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Elements of electrostatics
Electrostatics is the study of stationary electric charges.

Coulomb’s law
The (repulsive) force between two point charges is

F = 1
4𝜋𝜖0

𝑞1𝑞2
𝑟2 .
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Elements of electrostatics

Electric field
Put a small test point charge 𝑞 in the space, the electric field E at this
point is

E = F
𝑞 .

The Coulomb law can be restated in terms of the electric field E:
Gauß’s law
Given a electric charge distribution 𝜌, we have

∇ ⋅ E = 1
𝜖0

𝜌.
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Elements of electrostatics

Next we integrate the electric field E into a scalar quantity 𝜙 (the electric
potential):

−∇𝜙 = E.

Gauß’s law further becomes:
Gauß’s law, 1813 by Poisson

Δ𝜙 = − 1
𝜖0

𝜌.

This equation is the celebrated Poisson equation.
When 𝜌 = 0 (that is, there are no charges), the equation

Δ𝜙 = 0

is the Laplace equation.
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Prescribing boundary potentials

When 𝜌 = 0, a key problem investigated by Poisson:
Given the potential 𝜙 at the boundary of a domain, can we recover the
interior values?

Theorem (Poisson, 1820)
Yes for a 2D unit ball:

𝜙 (𝑟e𝑖𝜃) = 1
2𝜋 ∫

𝜋

−𝜋

1 − 𝑟2

1 + 𝑟2 − 2𝑟 cos(𝜃 − 𝑡)𝜙 (e𝑖𝜃) d𝑡.

This is the so-called Poisson integration formula today. Poisson also
proved the 3D version.
More generally, if 𝜌 ≠ 0, using Green’s function (1828), a similar solution
with an extra term can be obtained.

Mingchen Xia ( Unemployed ) History of potential theory September 4 6 / 31



Prescribing boundary potentials

When 𝜌 = 0, a key problem investigated by Poisson:
Given the potential 𝜙 at the boundary of a domain, can we recover the
interior values?

Theorem (Poisson, 1820)
Yes for a 2D unit ball:

𝜙 (𝑟e𝑖𝜃) = 1
2𝜋 ∫

𝜋

−𝜋

1 − 𝑟2

1 + 𝑟2 − 2𝑟 cos(𝜃 − 𝑡)𝜙 (e𝑖𝜃) d𝑡.

This is the so-called Poisson integration formula today. Poisson also
proved the 3D version.

More generally, if 𝜌 ≠ 0, using Green’s function (1828), a similar solution
with an extra term can be obtained.

Mingchen Xia ( Unemployed ) History of potential theory September 4 6 / 31



Prescribing boundary potentials

When 𝜌 = 0, a key problem investigated by Poisson:
Given the potential 𝜙 at the boundary of a domain, can we recover the
interior values?

Theorem (Poisson, 1820)
Yes for a 2D unit ball:

𝜙 (𝑟e𝑖𝜃) = 1
2𝜋 ∫

𝜋

−𝜋

1 − 𝑟2

1 + 𝑟2 − 2𝑟 cos(𝜃 − 𝑡)𝜙 (e𝑖𝜃) d𝑡.

This is the so-called Poisson integration formula today. Poisson also
proved the 3D version.
More generally, if 𝜌 ≠ 0, using Green’s function (1828), a similar solution
with an extra term can be obtained.

Mingchen Xia ( Unemployed ) History of potential theory September 4 6 / 31



Prescribing boundary potentials

What about domains other than balls?

It is in general extremely difficult to obtain explicit formulae for the
Poisson kernels and the Green functions.
These were one of the key topics of the school of Loo-Keng Hua.
Ref: Harmonic analysis of functions of several complex variables in the
classical domains, L.-K. Hua.
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The foundational paper

A new era began with Gauß’s 1840 paper
Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse des
Quadrats der Entfernung wirkenden Anziehungs-und-Abstossungs-Kräfte

This paper had a strong historical impact.
The potential theory in the next few decades was based on this paper.
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The fundamental problems

Gauß proposed three main problems to study. Fix a domain Ω ⊂ ℝ3.
The equilibrium problem Suppose that ℝ3 − Ω is a conductor, how to
find the equilibrium charge distribution (with a give mass) on 𝜕Ω?
The balayage problem Suppose that ℝ3 − Ω is a conductor connected
to the Earth, how does a given charge distribution in Ω induce
charges on 𝜕Ω?
The Dirichlet problem

{Δ𝜑 =0 on Ω,
𝜑 =𝜑0 on 𝜕Ω,

with 𝜑0 given.
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The foundational paper

Gauß introduced the electric potential energy and reduce the equilibrium
problem and the balayage problem to its study:

∫ ∫ |𝑥 − 𝑦|−1 d𝜇(𝑥) d𝜇(𝑦).

Subsequently, Riemann (1851) considered a variant for the Dirichlet
problem:

∫ |∇𝜑(𝑥)|2 d𝑥,

which is known as the Dirichlet energy now.
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Dirichlet principle

Dirichlet principle
A solution to the Dirichlet problem should minimize the Dirichlet energy.

The terminology Dirichlet principle was coined by Riemann (1857).

The eponymy follows the celebrated Stigler’s law:

Stigler’s law
No scientific discovery is named after its original discoverer.

Dirichlet does not have any known contributions to the Dirichlet principle.
The principle was first derived by G. Green (1835).
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Criticisms

Be cautious
Neither approach is rigorous as analysis was still premature at their time.

Weierstraß published the celebrated paper
Über das Sogenannte Dirichletsche Princip
raised doubts about the validity of Gauß and Riemann’s works.

In particular, Weierstraß pointed out that the existence of a minimizer
requires a proof.
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Impossible to solve in general

Counterexample
Lebesgue(1912) and Zaremba(1910) showed that Dirichlet problem is
NOT always solvable!

There are many attempts to justify Gauß and Riemann’s works under
certain restrictions in the subsequence decades.
Major contributions are due to Schwarz, Neumann, Poincaré, Hilbert,
Lebesgue, Fredholm.
But we shall focus on a different approach.
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Perron envelope

{Δ𝜑 =0 on Ω,
𝜑 =𝜑0 on 𝜕Ω,

Poincaré (1887) invented the so-called méthode du balayage.
Subsequent ideas of Perron (1923) and Wiener (1925) lead to a major
revolution in the potential theory.

The ideas
Instead of studying strict solutions Δ𝜑 = 0, we study subsolutions instead:

Δ𝜓 ≥ 0.

Instead of studying 𝜑|𝜕Ω = 𝜑0, we require

𝜓|𝜕Ω ≤ 𝜑0.
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Perron envelope

The ideas
The maximal one among these subsolutions should be an actual solution.

The supremum of these subsolutions is the Perron envelope.

Subsequently, F. Riesz (1926) introduced the notion of subharmonic
functions 𝜓:

For a smooth function, this means Δ𝜓 ≥ 0;
in general, a subharmonic function is allowed to take the value −∞,
and is defined using the sub-mean value property.

It is convenient to allow singular subharmonic functions in the definition of
the Perron envelope.
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Perron envelope

{Δ𝜑 =0 on Ω,
𝜑 =𝜑0 on 𝜕Ω,

Wiener and later de la Vallée Poussin established:
Theorem
If 𝜑0 is continuous, the Perron envelope is a solution to the Dirichlet
problem.
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Pathology

The study of Perron envelopes requires a supremum operation for
subharmonic functions. But
Pathology
The increasing limit of a sequence/net of negative subharmonic functions
𝜑𝑖 is not always subharmonic.

So in particular, the Perron envelope is not subharmonic (and therefore
not harmonic) in general!
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The convergence theorem

Theorem (Szpilrajn–Radó, 1937)
The sequence 𝜑𝑖 converges to a subharmonic function 𝜑 outside a set 𝐸
with 0 Lebesgue measure.

This is not fine enough for potential theory.

Theorem (Brelot 1938, H. Cartan 1945)
The set 𝐸 is polar. That is, there is a subharmonic function 𝜓 with
𝜓|𝐸 ≡ −∞.

As a (non-trivial) consequence, up to modifying the Perron envelope by its
values on a polar set, it becomes subharmonic.
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Fine topology and thin sets

Since polar sets appear to be natural in the study of subharmonic
functions, Brelot, Cartan among others began an in-depth study.

Observations
Subharmonic functions are not always continuous.
(Complete) polar sets are not always closed.
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Fine topology and thin sets

Cartan introduced the notion of fine topology:

Fine topology
The fine topology is the coarsest topology rending all finite subharmonic
functions continuous.
Both issues get solved naturally.

But the fine topology is rather abstract and difficult to use. Fortunately,
we have

Theorem (Brelot, Cartan)
The fine convergence can be characterized using thin sets (introduced by
Brelot).
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Several complex variables

With the advancements of several complex variables since the latter half of
the 19th century, there is a natural need of applying potential theory in it.

Example
Given a holomorphic function 𝑓 (with one or more variables), the function
log |𝑓|2 is subharmonic.

This was also a motivation for Riesz to introduce subharmonic functions.
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Several complex variables

Consider a holomorphic map 𝐹 , 𝐹 ∗𝑓 = 𝑓 ∘ 𝐹 is holomorphic, so

log |𝐹 ∗𝑓|2 = 𝐹 ∗ (log |𝑓|2)

is also subharmonic. But this does not follow from the subharmonicity of
log |𝑓|2.

It is natural to reinforce the subharmonicity of log |𝑓| to something
functorial.
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Plurisubharmonic functions

This is carried out by Pierre Lelong in 1945. Let Ω ⊆ ℂ𝑛 be a domain.

Plurisubharmonic functions
A smooth function 𝜑 on Ω is plurisubharmonic if

i𝜕 ̄𝜕𝜑 ≥ 0.
Here i𝜕 ̄𝜕𝜑 is a 𝑛 × 𝑛-matrix. Positivity means the positivity as a matrix.
The Laplacian Δ is just the trace (up to a universal constant).
Therefore,

Observation
A plurisubharmonic function is subharmonic.
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Plurisubharmonic functions

Observation
Unlike the Laplacian Δ, both 𝜕 and ̄𝜕 commute with holomorphic
pullbacks.

This is nothing but the definition of a holomorphic map.

Corollary
The holomorphic pull-back of a plurisubharmonic function is
plurisubharmonic.
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Plurisubharmonic functions

For singular functions, we have

Plurisubharmonic function
A function 𝜑∶ Ω → [−∞, ∞) is plurisubharmonic if

1 𝜑 is upper semi-continuous and not identically equal to −∞;
2 for each complex line 𝐿 in ℂ𝑛, the restriction of 𝜑 to each connected

component of 𝐿 ∩ Ω is either subharmonic of identically −∞.

All proceeding remarks work for these plurisubharmonic functions.
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Plurisubharmonic functions

The functoriality of plurisubharmonic functions means that they can also
be defined on complex manifolds. The study of these functions is known
as the pluripotential theory.
A huge part of the potential theory has analogues in pluripotential theory.

Moreover, there are quite a few unique features in pluripotential theory,
like the 𝐿2-estimates.
The pluripotential theory has become the cornerstone of the modern
complex geometry.
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Thank you!
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