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Topology and bornology

1. Introduction

In the whole project, a neighbourhood in a topology space is taken in Bourbaki’s
sense. In particular, a neighbourhood is not necessarily open.

We follow Bourbaki’s convention about compact space. A comapct space is
always Hausdorff.

On the other hand, we do not require locally compact spaces and paracompact
spaces be Hausdorff.

A connected topological is always non-empty.
References to this chapter include [Ber93].

2. Nets

Let X be a set, Y ⊆ X be a subset. Consider a collection τ of subsets of X, we
write

τ |Y := {V ∈ τ : V ⊆ Y } .

Definition 2.1. Let X be a topology space and τ be a collection of subsets of X.
We say τ is

(1) dense if for any V ∈ τ and any x ∈ V , there is a fundamental system of
neighbourhoods of x in V consisting of sets from τ |V ;

(2) a quasi-net on X if for each x ∈ X, there exist n ∈ Z>0, V1, . . . , Vn ∈ τ
such that x ∈ V1 ∩ · · · ∩ Vn and that V1 ∪ · · · ∪ Vn is a neighbourhood of x
in X;

(3) a net on X if it is a quasi-net and if for any U, V ∈ τ , τ |U∩V is a quasi-net
on U ∩ V ;

(4) locally finite if for any x ∈ X, there is a neighbourhood U of x in X such
that {V ∈ τ : V ∩ U 6= ∅} is finite.

We observe that if τ is a net, τ |U∩V is in fact a net.

Lemma 2.2. Let X be a topological space and τ be a quasi-net on X.
(1) A subset U ⊆ X is open if and only if for each V ∈ τ , U ∩ V is open in V .
(2) Suppose that τ consists of compact sets. Then X is Hausdorff if and only

if for any U, V ∈ τ , U ∩ V is compact.

We remind the readers that a compact space is Hausdorff by our convention.

Proof. (1) The direct implication is trivial. Suppose that U ∩ V is open in V
for all V ∈ τ . We want to show that U is open. Take x ∈ U , we can find n ∈ Z>0,
V1, . . . , Vn ∈ τ all containing x such that V1 ∪ · · · ∪ Vn is a neighbourhood of x in X.
By our hypothesis, we can find open setsW1, . . . ,Wn inW such thatW ∩Vi = U∩Vi
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6 TOPOLOGY AND BORNOLOGY

for i = 1, . . . , n. Then W = W1 ∩ · · · ∩Wn is an open neighbourhood of x in X.
But then

U ∩ (V1 ∪ · · · ∪ Vn) ⊇W ∩ (V1 ∪ · · · ∪ Vn),
the latter is a neighbourhood of x hence so is the former. It follows that U is open.

(2) The direct implication is trivial. Consider the quasi-net τ × τ := {U × V :
U, V ∈ τ} on X × X. By (1), it suffices to verify that the intersection of the
diagonal with U × V is closed in U × V for any U, V ∈ τ . But this intersection is
homeomorphic to U ∩ V , which is compact by our assumption and hence closed as
U , V are both Hausdorff. �

Lemma 2.3. Let X be a Hausdorff space. Assume that X admits a quasi-net τ
consisting of compact sets. Then X is locally compact.

Proof. Take x ∈ X. By assumption, we can find n ∈ N and V1, . . . , Vn ∈ τ all
containing x such that V1 ∪ · · · ∪ Vn is a neighbourhood of x. This neighbourhood
is clearly compact. �

Lemma 2.4. Let X be a Hausdorff space and τ be a collection of compact subsets
of X. Then the following are equivalent:

(1) τ is a quasi-net;
(2) For each x ∈ X, there are n ∈ N and V1, . . . , Vn ∈ τ such that V1∪ · · ·∪Vn

is a neighbourhood of x in X.

Proof. (1) =⇒ (2): This is trivial.
(2) =⇒ (1): Given x ∈ X, take V1, . . . , Vn as in (2). We may assume that

x ∈ V1, . . . , Vm and x 6∈ Vm+1, . . . , Vn for some 1 ≤ m ≤ n. Then V1 ∪ · · · ∪ Vm is
a neighbourhood of x in X: if U is an open neighbourhood of x in X contained
in V1 ∪ · · · ∪ Vn, then U \ (Vm+1 ∪ · · · ∪ Vn) is an open neighbourhood of x in X
contained in V1 ∪ · · · ∪ Vm. �

Lemma 2.5. Let X be a topological space and τ be a net on X consisting of
compact sets. Then

(1) for any pair U, V ∈ τ , the intersection U ∩ V is locally closed in U and in
V ;

(2) If n ∈ Z>0, V, V1, . . . , Vn ∈ τ are such that

V ⊆ V1 ∪ · · · ∪ Vn,

then there are m ∈ Z>0 and U1, . . . , Um ∈ τ such that

V = U1 ∪ · · · ∪ Um

and each Uj is contained in some Vi.

Proof. (1) It suffices to show that U ∩ V is locally compact in the induced
topology. This follows from Lemma 2.3.

(2) For each x ∈ V and each i = 1, . . . , n such that x ∈ Vi, we take a neigh-
bourhood of x in V ∩ Vi of the form WiVi1 ∪ · · · ∪ Vimi

for some mi ∈ Z>0 and
Vij ∈ τ for j = 1, . . . ,mi. Then the union of all Wi’s is a neighbourhood of x of the
form U1 ∪ · · ·Um, where Uj belongs to τ and is contained in some Vi. Using the
compactness of V , we conclude. �
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3. Paracompact spaces

Definition 3.1. A topological space X is paracompact if any open covering of X
admits a locally finite refinement.

A paracompact space is not necessarily Hausdorff according to our definition.

Proposition 3.2. Let X be a locally compact topological space.
(1) Assume that each connected component of X is σ-compact, then X is

paracompact.
(2) If X is paracompact and Hausdorff, then each connected component of X

is σ-compact.
If the conditions in (2) are satisfied, for any basis of neighbourhoods B of X, every
open covering U of X can be refined into a locally finite covering V consisting of
elements in B.

We do not assume that the elements in B be open. The covering V is not
necessarily open.

Theorem 3.3 (Michael). Let f : X → Y be a closed continuous map of topological
spaces. Assume thatX is paracompact and Hausdorff, then f(X) is also paracompact
and Hausdorff.

This is a classical theorem of Ernest Michael. Reproduce the proof.

Proposition 3.4. Let X be a paracompact space and Y ⊆ X be a closed subspace.
Then Y is paracompact.

Proposition 3.5. Let X be a locally compact Hausdorff space and Y ⊆ X be a
subspace, then the following are equivalent:

(1) Y is locally compact and Hausdorff;
(2) Y is a locally closed subspace of X.

4. Closed maps and topologically finite maps

Definition 4.1 ([Stacks, Tag 004E],[Stacks, Tag 0CY1]). A map f : X → Y of
topological spaces is closed if for each closed subset Z in X, f(Z) is closed in Y .

A map f : X → Y of topological spaces is separated if it is continuous and the
diagonal map ∆ : X → X ×Y X is closed.

A closed map is not necessarily continuous.

Lemma 4.2. Let f : X → Y be a closed map of topological spaces, then for
each y ∈ Y and any open neighbourhood U of f−1(y) in X, there is an open
neighbourhood V of y in Y such that f−1(V ) ⊆ U .

Proof. It suffices to take V = Y \ f(X \ U), �

Lemma 4.3. Let f : X → Y be a closed map of topological spaces. Then for any
subspace V of Y , the map f−1(V )→ V induced by f is closed.

Proof. Let A be a closed subset of U := f−1(V ). We need to show that f(A)
is closed in V . Choose a closed subset B of X such that A = B ∩ U , then f(B) is
closed in Y and f(A) = f(B) ∩ V is closed in V . �

Definition 4.4. A f : X → Y of topological spaces is topologically finite if

https://stacks.math.columbia.edu/tag/004E
https://stacks.math.columbia.edu/tag/0CY1
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(1) f is separated and closed;
(2) for each y ∈ Y , the set f−1(y) is finite.

A map f : X → Y of topological spaces is topologically finite at x ∈ X if there
is an open neighbourhood U of x in X and an open neighbourhood V of f(x) in Y
such that f(U) ⊆ V and the induced map U → V is topologically finite.

Proposition 4.5. Let f : X → Y be a map of topological spaces. Then the
following are equivalent:

(1) f is topologically finite;
(2) f is proper and all fibers of f are discrete.

Here the properness is defined as in [Stacks, Tag 005O]. In particular, a proper
map is always separated and hence continuous.

Proof. Assume that f is topologically finite. As the fibers of f are finite and
Hausdorff, they are discrete. We need to show that f is proper. This follows from
[Stacks, Tag 005R].

Conversely, assume that f is proper with discrete fibers. By [Stacks, Tag 005R]
again, the fibers of f are compact and hence finite. The map f is closed and
separated as it is proper. So (1) follows. �

Lemma 4.6. Let f : X → Y be a continuous map between topologically spaces.
Assume that Y is Hausdorff. Let W be an open relative quasi-compact subset of X,
then the map

W \ f−1(f(∂W ))→ Y \ f(∂W )
induced by f is proper.

Proof. It is well-known that f |W̄ : W̄ → Y , as a continuous map from a
quasi-compact space to a Hausdorff space is proper. The map in the lemma is a base
change of the given map, hence is also proper. We apply [Stacks, Tag 005R]. �

Proposition 4.7. Let f : X → Y be a topologically finite map of topological spaces.
Then for any subspace V ⊆ Y , the map f−1(V )→ V induced by f is topologically
finite.

Proof. This follows immediately from Lemma 4.3. �

Theorem 4.8. Let f : X → Y be a topologically finite map of topological spaces.
Let y ∈ f(X) and x1, . . . , xn (n ∈ Z>0) denote the distinct points of f−1(y). Take
pairwise disjoint open neighbourhoods U ′1, . . . , U ′n of x1, . . . , xn in X. Then any
neighbourhood V ′ of y in Y contains an open neighbourhood V of y satisfying the
following conditions:

(1) U1 := f−1(V ) ∩ U ′1, . . . , Un := f−1(V ) ∩ U ′n are pairwise disjoint open
neighbourhoods of x1, . . . , xn in X;

(2) f−1V =
⋃n
j=1 Uj ;

(3) The maps Uj → V for j = 1, . . . , n induced from f are all topologically
finite.

Let F be a sheaf of sets on X, then we have a functorial bijection

f∗F(V ) ∼−→
n∏
j=1
F(Uj).

https://stacks.math.columbia.edu/tag/005O
https://stacks.math.columbia.edu/tag/005R
https://stacks.math.columbia.edu/tag/005R
https://stacks.math.columbia.edu/tag/005R
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The existence of U ′1, . . . , U ′n is guaranteed by [Stacks, Tag 0CY2].

Proof. As
⋃n
j=1 U

′
j is an open neighbourhood of f−1(y) in X, by Lemma 4.2

and Lemma 4.3, we can find an open neighbourhood V ⊆ V ′ of y in Y such that

f−1V ⊆
n⋃
j=1

U ′j .

The conditions (1) and (2) are therefore satisfied.
In order to prove (3), it remains to show that the induced maps Uj → V are

closed for j = 1, . . . , n. We may take j = 1. Let A be a closed subset of U1. Then A
is closed in f−1(V ) by (1) and (2). It follows that f(A) is closed in V by Lemma 4.3.

The last assertion follows from (1) and (2). �

Corollary 4.9. Let f : X → Y be a topologically finite map of topological spaces.
Let x ∈ X be U ′ be an open neighbourhood of x in X such that all other points in
f−1(f(x)) are in the interior of X \ U ′. Then any neighbourhood V ′ of f(x) in Y
contains an open neighbourhood V of y such that for U := f−1(V ) ∩ U ′ the map
g : U → V induced by f is topologically finite and g−1(g(x)) = {x}.

Proof. This follows immediately from Theorem 4.8. �

Corollary 4.10. Let f : X → Y be a topologically finite map of topological spaces.
Let F be a sheaf of sets on X, y ∈ f(X). Denote by x1, . . . , xn (n ∈ Z>0) the
distinct points of the fiber f−1(y). Then we have a canonical bijection

(f∗F)y
∼−→

n∏
j=1
Fxj

.

In particular, f∗ : Ab(X)→ Ab(Y ) is exact.

Proof. This follows immediately from Theorem 4.8. �

5. Exhaustion

Definition 5.1. Let X be a space. A quasi-compact exhaustion of X is a sequence
of quasi-compact sets (Ki)i∈Z>0 in X such that

(1) For each i ∈ Z>0,
Ki ⊆ IntKi+1;

(2)

X =
∞⋃
i=1

Ki.

When X is Hausdorff, we also say (Ki)i∈Z>0 is a compact exhaustion.

Proposition 5.2. Let X be a topological space. Then the following are equivalent:
(1) there is a quasi-compact exhaustion of X;
(2) X is σ-compact and weakly locally compact;
(3) X is Lindelöf and weakly locally compact.

Proof. To be included. �

Proposition 5.3. Let X be a locally compact Hausdorff topological space admitting
a countable basis, then X admits a compact exhaustion.

https://stacks.math.columbia.edu/tag/0CY2
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Note that in the book of Grauret–Remmert, the condition of being Hausdorff is
omitted.

Proof. Include a proof �

Lemma 5.4. Let X be a paracompact Hausdorff topological space and F be a
sheaf of Abelian groups on X. Let q ∈ Z≥2 and (Ki)i∈Z>0 be a compact exhaustion
of X with the following property:

Hq−1(Ki,F) = Hq(Ki,F) = 0
for all i ∈ Z>0. Then Hq(X,F) = 0.

Proof. Grauert–Remmert P103. �

6. Maps with discrete fibers

Lemma 6.1. Let X be a locally connected locally compact Hausdorff topological
space and X0 be a Hausdorff space with a basis β0. Consider a continuous map
f : X → X0 with discrete fiber. Then there is a basis of X made up of connected
components of f−1U0 with U0 ∈ β0.

Proof. Let x ∈ X and V be an open neighbourhood of x in X. We need to
find U0 ∈ β0 and a component U of f−1(U0) such that U ⊆ V .

For this purpose, we may assume that X is connected. Set x0 = f(x). Choose
an open neighbourhood W of x in V with W̄ compact and B ∩ f−1(x0) = ∅, where
B = W̄ \W . Let B0 = f(B), then x0 6∈ B0. As B0 is compact, we can find U0 ∈ β0
containing x0 such that B0 ∩U0 = ∅. Let U be the connected component of f−1(U0)
containing x. Then B ∩ U = ∅ and hence U ⊆ W ∪ (X \ W̄ ). As X is connected
and W ∩ U is non-empty, we find that U ⊆W . �

Proposition 6.2. Let X be a connected, locally connected, first countable, locally
compact Hausdorff space and X0 be a topological space with countable basis. If
there is a map f : X → X0 with discrete fibers, then X has countable topology as
well.

This result is proved in [Jur59].

Proof. Let β0 be a countable basis for the topology on X0. Let β be the
collection of open sets U in X such that

(1) There is U0 ∈ β0 such that U is a connected component of f−1(U0);
(2) U is relatively compact in X.

By our assumption, any U ∈ β has countable basis. By Lemma 6.1, β is a basis for
the topology on X. It remains to show that β is countable.

Let V ∈ β. For each n ∈ Z>0, β(n) denotes the collection of U ∈ β with the
following property: there is a map {1, . . . , n} → β, say assigning Ui ∈ β to i such
that U1 = V , Ui ∩ Ui+1 6= ∅ for i = 1, . . . , n− 1. As X is connected,

β =
∞⋃
n=1

β(n).

It remains to show that for each n ∈ Z>0, β(n) is countable. We make an induction.
The case n = 1 is obvious. Assume that n ≥ 2 and the assertion has been proved
for n− 1. Let U0 ∈ β0 and U ′ ∈ β(n−1). Let α(n)(U0, U

′) denote the collection of
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U ∈ β(n) such that U is a connected component of f−1(U0) and U ∩U ′ is non-empty.
Then

β(n) =
⋃

U0∈β0,U ′∈β(n−1)

α(n)(U0, U
′).

But each α(n)(U0, U
′) is countable as U ′ has countable basis. It follows that β(n) is

countable. �

7. Previlaged neighbourhoods

Definition 7.1. Let X be a topological space, x ∈ X and F be a sheaf of sets on
X. We say a neighbourhood U of x in X is F-previlaged at x if the map

H0(U,F)→ Fx
is injective. We also say U is an F-previlaged neighbourhood of x in X.
Proposition 7.2. Let X be a topological space, x ∈ X and

0→ G → F → H
be an exact sequence of sheaves of Abelian groups on X. Let U be a neighbourhood
of x in X.

(1) If U is G-previlaged at x and H-previlaged at x, then it is F -previlaged at
x;

(2) If U is F-previlaged at x, then it is G-previlaged at x.
Proof. We have a commutative diagram of C-linear spaces

0 H0(X,G) H0(X,F) H0(X,H)

0 Gx Fx Hx

.

Both assertions follow from simple diagram chasing. �

8. Stratification

Definition 8.1. Let M be a real analytic manifold and Ω be an open subset of
M . A stratification N of Ω is a finite collection of connected locally closed analytic
submanifold of Ω such that

(1) Ω is a disjoint union of the elements in N ;
(2) for each Γ ∈ N , (Γ̄\Γ)∩Ω is the union of elements in N of strictly smaller

dimensions.
Elements in N are called the strata of the stratification.

For each open subset U ⊆ Ω, we write N (U) for the collection of subsets of U
consisting of all connected components of U ∩ Γ for all Γ ∈ N .

Take x ∈ Ω, an open neighbourhood U of x in Ω is normal with respect to N if
(1) N (U) is a stratification of U ;
(2) for each Γ ∈ N (U), x ∈ Γ̄.

Definition 8.2. Let X be a real analytic space. For each x ∈ X, we temporarily
write Ja for the smallest family of germs of analytic subspaces of X stable under
finite union, finite intersection, complement and contains all germs of the form
{f < 0}a for some f ∈ OX,x.

A subset A of X is real semi-analytic if for all x ∈ X, Ax ∈ Jx.
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Theorem 8.3. Let X be a real analytic manifold, x ∈ X. Suppose that
{A0, . . . , Am} is a finite collection of real semi-analytic subsets of X. Then
there is a stratification N of an open neighbourhood U of x in X compatible with
Ai in the sense that each stratum is either contained in Ai or is disjoint from Ai
for i = 1, . . . ,m such that each y ∈ U admits a fundamental system of normal
neighbourhoods with respect to N .

Proof. Include the ref. �

Proposition 8.4. Let X be a real analytic space, A be a semi-analytic set in X,
x ∈ A. Let Y1, . . . , Ym be finitely many analytic sets in X passing x. Then there
is a fundamental system B of neighbourhoods of a in A such that for each V ∈ B,
there is a fundamental system BV of open neighbourhoods of V in X so that for
any W ∈ BV , W ∩ Yi is OYi-previlaged at x for i = 1, . . . ,m.

Proof. The problem is local on X, we may assume that X = Rn for some
n ∈ N and x = 0. Let U be an open neighbourhood of 0 in Rn compatible with the
collection {A, Y1, . . . , Ym} and such that each y ∈ U admits a fundamental system
U(x) of normal neighbourhoods with respect to N . The existence of U is guaranteed
by Theorem 8.3. Let

B = {Q ∩A : Q ∈ U(0)} .
Suppose V ∈ B, say B = Q ∩A with Q ∈ U(0).

Let Ω be a neighbourhood of V in Rn, we need to construct an open neighbour-
hood W of V in Rn contained in Ω such that W ∩ Yi is OYi-previlaged at x for
i = 1, . . . ,m.

For each y ∈ V , we let Q(y) be an open neighbourhood of x in Rn normal with
respect to N and contained in Ω. Let W =

⋃
x∈V Q(x).

Fix i ∈ {1, . . . ,m}. We will verify that W ∩ Yi is OYi
-previlaged at x.

Let f ∈ OYi
(W ∩ Yi) assume that f vanishes in a neighbourhood of 0, then we

claim that f = 0 on W ∩ Yi. Now Yi ∩Q is a finite union of strata of N (Q) which
are connected manifolds whose closures contain 0 and either contained in or disjoint
from A. It is clear that f vanishes on all strata contained in A ∩ Yi ∩Q, hence on
A∩Y ∩Q. Also, f vanishes on Y ∩Q(0), so it remains to prove that if b ∈ V , b 6= 0,
then f vanishes on Y ∩Q(b).

Let Γ be a stratum of N (Q(b)) contained in Y . Then b ∈ Γ̄. Take a stratum Γ′
of N (Q) so that Γ is a connected component of Q(b) ∩ Γ′. We may assume that
b is on the boundary of A and Γ′ ∩ A = ∅. As A ∩ Γ ∩ Q(b) is a union of strata
of N (Q(b)), one of them, say Γ1 contains b. It is the intersection of a stratum Γ′1
of N (Q) with Q(b). Let C be the connected component of Γ′ ∩W containing Γ.
Consider the set

E =
{
x ∈ Γ′1 ∩ V : Γ′1,x ⊆ Cx

}
.

Then b ∈ E as Γ′1 ∩Q(b) ⊆ Γ̄ ∩Q(b) ⊆ C̄ ∩Q(b). Moreover, E is an open subset of
Γ′1 ∩ V by definition. We claim that E is also closed.

Let us postpone the proof of the claim. As Γ′1 is connected, we have E = Γ′1∩V .
So

Γ′1 ∩ V ⊆ C̄ ∩ V
and

Γ′1 ∩W ⊆ C̄ ∩W.
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But a ∈ Γ1, so a ∈ C̄ and f vanishes on a clopen subset of C, namely Q(a) ∩ C, so
f vanishes on C. In particular on Γ.

It remains to verify the claim. In fact, we show that if y ∈ Ē ∩ Γ′1 ∩ V , then
Γ′1 ∩Q(y) ⊆ C̄ ∩Q(y). To see this, observe that there is z ∈ E ∩Q(y), so there is
a non-empty open subset of Γ′1 ∩Q(y) contained in C̄ ∩Q(y). But Λ ∩Q(y) is a
stratum of N (Q(y)) as y ∈ Γ′1, our claim follows since C̄ ∩Q(y) is a union of strata
of N (Q(y)). �

9. Bornology

Definition 9.1. Let X be a set. A bornology on X is a collection B of subsets of
X such that

(1) For any x ∈ X, there is B ∈ B such that x ∈ B;
(2) For any B ∈ B and any subset A ⊆ B, A ∈ B;
(3) B is stable under finite union.
The pair (X,B) is called a bornological set. The elements of B are called the

bounded subsets of (X,B). When B is obvious from the context, we omit it from the
notations.

A morphism between bornological sets (X,BX) and (Y,BY ) is a map of sets
f : X → Y such that for any A ∈ BX , f(A) ∈ BY . Such a map is called a bounded
map.

Definition 9.2. Let (X,B) be a bornological set. A basis for B is a subset A ⊆ B
such that for any B ∈ B, there are A1, . . . , An ∈ A such that B ⊆ A1 ∪ · · · ∪An.





Bibliography

[Ber93] V. G. Berkovich. Étale cohomology for non-Archimedean analytic spaces.
Publications Mathématiques de l’Institut des Hautes Études Scientifiques
78.1 (1993), pp. 5–161.

[Jur59] M. Jurchescu. On a theorem of Stoilow. Math. Ann. 138 (1959), pp. 332–
334. url: https://doi.org/10.1007/BF01344153.

[Stacks] T. Stacks Project Authors. Stacks Project. http : / / stacks . math .
columbia.edu. 2020.

15

https://doi.org/10.1007/BF01344153
http://stacks.math.columbia.edu
http://stacks.math.columbia.edu

	Topology and bornology
	1. Introduction
	2. Nets
	3. Paracompact spaces
	4. Closed maps and topologically finite maps
	5. Exhaustion
	6. Maps with discrete fibers
	7. Previlaged neighbourhoods
	8. Stratification
	9. Bornology

	Bibliography

