A mathematician's complaint about Hermitian operators

Mingchen Xia

Chalmers Tekniska Högskola

12/18/2021

Mingchen Xia (Chalmers)

A mathematician's complaint

12/18/2021

Hermitian matrices

Hermitian matrices

An $n\times n$ matrix M with complex entries is Hermitian if

 $M^{\dagger} = M \,.$

э

∃ ► < ∃ ►</p>

< 1 > <

Hermitian matrices

An $n\times n$ matrix M with complex entries is Hermitian if

 $M^{\dagger} = M \,.$

In physical terms, the definition means

$$\langle a | M^{\dagger} | b \rangle = \langle a | M | b \rangle$$

or

$$\langle a | M | b \rangle^* = \langle b | M | a \rangle$$

for any two states $a, b \in \mathbb{C}^n$.

Hermitian matrices

An $n \times n$ matrix M with complex entries is Hermitian if

 $M^{\dagger} = M \,.$

In physical terms, the definition means

$$\langle a | M^{\dagger} | b \rangle = \langle a | M | b \rangle$$

or

$$\langle a | M | b \rangle^* = \langle b | M | a \rangle$$

for any two states $a, b \in \mathbb{C}^n$. Properties of Hermitian matrices.

- M is diagonalizable.
- All eigenvalues of M are real.

12/18/2021

In physical terms,

$$M = \sum_{i=1}^{n} \lambda_i \left| a_i \right\rangle \left\langle a_i \right| \,,$$

where $|a_i\rangle$ is an complete orthonormal set of eigenstates, $\lambda_i \in \mathbb{R}$. M corresponds to an observable.

Let $\mathcal H$ be a complex separable Hilbert space (the space of states).

Example

For one-particle non-relativistic spinless free particle, $\mathcal{H} = L^2(\mathbb{R}^3)$.

Let $\mathcal H$ be a complex separable Hilbert space (the space of states).

Example

For one-particle non-relativistic spinless free particle, $\mathcal{H} = L^2(\mathbb{R}^3)$.

Dating back to 1925, Heisenberg, Born, Jordan already realized that observables on ${\mathcal H}$ should be realized as infinite dimensional generalization of Hermitian matrices.

12/18/2021

Let $\mathcal H$ be a complex separable Hilbert space (the space of states).

Example

For one-particle non-relativistic spinless free particle, $\mathcal{H} = L^2(\mathbb{R}^3)$.

Dating back to 1925, Heisenberg, Born, Jordan already realized that observables on ${\mathcal H}$ should be realized as infinite dimensional generalization of Hermitian matrices.

But how?

12/18/2021

The most common approach in physics textbooks is the following:

$$M = \sum_{i=1}^{\infty} \lambda_i \left| a_i \right\rangle \left\langle a_i \right| \,,$$

This formula looks identical to the finite-dimensional case except that n is replaced by $\infty.$

The most common approach in physics textbooks is the following:

$$M = \sum_{i=1}^{\infty} \lambda_i \left| a_i \right\rangle \left\langle a_i \right| \,,$$

This formula looks identical to the finite-dimensional case except that n is replaced by $\infty.$

This formula assumes two things:

- **1** The spectrum of M is discrete.
- **2** M can be diagonalized on the whole \mathcal{H} .

The most common approach in physics textbooks is the following:

$$M = \sum_{i=1}^{\infty} \lambda_i \left| a_i \right\rangle \left\langle a_i \right| \,,$$

This formula looks identical to the finite-dimensional case except that n is replaced by $\infty.$

This formula assumes two things:

- **1** The spectrum of M is discrete.
- **2** M can be diagonalized on the whole \mathcal{H} .

Both are wrong!

Consider the free Hamiltonian

$$H = -\frac{1}{2M}\nabla^2$$

defined on $\mathcal{H} = L^2(\mathbb{R}^3)$.

ヨト・モヨト・

æ

Consider the free Hamiltonian

$$H=-\frac{1}{2M}\nabla^2$$

defined on $\mathcal{H} = L^2(\mathbb{R}^3)$.

From the usual expansion, we know that the spectrum of H is not discrete.

Consider the free Hamiltonian

$$H=-\frac{1}{2M}\nabla^2$$

defined on $\mathcal{H} = L^2(\mathbb{R}^3)$.

From the usual expansion, we know that the spectrum of H is not discrete. The operator H is not defined on the whole \mathcal{H} .

Densely defined operator

A densely defined operator on \mathcal{H} is a linear operator $A: D(A) \to \mathcal{H}$, where D(A) is a dense linear subspace of \mathcal{H} .

Densely defined operator

A densely defined operator on \mathcal{H} is a linear operator $A: D(A) \to \mathcal{H}$, where D(A) is a dense linear subspace of \mathcal{H} .

Symmetric operator

A densely defined operator A on ${\mathcal H}$ is symmetric if

$$(x, Ay) = (Ax, y) \quad \forall x, y \in D(A)$$
.

Do symmetric operators satisfy our expectation?

글 에 에 글 어

æ

Do symmetric operators satisfy our expectation? Not at all

æ

Do symmetric operators satisfy our expectation? Not at all

Example

Consider $\mathcal{H} = L^2((0,\infty))$, $D(p) = C_c^{\infty}((0,\infty))$. Let $p = -i\nabla$. In this case, $(i-p)e^{-x} = 0$. So i is in the spectrum of p.

Do symmetric operators satisfy our expectation? Not at all

Example

Consider
$$\mathcal{H} = L^2((0,\infty))$$
, $D(p) = C_c^{\infty}((0,\infty))$. Let $p = -i\nabla$.
In this case, $(i-p)e^{-x} = 0$. So i is in the spectrum of p .

More generally, we have

Theorem

The spectrum of a symmetric operator falls into one of the following four categories:

$$2 \{z: \operatorname{Im} z \ge 0\}.$$

$$\{ z : \operatorname{Im} z \le 0 \}.$$

• A subset of
$$\mathbb{R}$$
.

→ ∃ →

• • • • • • • • • •

э

Consider a densely defined operator A on $\mathcal{H}.$

Adjoint

The domain $D(A^{\dagger})$ is the set of $y \in \mathcal{H}$ such that

 $|(y,Ax)| \leq C \|x\|$

for all $x \in D(A)$. By Riesz representation theorem, for each $y \in D(A^{\dagger})$, there is a unique $A^{\dagger}y \in \mathcal{H}$ such that

$$(A^{\dagger}y,x) = (y,Ax) \quad \forall x \in D(A) \,.$$

Self-adjoint operator

A is said to be self-adjoint if $D(A) = D(A^{\dagger})$ and $A = A^{\dagger}$.

< A > <

Self-adjoint operator

A is said to be self-adjoint if $D(A) = D(A^{\dagger})$ and $A = A^{\dagger}$.

Slightly more generally,

Essentially self-adjoint

A symmetric operator A is essentially self-adjoint if A admits a (unique) self-adjoint extension.

The Hamiltonian

$$H=-\frac{1}{2M}\nabla^2$$

is essentially self-adjoint if $D(H)=C_c^\infty(\mathbb{R}^3).$ The self-adjoint extension defined on the Sobolev space $H^2(\mathbb{R}^3).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Hamiltonian

$$H=-\frac{1}{2M}\nabla^2$$

is essentially self-adjoint if $D(H) = C_c^{\infty}(\mathbb{R}^3)$. The self-adjoint extension defined on the Sobolev space $H^2(\mathbb{R}^3)$. Similarly, the position operator x is self-adjoint on

$$D(x) = \left\{ f \in L^2(\mathbb{R}^3) : \int_{\mathbb{R}^3} |x|^2 |f(x)|^2 \, \mathrm{d}x < \infty \right\}$$

•

The Hamiltonian

$$H=-\frac{1}{2M}\nabla^2$$

is essentially self-adjoint if $D(H)=C^\infty_c(\mathbb{R}^3).$ The self-adjoint extension defined on the Sobolev space $H^2(\mathbb{R}^3).$ Similarly, the position operator x is self-adjoint on

$$D(x) = \left\{ f \in L^2(\mathbb{R}^3) : \int_{\mathbb{R}^3} |x|^2 |f(x)|^2 \, \mathrm{d}x < \infty \right\}$$

The momentum operator $p=-\mathrm{i}\nabla$ is essentially self-adjoint on

$$D(p) = C_c^1(\mathbb{R}^3) \,.$$

•

The notion of self-adjointness is domain sensitive.

In general, it is fairly easy to determine if a given operator is symmetric, but there are no general methods to determine the self-adjointness of an operator.

Theorem

A symmetric operator A is self-adjoint if and only if the spectrum of A is contained in \mathbb{R} .

This justifies λ_i 's in

$$A = \sum_{i=1}^{\infty} \lambda_i \left| a_i \right\rangle \left\langle a_i \right|$$

are real.

Theorem

A symmetric operator A is self-adjoint if and only if the spectrum of A is contained in \mathbb{R} .

This justifies λ_i 's in

$$A = \sum_{i=1}^{\infty} \lambda_i \left| a_i \right\rangle \left\langle a_i \right|$$

are real.

Theorem

Assume that A is self-adjoint. The above equation makes sense if we replace the density operator by a projection-valued measure:

$$A = \int_{\mathbb{R}} \lambda \, \mathrm{d}\sigma(\lambda) \, .$$

< □ > < □ > < □ > < □ >

э

Given the spectral theorem, we can rigorously define f(A), where f is a measurable function on $\mathbb{R}:$

$$f(A):=\int_{\mathbb{R}}f(\lambda)\,\mathrm{d}\sigma(\lambda)$$

as long as the right-hand side is well-defined. In physical terms,

$$A = \sum_{i=1}^{\infty} f(\lambda_i) \left| a_i \right\rangle \left\langle a_i \right| \, .$$

Given the spectral theorem, we can rigorously define f(A), where f is a measurable function on $\mathbb{R}:$

$$f(A) := \int_{\mathbb{R}} f(\lambda) \, \mathrm{d} \sigma(\lambda)$$

as long as the right-hand side is well-defined. In physical terms,

$$A = \sum_{i=1}^{\infty} f(\lambda_i) \left| a_i \right\rangle \left\langle a_i \right| \, .$$

In particular, $\exp(itA)$ is defined.

Theorem

 $A \mapsto (\exp(itA))_{t \ge 0}$ is a bijection between self-adjoint operators and strongly continuous one-parameter unitary groups.

In particular, the evolution operator of Hamiltonian $\exp(itH)$ is a one-parameter unitary group, as expected.

Only a few results about the self-adjointness in (non-relativistic) interactive theory are known. A good reference of Reed–Simon. Consider $H = -\frac{1}{2M}\nabla^2 + V(x)$ in 1D for simplicity.

Theorem

 ${\it H}$ is essentially self-adjoint if one of the following conditions are satisfied:

•
$$V=V_1+V_2$$
, $V_1\in L^2$, $V_2\in L^\infty$.

• V is locally L^2 , $V(x) \ge -V^*(|x|)$, where $V^*(r) = o(r^2)$ as $r \to \infty$.

When taking relativity into account, the one-particle Hilbert space $\mathcal{H} = L^2(\mathbb{R}^3)$ is replaced by the Bosonic Fock space: Consider the parabola $\Sigma = \{P \in \mathbb{R}^{1,3} : P^2 = M^2, P^0 > 0\}$. There is a natural measure $d\lambda_M$ on Σ . The Bosonic Fock space is then

$$\mathcal{H} := \bigoplus_{k=0}^{\widehat{\infty}} \operatorname{Sym}^k L^2(\Sigma, \lambda_M) \,.$$

When taking relativity into account, the one-particle Hilbert space $\mathcal{H} = L^2(\mathbb{R}^3)$ is replaced by the Bosonic Fock space: Consider the parabola $\Sigma = \{P \in \mathbb{R}^{1,3} : P^2 = M^2, P^0 > 0\}$. There is a natural measure $d\lambda_M$ on Σ . The Bosonic Fock space is then

$$\mathcal{H}:= \bigoplus_{k=0}^{\widehat{\infty}}\operatorname{Sym}^k L^2(\Sigma,\lambda_M)\,.$$

In this case, by second quantization, one can enhance the free Hamiltonian H to a self-adjoint operator-valued Schwarz distribution on \mathcal{H} . Most of what physicists do still makes sense.

In case of interactive theory, the QFT does not have any solid mathematical background.

In case of interactive theory, the QFT does not have any solid mathematical background.

In general, even the Hilbert space $\mathcal H$ is not expected to exist, due to the presence of Landau pole. Even in cases where $\mathcal H$ exists, it is not easy to verify that H is essentially self-adjoint.

In case of interactive theory, the QFT does not have any solid mathematical background.

In general, even the Hilbert space $\mathcal H$ is not expected to exist, due to the presence of Landau pole. Even in cases where $\mathcal H$ exists, it is not easy to verify that H is essentially self-adjoint.

Physicists' solution: QFT is developed only perturbatively in the interactive picture. Even though we do not have any information about \mathcal{H} , we can still calculate Green functions, S-matrices etc.

In case of interactive theory, the QFT does not have any solid mathematical background.

In general, even the Hilbert space $\mathcal H$ is not expected to exist, due to the presence of Landau pole. Even in cases where $\mathcal H$ exists, it is not easy to verify that H is essentially self-adjoint.

Physicists' solution: QFT is developed only perturbatively in the interactive picture. Even though we do not have any information about \mathcal{H} , we can still calculate Green functions, S-matrices etc. Mathematicians' dilemma: By Haag's theorem, interactive picture does not make sense. QFT only exists non-perturbatively. We do not have Hilbert spaces, the Hamiltonian is not expected to be self-adjoint, etc. We have no idea what the outcome of Feymann diagrams and renormalizations has to do with reality.

Thank you for your attention!