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Local properties of complex analytic spaces

1. Introduction

2. Dimension

Definition 2.1. Let X be a complex analytic space and x ∈ X, the dimension
dimx X of X at x is

dimx X = dimOX,x.

We also define the dimension of the pointed complex analytic space (X,x) and the
dimension of the complex analytic germ Xx as dimx X.

When X is connected, the dimension of X is defined as

dimX := sup
x∈X

dimx X.

If A is an analytic set in X such that there is a closed analytic subspace of X with
|B| = A, then dimx B does not depend on the choice of B, we define it as dimx A.

As we will see in Corollary 6.6, B always exists.

Definition 2.2. Let X be a complex analytic space, we say X is equidimensional
at x ∈ X if OX,x is equidimensional and x 7→ dimx X is locally constant.

We also say (X,x) or Xx is equidimensional.
We say X is equidimensional of dimension n ∈ N if X is non-empty and is

equidimensional of dimension n at each x ∈ X.

Recall that in general, a local ring R is equidimensional if dimR/p = dimR for
all minimal prime p of R.

Definition 2.3. Let X be a complex analytic space and x ∈ X, we say X is integral
at x if OX,x is integral.

This corresponds to the notion defined in Definition 3.12 in Constructions of
complex analytic spaces.

Theorem 2.4. Let X be a complex analytic space and n ∈ N, then the set of points
x ∈ X such that Xx is equidimensional of dimension n is open.

This is analogous to the result for noetherian cartenary schemes.

Proof. Let x ∈ X be a point such that Xx is equidimensional of dimension
n. We want to construct an open neighbourhood V of x in X such that X is
equidimensional of dimension n at any y ∈ V .

Step 1. We reduce to the case where X is integral at x.
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6 LOCAL PROPERTIES OF COMPLEX ANALYTIC SPACES

Let p1, . . . , pm be the minimal primes of OX,x. The number is finite because
OX,x is noetherian. We have

m⋂
i=1

pi = radOX,x.

Take an open neighbourhood U of x in X such that there are ideals of finite type
I1, . . . , Im extending p1, . . . , pm. Up to shrinking U , we may assume that

m⋂
i=1
Ii

is nilpotent. For each i = 1, . . . ,m, let Ui denote the closed analytic subspace of U
defined by Ii. Then

|U | =
m⋃

i=1
|Ui|

by Corollary 3.17 in Constructions of complex analytic spaces. As for any y ∈ U ,
m⋂

i=1
Ii,y

is nilpotent, we have

|SpecOX,y| = |SpecOX,y/

m⋂
i=1
Ii,y| =

m⋃
i=1
|SpecOX,y/Ii,y|.

In particular, for any y ∈ U ,

dimy X = dimy U = max
i=1,...,m

dimy Ui.

It suffices to handle each Wi separately.
Step 2. We assume that Xx is integral. By Theorem 3.9 in Constructions of

complex analytic spaces, we may assume that X has the following structure: there
is an open neighbourhood W of 0 in Cn, a morphism (X,x)→ (W, 0) and a finite
OW -algebra A such that Specan

W A has a unique point x′ over 0 and (Specan
W A, x′)

is isomorphic to (X,x) over (W, 0). By Corollary 5.5 in Complex analytic local
algebras, OW,0 → OX,x is injective, hence OX,x is torsion-free over OW,0. As the
torsion sheaf is coherent, up to shrinking X, we may assume that OX,y is torsion-free
over OW,z, where z denotes the image of y in W . It suffices to apply Lemma 5.6 in
Complex analytic local algebras. �

Corollary 2.5. Let X be a complex analytic space and n ∈ N. Then the set
{x ∈ X : dimx X ≥ n} is an analytic set in X.

After introducing the analytic Zariski topology, we can reformulate this corollary
as follows: the map x 7→ dimx X is upper semi-continuous with respect to the
analytic Zariski topology.

Proof. The problem is local on X. Fix x ∈ X and let p1, . . . , pm be the
minimal prime ideals of OX,x. Up to shrinking X, we may assume that

|X| =
m⋃

i=1
|Wi|,
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where Wi is a closed analytic subspace of X defined by a coherent Ii spreading pi.
We can guarantee that

dimy X = max
i=1,...,m

dimy Wi.

This is possible as in the proof of Theorem 2.4. By Theorem 2.4, up to shrinking
X, we may assume that Wi is equidimensional of dimension ni for some ni ∈ N for
each i = 1, . . . ,m. In particular, for each y ∈ X, we have

dimy X = sup
y∈Wi

ni.

So
{x ∈ X : dimx X ≥ n} =

⋃
i:ni≥n

|Wi|.

The corollary follows. �

Proposition 2.6. Let X,Y be complex analytic spaces and x ∈ X, y ∈ Y . Then
dim(x,y)X × Y = dimx X + dimy Y.

Proof. By Theorem 5.11 in Complex analytic local algebras,
ÔX×Y,(x,y) = ÔX,x⊗̂ÔY,y.

As dimension is invariant under completion by [Stacks, Tag 07NV], it suffices to
show that

dim(OX,x⊗̂OY,y) = dimOX,x + dimOY,y,

which is well-known. �

Definition 2.7. Let Xx be an analytic germ and Yx be a closed analytic subgerm
defined by an ideal I ⊆ OX,x.

(1) When Yx is irreducible, namely when I is a prime ideal, we define the
codimension of Yx in Xx as

codimx(Y,X) := htOX,x
(I).

(2) In general, we define the codimension of Yx in Xx as
codimx(Y,X) := inf

Zx⊆Yx

codimx(Y,X),

where Zx runs over closed analytic subgerms of Xx contained in Yx.
We also call codimx(Y,X) the codimension of Y in X at x.

Observe that
codimx(Y,X) ≤ dimx X − dimx Y.

When Xx is equidimensional, codimx(Y,X) is nothing but dimx X − dimx Y .
Observe that

(2.1) codimx(Y,X) = codim(Yx,SpecOX,x).

Lemma 2.8. Let X be a complex analytic space and T be an analytic set in X.
Let Y1, Y2 be two closed analytic subspaces of X with underlying set T , then for
any x ∈ T ,

codimx(Y1, X) = codimx(Y2, X).

Proof. This follows from (2.1) and Corollary 3.14 in Constructions of complex
analytic spaces. �

https://stacks.math.columbia.edu/tag/07NV
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Definition 2.9. Let X be a complex analytic space and T be an analytic set in X.
Take y ∈ T . We define the codimension codimy(T,X) as follows: up to shrinking X,
we may take a closed analytic subspace Y of X with underlying set T by Lemma 4.6
in Constructions of complex analytic spaces, we define

codimy(T,X) := codimy(Y,X).
This definition does not depend on the choices we made by Lemma 2.8.

Lemma 2.10. Let X be a complex analytic space and Y be a closed analytic
subspace of X. Let y ∈ Y be a point such that Yy is irreducible. Then there is an
open neighbourhood U of y in Y such that

codimz(Y,X) = codimy(Y,X)
for any z ∈ U .

Proof. Let X ′y be an irreducible component of Xy containing Yy such that

codimy(Y,X) = dimy X
′ − dimy Y.

We can then take an open neighbourhood U of x inX such thatX ′z is equidimensional
of dimension n := dimy X

′ for all z ∈ U by Theorem 2.4. Then for any z ∈ U ,
X ′z is a union of some irreducible components of Xz. Up to shrinking U , we may
guarantee that for any z ∈ U ∩ Y , Yz ⊆ X ′z and dimz Y = dimy Y . Thereofre, for
z ∈ Y ∩ U ,

codimz(Y,X) = codimz(Y,X ′) = dimz X
′ − dimz Y

is a constant. �

Corollary 2.11. Let X be a complex analytic space and Y be an analytic set in
X. For any n ∈ N,

{y ∈ Y : codimy(Y,X) ≤ n}
is an analytic set in Y .

Proof. The problem is local. Let x ∈ Y . Let Y1,x, . . . , Ym,x be the irre-
ducible components of Yx defined by prime ideals J1, . . . , Jm in OY,x. Take an open
neighbourhood U of x in X such that for any y ∈ Y ∩ U , the ideal

m⋂
i=1

Ji,y

is nilpotent. By Lemma 2.10, up to shrinking U , we may assume that for any
y ∈ Y ∩ U ,

codimy(Yi, X) = codimx(Yi, X) =: ci

for i = 1, . . . ,m. Then

{y ∈ Y : codimy(Y,X) ≤ n} =
⋃

i:ci≤n

Yi.

�

Corollary 2.12. Let X be a complex analytic space and Y be an analytic set in
X. For any n ∈ N and any y ∈ Y ,
{y ∈ Y : codimy(Y,X) ≤ n}y = {p ∈ SpecOX,x : codimp(Tx,SpecOX,x) ≤ n} .

Proof. This is immediate from the proof of Corollary 2.11. �
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Definition 2.13. Let X be a complex analytic space. A closed subset A of X is
thin if for any x ∈ A, we can find an open neighbourhood U of x in X such that
A ∩ U is contained in a nowhere dense analytic subset B of U .

Given k ∈ Z>0, we say A is thin of order k at x ∈ A if U and B can be chosen
so that codimx(B,X) ≥ 2.

We say X is thin (thin of order k) if X is thin (resp. thin of order k) at all
x ∈ X.

The definition in [CAS] Page 132 is not correct when X is not equidimensional.
The same happens in several papers of Remmert.

3. Smoothness

Definition 3.1. Let X be a complex analytic space. We say X is smooth at x ∈ X
if OX,x is regular. Otherwise, we say X is singular at x.

We also say (X,x) or Xx is smooth (resp. singular) at x.
We say X is smooth if it is smooth at all x ∈ X. In this case, we also say X is

a complex manifold.
We write Xsing and Xreg for the set of singular and smooth points of X

respectively.

Other common names in the literature include: regular, simple.

Proposition 3.2. Let X be a complex analytic space and x ∈ X. THen the
following are equivalent:

(1) X is smooth at x;
(2) There is an open neighbourhood U of x in X that is isomorphic to a

domain in Cn with n = dimx X;
(3) ΩX,x is a free OX,x-module of rank dimx X;
(4) ΩX,x is generated by dimx X elements as an OX,x-module;
(5) ÔX,x is regular;
(6) ÔX,x

∼= C[[X1, . . . , Xn]] for n = dimx X.

Proof. (2) =⇒ (1): This is obvious.
(1) =⇒ (2): Let f1,x, . . . , fn,x be a regular system of parameters of OX,x. Up

to shrinking X, we may lift them to f1, . . . , fn ∈ OX(X). By Theorem 4.2 in The
notion of complex analytic spaces, they induce a morphism f : (U, x) → (Cn, 0).
Observe that f#

x : ÔCn,0 → ÔU,x is an isomorphism, so f is a local isomorphism by
Corollary 3.4 in Constructions of complex analytic spaces.

(2) =⇒ (3): This follows from Example 8.7 in Constructions of complex
analytic spaces.

(3) =⇒ (4): This is trivial.
(4) =⇒ (1): Recall that ΩX is coherent by Corollary 8.2 in Constructions of

complex analytic spaces. By Nakayama’s lemma, the minimal number of generators
of ΩX,x is equal to dimC ΩX,x ⊗OX,x

C. By algebraic results, we know that the
latter space is mx/m

2
x. So we find that dimmx/m

2
x = dimOX,x, implying that OX,x

is regular.
(1) ⇔ (5): This follows from [Stacks, Tag 07NY].
(2) =⇒ (6): This is clear.
(6) =⇒ (5): This is clear. �

https://stacks.math.columbia.edu/tag/07NY
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Theorem 3.3. Let X be a complex analytic space, then XSing is an analytic set in
X.

Proof. The problem is local. Let x ∈ X.
Step 1. We reduce to the case where X is equidimensional of dimension n.
Let

0 =
r⋂

i=1
pi

be the primary decomposition of 0. Up to shrinking X, we may assume that
p1, . . . , pr spread to coherent ideals I1, . . . , Ir on X and

r⋂
i=1
Ii = 0.

Let Xi be the closed analytic subspace of X defined by Ii for i = 1, . . . , n. Then

X =
r⋃

i=1
Xi.

As each Xi is equidimensional at x, say of dimension ni for i = 1, . . . , r. By
Theorem 2.4, up to shrinking X, we may assume that Xi is equidimensional of
dimension ni for i = 1, . . . , r. For each

Let y ∈ Xreg, as OX,y is regular hence integral, from
r⋂

i=1
Ii,y = 0

we find that at least one Ii,y vanishes. Then
OXi,y = OX,y

is regular. Namely, y ∈ Xreg
i . Conversely, if for some i = 1, . . . , n, we have Ii,y = 0

and y ∈ Xreg
i , Xi is a neighbourhood of y in X, so y ∈ Xreg. It follows that

Xsing =
r⋂

i=1

(
Supp Ii ∪XSing

i

)
.

Recall that Supp Ii is analytic for each i = 1, . . . , n by Example 4.2 in Constructions
of complex analytic spaces.

By Proposition 4.3 in Constructions of complex analytic spaces, in order to
show that Xsing is an analytic set in X, it suffices to know that XSing

i is an analytic
set in Xi for i = 1, . . . , n.

Step 2. Assume that X is equidimensional of dimension n. We need to show
that the locus where ΩX is locally free of rank n is co-analytic in X.

When n = 0, the locus where ΩX is not locally free of rank 0 is exactly Supp ΩX ,
which is analytic in X by Example 4.2 and Corollary 8.2 in Constructions of complex
analytic spaces.

Assume that n ≥ 1. Let Ωn
X :=

∧n ΩX . Then the locus where ΩX is locally
free of rank n is exactly the locus where Ωn

X is invertible. The invertible locus of
Ωn

X is exactly the locus where the canonical map
(Ωn

X)∨ ⊗OX
Ωn

X → OX

is an isomorphism. It follows that the complement of the locus is analytic in X. �
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Theorem 3.4 (Generic smoothness). Let X be a complex analytic space and x ∈ X.
Assume that X is integral at x, then XSing

x 6= |X|x.

Proof. Let n = dimx X. The problem is local on X. By Theorem 3.9 in
Constructions of complex analytic spaces, we may assume that there is a finite
morphism ϕ : (X,x)→ (V, 0), where V is an open neighbourhood of 0 in Cn and
there is a finite OV -algebra A with A0 = OX,x such that there is unique point x′ of
Specan

V A over 0 and (X,x) can be identified with (Specan
V A, x′).

Take ξ ∈ OX,x = A0 such that

FracOX,x = FracOCn,0(ξ).

Let P0 ∈ OCn,0[X] be the minimal polynomial of ξ. Up to shrinking V , we may
assume that ξ spreads to a section f ∈ A(V ). Then B = OV [f ] is a finite sub-OV -
algebra of A. Up to shrinking V , we may assume that the kernel of OV [X] → B
sending X to f is generated by a unitary polynomial P ∈ OV (V )[X] of degree
d := [FracOX,x : FracOCn,0] that extends P0. Therefore,

B ∼= OV [X]/(P ).

Let T = SuppA/B. We endow T with the structure of closed analytic subspace of
V induced by the annihilator of A/B. Observe that A0/B0 = OX,x/OCn,0 is torsion,
so |T |0 = SuppA0/B0 6= SpecOCn,0. That is, T0 6= Cn

0 by Theorem 3.13 in Con-
structions of complex analytic spaces. Observe that X \ ϕ−1(T ) = Specan

V \T B|V \T .
On the other hand, P ′0(ξ) 6= 0 as ξ is separable. So W (P ′(f)) 6= |X|x. Let

Z = SuppOX/(P ′(f)), then ϕ is unramified outside T . Include the parts regarding
unramified morphisms and étale morphisms before this section In particular, ϕ is
étale outside T and hence a local isomorphism by Corollary 3.4 in Constructions of
complex analytic spaces. In particular,

Xsing ⊆ Z ∪ ϕ−1(T )

and hence
Xsing

x ⊆ Zx ∪ ϕ−1(T )x.

The latter is not equal to |X|x by Corollary 3.14 in Constructions of complex analytic
spaces and the fact that OX,x is integral. �

Theorem 3.5 (Abhyankar). Let X be a complex analytic space and x ∈ X, then

XSing
x = (SpecOX,x)Sing.

Proof. Let p ∈ SpecOX,x. In concrete terms, we need to show that W (p) 6⊂
XSing

x if and only if SpecOX,x is regular at p.
The problem is local on X. Up to shrinking X, we may assume that p spreads

to a coherent ideal I on X. Let Y be the closed analytic subspace of X defined
by I. By Lemma 2.10, up to shrinking X, we may assume that codimy(Y,X) is
constant for y ∈ Y . We denote this common value as p, which is necessarily equal
to the height of p.

As Yx is irreducible by assumption, for an analytic set Z in Y satisfying
Zx 6= |Y |x, the following conditions are equivalent:

(1) |Y |x 6⊂ XSing
x ;

(2) (|Y | \ Z)x 6⊂ XSing
x .
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(2) =⇒ (1) is trivial. If (2) fails, then

|Y |x = (|Y | ∪XSing)x ∪ Zx.

So |Y |x = (|Y | ∪XSing)x, namely (1) holds. We apply this remark to

Z = Y Sing ∪ Sp′(I/I2),
where p′ is the dimension of the Zariski tangent space of SpecOX,x at p and Sp′(I/I2)
is the locus where I/I2 is not locally free of rank p′. Note that neither part of Z
is equal to |Y |x, the former follows from Theorem 3.4 and the latter follows from
Theorem 3.13 in Constructions of complex analytic spaces as clearly p 6∈ Sp′(I/I2).
We find that W (p) 6⊂ XSing

x if and only if (|Y | \ Z)x 6⊂ XSing
x .

If y ∈ |Y | \ Z, then y is a regular point of Y and codimy(Y,X) = p. On the
other hand, I/I2 is free of rank p′ around y. But given the regularity of OY,y,
the regularity of OX,y is equivalent to the fact that I/I2 is free of rank p. Or
equivalently to p = p′. The latter is equivalent to the regularity of p in SpecOX,x.
The theorem is established. �

Proposition 3.6. Let X,Y be complex analytic spaces and x ∈ X, y ∈ Y . Then
the following are equivalent:

(1) X is regular at x and Y is regular at y;
(2) X × Y is regular at (x, y).

This follows from Corollary 8.6 in Constructions of complex analytic spaces and
Proposition 3.2.

Theorem 3.7. Let X be a complex manifold and A be a thin subset of X. Let
f ∈ OX(X \A). Assume that either of the following conditions hold:

(1) f is locally bounded near A;
(2) A is thin of order 2 in X.

Then f admits a unique extension to an element in OX(X).

Proof. The problem is local on X. By Proposition 3.2, we may assume that
X is a domain in Cn for some n ∈ N. In this case, the results are the classical
Riemann extension theorem. �

Corollary 3.8. Let X be a connected complex manifold and A be a thin set in X.
Then X \A is connected.

Proof. Assume that X \A can be written as the disjoint union of two open
subsets U0, U1. Then the function f ∈ OX(X \ A) = OX(U0) × OX(U1) given
by 0 ∈ OX(U0) and 1 ∈ OX(U1) is locally bounded near A. By Theorem 3.7, f
admits a unique extension to g ∈ OX(X). As X is connected and the image of f
is contained in {0, 1} = {0, 1}, it follows that f is constant, so U0 or U1 has to be
empty. �

4. Serre’s condition Rn

Fix n ∈ N in this section.

Definition 4.1. Let X be a complex analytic space, we say X satisfies Rn at x ∈ X
if OX,x satisfies Rn. We also say (X,x) or Xx satisfies Rn at x ∈ X.

We say X satisfies Rn if X satisfies Rn at all points x ∈ X.
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Proposition 4.2. Let X be a complex analytic space and x ∈ X. Take n ∈ N.
Then the following are equivalent:

(1) X satisfies Rn at x;
(2) ÔX,x satisfies Rn.

Proof. This follows from [Stacks, Tag 07NY]. �

Proposition 4.3. Let X be a complex analytic space, x ∈ X and n ∈ N. Then the
following are equivalent:

(1) X satisfies Rn at x;
(2) codimx(XSing, X) > n.

Proof. It follows from Theorem 3.5 that (1) holds if and only if codimx(XSing
x ,SpecOX,x) >

n, The latter condition is equivalent to (2) by definition. �

Corollary 4.4. Let X be a complex analytic space and n ∈ N. The

{x ∈ X : X satisfies Rn at x}

is co-analytic in X.

Proof. This follows from Proposition 4.3 and Corollary 2.11. �

Proposition 4.5. Let X,Y be complex analytic spaces and x ∈ X, y ∈ Y . Take
n ∈ N. Then the following are equivalent:

(1) X satisfies Rn at x and Y satisfies Rn at y;
(2) X × Y satisfies Rn at (x, y).

Proof. By Proposition 3.6,

(X × Y )Sing = (XSing × Y ) ∪ (X × Y Sing).

It follows that

codim(x,y)((X × Y )Sing, X × Y ) = min
{

codimx(XSing, X), codimy(Y Sing, Y )
}

We conclude by Proposition 4.3. �

5. Serre’s condition Sn

Fix n ∈ N in this section.

Definition 5.1. Let X be a complex analytic space, we say X satisfies Sn at x ∈ X
if OX,x satisfies Rn. We also say (X,x) or Xx satisfies Sn at x ∈ X.

We say X satisfies Sn if X satisfies Sn at all points x ∈ X.

Proposition 5.2. Let X be a complex analytic space and x ∈ X. Take n ∈ N.
Then the following are equivalent:

(1) X satisfies Sn at x;
(2) ÔX,x satisfies Sn.

Proof. This follows from the fact that OX,x is the quotient of a regular local
ring. Include a reference �

https://stacks.math.columbia.edu/tag/07NY
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Proposition 5.3. Let X be a complex analytic space, F be a coherent sheaf of
OX -modules and n ∈ N. Then{

x ∈ X : codepOX,x
Fx > n

}
is an analytic subset of X. Moreover, the germ of this set in SpecOX,x is equal to{

p ∈ SpecOX,x : codepOX,x,p
Fx,p > n

}
.

Proof. Step 1. We reduce to the case where X is smooth and equidimensional
of dimension N .

The problem is local in X, so we may assume that X is a complex model space.
Assume that X is a closed analytic subspace of a domain U in Cm for some m ∈ N.
For any x ∈ X, we have

codepOX,x
Fx = codepOU,x

Gx,

where G is the zero-extension of F to U . A similar formula holds for codepOX,x,p
Fx,p.

So it suffices to handle U instead of X.
Step 2. We prove the result after the reduction in Step 1.
By Auslander–Buchsbaum formula, for x ∈ X,

pdOX,x
Fx + depOX,x

Fx = depOX,x = dimOX,x.

So the condition codepOX,x
Fx > n is equivalent to

pdOX,x
Fx > n+ dimOX,x − dimx SuppF .

As OX,x is regular hence equidimensional, the condition just means

pdOX,x
Fx > n+ codimx(SuppF , X).

As OX,x is regular, this condition is equivalent to the existence of an integer
r > n+ codimx(SuppF , X) such that

Extr
OX

(F ,OX)x 6= 0.

For each p ∈ N, we introduce

Tp(F) :=
N⋃

r=p+1
Supp Extr

OX
(F ,OX).

Then the proceeding analysis shows that{
x ∈ X : codepOX,x

Fx > n
}

=
N⋃

s=0
Tn+s(F)∩{y ∈ SuppF : codimy(SuppF , X) ≤ s} .

Observe that the right-hand side is an analyitc set in X by Example 4.2 in Con-
structions of complex analytic spaces and Corollary 2.11, hence so is the left-hand
side.

It remains to compute the germ at y ∈ X. For p ∈ N, we compute

Tp(F)y =
N⋃

r=p+1
Supp Extr

OX
(F ,OX)y.

But observe that
Extr
OX

(F ,OX)y = Extr
OX,y

(Fy,OX,y).
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Let F̃y be the coherent module on SpecOX,x associated with Fy. Let Xy =
SpecOX,y Then

Tp(F)y =
N⋃

r=p+1
Supp Extr

OXy
(F̃y,OXy )y.

On the other hand, by Corollary 2.12, for s ∈ N,

{x ∈ SuppF : codimx(SuppF , X) ≤ s}y =
{
p ∈ SpecOX,y : codimp(Supp F̃y,SpecOX,y)

}
.

The same argument as above shows that{
x ∈ X : codepOX,x

Fx > n
}

y
=
{
p ∈ SpecOX,y : codepOX,y,p

Fy,p > n
}
.

�

Proposition 5.4. Let X be a complex analytic space and n ∈ N. Then the set of
x ∈ X such that X satisfies Sn at x is the complement of

∞⋃
m=0
{y ∈ Zm : codimy(Zm, X) ≤ n+m} ,

where
Zm = {x ∈ X : codepOX,xFx > m} .

Proof. It suffices to observe that for x ∈ X, X satisfies Sn at x if and only if

codim ({p ∈ SpecOX,x : codepOX,x,p} ,SpecOX,x) > n+m

for all m ∈ N. �

Corollary 5.5. Let X be a complex analytic space and n ∈ N. Then the set of
x ∈ X such that X satisfies Sn at x is co-analytic.

Proof. This follows from Proposition 5.4 and Proposition 5.3. �

Proposition 5.6. Let X, Y be complex analytic spaces and x ∈ X, y ∈ Y . Take
n ∈ N. Assume that X satisfies Sn at x and Y satisfies Sn at y, then X×Y satisfies
Sn at (x, y).

Proof. By Theorem 5.11 in Complex analytic local algebras,

ÔX×Y,(x,y) = ÔX,x⊗̂ÔY,y.

As being Sn is invariant under completion by [Stacks, Tag 07NW] and [Stacks, Tag
07NV], it suffices to prove the corresponding algebraic result, which is known. �

6. Reducedness

Definition 6.1. Let X be a complex analytic space, we say X is reduced at x ∈ X
if OX,x is reduced. We also say (X,x) or Xx is reduced at x ∈ X.

We say X is reduced if X is reduced at all points x ∈ X.

Proposition 6.2. Let X be a complex analytic space and x ∈ X. Then the
following are equivalent:

(1) X is reduced x;
(2) ÔX,x is reduced.

https://stacks.math.columbia.edu/tag/07NW
https://stacks.math.columbia.edu/tag/07NV
https://stacks.math.columbia.edu/tag/07NV
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Proof. This follows from Proposition 4.2 and Proposition 5.2.
Otherwise, one can also argue as follows: Recall that an excellent ring is Nagata

by [Stacks, Tag 07QV]. A Nagata noetherian local ring is reduced if and only if its
completion is by [Stacks, Tag 07NZ]. �

Theorem 6.3. Let X be a complex analytic space. Then the set of points x ∈ X
such that OX,x is reduced is co-analytic.

Proof. This follows from Corollary 5.5 and Corollary 4.4 as reduceness is
equivalent to S1 and R0. �

Corollary 6.4. Let X be a complex analytic space, then the nilradical radOX is
coherent.

Proof. The problem is local on X. Take x ∈ X. Up to shrinking X, we
may assume that OX,x/(radOX)x spreads to a finite OX -algebra A by Lemma 3.7
in Constructions of complex analytic spaces. Up to further shrinking X, we may
assume that A is the quotient of OX , say A ∼= OX/I for some coherent ideal I on
X. As Ix is nilpotent by assumption, up to shrinking X, we may assume that I is
also nilpotent, namely

I ⊆ radOX .

Let Y be the closed analytic subspace of X defined by the ideal I. Then OY,x
∼=

OX,x/(radOX)x is reduced. Up to shrinking X, by Theorem 6.3, we may assume
that Y is reduced. But then for any y ∈ Y ,

OY,y
∼= OX,y/Iy

is reduced, so
Iy ⊇ (radOX)y.

It follows that radOX = I, hence the nilradical is coherent. �

Corollary 6.5 (Cartan–Oka). Let X be a complex analytic space and A be an
analytic subset of X, then the sheaf JA is coherent.

Recall that the sheaf JA is introduced in Definition 4.4 in Constructions of
complex analytic spaces.

Proof. By Lemma 4.6 in Constructions of complex analytic spaces, we may
assume that A is a closed analytic subspace of X defined by a coherent ideal I. By
Corollary 3.14 in Constructions of complex analytic spaces, the sheaf JA is nothing
but
√
I, which is coherent by Corollary 6.4. �

Corollary 6.6. Let X be a complex analytic space and A be an analytic subset of
X, then there is a unique reduced closed analytic space Y of X with underlying set
A.

Proof. The existence follows from Corollary 6.5. The uniqueness follows from
Corollary 3.14 in Constructions of complex analytic spaces. �

Definition 6.7. Let X be a complex analytic space and A be an analytic subset of
X. The analytic space structure on A defined in Corollary 6.6 is called the reduced
induced structure on A. In particular, |X| with the reduced induced structure is
denoted by Xred and is called the reduced space underlying X.

https://stacks.math.columbia.edu/tag/07QV
https://stacks.math.columbia.edu/tag/07NZ
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Theorem 6.8 (Generic smoothness). Let X be a reduced complex analytic space
and x ∈ X, then XSing

x 6= |X|x. In other words, XSing is nowhere dense in |X|.

Proof. The problem is local. Take x ∈ X. As in the proof of Theorem 3.3, up
to shrinking X, we may assume that there are finitely many closed analytic subsets
X1, . . . , Xm in X which are irreducible at x such that

X = X1 ∪ · · · ∪Xm.

As X is reduced, we may also assume that X1, . . . , Xm are all reduced. Then
X1, . . . , Xm are all integral at x. It follows from Theorem 3.4 that

XSing
i 6= |Xi|x

for i = 1, . . . ,m. Let Ii be the coherent ideal sheaf of Xi in X for i = 1, . . . ,m. It
follows from the proof of Theorem 3.3 that

Xsing =
m⋂

i=1

(
Supp Ii ∪XSing

i

)
.

This implies XSing
x 6= |X|x: otherwise, for each i = 1, . . . ,m, we have

(Supp Ii)x ∪ (XSing
i )x = |X|x.

So
(Supp Ii)x = |X|x

for each i = 1, . . . ,m. In other words,

SpecOX,x =
m⋃

i=1
Supp Ii,x.

Observe that I1,x, . . . , Im,x are exactly the minimal primes of SpecOX,x. This is
possible if and only if m = 1. So we are reduced to the case where X is integral at
x. But this case is handled in Theorem 3.4. �

Proposition 6.9. Let X be a reduced complex analytic space and f, g ∈ OX(X).
Assume that [f ] = [g], then f = g.

Proof. It follows from Corollary 3.18 in Constructions of complex analytic
spaces that f − g is locally nilpotent. As X is reduced, f = g. �

In particular, on a reduced complex analytic space X, a holomorphic function
f is uniquely determined by the continuous map [f ] : X → C associated with it. In
this case, we will say [f ] is holomorphic.

Definition 6.10. Let X be a reduced complex analytic space. A continuous weakly
holomorphic function on X is a continuous map f : X → C such that f |Xreg is
holomorphic.

A weakly holomorphic function on X is f ∈ OX(Xreg) which is locally bounded
on X.

Definition 6.11. Let f : X → Y be a topologically finite surjective morphism of
reduced complex analytic spaces. We say f is a branched covering if there is a thin
subset T of Y satisfying the following properties:

(1) π−1(T ) is thin in X;
(2) X \ π−1(T )→ Y \ T induced by f is a local isomorphism.
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The set T is called a critial locus.
The set of points x ∈ X where f is not a local isomorphism at x is called the

branch locus of f . The image of the branch locus in Y is called the minimal critical
locus of f .

Observe that the number of points in the fiber is locally constant outside the
critical locus. When this number is actually constant say b ∈ N (e.g. when Y is
a connected complex manifold by Corollary 3.8), we say f is a b-sheeted branched
covering.

7. Normalness

Definition 7.1. Let X be a complex analytic space, we say X is normal at x ∈ X
if OX,x is normal. We also say (X,x) or Xx is normal at x ∈ X.

We say X is normal if X is normal at all points x ∈ X.

Proposition 7.2. Let X be a complex analytic space and x ∈ X. Then the
following are equivalent:

(1) X is normal x;
(2) ÔX,x is normal.

Condition (2) is usually known as the analytic normality of OX,x.

Proof. This follows from Proposition 4.2 and Proposition 5.2. �

Theorem 7.3. Let X be a complex analytic space. Then the set of points x ∈ X
such that OX,x is normal is co-analytic.

Proof. This follows from Corollary 5.5 and Corollary 4.4 as reduceness is
equivalent to S2 and R1. �

Proposition 7.4. Let X be a normal complex analytic space. Then for any
x ∈ XSing,

codimx(XSing, X) ≥ 2.

Proof. This follows from Theorem 3.5 and the corresponding algebraic result.
�

Proposition 7.5. Let X be a reduced complex analytic space. Then there is a finite
OX -algebra OX such that for each x ∈ X, OX,x is isomorphism to the inclusion of
the integral closure OX,x as OX,x-algebras.

The sheaf OX is unique up to a unique isomorphism.

Proof. The uniqueness is obvious, as there are no non-trivial automorphisms
of OX,x as an OX,x-algebra.

We prove the existence. The problem is then local on X. Let x ∈ X. By
Lemma 3.7 in Constructions of complex analytic spaces, up to shrinking X, OX,x

spreads to a finite OX -algebra A. Let X ′ = Specan
X A. Let x′1, . . . , x′m be the distinct

points on the fiber over x of X ′ → X. By Corollary 2.6 in Constructions of complex
analytic spaces, the points corresponds to SpmCAx. Let p1, . . . , pm′ be the minimal
primes of OX,x, then

Ax = OX,x
∼=

m′∏
i=1
OX,x/pi.
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As OX,x/pi is Henselian, OX,x/pi is in fact local for each i = 1, . . . ,m′. As OX,x/pi

is excellent, OX,x/pi is finite over OX,x/pi. It follows that SpmCAx = SpmAx. So
we find that m′ = m. Up to a renumbering, we may assume that pi corresponds
to x′i for i = 1, . . . ,m. Then by Corollary 2.6 in Constructions of complex analytic
spaces,

OX′,x′
i

∼= OX,x/pi

for i = 1, . . . ,m. In particular, X ′ is normal at x′i for all i = 1, . . . ,m. By Theo-
rem 7.3, Corollary 3.8 in Constructions of complex analytic spaces and Lemma 4.2
in Constructions of complex analytic spaces, up to shrinking X, we may assume
that X ′ is normal. We observe that for each y ∈ X, Ay is the product of the local
rings of points on the fiber hence normal.

For i = 1, . . . ,m, as OX,x/pi is excellent, its conductor is non-zero. We can find
a non-zero fi,x ∈ OX,x/pi such that fi,xOX,x/pi ⊆ OX,x/pi. Take

fx =
m∏

i=1
fi,x.

Then fx is a non-zero divisor in OX,x and fxAx ⊆ OX,x. Up to shrinking X, we
may assume that fx spreads to f ∈ OX(X), and we have an injection

fA ⊆ OX .

Up to shrinking X, we may also assume that OX → A is injective. We therefore
get an injective map

A ×f−−→ OX
×f−1

−−−→ OX [f−1].
For each y ∈ X, we get an injective map

Ay → OX,y[f−1
y ].

In particular, Ay is in the total ring of fraction of OX,y. As Ay is finite over OX,y,
we have

Ay ⊆ OX,y.

On the other hand, Ay is normal, so equality holds. �

Definition 7.6. Let X be a reduced complex analytic space. Then Specan
X OX

constructed in Proposition 7.5 is called the normalization of X. We denote it by X̄.
Note that we have a canonical morphism X̄ → X.

The normalization of X is well-defined up to a unique isomorphism in C-An/X .

Proposition 7.7. Let X be a reduced complex analytic space. For each x ∈ X,
the fiber of X̄ → X over x is in bijection with the set of minimal prime ideals in
OX,x. Moreover, if y corresponds to p, we have

OX̄,y
∼= OX,x/p

as OX,x-algebras.

Proof. This follows from the proof of Proposition 7.5. �

Proposition 7.8. Let X be a reduced complex analytic space. Then
(1) X̄ is normal;
(2) p : X̄ → X is topologically finite and surjective;
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(3) There is a nowhere dense analytic set Y in X such that p−1(Y ) is nowhere
dense in X̄ and the morphism X̄ \ p−1(Y ) → X \ Y induced by p is an
isomorphism.

Conversely, these conditions determines X̄ up to a unique isomorphism in
C-An/X . We will establish this result later.

Proof. That X̄ is normal follows from Corollary 2.6 in Constructions of com-
plex analytic spaces. The morphism X̄ → X is topologically finite by Corollary 3.8
in Constructions of complex analytic spaces. It is surjective by Corollary 2.7 in
Constructions of complex analytic spaces.

Let Y be the non-normal locus of X. It is in particular contained in XSing. By
Proposition 7.4 and Theorem 7.3, Y is a nowhere dense analytic set in X. It is clear
that p is an isomorphism outside Y .

We prove that p−1(Y ) is nowhere dense. Let x ∈ X and x′ be a point on the
fiber of X̄ → X over x. Let p′ be the minimal prime ideal of OX,x corresponding to
x′. Then the morphism SpecOX̄,x′ → SpecOX,x factorizes through SpecOX̄,x′ →
SpecOX,x/p

′. The map is finite and surjective. The latter is because OX,x/p
′ →

OX̄,x′ is injective. If p−1(Y ) contains a neighbourhood of x′ in X̄, then |p−1(Y )|x′ =
SpecOX̄,x′ . Then |Y |x = |SpecOX,x/p

′|, which is a contradiction.
�

Definition 7.9. Let X be a complex analytic space and A be an analytic set in X.
We say A is irreducible if A cannot be written as the union of two analytic sets B
and C in X with B 6⊂ C and C 6⊂ B.

Lemma 7.10. Let X be a connected normal complex analytic space. Then X is
irreducible.

Proof. Suppose otherwise, X can be written as the union of A, B, two analytic
sets in X not containing each other. As X is connected, A ∩B is non-trivial. Take
x ∈ A ∩B. We endow A and B with the reduced induced structure. Then

SpecOX,x = SpecOA,x ∪ SpecOB,x.

This is impossible as OX,x is unibranch. �

Definition 7.11. Let X be a reduced complex analytic space. An irreducible
component of X is the image of a connected component of X̄.

We say X is irreducible if Xred is non-empty and has only one irreducible
component.

By Lemma 7.10, each irreducible component is irreducible. Moreover, by
Proposition 7.8, the decomposition of |X| into the union of its irreducible components
is locally finite. No irreducible component is contained in the union of the others.

Proposition 7.12. Let X be a reduced complex analytic space and x ∈ X. Then
x can be joined by a path to a point in Xreg.

Proof. We may assume that x ∈ XSing.
Step 1. We reduce to the case where X is normal.
Let p : X̄ → X be the normalization. Take y ∈ X̄ with p(y) = x.
We claim that it suffices to show that there is a path connecting y to a regular

point of X̄. In fact, let T ⊆ X containing XSing be a thin analytic set such



8. UNIBRANCHNESS 21

that p−1(T ) is thin and X̄ \ p−1(T ) → X \ T induced by p is an isomorphism by
Proposition 7.8. If our claim holds, then all neighbourhood points of y are regular
and in particular, we may connect y to a regular poiint in X̄ \ p−1(T ). The image
of this path is the desired path.

Step 2. We proceed by induction on d := dimx X.
When d = 1, x is necessarily regular by Proposition 7.4. Assume d > 1. Up

to shrinking X, we can take f ∈ OX(X) such that dimx W (f) = d − 1. We may
assume that W (f) is equidimensional of dimension d − 1 by Theorem 2.4. Then
we can find a path from x to a regular point x′ ∈W (f). By Proposition 7.4, up to
perturbation, we may assume that x′ ∈ Xreg. �

8. Unibranchness

Definition 8.1. Let X be a complex analytic space, we say X is unibranch at
x ∈ X if OX,x is unibranch. We also say (X,x) or Xx is unibranch at x ∈ X.

We say X is unibranch if X is unibranch at all points x ∈ X.

Proposition 8.2. Let X be a complex analytic space and x ∈ X. Then the
following are equivalent:

(1) X is unibranch at x;
(2) Xred is unibranch at x;
(3) OX,x is geometrically unibranch;
(4) Ored

X,x is geometrically unibranch;
(5) OX,x has a unique minimal prime ideal;
(6) The fiber of Xred → Xred over x consists of a single point.

Proof. (1) ⇔ (3): As OX,x is excellent, Ored
X,x is a finite Ored

X,x-algebra, so the
residue field extension is finite. But the residue field of OX,x is C, so the residue
field extension is the trivial extension.

(1) ⇔ (5): This follows from [Stacks, Tag 0BQ0] and the fact that OX,x is
Henselian.

(1) ⇔ (2): This follows from the observation that (5) holds for OX,x if and only
if (5) holds for Ored

X,x.
(3) ⇔ (4): This follows from the same argument as (1) ⇔ (2).
(5) ⇔ (6): This follows from Proposition 7.7. �

Lemma 8.3. Let X be a complex analytic space,M be a coherent OX -module,
n ∈ N. Then the set

{x ∈ X : rankxM≤ n}
is an analytic set in X.

Proof. The problem is local on X, we may assume thatM admits a presenta-
tion

Op
X → O

q
X →M→ 0,

where p, q ∈ N. Up to shrinking X, we may assume that the first map is given
by a p× q matrix M in OX(X). The condition that rankxM≤ n is the same as
rankMx ≤ n, which is defines an analytic set in X. �

Lemma 8.4. Let X be a reduced complex analytic space and x ∈ X. Then for
any neighbourhood V of x in X, we can find an open neighbourhood U of x in X

https://stacks.math.columbia.edu/tag/0BQ0
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contained in V such that U has only finitely many irreducible componenets and all
irreducible componenets of U contain x.

Proof. Take an open neighbourhoodW of x inX contained in V such that W̄ is
compact and decompose W into irreducible components W1, . . . ,Wk,Wk+1, . . . ,Wn,
where W1, . . . ,Wk contain x and Wk+1, . . . ,Wn do not. It suffices to take

U =
(

k⋃
i=1

Wi

)
\

 n⋃
j=k+1

Wj

 .

�

Proposition 8.5. Let X be a reduced complex analytic space and x ∈ X. Assume
that X is unibranch at x. Then for any neighbourhood V of x in X, there is an
open neighbourhood U of x in X contained in V such that U is unibranch and
hence connected.

In particular, the unibranch locus is open.

Proof. The assertion follows from Lemma 8.4. �

Corollary 8.6. Let X be a complex analytic space. Then X is locally connected.

Proof. We may assume that X is reduced. The assertion follows from
Lemma 8.4 and �

9. Cohen–Macaulay property

Definition 9.1. Let X be a complex analytic space, we say X is Cohen–Macaulay
at x ∈ X if OX,x is Cohen–Macaulay. We also say (X,x) or Xx is Cohen–Macaulay
at x ∈ X.

We say X is Cohen–Macaulay if X is Cohen–Macaulay at all points x ∈ X.

The reduction and normalization of a Cohen–Macaylay space are not necessarily
Cohen–Macaulay.

Theorem 9.2. Let X be a complex analytic space. Then the set
{x ∈ X : X is Cohen–Macaulay at x}

is co-analytic.

Proof. The set is exactly where {x ∈ X : codepxOX,x = 0}, which is co-
analytic by Proposition 5.3. �
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