Transcendental b-divisors

Universitetet för arbetslösa

Mingchen Xia

May 28, 2025 KASS, Chalmers Tekniska Högskola

Mingchen Xia (Arbetslös)

Transcendental b-divisors

28/05/2025

- Transcendental b-divisors (2025);
- Singularities in global pluripotential theory Lecture notes at Zhejiang university (2024).

Both are available on my homepage (but not on arXiv).

1 Audience-friendly introduction

2 Slightly technical details

Notation: X is a compact Kähler manifold.

Goal

Understand the relations between currents and cohomology classes on X.

In the whole talk, a current is understood as a closed positive $(1,1)\mbox{-}\mbox{current}.$

 $\begin{array}{rl} \mbox{currents} & \stackrel{?}{\longleftrightarrow} & \mbox{cohomology classes}. \end{array}$

What do we mean?

イロト イヨト イヨト イヨト

3

Goal

currents $\stackrel{?}{\Leftrightarrow}$ cohomology classes.

What do we mean?

Trivial example 1

A Kähler class contains a Kähler form.

æ

∃ ⇒

Goal

currents $\stackrel{?}{\Leftrightarrow}$ cohomology classes.

What do we mean?

Trivial example 1

A Kähler class contains a Kähler form.

Trivial example 2

The cohomology class of a current is pseudoeffective.

< (17) > < (17) > <

э

Goal

currents $\stackrel{?}{\Leftrightarrow}$ cohomology classes.

What do we mean?

Trivial example 1

A Kähler class contains a Kähler form.

Trivial example 2

The cohomology class of a current is pseudoeffective.

Trivial example 3

A current without Lelong numbers lives in a nef cohomology class.

A (10) N (10)

currents \Leftrightarrow cohomology classes.

A special case of Example 3

Suppose that T is a current with bounded local potentials, then the cohomology class of T is nef.

- 4 四 ト - 4 回 ト

currents $\stackrel{?}{\Leftrightarrow}$ cohomology classes.

A special case of Example 3

Suppose that T is a current with bounded local potentials, then the cohomology class of T is nef.

Corollary

Suppose that T has log singularities along a divisor, then the non-divisorial part $\operatorname{Reg} T$ represents a nef cohomology class.

currents $\stackrel{?}{\Leftrightarrow}$ cohomology classes.

What if T has more general analytic singularities?

Observation

```
\{\operatorname{Reg} T\} is NOT nef in general.
```

However,

Example

 \exists bimeromorphic modification $\pi \colon Y \to X$ so that π^*T has log singularities along a divisor. In particular, $\operatorname{Reg} \pi^*T$ is a nef cohomology class on Y.

We regard $\operatorname{Reg} \pi^* T$ as a resolution of the singularities of T.

・ロト ・回ト ・ヨト ・ ヨト

æ

currents $\stackrel{?}{\Leftrightarrow}$ cohomology classes.

For general T, no modification can resolve the whole singularities. But, each modification π resolves parts of the singularities.

currents $\stackrel{?}{\Leftrightarrow}$ cohomology classes.

For general T, no modification can resolve the whole singularities. But, each modification π resolves parts of the singularities.

Expectation

The whole collection of the $\operatorname{Reg} \pi^* T$'s for various π forms a resolution of the singularities of T. The collection of cohomology classes $\{\operatorname{Reg} \pi^* T\}$ should be nef in some sense.

The latter collection is a so-called nef b-divisor.

Theorem (Not very precise)

Given a cohomology class α . There is a canonical bijection between

- Non-divisorial currents representing α modulo an equivalence relation, and
- Nef b-divisors rooted on α .

Our notion of b-divisor is more commonly called a b-divisor class.

Theorem (Not very precise)

Given a cohomology class α . There is a canonical bijection between

- Non-divisorial currents representing α modulo an equivalence relation, and
- Nef b-divisors rooted on α .

Our notion of b-divisor is more commonly called a b-divisor class.

Remark

In the algebraic setting, this is a consequence of theorems of Boucksom–Jonsson (2018) and of Darvas–Xia–Zhang (2023). The novelty lies in the transcendental case.

Audience-friendly introduction

Mingchen Xia (Arbetslös)

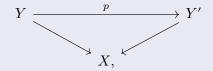
э

What is a b-divisor?

Definition

A **b-divisor** over X is a family \mathbb{D}_Y :

- Indexed by all modifications $\pi \colon Y \to X$ of X;
- $\mathbb{D}_Y \in \mathrm{H}^{1,1}(Y,\mathbb{R});$
- If we have a commutative diagram



 $\label{eq:prod} \begin{array}{l} \text{then } p_*\mathbb{D}_Y=\mathbb{D}_{Y'}.\\ \\ \text{The class } \mathbb{D}_X \text{ is called the root of } \mathbb{D}. \end{array}$

Cartier b-divisors

Given

- a modification $\pi \colon Y \to X$, and
- \bullet a cohomology class $\alpha \in \mathrm{H}^{1,1}(Y,\mathbb{R})$,

we can construct a unique b-divisor $\mathbb{D}(\alpha)$ so that

• for each modification $Z \to X$ dominating Y, \mathbb{D}_Z is the pull-back of α .

These b-divisors are called Cartier b-divisors.

Cartier b-divisors

Given

- a modification $\pi \colon Y \to X$, and
- \bullet a cohomology class $\alpha \in \mathrm{H}^{1,1}(Y,\mathbb{R})$,

we can construct a unique b-divisor $\mathbb{D}(\alpha)$ so that

• for each modification $Z \to X$ dominating Y, \mathbb{D}_Z is the pull-back of α .

These b-divisors are called Cartier b-divisors.

Nef b-divisors

A Cartier b-divisor is nef if α can be taken as nef.

A b-divisor is nef if it can be approximated by nef Cartier b-divisors.

Given a current T on X, we can construct a b-divisor $\mathbb{D}(T)$:

• Given a modification $\pi \colon Y \to X$, we set

 $\mathbb{D}(T)_V := \{ \operatorname{Reg} \pi^* T \}.$

< 4³ ► <

э

Given a current T on X, we can construct a b-divisor $\mathbb{D}(T)$:

• Given a modification $\pi \colon Y \to X$, we set

$$\mathbb{D}(T)_Y := \{\operatorname{Reg} \pi^* T\}.$$

Special case

When T has analytic singularities and π is a log resolution, then $\mathbb{D}(T)$ is just the nef Cartier b-divisor generated by the class $\{\operatorname{Reg} \pi^*T\}$.

Given a current T on X, we can construct a b-divisor $\mathbb{D}(T)$:

• Given a modification $\pi \colon Y \to X$, we set

$$\mathbb{D}(T)_Y := \{ \operatorname{Reg} \pi^* T \}.$$

Special case

When T has analytic singularities and π is a log resolution, then $\mathbb{D}(T)$ is just the nef Cartier b-divisor generated by the class $\{\operatorname{Reg} \pi^*T\}$.

Theorem (Xia 2021)

The b-divisor $\mathbb{D}(T)$ is nef.

So we have constructed a map: currents \rightarrow nef b-divisors.

Given a current T on X, we can construct a b-divisor $\mathbb{D}(T)$:

• Given a modification $\pi \colon Y \to X$, we set

$$\mathbb{D}(T)_Y := \{\operatorname{Reg} \pi^* T\}.$$

Special case

When T has analytic singularities and π is a log resolution, then $\mathbb{D}(T)$ is just the nef Cartier b-divisor generated by the class $\{\operatorname{Reg} \pi^*T\}$.

Theorem (Xia 2021)

The b-divisor $\mathbb{D}(T)$ is nef.

So we have constructed a map: currents \rightarrow nef b-divisors.

Private complaint

This theorem was reproved several times without citing my paper.

Mingchen Xia (Arbetslös)

The map

We have a map currents $\xrightarrow{\mathbb{D}}$ nef b-divisors.

The map is not injective for two reasons:

Reason 1

 $\mathbb{D}(T)=\mathbb{D}(\operatorname{Reg} T).$

So we restrict our attention to non-divisorial currents: $T = \operatorname{Reg} T$.

The map

We have a map currents $\xrightarrow{\mathbb{D}}$ nef b-divisors.

The map is not injective for two reasons:

Reason 1

 $\mathbb{D}(T)=\mathbb{D}(\operatorname{Reg} T).$

So we restrict our attention to non-divisorial currents: $T = \operatorname{Reg} T$.

Reason 2

If two cohomologous non-divisorial currents T and T' have the same Lelong numbers (on all modifications), then $\mathbb{D}(T) = \mathbb{D}(T')$.

We say these currents are \mathcal{I} -equivalent.

Modulo these issues, we get an injective map:

Theorem (Injectivity)

Given a cohomology class $\alpha,$ we have an injective map from

- The \mathcal{I} -equivalence classes of non-divisorial currents in α , to
- the nef b-divisors rooted on α .

This is not entirely obvious, though not very difficult. Conversely,

Theorem (Surjectivity)

All nef b-divisors rooted on α with positive volume come from this construction.

We have achieved our goal!

 $currents \iff$ cohomology classes.

Theorem

Goal

Non-divisorial currents/ $\sim_{\mathcal{I}} \iff$ *nef b-divisors.*

æ

We begin with a nef b-divisor $\mathbb D$ with positive volume. The proof is divided into steps.

- Observation due to Boucksom's thesis. Although D_Y is not nef, it is nef in codimension 1. Very easy after giving the correct definition.
- **2** A current with minimal singularities T'_Y in \mathbb{D}_Y is non-divisorial. Its pushforward T_Y to X is also non-divisorial. Very easy.
- $\textcircled{O} The singularities of T_Y are decreasing when we replace Y by further blowups. The proof relies on the theory of J-good singularities of Darvas-Xia.}$
- The decreasing T_Y's have a limit T. Completeness theorem of Darvas–Di Nezza–Lu.
- **③** Show that $\mathbb{D}(T) = \mathbb{D}$. This relies on a continuity theorem of mine.

Audience-friendly introduction

2 Slightly technical details

Dang–Favre (2020) developed the intersection theory of algebraic nef b-divisors, and asked if the same can be done in the transcendental setting. Via the correspondence currents \iff nef b-divisors, we get

Theorem

The theory of mixed volumes of Darvas–Xia of currents gives the desired intersection theory of nef b-divisors.

The analytic techniques can be translated to give new insights for nef b-divisors.

For example, the theory of trace operators of Darvas–Xia can be translated into

Theorem

There is a way to restrict nef b-divisors over X to a submanifold of X.

This operation seems to be new.

My favorite pan

Mingchen Xia (Arbetslös)

My favorite pan

