A transcendental approach to non-Archimedean metrics

Mingchen Xia

IMJ-PRG

04/05/2023; KASS

Mingchen Xia (IMJ-PRG)

Transcendental approach

04/05/2023; KASS

1/23

Mingchen Xia (IMJ-PRG)

æ

- X: irreducible normal projective variety of dimension n.
- L: big line bundle on X.

- X: irreducible normal projective variety of dimension n.
- L: big line bundle on X.

There are two different analytic spaces associated with X:

- the complex analytification $X(\mathbb{C})$ (or X for simplicity);
- the Berkovich analytification X^{an} .

- X: irreducible normal projective variety of dimension n.
- L: big line bundle on X.

There are two different analytic spaces associated with X:

- the complex analytification $X(\mathbb{C})$ (or X for simplicity);
- the Berkovich analytification X^{an} .

The line bundle L induces analytic line bundles $L(\mathbb{C})$ (or L for simplicity) and L^{an} on both $X(\mathbb{C})$ and X^{an} .

There are notions of plurisubharmonic metrics on both $L(\mathbb{C})$ and L^{an} , giving rise to the Archimedean and non-Archimedean pluripotential theory respectively.

There are notions of plurisubharmonic metrics on both $L(\mathbb{C})$ and L^{an} , giving rise to the Archimedean and non-Archimedean pluripotential theory respectively.

Goal

Understand the precise relation between these two theories.

We need some intuitions of X^{an} before proceeding. As a set, X^{an} is a disjoint union:

$$X^{\mathrm{an}} = \coprod_Y Y^{\mathrm{val}},$$

where

- Y runs over all irreducible reduced subvarieties of X;
- Y^{val} is the set of valuations of real valuations $\mathbb{C}(Y)^{\times}\to\mathbb{R}$ which are trivial on $\mathbb{C}.$

We need some intuitions of X^{an} before proceeding. As a set, X^{an} is a disjoint union:

$$X^{\mathrm{an}} = \coprod_Y Y^{\mathrm{val}},$$

where

- Y runs over all irreducible reduced subvarieties of X;
- Y^{val} is the set of valuations of real valuations $\mathbb{C}(Y)^{\times}\to\mathbb{R}$ which are trivial on $\mathbb{C}.$

 Y^{val} contains valuations of the form $cord_E$ (divisorial valuations) for any prime divisor E over Y and any $c \in \mathbb{Q}_{>0}$.

We need some intuitions of X^{an} before proceeding. As a set, X^{an} is a disjoint union:

$$X^{\mathrm{an}} = \coprod_Y Y^{\mathrm{val}},$$

where

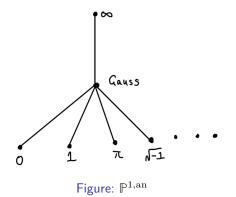
- Y runs over all irreducible reduced subvarieties of X;
- Y^{val} is the set of valuations of real valuations $\mathbb{C}(Y)^{\times}\to\mathbb{R}$ which are trivial on $\mathbb{C}.$

 Y^{val} contains valuations of the form $cord_E$ (divisorial valuations) for any prime divisor E over Y and any $c \in \mathbb{Q}_{>0}$.

Information

 X^{an} is a set of valuations.

As a simple example:



Here Gauss denotes the trivial valuation.

There are pluripotential theories on $(X^{\mathrm{an}}, L^{\mathrm{an}})$ exactly as on $(X(\mathbb{C}), L(\mathbb{C}))$.

э

There are pluripotential theories on (X^{an}, L^{an}) exactly as on $(X(\mathbb{C}), L(\mathbb{C}))$. There are at least two approaches to the non-Archimedean pluripotential theory:

- The approach of Chambert-Loir–Ducros, Gubler, Jell, This approach is based on local tropicalizations;
- Interpretation of Boucksom–Jonsson. This approach is global.

There are pluripotential theories on (X^{an}, L^{an}) exactly as on $(X(\mathbb{C}), L(\mathbb{C}))$. There are at least two approaches to the non-Archimedean pluripotential theory:

- The approach of Chambert-Loir–Ducros, Gubler, Jell, This approach is based on local tropicalizations;
- **2** The approach of Boucksom–Jonsson. This approach is global.

Drawbacks

The first approach fails for singular metrics. The second method does not yield a sheaf of psh functions.

There are pluripotential theories on (X^{an}, L^{an}) exactly as on $(X(\mathbb{C}), L(\mathbb{C}))$. There are at least two approaches to the non-Archimedean pluripotential theory:

- The approach of Chambert-Loir–Ducros, Gubler, Jell, This approach is based on local tropicalizations;
- **2** The approach of Boucksom–Jonsson. This approach is global.

Drawbacks

The first approach fails for singular metrics. The second method does not yield a sheaf of psh functions.

The two approaches agree for nice enough global psh functions.

Our goal is to understand the relation between Boucksom–Jonsson's non-Archimedean pluripotential theory and the Archimedean pluripotential theory.

Our goal is to understand the relation between Boucksom–Jonsson's non-Archimedean pluripotential theory and the Archimedean pluripotential theory.

Theorem

Boucksom–Jonsson's non-Archimedean psh metrics can be realized as curves of singular Archimedean psh metrics.

æ

Assume that L is ample for the time being. On the Archimedean side, we have a notion of finite energy metrics:

Finite energy

Fix a smooth strictly psh metric h_0 on $L=L(\mathbb{C}),$ a psh metric h has finite energy if

$$\int_X |h/h_0| (\mathrm{dd}^{\mathrm{c}} h)^n < \infty.$$

The space of such metrics is denoted by $\mathcal{E}^1(X,L)$.

Intuitively, finite energy=almost regular.

Assume that L is ample for the time being. On the Archimedean side, we have a notion of finite energy metrics:

Finite energy

Fix a smooth strictly psh metric h_0 on $L=L(\mathbb{C}),$ a psh metric h has finite energy if

$$\int_X |h/h_0| (\mathrm{dd}^{\mathrm{c}} h)^n < \infty.$$

The space of such metrics is denoted by $\mathcal{E}^1(X,L)$.

Intuitively, finite energy=almost regular. The space $\mathcal{E}^1(X,L)$ has an intrinsic geometry. We have a notion of geodesics.

The space of geodesic rays $(\ell_t)_{t\geq 0}$ with $\ell_0=0$ is denoted by $\mathcal{R}^1(X,L).$

Get non-Archimedean information from $\ell \in \mathcal{R}^1(X, L)$.

After reparametrization $t = -\log |\tau|$, $\tau \in \Delta = \{z \in \mathbb{C} : |z| < 1\}$, we get a plurisubharmonic metric Φ on p_1^*L on $X \times (\Delta - \{0\})$. Assume that $\ell_t \leq 0$ for all $t \geq 0$, then $\Phi \leq 0$. By the Grauert–Remmert

extension theorem, Φ admits a unique psh extension over the central fiber.

Get non-Archimedean information from $\ell \in \mathcal{R}^1(X, L)$.

After reparametrization $t = -\log |\tau|$, $\tau \in \Delta = \{z \in \mathbb{C} : |z| < 1\}$, we get a plurisubharmonic metric Φ on p_1^*L on $X \times (\Delta - \{0\})$. Assume that $\ell_t \leq 0$ for all $t \geq 0$, then $\Phi \leq 0$. By the Grauert–Remmert extension theorem, Φ admits a unique psh extension over the central fiber.

Goal, reformulated

Get non-Archimedean information from $\Phi \in PSH(X \times \Delta, p_1^*L)$.

11/23

Get non-Archimedean information from $\Phi \in PSH(X \times \Delta, p_1^*L)$.

Given any divisorial valuation $c \operatorname{ord}_E \in X^{\operatorname{an}}$, there is a natural extension of $c \operatorname{ord}_E$ to a divisorial valuation $\sigma(c \operatorname{ord}_E)$ on $X \times \mathbb{C}$, known as the Gauss extension characterized by

- $\sigma(c \operatorname{ord}_E)(t) = 1;$
- $\sigma(c \operatorname{ord}_E)$ is \mathbb{C}^* -invariant;
- The center of $\sigma(c \operatorname{ord}_E)$ is on the central fiber.

Get non-Archimedean information from $\Phi \in PSH(X \times \Delta, p_1^*L)$.

Given any divisorial valuation $c \operatorname{ord}_E \in X^{\operatorname{an}}$, there is a natural extension of $c \operatorname{ord}_E$ to a divisorial valuation $\sigma(c \operatorname{ord}_E)$ on $X \times \mathbb{C}$, known as the Gauss extension characterized by

- $\sigma(c \operatorname{ord}_E)(t) = 1;$
- $\sigma(c \operatorname{ord}_E)$ is \mathbb{C}^* -invariant;
- The center of $\sigma(c \operatorname{ord}_E)$ is on the central fiber.

The non-Archimedean information associated with Φ is given by

$$\Phi^{\mathrm{an}}(c \operatorname{ord}_E) := -\sigma(c \operatorname{ord}_E)(\Phi).$$

Get non-Archimedean information from $\Phi \in PSH(X \times \Delta, p_1^*L)$.

It is not hard to verify that Φ^{an} admits a unique extension to $\Phi^{an} \in PSH(X^{an}, L^{an}).$

Get non-Archimedean information from $\Phi \in \mathrm{PSH}(X \times \Delta, p_1^*L)$.

It is not hard to verify that $\Phi^{\rm an}$ admits a unique extension to $\Phi^{\rm an}\in {\rm PSH}(X^{\rm an},L^{\rm an}).$ To summarize, we get

 $\ell \mapsto \Phi \mapsto \Phi^{\mathrm{an}}; \quad \mathcal{R}^1(X,L) \to \mathrm{PSH}(X^{\mathrm{an}},L^{\mathrm{an}}).$

This gives a map from Archimedean objects to non-Archimedean objects.

Theorem (Berman–Boucksom–Jonsson)

The map induces a bijection from a subclass of $\mathcal{R}^1(X,L)$ to finite energy metrics in $\mathrm{PSH}(X^{\mathrm{an}},L^{\mathrm{an}})$.

These special geodesics are called maximal geodesic rays. Next we consider the Legendre transform of these maximal rays:

$$\psi_\tau := \inf_{t \geq 0} (\ell_t - t\tau).$$

Of course, here we regard ℓ_t as the associated potential after fixing a smooth reference metric.

Theorem (Berman–Boucksom–Jonsson)

The map induces a bijection from a subclass of $\mathcal{R}^1(X,L)$ to finite energy metrics in $\mathrm{PSH}(X^{\mathrm{an}},L^{\mathrm{an}})$.

These special geodesics are called maximal geodesic rays. Next we consider the Legendre transform of these maximal rays:

$$\psi_\tau := \inf_{t \geq 0} (\ell_t - t\tau).$$

Of course, here we regard ℓ_t as the associated potential after fixing a smooth reference metric.

Theorem (Ross–Witt Nyström, Darvas–Di Nezza–Lu, Darvas–Xia)

The Legendre transform is a bijection from maximal geodesic rays to concave curves with finite energy of \mathcal{I} -model potentials .

Mingchen Xia (IMJ-PRG)

・ロト ・四ト ・ヨト

э

How to relate Archimedean to non-Archimedean

Recall that $\varphi \in PSH(X, \omega)$ is \mathcal{I} -model if $\varphi \leq 0$ and

 $\psi \in \mathrm{PSH}(X,\omega)_{\leq 0} + \mathcal{I}(t\varphi) = \mathcal{I}(t\psi) \ \forall t \implies \psi \leq \varphi.$

Recall that $\varphi \in \mathrm{PSH}(X,\omega)$ is $\mathcal{I}\text{-model}$ if $\varphi \leq 0$ and

$$\psi \in \mathrm{PSH}(X,\omega)_{\leq 0} + \mathcal{I}(t\varphi) = \mathcal{I}(t\psi) \ \forall t \implies \psi \leq \varphi.$$

Corollary

When L is ample, there is a bijection between

- the non-Archimedean potentials in $\mathrm{PSH}(X^\mathrm{an},L^\mathrm{an})$ with finite energy and
- concave curves with finite energy of \mathcal{I} -model potentials.

Recall that $\varphi \in \mathrm{PSH}(X,\omega)$ is $\mathcal{I}\text{-model}$ if $\varphi \leq 0$ and

$$\psi \in \mathrm{PSH}(X,\omega)_{\leq 0} + \mathcal{I}(t\varphi) = \mathcal{I}(t\psi) \ \forall t \implies \psi \leq \varphi.$$

Corollary

When L is ample, there is a bijection between

- the non-Archimedean potentials in $\mathrm{PSH}(X^\mathrm{an},L^\mathrm{an})$ with finite energy and
- concave curves with finite energy of \mathcal{I} -model potentials.

We reduce the non-Archimedean problems to Archimedean problems.

We have shown how to relate the Boucksom–Jonsson theory to the Archimedean theory. Conversely, we could give a new definition of Boucksom–Jonsson theory using the Archimedean theory.

We have shown how to relate the Boucksom–Jonsson theory to the Archimedean theory. Conversely, we could give a new definition of Boucksom–Jonsson theory using the Archimedean theory. Why bother?

- The Archimedean theory works for transcendental classes as well and makes sense even if X is not projective;
- The envelope conjecture (i.e. Hartogs' lemma) is trivial in the Archimedean theory.

How?

Corollary

When L is ample, there is a bijection between

- \bullet the non-Archimedean potentials in $\mathrm{PSH}(X^\mathrm{an},L^\mathrm{an})$ with finite energy and
- \bullet concave curves with finite energy of $\mathcal I\text{-model}$ potentials.

The naive idea is to remove the word finite energy.

Let $\boldsymbol{\xi}$ be a pseudo-effective class. Then we define

$$\mathrm{PSH}^{\mathrm{an}}(\xi) := \varprojlim_{\omega} \mathsf{Test curves}(X, \xi + \omega),$$

where ω runs over all Kähler forms on X and Test curves $(X, \xi + \omega)$ is the set of concave curves of \mathcal{I} -model potentials not necessarily of finite energy (satisfying some mild assumptions).

Here the projective limit avoids the pathologies at 0-mass.

Theorem

 $PSH^{an}(\xi)$ behaves exactly as the Archimedean potential theory. In particular, it satisfies Hartogs' lemma (=Envelope conjecture à la Boucksom–Jonsson).

Pluripotential theoretic constructions can be realized using the corresponding constructions in convex geometry. Here is a brief dictionary:

- Maximum Concave envelope of pointwise maximum;
- **2** Sum \Leftrightarrow infimal involution;
- Inf along decreasing nets ⇔ pointwise inf;
- ④ Regularized sup along increasing nets ⇔ pointwise regularized sup;
- Segularized sup \Leftrightarrow Slightly more complicated to describe.

6 ...

Theorem (Darvas–X.–Zhang)

When X is smooth and $\xi = c_1(L)$ for a pseudo-effective \mathbb{R} -line bundle L, $\mathrm{PSH}^{\mathrm{an}}(\xi)$ is canonically isomorphic to $\mathrm{PSH}(X^{\mathrm{an}}, L^{\mathrm{an}})$ in the sense of Boucksom–Jonsson.

Theorem (Darvas–X.–Zhang)

When X is smooth and $\xi = c_1(L)$ for a pseudo-effective \mathbb{R} -line bundle L, $\mathrm{PSH}^{\mathrm{an}}(\xi)$ is canonically isomorphic to $\mathrm{PSH}(X^{\mathrm{an}},L^{\mathrm{an}})$ in the sense of Boucksom–Jonsson.

Corollary

When X is smooth, Boucksom–Jonsson's envelope conjecture holds.

This result is proved independently by Boucksom–Jonsson using algebraic methods.

20/23

Theorem (Unpublished)

When X is unibranch and $\xi = c_1(L)$ for a pseudo-effective \mathbb{R} -line bundle L, then the following are equivalent:

- Boucksom–Jonsson's envelope conjecture holds;
- **2** $\operatorname{PSH}^{\operatorname{an}}(\xi)$ is canonically isomorphic to $\operatorname{PSH}(X^{\operatorname{an}}, L^{\operatorname{an}})$.

Theorem (Unpublished)

When X is unibranch and $\xi = c_1(L)$ for a pseudo-effective \mathbb{R} -line bundle L, then the following are equivalent:

- Boucksom-Jonsson's envelope conjecture holds;
- **2** $\operatorname{PSH}^{\operatorname{an}}(\xi)$ is canonically isomorphic to $\operatorname{PSH}(X^{\operatorname{an}}, L^{\operatorname{an}})$.

In any case, the envelope conjecture always holds in the Archimedean theory, so it seems to be a better alternative than Boucksom–Jonsson's theory if the envelope conjecture remains open.

Although we have a well-developed basic theory of ${\rm PSH}^{\rm an}(\xi),$ a lot of important information is missing.

Image: A matrix

э

Although we have a well-developed basic theory of ${\rm PSH}^{\rm an}(\xi),$ a lot of important information is missing.

Conjecture

The energy functional E is differentiable on the subspace of finite energy potentials in $\mathrm{PSH}^{\mathrm{an}}(\xi)$.

Although we have a well-developed basic theory of ${\rm PSH}^{\rm an}(\xi),$ a lot of important information is missing.

Conjecture

The energy functional E is differentiable on the subspace of finite energy potentials in $\mathrm{PSH}^\mathrm{an}(\xi).$

Conjecture/Problem

The non-Archimedean Monge–Ampère equation can be formulated and solved.

Although we have a well-developed basic theory of ${\rm PSH}^{\rm an}(\xi),$ a lot of important information is missing.

Conjecture

The energy functional E is differentiable on the subspace of finite energy potentials in $\mathrm{PSH}^\mathrm{an}(\xi).$

Conjecture/Problem

The non-Archimedean Monge–Ampère equation can be formulated and solved.

Conjecture/Ongoing work of Boucksom and Piccione

There is a Berkovich like compactification of the space of divisorial valuations of a general unibranch Kähler space and $\mathrm{PSH}^{\mathrm{an}}(\xi)$ can be interpreted using this space.

Thank you for your attention!