Analytic Bertini theorem

Mingchen Xia

Chalmers Tekniska Högskola

12/10/2021; Oslo

Mingchen Xia (Chalmers)

Analytic Bertini theorem

12/10/2021; Oslo

- X: complex projective manifold of dimension n.
- Λ : base-point free linear system on X.

Roughly speaking Λ is a family of linearly equivalent divisors on X. Being base-point free means that the intersection of all divisors is empty.

- X: complex projective manifold of dimension n.
- Λ : base-point free linear system on X.

Roughly speaking Λ is a family of linearly equivalent divisors on X. Being base-point free means that the intersection of all divisors is empty.

Example

 $X = \mathbb{P}^n$, Λ is the set of all hyperplanes in \mathbb{P}^n .

More generally, we require $\Lambda\cong\mathbb{P}^N$ to form a projective space as in the example.

Theorem (Bertini theorem)

A general member $H \in \Lambda$ is smooth.

By general, we mean outside a proper Zariski closed subset.

Theorem (Bertini theorem)

A general member $H \in \Lambda$ is smooth.

By general, we mean outside a proper Zariski closed subset.

Bertini type theorem: a theorem that relates properties (P) of objects on X to (P) of a generic member in Λ . Here generic means the complement is small. Fix a holomorphic line bundle L on X, a psh metric ϕ on L. The pair (L, ϕ) is known as a Hermitian pseudo-effective line bundle.

Fix a holomorphic line bundle L on X, a psh metric ϕ on L. The pair (L, ϕ) is known as a Hermitian pseudo-effective line bundle. Let $\mathcal{I}(\phi)$ be the multiplier ideal sheaf of ϕ , namely the ideal sheaf generated by holomorphic functions f such that $|f|^2_{\phi}$ is locally integrable.

4/16

Fix a holomorphic line bundle L on X, a psh metric ϕ on L. The pair (L, ϕ) is known as a Hermitian pseudo-effective line bundle. Let $\mathcal{I}(\phi)$ be the multiplier ideal sheaf of ϕ , namely the ideal sheaf generated by holomorphic functions f such that $|f|^2_{\phi}$ is locally integrable.

Theorem (Fujino–Matsumura, X.)

There is a pluripolar set $\Sigma \subseteq \Lambda$ such that $\forall H \in \Lambda - \Sigma$, $\mathcal{I}(\phi|_H) = \mathcal{I}(\phi)|_H$.

Remark

 $\mathcal{I}(\phi|_H)\subseteq \mathcal{I}(\phi)|_H$ is a consequence of Ohsawa–Takegoshi extension theorem.

The analytic Bertini theorem was first considered by Fujino and Matsumura. They proved that the set of H satisfying $\mathcal{I}(\phi|_H) = \mathcal{I}(\phi)|_H$ is dense in the Euclidean topology of Λ .

Image: A matrix

The analytic Bertini theorem was first considered by Fujino and Matsumura. They proved that the set of H satisfying $\mathcal{I}(\phi|_H) = \mathcal{I}(\phi)|_H$ is dense in the Euclidean topology of Λ .

Early this year, Meng–Zhou proved that the exceptional set Σ has measure 0.

The analytic Bertini theorem was first considered by Fujino and Matsumura. They proved that the set of H satisfying $\mathcal{I}(\phi|_H) = \mathcal{I}(\phi)|_H$ is dense in the Euclidean topology of Λ .

Early this year, Meng–Zhou proved that the exceptional set Σ has measure 0.

The current version was a conjecture of Boucksom.

Sketch of the proof

 $\text{Goal: relate } \mathcal{I}(\phi|_H) \text{ to } \mathcal{I}(\phi)|_H.$

∃ →

э

 $\text{Goal: relate } \mathcal{I}(\phi|_H) \text{ to } \mathcal{I}(\phi)|_H.$

Step 1. Group $\phi|_H$ for various H into a single object. We will construct a universal family $\pi_1: U \to \Lambda$ and a Hermitian psef line bundle (\mathcal{L}, Φ) on U, so that

• the fibre of (U, \mathcal{L}, Φ) over $H \in \Lambda$ is given by $(H, L|_H, \phi|_H)$.

• $\mathcal{I}(\Phi)$ is closely related to $\mathcal{I}(\phi)$.

The problem is translated into a statement of fibrations: multiplier ideal sheaf of a quasi-general fibre of π_1 is equal to the restriction of $\mathcal{I}(\phi)$.

 $\text{Goal: relate } \mathcal{I}(\phi|_H) \text{ to } \mathcal{I}(\phi)|_H.$

Step 1. Group $\phi|_H$ for various H into a single object. We will construct a universal family $\pi_1: U \to \Lambda$ and a Hermitian psef line bundle (\mathcal{L}, Φ) on U, so that

- the fibre of (U, \mathcal{L}, Φ) over $H \in \Lambda$ is given by $(H, L|_H, \phi|_H)$.
- $\mathcal{I}(\Phi)$ is closely related to $\mathcal{I}(\phi)$.

The problem is translated into a statement of fibrations: multiplier ideal sheaf of a quasi-general fibre of π_1 is equal to the restriction of $\mathcal{I}(\phi)$.

Step 2. We construct a psh metric h_H on $\pi_{1*} \left(\omega_{U/\Lambda} \otimes \mathcal{L} \otimes \mathcal{I}(\Phi) \right)$, so that h_H is singular at all H with $\mathcal{I}(\phi|_H) \neq \mathcal{I}(\phi)|_H$.

The main technique used in this step is (a generalization of) Berndtsson's theorem on the positivity of direct images.

<ロト <回ト < 回ト < 回ト = 三日

Kodaira map

The linear system induces a natural map $p: X \to \Lambda^*$, $x \in X$ is mapped to the set of divisors passing through x.

Let $W \ (\cong \Lambda)$ be the set of hyperplane on Λ^* . The construction of $\pi_1 : U \to W$ is easy:

 $U = \left\{ (H, x) \in W \times X : x \in H \right\}.$

Take π_1 as the natural projection.

Take (\mathcal{L}, Φ) as the pull-back of (L, ϕ) along the projection $\pi_2: U \to X$.

Relation between $\mathcal{I}(\Phi)$ and $\mathcal{I}(\phi).$

Lemma

Consider $H \in \Lambda$,

$$\mathcal{I}(\phi|_H) \subseteq \mathcal{I}(\phi)|_H \subseteq \mathcal{I}(\Phi)|_H \,.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Relation between $\mathcal{I}(\Phi)$ and $\mathcal{I}(\phi).$

Lemma

Consider $H \in \Lambda$,

$$\mathcal{I}(\phi|_H) \subseteq \mathcal{I}(\phi)|_H \subseteq \mathcal{I}(\Phi)|_H\,.$$

Thus we have reduced the problem of understanding the set $\{H : \mathcal{I}(\phi|_H) \neq \mathcal{I}(\phi)|_H\}$ to that of $\{H : \mathcal{I}(\phi|_H) \neq \mathcal{I}(\Phi)|_H\}$.

- 4 同 ト 4 三 ト - 4 三 ト - -

э

What do we get after the reduction?

æ

What do we get after the reduction? We completely get rid of $\mathcal{I}(\phi)|_H!$ The remaining problem is to relate $\mathcal{I}(\Phi)$ and the fibres of π_1 .

Theorem (*)

Let $\pi: U \to W$ be a surjective morphism of smooth projective varieties. Let (L, ϕ) be a Hermitian psef line bundle on U, then for quasi-every $w \in W$, $\mathcal{I}(\phi|_{U_w}) = \mathcal{I}(\phi)|_{U_w}$. How does direct images show up?

• • • • • • • • •

æ

How does direct images show up?

Theorem (Kollár's torsion-free theorem à la Fujino-Matsumura)

Outside a proper Zariski closed subset of $W,\,\pi_*(\omega_{U/W}\otimes L\otimes \mathcal{I}(\phi))$ is locally free and the fibre at w is given by

 $H^0(\omega_{U_w}\otimes L|_{U_w}\otimes \mathcal{I}(\phi)|_{U_w})\,.$

How does direct images show up?

Theorem (Kollár's torsion-free theorem à la Fujino-Matsumura)

Outside a proper Zariski closed subset of W, $\pi_*(\omega_{U/W}\otimes L\otimes \mathcal{I}(\phi))$ is locally free and the fibre at w is given by

 $H^0(\omega_{U_w}\otimes L|_{U_w}\otimes \mathcal{I}(\phi)|_{U_w})\,.$

Our problem reduces to understanding the relation between the fibres of $\pi_*(\omega_{U/W}\otimes L\otimes \mathcal{I}(\phi))$ and $H^0(\omega_{U_w}\otimes L|_{U_w}\otimes \mathcal{I}(\phi|_{U_w})).$

Image: A matrix

Fact

 $\pi_*(\omega_{U/W}\otimes L)$ is a vector bundle.

Given s in the fibre $\pi_*(\omega_{U/W}\otimes L)$ over $w\in W$, we can regard s as a section of $\omega_{U_w}\otimes L|_{U_w}$ near U_w . That is, s is a holomorphic (n,0)-form with value in $L|_{U_w}$. Thus $s\wedge \bar{s}e^{-\phi}$ (after normalization) is a measure on U_w . Define

$$h_H(s,s) := \int_{U_w} s \wedge \bar{s} e^{-\phi} \, .$$

Fact

 $\pi_*(\omega_{U/W}\otimes L)$ is a vector bundle.

Given s in the fibre $\pi_*(\omega_{U/W}\otimes L)$ over $w\in W$, we can regard s as a section of $\omega_{U_w}\otimes L|_{U_w}$ near U_w . That is, s is a holomorphic (n,0)-form with value in $L|_{U_w}$. Thus $s\wedge \bar{s}e^{-\phi}$ (after normalization) is a measure on U_w . Define

$$h_H(s,s) := \int_{U_w} s \wedge \bar{s} e^{-\phi} \, .$$

Theorem (Berndtsson–Păun)

 h_H is Griffiths positive.

We do not need to recall the precise definition of positivity. For us it suffices to know that det h_H is a psh metric on the determinant line bundle det $\pi_*(\omega_{U/W}\otimes L).$

For singular ϕ , the corresponding results are also known:

Fact (Kollár's torsion-free theorem)

 $\pi_*(\omega_{U/W}\otimes L\otimes \mathcal{I}(\phi))$ is a vector bundle outside a proper Zariski closed set $W_B.$

On can mimic the above definition to define a metric h_H on $\pi_*(\omega_{U/W}\otimes L\otimes \mathcal{I}(\phi)).$

Theorem (Păun–Takayama)

The metric h_H is Griffiths positive (outside W_B). In particular, det h_H is a psh metric.

14/16

Theorem (Păun–Takayama)

The metric h_H is Griffiths positive (outside W_B). In particular, det h_H is a psh metric.

Fact

The metric h_H (hence det h_H) is singular at all general $w \in W$ satisfying

$$H^0(\omega_{U_w}\otimes L|_{U_w}\otimes \mathcal{I}(\phi|_{U_w}))\neq \pi_*(\omega_{U/W}\otimes L\otimes \mathcal{I}(\phi))_w.$$

Recall that by Kollár's torsion-free theorem, for a general $w \in W$,

$$\pi_*(\omega_{U/W}\otimes L\otimes \mathcal{I}(\phi))_w=H^0(\omega_{U_w}\otimes L|_{U_w}\otimes \mathcal{I}(\phi)|_{U_w})\,.$$

Mingchen Xia (Chalmers)

As a consequence, the set of $w \in W$ with

$$H^0(\omega_{U_w}\otimes L|_{U_w}\otimes \mathcal{I}(\phi|_{U_w}))\neq H^0(\omega_{U_w}\otimes L|_{U_w}\otimes \mathcal{I}(\phi)|_{U_w})$$

is pluripolar!

イロト イポト イヨト イヨト

æ

As a consequence, the set of $w \in W$ with

$$H^0(\omega_{U_w}\otimes L|_{U_w}\otimes \mathcal{I}(\phi|_{U_w}))\neq H^0(\omega_{U_w}\otimes L|_{U_w}\otimes \mathcal{I}(\phi)|_{U_w})$$

is pluripolar!

A standard trick in algebraic geometry allows us to remove ${\cal H}^0$ and conclude that the set of w so that

$$\mathcal{I}(\phi|_{U_w}) \neq \mathcal{I}(\phi)|_{U_w}$$

is pluripolar.

This finishes the proof of Theorem * and our analytic Bertini theorem follows.

Thank you for your attention!