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1. Introduction

These are the lecture notes for three lectures given in Chinese Academy of Science in the
summer of 2023. The goal is to explain the proofs of [

DX22
DX22;

DX21
DX21] in detail.

2. Preliminaries

Fix a compact Kähler manifold X of pure dimension n.

2.1. The space of finite energy potentials. We fix a big (1, 1)-class α ∈ H1,1(X,R) on X
and a closed smooth real (1, 1)-form θ ∈ α.

Let
Vθ = sup{φ ∈ PSH(X, θ) : φ ≤ 0}.

Observe that Vθ ∈ PSH(X, θ). In fact, the usc regularization V ∗
θ of Vθ belongs to PSH(X, θ) by

Hartogs lemma, so V ∗
θ ≤ Vθ and hence the equality holds. So Vθ ∈ PSH(X, θ).

We will be constantly using the non-pluripolar products. We refer to [
BEGZ10
BEGZ10] for the details.

We write
PSH(X, θ)>0 =

{
φ ∈ PSH(X, θ) :

∫
X
θnφ > 0

}
.

The non-pluripolar theory is not the only extension of the Bedford–Taylor theory to unbounded
qpsh functions, but two features indicate that it is probably the most natural theory: first of
all, the non-pluripolar product is defined for all functions in PSH(X, θ); secondly, there is a
monotonicity theorem:

thm:mono Theorem 2.1 ([
WN19
WN19;

DDNL18mono
DDNL18b]). Suppose that φ,ψ ∈ PSH(X, θ) and φ ⪯ ψ (see Defini-

tion 2.6), then ∫
X
θnφ ≤

∫
X
θnψ.

More generally, if α1, . . . , αn are pseudoeffective classes represented by θ1, . . . , θn, φj , ψj ∈
PSH(X, θj) (j = 1, . . . , n) and φj ⪯ ψj for j = 1, . . . , n, then∫

X
θ1,φ1 ∧ · · · ∧ θn,φn ≤

∫
X
θ1,ψ1 ∧ · · · ∧ θn,ψn .

In particular, the non-pluripolar mass of any φ ∈ PSH(X, θ) is always bounded from above
by V :=

∫
X θ

n
Vθ

. The number V > 0 is known as the volume of the class α.
The space of finite energy potentials is defined as

E1(X, θ) :=
{
φ ∈ PSH(X, θ) :

∫
X
θnφ = V,

∫
X

|Vθ − φ| θnφ < ∞
}
.
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2 CHARACTERIZATIONS OF I-GOOD SINGULARITIES

We will need the Monge–Ampère energy functional E : E1(X, θ) → R defined as follows:

E(φ) := 1
n+ 1

n∑
j=0

∫
X

(φ− Vθ) θjφ ∧ θn−j
Vθ

.

�The difference φ−Vθ is only defined outside the pluripolar set {Vθ = −∞}. The non-pluripolar
product θjφ ∧ θn−j

Vθ
does not put mass on pluripolar sets, so the integral is still defined.

It is useful to know that E(φ) is increasing in φ and E(Vθ) = 0.
We recall the definition of the metric d1 on E1(X, θ). Take φ,ψ ∈ E1(X, θ). When φ ≤ ψ, the

metric is simply defined as

{eq:d1andE}{eq:d1andE} (2.1) d1(φ,ψ) = E(ψ) − E(φ).

By a simple argument using approximations and the integration by parts formula [
Xia19b
Xia19;

Lu21
Lu21],

one can show that

E(ψ) − E(φ) = 1
n+ 1

n∑
j=0

∫
X

(ψ − φ) θjψ ∧ θn−j
φ .

More generally, we need to use φ ∧ ψ, the maximal element in PSH(X, θ) lying below both φ
and ψ. It is shown in [

DDNL18fullmass
DDNL18c] that φ ∧ ψ ∈ E1(X, θ). We define

d1(φ,ψ) = d1(φ ∧ ψ,φ) + d1(φ ∧ ψ,ψ) = E(φ) + E(ψ) − 2E(φ ∧ ψ).

This is indeed a metric, as studied in [
DDNL18big
DDNL18a].

Next we recall the notion of geodesics in E1(X, θ). Let us fix φ0, φ1 ∈ E1(X, θ). A subgeodesic
from φ0 to φ1 is a curve (φt)t∈(0,1) in E1(X, θ) such that

(1) if we define

Φ : X × {z ∈ C : e−1 < |z| < 1} → [−∞,∞), (x, z) 7→ φ− log |z|(x),

then Φ is p∗
1θ-psh, where p1 : X × {z ∈ C : e−1 < |z| < 1} → X is the natural projection;

(2) When t → 0+ (resp. to 1−), φt converges to φ0 (resp. φ1) with respect to L1.
The maximal subgeodesic from φ0 to φ1 is called the geodesic (φt) from φ0 to φ1. The geodesic
always exists and φt ∈ E1(X, θ) for all t ∈ [0, 1]. We refer to [

DDNL18fullmass
DDNL18c] for the details.

By abuse of language, we say that (φt)t∈[0,1] (with a closed interval instead of an open interval)
is the geodesic from φ0 to φ1. More generally, given t0 ≤ t1 in R, we say a curve (φt)t∈[t0,t1] in
E1(X, θ) is a geodesic from φt0 to φt1 if after a linear rescaling from [t0, t1] to [0, 1], it becomes
a geodesic. One can show that E is linear along a geodesic. In fact, by a simple perturbation
argument, one can reduce this to [

DDNL18fullmass
DDNL18c, Theorem 3.12].

2.2. The space of geodesic rays. The notion of geodesics naturally gives us a notion of
geodesic rays:

Definition 2.2. A geodesic ray is a curve ℓ = (ℓt)t∈[0,∞) in E1(X, θ) such that for any 0 ≤ t1 < t2,
the restriction (ℓt)t∈[t1,t2] is a geodesic from ℓt1 to ℓt2 .

The space of geodesic rays ℓ with ℓ0 = Vθ is denoted by R1(X, θ).

The assumption ℓ0 = Vθ is not very restrictive. In fact, given any other φ ∈ E1(X, θ), we can
always find a unique geodesic ray ℓ′ with ℓ′0 = φ such that d1(ℓt, ℓ′t) is bounded. So if we are
only interested in the asymptotic behaviour of a geodesic ray, we do not lose any information.
We refer to [

DL20
DL20] for the details.

Next we recall the metric d1 on R1(X, θ). Given ℓ, ℓ′ ∈ R1(X, θ), one can show as in [
DL20
DL20]

that d1(ℓt, ℓ′t) is a convex function in t ∈ [0,∞). It follows that

d1(ℓ, ℓ′) := lim
t→∞

1
t
d1(ℓt, ℓ′t)

exists. It is not hard to show that d1 is indeed a metric on R1(X, θ). In fact, it is a complete
metric. We refer to [

DL20
DL20;

DDNLmetric
DDNL21] for the details.
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Similarly, one can introduce E : R1(X, θ) → R as

E(ℓ) = lim
t→∞

1
t
E(ℓt).

As we recalled above, the function E(ℓt) is linear in t, so the limit E(ℓ) is nothing but the slope
of this linear function. When ℓ, ℓ′ ∈ R1(X, θ), ℓ ≤ ℓ′, using (2.1), we have

{eq:d1rayscompa}{eq:d1rayscompa} (2.2) d1(ℓ, ℓ′) = E(ℓ′) − E(ℓ).

ex:rayasspsh Example 2.3. Given φ ∈ PSH(X, θ), we construct a geodesic ray ℓφ ∈ R1(X, θ). For each
C > 0, let (ℓφ,Ct )t∈[0,C] be the geodesic from Vθ to (Vθ −C) ∨ φ. For each t ≥ 0, it is not hard to
see that ℓφ,Ct is increasing in C ∈ [t,∞). We let

ℓφt := sup*
C≥t

ℓφ,Ct .

One can show that ℓφ ∈ R1(X, θ). A simple computation shows that

{eq:Elphi}{eq:Elphi} (2.3) E(ℓφ) = 1
n+ 1

 n∑
j=0

∫
X
θjφ ∧ θn−j

Vθ
− V

 .
See [

DDNLmetric
DDNL21, Theorem 3.1].

We need the following result concerning these geodesic rays: given φ,ψ ∈ PSH(X, θ), then
ℓφ = ℓψ if and only if φ ∼P ψ (see Definition 2.6). This follows from [

DDNLmetric
DDNL21, Proposition 3.2]

and Remark 2.10.

Next we recall that ∨ operator at the level of geodesic rays. Given ℓ, ℓ′ ∈ R1(X, θ). We define
ℓ ∨ ℓ′ as the minimal ray R1(X, θ) lying above both ℓ and ℓ′. In fact, it is easy to construct
such a ray: for each t > 0, let (ℓ′′ts )s∈[0,t] be the geodesic from Vθ to ℓt ∨ ℓ′t. It is easy to see that
for each fixed s ≥ 0, ℓ′′ts is increasing in t ∈ [s,∞). Let (ℓ ∨ ℓ′)s = sup*t≥s ℓ′′ts . Then we get a
geodesic ray ℓ ∨ ℓ′. It is clear that this ray is minimal among all rays dominating ℓ and ℓ′. By
construction, we have

E(ℓ ∨ ℓ′)s = lim
t→∞

E(ℓ′′ts ) = lim
t→∞

s

t
E(ℓt ∨ ℓ′t).

In particular,

{eq:Elor}{eq:Elor} (2.4) E(ℓ ∨ ℓ′) = lim
t→∞

1
t
E(ℓt ∨ ℓ′t).

lma:d1rayineq Lemma 2.4. For any ℓ, ℓ′ ∈ R1(X, θ), we have

{eq:d1maxineq}{eq:d1maxineq} (2.5) d1(ℓ, ℓ′) ≤ d1(ℓ, ℓ ∨ ℓ′) + d1(ℓ′, ℓ ∨ ℓ′) ≤ Cnd1(ℓ, ℓ′),

where Cn = 3(n+ 1)2n+2.

Proof. The first inequality is trivial. As for the second, we estimate
d1(ℓ, ℓ ∨ ℓ′) =E(ℓ ∨ ℓ′) − E(ℓ)

= lim
t→∞

1
t
E(ℓt ∨ ℓ′t) − E(ℓ)

= lim
t→∞

1
t
d1(ℓt ∨ ℓ′t, ℓt).

where on the second line, we used (2.4), the third line follows from (2.2). In all, we find

d1(ℓ, ℓ ∨ ℓ′) + d1(ℓ′, ℓ ∨ ℓ′) ≤ lim
t→∞

1
t

(
d1(ℓt ∨ ℓ′t, ℓt) + d1(ℓt ∨ ℓ′t, ℓ

′
t)
)
.

By [
DDNL18big
DDNL18a, Theorem 3.7],

d1(ℓt ∨ ℓ′t, ℓt) + d1(ℓt ∨ ℓ′t, ℓ
′
t) ≤ 3(n+ 1)2n+2d1(ℓt, ℓ′t).

Now (2.5) follows. □



4 CHARACTERIZATIONS OF I-GOOD SINGULARITIES

2.3. The space of quasi-plurisubharmonic functions. We write QPSH(X) for the direct
limit in the category of sets

QPSH(X) := lim−→
θ

PSH(X, θ),

where θ runs over the set of all smooth real closed (1, 1)-forms on X with θ ≺ θ′ if θ′ − θ is a
Kähler form. The transition maps are given by inclusions. In other words, QPSH(X) is the set
of quasi-plurisubharmonic functions on X.

Remark 2.5. I am always curious about the possibility of enriching the set QPSH(X), but I have
never been able to figure out the correct generality/category to work with. One should view the
direct limit as in other categories instead of barely the category of sets.

A few failed options: pseudo-metric spaces, uniform spaces, topological spaces, condensed
spaces. None of these options gives rise to the correct notion of convergence on QPSH(X) as
we define later, which is closer to the strict direct limit as studied in functional analysis by
Dieudonné–Schwarz.

Take a big class α on X with a representative θ, we will need the following envelope operators:
(1) Let φ ∈ PSH(X, θ)>0, we set

Pθ[φ] = sup {ψ ∈ PSH(X, θ) : ψ ≤ 0, ψ ≤ φ+ C for some C ∈ R}

= sup
{
ψ ∈ PSH(X, θ) : ψ ≤ 0,

∫
X
θnφ =

∫
X
θnψ, φ ≤ ψ + C for some C ∈ R

}
;

Observe that in the two conditions, the relation between φ and ψ are reversed.
(2) Let φ ∈ PSH(X, θ), we set

Pθ[φ]I = sup {ψ ∈ PSH(X, θ) : ψ ≤ 0, I(kφ) = I(kψ) for all k ∈ Z>0} .

We refer to [
DDNL18fullmass
DDNL18c] for a detailed study of the former envelope and to [

DX21
DX21;

DX22
DX22] for the

latter.

�The first envelop is pathological when
∫
X θ

n
φ = 0. There are multiple different ways to extend

its definition. None of these seem to be natural to the author, so we will avoid them.

A potential φ ∈ PSH(X, θ)>0 (resp. φ ∈ PSH(X, θ)) is model (resp. I-model) if Pθ[φ] = φ
(resp. Pθ[φ]I = φ).

�Both notions depends strongly on the choice of θ, which makes them not so natural. By
contrast, the notion of I-good potentials introduced in [

Xia22
Xia22] depends only on φ ∈ QPSH(X).

def:singcomp Definition 2.6. Let φ,ψ ∈ QPSH(X), we say
(1) φ is more singular than ψ and write φ ⪯ ψ if there is C ∈ R such that

φ ≤ ψ + C;

(2) φ is P -more singular than ψ and write φ ⪯P ψ if for some Kähler form ω such that
φ,ψ ∈ PSH(X,ω)>0, we have

Pω[φ] ≤ Pω[ψ];

(3) φ is I-more singular than ψ and write φ ⪯I ψ if for some Kähler form ω such that
φ,ψ ∈ PSH(X,ω), we have

Pω[φ]I ≤ Pω[ψ]I .

All three relations define partial orders on QPSH(X). We denote the corresponding equivalence
relation by ∼, ∼P and ∼I respectively.

�In (1), one cannot replace φ ≤ ψ + C by φ− ψ ≤ C without extra care. The problem is that
φ− ψ is only defined outside the pluripolar set {φ = ψ = −∞}.
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We observe that Condition (2) does not depend on the choice of ω by Lemma 2.7. On the
other hand, Condition (3) is equivalent to I(kφ) ⊆ I(kψ) for all k > 0 (either real or integral).
So Condition (3) is also independent of the choice of ω.

lma:Pproj_insens_omega Lemma 2.7. Let φ,ψ ∈ PSH(X, θ)>0. For any Kähler form ω on X, the following are equiva-
lent:

(1) Pθ[φ] ≤ Pθ[ψ];
(2) Pθ+ω[φ] ≤ Pθ+ω[ψ].

Proof. (1) implies (2): Observe that

Pθ[φ] ≤ Pθ+ω[φ], φ ⪯ Pθ[φ].

It follows that

{eq:doubleP}{eq:doubleP} (2.6) Pθ+ω[φ] = Pθ+ω[Pθ[φ]].

A similar formula holds for ψ. So we see that (2) holds.
(2) implies (1): By (2.6), we may assume that φ and ψ are both model potentials in PSH(X, θ).
Observe that φ ∨ ψ ⪯ Pθ+ω[ψ]. It follows that Pθ+ω[φ ∨ ψ] ≤ Pθ+ω[ψ]. The reverse inequality

is trivial, so
Pθ+ω[φ ∨ ψ] = Pθ+ω[ψ].

From the direction we have proved, for any C ≥ 1,

Pθ+Cω[φ ∨ ψ] = Pθ+Cω[ψ].

So ∫
X

(θ + Cω + ddc(φ ∨ ψ))n =
∫
X

(θ + Cω + ddcψ)n .

In particular, ∫
X
θnφ∨ψ =

∫
X
θnψ.

As ψ is model, it follows that φ ∨ ψ = ψ. So (1) follows. □

lma:Pequilin Lemma 2.8. Let φ,ψ ∈ PSH(X, θ)>0. Then for any t ∈ [0, 1],

tφ+ (1 − t)ψ ∼P tPθ[φ] + (1 − t)Pθ[ψ].

Proof. By symmetry, it suffices to show that tφ+(1−t)ψ ∼P tPθ[φ]+(1−t)ψ. As tφ+(1−t)ψ ⪯
tPθ[φ] + (1 − t)ψ and both sides have positive masses, it suffices to show that∫

X
θntφ+(1−t)ψ =

∫
X
θntPθ[φ]+(1−t)ψ.

By binary expansion, it suffices to show that for any j = 0, . . . , n,∫
X
θjφ ∧ θn−j

ψ =
∫
X
θjPθ[φ] ∧ θn−j

ψ ,

which follows from [
DDNL18mono
DDNL18b, Corollary 3.2]. □

cor:Pequilinear Corollary 2.9. Let φ,ψ, φ′, ψ′ ∈ QPSH(X). Assume that φ ∼P φ
′ and ψ ∼P ψ

′, then for any
a, b > 0, aφ+ bψ ∼P aφ

′ + bψ′.

Proof. We may assume that a + b = 1 by rescaling. Take a Kähler form ω on X so that
φ,ψ, φ′, ψ′ ∈ PSH(X,ω)>0. Then it suffices to apply Lemma 2.8. □

rmk:CenvequivPequiv Remark 2.10. In [
DDNLmetric
DDNL21], Darvas–Di Nezza–Lu introduced a different envelope operator C

which is better behaved when the mass of a qpsh function is 0. We will show that for our
purpose, it is not necessary to introduce it.

To be more precise, let φ,ψ ∈ PSH(X, θ). We will show that the following are equivalent:
(1) φ ∼P ψ;
(2) Cθ[φ] = Cθ[ψ].
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Assume (1). Then by Corollary 2.9, tφ + (1 − t)Vθ ∼P tψ + (1 − t)Vθ for all t ∈ [0, 1). In
particular,

Pθ[tφ+ (1 − t)Vθ] = Pθ[tψ + (1 − t)Vθ].
Let t → 1−, we conclude (2).

Conversely assume (2). Let ω be a Kähler form on X. It suffices to show that
Pθ+ω[Cθ[φ]] = Pθ+ω[φ].

In fact, the ≥ inequality is clear. As both sides are model potentials, it suffices to show that
they have the same mass:∫

X
(θ + ω + ddcCθ[φ])n =

∫
X

(θ + ω + ddcφ)n.

After binary expansion, it suffices to show that for each j = 0, . . . , n,

{eq:Cexpan}{eq:Cexpan} (2.7)
∫
X
θjCθ[φ] ∧ ωn−j =

∫
X
θjφ ∧ ωn−j .

As Cθ[φ] is the decreasing limit of Pθ[tVθ + (1 − t)φ] as t decreases to 0, we have∫
X
θjCθ[φ] ∧ ωn−j ≤ lim

t→0+

∫
X
θjPθ[tVθ+(1−t)φ] ∧ ωn−j = lim

t→0+

∫
X
θjtVθ+(1−t)φ ∧ ωn−j =

∫
X
θjφ ∧ ωn−j .

The reverse inequality follows from the monotonicity theorem Theorem 2.1. So (2.7) follows.
We conclude the proof.

lma:reform_preceqP Lemma 2.11. Let φ,ψ ∈ PSH(X, θ). Then the following are equivalent:
(1) φ ⪯P ψ (resp. φ ⪯I ψ);
(2) φ ∨ ψ ∼P ψ (resp. φ ∨ ψ ∼I ψ).

Proof. We may assume that
∫
X θ

n
φ > 0,

∫
X θ

n
ψ > 0. We only prove the P case, the I case is

similar.
(2) implies (1): We may assume that φ,ψ are both model in PSH(X, θ). By (2), Pθ[φ∨ψ] = ψ.

But φ ≤ Pθ[φ ∨ ψ], so (1) follows.
(1) implies (2): We may still assume that φ,ψ are both model in PSH(X, θ) as

Pθ[φ ∨ ψ] = Pθ[Pθ[φ] ∨ Pθ[ψ]].
Then φ ≤ ψ and (2) follows. □

3. The dS-pseudometric

Let X be a compact Kähler manifold of pure dimension n.

3.1. The construction. Let α be a big (1, 1)-class on X represented by a smooth form θ.
Definition 3.1. For φ,ψ ∈ PSH(X, θ), we define

dS(φ,ψ) := d1(ℓφ, ℓψ).
When necessary, we also write dS,θ instead. It turns out that this is never necessary once we

finish the proof of Corollary 3.17.
By definition, dS is a pseudo-metric on PSH(X, θ). By Example 2.3, we have

Proposition 3.2. For φ,ψ ∈ PSH(X, θ), the following are equivalent:
(1) φ ∼P ψ;
(2) dS(φ,ψ) = 0.

The pseudo-metric dS itself does not seem to be a natural choice, however, the convergence
notion it defines is certainly natural, as we will see repeatedly in this note.

We derive a few elementary properties from the definition.
lma:varphileqpsi_metric Lemma 3.3 ([

DDNLmetric
DDNL21, Lemma 3.4]). Suppose that φ,ψ ∈ PSH(X, θ) and φ ⪯P ψ, then

dS(φ,ψ) = 1
n+ 1

n∑
j=0

(∫
X
θjψ ∧ θn−j

Vθ
−
∫
X
θjφ ∧ θn−j

Vθ

)
.
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Proof. This follows trivially from (2.3). □

lma:dsmetricdoubleineq Lemma 3.4. For any φ,ψ ∈ PSH(X, θ), we have

{eq:ds_biineq}{eq:ds_biineq} (3.1) dS(φ,ψ) ≤
n∑
j=0

(
2
∫
X
θjφ∨ψ ∧ θn−j

Vθ
−
∫
X
θjφ ∧ θn−j

Vθ
−
∫
X
θjψ ∧ θn−j

Vθ

)
≤ CndS(φ,ψ),

where Cn = 3(n+ 1)2n+2.

Proof. It suffices to show that
{eq:ellmax1}{eq:ellmax1} (3.2) ℓφ ∨ ℓψ = ℓφ∨ψ.

Assuming this, then (3.1) follows from Lemma 3.3 and Lemma 2.4.
Next we prove (3.2). Of course by definition, it is trivial that

ℓφ ≤ ℓφ∨ψ, ℓψ ≤ ℓφ∨ψ.

So
ℓφ ∨ ℓψ ≤ ℓφ∨ψ.

Conversely, if ℓ ∈ R1(X, θ) and ℓφ ∨ ℓψ ≤ ℓ, then for any C ≥ 0,
(Vθ − C) ∨ φ ≤ ℓ, (Vθ − C) ∨ ψ ≤ ℓ.

It follows that
(Vθ − C) ∨ (φ ∨ ψ) ≤ ℓC .

From this, we conclude that
ℓφ∨ψ ≤ ℓ.

□

From this lemma, we find that the dS-convergence is characterized by numerical conditions of
non-pluripolar masses. The criterion here is still way too complicated for applications, we will
see a better criterion in Corollary 3.16. For now, let us record the following corollary.

cor:monodsconv Corollary 3.5. Let φj , φ ∈ PSH(X, θ) (j ≥ 1). Assume that one of the following conditions
holds:

(1) φj ⪰ φ for all j;
(2) φj ⪯ φ for all j.

Then the following are equivalent:
(1) φj

dS−→ φ;
(2)

∫
X θ

k
φj

∧ θn−k
Vθ

→
∫
X θ

k
φ ∧ θn−k

Vθ
for all k = 0, . . . , n.

lma:dslor Lemma 3.6. Let φ,ψ, η ∈ PSH(X, θ), then
{eq:dSmax}{eq:dSmax} (3.3) dS(φ ∨ η, ψ ∨ η) ≤ CndS(φ,ψ),

where Cn = 3(n+ 1)2n+2.

Proof. According to Lemma 3.4, we may assume that φ ≤ ψ.
We will show that for each C ≥ t ≥ 0,

{eq:d1maxcomp}{eq:d1maxcomp} (3.4) d1(ℓφ∨η,C
t , ℓψ∨η,C

t ) ≤ d1(ℓφ,Ct , ℓψ,Ct ).
When C → ∞, by [

DDNL18big
DDNL18a, Proposition 2.7], it follows that

d1(ℓφ∨η
t , ℓψ∨η

t ) ≤ d1(ℓφt , ℓ
ψ
t ),

which implies (3.3).
It remains to argue (3.4). As φ ≤ ψ, we know that

d1(ℓφt , ℓ
ψ
t ) = t

C
d1(ℓφC , ℓ

ψ
C), d1(ℓφ∨η

t , ℓψ∨η
t ) = t

C
d1(ℓφ∨η

C , ℓψ∨η
C ).

It suffices to handle the case t = C, namely,
d1(φ ∨ η ∨ (Vθ − C), ψ ∨ η ∨ (Vθ − C)) ≤ d1(φ ∨ (Vθ − C), ψ ∨ (Vθ − C)).
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This is just [
Xia19
Xia21, Proposition 6.8]. □

3.2. Convergence theorems.

lma:dsconvpertV Lemma 3.7. Let (φk)k be a sequence in PSH(X, θ) and φ ∈ PSH(X, θ). Assume that φk dS−→ φ
as k → ∞. Then for any t ∈ (0, 1],

(1 − t)φk + tVθ
dS−→ (1 − t)φ+ tVθ

as k → ∞.

Proof. Fix t ∈ (0, 1], we write
φkt = (1 − t)φk + tVθ, φt = (1 − t)φ+ tVθ.

By Lemma 3.4, it suffices to show that for each j = 0, . . . , n,

{eq:massconvafterpert}{eq:massconvafterpert} (3.5) 2
∫
X
θj
φk

t ∨φt
∧ θn−j

Vθ
−
∫
X
θj
φk

t
∧ θn−j

Vθ
−
∫
X
θjφt

∧ θn−j
Vθ

→ 0.

Observe that
φkt ∨ φt = (1 − t)(φ ∨ φk) + tVθ.

So after binary expansion, (3.5) follows from Lemma 3.4. □

We need the existence of an extraordinary envelope, which looks like a miracle to the author.
This envelope plays a key role in reducing problems with general positive currents to problems
with Kähler currents.

lma:pathoenvelope Lemma 3.8 ([
DDNLmetric
DDNL21, Lemma 4.3]). Let φ,ψ ∈ PSH(X, θ), φ ⪯ ψ and

∫
X θ

n
φ > 0. Then for

any

a ∈

1,
( ∫

X θ
n
ψ∫

X θ
n
ψ −

∫
X θ

n
φ

)1/n
 ,

there is η ∈ PSH(X, θ) such that
a−1η + (1 − a−1)ψ ≤ φ.

The fraction is understood as ∞ if
∫
X θ

n
ψ =

∫
X θ

n
φ.

We write P (aφ + (1 − a)ψ) ∈ PSH(X, θ) for the regularized supremum of all such η’s.
In fact, observe that ψ ≥ φ − C, so η is uniformly bounded from above. It follows that
P (aφ+ (1 − a)ψ) ∈ PSH(X, θ). On the other hand, by Hartogs lemma,

a−1P (aφ+ (1 − a)ψ) + (1 − a−1)ψ ≤ φ

holds outside a pluripolar set, hence everywhere.
As a corollary is of crucial importance:

prop:posvol_dom_kahler_cur Proposition 3.9. Let φ ∈ PSH(X, θ) such that
∫
X θ

n
φ > 0. Then there exists ψ ∈ PSH(X, θ)

such that φ ≥ ψ and θψ ≥ ω for some Kähler form ω.

Proof. We may assume that φ ≤ 0. Since φ ≤ Vθ and
∫
X θ

n
Vθ

≥
∫
X θ

n
φ > 0, by Lemma 3.8, there

exists b > 0 such that h := P ((1 + b)φ− bVθ) ∈ PSH(X, θ) and
b

b+ 1Vθ + 1
b+ 1h ≤ u .

By [
Bo02
Bou02], there exists w ∈ PSH(X, θ) such that w ≤ 0 and θw ≥ δω for some δ > 0. Since

w ≤ Vθ, we obtain that
ψ := b

b+ 1w + 1
b+ 1h ≤ φ

and θψ ≥ bδ
b+1ω. □

lma:incseqdsconv Lemma 3.10. Let φj , φ ∈ PSH(X, θ) (j ≥ 1). Assume that φj is an increasing sequence
converging almost everywhere to φ. Then dS(φj , φ) → 0 as j → ∞.

Proof. This follows from Lemma 3.4 and the lower semi-continuity of non-pluripolar products. □
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lma:decdS Lemma 3.11 ([
DDNLmetric
DDNL21, Proposition 4.8]). Let φj , φ ∈ PSH(X, θ) (j ≥ 1). Assume that∫

X θ
n
φj

is bounded from below by a positive constant, φj is model for each j and φj decreases

pointwisely to φ, then φj
dS−→ φ.

Proof. Let bj ∈ R be a sequence converging to ∞ such that

bj ∈

1,
( ∫

X θ
n
φj∫

X θ
n
φj

−
∫
X θ

n
φ

)1/n
 .

The existence of this sequence of non-trivial. It requires the fact that
∫
X θ

n
φj

→
∫
X θ

n
φ. This is

proved in [
DDNLmetric
DDNL21, Proposition 4.6]. As the technique is quite unrelated to the techniques in

this note, we do not reproduce the argument.
By Lemma 3.8, we can find ηj ∈ PSH(X, θ) such that

b−1
j ηj + (1 − b−1

j )φj ≤ φ.

It follows from Theorem 2.1 that for any k = 0, . . . , n,∫
X
θkφ ∧ θn−k

Vθ
≥ (1 − b−1

j )k
∫
X
θkφj

∧ θn−k
Vθ

.

Together with Theorem 2.1, we conclude that

lim
j→∞

∫
X
θkφj

∧ θn−k
Vθ

=
∫
X
θkφ ∧ θn−k

Vθ
.

Hence φj
dS−→ φ by Lemma 3.3. □

The following proposition allows us to reduce a number of problems to monotone sequences.

prop:incanddec Proposition 3.12. Let φj , φ ∈ PSH(X, θ) (j ≥ 1), φj
dS−→ φ. Assume that there is δ > 0 such

that ∫
X
θnφj

≥ δ,

∫
X
θnφ ≥ δ

for all j and Pθ[φj ] = φj, Pθ[φ] = φ for all j. Then up to replacing (φj)j by a subsequence,
there is a decreasing sequence ψj ∈ PSH(X, θ) and an increasing sequence ηj ∈ PSH(X, θ) such
that

(1)
dS(φ,ψj) → 0, dS(φ, ηj) → 0

as j → ∞;
(2) ψj ≥ φj ≥ ηj for all j.

In fact, we will take
ηj = φj ∧ φj+1 ∧ · · ·

and
ψj = sup*

k≥j
φk.

Proof. We are free to replace (φj)j by a subsequence. So we may assume that

dS(φj , φj+1) ≤ C−2j
n ,

where Cn is the constant in Lemma 3.4.
Step 1. We handle ψj ’s. For each j ≥ 1 and k ≥ 1, by Lemma 3.4 we have

dS(φj , φj ∨ φj+1 ∨ · · · ∨ φj+k) ≤CndS(φj , φj+1 ∨ · · · ∨ φj+k)
≤CndS(φj , φj+1) + CndS(φj+1, φj+1 ∨ · · · ∨ φj+k).

By iteration, we find

dS(φj , φj ∨ φj+1 ∨ · · · ∨ φj+k) ≤
j+k−1∑
a=j

Ca+1−j
n dS(φa, φa+1) ≤

j+k−1∑
a=j

Ca+1−j
n C−2a

n .
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From this we see that

lim
j→∞

lim
k→∞

dS(φj , φj ∨ φj+1 ∨ · · · ∨ φj+k) = 0.

By Lemma 3.10, we conclude that dS(φ,ψj) → 0.
Step 2. We consider the ηj ’s. This case is more tricky and the proof requires some different

techniques, we omit the proof and refer to [
DDNLmetric
DDNL21, Theorem 5.6] for the details. □

In fact the construction in Step 1 works more generally for any Cauchy sequence. This gives
the following

cor:Cauchysubstract Corollary 3.13. Let φj ∈ PSH(X, θ) be a dS-Cauchy sequence. Then up to replacing φj by a
subsequence, there is a decreasing Cauchy sequence ψj ∈ PSH(X, θ) such that dS(φj , ψj) → 0
and φj ⪯ ψj.

cor:dScomplete Corollary 3.14. For any δ > 0, the space{
φ ∈ PSH(X, θ) :

∫
X
θnφ ≥ δ

}
is complete with respect to dS.

Proof. Take a Cauchy sequence φj ∈ PSH(X, θ) (j ≥ 1) with
∫
X θ

n
φj

≥ δ. It suffices to show
that each subsequence of φj admits a convergent subsequence. In turn, we are free to replace φj
by a subsequence. By Corollary 3.13, we may therefore assume that we can find an equivalent
decreasing Cauchy sequence (ψj)j with φj ⪯ ψj . It suffices to show that ψj converges. But this
follows from Lemma 3.11. □

thm:convdS Theorem 3.15. Let α1, . . . , αn be big (1, 1)-classes on X represented by θ1, . . . , θn. Suppose
that (φkj )k are sequences in PSH(X, θj) for j = 1, . . . , n and φ1, . . . , φn ∈ PSH(X, θ). We assume
that φkj

dS−→ φj as k → ∞ for each j = 1, . . . , n. Then

{eq:convmixedmassds}{eq:convmixedmassds} (3.6) lim
k→∞

∫
X
θ1,φk

1
∧ · · · ∧ θn,φk

n
=
∫
X
θ1,φ1 ∧ · · · ∧ θn,φn .

Proof. Step 1. We reduce to the case where φkj , φj all have positive masses and there is a
constant δ > 0, such that for all j and k,∫

X
θn
j,φk

j
> δ.

Take t ∈ (0, 1). By Lemma 3.7, we have

(1 − t)φkj + tVθj

dS−→ (1 − t)φj + tVθj

as k → ∞. Assume that we have proved the special case of the theorem, we have

lim
k→∞

∫
X
θ1,(1−t)φk

1+tVθ1
∧ · · · ∧ θn,(1−t)φk

n+tVθn
=
∫
X
θ1,(1−t)φ1+tVθ1

∧ · · · ∧ θn,(1−t)φn+tVθn
.

From this, (3.6) follows easily.
Step 2. Now we may assume that φkj and φj are all of positive mass and are model potentials.
It suffices to prove that any subsequence of

∫
X θ1,φk

1
∧ · · · ∧ θn,φk

n
has a converging subsequence

with limit
∫
X θ1,φ1 ∧ · · · ∧ θn,φn . Thus, by Proposition 3.12, we may assume that for each fixed i,

φki is either increasing or decreasing. We may assume that for i ≤ i0, the sequence is decreasing
and for i > i0, the sequence is increasing.

Recall that in (3.6) the ≥ inequality always holds by Theorem 2.1, it suffices to prove

{eq:limsup}{eq:limsup} (3.7) lim
k→∞

∫
X
θ1,φk

1
∧ · · · ∧ θn,φk

n
≤
∫
X
θ1,φ1 ∧ · · · ∧ θn,φn .

By Theorem 2.1 in order to prove (3.7), we may assume that for j > i0, the sequences φkj are
constant. Thus, we are reduced to the case where for all i, φki are decreasing.
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In this case, for each i we may take an increasing sequence bki > 1, tending to ∞, such that

(bki )n
∫
X
θni,φi

≥
(
(bki )n − 1

) ∫
X
θn
i,φk

i
.

Let ψki be the maximal θi-psh function such that

(bki )−1ψki +
(
1 − (bki )−1

)
φki ≤ φi ,

whose existence is guaranteed by Lemma 3.8.
Then by Theorem 2.1 again,

n∏
i=1

(
1 − (bki )−1

) ∫
X
θ1,φk

1
∧ · · · ∧ θn,φk

n
≤
∫
X
θ1,φ1 ∧ · · · ∧ θn,φn .

Let k → ∞, we conclude (3.7).
□

cor:dsconvcrit Corollary 3.16. Suppose that φ,φi ∈ PSH(X, θ) (i ≥ 1). Then the following are equivalent:

(1) φi
dS−→ φ;

(2) φi ∨ φ
dS−→ φ and

{eq:massconv_varphii}{eq:massconv_varphii} (3.8) lim
i→∞

∫
X
θjφi

∧ θn−j
Vθ

=
∫
X
θjφ ∧ θn−j

Vθ

for each j = 0, . . . , n.

The corollary allows us to reduce a number of convergence problems related to dS to the
case φi ≥ φ, which is much easier to handle by Lemma 3.3. This is the most handy way of
establishing dS-convergence in practice.

Proof. (1) implies (2): φi ∨ φ
dS−→ φ follows from Lemma 3.4. While (3.8) follows from Theo-

rem 3.15.
(2) implies (1): By (3.1), we need to show that for each j = 0, . . . , n, we have

2
∫
X
θjφi∨φ ∧ θn−j

Vθ
−
∫
X
θjφ ∧ θn−j

Vθ
−
∫
X
θjφi

∧ θn−j
Vθ

→ 0.

This follows from Theorem 3.15 and (3.8). □

cor:dSconv_changetheta Corollary 3.17. Let φk, φ ∈ PSH(X, θ) (k ≥ 1) and ω be a Kähler form on X. Then the
following are equivalent:

(1) φk
dS,θ−−→ φ;

(2) φk
dS,θ+ω−−−−→ φ.

From now on, we mostly write dS instead of dS,θ. This corollary shows that the dS-convergence
is the correct notion even at 0 mass.

Proof. (1) implies (2): It suffices to show that for each j = 0, . . . , n, we have

2
∫
X

(θ + ω)jφk∨φ ∧ (θ + ω)n−j
Vθ+ω

−
∫
X

(θ + ω)jφk
∧ (θ + ω)n−j

Vθ+ω
−
∫
X

(θ + ω)jφ ∧ (θ + ω)n−j
Vθ+ω

→ 0

as k → ∞. Note that this quantity is a linear combination of terms of the following form:

2
∫
X
θrφk∨φ ∧ ωj−r ∧ (θ + ω)n−j

Vθ+ω
−
∫
X
θrφk

∧ ωj−r ∧ (θ + ω)n−j
Vθ+ω

−
∫
X
θrφ ∧ ωj−r ∧ (θ + ω)n−j

Vθ+ω
,

where r = 0, . . . , j. By Theorem 3.15, it suffices to show that φ ∨ φk
dS−→ φ. But this follows

from Corollary 3.16
(2) implies (1): From the direction we already proved, for each C ≥ 1, we have that

φk
dS,θ+Cω−−−−−→ φ.
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By Theorem 3.15, it follows that

lim
k→∞

∫
X

(θ + Cω)jφk
∧ θn−j

Vθ
=
∫
X

(θ + Cω)jφ ∧ θn−j
Vθ

for all j = 0, . . . , n. It follows that

{eq:varphijmass_limit}{eq:varphijmass_limit} (3.9) lim
k→∞

∫
X
θjφk

∧ θn−j
Vθ

=
∫
X
θjφ ∧ θn−j

Vθ
.

By Corollary 3.16, it remains to show that φk ∨ φ
dS,θ−−→ φ. By Corollary 3.16 again, we know

that φk ∨ φ
dS,θ+ω−−−−→ φ. So it suffices to apply (3.9) to φk ∨ φ instead of φk and we conclude by

Lemma 3.3. □

thm:contPI Theorem 3.18. The map PSH(X, θ)>0 → PSH(X, θ)>0 given by φ 7→ P [φ]I is continuous with
respect to dS.

Here PSH(X, θ)>0 denotes the subset of PSH(X, θ) consisting of φ with
∫
X θ

n
φ > 0.

Proof. Let φi, φ ∈ PSH(X, θ)>0, φi
dS−→ φ. We want to show that

(3.10) P [φi]I
dS−→ P [φ]I .

We may assume that the φi’s and φ are all model potentials. By Proposition 3.12, we may
assume that (φi)i is either increasing or decreasing. Both cases follow from [

DX22
DX22, Lemma 2.21]

and Lemma 3.11. □

lma:dsconvupplower Lemma 3.19. Let φ,φj , ψj , ηj ∈ PSH(X, θ) (j ≥ 1). Assume that
(1) ψj ≤ φj ≤ ηj;
(2) ηj

dS−→ φ, ψj
dS−→ φ.

Then φj
dS−→ φ.

Proof. Observe that for each k = 0, . . . , n, we have∫
X
θkψj

∧ θn−k
Vθ

≤
∫
X
θkφj

∧ θn−k
Vθ

≤
∫
X
θkηj

∧ θn−k
Vθ

for all j ≥ 1. By Theorem 3.15, the limit of the both ends are
∫
X θ

k
φ ∧ θn−k

Vθ
as j → ∞. It follows

that

{eq:thetak_conv}{eq:thetak_conv} (3.11) lim
j→∞

∫
X
θkφj

∧ θn−k
Vθ

=
∫
X
θkφ ∧ θn−k

Vθ
.

By Corollary 3.16, it remains to prove that φj ∨ φ
dS−→ φ. By Corollary 3.16, up to replacing

ψj (resp. φj , ηj) by ψj ∨ φ (resp. φj ∨ φ, ηj ∨ φ), we may assume from the beginning that
ψj , φj , ηj ≥ φ. Now φj

dS−→ φ by (3.11) and Lemma 3.3. □

At this point, we can recall another fundamental property about dS : the non-Archimedean
data are continuous with respect dS .

thm:Lelongcont Theorem 3.20. Let φj , φ ∈ PSH(X, θ) (j ≥ 1). Assume that φj
dS−→ φ, then for any prime

divisor E over X, we have
{eq:convnu}{eq:convnu} (3.12) lim

j→∞
ν(φj , E) = ν(φ,E).

Proof. By Corollary 3.17, we may assume that the masses of φj and of φ are bounded from
below by a positive constant.

By Theorem 3.18, we may assume that φi and φ are both I-model. When proving (3.12), we
are free to pass to subsequences. By Proposition 3.12, up to passing to a subsequence, we may
assume that φi → φ almost everywhere.

By Hartogs lemma, there is a null set Z ⊆ X such that on X \ Z, we have
sup*
j≥i

φj = sup
j≥i

φj
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for all i ≥ 1. It follows that
φ = inf

i∈N
sup*
j≥i

φj

on X \ Z hence everywhere on X. In fact, we can also assume that

ψi := sup*
j≥i

φj
dS−→ φ

as i → ∞ by Proposition 3.12.
It then follows that Pθ[ψi] → φ everywhere. By Lemma 3.21, we then have

lim
i→∞

ν(ψi, E) = ν(φ,E).

By [
DX22
DX22, Lemma 3.4], we have

ν(φ,E) = lim
i→∞

ν(φi, E).

Together with the upper semi-continuity of Lelong numbers, we find
ν(φ,E) = lim

i→∞
ν(φi, E).

□

lma:Imodeldeclelong Lemma 3.21. Let φj ∈ PSH(X, θ) (j ≥ 1) be a decreasing sequence of model potentials. Let φ
be the limit of φj. Assume that φ has positive mass. Then for any prime divisor E over X,

lim
j→∞

ν(φj , E) = ν(φ,E).

Proof. Since φ := limj φj and the φj ’s are model, we obtain that
∫
Y θ

n
φ = limj

∫
Y θ

n
φj
> 0 by

Lemma 3.11. By Lemma 3.8, for any ϵ ∈ (0, 1), for j big enough there exists ψj ∈ PSH(X, θ)
such that (1 − ϵ)φj + ϵψj ≤ φ. This implies that for j big enough we have

(1 − ϵ)ν(φj , E) + ϵν(ψj , E) ≥ ν(φ,E) ≥ ν(φj , E).
However ν(χ,E) is uniformly bounded (by some Seshadri type constant) for any χ ∈ PSH(X, θ)

and E fixed. So letting ϵ ↘ 0 we conclude. □

lma:lor_dS_conv Lemma 3.22. Let φi, φ, ψj , ψ ∈ PSH(X, θ). Assume that φi
dS−→ φ, ψi

dS−→ ψ. Then

φi ∨ ψi
dS−→ φ ∨ ψ.

Proof. We compute
dS(φi ∨ ψi, φ ∨ ψ) ≤dS(φi ∨ ψi, φi ∨ ψ) + dS(φi ∨ ψ,φ ∨ ψ)

≤Cn (dS(ψi, ψ) + dS(φi, φ)) ,
where the second inequality follows from Lemma 3.6. The right-hand side converges to 0 by our
hypothesis. □

thm:dSadditivity Theorem 3.23. Let α1, α2 be big classes represented by θ1, θ2. Suppose that φ,φi ∈ PSH(X, θ1),
ψ,ψi ∈ PSH(X, θ2). Consider the following three conditions:

(1) φi
dS−→ φ;

(2) ψi
dS−→ ψ;

(3) φi + ψi
dS−→ φ+ ψ.

Then any two of these conditions imply the third.
Proof. By Corollary 3.17, we may assume that θ1, θ2 are both Kähler forms. We denote them
by ω1, ω2 instead.

(1) + (2) implies (3): Let ω = θ1 + θ2. It suffices to show that for each r = 0, . . . , n,

2
∫
X
ωr(φj+ψj)∨(φ+ψ) ∧ ωn−r −

∫
X
ωrφj+ψj

∧ ωn−r −
∫
X
ωrφ+ψ ∧ ωn−r → 0.

Observe that
(φj + ψj) ∨ (φ+ ψ) ≤ φj ∨ φ+ ψj ∨ ψ.
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Thus, it suffices to show that

2
∫
X
ωrφj∨φ+ψj∨ψ ∧ ω −

∫
X
ωrφj+ψj

∧ ωn−r −
∫
X
ωrφ+ψ ∧ ωn−r → 0.

The left-hand side is a linear combination of

2
∫
X
ωa1,φj∨φ ∧ ωr−a2,ψj∨ψ ∧ ωn−r −

∫
X
ωa1,φj

∧ ωr−a2,ψj
∧ ωn−r −

∫
X
ωa1,φ ∧ ωr−a2,ψ ∧ ωn−r

with a = 0, . . . , r. Observe that φj ∨ φ
dS−→ φ and ψj ∨ ψ

dS−→ ψ by Lemma 3.4, each term tends
to 0 by Theorem 3.15.

(1)+(3) implies (2): For each C ≥ 1, from the direction we already proved,

Cφi + ψi
dS−→ Cφ+ ψ.

By Theorem 3.15, for each j = 0, . . . , n,

lim
i→∞

∫
X

(Cω1 + ω2 + ddc(Cφi + ψi))j ∧ ωn−j
2 =

∫
X

(Cω1 + ω2 + ddc(Cφ+ ψ))j ∧ ωn−j
2 .

It follows that

{eq:psii_quant_conv}{eq:psii_quant_conv} (3.13) lim
i→∞

∫
X
ωj2,ψi

∧ ωn−j
2 =

∫
X
ωj2,ψ ∧ ωn−j

2 .

Therefore, (2) follows if ψi ≥ ψ for each i by Lemma 3.3.
Next we prove the general case. By the direction that we already proved, we know that

φi + ψ
dS−→ φ+ ψ. By Lemma 3.22, we have that

φi + ψi ∨ ψ
dS−→ φ+ ψ.

It follows from the special case above that ψi∨ψ
dS−→ ψ. It follows from (3.13) and Corollary 3.16

that (2) holds. □

Finally, let us show that the uniform structure defined by dS is natural at mass 0.

lma:Cauchy_pert Lemma 3.24. Let φj , φ ∈ PSH(X, θ) (j ≥ 1). Assume that the sequence (φj)j is Cauchy with
respect to dS,θ, then it is also Cauchy with respect to dS,θ+ω.

Proof. Fix t ∈ (0, 1), we claim that ((1 − t)φj + tVθ)j is also a Cauchy sequence with respect to
dS,θ. To see this, observe that for each k = 0, . . . , n,

2
∫
X
θk((1−t)φi+tVθ)∨((1−t)φj+tVθ) ∧ θn−k

Vθ
−
∫
X
θk(1−t)φi+tVθ

∧ θn−k
Vθ

−
∫
X
θk(1−t)φj+tVθ

∧ θn−k
Vθ

=2
∫
X
θk(1−t)φi∨φj+tVθ

∧ θn−k
Vθ

−
∫
X
θk(1−t)φi+tVθ

∧ θn−k
Vθ

−
∫
X
θk(1−t)φj+tVθ

∧ θn−k
Vθ

=
k∑
a=0

(
k

a

)(
2θaφi∨φj

∧ θn−a
Vθ

− θaφi
∧ θn−a

Vθ
− θaφj

∧ θn−a
Vθ

)
.

By Corollary 3.14, we can find ψt ∈ PSH(X, θ) so that

(1 − t)φj + tVθ
dS,θ−−→ ψt.

It follows from Corollary 3.17 that

(1 − t)φj + tVθ
dS,θ+ω−−−−→ ψt.
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In particular, ((1 − t)φj + tVθ)j is also a Cauchy sequence with respect to dS,θ+ω. But observe
that

n∑
a=0

(
2
∫
X

(θ + ω)a((1−t)φi+tVθ)∨((1−t)φj+tVθ) ∧ θn−a
Vθ+ω

−
∫
X

(θ + ω)a(1−t)φi+tVθ
∧ θn−a

Vθ+ω
−∫

X
(θ + ω)a(1−t)φj+tVθ

∧ θn−a
Vθ+ω

)
=

n∑
a=0

(
2
∫
X

(θ + ω)a(1−t)φi∨φj+tVθ
∧ θn−a

Vθ+ω
−
∫
X

(θ + ω)a(1−t)φi+tVθ
∧ θn−a

Vθ+ω
−
∫
X

(θ + ω)a(1−t)φj+tVθ
∧ θn−a

Vθ+ω

)

≥
n∑
a=0

(1 − t)a
(

2
∫
X

(θ + ω)n−a
φi∨φj

∧ θn−a
Vθ+ω

−
∫
X

(θ + ω)aφi
∧ θn−a

Vθ+ω
−
∫
X

(θ + ω)aφj
∧ θn−a

Vθ+ω

)
.

It follows that (φj)j is also a Cauchy sequence with respect to dS,θ+ω. □

3.3. Quasi-equisingular approximations.

Definition 3.25. Let φj , φ ∈ PSH(X, θ) (j ∈ Z>0). We say φj is a quasi-equisingular approxi-
mation of φ if

(1) φj has analytic singularities for each j;
(2) φj is decreasing with limit φ;
(3) for each λ′ > λ > 0, there is j > 0 such that

{eq:quasi_equi_cond}{eq:quasi_equi_cond} (3.14) I(λ′φj) ⊆ I(λφ).

We prove that a general dS-convergent sequence enjoys a quasi-equisingular property.

thm:equising_cond_general Theorem 3.26. Let φj , φ ∈ PSH(X, θ) (j ∈ Z>0). Assume that φj
dS−→ φ. Then for each

λ′ > λ > 0, there is j0 > 0 so that for j ≥ j0, (3.14) holds.

Proof. Fix λ′ > λ > 0, we want to find j0 > 0 so that for j ≥ j0, (3.14) holds.
Step 1. We first assume that φ has analytic singularities.
Let π : Y → X be a log resolution of φ and let E1, . . . , EN be all prime divisors of the singular

part of φ on Y . Recall that a local holomorphic function f lies in the right-hand side of (3.14)
if and only if

{eq:ordEif}{eq:ordEif} (3.15) ordEi(f) > λ ordEi(φ) −AX(Ei)
whenever they make sense. Here AX denotes the log discrepancy. Similarly, f lies in the left-hand
side of (3.14) implies that there is ϵ > 0 so that

ordEi(f) ≥ (1 + ϵ)λ′ ordEi(φj) −AX(Ei).
As Lelong numbers are continuous with respect to dS by Theorem 3.20, we can find j0 > 0 so
that when j ≥ j0, λ′ ordEi(φj) ≥ λ ordEi(φ) for all i. In particular, (3.15) follows.

Step 2. We handle the general case.
By Corollary 3.17, we are free to increase θ and assume that θφ is a Kähler current.
Take a quasi-equisingular approximation ψk of φ. The existence is guaranteed by [

DPS01
DPS01].

Take λ′′ ∈ (λ, λ′), then by definition, we can find k > 0 so that
I(λ′′ψk) ⊆ I(λφ).

Observe that φj ∨ ψk
dS−→ ψk as j → ∞ by Lemma 3.22. By Step 1, we can find j0 > 0 so that

for j ≥ j0,
I(λ′(φj ∨ ψk)) ⊆ I(λ′′ψk).

It follows that for j ≥ j0,
I(λ′φj) ⊆ I(λφ).

□

cor:decseq_ds_equiv_quasieq Corollary 3.27. Let φj , φ ∈ PSH(X, θ). Assume that φj have analytic singularities, φj de-
creases to φ and

∫
X θ

n
φ > 0. Then the following are equivalent:
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(1) φj
dS−→ P [φ]I ;

(2) φj is a quasi-equisingular approximation of φ.

Proof. (2) implies (1): This is proved more generally in [
DX21
DX21;

DX22
DX22].

(1) implies (2): This follows from Theorem 3.26. □

This corollary shows in particular that being a quasi-equisingular approximation is invariant
under blowing-ups with smooth centers, a fact which is not obvious by the very definition.

4. I-good singularities

Let X be a connected compact Kähler manifold of dimension n.

4.1. The closure of analytic singularity types. Let θ be a smooth real closed (1, 1)-form on
X representing a big class.

lem:pullback_PI Lemma 4.1. Let π : X ′ → X be a bimeromorphic morphism from a connected compact Kähler
manifold Y and φ ∈ PSH(X, θ). Then we have

π∗Pθ[φ]I = Pπ∗θ[π∗φ]I .

The proof is left to the readers.

lem:algebraic_PI Lemma 4.2. Suppose that φ ∈ PSH(X, θ) has analytic singularities, then
φ ∼ Pθ[φ] = Pθ[φ]I .

See [
Kim15
Kim15, Theorem 4.3].

prop: PIlimit Proposition 4.3. Let φ ∈ PSH(X, θ). Assume that θφ is a Kähler current. Let φj ∈ PSH(X, θ)
be a quasi-equisingular approximation of φ. Then Pθ[φj ]I ↘ Pθ[φ]I as j → ∞. In particular,
φj

dS−→ Pθ[φ]I .

Proof. The last assertion follows from Lemma 4.2, Lemma 3.11 and the first assertion. It suffices
to prove the first assertion.

We may assume that φ is I-model. Let
ψ = lim

j→∞
Pθ[φj ]I .

Then ψ is I-model and φ ≤ ψ. In order to conclude the equality, it suffices to show that for any
t > 0,

{eq:IvarphiequalIpsi}{eq:IvarphiequalIpsi} (4.1) I(tφ) = I(tψ).
We fix t > 0. By the quasi-equisingular property, for any δ > 0, we can find k0 > 0 so that

I(tδψ) ⊆ I(tδφk0) ⊆ I(tφ).
Letting δ ↘ 1 and using the strong openness, we conclude that

I(tψ) ⊆ I(tφ).
The reverse inclusion is trivial and (4.1) is proved. □

thm:dS_A_closure Theorem 4.4. 1 Let φ ∈ PSH(X, θ) such that
∫
X θ

n
φ > 0. Then the following are equivalent:

(1) φ lies in the dS-closure of analytic singularities;
(2) φ is I-good.

Proof. By Proposition 3.9, we can find ψ ∈ PSH(X, θ) be such that ψ ≤ φ and θψ ≥ ω for some
Kähler form ω on X. Let

ψt := (1 − t)ψ + tφ

for t ∈ [0, 1]. Then θψt is a Kähler current for t ∈ [0, 1) and ψt ↗ φ a.e. as t ↗ 1.
(2) =⇒ (1): We may further assume that φ is I-model. It is straightforward to verify that

Pθ[ψt]I ↗ Pθ[φ]I = u a.e. as t → 1. It follows that Pθ[ψt]I
dS−→ φ. In particular, in order to

1There is an obvious typo in [
DX21
DX21, Theorem 4.5]
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prove (1), we may assume furthermore that θφ is a Kähler current. In this case, it suffices to
apply Proposition 4.3.

(1) =⇒ (2): Suppose there exists a sequence ψj ∈ PSH(X, θ) with analytic singularities such
that ψj

dS−→ φ. By Lemma 4.2, we can assume that ψj is I-model for each j. In addition, we
can assume that φ is model. Since

∫
X θ

n
φ > 0, after possibly restricting to a subsequence of ψj ,

we can use Proposition 3.12 to conclude existence of an increasing sequence of model potentials
φj ∈ PSH(X, θ) such that φj ≤ ψj and φj

dS−→ φ. Moreover, we can take

φj := lim
k→∞

ψj ∧ ψj+1 ∧ · · · ∧ ψj+k.

Since all the ψj ’s are I-model, it is straightforward to verify that the φj ’s are I-model as well.
Lastly, since φ is the increasing limit of the φj a.e., we conclude that φ is I-model as well. □

The omitted parts should be easy to verify. You can also find the arguments in [
DX22
DX22].

4.2. The volumes of Hermitian pseudo-effective line bundles. let T be an arbitrary
holomorphic vector bundle on X, with rank r. Let L be a pseudoeffective line bundle on X. Let
h be a smooth Hermitian metric on L such that θ := c1(L, h). We fix a Kähler form ω on X
such that ω − θ is a Kähler form.

prop:Tsuji_upper_bound Proposition 4.5. Suppose that φ ∈ PSH(X, θ). Then

{eq:upperbdd}{eq:upperbdd} (4.2) lim
k→∞

1
kn
h0(X,T ⊗ Lk ⊗ I(kφ)) ≤ r

n!

∫
X
θnPθ[φ]I .

Proof. We may assume that φ is I-model.
Let φj ∈ PSH(X, θ + ϵjω) be a quasi-equisingular approximation of φ, where ϵj > 0 is a

decreasing sequence with limit 0. Let πk : Yk → X be a resolution of singularities of φj .
By [

Dem12
Dem12, Proposition 5.8] and [

Bon98
Bon98, Théorème 2.1]2 applied to q = 0 on Yk, we obtain

that

lim
k→∞

1
kn
h0(X,T ⊗ Lk ⊗ I(kφ)) ≤ lim

k→∞

1
kn
h0(X,T ⊗ Lk ⊗ I(kφj))

= lim
k→∞

1
kn
h0(Y, π∗

kT ⊗ (π∗
kL)k ⊗KY/X ⊗ I(kπ∗

kφj))

≤ r

n!

∫
Yk(0)

π∗
kθ
n
φj

= r

n!

∫
πk(Yk(0))

θnφj

≤ r

n!

∫
πk(Yk(0))

(θ + ϵjω)nφj
≤ r

n!

∫
X

(θ + ϵjω)nφj
,

where Yk(0) ⊆ Yk is the set contained in the smooth locus of the (1,1)-current π∗
kθφj where

the eigenvalues of π∗
kθφj are all positive. Observe that limj→∞

∫
X(θ + ϵjω)nφj

=
∫
X θ

n
φ by the

argument of Proposition 4.3. So (4.2) follows. □

lem:boundbelow_analyt Lemma 4.6. Let φ ∈ PSH(X, θ) such that θφ is a Kähler current. Take a quasi-equisingular
approximation φj ∈ PSH(X, θ) of φ. Let β ∈ (0, 1). Then there exists k0 := k0(u, β) such that
for all k ≥ k0 there exists vβ,k ∈ PSH(X, θ) satisfying the following:

(1) Pθ[φ]I ≥ (1 − β)φk + βvβ,k;
(2)

∫
X θ

n
vβ,k

> 0.

Proof. Due to Proposition 4.3, we have that
∫
X θ

n
φk

↘
∫
X θ

n
Pθ[φ]I . In particular, there exists

k0 > 0 such that
1
βn

<

∫
X θ

n
φk∫

X θ
n
φk

−
∫
X θ

n
Pθ[φ]I

for all k ≥ k0.

2There is a subtle point. In Bonavero’s thesis, he considered only analytic singularities with smooth remainders.
We apply his results to analytic singularities with bounded remainders. This can be justified by first passing to a
resolution of the singularity and then regularize the remainder term.
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By Lemma 3.8 we obtain that

vk,β := P

( 1
β
Pθ[φ]I − 1 − β

β
φk

)
∈ PSH(X, θ)

and
Pθ[φ]I ≥ (1 − β)φk + βvβ,k.

Now we show that vβ,k has positive mass. Pick β′ ∈ (0, β) such that
1
β′n <

∫
X θ

n
φk∫

X θ
n
φk

−
∫
X θ

n
Pθ[φ]I

for all k ≥ k0.

Then
h := P

( 1
β′Pθ[φ]I − 1 − β′

β′ φk

)
∈ PSH(X, θ)

is defined as well, and

vk,β ≥ β′

β
h+ β − β′

β
φk ∈ PSH(X, θ),

implying that ∫
X
θnvk,β

≥ (β − β′)n

βn

∫
X
θnφk

≥ (β − β′)n

βn

∫
X
θnφ > 0.

□

prop:Tsuji_lower_bound_Kahler Proposition 4.7. Suppose that φ ∈ PSH(X, θ) with θφ ≥ δω for some δ > 0. Then

lim
j→∞

1
jn
h0(X,T ⊗ Lj ⊗ I(jφ)) ≥ r

n!

∫
X
θnPθ[φ]I .

Proof. To start, we fix a number β = p/q ∈ (0,min(δ, 1)) ∩ Q. It suffices to show that there is a
constant C > 0, only dependent on r, n and θ, such that

lim
j→∞

1
jn
h0(X,T ⊗ Lj ⊗ I(jφ)) ≥ r

n!

∫
X
θnPθ[φ]I − Cβ .

Writing j = aq + b for some b = 0, . . . , q − 1, observe that

h0(X,T ⊗ Lj ⊗ I(jφ)) ≥ h0
(
X,T ⊗ Lb−q ⊗ L(a+1)q ⊗ I((a+ 1)qφ)

)
.

Absorbing Lb−q into T , and noticing that b− q can only take a finite number of values, we find
that it suffices to prove the following

{eq:inproofh0lim}{eq:inproofh0lim} (4.3) lim
j→∞

1
jnqn

h0(X,T ⊗ Ljq ⊗ I(jqφ)) ≥ r

n!

∫
X
θnPθ[φ]I − Cβ ,

for arbitrary twisting bundle T .
By Lemma 4.6, there is k0 > 0 depending on β and u, such that for k ≥ k0, there exists a

potential vβ,k ∈ PSH(X, θ) of positive mass such that
Pθ[φ]I ≥ wβ,k := (1 − β)φk + βvβ,k for all k ≥ k0.

For big enough k0 we also have θφk
≥ βω ≥ βθ for all k ≥ k0. In particular, φk ∈ PSH(X, (1−β)θ).

We have
H0(X,T ⊗ Ljq ⊗ I(jqφ)) ⊇ H0(X,T ⊗ Ljq ⊗ I(jqwβ,k)),

hence
{eq: ineq_est1}{eq: ineq_est1} (4.4) h0(X,T ⊗ Ljq ⊗ I(jqφ)) ≥ h0(X,T ⊗ Ljq ⊗ I(jqwβ,k)).

For each fixed k > 0, we can take a resolution of singularities π : Y → X, such that π∗φk has
analytic singularities. By [

Dem12
Dem12, Proposition 5.8] and the projection formula,

{eq: ineq_est2}{eq: ineq_est2} (4.5) h0(X,T ⊗ Ljq ⊗ I(jqwβ,k)) = h0(Y, π∗T ⊗KY/X ⊗ (π∗L)jq ⊗ I(jqπ∗wβ,k)).
Since

∫
Y (π∗θ + ddcπ∗vβ,k)n =

∫
X θ

n
vβ,k

> 0, there exists a non-zero section

sj ∈ H0
(
Y, π∗Lβjq ⊗ I(βjqπ∗vβ,k)

)
= H0

(
Y, π∗Ljp ⊗ I(jpπ∗vβ,k)

)
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for all j large enough, by Lemma 4.8. Hence applying Lemma 4.9 for

T → π∗T ⊗KY/X , E1 → π∗Lq−p, E2 → π∗Lp, χ1 → qπ∗φk, χ2 → pπ∗vβ,k, sj → sj , ϵ → β,

we find

{eq: ineq_est3}{eq: ineq_est3} (4.6)

h0(Y, π∗T ⊗KY/X ⊗ π∗Ljq ⊗ I(jqπ∗wk,β))

=h0(Y, π∗T ⊗KY/X ⊗ π∗L(q−p)j ⊗ π∗Lpj ⊗ I((1 − β)jqπ∗φk + jpπ∗vβ,k)))

≥h0(Y, π∗T ⊗KY/X ⊗ π∗L(q−p)j ⊗ I(jqπ∗φk))

for j large enough (depending on k).
Since θφk

> βω ≥ βθ, we notice that qφk ∈ PSH(X, θ(q−p)). Hence, by [
Bon98
Bon98, Théorème 2.1,

Corollaire 2.2] (see also [
DX22
DX22, Theorem 2.26]), we can write the following estimates.

{eq: ineq_est4}{eq: ineq_est4} (4.7)

lim
j→∞

1
jnqn

h0(Y, π∗T ⊗KY/X ⊗ π∗L(1−β)qj ⊗ I(jqπ∗φk))

= lim
j→∞

1
jnqn

h0
(
Y, π∗T ⊗KY/X ⊗ π∗L(q−p)j ⊗ I(jqπ∗φk)

)
= r

qnn!

∫
Y

((q − p)π∗θ + qddcπ∗φk)n

= r

n!

∫
X

((1 − β)θ + ddcφk)n

≥ r

n!

∫
X
θnφk

− Cβ ,

where C > 0 depends only on r, n, θ. Putting together (4.4),(4.5), (4.6) and (4.7) we obtain

lim
j→∞

1
jn
h0(X,T ⊗ Lj ⊗ I(jφ)) ≥ r

n!

∫
X
θnφk

− Cβ .

Letting k → ∞ and applying Proposition 4.3, we conclude (4.3). □

lem:posmasssection Lemma 4.8. Suppose that L → X is a big line bundle, with smooth Hermitian metric h.
Let θ = c1(L, h). Let v ∈ PSH(X, θ) with

∫
X θ

n
v > 0. Then for m big enough there exists

s ∈ H0(X,Lm ⊗ I(mv)) non-vanishing.

Proof. By Proposition 3.9 there exists w ∈ PSH(X, θ) such that w ≤ v and θw ≥ δω. By [
Dem12
Dem12,

Theorem 13.21], for m big enough, there exists s ∈ H0(X,Lm ⊗ I(mw)) non-zero. Since w ≤ v,
we get that s ∈ H0(X,Lm ⊗ I(mv)). □

lem:injective Lemma 4.9. Suppose that E1, E2, T are vector bundles over a connected complex manifold Y ,
with rank E2 = 1, and χ1, χ2 are quasi-psh functions on Y , with χ1 having normal crossing
divisorial singularity type. Suppose that there exists a non-zero section sj ∈ H0(Y,E⊗j

2 ⊗I(jχ2)),
for all j big enough. Then for any ϵ ∈ (0, 1) the map w 7→ w ⊗ sj between the vector spaces

H0(Y, T ⊗ E⊗j
1 ⊗ I(jχ1)) → H0

(
Y, T ⊗ E⊗j

1 ⊗ E⊗j
2 ⊗ I (j(1 − ϵ)χ1 + jχ2)

)
is well-defined and injective, for all j big enough.

Proof. Suppose that the singularity type of χ1 is given by the effective normal crossing R-divisor∑
j αjDj with αj > 0. By [

Dem12
Dem12, Remark 5.9] we have that

I(jχ1) = OY (−
∑
m

⌊αmj⌋Dj) .

We obtain that we−j(1−ϵ)χ1 is bounded for any w ∈ H0(Y, T ⊗ Ej1 ⊗ I(jχ1)) and j big enough.
Since sj ∈ H0(Y,E⊗j

2 ⊗ I(jχ2)), we obtain that

w ⊗ sj ∈ H0
(
Y, T ⊗ E⊗j

1 ⊗ E⊗j
2 ⊗ I(j(1 − ϵ)χ1 + jχ2)

)
.

Injectivity of w 7→ w ⊗ sj follows from the identity theorem of holomorphic functions. □
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thm:Tsuji Theorem 4.10. Suppose that φ ∈ PSH(X, θ). Then

{eq:Tsuji_eq}{eq:Tsuji_eq} (4.8) lim
k→∞

1
kn
h0(X,T ⊗ Lk ⊗ I(kφ)) = r

n!

∫
X
θnPθ[φ]I .

Proof. We may assume that φ is I-model. Proposition 4.5 implies (4.8) for
∫
X θ

n
φ = 0, so we can

also assume that
∫
X θ

n
φ > 0. In particular, L is a big line bundle and X is projective.

By Proposition 3.9, there exists ψ ≤ φ such that θψ is a Kähler current. Let ψt := (1−t)ψ+tφ.
Then θψt is a Kähler current for t ∈ [0, 1), so we can apply Proposition 4.7 to obtain that

lim
k→∞

1
kn
h0(X,T ⊗ Lk ⊗ I(kφ)) ≥ lim

k→∞

1
kn
h0(X,T ⊗ Lk ⊗ I(kψt)) ≥ r

n!

∫
X
θnPθ[ψt]I .

Letting t → 0 and using [
DX22
DX22, Lemma 2.21(iii)], we obtain that

lim
k→∞

1
kn
h0(X,T ⊗ Lk ⊗ I(kφ)) ≥ r

n!

∫
X
θnPθ[φ]I .

The reverse inequality, follows from Proposition 4.5. □

Corollary 4.11. Let φ ∈ PSH(X, θ) such that
∫
X θ

n
φ > 0. Then the following are equivalent:

(1) φ lies in the dS-closure of analytic singularities;
(2) φ is I-good;
(3) The following equality holds:

lim
k→∞

1
kn
h0(X,Lk ⊗ I(kφ)) = 1

n!

∫
X
θnPθ[φ]I .

Proof. This follows from Theorem 4.4 and Theorem 4.10. □
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