomial of g (with respect to f).

Proposition 4.26. Let b ∈ Z>0, f : X → Y be a b-sheeted branched covering with
Y being a connected complex manifold. Let A be a thin set in X and g ∈ OX(X \A).
Let χg ∈ OY (Y \ f(A))[w] be the characteristic polynomial of g. Then χg(g) = 0.

If either of the following conditions hold:
(1) g is locally bounded near A;
(2) A is thin of order 2 in Y .

Then χg can be uniquely extended to χg ∈ OY (Y )[w].

Proof. Only the second part is non-trivial. By Corollary 4.16, f is open. By
Corollary 4.16, f(A) is thin in Y and under assumption (2), f(A) is thin of order
2 in Y . It suffices to apply Theorem 3.7 in Local properties of complex analytic
spaces. �

Proposition 4.27. Let b ∈ Z>0, f : X → Y be a b-sheeted branched covering
with Y being a connected complex manifold. Let A be a thin set in X and
e, g ∈ OX(X \ A). Take a critical locus T of f containing f(A). Consider the
b× b-matrice

M(y) =


1 e(x1) . . . e(x1)b−1

1 e(x2) . . . e(x2)b−1

. . .
1 e(xb) . . . e(xb)b−1


and Mi(y) is M(y) with the i-th colomn replace by

g(x1)
g(x2)

...
g(xb)


for i = 0, . . . , b− 1, where y ∈ Y \T and x1, . . . , xb are the distinct points in f−1(y).
Then there are ∆e, c0, . . . , cb−1 ∈ OY (Y \ f(A)) such that for all y ∈ Y \ T ,

∆e(y) = (detM(y))2, ci(y) = detM(y) · detMi(y)
for i = 0, . . . , b− 1. If either of the following conditions holds:

(1) e and g are locally bounded near A;
(2) A is thin of order 2 in X,

then we can take ∆e, c0, . . . , cb−1 ∈ OY (Y )

The function ∆e is called the discriminant of e. We say e is primitive with
respect to f if ∆ is not identically 0.

Proof. We first observe that detM(y) and detMi(y) are independent of the
ordering of x1, . . . , xb by elementary lineary algebra, where i = 1, . . . , b. The
entries of M(y) and Mi(y) can all be taken to be holomorphic outside T , so
∆e, c0, . . . , cb−1 ∈ OY (Y \ T ) are defined and the desired equation holds. By
Theorem 3.7 in Local properties of complex analytic spaces, these functions can be
extended uniquely into OY (Y \ f(A)).
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By Corollary 4.16, f(A) is thin in Y and under assumption (2), f(A) is thin of
order 2 in Y . Applying Theorem 3.7 in Local properties of complex analytic spaces,
we conclude the last assertion. �

Corollary 4.28. Let b ∈ Z>0, f : X → Y be a b-sheeted branched covering with Y
being a connected complex manifold. A primitive element e ∈ OX(X) exists if X is
holomorphically separable.

Proof. Take a critical locus T of f . Let y ∈ X \ T . Let x1, . . . , xb be distinct
points of f−1(y). For each i, j = 1, . . . , b with i < j, we can find a gij ∈ OX(X)
with g(xi) 6= g(xj). A suitable linear combination of gij ’s works. �

Proposition 4.29. Let b ∈ Z>0, f : X → Y be a b-sheeted branched covering with
Y being a connected complex manifold. Let A be a thin set in X.

Let e ∈ OX(X \ A) primitive element with respect to f . Then for each
g ∈ OX(X \A), we have canonical polynomial Ω ∈ OY (Y \ π(A))[X] such that

∆eg = Ω(e) on X \A.

If either of the following conditions holds:
(1) e and g are locally bounded near A;
(2) A is thin of order 2 in X,

then we can take Ω ∈ OY (Y )[X].

In the traditional terminology, ∆e is a universal denominator of the OY (Y )-
module OX(X) if one of the two assumptons is satisfied.

Proof. Take a critical locus T of f containing f(A). Consider y ∈ Y \ T with
fibers x1, . . . , xb. Consider the system of b-linear equations:

∆e(y)g(xi) = c0(y) + c1(y)e(xi) + · · ·+ cb−1(y)e(xi)b−1

for j = 1, . . . , b. By Cramer’s rule, if we use the notations of Proposition 4.27, if
detM(y) 6= 0, the unique solution is then

ci(y) = (detM(y))−1∆(y) detMi(y) = detM(y) · detMi(y)

for i = 0, . . . , b− 1. From Proposition 4.27, c0, . . . , cb−1 ∈ OY (Y \ π(A)). It suffices
to take

Ω = c0 + c1X + · · ·+ cb−1w
b−1.

It is obvious that on X \ (A ∪W (∆)),

∆eg = Ω(e).

The same holds on X \ A by continuity. The last asertion follows from Proposi-
tion 4.27. �

Corollary 4.30 (Riemann extension theorem). Let X be a reduced equidimensional
complex analytic space of dimension n ∈ N and A be a thin set in X. Let f ∈
OX(X \A). Assume one of the following conditions holds:

(1) f is locally bounded near A;
(2) A is thin of order 2.

Then there is an element g ∈ OX(X) extending f .
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Proof. The uniquenss is obvious, we prove the existence. The problem is local
on X, we may assume that X is holomorphically separable. By Corollary 4.22, we
may take a connected complex manifold Y of dimension Y , b ∈ Z>0,a b-sheeted
branched covering f : X → Y . By Corollary 4.28, we can find a primitive element
e ∈ OX(X). By Proposition 4.29 and Proposition 4.26, it suffices to take g =
Ω(e)/∆e, where Ωe is the polynomial in Proposition 4.29. �

Corollary 4.31. Let X be a normal complex analytic space. Then the canonical
map

OX(X)→ OX(Xreg)

is an isomorphism.

Proof. By Proposition 6.9 in Local properties of complex analytic spaces, the
map is injective. Take f ∈ OX(Xreg), we need to extend it to g ∈ OX(X). The
problem is local on X. As X is normal, it is equidimensional at all points. By
shrinking X, we may assume that X is equidimensional of some dimension n ∈ N.
Recall that XSing is thin of order 2 in X by Proposition 7.4 in Local properties of
complex analytic spaces, so we can apply Corollary 4.30. �

Corollary 4.32. Let X be a connected normal complex analytic space then Xreg

is connected.

Proof. If not, we can find a continuous function f : Xreg → {0, 1} which is
not constant. By Corollary 4.31, f can be extended to g ∈ OX(X). This contradicts
the fact taht X is connected. �

Corollary 4.33. Let X be an irreducible complex analytic space and A be an
analytic set in X. Suppose that there is x ∈ A with dimx A = dimx X, then A = X.

Proof. We may assume that X is irreducible. By Theorem 4.15, we may
assume that X is normal.

Endow A with the reduced induced structure. As dimx A = dimx X,
SpecOX,x = SpecOA,x has a common irreducible component. By Nullstellen-
satz, IntA is non-empty. So A′ := A \XSing is non-empty and open in Xreg. We
need to show that A′ = Xreg, taking closure we then conclude.

Suppose that A′ 6= Xreg. Then A′ ∩Xreg is a non-empty closed in Xreg, which
is connected by Corollary 4.32. So

A′ ∩Xreg 6= A′,

as otherwise, Xreg = (A′ ∩Xreg) ∪ (Xreg \ A′). Take a ∈ (A′ ∩Xreg) \ A′. Take a
connected neighbourhood U of a in Xreg and finitely many holomorphic functions
f1, . . . , fk ∈ OX(U) so that U ∩ A = W (f1, . . . , fk). As U ∩ A′ 6= ∅, f1, . . . , fk

vanishes identically in U by Identitätssatz. In particular, a ∈ A′, which is a
contradiction. �

Corollary 4.34. Let f : X → Y be a morphism of reduced complex analytic spaces.
Let Z ⊆ Y be the non-normal locus. Assume that f−1(Z) is nowhere dense in
X (for example when X is irreducible and f is surjective), then there is a unique
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morphism f̄ : X̄ → Ȳ such that the following diagram commutes:

X̄ Ȳ

X Y

f̄

f

.

Recall that Z is an analytic set in Y by Theorem 7.3 in Local properties of
complex analytic spaces.

Proof. The uniqueness is clear. Let Z ′ be the inverse image of Z in Ȳ and Z ′′
be the inverse image of Z in X̄. By our assumption, Z ′′ is thin in X̄. By construction,
η : Ȳ \ Z ′ → Y \ Z is an isomorphism, so we get a morphism g : X̄ \ Z ′′ → Ȳ \ Z ′
completion the commutative diagram

X̄ \ Z ′′ Ȳ \ Z ′

X Y
f

.

Let p ∈ Z ′′. We need to extend g to a neighbourhood of p. Choose an open
neighbourhood V ⊆ Ȳ of the preimage of p in X̄ which admits a closed immersion
into a bounded domain D ⊆ Cn for some n ∈ N. There is an open neighbourhood
U ⊆ X̄ of p such that g maps U \ Z ′′ → V . The induced morphism U \ Z ′′ → D
is given by bounded holomorphic functions in OU\Z′′(U \ Z ′′). By Corollary 4.30,
we get an extension U → D. But this morphism factorizes through U → V as U is
reduced, we conclude. �

Corollary 4.35. Let X be a complex analytic space. Then the following are
equivalent:

(1) X is irreducible;
(2) If we write X = Y1 ∪ Y2 with Y1, Y2 being analytic sets in X, then X = Y1

or X = Y2.

Proof. We may assume that X is reduced.
(1) =⇒ (2): We may assume that X is normal. Suppose X = Y1 ∪ Y2 with

Y1, Y2 being analytic sets in X. Then Y1 ∩ Y2 is not empty, as otherwise, X is not
even connected. Let x ∈ Y1 ∩ Y2. We then have Xx = Y1,x ∪ Y2,x. This contradicts
the fact that OX,x is integral unless Y1,x ⊆ Y2,x or Y1,x ⊆ Y2,x, which is impossible
by Corollary 4.33.

(2) =⇒ (1): Suppose that X is not irreducible. Then the normalization X̄ is
not connected, say X̄ = Y ′1 ∪ Y ′2 , where Y1, Y2 are disjoint clopen sets in X̄. Let
π : X̄ → X be the normalization morphism. Then

X = π(Y ′1) ∪ π(Y ′2).

By our assumption, either X = π(Y ′1) or X = π(Y ′2). We assume that the former
holds. From Proposition 7.8 in Local properties of complex analytic spaces, we
conclude that Y ′1 = X̄, which is a contradiction. �

Corollary 4.36. Let X be a connected complex analytic space. Then X is path-
connected.
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Proof. We may assume that X is reduced.
If X is irreducible, after passing to the normalization, we may assume that X

is normal. Then clearly Xreg is connected. So it suffices to apply Proposition 7.12
in Local properties of complex analytic spaces.

In general, take x ∈ X and let X ′ be the set of all points of X that can be
joined to x by a path. Then from the previous case, X ′ is the union of certain
irreducible componenets of X. So is the complement X \X ′. As X is connected,
we find that X = X ′. �

Corollary 4.37. Let X be an irreducible complex analytic space. Then there is
n ∈ N such that X is equidimensional of dimension n.

We remind the readers that X is not necessarily unibranch. For example,
consider a nodal planar curve.

Proof. We may assume that X is reduced. Taking nomralization, we can
even assume that X is normal. Then X is connected. In particular, Xreg is
connected by Corollary 4.32. But Xreg is then equidimensional of some dimension
n ∈ N. If dimx X 6= n for some x ∈ XSing, by Theorem 2.4 in Local properties
of complex analytic spaces, dimy X = dimx X whenever y is close to x. This is a
contradiction. �

Corollary 4.38. Let X be a reduced irreducible complex analytic space, then Xreg

is connected.

This corollary fails if X is not irreducible but only connected. For example,
consider {(z1, z2) ∈ C2 : z1z2 = 0} endowed with the irreducible reduced structure.

Proof. If not, we can find a continuous function f : Xreg → {0, 1} which is not
constant. By Corollary 4.30 and Corollary 4.37, f can be extended to g ∈ OX(X).
As X is irreducible and reduced, X̄ is connected. It follows that g is constant and
hence so is f , which is a contradiction. �

Corollary 4.39. Let f : X → Y be a finite surjective morphism between irreducible
reduced complex analytic spaces. Then f is a branched covering.

Proof. By Corollary 4.34, we have an obvious commutative diagram:

X̄ Ȳ

X Y

f̄

f

.

If suffices to show that f̄ is a branched covering, so we may assume that X and Y
are normal.

By Proposition 4.17 and Corollary 4.37, f is open. So it suffices to apply
Theorem 4.24. �

Corollary 4.40. Let f : X → Y be a finite surjective morphism between reduced
complex analytic spaces. Then the following are equivalent:

(1) f is a branched covering;
(2) The image of each irreducible component of X has an interior point;
(3) The image of each irreducible component of X is an irreducible component

of Y .
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Proof. (1) =⇒ (2): Let T ⊆ Y be a critical locus of f . Then f−1(T ) is
thin in X. Each irreducible component X ′ of X meets X \ f−1(T ). It follows that
f(X ′ \ f−1(T )) is non-empty and open in Y .

(2) =⇒ (3): Let X ′ be an irreducible component of X. Then f(X) is an
analytic set in Y . It is clearly irreducible. So f(X) is contained in an irreducible
component Y ′ of Y . But as f(X ′) has an interior point, we find that f(X ′) = Y ′

by Corollary 4.33.
(3) =⇒ (1): The assertion is local, we may assume that the number of

irreducible components of X is finite. Let X1, . . . , Xs be the irreducible components
of X. For each i = 1, . . . , s, the induced map Xi → π(Xi) is finite and hence a
branched covering by Corollary 4.39. It is enough to vefity that π−1(π(Xi ∩Xj))
is thin in X for i, j = 1, . . . , s and i 6= j. If this fials, this set contains an interior
point in Xk for some k ∈ {1, . . . , s}. But then

Xk ⊆ π−1(π(Xi ∩Xj)).

It follows that
π(Xi ∩Xj) ⊇ π(Xk).

This is impossible as Xi ∩Xj ∩Xk is thin in Xk. �

Definition 4.41. Let b ∈ Z>0, f : X → Y be a b-sheeted branched covering with Y
being a normal complex analytic space. Take a critical locus T ⊆ Y of f containing
Y Sing.

Consider g ∈ OX(X). We define the characteristic polynomial χg ∈ OY (Y )[w]
of g (with respect to f) as follows: When Y is connected, by Corollary 4.32, Y reg is
a connected complex manifold. We define χg ∈ OY (Y reg)[w] as in Definition 4.25.
We then extend χg to OY (Y reg)[w] using Corollary 4.31. It is a monic polynomial
of degree b. When Y is not connected, we just glue the characteristic polynomials
defined using each connected components. Then we find a monic polynomial
χg ∈ OY (Y )[w] of degree b.

Proposition 4.42. Let b ∈ Z>0, f : X → Y be a b-sheeted branched covering with
Y being a normal complex analytic space. Let g ∈ OX(X). Let χg ∈ OY (Y )[w] be
the characteristic polynomial of g. Then χg(g) = 0.

Proof. This follows immediately from Proposition 4.26. �

We give an alternative characterization of OX .

Proposition 4.43. Let X be a reduced complex analytic space. Then for any open
set U ⊆ X,

OX(U) ∼−→ {f : U → C : f is weakly holomorphic} .

Proof. We temporarily denote the sheaf stated in theproposition by O′. From
the uniqueness in Proposition 7.5 in Local properties of complex analytic spaces, it
suffices to show that O′x is isomorphic to OX,x as OX,x-algebras for any x ∈ X.

We first observe that OX is a subsheaf of O′. Let U ⊆ X be an open subset
and f ∈ OX(U). We need to show that f is locally bounded around y ∈ U ∩XSing.
Take an integral equation

fn
y + a1,yf

n−1
y + · · ·+ an,y = 0
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with a1,y, . . . , an,y ∈ OX,x. Take an open neighbourhood V of y in U such that
a1,y, . . . , an,y lift to a1, . . . , an ∈ OX(V ) and

(f |V )n + a1f |n−1
V + · · ·+ an = 0.

Then for any z ∈ V \XSing,

|f(z)| ≤ max{1, |a1(z)|+ . . .+ |an(z)|}.

So f ∈ O′.
Conversely, let U ⊆ X be an open subset and f ∈ O′(U). By Proposition 7.8

in Local properties of complex analytic spaces, p∗OX = OX , where p : X → X is
the normalization morphism. It follows from Proposition 7.8 in Local properties
of complex analytic spaces and Corollary 4.30 that f can be uniquely extended to
g ∈ OX(p−1U) = OX(U). �

Proposition 4.44 (Rado, Cartan). Let X be a normal complex analytic space
and f : X → C be a continuous map. Let Z = f−1(0). Assume that there is
g ∈ OX(X \ Z) such that [g] = f |X\Z , then f = [g].

This result is proved in [Car52].

Proof. By Corollary 4.31, we may assume that X is a complex manifold. The
problem is local on X, we may assume that X is the unit polydisk in Cn for some
n ∈ N. By Hartogs theorem, we may assume that n = 1.

It remains to show that a continuous function f : {z ∈ C : |z| < 1} which is
holomorphic outside Z := {f = 0} is holomorphic. This result is well-known. �

5. Flat morphisms

The notion of flat morphisms is defined for all ringed spaces. See [Stacks, Tag
02N2]. We will make use of these notions directly.

Proposition 5.1. Let f : X → Y be a morphism of complex analytic spaces and
x ∈ X. Write y = f(x). Let F be a coherent OX -module. Then the folloiwng are
equivalent:

(1) F is f -flat at x;
(2) Fx is a flat OY,y-module;
(3) For all n ∈ N,

F̂x ⊗ÔY,y
ÔY,y/m̂

n+1
y

is a flat ÔY,y/m
n+1
y -module;

(4) We have
TorOY,y

1 (C,Fx) = 0.

Proof. (1) ⇔ (2): This is the definition of flatness.
(2) ⇔ (3): This follows from [Stacks, Tag 0523].
(2) ⇔ (4): This follows from [Stacks, Tag 00MK]. �

Proposition 5.2. Let f : X → Y be a morphism of complex analytic spaces and
F be a coherent OX -module. Let g : Y ′ → Y be a morphism of complex analytic

https://stacks.math.columbia.edu/tag/02N2
https://stacks.math.columbia.edu/tag/02N2
https://stacks.math.columbia.edu/tag/0523
https://stacks.math.columbia.edu/tag/00MK
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spaces and consider the following Cartesian diagram:

X ′ X

Y ′ Y

g′

f ′ � f

g

.

Consider a point x′ ∈ X ′ defined by x ∈ X and y′ ∈ Y ′ with common image y ∈ Y .
(1) If F is f -flat at x, then g′∗F is f ′-flat at x′.
(2) If g′∗F is f ′-flat at x′ and ÔY,y → ÔY ′,y′ is injective, then F is f -flat at x.

Proof. (1) Recall that

ÔX′,x′
∼−→ ÔX,x⊗̂ÔY,y

ÔY ′,y′ .

Let n ∈ N, we then find

ÔX′,x′/m̂
n+1
y′ ÔX′,x′

∼−→ ÔX,x⊗̂ÔY,y

(
ÔY ′,y′/m̂

n+1
y′

)
∼−→ ÔX,x⊗ÔY,y

(
ÔY ′,y′/m̂

n+1
y′

)
.

By Proposition 5.1, F̂x⊗ÔY,y
ÔY,y/m̂

n+1
y is a flat OY ′,y′ -module for each n ∈ N. By

Proposition 5.1 again, F is f ′-flat at x′.
(2) For each n ∈ N, let In be the inverse image of m̂n+1

y′ with respect to
ÔY,y → ÔY ′,y′ . As the latter map is assumed to be injective, by Krull’s intersection
theorem, we find that ⋂

n∈N
In = 0.

It follows that the In’s form a basis at 0 in ÔY,y. By Proposition 5.1, we are reduced
to show that F̂x/InF̂x is flat over ÔY,y/In. But by Proposition 5.1 again, we know
that its base change along ÔY,y/ÔY ′,y′/m̂

n+1
y′ . So we are reduced to the well-known

algebraic case. �

Proposition 5.3. Let f : X → Y be a flat morphism of complex analytic spaces
and x ∈ X. Then

dimx X = dimf(x) Y + dimx Xf(x).

Proof. Let y = f(x). We may assume that X and Y are reduced. We make
an induction on n = dimy Y . Note that the problem is local.

When n = 0, the result is obvious. Assume that n > 0. Take a non-zero divisor
g ∈ OY,y, then h := f#

x (g) ∈ OX,x is a non-zero divisor as f is flat at x. Let X ′ and
Y ′ be the closed analytic spaces of X and Y defined by h and g respectively. Up to
shrinking X and Y , we may assume that there is a commutative square

X ′ X

Y ′ Y

f ′ f .

By inductive hypothesis,

dimx X
′ = dimx X

′
y + dimy Y

′.

We conclude using Krulls Hauptidealsatz. �
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6. Separated morphisms

Recall that the notion of separated maps between topological spaces is defined
in [Stacks, Tag 0CY1].

Definition 6.1. Let f : X → Y be a morphism of complex analytic spaces. We say
f is separated if |f | : |X| → |Y | is separated.

If Y is the final object C0, we also say X is separated.

Proposition 6.2. Let f : X → Y be a morphism of complex analytic spaces. Then
the following are equivalent:

(1) f is separated;
(2) ∆X/Y : X → X ×Y X is closed;
(3) ∆X/Y : X → X ×Y X is a closed immersion.

Proof. Recall that finite limits in C-An commute with the forgetful functor
to T op by Corollary 8.6 in The notion of complex analytic spaces.

(1) ≡ (2): The undelrying morphism of topological spaces of ∆X/Y is identified
with

|X| → |X| ×|Y | |X|,
the topological diagonal. It suffices to apply [Stacks, Tag 0CY2].

(2) ≡ (3): We have shown that ∆X/Y is always an immersion in Proposition 6.3
in Constructions of complex analytic spaces, so ∆X/Y is a closed immersion if and
only if it is closed. �

Corollary 6.3. Let X be a complex analytic space. The following are equivalent:
(1) X is separated;
(2) X is Hausdorff.

Proof. This follows immediately from Proposition 6.2. �

Valuative criterion

7. Proper morphisms

Recall that the notion of separated maps between topological spaces is defined
in [Stacks, Tag 01W1].

Definition 7.1. Let f : X → Y be a morphism of complex analytic spaces. We say
f is proper if |f | : |X| → |Y | is proper.

If Y is the final object C0, we also say X is proper.

Valuative criterion

Definition 7.2. Let f : X → Y be a morphism of complex analytic spaces and
x ∈ X. A relative chart at x is a closed immersion U → ∆n(r) × V , where U
is an open neighbourhood of x in X, V is an open neighbourhood of f(x) in Y ,
n ∈ N, r > 0 such that f(U) ⊆ V and the composition U → ∆n(r)× V → V is the
restriction of f .

Recall that ∆n(r) = (∆(r))n is n-fold product of the disk of radius r.

https://stacks.math.columbia.edu/tag/0CY1
https://stacks.math.columbia.edu/tag/0CY2
https://stacks.math.columbia.edu/tag/01W1
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