Analytic Bertini theorem

Mingchen Xia
Chalmers Tekniska Högskola
12/10/2021; Oslo

Notations

- X : complex projective manifold of dimension n.
- Λ : base-point free linear system on X.

Roughly speaking Λ is a family of linearly equivalent divisors on X. Being base-point free means that the intersection of all divisors is empty.

Notations

- X : complex projective manifold of dimension n.
- Λ : base-point free linear system on X.

Roughly speaking Λ is a family of linearly equivalent divisors on X. Being base-point free means that the intersection of all divisors is empty.

Example

$X=\mathbb{P}^{n}, \Lambda$ is the set of all hyperplanes in \mathbb{P}^{n}.
More generally, we require $\Lambda \cong \mathbb{P}^{N}$ to form a projective space as in the example.

Classical Bertini theorem

Theorem (Bertini theorem)
 A general member $H \in \Lambda$ is smooth.

By general, we mean outside a proper Zariski closed subset.

Classical Bertini theorem

Theorem (Bertini theorem)

A general member $H \in \Lambda$ is smooth.
By general, we mean outside a proper Zariski closed subset.
Bertini type theorem: a theorem that relates properties (P) of objects on X to (P) of a generic member in Λ.
Here generic means the complement is small.

Analytic Bertini theorem

Fix a holomorphic line bundle L on X, a psh metric ϕ on L. The pair (L, ϕ) is known as a Hermitian pseudo-effective line bundle.

Analytic Bertini theorem

Fix a holomorphic line bundle L on X, a psh metric ϕ on L. The pair (L, ϕ) is known as a Hermitian pseudo-effective line bundle. Let $\mathcal{J}(\phi)$ be the multiplier ideal sheaf of ϕ, namely the ideal sheaf generated by holomorphic functions f such that $|f|_{\phi}^{2}$ is locally integrable.

Analytic Bertini theorem

Fix a holomorphic line bundle L on X, a psh metric ϕ on L. The pair (L, ϕ) is known as a Hermitian pseudo-effective line bundle. Let $\mathcal{J}(\phi)$ be the multiplier ideal sheaf of ϕ, namely the ideal sheaf generated by holomorphic functions f such that $|f|_{\phi}^{2}$ is locally integrable.

Theorem (Fujino-Matsumura, X.)

There is a pluripolar set $\Sigma \subseteq \Lambda$ such that $\forall H \in \Lambda-\Sigma, \mathcal{J}\left(\left.\phi\right|_{H}\right)=\left.\mathcal{J}(\phi)\right|_{H}$.

Remark

$\left.\mathcal{J}\left(\left.\phi\right|_{H}\right) \subseteq \mathcal{J}(\phi)\right|_{H}$ is a consequence of Ohsawa-Takegoshi extension theorem.

A brief history

The analytic Bertini theorem was first considered by Fujino and Matsumura. They proved that the set of H satisfying $\mathcal{J}\left(\left.\phi\right|_{H}\right)=\left.\mathcal{J}(\phi)\right|_{H}$ is dense in the Euclidean topology of Λ.

A brief history

The analytic Bertini theorem was first considered by Fujino and Matsumura. They proved that the set of H satisfying $\mathcal{J}\left(\left.\phi\right|_{H}\right)=\left.\mathcal{J}(\phi)\right|_{H}$ is dense in the Euclidean topology of Λ.

Early this year, Meng-Zhou proved that the exceptional set Σ has measure 0 .

A brief history

The analytic Bertini theorem was first considered by Fujino and Matsumura. They proved that the set of H satisfying $\mathcal{J}\left(\left.\phi\right|_{H}\right)=\left.\mathcal{J}(\phi)\right|_{H}$ is dense in the Euclidean topology of Λ.

Early this year, Meng-Zhou proved that the exceptional set Σ has measure 0 .

The current version was a conjecture of Boucksom.

Sketch of the proof

Goal: relate $\mathcal{J}\left(\left.\phi\right|_{H}\right)$ to $\left.\mathcal{J}(\phi)\right|_{H}$.

Sketch of the proof

Goal: relate $\mathcal{J}\left(\left.\phi\right|_{H}\right)$ to $\left.\mathcal{J}(\phi)\right|_{H}$.
Step 1. Group $\left.\phi\right|_{H}$ for various H into a single object.
We will construct a universal family $\pi_{1}: U \rightarrow \Lambda$ and a Hermitian psef line bundle (\mathcal{L}, Φ) on U, so that

- the fibre of (U, \mathcal{L}, Φ) over $H \in \Lambda$ is given by $\left(H,\left.L\right|_{H},\left.\phi\right|_{H}\right)$.
- $\mathcal{J}(\Phi)$ is closely related to $\mathcal{J}(\phi)$.

The problem is translated into a statement of fibrations: multiplier ideal sheaf of a quasi-general fibre of π_{1} is equal to the restriction of $\mathcal{J}(\phi)$.

Sketch of the proof

Goal: relate $\mathcal{J}\left(\left.\phi\right|_{H}\right)$ to $\left.\mathcal{J}(\phi)\right|_{H}$.
Step 1. Group $\left.\phi\right|_{H}$ for various H into a single object.
We will construct a universal family $\pi_{1}: U \rightarrow \Lambda$ and a Hermitian psef line bundle (\mathcal{L}, Φ) on U, so that

- the fibre of (U, \mathcal{L}, Φ) over $H \in \Lambda$ is given by $\left(H,\left.L\right|_{H},\left.\phi\right|_{H}\right)$.
- $\mathcal{J}(\Phi)$ is closely related to $\mathcal{J}(\phi)$.

The problem is translated into a statement of fibrations: multiplier ideal sheaf of a quasi-general fibre of π_{1} is equal to the restriction of $\mathcal{J}(\phi)$.

Step 2. We construct a psh metric h_{H} on $\pi_{1 *}\left(\omega_{U / \Lambda} \otimes \mathcal{L} \otimes \mathcal{J}(\Phi)\right)$, so that h_{H} is singular at all H with $\mathcal{J}\left(\left.\phi\right|_{H}\right) \neq\left.\mathcal{J}(\phi)\right|_{H}$.
The main technique used in this step is (a generalization of) Berndtsson's theorem on the positivity of direct images.

Step 1

Kodaira map

The linear system induces a natural map $p: X \rightarrow \Lambda^{*}, x \in X$ is mapped to the set of divisors passing through x.

Let $W(\cong \Lambda)$ be the set of hyperplane on Λ^{*}.
The construction of $\pi_{1}: U \rightarrow W$ is easy:

$$
U=\{(H, x) \in W \times X: x \in H\}
$$

Take π_{1} as the natural projection.
Take (\mathcal{L}, Φ) as the pull-back of (L, ϕ) along the projection $\pi_{2}: U \rightarrow X$.

Step 1

Relation between $\mathcal{J}(\Phi)$ and $\mathcal{J}(\phi)$.
Lemma
Consider $H \in \Lambda$,

$$
\left.\left.\mathcal{J}\left(\left.\phi\right|_{H}\right) \subseteq \mathcal{J}(\phi)\right|_{H} \subseteq \mathcal{J}(\Phi)\right|_{H} .
$$

Step 1

Relation between $\mathcal{J}(\Phi)$ and $\mathcal{J}(\phi)$.

Lemma

Consider $H \in \Lambda$,

$$
\left.\left.\mathcal{J}\left(\left.\phi\right|_{H}\right) \subseteq \mathcal{J}(\phi)\right|_{H} \subseteq \mathcal{J}(\Phi)\right|_{H}
$$

Thus we have reduced the problem of understanding the set $\left\{H: \mathcal{J}\left(\left.\phi\right|_{H}\right) \neq\left.\mathcal{J}(\phi)\right|_{H}\right\}$ to that of $\left\{H: \mathcal{J}\left(\left.\phi\right|_{H}\right) \neq\left.\mathcal{J}(\Phi)\right|_{H}\right\}$.

Step 1

What do we get after the reduction?

Step 1

What do we get after the reduction? We completely get rid of $\left.\mathcal{J}(\phi)\right|_{H}$! The remaining problem is to relate $\mathcal{J}(\Phi)$ and the fibres of π_{1}.

Theorem (*)

Let $\pi: U \rightarrow W$ be a surjective morphism of smooth projective varieties. Let (L, ϕ) be a Hermitian psef line bundle on U, then for quasi-every $w \in W, \mathcal{J}\left(\left.\phi\right|_{U_{w}}\right)=\left.\mathcal{J}(\phi)\right|_{U_{w}}$.

Step 2

How does direct images show up?

Step 2

How does direct images show up?
Theorem (Kollár's torsion-free theorem à la Fujino-Matsumura)
Outside a proper Zariski closed subset of $W, \pi_{*}\left(\omega_{U / W} \otimes L \otimes \mathcal{J}(\phi)\right)$ is locally free and the fibre at w is given by

$$
H^{0}\left(\left.\left.\omega_{U_{w}} \otimes L\right|_{U_{w}} \otimes \mathcal{J}(\phi)\right|_{U_{w}}\right)
$$

Step 2

How does direct images show up?

Theorem (Kollár's torsion-free theorem à la Fujino-Matsumura)

Outside a proper Zariski closed subset of $W, \pi_{*}\left(\omega_{U / W} \otimes L \otimes \mathcal{J}(\phi)\right)$ is locally free and the fibre at w is given by

$$
H^{0}\left(\left.\left.\omega_{U_{w}} \otimes L\right|_{U_{w}} \otimes \mathcal{J}(\phi)\right|_{U_{w}}\right)
$$

Our problem reduces to understanding the relation between the fibres of $\pi_{*}\left(\omega_{U / W} \otimes L \otimes \mathcal{J}(\phi)\right)$ and $H^{0}\left(\left.\omega_{U_{w}} \otimes L\right|_{U_{w}} \otimes \mathcal{J}\left(\left.\phi\right|_{U_{w}}\right)\right)$.

Hodge metric

We recall the definition of Hodge metric on $\pi_{*}\left(\omega_{U / W} \otimes L\right)$. Assuming that ϕ is smooth (and π is smooth for simplicity).

Hodge metric

We recall the definition of Hodge metric on $\pi_{*}\left(\omega_{U / W} \otimes L\right)$. Assuming that ϕ is smooth (and π is smooth for simplicity).

Fact

$\pi_{*}\left(\omega_{U / W} \otimes L\right)$ is a vector bundle.

Hodge metric

We recall the definition of Hodge metric on $\pi_{*}\left(\omega_{U / W} \otimes L\right)$. Assuming that ϕ is smooth (and π is smooth for simplicity).

Fact

$\pi_{*}\left(\omega_{U / W} \otimes L\right)$ is a vector bundle.
Given s in the fibre $\pi_{*}\left(\omega_{U / W} \otimes L\right)$ over $w \in W$, we can regard s as a section of $\left.\omega_{U_{w}} \otimes L\right|_{U_{w}}$ near U_{w}. That is, s is a holomorphic $(n, 0)$-form with value in $\left.L\right|_{U_{w}}$. Thus $s \wedge \bar{s} e^{-\phi}$ (after normalization) is a measure on U_{w}. Define

$$
h_{H}(s, s):=\int_{U_{w}} s \wedge \bar{s} e^{-\phi}
$$

Hodge metric

We recall the definition of Hodge metric on $\pi_{*}\left(\omega_{U / W} \otimes L\right)$. Assuming that ϕ is smooth (and π is smooth for simplicity).

Fact

$\pi_{*}\left(\omega_{U / W} \otimes L\right)$ is a vector bundle.
Given s in the fibre $\pi_{*}\left(\omega_{U / W} \otimes L\right)$ over $w \in W$, we can regard s as a section of $\left.\omega_{U_{w}} \otimes L\right|_{U_{w}}$ near U_{w}. That is, s is a holomorphic $(n, 0)$-form with value in $\left.L\right|_{U_{w}}$. Thus $s \wedge \bar{s} e^{-\phi}$ (after normalization) is a measure on U_{w}. Define

$$
h_{H}(s, s):=\int_{U_{w}} s \wedge \bar{s} e^{-\phi}
$$

Hodge metric

Theorem (Berndtsson-Păun)
 h_{H} is Griffiths positive.

We do not need to recall the precise definition of positivity. For us it suffices to know that $\operatorname{det} h_{H}$ is a psh metric on the determinant line bundle $\operatorname{det} \pi_{*}\left(\omega_{U / W} \otimes L\right)$.

General case

For singular ϕ, the corresponding results are also known:

Fact (Kollár's torsion-free theorem)

$\pi_{*}\left(\omega_{U / W} \otimes L \otimes \mathcal{J}(\phi)\right)$ is a vector bundle outside a proper Zariski closed set W_{B}.

On can mimic the above definition to define a metric h_{H} on $\pi_{*}\left(\omega_{U / W} \otimes L \otimes \mathcal{J}(\phi)\right)$.

Properties of h_{H}

Theorem (Păun-Takayama)

The metric h_{H} is Griffiths positive (outside W_{B}). In particular, $\operatorname{det} h_{H}$ is a psh metric.

Properties of h_{H}

Theorem (Păun-Takayama)

The metric h_{H} is Griffiths positive (outside W_{B}). In particular, $\operatorname{det} h_{H}$ is a psh metric.

Fact

The metric h_{H} (hence $\operatorname{det} h_{H}$) is singular at all general $w \in W$ satisfying

$$
H^{0}\left(\left.\omega_{U_{w}} \otimes L\right|_{U_{w}} \otimes \mathcal{J}\left(\left.\phi\right|_{U_{w}}\right)\right) \neq \pi_{*}\left(\omega_{U / W} \otimes L \otimes \mathcal{J}(\phi)\right)_{w}
$$

Recall that by Kollár's torsion-free theorem, for a general $w \in W$,

$$
\pi_{*}\left(\omega_{U / W} \otimes L \otimes \mathcal{J}(\phi)\right)_{w}=H^{0}\left(\left.\left.\omega_{U_{w}} \otimes L\right|_{U_{w}} \otimes \mathcal{J}(\phi)\right|_{U_{w}}\right)
$$

Properties of h_{H}

As a consequence, the set of $w \in W$ with

$$
H^{0}\left(\left.\omega_{U_{w}} \otimes L\right|_{U_{w}} \otimes \mathcal{J}\left(\left.\phi\right|_{U_{w}}\right)\right) \neq H^{0}\left(\left.\left.\omega_{U_{w}} \otimes L\right|_{U_{w}} \otimes \mathcal{J}(\phi)\right|_{U_{w}}\right)
$$

is pluripolar!

Properties of h_{H}

As a consequence, the set of $w \in W$ with

$$
H^{0}\left(\left.\omega_{U_{w}} \otimes L\right|_{U_{w}} \otimes \mathcal{J}\left(\left.\phi\right|_{U_{w}}\right)\right) \neq H^{0}\left(\left.\left.\omega_{U_{w}} \otimes L\right|_{U_{w}} \otimes \mathcal{J}(\phi)\right|_{U_{w}}\right)
$$

is pluripolar!
A standard trick in algebraic geometry allows us to remove H^{0} and conclude that the set of w so that

$$
\mathcal{J}\left(\left.\phi\right|_{U_{w}}\right) \neq\left.\mathcal{J}(\phi)\right|_{U_{w}}
$$

is pluripolar.
This finishes the proof of Theorem * and our analytic Bertini theorem follows.

Thank you for your attention!

