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1. INTRODUCTION

These are the lecture notes for three lectures give Xlgb Chyj Qﬁse Academy of Science in the
summer of 2023. The goal is to explain the proofs of )X22; D in detail.

2. PRELIMINARIES

Fix a compact Kéhler manifold X of pure dimension n.

2.1. The space of finite energy potentials. We fix a big (1,1)-class « € HY}(X,R) on X
and a closed smooth real (1,1)-form 6 € a.

Let

Vo = sup{p € PSH(X,0) : ¢ <0}.

Observe that Vp € PSH(X,#). In fact, the usc regularization Vj of Vj belongs to PSH(X, 6) by
Hartogs lemma, so V* < Vp and hence the equality holds. So Vy € PS

We will be constantly using the non-pluripolar products. We refer to |
We write

| for the details.

PSH(X, 0)~0 — {cp € PSH(X, ) : / o > o} .
X

The non-pluripolar theory is not the only extension of the Bedford—Taylor theory to unbounded
gpsh functions, but two features indicate that it is probably the most natural theory: first of
all, the non-pluripolar product is defined for all functions in PSH(X,#); secondly, there is a
monotonicity theorem:

WN19
Theorem 2.1 (ﬁ””’

tion 2.6), then

 DORERS )). Suppose that ¢, € PSH(X,0) and ¢ = o (see Defini-

9n</9n.
/X"D_Xw

More generally, if o1,...,q, are pseudoeffective classes represented by 61,...,0,, @;,0; €
PSH(X,0;) (j=1,...,n) and ¢; 2 ; for j=1,...,n, then

/){ 017501 ARERRA envﬁﬂn S /){ 01)172)1 AR anﬂﬁn'

In particular, the non-pluripolar mass of any ¢ € PSH(X, 0) is always bounded from above
by V= [ 07,. The number V' > 0 is known as the volume of the class .
The space of finite energy potentials is defined as

EN(X,0) = {(,DEPSH(X,Q)ZL(G(Z:V,/)(|%—¢|HZ<M}.
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We will need the Monge-Ampere energy functional E : £1(X,6) — R defined as follows:

1 & A :
E(p) = — VN
(p) = 1 jEZO/X(w Vo) 67, A By,

he difference ¢ — Vj is only defined outside the pluripolar set {Vp = —oo}. The non-pluripolar
product 0& A 0&? does not put mass on pluripolar sets, so the integral is still defined.

It is useful to know that E(¢p) is increasing in ¢ and E(Vp) = 0.
We recall the definition of the metric di on £1(X, ). Take ¢,v € £E1(X,0). When ¢ < 9, the
metric is simply defined as
X1a19b Fqu

(2.1) di(p, ) = E(P) — E().

By a simple argument using approximations and the integration by parts formula ﬁ ;

one can show that
1 " , -
e — J n—Jj
n+12/x(¢ ) 0, A0

More generally, we ne 1\&015}%5(?[1 Sy , the maximal element in PSH(X, 6) lying below both ¢

)

E(y) — E(p)

and 9. It is shown in [DIDNT] t o A € EY(X,0). We define
di(p,¥) = di(p N1h,p) + di(p Ap, ) = E(p) + E(Y) — 2E(p A1),

F)DNL18bi£
This is indeed a metric, as studied in

Next we recall the notion of geodesics in £!(X, 6). Let us fix ¢g, 01 € E1(X,0). A subgeodesic
from g to @1 is a curve (p1)ieo,1) in £'(X, 0) such that

(1) if we define
P: X x{zeC:et<z] <1} = [-00,00), (z,2) P log |2/ (T),

then ® is pif-psh, where p; : X x {z € C:e"! < |z| < 1} — X is the natural projection;
(2) When t — 0+ (resp. to 1—), ¢ converges to @ (resp. 1) with respect to L.
The maximal subgeodesic from ¢q to 1 is called the geodeszcgg 1%0 to 1. The geodesic
always exists and ¢; € EY(X, 0) for all t € [0, 1]. We refer to [DDNI] ‘]ﬁﬁ" the details.

By abuse of language, we say that (¢¢).e(0,1] (With a closed interval instead of an open interval)
is the geodesic from g to 1. More generally, given tg < t1 in R, we say a curve (¢t)efry,¢,] in
EY(X, 0) is a geodesic from ¢y, to y, if after a linear rescaling from [tg, 1] to [0, 1], it becomes
a geodesic. One can show that F j ﬂr}g%r %long a geodesic. In fact, by a simple perturbation
argument, one can reduce this to [DDNL] '¢, Theorem 3.12].

2.2. The space of geodesic rays. The notion of geodesics naturally gives us a notion of
geodesic rays:

Definition 2.2. A geodesic ray is a curve £ = (£y)1e[0,00) in E'(X, 0) such that for any 0 < t; < ¢,
the restriction (£1)yct, 1,) is @ geodesic from £y, to £,.
The space of geodesic rays £ with o = Vj is denoted by R'(X, 6).

The assumption £y = Vj is not very restrictive. In fact, given any other ¢ € £Y(X, ), we can
always find a unique geodesic ray ¢’ with ¢, = ¢ such that dy (¢, ¢;) is bounded. So if we are
only 1nterest 6n the asymptotic behaviour of a geodesic ray, we do not lose any information.
We refer to ﬁ | for the details. DL20

Next we recall the metric d; on RY(X,0). Given £, ¢ € R'(X,0), one can show as in [F*
that dy (¢, ¢}) is a convex function in ¢ € [0,00). It follows that

1
d(6,0) = Jim (4, 0)

exists. It is not har%{gosh%ﬂhat 4y 1s indeed a metric on RY(X,0). In fact, it is a complete
metric. We refer to | ; | | for the details.
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Similarly, one can introduce E : RY(X,6) — R as
1
E(¢) = lim —E(4).

t—oo ¢

As we recalled above, the function E(¢;) is linear in ¢, so the limit E(¢) is nothing but the slope
of this linear function. When £, ¢ € RY(X, ), ¢ < ¢, using (2.1), we have

(2.2) di(¢,0) =E{) —E().

Example 2.3. Given ¢ € PSH(X,0), we construct a geodesic ray (¢ € R'(X,0). For each
C >0, let (Kf’c)te[o,o] be the geodesic from Vi to (Vo — C)V . For each t >0, it is not hard to
see that ff’c is increasing in C € [t,00). We let

07 == sup* ¢9°¢.
C>t

One can show that £¥ € RY(X,0). A simple computation shows that

oy 1 - / J n—j _
(2.3) E(ﬁ)_nH(]Z:% XHSO/\QVQ V).
)DNLmetric
See , Theorem 3.1].
We need the following result concerning these geodesic rays: give ﬁhzgtlgi?SH(X, 0), then
09 = 0¥ if and only if o ~p 1 (see Definition 2.6). This follows from [[JITNT 71 ', Proposition 3.2]

and Remark 2.10.

Next we recall that V operator at the level of geodesic rays. Given £, € R'(X,#0). We define
¢V ¢ as the minimal ray R'(X,0) lying above both £ and #'. In fact, it is easy to construct
such a ray: for each t > 0, let (¢€}*),co,4 be the geodesic from Vy to £; V £;. It is easy to see that

S
for each fixed s > 0, £]" is increasing in t € [s,00). Let (¢ V {')s = sup*>, £2". Then we get a
geodesic ray £V £'. It is clear that this ray is minimal among all rays dominating ¢ and ¢'. By
construction, we have

T my s S /
E(v/e), = tli)rgloE(ﬁs )= tliglo tE(Et vV 4).
In particular,
1
(2.4) E(Vv/) = Jim ZE(& vV E).
Lemma 2.4. For any {,{' € R'(X,0), we have
(2.5) di(6,0) <dy (6, e ) +dy (0 0V ) < Cpdi (4,0,
where Cy, = 3(n + 1)27+2.
Proof. The first inequality is trivial. As for the second, we estimate
di(,4Vv ) =E(( V) —E({)
.1 /
_tliglo ;E(Et v 4) —E()
.1 /
= tg%lo ;dl (ft V ét, ét)
where on the second line, we used (2.4), the third line follows from (2.2). In all, we find

1
(6 OV ) i (¢ 0V ) < lim = (di(V 0, 0) + di (6 V 6, 04)

DDNL18bi
By ﬁ ’’’’’’ wis , Theorem 3.7],

dy (6N Uy, ) + dy (e V05, 0) < 3(n 4 1)27T2dy (0, 4}).
Now (2.5) follows. O
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2.3. The space of quasi-plurisubharmonic functions. We write QPSH(X) for the direct
limit in the category of sets

QPSH(X) = lig PSH(X, ),
0

where 6 runs over the set of all smooth real closed (1,1)-forms on X with § < 6" if ' — 0 is a
Kahler form. The transition maps are given by inclusions. In other words, QPSH(X) is the set
of quasi-plurisubharmonic functions on X.

Remark 2.5. T am always curious about the possibility of enriching the set QPSH(X), but I have
never been able to figure out the correct generality/category to work with. One should view the
direct limit as in other categories instead of barely the category of sets.

A few failed options: pseudo-metric spaces, uniform spaces, topological spaces, condensed
spaces. None of these options gives rise to the correct notion of convergence on QPSH(X) as
we define later, which is closer to the strict direct limit as studied in functional analysis by
Dieudonné-Schwarz.

Take a big class o on X with a representative 8, we will need the following envelope operators:

(1) Let ¢ € PSH(X, 0)>0, we set
Py[p] =sup{yp € PSH(X,0) : ¢ < 0,9 < ¢+ C for some C € R}
:sup{w € PSH(X,0) : ¢ < (),/ HZ :/ Oy o < b+ C for some C' € R};
X X
Observe that in the two conditions, the relation between ¢ and 1 are reversed.
(2) Let ¢ € PSH(X,6), we set
Pylolz = sup{y € PSH(X,0) : ¢ < 0,Z(kyp) = Z(ky) for all k € Z~o} .

PDNL1tullnass . px2t  pX22
We refer to | or a detailed study of the former envelope and to | ; | for the

latter.

he first envelop is pathological when [ 0 = 0. There are multiple different ways to extend
its definition. None of these seem to be natural to the author, so we will avoid them.

A potential ¢ € PSH(X,60)~¢ (resp. ¢ € PSH(X,#)) is model (resp. Z-model) if Pylp] = ¢
(resp. Pylelz = o).

%o‘ch notions depends strongly on the choice of 6, w liggzmakes them not so natural. By
ontrast, the notion of Z-good potentials introduced in [X1272] depends only on ¢ € QPSH(X).

Definition 2.6. Let ¢, 9 € QPSH(X), we say
(1) ¢ is more singular than 1 and write ¢ < 9 if there is C' € R such that
<P+

(2) ¢ is P-more singular than 1 and write ¢ <p 1) if for some Kéahler form w such that
v, € PSH(X,w)>0, we have

Pw[tp} < Pw[wk

(3) ¢ is Z-more singular than ¢ and write ¢ =<7 9 if for some Kéhler form w such that
¢, € PSH(X,w), we have

P,lelr < P[]z

All three relations define partial orders on QPSH(X). We denote the corresponding equivalence
relation by ~, ~p and ~7 respectively.

n (1), one cannot replace ¢ < 1)+ C by ¢ — ¢ < C without extra care. The problem is that
— 1 is only defined outside the pluripolar set {¢p =1 = —o0}.



CHARACTERIZATIONS OF Z-GOOD SINGULARITIES 5

We observe that Condition (2) does not depend on the choice of w by Lemma 2.7. On the
other hand, Condition (3) is equivalent to Z(ky) C Z(kt)) for all k > 0 (either real or integral).
So Condition (3) is also independent of the choice of w.

Lemma 2.7. Let p,9 € PSH(X,0)>g. For any Kahler form w on X, the following are equiva-
lent:

(1) Pylg] < Byly];
(2) Poyolel < Poyolt].

Proof. (1) implies (2): Observe that

Pylo] < Porulel, ¢ 2 Pole].
It follows that
(2.6) Pyiwlel = PoyolPolel)-

A similar formula holds for 1. So we see that (2) holds.
(2) implies (1): By (2.6), we may assume that ¢ and v are both model potentials in PSH(X, ).
Observe that ¢ V¢ < Pyy,[¢]. It follows that Pyi,[¢ V ¢] < Pypyy[t]. The reverse inequality
is trivial, so

PB—I—w[SO \ 1/]] = P9+w[¢]-
From the direction we have proved, for any C' > 1,

Porcule VY] = Poycult]-
So
/ (6 + Cw + ddS(p v 1)) = / (6 + Cw + ddy)"
X X

J 0= | 0.

As 1) is model, it follows that ¢ V¢ = 1. So (1) follows. O
Lemma 2.8. Let ¢, € PSH(X,0)~0. Then for any t € [0,1],
to + (1 =)y ~p tPalp] + (1 — t) Pp[3)].

Proof. By symmetry, it suffices to show that to+(1—1t)) ~p tPy[p]+(1—1t)1p. Astp+(1—t)y <
tPylp] + (1 — t)y and both sides have positive masses, it suffices to show that

/ 9t<p+(1 tw_/ etpg J+(1—t)2+

By binary expansion, it suffices to show that for any j =0,... n,

n ] n J
PDNLl8@pno

[8b Corollary 3.2]. O

In particular,

which follows from |

Corollary 2.9. Let p,v, ¢, ' € QPSH(X). Assume that ¢ ~p @' and 1 ~p ', then for any
a,b>0, ap+bp ~payp + ).

Proof. We may assume that a +b = 1 by rescaling. Take a Kéhler form w on X so that
0,0, ¢, € PSH(X,w)so. Then it suffices to apply Lemma 2.8. O

DDNLmetri
Remark 2.10. In ﬁ f Darvas—Di Nezza—Lu introduced a different envelope operator C'
which is better behaved when the mass of a qpsh function is 0. We will show that for our
purpose, it is not necessary to introduce it.
To be more precise, let ¢, 9 € PSH(X,#). We will show that the following are equivalent:

(1) ¢ ~p;
(2) Colp] = Co[].
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Assume (1). Then by Corollary 2.9, to + (1 — t)Vy ~p top + (1 — t)Vp for all t € [0,1). In
particular,
Pyt + (1 —t)Vo| = Pty + (1 — t)Vp).
Let t — 1—, we conclude (2).
Conversely assume (2). Let w be a Kéhler form on X. It suffices to show that

Po+w[Colel] = Potwlel

In fact, the > inequality is clear. As both sides are model potentials, it suffices to show that
they have the same mass:

/(9+w+ddCCg[go])":/ (0 + w + dd° )"
X

X
After binary expansion, it suffices to show that for each 7 =0,...,n,
J n—j _ J n—j
2.7) /XGCGMAW _/X%Aw .

As Cylyp] is the decreasing limit of Py[tVy + (1 — t)p] as t decreases to 0, we have

J i<l i n—j _ j n—j _ [ gi nn
/X 909[«/:] N < t1—1>%1+ ¥ ePe[tV9+(1—t)so] Aw - t1_1>%1+ X etV9+(1—t)¢ Aw = /X 0%, Nw" .

The reverse inequality follows from the monotonicity theorem Theorem 2.1. So (2.7) follows.
We conclude the proof.

Lemma 2.11. Let p,v € PSH(X, ). Then the following are equivalent:

(1) ¢ <p 1) (resp. ¢ =7 9);
(2) oV ~pip (resp. oV~ ).

Proof. We may assume that [ 05 > 0, Ix 0172 > 0. We only prove the P case, the Z case is
similar.
(2) implies (1): We may assume that ¢, are both model in PSH(X, 0). By (2), Pyle V] = 1.
But ¢ < Py[e V9], so (1) follows.
(1) implies (2): We may still assume that ¢, are both model in PSH(X, 6) as
Pyle Vo] = Py[Pyle] v Polv]].
Then ¢ < 1 and (2) follows. O

3. THE dg-PSEUDOMETRIC
Let X be a compact Kéhler manifold of pure dimension n.
3.1. The construction. Let « be a big (1,1)-class on X represented by a smooth form 6.
Definition 3.1. For ¢, ¢ € PSH(X,#), we define
ds(ip, 1) = dy(£7,£%).

When necessary, we also write dgg instead. It turns out that this is never necessary once we
finish the proof of Corollary 3.17.
By definition, dg is a pseudo-metric on PSH(X, ). By Example 2.3, we have

Proposition 3.2. For ¢, € PSH(X,0), the following are equivalent:

(1) Y ~p dﬁ
(2) ds(, ) = 0.
The pseudo-metric dg itself does not seem to be a natural choice, however, the convergence

notion it defines is certainly natural, as we will see repeatedly in this note.
We derive a few elementary properties from the definition.

DDNLmetric
Lemma 3.3 (ﬁ ’’’’’’’’ ", Lemma 3.4]). Suppose that ¢, € PSH(X,0) and ¢ <p 1), then
1 n . i ) e
dsto) = =5 3 ([ ounei? - [ oinoy?).
§=0
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Proof. This follows trivially from (2.3). O
Lemma 3.4. For any p,v € PSH(X,0), we have

(3.1) dsw,wgz@ [ e~ [ enen— [ e{;w@f') < Cuds(,0),

j=0
where Cy, = 3(n + 1)2"+2.
Proof. 1t suffices to show that
(3.2) P10 = peVY,
Assuming this, then (3.1) follows from Lemma 3.3 and Lemma 2.4.
Next we prove (3.2). Of course by definition, it is trivial that
% < ngw, Vi < VY
So
AATAR A
Conversely, if £ € R'(X,0) and £ v ¥ < ¢, then for any C > 0,
(Ve—C)yve<t, (Vp—-C)vy <L
It follows that
(Vo —C) V(e V) <Lc.

From this, we conclude that
VY <o,

O

From this lemma, we find that the dg-convergence is characterized by numerical conditions of
non-pluripolar masses. The criterion here is still way too complicated for applications, we will
see a better criterion in Corollary 3.16. For now, let us record the following corollary.

Corollary 3.5. Let ¢;,¢ € PSH(X,0) (j > 1). Assume that one of the following conditions
holds:

(1) j = ¢ for all j;

(2) ¢; 2 ¢ forall j.
Then the following are equivalent:

d
(1) ;= ¢; ) )
(2) fXGZZj N0y — fXHZZ/\GQ; for allk=0,...,n.

Lemma 3.6. Let p,1,n € PSH(X,0), then
(33) ds(e Vn, ¥ Vn) < Crds(p, ),
where Cy, = 3(n + 1)2"+2.

Proof. According to Lemma 3.4, we may assume that ¢ < 1.
We will show that for each C' >t > 0,
(3.4) d (6777 0C) < di (60, 06).

PDNL!?E%E .. .
When C — oo, by | , Proposition 2.7], it follows that

(e ) < (€, 67),
which implies (3.3).
It remains to argue (3.4). As ¢ <1, we know that

t t
A(lf, 6) = GA(CE, ), dn(ef™ 6"") = (687", €5,

It suffices to handle the case t = C, namely,
di(eVnV (Vo—C)pvnV (Vg —C)) <di(eV (Vo —C), 0V (Vg —C)).
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[FSZL al9

This is just , Proposition 6.8]. O

3.2. Convergence theorems.
Lemma 3.7. Let (p*); be a sequence in PSH(X, ) and ¢ € PSH(X,0). Assume that ©* s, ©
as k — oo. Then for any t € (0,1],
(1= )" + 1V 25 (1 — t)p + 1V

as k — oo.
Proof. Fix t € (0,1], we write

pf = (L=t)" + Vo, o= (1~ t>s0+tVe-
By Lemma 3.4, it suffices to show that for each j =0,.

J n—j J n—j n—j
(3.5) 2 [ B, MO / Y / 65, NG 0.
Observe that
Pi Vo= (1-t)(pV ") + 1V
So after binary expansion, (3.5) follows from Lemma 3.4. O
We need the existence of an extraordinary envelope, which looks like a miracle to the author.

This envelope plays a key role in reducing problems with general positive currents to problems
with Kahler currents.

DDNLmetric
Lemma 3.8 (ﬁ
any

, Lemma 4.3]). Let ¢,9 € PSH(X,0), ¢ < and [y 0} > 0. Then for

. fX% )1/71
© (1’<fx%—f)(9$ )’

there is n € PSH(X, 0) such that
a”tn+(1—a )y <.
The fraction is understood as oo if [ 07 = [ 07
We write P(ap + (1 — a)y) € PSH(X,0) for the regularized supremum of all such 7’s.

In fact, observe that ¥ > ¢ — C, so 7 is uniformly bounded from above. It follows that
P(ay + (1 —a)y) € PSH(X, 6). On the other hand, by Hartogs lemma,

a 'Plap+(L—a)p)+(1—a <y
holds outside a pluripolar set, hence everywhere.

As a corollary is of crucial importance:

Proposition 3.9. Let ¢ € PSH(X,0) such that [y 05 > 0. Then there exists ¢ € PSH(X,0)
such that ¢ > and 0y > w for some Kdhler form w.

Proof. We may assume that ¢ < 0. Since p < Vp and [ 07, > [x 63 > 0, by Lemma 3.8, there
exists b > 0 such that h := P((1+4b)p — bVp) € PSH(X,0) and

b 1
v, h<u.
br1 0Ty s

Bo02
By [FL ], there exists w € PSH(X,#) such that w < 0 and 6,, > déw for some § > 0. Since
w < Vp, we obtain that
b 1
=— ——h <
L L 4
and 6, > bﬂw O

Lemma 3.10. Let ¢, € PSH(X,0) (j > 1). Assume that p; is an increasing sequence
converging almost everywhere to ¢. Then ds(v;, ) — 0 as j — oco.

Proof. This follows from Lemma 3.4 and the lower semi-continuity of non-pluripolar products. [
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DDNLmetric
Lemma 3.11 (ﬁ 77777777 ", Proposition 4.8]). Let ¢;,¢ € PSH(X,0) (j > 1). Assume that

Ix ng is bounded from below by a positive constant, ¢; is model for each j and ¢; decreases

pointwisely to ¢, then @, ds, ®.

Proof. Let bj € R be a sequence converging to oo such that

e (o V"),
fX 0503‘ - fX 950

n o
The existence %i; éc]glg sequence of non-trivial. It requires the fact that [y 0} — [y 67. This is

proved in [DT ', Proposition 4.6]. As the technique is quite unrelated to the techniques in
this note, we do not reproduce the argument.
By Lemma 3.8, we can find n; € PSH(X, #) such that
by nj + (1 - bj_l)%‘ <.
It follows from Theorem 2.1 that for any £ =0, .

/e’men E>(1- b /0 Aok,
2

Together with Theorem 2.1, we conclude that

. k n—k __ k n—=k
lim /XH%,/\HVQ —/Xt%/\ﬁv‘9 .

J—00
Hence ¢, LR ¢ by Lemma 3.3. U

The following proposition allows us to reduce a number of problems to monotone sequences.

Proposition 3.12. Let ;,¢ € PSH(X,0) (j > 1), ¢; s, . Assume that there is § > 0 such

that
/9"_25, /9”25

for all j and Pylp;] = ¢j, Pole] = ¢ for all j. Then up to replacing (v;); by a subsequence,
there is a decreasing sequence ¢; € PSH(X,0) and an increasing sequence n; € PSH(X, 0) such
that

(1)
dS(Qoawj)_)O7 dS(@?”])%O
as j — oo;

(2) 5 = @j 2 nj for all j.

In fact, we will take
nj=¢iN@jr1 A=
and
¥; = sup* .
k>j

Proof. We are free to replace (¢;); by a subsequence. So we may assume that

ds(pj, 1) < CR %
where (), is the constant in Lemma 3.4.
Step 1. We handle v;’s. For each j > 1 and k > 1, by Lemma 3.4 we have
ds(@j eV @jr1 V-V jpk) SCnds(@j, pje1 V-V @jtk)
<Cnds(pj; 0j+1) + Cnds(pji1, 0j41 V-V @jtk).
By iteration, we find

j+k—1 j+k—1

ds(pj, 0V @i VoV o) < Y Cot T dg(@a, parr) < Y, CAHIIC2
a=j a=j
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From this we see that

lim lim ds((pj, i Vi1V V (Pj+k‘) =0.

Jj—0o0 k—o0

By Lemma 3.10, we conclude that dg(p, ;) — 0.

Step 2. We consider the 7;’s. This case @ﬁgggrtlrcicky and the proof requires some different
techniques, we omit the proof and refer to [DDNLZ] [, Theorem 5.6] for the details. O

In fact the construction in Step 1 works more generally for any Cauchy sequence. This gives
the following

Corollary 3.13. Let ¢; € PSH(X, ) be a ds-Cauchy sequence. Then up to replacing ¢; by a
subsequence, there is a decreasing Cauchy sequence 1; € PSH(X, 8) such that ds(¢j,1%;) = 0

and p; = ;.

Corollary 3.14. For any 6 > 0, the space

{¢ef€H¢&9):/’q;za}
X
is complete with respect to dg.

Proof. Take a Cauchy sequence ¢; € PSH(X,0) (j > 1) with [y 07 > é. It suffices to show
that each subsequence of ¢; admits a convergent subsequence. In turn, we are free to replace ¢;
by a subsequence. By Corollary 3.13, we may therefore assume that we can find an equivalent
decreasing Cauchy sequence (1;); with ¢; < ;. It suffices to show that 1; converges. But this
follows from Lemma 3.11. O

Theorem 3.15. Let aq,...,a, be big (1,1)-classes on X represented by 01, ...,0,. Suppose
that (goé“)k are sequences in PSH(X,0;) for j =1,...,n and ¢1,...,p, € PSH(X,0). We assume

that (p? s, @pj as k — 0o for each j =1,...,n. Then
(3.6) kh—>n<}o/x Ot A A by = /X B Ao A B

Proof. Step 1. We reduce to the case where go;?, ¢; all have positive masses and there is a
constant ¢ > 0, such that for all j and k,

n
y em > 0.
Take ¢ € (0,1). By Lemma 3.7, we have

d
(1—t)h +tVy, =2 (1 —t)ip; + tVp,
as k — o0o. Assume that we have proved the special case of the theorem, we have

klggo/x 01—ty vy, N N On 1ty +tv, = /X 01—ty +tve, N N O (1-t) 175, -

From this, (3.6) follows easily.
Step 2. Now we may assume that gof and ; are all of positive mass and are model potentials.
It suffices to prove that any subsequence of [ 91#);1C A+ AB, ok has a converging subsequence
with limit [y 61,4, A+ ABn,. Thus, by Proposition 3.12, we may assume that for each fixed 1,
gof is either increasing or decreasing. We may assume that for ¢ < iy, the sequence is decreasing

and for ¢ > ig, the sequence is increasing.
Recall that in (3.6) the > inequality always holds by Theorem 2.1, it suffices to prove

(3.7) H/XOL%A---AGWQ §/X017<p1/\---/\9n7@n.

k—o0

By Theorem 2.1 in order to prove (3.7), we may assume that for j > ig, the sequences goé? are
constant. Thus, we are reduced to the case where for all 7, gpf are decreasing.
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In this case, for each i we may take an increasing sequence bf > 1, tending to oo, such that
k\n n
b / 0 7<PL - ) 9@ np
Let Q,Z)l’-‘: be the maximal #;-psh function such that
) "k + (1= ) ) oF < gr,

whose existence is guaranteed by Lemma 3.8.
Then by Theorem 2.1 again,

I1(1 - /G,wA NG, ,€</0w1 SN
=1

Let k — oo, we conclude (3.7).

O
Corollary 3.16. Suppose that v, p; € PSH(X,0) (i > 1). Then the following are equivalent:
d
(1) ©i == @;
(2) <pi\/g0d—s>g0 and
, B B A R
(3.8) lm [0 n637 = [ oL noy;

for each 5 =0,...,n

The corollary allows us to reduce a number of convergence problems related to dg to the
case ; > @, which is much easier to handle by Lemma 3.3. This is the most handy way of
establishing dg-convergence in practice.

Proof. (1) implies (2): ¢; V ¢ s, ¢ follows from Lemma 3.4. While (3.8) follows from Theo-
rem 3.15.
(2) implies (1): By (3.1), we need to show that for each j = 0,...,n, we have

i n—j N A g
o A e AN R e
This follows from Theorem 3.15 and (3.8). O

Corollary 3.17. Let o, € PSH(X,0) (k > 1) and w be a Kdihler form on X. Then the
following are equivalent:

d
(1) ok ﬂMO;
N

From now on, we mostly write dg instead of dgg. This corollary shows that the dg-convergence
is the correct notion even at 0 mass.

Proof. (1) implies (2): It suffices to show that for each j =0,...,n, we have

2/ 0+ A (0 +w) 7 /X(e+w)j AO+w)T /X(HW%A(@W)%_L%O

as k — oco. Note that this quantity is a linear combination of terms of the following form:

2/ erkw/\wﬂ 7"/\(«9+wvg+ /0 Awl™ 7”/\(9+wV9+ /Gr/\w] 7"/\(9+w)ve+
where r = 0,...,j. By Theorem 3.15, it suffices to show that ¢ V ¢ s, . But this follows
from Corollary 3.16

(2) implies (1): From the direction we already proved, for each C' > 1, we have that

ds.o+cw
Rl

Pk
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By Theorem 3.15, it follows that

Jim [0+ Co N0 = [ 0+ Cn o

for all j =0,...,n. It follows that

(3.9) lim [ 03, noy 7 = [ oL n0y7

k—o00

d
By Corollary 3.16, it remains to show that g V ¢ -2, . By Corollary 3.16 again, we know
S,04+w

d
that ¢ V¢ ——— ¢. So it suffices to apply (3.9) to ¢ V ¢ instead of ¢y and we conclude by
Lemma 3.3. O

Theorem 3.18. The map PSH(X,0)-0 — PSH(X,0)~¢ given by ¢ — Py is continuous with
respect to dg.

Here PSH(X, 6)~0 denotes the subset of PSH(X, ) consisting of ¢ with [y 67 > 0.

Proof. Let v;, ¢ € PSH(X,0)>0, ¢i s, . We want to show that

(3.10) Plpilz % Plylz.

We may assume that the ¢;’s and ¢ are all model potentials. By Propo?ﬁ'ﬁn 3.12, we may
assume that (¢;); is either increasing or decreasing. Both cases follow from [DX22) Lemma 2.21]
and Lemma 3.11. ]

Lemma 3.19. Let ¢, ¢;,v;,n; € PSH(X,0) (j > 1). Assume that
(1) bj < w5 <mnj;
(2) n; 0, 0 % 0.

Then @; s, ©.

Proof. Observe that for each kK =0,...,n, we have

k n—k k n—k k n—k
/Xed)j /\GVH = /XH% /\0‘/9 < /Xeﬂj /\HVG

for all j > 1. By Theorem 3.15, the limit of the both ends are [y 93; A G&:k as j — oo. It follows
that

. k —k _ k —k
(3.11) dim [ 05 ney = [ ok ney .
By Corollary 3.16, it remains to prove that ¢; V ¢ d—S> . By Corollary 3.16, up to replacing
j (resp. @j, n;) by ¥; V¢ (resp. ¢; V ¢, 1; V @), we may assume from the beginning that

Y, 05,m > . Now ¢; ds, ¢ by (3.11) and Lemma 3.3. O

At this point, we can recall another fundamental property about dg: the non-Archimedean
data are continuous with respect dg.

Theorem 3.20. Let ¢j,p € PSH(X,0) (j > 1). Assume that ¢; s, ©, then for any prime
divisor & over X, we have
(3.12) lim v(p;, E) = v(p, E).

J—00
Proof. By Corollary 3.17, we may assume that the masses of ¢; and of ¢ are bounded from
below by a positive constant.

By Theorem 3.18, we may assume that ¢; and ¢ are both Z-model. When proving (3.12), we
are free to pass to subsequences. By Proposition 3.12, up to passing to a subsequence, we may
assume that ¢; — ¢ almost everywhere.

By Hartogs lemma, there is a null set Z C X such that on X \ Z, we have

X .
sup™ p; = sup ¢;
j2i j2i
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for all 7 > 1. It follows that

_ * .
¢ = inf sup* p;
ieN j>i

on X \ Z hence everywhere on X. In fact, we can also assume that
d
i = sup* i = ¢
j2i

as ¢ — oo by Proposition 3.12.
It then follows that Py[v;] — ¢ everywhere. By Lemma 3.21, we then have

lim v(¢;, E) = v(p, E).
1— 00
DX22
By ﬁ , Lemma 3.4], we have

v(p, E) = lim v(p;, E).
i—00
Together with the upper semi-continuity of Lelong numbers, we find
v(p, E) = lim v(p;, E).
1—00
O

Lemma 3.21. Let p; € PSH(X,0) (j > 1) be a decreasing sequence of model potentials. Let ¢
be the limit of pj. Assume that ¢ has positive mass. Then for any prime divisor E over X,

lim v(p;, E) = v(p, E).
Jj—o00

Proof. Since ¢ = lim; ¢; and the ¢;’s are model, we obtain that [y 05 = lim; % 93]_ > 0 by
Lemma 3.11. By Lemma 3.8, for any € € (0, 1), for j big enough there exists ¢; € PSH(X,0)
such that (1 — €)p; + ep; < ¢. This implies that for j big enough we have

(1 - G)V((pj?E) + GV(%,E) > V((PaE) > V((pj7E)‘
However v(y, F) is uniformly bounded (by some Seshadri type constant) for any x € PSH(X, 6)
and F fixed. So letting € \, 0 we conclude. O

Lemma 3.22. Let ¢;, ¢,1;,¢% € PSH(X,0). Assume that ¢; s, 0, U; ds, . Then

0i Vi 25 o vy,
Proof. We compute
ds(pi V Yi, o V) <ds(pi Vi, 0 V) +ds(ei Vi, 0 V1))
<Cp (ds(¥i, ) + ds(pi, ),

where the second inequality follows from Lemma 3.6. The right-hand side converges to 0 by our
hypothesis. (]

Theorem 3.23. Let a1, ag be big classes represented by 61, 62. Suppose that o, p; € PSH(X, 61),
¥, € PSH(X, 62). Consider the following three conditions:
d
(1) Pi —S> 2
d
d
(3) i+ = o+
Then any two of these conditions imply the third.

Proof. By Corollary 3.17, we may assume that 61, 0 are both Kéhler forms. We denote them
by w1, ws instead.
(1) + (2) implies (3): Let w = 61 + #2. It suffices to show that for each r =0,...,n,

T n—r ' n—r IS n—r
2/){W(Wj+¢j)v(w+w) A w — Aw@j+¢j A w — /}{UJSO+,¢, A w — 0
Observe that

(P +Y) V(e +9) <@ Vet+; V.
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Thus, it suffices to show that

T r n—r T n—r
2/Xw%v§0+¢jvw/\w—/)(w%+wj/\w —/)(w¢+¢Aw — 0.

The left-hand side is a linear combination of
a r—a n—r a r—a n—r a r—a n—r
2/X Wi vp N W vy AW — /le’%, AWy g AW — /X Wi, AWy gy AW

with a = 0,...,r. Observe that ¢; V ¢ s, ¢ and ¢; V w 5y ¢ by Lemma 3.4, each term tends
to 0 by Themem 3.15.
(1)4+(3) implies (2): For each C' > 1, from the direction we already proved,

Copi + i 25 Cop + 9.

By Theorem 3.15, for each j =0,...,n,

lim | (Cwy +wy +dd(Co; + ) Awh ™ = /X (Cwi 4 wa + dd*(Cp + 1)) Awh ™.

i—o0 J X
It follows that

(3.13) lim wngi Awy™d = /X wgw Awy

Therefore, (2) follows if 1); > 1 for each ¢ by Lemma 3.3.
Next we prove the general case. By the direction that we already proved, we know that

Wi + U ds, @ + 9. By Lemma 3.22, we have that

d
eit iV = o+

It follows from the special case above that 1; V1) ds, . Tt follows from (3.13) and Corollary 3.16
that (2) holds. O

Finally, let us show that the uniform structure defined by dg is natural at mass 0.

Lemma 3.24. Let ¢, € PSH(X,0) (j > 1). Assume that the sequence (p;); is Cauchy with
respect to dg g, then it is also Cauchy with respect to dgg.,.

Proof. Fix t € (0,1), we claim that ((1 —t)¢; + tVp); is also a Cauchy sequence with respect to
dsg. To see this, observe that for each £ =0,...,n

Y

k k —k k —k
2/ 0( 1—t)<Pi+tV9)\/((1—t)<pj+th 0” / 9 1 t ‘P1+tV6 9@ - ‘/)( 0(1—t)4,0j+tV9 A 07‘}9
—k —k —k
72/ 0(1 t)‘:DzVW]"‘tVG 67‘}9 / 9(1 t)@ri‘th 039 / 6 1 t ‘Pj+tV6 036
=3 (4] (2, ity -0t g -, ),
By Corollary 3.14, we can find ¢ € PSH(X, ) so that

d
(1—t)p; +tVe —2 oy

It follows from Corollary 3.17 that

(1 —t)p; +tVy Isotw, .
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In particular, ((1 —t)g; +tVp); is also a Cauchy sequence with respect to dggy.,. But observe
that

n

> (2 /X(" W)tV (1—t)ps+tvi) N OV, — /X“) W)ty NV
a=0

[){(0+w)?l—t)w'+tV9 ‘9%4:1)

- Z ( / (0 + @) —typives vy NV, — /X(9 W)ttty MOV, — /){(9 T W) —p)p, v, N

>3 (-1 ( / (0 + )i, Ao — / (0+w)t, A 03" /X(a L) A eg;aw) .
a=0
It follows that (¢;); is also a Cauchy sequence with respect to dg g4 - O

3.3. Quasi-equisingular approximations.

Definition 3.25. Let ¢;, ¢ € PSH(X,0) (j € Z~o). We say g, is a quasi-equisingular approzi-
mation of ¢ if
(1) ¢; has analytic singularities for each j;
(2) ¢j is decreasing with limit ¢;
(3) for each A > A > 0, there is j > 0 such that
(3.14) I(Ne) € TO\).
We prove that a general dg-convergent sequence enjoys a quasi-equisingular property.

Theorem 3.26. Let ;,¢ € PSH(X,0) (j € Zso). Assume that ¢, ds, ©. Then for each
N > X >0, there is jo > 0 so that for j > jo, (3.14) holds.

Proof. Fix X' > XA > 0, we want to find jyo > 0 so that for j > jo, (3.14) holds.

Step 1. We first assume that ¢ has analytic singularities.

Let 7 : Y — X be a log resolution of ¢ and let E1, ..., Enx be all prime divisors of the singular
part of ¢ on Y. Recall that a local holomorphic function f lies in the right-hand side of (3.14)
if and only if

(3.15) ordg, (f) > Aordg, () — Ax (E;)

whenever they make sense. Here Ax denotes the log discrepancy. Similarly, f lies in the left-hand
side of (3.14) implies that there is € > 0 so that

ordg, (f) > (1 + €)X ordg, (p;) — Ax (E;).
As Lelong numbers are continuous with respect to dg by Theorem 3.20, we can find jy > 0 so
that when j > jo, N ordg, (¢;) > Aordg, (¢) for all i. In particular, (3.15) follows.
Step 2. We handle the general case.
By Corollary 3.17, we are free to increase 6 and assume that 6, is a Kéhler current. PSOL

Take a quasi-equisingular approximation ¢, of ¢. The existence is guaranteed by [ ].
Take X’ € (A, \), then by definition, we can find k£ > 0 so that

I(N"k) € Z(Ap).

Observe that ¢; V 9y, ds, Y as j — oo by Lemma 3.22. By Step 1, we can find jy > 0 so that
for j > jo,
I(N (@5 V) € Z(X"4p).
It follows that for j > jo,
I(Ngj) € Z(Ap).
O

Corollary 3.27. Let pj,p € PSH(X,0). Assume that p; have analytic singularities, ¢; de-
creases to ¢ and [y 05 > 0. Then the following are equivalent:

n—a
V9+w

)
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d
(1) 0j = Plplz;
(2) ¢j is a quasi-equisingular approximation of .
P}SZJ, DX22
Proof. (2) implies (1): This is proved more generally in | ; ]

(1) implies (2): This follows from Theorem 3.26. O
This corollary shows in particular that being a quasi-equisingular approximation is invariant

under blowing-ups with smooth centers, a fact which is not obvious by the very definition.

4. 7-GOOD SINGULARITIES
Let X be a connected compact Kdhler manifold of dimension n.

4.1. The closure of analytic singularity types. Let 6 be a smooth real closed (1,1)-form on
X representing a big class.

Lemma 4.1. Let 7 : X' — X be a bimeromorphic morphism from a connected compact Kdihler
manifold Y and ¢ € PSH(X,0). Then we have

T Pylplz = Preglm o]z
The proof is left to the readers.
Lemma 4.2. Suppose that ¢ € PSH(X, 0) has analytic singularities, then

p ~ Bylo] = Bylelz.
Kim15
See [% , Theorem 4.3].

Proposition 4.3. Let ¢ € PSH(X,0). Assume that 0, is a Kihler current. Let ¢; € PSH(X,0)
be a quasi-equisingular approzimation of ¢. Then Pylp;|r \ Pylplr as j — oo. In particular,

d
©; — Pylelz.

Proof. The last assertion follows from Lemma 4.2, Lemma 3.11 and the first assertion. It suffices
to prove the first assertion.
We may assume that ¢ is Z-model. Let

¢ = lim Pylp;lz.
j—00

Then v is Z-model and ¢ < 3. In order to conclude the equality, it suffices to show that for any
t>0,

(4.1) T(tg) = T(tw).
We fix t > 0. By the quasi-equisingular property, for any § > 0, we can find kg > 0 so that
Z(toy) C Z(tdpr,) € Z(ty).
Letting 6 N\, 1 and using the strong openness, we conclude that
Z(ty) € Z(te).

The reverse inclusion is trivial and (4.1) is proved. O
Theorem 4.4. ' Let p € PSH(X, 0) such that [y 05 > 0. Then the following are equivalent:

(1) ¢ lies in the dg-closure of analytic singularities;

(2) ¢ is I-good.

Proof. By Proposition 3.9, we can find ¢ € PSH(X, ) be such that 1) < ¢ and 6, > w for some
Kahler form w on X. Let
Y= (1= t) +tp
for t € [0,1]. Then 6y, is a Kahler current for ¢t € [0,1) and ¢y /" p a.e. ast /1.
(2) = (1): We may further assume that ¢ is Z-model. It is straightforward to verify that

Pyl /7 Pylplr = u ae. ast — 1. It follows that Pyluy]r LR @. In particular, in order to

1 . . . PQX?J,
There is an obvious typo in | , Theorem 4.5]
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prove (1), we may assume furthermore that 6, is a Kéhler current. In this case, it suffices to
apply Proposition 4.3.

(1) = (2): Suppose there exists a sequence 1; € PSH(X, #) with analytic singularities such
that ; s, ¢. By Lemma 4.2, we can assume that v; is Z-model for each j. In addition, we
can assume that ¢ is model. Since [y 0 > 0, after possibly restricting to a subsequence of 1;,
we can use Proposition 3.12 to conclude existence of an increasing sequence of model potentials

@; € PSH(X, 6) such that ¢; <, and ¢; s, ©. Moreover, we can take
;1= Hm P AYjpa A Ay

Since all the v;’s are Z-model, it is straightforward to verify that the ¢;’s are Z-model as well.
Lastly, since ¢ is the increasing limit of the ¢; a.e., we conclude that ¢ is Z-model as well. [J
PXZ,?, ]

4.2. The volumes of Hermitian pseudo-effective line bundles. let 7" be an arbitrary
holomorphic vector bundle on X, with rank r. Let L be a pseudoeffective line bundle on X. Let
h be a smooth Hermitian metric on L such that 6 := ¢;(L,h). We fix a Kéhler form w on X
such that w — 0 is a Kéahler form.

The omitted parts should be easy to verify. You can also find the arguments in |

Proposition 4.5. Suppose that p € PSH(X,0). Then

0 k r
(4.2) iy k—h (X,T® L@ I(ky) < - /X O o
Proof. We may assume that ¢ is Z-model.

Let ¢; € PSH(X, 6 + €jw) be a quasi-equisingular approximation of ¢, where ¢; > 0 is a
decrea[?gg% sequence with limit 0. LeﬁB%é Y, — X be a resolution of singularities of ¢;.

By [Denil2, Proposition 5.8] and , Théoréme 2.1]% applied to ¢ = 0 on Y}, we obtain
that
hm —hO(X T® LF®I(kp)) < 11m —hO(X T ® LF @ Z(ky)))
k—oo k™ k—oco k
= hm —hO(Y T ® (miL)F ® Ky x @ I(kmgpg))
koo k™
r r
< 7T*9nA _ "
~ ol T al oy
r
< — 0+ ecw)” < —/ 9 + €; s
o 9 “Je,
where Y3 (0) C Y} is the set contained in the smooth locus of the (1,1)- current mi0,; where
the eigenvalues of 70, are all positive. Observe that lim; o [x (0 + €;w)}. = [x 0 by the
argument of Proposition 4.3. So (4.2) follows. O

Lemma 4.6. Let ¢ € PSH(X,0) such that 0, is a Kdhler current. Take a quasi-equisingular
approxzimation ¢; € PSH(X,0) of ¢. Let B € (0,1). Then there exists ko := ko(u, ) such that
for all k > kg there exists vz, € PSH(X, 0) satisfying the following:

(1) Dylglz (1 —6)s0k+ﬁvﬂ,k;
(2) fX v,gk

Proof. Due to Proposition 4.3, we have that [y 05, Ix 0$9[<P}I' In particular, there exists
ko > 0 such that

in < I for all k& > ko.

fX 0801@ fX Pylelz

2There is a subtle point. In Bonavero’s thesis, he considered only analytic singularities with smooth remainders.
We apply his results to analytic singularities with bounded remainders. This can be justified by first passing to a
resolution of the singularity and then regularize the remainder term.
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By Lemma 3.8 we obtain that

Vgg =P (;Pe[w]z —

5 gok) € PSH(X,0)

and
Pylplr > (1 = B)pk + Bug -

Now we show that vg, has positive mass. Pick 8’ € (0, 8) such that

1 Jx 05

™ for all k > k.
B Ix O - 7 Polelz

Then L
h::P<ﬁ/P9[ - ¢k> € PSH(X, 6)
is defined as well, and
8, B-F
Vg3 2 E + B YL € PSH(X,Q),

implying that (5 5 5 5
/ew_ /9 > /en>o

Proposition 4.7. Suppose that ¢ € PSH(X,0) with 6, > éw for some 6 > 0. Then

r n
lim —hO(X Te Ll oL(jy) > /X%Mz-

jooo J"

Proof. To start, we fix a number 3 = p/q € (0,min(d,1)) N Q. It suffices to show that there is a
constant C > 0, only dependent on r, n and 6, such that

lim —p0 J / n — .
]giloj (X, Te Ll @Z(jp)) > nl Xepe[ﬂz &

Writing j = aq + b for some b=0,...,q — 1, observe that
WX, Tl @L(je) > h° (X, Te L0 L1 @ I((a+1)qy)) -

Absorbing L'~7 into T, and noticing that b — ¢ can only take a finite number of values, we find
that it suffices to prove the following

(4.3) lim ThO(X T ® L ®I(jqp)) / Ol —
j—oo J"q"
for arbitrary twisting bundle 7.
By Lemma 4.6, there is kg > 0 depending on 5 and wu, such that for k > kg, there exists a
potential v, € PSH(X, 6) of positive mass such that
Pylplr > wpr == (1 — B)pk + Bugp  for all k > k.
For big enough kg we also have 6, > fw > (6 for all k > ko. In particular, ¢, € PSH(X, (1-5)0).
We have . ‘
HY(X,T® L ®I(jqp)) 2 H(X,T ® L' ® I(jqugs)),
hence
(4.4) W (X, T® L2 I(jqp)) > h°(X,T @ L’ @ I(jquwa,r)).

For each fixed k > 0, we CF} | tgke a resolution of singularities 7 : ¥ — X, such that 7% has
analytic singularities. By [ , Proposition 5.8] and the projection formula

45  RU(X,Te L ®I<qu@ k) =RV, 7T @ Ky x @ (7" L)Y? @ I(jqm*wg x))-

Since [y (7*0 + dd°m*vg ;)" = [ 03 Vs, > 0, there exists a non-zero section

s; € H (Y, 7" L1 @ T(Bjqr™vg,)) = H® (Y, 7" LP @ T(jpr*vg )
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for all j large enough, by Lemma 4.8. Hence applying Lemma 4.9 for
T—mT®Ky)x, By — 7 LTP By — 7" LP, x1 — qm"¢p, X2 — DT vgk, 85 — 85,€ = 3,
we find
WY, 7T ® Ky x @ 7 L9 @ Z(jqn*wy,g))
(4.6) =hO(Y, T ® Ky/;x ® T LI @ 7 [P @ T((1 — B)jqr*or + JpT*ug)))
>hY, 7T ® Ky x ® 7 LY9P1 @ I(jqn*py))

for j large enough (depending on k). 0098
Since 6, > ﬁw > B0, wepotice that gy € PSH(X, 6(¢—p)). Hence, by ﬁ , Théoréme 2.1,
Corollaire 2.2] (see also [[DX , Theorem 2.26]), we can write the following estlmates.

lim —— ROV, T ® Ky/x ® LA~ @ T(jgr*py))

oo J7G"
= lim .—ho (Y?T ToKyx®m *[(a=P)i T QI (jqr* gpk))
j—oo JHq"
(4.7) —— [ a0+ g
q'n! Jy
r

= [ (1= B+ adcp)

r n
ZH/XQQ%_Cﬁ’

where C' > 0 depends only on r,n, 6. Putting together (4.4),(4.5), (4.6) and (4.7) we obtain

lim ~RO(X, T LI © I(jg)) >7/ o

jooo J™

Letting k — oo and applying Proposition 4.3, we conclude (4.3). O

Lemma 4.8. Suppose that L. — X is a big line bundle, with smooth Hermitian metric h.
Let § = ci(L,h). Let v € PSH(X,0) with [ 6y > 0. Then for m big enough there exists
s € HY(X, L™ ® Z(mv)) non-vanishing.

Dem12
Proof. By Proposition 3.9 there exists w € PSH(X, #) such that w <wv and 6,, > dw. By ﬁ Jern ,

Theorem 13.21], for m big enough, there exists s € H°(X, L™ ® Z(mw)) non-zero. Since w < v,
we get that s € H(X, L™ ® Z(mwv)). O

Lemma 4.9. Suppose that Fq, Es, T are vector bundles over a connected complexr manifold Y,
with rank Fy = 1, and x1,x2 are quasi-psh functions on Y, with x1 having normal crossing
divisorial singularity type. Suppose that there exists a non-zero section sj € H(Y, ES” ®Z(jx2)),
for all j big enough. Then for any € € (0,1) the map w — w ® s; between the vector spaces

HYY,T @ B 0 T(x) » B (V.7 ® B @ B @ T((1 - 91 + jxa))
is well-defined and injective, for all j big enough.

Proof. Suppose that the Sln}gul%rcy type of x1 is given by the effective normal crossing R-divisor
> ;D with a; > 0. By | Remark 5.9] we have that

I(jx1) = Zl_o‘m]JD

We obtain that we*j'(lfe)xl is bounded for any w € H(Y, T ® E{ ®Z(jx1)) and j big enough.
Since s; € H(Y, E5? @ Z(jx2)), we obtain that
wes; € H'(V,T® B @ B5Y @ Z(j(1 - )x1 + jxa) ) -

Injectivity of w — w ® s; follows from the identity theorem of holomorphic functions. O
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Theorem 4.10. Suppose that ¢ € PSH(X,0). Then

r n
(4.8) lim —hO(X TeL*©Iky) =— /X Oz

k—oo k™

Proof. We may assume that ¢ is Z-model. Proposition 4.5 implies (4.8) for [y 07, = 0, so we can
also assume that [y 6 > 0. In particular, L is a big line bundle and X is projective.

By Proposition 3.9, there exists ¢ < ¢ such that 6y, is a Kéhler current. Let 1), := (1 —t)¢+tep.
Then 6y, is a Kahler current for ¢ € [0,1), so we can apply Proposition 4.7 to obtain that

T n
klfffo k—hO(X T L*®I(kp)) > klgl; k—hO(X T® LF @ I(kyy)) > — /X O, 1l
DX22
Letting t — 0 and using [FW Lemma 2.21(iii)], we obtain that
0 k
klgilo k—h (X, T® L ®Z(kp)) / Oy ()2-

The reverse inequality, follows from Proposition 4.5. O

Corollary 4.11. Let p € PSH(X, 0) such that [y 0}, > 0. Then the following are equivalent:
(1) ¢ lies in the dg-closure of analytic singularities;
(2) ¢ is I-good;
(3) The following equality holds:

1
0 k &
klglolo l?h (X, L" @ Z(kyp)) = ] /Xepo[w]z'

Proof. This follows from Theorem 4.4 and Theorem 4.10. (]
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