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Classical Chern–Weil formula

𝑋: complex manifold of dimension 𝑛.
(𝐸, ℎ): Hermitian vector bundle on 𝑋.
Θ be the (normalized) curvature form of (𝐸, ℎ). Θ is a
End(𝐸)-valued closed (1, 1)-form.

Write
det (𝐼 + 𝑡Θ) = ∑

𝑖
𝑐𝑖(𝐸, ℎ)𝑡𝑖 .

Theorem (Chern–Weil formula)
𝑐𝑖(𝐸, ℎ) represents the 𝑖-th Chern class 𝑐𝑖(𝐸).
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Classical Chern–Weil formula

Question
How to make sense of 𝑐𝑖(𝐸, ℎ) when ℎ is singular? What is the
Chern–Weil formula in this case?

With applications in modular forms and Arakelov geometry, the following
case is studied extensively in the literature: When ℎ has good singularities
along a (snc) divisor.

Goodness
Good=Generically smooth+mild growth at the boundary.

Theorem (Mumford)
Chern–Weil formula still holds for good singularities.
More precisely, Chern forms defined on the smooth locus (considered as
currents) represent the corresponding Chern classes.
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Good singularities

Goodness
Good=Generically smooth+mild growth at the boundary;
Chern–Weil holds for good singularities.

This notion is mostly useful in the case of Shimura varieties.
A Shimura variety is a quasi-projective variety parameterizing some
meaningful arithmetic objects (like abelian varieties).
On a Shimura varieties, there are some automorphic vector bundles whose
global sections correspond to certain modular forms.
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Chern–Weil formula on Shimura varieties

Things to remember
1. A Shimura variety is a quasi-projective variety.
2. An automorphic vector bundle is a vector bundle on the Shimura variety.

Theorem (Mumford)
Automorphic vector bundles on Shimura varieties have a unique extension
with good singularities to any smooth toroidal compactification.

Corollary
There is a Chern–Weil formula on Shimura varieties.

In this case, Chern–Weil formula can be applied to count the dimension of
automorphic forms.
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More general cases?

Everything looks good so far, but

Caution!
(Burgos Gil–Kramer–Kühn) Mumford’s theorem fails on mixed Shimura
varieties. In fact, the Chern–Weil formula fails drastically on mixed
Shimura varieties.

Roughly speaking, mixed Shimura varieties are natural generalization of
Shimura varieties parameterizing more general objects (like one-motives).
Autmorphism vector bundles on mixed Shimura varieties also have modular
explanations.
We need a Chern–Weil formula dealing with more general singularities.
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Difficulties

Question
a. How to make sense of 𝑐𝑖(𝐸, ℎ) when ℎ is singular?
b. What is the Chern–Weil formula in this case?

The most natural definition one may come up with is to generalize the
curvature form Θ to some curvature current and mimic the smooth case.
But

No curvature currents!
(Raufi) The curvature current Θ cannot be defined (in a reasonable way)
even if (𝐸, ℎ) is positively curved.

We will need a detour to make sense of the Chern currents.
We will answer Question a in Part 2 and Question b in Part 3.
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Setup

Let 𝑋 be a projective manifold of dimension 𝑛. Let (𝐸, ℎ) be a Hermitian
vector bundle or rank 𝑟 + 1, ℎ is smooth or singular.

Question
We want to make sense of 𝑐𝑖(𝐸, ℎ) (and all other Chern polynomials) as a
current.

We will restrict our attention to (quasi-)positively curved cases, as
required by our techniques.
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Segre classes

Consider the projection 𝑝 ∶ ℙ𝐸∨ → 𝑋 (ℙ𝐸 does not follow Grothendieck’s
convention). Then from the surjective 𝑝∗𝐸 → 𝒪(1), 𝒪(1) gets an induced
Hermitian metric. We write ̂𝒪(1) for 𝒪(1) equipped with this metric.

Assume that (𝐸, ℎ) is Griffiths positive, i.e., ̂𝒪(1) is positively curved.

Traditional definition
The 𝑖-th Segre class of 𝐸 is by definition

𝑠𝑖(𝐸) ∶= (−1)𝑖𝑝∗(𝑐1(𝒪(1))𝑟+𝑖) .

Segre class contains the same information as Chern classes. They
determine each other.
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Setup

Traditional definition
The 𝑖-th Segre class of 𝐸 is by definition

𝑠𝑖(𝐸) ∶= (−1)𝑖𝑝∗(𝑐1(𝒪(1))𝑟+𝑖) .

Observation
Characteristic classes of vector bundles can be understood via
characteristic classes of line bundles on 𝒪(1).

In the Hermitian setting, we want to make sense of this equation when the
metric is taken in to consideration. Namely, we need an intersection theory
of Hermitian line bundles on ℙ𝐸∨.
This observation allows us to reduce to the line bundle case.
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of Hermitian line bundles on ℙ𝐸∨.
This observation allows us to reduce to the line bundle case.
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Non-pluripolar theory of line bundles

Consider a projective manifold 𝑋 of dimension 𝑛, positively curved
Hermitian line bundles (𝐿𝑖, ℎ𝑖) (𝑖 = 1, … , 𝑚, 𝑚 ≤ 𝑛) on 𝑋.

Boucksom–Eyssidieux–Guedj–Zeriahi introduced the non-pluripolar product

𝑐1(𝐿1, ℎ1) ∧ ⋯ ∧ 𝑐1(𝐿𝑚, ℎ𝑚) ,

which is a closed positive (𝑚, 𝑚)-current on 𝑋 that puts no mass on
pluripolar sets.

Special cases
When ℎ𝑖’s are smooth, this product is the same as the usual wedge
product of forms.
When ℎ𝑖’s are bounded, this product is the same as the Bedford–Taylor
product.
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Relative non-pluripolar products

We need a slight extension, introduced by Vu.
A closed dsh current is the difference of two closed positive currents. Vu
defined the non-pluripolar product for any closed dsh current 𝑇 :

𝑐1(𝐿1, ℎ1) ∧ ⋯ ∧ 𝑐1(𝐿𝑚, ℎ𝑚) ∩ 𝑇 ,

which reduces to the Bedford–Taylor theory when the ℎ𝑖’s are bounded
and to the non-pluripolar product when 𝑇 = [𝑋].
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Segre currents

Suppose that we have a Griffiths positive singular Hermitian vector bundle
(𝐸, ℎ) of rank 𝑟 + 1. Recall that 𝑝 ∶ ℙ𝐸∨ → 𝑋 is the projection.

Segre currents
The 𝑖-th Segre class of (𝐸, ℎ) is by definition

𝑠𝑖(𝐸, ℎ) ∩ 𝑇 ∶= (−1)𝑖𝑝∗(𝑐1( ̂𝒪(1))𝑟+𝑖 ∩ 𝑝∗𝑇 ) ,

where 𝑇 is any closed dsh current. The pull-back 𝑝∗𝑇 is an extension of
the pull-back of differential forms.

Theorem
𝑠𝑖(𝐸, ℎ) ∩ 𝑇 is closed dsh.
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Nice properties

Our Segre class behaves like the usual Segre class:
1 𝑠𝑖(𝐸, ℎ) ∩ 𝑇 = 0 if 𝑖 < 0.
2 𝑠𝑖(𝐸, ℎ) ∩ 𝑠𝑗(𝐸′, ℎ′) ∩ 𝑇 = 𝑠𝑗(𝐸′, ℎ′) ∩ 𝑠𝑖(𝐸, ℎ) ∩ 𝑇 .
3 Projection formula and flat pull-back formula hold.

These facts are not completely trivial, as one might have imagined. They
fail in the theory of Chern currents of Lärkäng–Raufi–Sera–Wulcan.
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Chern currents

As usual Chern forms are polynomials of Segre forms:

(1 + 𝑠1(𝐸)𝑡 + 𝑠2(𝐸)𝑡2 + ⋯)(1 + 𝑐1(𝐸)𝑡 + 𝑐2(𝐸)𝑡2 + ⋯) = 1 .

Or 𝑐𝑖(𝐸) = 𝑃𝑖(𝑠1(𝐸), …) for some universal polynomials 𝑃𝑖.

Chern classes
𝑐𝑖(𝐸, ℎ) ∩ 𝑇 ∶= 𝑃𝑖(𝑠1(𝐸, ℎ), …) ∩ 𝑇 .

Chern polynomials
Set 𝑇 = [𝑋] and by iteration, we can therefore make sense of

𝑐𝑖1
(𝐸1, ℎ1) ∩ ⋯ ∩ 𝑐𝑖𝑚

(𝐸𝑚, ℎ𝑚)

or more generally, any Chern polynomial.
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Chern currents

One can prove that 𝑐𝑖(𝐸, ℎ) also behaves like the usual Chern classes, at
least when ℎ is locally bounded outside a closed pluripolar set.

We have successfully answered Question a:

Question
a. How to make sense of 𝑐𝑖(𝐸, ℎ) when ℎ is singular?
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Chern–Weil problem

Chern–Weil problem
Given positive Hermitian vector bundles (𝐸𝑖, ℎ𝑖), a Chern polynomial
𝑃 (𝑐𝑗(𝐸𝑖, ℎ𝑖)). How to interpret 𝑃(𝑐𝑗(𝐸𝑖, ℎ𝑖)) in terms of intersection
numbers?

It is good to have a look at the final answer before we proceed.
Step 1. We introduce a notion of ℐ-good singularities extending
Mumford’s notion of goodness.
Step 2. We introduce certain algebraic objects (b-divisors) using the
singularities of ℎ𝑖.
Step 3. Solution to the problem:

Theorem
The Chern current 𝑃(𝑐𝑗(𝐸𝑖, ℎ𝑖)) represents the algebraic intersection
number of objects constructed in Step 2.
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Line bundle case

We begin with the line bundle case.

Question
Given a Hermitian pseudo-effective line bundle (𝐿, ℎ), what is the
cohomology class of 𝑐1(𝐿, ℎ)𝑚 (taken in the non-pluripolar sense)?

The naive guess is 𝑐1(𝐿)𝑚, which fails for many obvious reasons: 𝑐1(𝐿)𝑚

does not necessarily support a closed positive current; the non-pluripolar
products may lose mass.

General idea
𝑐1(𝐿, ℎ)𝑚 represents the product of the positive part of 𝑐1(𝐿) relative to ℎ.
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b-divisors

The general idea can be made precise by introducing b-divisors.

b-divisor
A b-divisor on 𝑋 is an assignment of numerical classes 𝛼𝑌 ∈ 𝑁𝑆1(𝑌 )ℝ for
all projective birational resolution 𝜋 ∶ 𝑌 → 𝑋, such that the 𝛼•’s are
compatible under pushforward between models.

Intuitively, a b-divisor is the limit of divisors (or more precisely divisor
classes) on the birational models of 𝑋.
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b-divisors

Consider a Hermitian pseudo-effective line bundle (𝐿, ℎ) on 𝑋, one can
construct a b-divisor 𝔻(𝐿, ℎ) as follows: given 𝜋 ∶ 𝑌 → 𝑋, set

𝔻(𝐿, ℎ) ∶= 𝜋∗𝐿 − divisorial part of ddc𝜋∗ℎ .

Recall that by Siu’s decomposition,

ddc𝜋∗ℎ = ∑
𝑖

𝑎𝑖[𝐸𝑖] + Residue part ,

where 𝐸𝑖 are some prime divisors on 𝑌 and 𝑎𝑖 > 0. The divisorial part
refers to the first part.

Good singularities
In this case of Mumford good singularities, 𝔻(𝐿, ℎ)𝑌 = 𝜋∗𝐿.
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Dang–Favre’s intersection theory

There is an ad hoc intersection theory of b-divisors, which although very
unsatisfactory in many aspects, suffices for the moment.

Theorem (X.)
We have

(𝔻(𝐿, ℎ))𝑛 = vol(𝐿, ℎ) ∶= lim
𝑘→∞

𝑛!
𝑘𝑛 ℎ0(𝑋, 𝐿𝑘 ⊗ ℐ(𝑘ℎ)) .

Corollary
𝑐1(𝐿, ℎ)𝑛 represents the algebraic intersection number (𝔻(𝐿, ℎ))𝑛 if

𝑐1(𝐿, ℎ)𝑛 = vol(𝐿, ℎ) . (1)

In general, (1) fails.
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I-good singularities

In two joint papers with Tamás Darvas, we introduced ℐ-good
singularities, the largest type of singularities where (1) holds.

Assume that (𝐿, ℎ) has positive non-pluripolar mass.

ℐ-good singularities
We say ℎ is ℐ-good if one of the following equivalent conditions are
satisfied:

1 ℎ can be approximated by psh metrics with analytic singularities in a
strong sense.

2 if ℎ is a least singular psh metric given all of its Lelong numbers.
The convergence in 1 implies the convergence of non-pluripolar masses.
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I-good singularities

Theorem (Darvas–X.)
For any Hermitian pseudo-effective line bundle (𝐿, ℎ), we have

vol(𝐿, ℎ) = lim
𝑘→∞

𝑛!
𝑘𝑛 ℎ0(𝑋, 𝐿𝑘 ⊗ ℐ(𝑘ℎ)) ≥ ∫

𝑋
𝑐1(𝐿, ℎ)𝑛 .

If (𝐿, ℎ) has positive mass, then equality holds iff (𝐿, ℎ) is ℐ-good.

Corollary
If (𝐿, ℎ) is ℐ-good (by definition, has positive mass), then 𝑐1(𝐿, ℎ)𝑛

represents the algebraic intersection number (𝔻(𝐿, ℎ))𝑛.

This result was proved by me in 2020. A few months ago, a special case
was rediscovered by Botero–Burgos Gil–Holmes–de Jong.
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Chern–Weil formula for line bundles

Theorem
If (𝐿𝑖, ℎ𝑖) are ℐ-good Hermitian pseudo-effective line bundles, then
𝑐1(𝐿1, ℎ1) ∧ ⋯ ∧ 𝑐1(𝐿𝑛, ℎ𝑛) represents the algebraic intersection number
(𝔻(𝐿1, ℎ1), … , 𝔻(𝐿𝑛, ℎ𝑛)).

This is not a simple corollary of the previous corollary.
All of these discussions can be generalized to quasi-projective 𝑋, in
particular, to mixed Shimura varieties.
It can been shown that the natural singularities on some automorphic line
bundles (e.g. the line bundles of Siegal–Jacobi forms on the universal
abelian variety) are ℐ-good. So our theorem gives a counting of
automorphic forms.
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More general singularities

We have only discussed positively curved singularities so far. In reality, the
singularities on automorphic line bundles are usually not positively curved.
In these cases, we can still talk about ℐ-goodness:

Theorem
(Sum) The tensor products of ℐ-good line bundles are ℐ-good.
(Cancelation) If the tensor product of two Hermitian pseudo-effective line
bundles are ℐ-good, then so is each factor (under the assumption of
having positive mass).

Both parts are much harder than what they seem to be.

Definition
Define a general ℐ-good Hermitian line bundle as the difference of two
ℐ-good Hermitian pseudo-effective line bundles.

All constructions we mentioned can be extended to this setting.
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Most general Chern–Weil for line bundles

Putting all efforts together, we conclude the Chern–Weil formula for line
bundles:
Theorem
If (𝐿𝑖, ℎ𝑖) are ℐ-good Hermitian pseudo-effective line bundles, then
𝑐1(𝐿1, ℎ1) ∧ ⋯ ∧ 𝑐1(𝐿𝑛, ℎ𝑛) represents the algebraic intersection number
(𝔻(𝐿1, ℎ1), … , 𝔻(𝐿𝑛, ℎ𝑛)).

One can easily see that in the quasi-projective case, the b-divisors
𝔻(𝐿𝑖, ℎ𝑖) are independent of the choice of a compactication. So our
theorem works on quasi-projective varieties as well.
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Riemann–Zariski spaces

A more intrinsic way of describing this result is by introducing the
Riemann–Zariski space 𝒳. The projective limit of all birational 𝑌 → 𝑋.

A b-divisor is a divisor class on 𝒳. An ℐ-good line bundle (𝐿, ℎ) defines a
line bundle on 𝒳. 𝔻 is the first Chern class on 𝒳. So out theorem becomes
Theorem
The intersection number of ℐ-good Hermitian line bundles is equal to the
corresponding intersection number on the Riemann–Zariski space 𝒳.
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Chern–Weil for vector bundles

We say a Hermitian vector bundle (𝐸, ℎ) is ℐ-good if the induced metric
on ̂𝒪(1) is ℐ-good. As a non-trivial consequence of the case of line
bundles, we conclude

Theorem
Assume that (𝐸𝑗, ℎ𝑗) are ℐ-good. Let 𝑃(𝑐𝑖(𝐸𝑗, ℎ𝑗)) be a homogeneous
Chern polynomial of degree 𝑛. Then 𝑃 (𝑐𝑖(𝐸𝑗, ℎ𝑗)) represents an algebraic
intersection number on the Riemann–Zariski space 𝒳.
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Thank you for your attention!
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Some works in progress
There are three unsatisfactory features of our theory.
1. (mixed) Shimura varieties live on some canonically defined number
fields instead of ℂ. So one need an intersection theory of b-divisors on CM
field or totally real fields.
This is not worked out in Dang–Favre, but can be constructed easily using
Galois descent.
2. The Dang–Favre intersection theory only works in codimension 1. We
need a more general intersection theory on Riemann–Zariski spaces.
Fortunately, there is a well-developed K-theory on Riemann–Zariski spaces.
I am currently trying to make sense of the Bloch’s formula:

CH𝑝(𝒳) = 𝐻𝑝(𝒳, 𝒦𝑝) .

3. It seems hard to make sense of Bott–Chern currents in our theory, as
the latter forces us to leave the domain of quasi-positive vector bundles.
Bott–Chern theory is necessary if we want to develop an Arakelov theory
on mixed Shimura varieties.
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