A mathematician's complaint about Hermitian operators

Mingchen Xia
Chalmers Tekniska Högskola

12/18/2021

Hermitian matrices

Hermitian matrices

An $n \times n$ matrix M with complex entries is Hermitian if

$$
M^{\dagger}=M
$$

Hermitian matrices

Hermitian matrices

An $n \times n$ matrix M with complex entries is Hermitian if

$$
M^{\dagger}=M
$$

In physical terms, the definition means

$$
\langle a| M^{\dagger}|b\rangle=\langle a| M|b\rangle
$$

or

$$
\langle a| M|b\rangle^{*}=\langle b| M|a\rangle
$$

for any two states $a, b \in \mathbb{C}^{n}$.

Hermitian matrices

Hermitian matrices

An $n \times n$ matrix M with complex entries is Hermitian if

$$
M^{\dagger}=M
$$

In physical terms, the definition means

$$
\langle a| M^{\dagger}|b\rangle=\langle a| M|b\rangle
$$

or

$$
\langle a| M|b\rangle^{*}=\langle b| M|a\rangle
$$

for any two states $a, b \in \mathbb{C}^{n}$.
Properties of Hermitian matrices.

- M is diagonalizable.
- All eigenvalues of M are real.

Physics explanation

In physical terms,

$$
M=\sum_{i=1}^{n} \lambda_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|
$$

where $\left|a_{i}\right\rangle$ is an complete orthonormal set of eigenstates, $\lambda_{i} \in \mathbb{R}$. M corresponds to an observable.

Infinite dimensional Hilbert space

Let \mathcal{H} be a complex separable Hilbert space (the space of states).

Example

For one-particle non-relativistic spinless free particle, $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}\right)$.

Infinite dimensional Hilbert space

Let \mathcal{H} be a complex separable Hilbert space (the space of states).

Example

For one-particle non-relativistic spinless free particle, $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}\right)$.
Dating back to 1925, Heisenberg, Born, Jordan already realized that observables on \mathcal{H} should be realized as infinite dimensional generalization of Hermitian matrices.

Infinite dimensional Hilbert space

Let \mathcal{H} be a complex separable Hilbert space (the space of states).

Example

For one-particle non-relativistic spinless free particle, $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}\right)$.
Dating back to 1925, Heisenberg, Born, Jordan already realized that observables on \mathcal{H} should be realized as infinite dimensional generalization of Hermitian matrices.
But how?

Hermitian operator-Naive approach

The most common approach in physics textbooks is the following:

$$
M=\sum_{i=1}^{\infty} \lambda_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|,
$$

This formula looks identical to the finite-dimensional case except that n is replaced by ∞.

Hermitian operator-Naive approach

The most common approach in physics textbooks is the following:

$$
M=\sum_{i=1}^{\infty} \lambda_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|,
$$

This formula looks identical to the finite-dimensional case except that n is replaced by ∞.
This formula assumes two things:
(1) The spectrum of M is discrete.
(2) M can be diagonalized on the whole \mathcal{H}.

Hermitian operator-Naive approach

The most common approach in physics textbooks is the following:

$$
M=\sum_{i=1}^{\infty} \lambda_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|,
$$

This formula looks identical to the finite-dimensional case except that n is replaced by ∞.
This formula assumes two things:
(1) The spectrum of M is discrete.
(2) M can be diagonalized on the whole \mathcal{H}.

Both are wrong!

An example

Consider the free Hamiltonian

$$
H=-\frac{1}{2 M} \nabla^{2}
$$

defined on $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}\right)$.

An example

Consider the free Hamiltonian

$$
H=-\frac{1}{2 M} \nabla^{2}
$$

defined on $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}\right)$.
From the usual expansion, we know that the spectrum of H is not discrete.

An example

Consider the free Hamiltonian

$$
H=-\frac{1}{2 M} \nabla^{2}
$$

defined on $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}\right)$.
From the usual expansion, we know that the spectrum of H is not discrete. The operator H is not defined on the whole \mathcal{H}.

Hermitian operator-A less naive approach

Densely defined operator

A densely defined operator on \mathcal{H} is a linear operator $A: D(A) \rightarrow \mathcal{H}$, where $D(A)$ is a dense linear subspace of \mathcal{H}.

Hermitian operator-A less naive approach

Densely defined operator

A densely defined operator on \mathcal{H} is a linear operator $A: D(A) \rightarrow \mathcal{H}$, where $D(A)$ is a dense linear subspace of \mathcal{H}.

Symmetric operator

A densely defined operator A on \mathcal{H} is symmetric if

$$
(x, A y)=(A x, y) \quad \forall x, y \in D(A)
$$

Pathology

Do symmetric operators satisfy our expectation?

Pathology

Do symmetric operators satisfy our expectation? Not at all

Pathology

Do symmetric operators satisfy our expectation? Not at all

Example

Consider $\mathcal{H}=L^{2}((0, \infty)), D(p)=C_{c}^{\infty}((0, \infty))$. Let $p=-\mathrm{i} \nabla$. In this case, $(\mathrm{i}-p) e^{-x}=0$. So i is in the spectrum of p.

Pathology

Do symmetric operators satisfy our expectation? Not at all

Example

Consider $\mathcal{H}=L^{2}((0, \infty)), D(p)=C_{c}^{\infty}((0, \infty))$. Let $p=-\mathrm{i} \nabla$. In this case, $(\mathrm{i}-p) e^{-x}=0$. So i is in the spectrum of p.

More generally, we have

Theorem

The spectrum of a symmetric operator falls into one of the following four categories:
(1) \mathbb{C}.
(2) $\{z: \operatorname{Im} z \geq 0\}$.
(3) $\{z: \operatorname{Im} z \leq 0\}$.
(1) A subset of \mathbb{R}.

Self-adjoint operators

Consider a densely defined operator A on \mathcal{H}.

Adjoint

The domain $D\left(A^{\dagger}\right)$ is the set of $y \in \mathcal{H}$ such that

$$
|(y, A x)| \leq C\|x\|
$$

for all $x \in D(A)$. By Riesz representation theorem, for each $y \in D\left(A^{\dagger}\right)$, there is a unique $A^{\dagger} y \in \mathcal{H}$ such that

$$
\left(A^{\dagger} y, x\right)=(y, A x) \quad \forall x \in D(A)
$$

Self-adjoint operators

Self-adjoint operator

A is said to be self-adjoint if $D(A)=D\left(A^{\dagger}\right)$ and $A=A^{\dagger}$.

Self-adjoint operators

Self-adjoint operator

A is said to be self-adjoint if $D(A)=D\left(A^{\dagger}\right)$ and $A=A^{\dagger}$.
Slightly more generally,

Essentially self-adjoint

A symmetric operator A is essentially self-adjoint if A admits a (unique) self-adjoint extension.

Example

The Hamiltonian

$$
H=-\frac{1}{2 M} \nabla^{2}
$$

is essentially self-adjoint if $D(H)=C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$. The self-adjoint extension defined on the Sobolev space $H^{2}\left(\mathbb{R}^{3}\right)$.

Example

The Hamiltonian

$$
H=-\frac{1}{2 M} \nabla^{2}
$$

is essentially self-adjoint if $D(H)=C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$. The self-adjoint extension defined on the Sobolev space $H^{2}\left(\mathbb{R}^{3}\right)$.
Similarly, the position operator x is self-adjoint on

$$
D(x)=\left\{f \in L^{2}\left(\mathbb{R}^{3}\right): \int_{\mathbb{R}^{3}}|x|^{2}|f(x)|^{2} \mathrm{~d} x<\infty\right\}
$$

Example

The Hamiltonian

$$
H=-\frac{1}{2 M} \nabla^{2}
$$

is essentially self-adjoint if $D(H)=C_{c}^{\infty}\left(\mathbb{R}^{3}\right)$. The self-adjoint extension defined on the Sobolev space $H^{2}\left(\mathbb{R}^{3}\right)$.
Similarly, the position operator x is self-adjoint on

$$
D(x)=\left\{f \in L^{2}\left(\mathbb{R}^{3}\right): \int_{\mathbb{R}^{3}}|x|^{2}|f(x)|^{2} \mathrm{~d} x<\infty\right\}
$$

The momentum operator $p=-\mathrm{i} \nabla$ is essentially self-adjoint on

$$
D(p)=C_{c}^{1}\left(\mathbb{R}^{3}\right)
$$

Warning

The notion of self-adjointness is domain sensitive.
In general, it is fairly easy to determine if a given operator is symmetric, but there are no general methods to determine the self-adjointness of an operator.

Spectral theorem of self-adjoint operators

Theorem

A symmetric operator A is self-adjoint if and only if the spectrum of A is contained in \mathbb{R}.

This justifies λ_{i} 's in

$$
A=\sum_{i=1}^{\infty} \lambda_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|
$$

are real.

Spectral theorem of self-adjoint operators

Theorem

A symmetric operator A is self-adjoint if and only if the spectrum of A is contained in \mathbb{R}.

This justifies λ_{i} 's in

$$
A=\sum_{i=1}^{\infty} \lambda_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right|
$$

are real.

Theorem

Assume that A is self-adjoint. The above equation makes sense if we replace the density operator by a projection-valued measure:

$$
A=\int_{\mathbb{R}} \lambda \mathrm{d} \sigma(\lambda)
$$

Spectral calculus

Given the spectral theorem, we can rigorously define $f(A)$, where f is a measurable function on \mathbb{R} :

$$
f(A):=\int_{\mathbb{R}} f(\lambda) \mathrm{d} \sigma(\lambda)
$$

as long as the right-hand side is well-defined. In physical terms,

$$
A=\sum_{i=1}^{\infty} f\left(\lambda_{i}\right)\left|a_{i}\right\rangle\left\langle a_{i}\right|
$$

Spectral calculus

Given the spectral theorem, we can rigorously define $f(A)$, where f is a measurable function on \mathbb{R} :

$$
f(A):=\int_{\mathbb{R}} f(\lambda) \mathrm{d} \sigma(\lambda)
$$

as long as the right-hand side is well-defined. In physical terms,

$$
A=\sum_{i=1}^{\infty} f\left(\lambda_{i}\right)\left|a_{i}\right\rangle\left\langle a_{i}\right|
$$

In particular, $\exp (\mathrm{i} t A)$ is defined.

Stone's theorem

Theorem

$A \mapsto(\exp (\mathrm{i} t A))_{t \geq 0}$ is a bijection between self-adjoint operators and strongly continuous one-parameter unitary groups.

In particular, the evolution operator of Hamiltonian $\exp (i t H)$ is a one-parameter unitary group, as expected.

Interactive theory

Only a few results about the self-adjointness in (non-relativistic) interactive theory are known. A good reference of Reed-Simon. Consider $H=-\frac{1}{2 M} \nabla^{2}+V(x)$ in 1D for simplicity.

Theorem

H is essentially self-adjoint if one of the following conditions are satisfied:

- $V=V_{1}+V_{2}, V_{1} \in L^{2}, V_{2} \in L^{\infty}$.
- V is locally $L^{2}, V(x) \geq-V^{*}(|x|)$, where $V^{*}(r)=o\left(r^{2}\right)$ as $r \rightarrow \infty$.

Relativisitic free theory

When taking relativity into account, the one-particle Hilbert space $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}\right)$ is replaced by the Bosonic Fock space: Consider the parabola $\Sigma=\left\{P \in \mathbb{R}^{1,3}: P^{2}=M^{2}, P^{0}>0\right\}$. There is a natural measure $\mathrm{d} \lambda_{M}$ on Σ. The Bosonic Fock space is then

$$
\mathcal{H}:=\bigoplus_{k=0}^{\widehat{\infty}} \operatorname{Sym}^{k} L^{2}\left(\Sigma, \lambda_{M}\right) .
$$

Relativisitic free theory

When taking relativity into account, the one-particle Hilbert space $\mathcal{H}=L^{2}\left(\mathbb{R}^{3}\right)$ is replaced by the Bosonic Fock space: Consider the parabola $\Sigma=\left\{P \in \mathbb{R}^{1,3}: P^{2}=M^{2}, P^{0}>0\right\}$. There is a natural measure $\mathrm{d} \lambda_{M}$ on Σ. The Bosonic Fock space is then

$$
\mathcal{H}:=\bigoplus_{k=0}^{\widehat{\infty}} \operatorname{Sym}^{k} L^{2}\left(\Sigma, \lambda_{M}\right) .
$$

In this case, by second quantization, one can enhance the free Hamiltonian H to a self-adjoint operator-valued Schwarz distribution on \mathcal{H}. Most of what physicists do still makes sense.

Relativisitic interactive theory

In case of interactive theory, the QFT does not have any solid mathematical background.

Relativisitic interactive theory

In case of interactive theory, the QFT does not have any solid mathematical background.
In general, even the Hilbert space \mathcal{H} is not expected to exist, due to the presence of Landau pole. Even in cases where \mathcal{H} exists, it is not easy to verify that H is essentially self-adjoint.

Relativisitic interactive theory

In case of interactive theory, the QFT does not have any solid mathematical background.
In general, even the Hilbert space \mathcal{H} is not expected to exist, due to the presence of Landau pole. Even in cases where \mathcal{H} exists, it is not easy to verify that H is essentially self-adjoint.
Physicists' solution: QFT is developed only perturbatively in the interactive picture. Even though we do not have any information about \mathcal{H}, we can still calculate Green functions, S-matrices etc.

Relativisitic interactive theory

In case of interactive theory, the QFT does not have any solid mathematical background.
In general, even the Hilbert space \mathcal{H} is not expected to exist, due to the presence of Landau pole. Even in cases where \mathcal{H} exists, it is not easy to verify that H is essentially self-adjoint.
Physicists' solution: QFT is developed only perturbatively in the interactive picture. Even though we do not have any information about \mathcal{H}, we can still calculate Green functions, S-matrices etc.
Mathematicians' dilemma: By Haag's theorem, interactive picture does not make sense. QFT only exists non-perturbatively. We do not have Hilbert spaces, the Hamiltonian is not expected to be self-adjoint, etc. We have no idea what the outcome of Feymann diagrams and renormalizations has to do with reality.

Thank you for your attention!

