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References

We will be talking about results in the following two papers:

1 Transcendental Okounkov bodies (with Darvas, Witt Nyström,
Reboulet, Zhang);

2 Restrictions of currents and transcendental partial Okounkov bodies
(with Darvas).
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Goal

We will consider

a connected compact Kähler manifold X of dimension n;

a big (1, 1)-cohomology class α on X .

Goal

Our goal is to understand the geometry of (X , α) using convex bodies in
Rn.
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A toy model

We begin with a toy model:

Toric varieties

A toric variety is a compactification X of (C∗)n preserving the symmetry:
(C∗)n-acts on X extending the action on (C∗)n.

We will also consider a (C∗)n-invariant line bundle L on X .

Thanks to the symmetry, we can usually reduce interesting problems
related to (X , L) from complex dimension n to real dimension n.
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Toric varieties

Fact

The geometric properties of L can be read from a polytope (Newton
polytope) ∆(L) ⊂ Rn.

For example,
vol L = n! vol ∆(L).

The very ampleness of L amounts to a particular shape of ∆(L), etc.

In other words,

Complex to convex

Newton polytope construction translates complex geometry to convex
geometry, which is a priori simpler.
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Non-toric case

Now the question is:

Question

What about general smooth projective varieties?

The answer is given by the Okounkov bodies, constructed by
Lazarsfeld–Mustat, ă and Kaveh–Khovanskii.

Theorem (Lazarsfeld–Mustat, ă, Jow)

The numerical information of a big line bundle L on a smooth projective
variety X of dimension n is reflected by a family of convex bodies in Rn.
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Okounkov bodies

Fix

a smooth projective variety X of dimension n;

a big line bundle L on X .

In order to construct a convex body in Rn, we need an auxiliary object: a
complete flag: X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn of smooth subvarieties.
A flag relates complex geometry to convex geometry:

Flag valuations

A holomorphic section s of L has a valuation νY•(s) ∈ Zn: the successive
orders of vanishing along the flag.
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Okounkov bodies

Lemma-Definition

The closure ∆ν(L) or ∆Y•(L) of the set

{k−1ν(s) : k > 0, s ∈ H0(X , Lk)}

is a convex subset of Rn, called the Okounkov body of L.

Example

When X = P1, L = O(1) and Y0 = X , Y1 = {0}, this construction gives
[0, 1] ⊆ R.

More generally, the Okounkov body (with respect to a suitable flag) in the
toric setting coincides with the Newton polytope.
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Okounkov bodies

Why are Okounkov bodies important?

Theorem (Lazarsfeld–Mustat, ă, Jow)

The Okounkov body ∆Y•(L) depends only on the numerical class of L;
The family {∆Y•(L)} determines the numerical class of L.

In principle, we have reduced problems in complex geometry to convex
geometry.

Example

The volume of L: vol L = n! vol ∆Y•(L) (Lazarsfeld–Mustat, ă).
The asymptotic base locus of L can be read from {∆Y•(L)}
(Choi–Hyun–Park–Won).
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Okounkov bodies

Question

What about transcendental (1, 1)-classes?

The construction of ∆Y•(L) depends on the holomorphic sections of L and
hence is algebraic in nature. It fails in the transcendental world.

Mingchen Xia (IMJ-PRG) Transcendental Okounkov bodies 5/10, IMT 11 / 29



Okounkov bodies

Question

What about transcendental (1, 1)-classes?

The construction of ∆Y•(L) depends on the holomorphic sections of L and
hence is algebraic in nature. It fails in the transcendental world.

Mingchen Xia (IMJ-PRG) Transcendental Okounkov bodies 5/10, IMT 11 / 29



Table of Contents

1 Background

2 Transcendental Okounkov bodies

3 The trace operator

Mingchen Xia (IMJ-PRG) Transcendental Okounkov bodies 5/10, IMT 12 / 29



Transcendental setting

The starting point is the following observation:

Observation

The valuation ν(s) ∈ Zn of a holomorphic section s of L can be recovered
using the closed positive current T = [s = 0] (with suitable multiplicity).

For example, ν1(s) is the generic Lelong number of T along Y1....

∆Y•(L) = Cl {ν(T ) : T = k−1[s = 0] for some s ∈ H0(X , Lk)}.
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Transcendental setting

More generally, given a closed positive current T ∈ c1(L) with analytic
singularities, we can define ν(T ) ∈ Rn as well.

Theorem (Deng)

∆Y•(L) is the closure of

all ν(T ), where T has the form k−1[s = 0] for some s ∈ H0(X , Lk);

all ν(T ), where T is a closed positive current with analytic
singularities in c1(L).
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Transcendental Okounkov bodies

Deng’s construction works in the transcendental setting as well. Fix

a connected compact Kähler manifold X ;

a big (1, 1)-cohomology class α.

A smooth flag Y• on X .

Transcendental Okounkov bodies

The Okounkov body ∆Y•(α) is the closure of all ν(T ), where T is a
closed positive current with analytic singularities in α.

This construction was known for a long time. It was first written in the
thesis of Deng, as suggested by Demailly.
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Transcendental Okounkov bodies

Very few are known about transcendental Okounkov bodies. Our theorem
is probably the first non-trivial result in this direction.

Theorem ([1])

The Okounkov body ∆Y•(α) has the expected volume:

vol ∆Y•(α) =
1

n!
volα.

This answers the conjecture of Demailly, Deng and answers the question of
Lazarsfeld–Mustat, ă.
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The proof

The proof is based on an induction on n. From the trivial base case of
n = 0. Assume that the case n − 1 has been solved.

The idea is the compute the volume via

vol ∆(α) =

∫
t

vol(∆(α) ∩ {x1 = t}) dt.
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The proof

We have

vol ∆(α) =

∫
t

vol(∆(α) ∩ {x1 = t}) dt.

Here we need a theorem of Witt Nyström (and Vu):

volα = n

∫
t

volX |Y1
(α− t{Y1}) dt.

This is a special case of the conjectured transcendental Morse inequality.

Comparing them, we want

volX |Y1
(α− t{Y1})= (n − 1)!vol(∆(α) ∩ {x1 = t}).
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The proof

Difficulty

It is not possible to apply the inductive hypothesis directly, as
∆(α) ∩ {x1 = t} is not an Okounkov body in general.

But, we claim that it is a partial Okounkov body ∆(Tmin,α−t{Y1}|Y1): an
Okounkov body with respect to a singular psh metric.

Theorem (X. 2021)

The volume of partial Okounkov bodies can be computed using the
knowledge of Okounkov bodies.

One easily verifies that this gives the expeced identity.
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The proof

The claim is technically the core of our proof. Its proof relies on two
techniques:

The extension theorem of Kähler currents with analytic singularities:
it relates the slices of n-dimensional Okounkov bodies with
(n − 1)-dimensional partial Okounkov bodies;

Bimeromorphic invariance of the Okounkov body: it allows us to
avoid the complicated issues caused by the possibility that the flag
lies in the null locus.

The proof is straightforward once these problems are solved.
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The proof

In our paper, we developed both techniques and completed the proof.

Extension problem: we proved an extension theorem of Kähler
currents, extending the result of Collins–Tosatti;

The bimeromorphic invariance: This leads to the trace operator
construction.
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Bimeromorphic invariance of the Okounkov body

Problem

How to prove the bimeromorphic invariance of Okounkov bodies?

Why is this difficult?
Recall that ∆Y•(α) is the closure of all ν(T ), where T is a closed positive
current with analytic singularities in α. But

Issue

The notion of analytic singularities is not bimeromorphically invariant!
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Bimeromorphic invariance of the Okounkov body

There are two different solutions:

Observation by Boucksom

The notion of analytic singularities is almost bimeromorphically invariant.

This is the proof we presented in our paper.

A more elegant approach

Prove that ∆Y•(α) is the closure of all ν(T ), where T is a closed positive
current in α with arbitrary singularities.

This is my original approach, which will be presented in [2].
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The valuation of a current

Recall how ν(T ) is defined when T has analytic singularities:

1 ν1(T ) is the generic Lelong number of T along Y1. This works for
general singularities as well;

2 up to replacing T by T − ν1(T )[Y1], we may assume that
ν(T ,Y1) = 0. In this case, the restriction T |Y1 is well-defined;

3 Induction.

The second step fails for general singularities! Consider the case of log-log
singularities!.
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The trace operator

Theorem ([2])

There is a well-defined trace operator: sending a closed positive
(1, 1)-current T on X with vanishing generic Lelong number on Y1 to a
closed positive current TrT on Y1.

The current TrT is well-defined only up to dS -equivalence. When T has
analytic singularities, TrT is represented by the naive restriction T |Y1 .
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Trace operator and Okounkov bodies

Using the trace operator instead of the naive restriction, we can therefore
define the valuation ν(T ) in general.

Theorem ([2])

∆Y•(α) is the closure of all ν(T ), where T is a closed positive current in
α with arbitrary singularities.

This result is highly non-trivial as T 7→ ν(T ) is not continuous with
respect to the natural topology.

Corollary

The transcendental Okounkov bodies are bimeromorphically invariant.
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An extra surprise

Finally, the trace operator has the following important property:

Theorem ([2])

We have
I(TrT ) ⊆ I(T )|Y1 .

When T |Y1 is defined, this theorem reduces to the classical
Ohsawa–Takegoshi extension theorem.
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Merci!
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