Mingchen Xia

Singularities in global pluripotential theory

- Lectures at Zhejiang University -

Latest update: May 4, 2024. The latest version can be found here.

Preface

This book is an expanded version of my lecture notes at the Institute for Advanced Study in Mathematics (IASM) at Zhejiang university. My initial goal was to write a self-contained reference for the participants of the lectures. But I soon realized that many results have never been rigorously proved in any literature. When trying to fix these loose ends, the length of the notes becomes uncontrollable, eventually leading to the current book.

In this book, I would like to present my point of view towards the global pluripotential theories. There are three different but interrelated theories which deserve this name. They are
(1) the pluripotential theory on compact Kähler manifolds,
(2) the pluripotential theory on the Berkovich analytification of projective varieties, and
(3) the toric pluripotential theory on toric varieties.

We will begin by explaining the picture in the first case. Let us fix a compact Kähler manifold X. The central objects are the quasi-plurisubharmonic functions on X.

We are mostly interested in the singularities of such functions, that is, the places where a quasi-plurisubharmonic function φ tends to $-\infty$ and how it tends to $-\infty$.

Singularities occur naturally in mathematics. In geometric applications, X should be regarded as the compactified moduli space of certain geometric objects. A Zariski open subset $U \subseteq X$ would parametrize smooth objects. The natural metric on the associated polarizing line bundle is usually smooth only on U, not on X. In case we have suitable positivities, the classical Grauert-Remmert extension theorem (Theorem B.2.2) allows us to extend the metric outside U, but at the cost of introducing singularities.

The classification of singularities is a huge project. Locally near the singularities we know that quasi-plurisubharmonic functions present very complicated behaviours. There are many local invariants associated with the singularities. The most notable ones are the Lelong numbers and the multiplier ideal sheaves. These invariants only reflect the rough behaviour of a quasi-plurisubharmonic function. As an example,
a quasi-plurisubharmonic function with \log-log singularities have the same local invariants as a bounded one.

The situation changes drastically in the global setting, namely on compact manifolds. In the global setting, there are three different ways to classify quasiplurisubharmonic functions according to their singularities:
(1) The singularity type characterizing the singularities up to a bounded term.
(2) The P-singularity type associated with global masses.
(3) The I-singularity type associated with all non-Archimedean data.

The classification becomes rougher and rougher as we go downward. In the first case, we say two quasi-plurisubharmonic functions have the same singularity type if their difference lies in L^{∞}. The corresponding equivalence class gives us essentially the finest information of the singularities we can expect. The other two relations are more delicate, we will study them in detail in Chapter 6.

A natural idea to study the singularities would consist of the following steps:
(1) Classify the I-singularity types.
(2) Classify the P-singularity types within a given I-singularity class.
(3) Classify the singularity types within a given P-equivalence class.

The Step 3 is well-studied in the literature in the last decade under the name of pluripotential theory with prescribed singularities. There are numerous excellent results in this direction. In some sense, this step is already well-understood.

We will give a complete answer to Step 1 in Chapter 7, where we show that I-singularity types can be described very explicitly.

It remains to consider Step 2. This is not an easy task. It is easy to construct examples where a given I-equivalence class consists of a huge amount of P-equivalence classes.

On the other hand, by contrast, in the toric pluripotential theory and nonArchimedean pluripotential theory, Step 2 is essentially trivial: An I-equivalence class consists of a single P-equivalence class. In the toric situation, an I or P-equivalence class is simply a sub-convex body of the Newton body, while in the non-Archimedean situation, an I or P-equivalence class is a homogeneous plurisubharmonic metric.

This apparent anomaly and numerous examples show that in the pluripotential theory on compact Kähler manifolds, certain singularities are pathological. Within each I-equivalence, we could pick up a canonical P-equivalence class, the quasiplurisubharmonic functions in which are said to be I-good. We will study the theory of I-good singularities in Chapter 7. As we will see later on, almost all (if not all) singularities occurring naturally are I-good.

My personal impression is that we are in a situation quite similar to the familiar one in real analysis. There are many non-measurable functions, but in real life, unless you construct a pathological function by force, you only encounter measurable functions. Similarly, although there exist many non- I-good singularities, you would never encounter them in reality!

Having established this general principle, we could content ourselves in the framework of \mathcal{I}-good singularities. Then Step 2 is essentially solved, and we have a pretty good understanding of the classification of singularities.

Of course, this classification is a bit abstract. To put it into use, we will introduce two general techniques allowing us to make induction on $\operatorname{dim} X$. For a prime divisor Y in general position, we have the so-called analytic Bertini theorem relation quasiplurisubharmonic functions on X and on Y. For a non-generic Y, we have the technique of trace operators. These techniques will be explained in Chapter 8.

In the toric situation, these constructions and methods are quite straightforward and are likely known to experts before I entered this field, see Chapter 5 for the toric pluripotential theory on ample line bundles.

The corresponding toric pluripotential theory on big line bundles has never been written down in the literature. We will develop the theory of partial Okounkov bodies in Chapter 10 and the general toric pluripotential theory will be developed as an application in Chapter 12.

Finally, we give applications to non-Archimedean pluripotential theory in Chapter 13 based on the theory of test curves developed in Chapter 9. We also prove the convergence of the partial Bergman kernels in Chapter 14.

The readers are $\mathrm{gnl}_{2 \mathrm{y}} \mathrm{y}_{7}$ supposed to be familiar with the basic pluripotential theory. The excellent book [GZ-17] is more than enough.

Acknowledgements

I would like to express my gratitude to Bing Wang and Song Sun for their gracious invitations to China and for providing me with the opportunity to deliver a series of lectures.

Furthermore, I am indebted to the dedicated researchers and secretaries of the University of Science and Technology of China (USTC) and the Institute for Advanced Study in Mathematics (IASM) for cultivating an exceptional research environment. Their commitment to excellence has allowed me to immerse myself fully in the field of mathematics during my time in China.

I am also immensely thankful to the participants of the course, including Song Sun, Mingyang Li, Xin Fu, Jiyuan Han, Junsheng Zhang, Yifan Chen, Yueqing Feng, Minghao Miao, and Federico Giust. Their active engagement and insightful discussions have greatly enriched my lectures and enhanced my understanding of the subject matter.

Special appreciation goes to Yi Yao and Kewei Zhang for their invaluable contributions to discussions on toric geometry, which ultimately inspired the theory developed in Chapter 12.

Most results in this book are developed in collaboration with Tamás Darvas and Kewei Zhang, whose insights are always crucial in the development of the theories. I would like to thank them for the collaborations over years.

A substantial part of the current book was essentially contained in my PhD thesis. I would like to thank my advisor Robert Berman for his guidance and my colleagues in Göteborg and Paris for constant discussions, especially Bo Berndtsson, David Witt Nyström, Sébastien Boucksom and Elizabeth Wulcan.

This work would not have been possible without the unwavering support and encouragement of all those mentioned above. Thank you for your generosity, guidance, and camaraderie throughout this endeavor.

Enfin, je tiens à exprimer ma gratitude à Sébastien Boucksom et Madame Natalia Hristic de la Sorbonne Université, qui m'ont aidé à contacter le ministère de l'intérieure en France. Sans leur intervention, je serais encore coincé en France, échoué par l'efficacité extraordinaire du gouvernement français, en particulier de la préfecture de Créteil et ce livre n'aurait jamais vu le jour.

Contents

Part I Preliminaries
1 Plurisubharmonic functions 3
1.1 The definition of plurisubharmonic functions 3
1.1.1 The 1-dimensional case 3
1.1.2 The higher dimensional case 4
1.1.3 The manifold case 6
1.2 Properties of plurisubharmonic functions 7
1.3 Plurifine topology 11
1.3.1 Plurifine topology on domains 11
1.3.2 Plurifine topology on manifolds 14
1.4 Lelong numbers and multiplier ideal sheaves 15
1.5 Quasi-plurisubharmonic functions 19
1.6 Analytic singularities 20
1.7 The space of currents 23
1.8 Plurisubharmonic metrics on line bundles 24
2 Non-pluripolar products 27
2.1 Bedford-Taylor theory 27
2.2 The non-pluripolar products 28
2.3 Properties of non-pluripolar products 30
3 The envelope operators 35
3.1 The P-envelope 35
3.1.1 Rooftop operator and the definition of the P-envelope 35
3.1.2 Properties of the P-envelope 37
3.1.3 Relative full mass classes 41
3.2 The I-envelope 44
3.2.1 I-equivalence 44
3.2.2 The definition of the I-envelope 45
3.2.3 Properties of the I-envelope 48
4 Geodesic rays in the space of potentials 51
4.1 Subgeodesics 51
4.2 Geodesics in the space of potentials 53
5 Toric pluripotential theory on ample line bundles 61
5.1 Toric setup 61
5.2 Toric plurisubharmonic functions 62
5.3 Toric pluripotential theory 65
Part II The theory of I-good singularities
6 Comparison of singularities 73
6.1 The P and I-partial orders 73
6.1.1 The definitions of the partial orders 73
6.1.2 Properties of the partial orders 77
6.2 The d_{S}-pseudometric 80
6.2.1 The definition of the d_{S}-pseudometric 80
6.2.2 Convergence theorems 87
6.2.3 Continuity of invariants 94
$7 \quad I$-good singularities 97
7.1 The notion of I-good singularities 97
7.2 Properties of I-good singularities 100
7.3 The volume of Hermitian big line bundles 103
8 The trace operator 107
8.1 The definition of the trace operator 107
8.2 Properties of the trace operator 109
8.3 Restricted volumes 113
8.4 Analytic Bertini theorems 118
9 Test curves 125
9.1 The notion of test curves 125
9.2 Ross-Witt Nyström correspondence 128
9.3 I-model test curves 134
9.4 Operations on test curves 135
10 The theory of Okounkov bodies 145
10.1 Flags and valuations 145
10.1.1 The algebraic setting 145
10.1.2 The transcendental setting 146
10.2 Algebraic partial Okounkov bodies 150
10.2.1 The spaces of sections 150
10.2.2 Algebraic Okounkov bodies 151
10.2.3 Construction of partial Okounkov bodies 153
10.2.4 Basic properties of partial Okounkov bodies 155
10.2.5 The Hausdorff convergence property of partial Okounkov bodies. 158
10.2.6 Recover Lelong numbers from partial Okounkov bodies 162
10.3 Transcendental partial Okounkov bodies 163
10.3.1 The traditional approach to the Okounkov body problem 163
10.3.2 Definitions of partial Okounkov bodies 164
10.3.3 The valuative characterization 169
10.4 Okounkov test curves 174
11 The theory of b-divisors 183
11.1 The intersection theory of b-divisors 183
11.2 The singularity b-divisors 185
11.3 Okounkov bodies of b-divisors 188
Part III Applications
12 Toric pluripotential theory on big line bundles 195
12.1 Toric setup 195
12.2 Toric partial Okounkov bodies 196
12.2.1 Newton bodies 196
12.2.2 Partial Okounkov bodies 196
12.3 The pluripotential theory 200
13 Non-Archimedean pluripotential theory 205
13.1 The definition of non-Archimedean metrics 205
13.2 Operations on non-Archimedean metrics 208
13.3 Duistermaat-Heckman measures 214
14 Partial Bergman kernels 217
14.1 Partial envelopes 217
14.2 Quantization of partial equilibrium measures 226
14.2.1 Bernstein-Markov measures 226
14.2.2 Partial Bergman kernels 227
Comments 235
A Convex functions and convex bodies 241
A. 1 The notion of convex functions 241
A. 2 Legendre transform 244
A. 3 Classes of convex functions 246
A. 4 Monge-Ampère measures 248
A. 5 Separation lemmata 249
B Pluripotential theory on unibranch spaces 251
B. 1 Complex spaces 251
B. 2 Plurisubharmonic functions 252
B. 3 Extensions of the results in the smooth setting 255
C Almost semigroups 257
C. 1 Convex bodies 257
C. 2 The Okounkov bodies of almost semigroups 259
C.2.1 Generalities on semigroups 259
C.2.2 Okounkov bodies of semigroups 261
C.2.3 Okounkov bodies of almost semigroups 263
Index 267
References 271

Conventions

In the whole book we adopt the following conventions:

- A complex space is always assumed to be reduced, paracompact and Hausdorff.
- A modification of a complex space X is proper bimeromorphic morphism $\pi: Y \rightarrow X$ that is obtained from a finite composition of blow-ups with smooth centers.
- A subnet of a net refers to a cofinal subnet.
- A domain in \mathbb{C}^{n} refers to a connected open subset.
- A complex manifold is assumed to be paracompact.
- A submanifold of a complex manifold means a complex submanifold.
- A neighbourhood is not necessarily open.
- The set \mathbb{N} of natural numbers includes 0 .

We will use the following notations throughout the book:

- If I is a non-empty set, then $\operatorname{Fin}(I)$ denote the net of finite non-empty subsets of I, ordered by inclusion.
- dd^{c} means $(2 \pi)^{-1} \mathrm{i} \partial \bar{\partial}$.

Part I Preliminaries

In the first two chapters Chapter 1 and Chapter 2 of this part, we recall a few preliminaries about the notion of plurisubharmonic functions and the non-pluripolar products of plurisubharmonic functions.

All materials in these chapters are standard and are well-documented in other textbooks, so we will be rather sketchy. The readers are encouraged to consult the excellent textbook [GZ17].

In Chapter 3, we develop the techniques of envelope operators. All results in this section are known and are written in various articles.

In Chapter 4, we develop the theory of geodesics in the space of quasiplurisubharmonic functions. Most results in this chapter are known to different degrees, but not in the fully general form as we present. Most proofs are similar to the known proofs in the literature, but the presence of singularities requires a very careful treatment.

In Chapter 5, we recall the basic results about the toric pluripotential theory on ample line bundles, which will be generalized to big line bundles in Chapter 12.

Experienced readers may safely skip the whole part.

Chapter 1
 Plurisubharmonic functions

In this chapter, we recall the notion of plurisubharmonic functions and a few basic properties of these functions. The main purpose is to fix the notations for later chapters, so we refer to the literature for most proofs.

We give some details about the plurifine topology in Section 1.3, since the related proofs are scattered in a number of articles.

In the literature related to multiplier ideal sheaves and Lelong numbers, there are several different conventions about their normalizations. The readers could find more about the conventions that we adopt in the whole book in Section 1.4.

1.1 The definition of plurisubharmonic functions

In this section, we recall the notion of plurisubharmonic functions. We will also take care of the 0 -dimensional case, which makes a number of induction arguments easier to carry out. None of our references treats the 0 -dimensional case, but the readers can easily verify that the results in this section hold in this exceptional case.

1.1.1 The 1-dimensional case

Let Ω be a domain (a connected open subset) in \mathbb{C}.
def:subhar1
Definition 1.1.1 A subharmonic function on Ω is a function $\varphi: \Omega \rightarrow[-\infty, \infty)$ satisfying the following three conditions:
(1) $\varphi \not \equiv-\infty$;
(2) φ is upper semi-continuous;
(3) φ satisfies the sub-mean value inequality: For any $a \in \Omega$ and $r>0$ such that $B_{1}(a, r) \Subset \Omega$, we have

$$
\varphi(a) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi\left(a+r \mathrm{e}^{\mathrm{i} \theta}\right) \mathrm{d} \theta
$$

We will denote the set of subharmonic functions on Ω as $\mathrm{SH}(\Omega)$.
Here $B_{1}(a, r)$ denotes the open ball with center a and radius r. See (1.1).
In fact, for each $a \in \Omega$, in (3), it suffices to require the sub-mean value inequality for all small enough $r>0$.

Intuitively, at a specific point $a \in \Omega$, the Condition (2) gives a lower bound of the value of $\varphi(a)$ using the nearby values of φ, while the Condition (3) gives an upper bound. This intuition leads to the following rigidity theorem:

Theorem 1.1.1 Let $\varphi: \Omega \rightarrow[-\infty, \infty)$ be a measurable function. Then the following are equivalent:
(1) φ is locally integrable and $\Delta \varphi \geq 0$.
(2) φ coincides almost everywhere with a subharmonic function ψ on Ω.

Moreover, the subharmonic function ψ is unique.
Here in condition $1, \Delta \varphi$ is the Laplacian in the sense of currents. This is a special case of Theorem 1.1.2 below.

This theorem gives a very useful way to construct subharmonic functions.

1.1.2 The higher dimensional case

We will fix $n \in \mathbb{N}$ and a domain Ω (a connected open subset) in \mathbb{C}^{n}.
def:psh Definition 1.1.2 When $n \geq 1$, a plurisubharmonic function on Ω is a function $\varphi: \Omega \rightarrow[-\infty, \infty)$ satisfying the following three conditions:
(1) $\varphi \not \equiv-\infty$;
(2) φ is upper semi-continuous;
(3) for any complex line $L \subseteq \mathbb{C}^{n}$ and any connected component U of $L \cap \Omega$, the restriction $\left.\varphi\right|_{U}$ is either subharmonic of constantly $-\infty$.
When $n=0$, the only domain Ω is the singleton. A plurisubharmonic function on Ω is a real-valued function on Ω.

The set of plurisubharmonic functions on Ω is denoted by $\operatorname{PSH}(\Omega)$.
A plurisubharmonic function is also called a psh function for short.
Example 1.1.1 When $n=0$, we have a canonical bijection $\operatorname{PSH}(\Omega) \cong \mathbb{R}$.
Example 1.1.2 When $n=1$, we have $\operatorname{PSH}(\Omega)=\operatorname{SH}(\Omega)$.
Similar to Theorem 1.1.1, we have a rigidity theorem for plurisubharmonic functions as well.

Theorem 1.1.2 Let $\varphi: \Omega \rightarrow[-\infty, \infty)$ be a measurable function. Then the following are equivalent:
(1) φ is locally integrable and $\operatorname{dd}^{\mathrm{c}} \varphi \geq 0$;
(2) φ coincides almost everywhere with a plurisubharmonic function ψ on Ω.

Moreover, the plurisubharmonic function ψ is unique.
Here the operator dd^{c} is normalized so that

$$
\mathrm{dd}^{\mathrm{c}}=\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial} .
$$

GZ17
For the proof, we refer to ${ }_{[\mathrm{GZ} 17} \mathrm{GZ} 17$, Proposition 1.43].
Plurisubharmonic functions have nice functorialities:
prop: func_domain
Proposition 1.1.1 Let $n^{\prime} \in \mathbb{N}$ and $\Omega^{\prime} \subseteq \mathbb{C}^{n^{\prime}}$ be a domain. Given any holomorphic map $f: \Omega \rightarrow \Omega^{\prime}$ and any $\varphi \in \operatorname{PSH}\left(\Omega^{\prime}\right)$ exactly one of the following cases occurs:
(1) $f^{*} \varphi \equiv-\infty$;
(2) $f^{*} \varphi \in \operatorname{PSH}(\Omega)$.

We refer to $\|_{[G Z 17}^{\text {GZ17 }}$, Proposition 1.44] for the proof ${ }^{1}$.
For each $n \in \mathbb{N}, a \in \mathbb{C}^{n}$ and $r>0$, we write

$$
\begin{equation*}
B_{n}(a, r)=\left\{z \in \mathbb{C}^{n}:|z-a|<r\right\} . \tag{1.1}
\end{equation*}
$$

Proposition 1.1.2 Let $\varphi \in \operatorname{PSH}\left(B_{n}\left(a, r_{0}\right)\right)$ for some $r_{0}>0$. Then the function

$$
\left(-\infty, \log r_{0}\right) \rightarrow \mathbb{R}, \quad \log r \mapsto \sup _{B_{n}(a, r)} \varphi
$$

is convex and increasing.
See ${ }_{\text {[Bou17 }}^{\text {[Boul }} 7$, Corollary 2.4].
Proposition 1.1.3 Let $a<b$ be two real numbers. Let $f:(a, b) \rightarrow[-\infty, \infty)$ be a function. Define

$$
g:\left\{z \in \mathbb{C}: \mathrm{e}^{-b}<|z|<\mathrm{e}^{-a}\right\} \rightarrow[-\infty, \infty), \quad z \mapsto f(-\log |z|) .
$$

Suppose that g is harmonic, then f is convex. In particular, f takes real values only.
See ${ }^{\text {HK7 }}{ }^{-1 / 2} 76$, Theorem 2.12] for a more general result.

[^0]
1.1.3 The manifold case

Let X be a complex manifold. In the whole book, complex manifolds are assumed to be paracompact, namely all connected components have countable bases.

Definition 1.1.3 A plurisubharmonic function on X is a function $\varphi: X \rightarrow[-\infty, \infty)$ such that for any $x \in X$, there exists an open neighbourhood U of x in X, an integer $n \in \mathbb{N}$, a domain $\Omega \subseteq \mathbb{C}^{n}$ and a biholomorphic map $F: \Omega \rightarrow U$ such that $F^{*}\left(\left.\varphi\right|_{U}\right) \in \operatorname{PSH}(\Omega)$.

The set of plurisubharmonic functions on X is denoted by $\operatorname{PSH}(X)$.
Example 1.1.3 When X is a domain in \mathbb{C}^{n}, the notions of plurisubharmonic functions in Definition 1.1.3 and in Definition 1.1.2 coincide.

Example 1.1.4 Write $\left\{X_{i}\right\}_{i \in I}$ for the set of connected components of X. Then we have a natural bijection

$$
\operatorname{PSH}(X) \cong \prod_{i \in I} \operatorname{PSH}\left(X_{i}\right) .
$$

Here the product is in the category of sets. In particular, if $X=\varnothing$, then $\operatorname{PSH}(X)=\varnothing$.
This example allows us to reduce to the case of connected manifolds when studying general plurisubharmonic functions.

Proposition 1.1.4 Let Y be another complex manifold and $f: Y \rightarrow X$ be a holomorphic map. Then for any $\varphi \in \operatorname{PSH}(X)$, exactly one of the following cases occurs:
(1) $f^{*} \varphi$ is identically $-\infty$ on some connected component of Y;
(2) $f^{*} \varphi \in \operatorname{PSH}(Y)$.

This proposition follows easily from Proposition 1.1.1. We leave the details to the readers.

Theorem 1.1.2 implies immediately the general form of the rigidity theorem:
Theorem 1.1.3 Let $\varphi: X \rightarrow[-\infty, \infty)$ be a measurable function. Then the following are equivalent:
(1) φ is locally integrable and $\operatorname{dd}^{\mathrm{c}} \varphi \geq 0$;
(2) φ coincides almost everywhere with a plurisubharmonic function ψ on X.

Moreover, the plurisubharmonic function ψ is unique.
def:pluripolarsets
Definition 1.1.4 A subset $E \subseteq X$ is pluripolar if for any $x \in X$, there is an open neighbourhood U of x in X and a function $\psi \in \operatorname{PSH}(U)$ such that

$$
\left.\psi\right|_{E \cap U} \equiv-\infty
$$

A subset $E \subseteq X$ is non-pluripolar if E is not pluripolar.
A subset $F \subseteq X$ is co-pluripolar if $X \backslash F$ is pluripolar.
thm: Josefson
thm:gloJosefson
prop:pluripolarunion

Theorem 1.1.4 (Josefson's theorem) Let $E \subseteq \mathbb{C}^{n}$ be a pluripolar set. Then there is $\varphi \in \operatorname{PSH}\left(\mathbb{C}^{n}\right)$ such that $\left.\varphi\right|_{E} \equiv-\infty$.
See ${ }_{\text {[GZ }}^{\text {GZ }} 17$, Corollary 4.41] for the proof of a more general result.
There is also a global version of Josefson's theorem:
Theorem 1.1.5 Assume that X is a compact complex manifold and $E \subseteq X$ is a pluripolar set. Then there is a quasi-plurisubharmonic function φ on X with $\left.\varphi\right|_{E} \equiv-\infty$.
For a proof, see [V19 $\frac{\text { Vul }}{}$.
Proposition 1.1.5 Let $\left(E_{i}\right)_{i \in \mathbb{Z}_{>0}}$ be a sequence of pluripolar sets in X. Then

$$
E:=\bigcup_{i=1}^{\infty} E_{i}
$$

is pluripolar.
Proof The problem is local, so we may assume that $X \subseteq \mathbb{C}^{n}$ is a domain. In this case, by Theorem 1.1.4 for each $i \in \mathbb{Z}_{>0}$ we can choose $\psi_{i} \in \operatorname{PSH}\left(\mathbb{C}^{n}\right)$ such that

$$
\left.\psi_{i}\right|_{E_{i}} \equiv-\infty, \quad \psi_{i} \leq 0
$$

for all $i>0$. After shrinking X, we may guarantee that $\left.\psi_{i}\right|_{X} \in L^{1}(X)$ for all $i>0$. After rescaling, we may also assume that $\left\|\psi_{i}\right\|_{L^{1}(X)} \leq 1$ for all $i>0$.

We then define

$$
\psi=\left.\sum_{i=1}^{\infty} 2^{-i} \psi_{i}\right|_{X}
$$

Then $\psi \in \operatorname{PSH}(X)$ according to Proposition 1.2.1 below and $\left.\psi\right|_{E}=-\infty$.

1.2 Properties of plurisubharmonic functions

In this section, we explore the basic properties of plurisubharmonic functions.
Let X be a complex manifold.

Proposition 1.2.1

(1) Assume that $\left(\varphi_{i}\right)_{i \in I}$ is a non-empty family in $\operatorname{PSH}(X)$ that is locally uniformly bounded from above. Then sup* ${ }_{i} \varphi_{i} \in \operatorname{PSH}(X)$.
(2) Assume that $\left(\varphi_{i}\right)_{i \in I}$ is a decreasing net in $\operatorname{PSH}(X)$ such that $\lim _{i \in I} \varphi_{i}$ is not identically $-\infty$ on each connected component of X, then $\lim _{i \in I} \varphi_{i} \in \operatorname{PSH}(X)$.

Here sup* denotes the upper semicontinuous regularization of the supremum. When I is a finite family, observe that

$$
\sup _{i \in I}^{*} \varphi_{i}=\sup _{i \in I} \varphi_{i}
$$

When $I=\{1, \ldots, m\}$, we write

$$
\varphi_{1} \vee \cdots \vee \varphi_{m}:=\sup _{i \in I} \varphi_{i}
$$

We refer to $\begin{aligned} & \text { GZ17 } \\ & {[\mathrm{TZ} 17}\end{aligned}$, Proposition 1.28, Proposition 1.40] ${ }^{2}$.

prop:Choquet

prop:supsupstardiff

prop:pshlocLp
prop:pshfuncdetdense
Proposition 1.2.5 Suppose that $\varphi, \psi \in \operatorname{PSH}(X)$. Assume that there is a dense subset $E \subseteq X$ such that $\left.\varphi\right|_{E} \leq\left.\psi\right|_{E}$, then $\varphi \leq \psi$

Proof The problem is local, so we may assume that X is a domain in \mathbb{C}^{n}.
We may assume that $\left.\varphi\right|_{E}=\left.\psi\right|_{E}$ after replacing φ by $\varphi \vee \psi$. Then we need to show that $\varphi=\psi$.

It follows from $[\mathrm{GZ17}$, Theorem 4.20] that this holds outside a pluripolar set $Y \subseteq X$. In particular, $\varphi=\psi$ almost everywhere. It follows from the uniqueness statement in Theorem 1.1.3 that $\varphi=\psi$.
Proposition 1.2.3 Let $\left(\varphi_{i}\right)_{i \in I}$ be a non-empty family in $\operatorname{PSH}(X)$ that is locally uniformly bounded from above. Then the set

$$
\left\{x \in X: \sup _{i \in I} \varphi_{i}<\sup _{i \in I} \varphi_{i}\right\}
$$

is pluripolar.
See [GZ17
Proposition 1.2.4 Let $\varphi \in \operatorname{PSH}(X)$, then for any $p \geq 1, \varphi \in L_{\mathrm{loc}}^{p}(X)$.
See ${ }_{[G Z 17}^{G Z 17}$, Theorem 1.46, Theorem 1.48].

Theorem 1.2.1 (Grauert-Remmert) Let Z be an analytic subset in X and $\varphi \in$

Proposition 1.2.2 (Choquet's lemma) Assume that X has countably many connected components. Assume that $\left(\varphi_{i}\right)_{i \in I}$ is a non-empty family in $\operatorname{PSH}(X)$ that is locally uniformly bounded from above. There exists a countable subset $J \subseteq I$ such that

$$
\sup _{i \in I}^{*} \varphi_{i}=\sup _{j \in J}^{*} \varphi_{j}
$$

Proof We may assume that X is connected. Since by our convention, the complex manifold X is paracompact, it can be covered by countably many open balls, so we canezasily reduce to the case where X is an open ball. In this case, the result is proved in [GZ:17, Lemma 4.31]. $\operatorname{PSH}(X \backslash Z)$. Then the function φ admits an extension to $\operatorname{PSH}(X)$ in the following two cases:
${ }^{2}$ In $[G 2 T 7$, Proposition 1.28], the second part is only stated for sequences, the net version is obvious using the sub-mean value inequality.
(1) The set Z has codimension at least 2 everywhere.
(2) The set Z has codimension at least 1 everywhere and is locally bounded from above on an open neighbourhood of Z.

In both cases, the extension is unique.
Proof The extension is unique thanks to Proposition 1.2.5.
(2) Thanks to the uniqueness of the extension, the problem is local, so we may assume that X is a domain in \mathbb{C}^{n} with $n>0$ and there is a non-zero holomorphic function f vanishing identically on Z. For each $\epsilon>0$, we claim that the function φ_{ϵ} defined by

$$
\varphi_{\epsilon}(x):=\left\{\begin{aligned}
\varphi(x)+\epsilon \log |f(x)|^{2}, & x \in X \backslash Z \\
-\infty, & x \in Z
\end{aligned}\right.
$$

is plurisubharmonic on X. By Definition 1.1.2, it suffices to verify the case $n=1$. In this case, we may assume that $Z=\{0\}$, It is clear that $\varphi_{\epsilon} \in \operatorname{SH}(X \backslash Z)$. It suffices to verify the sub-mean value inequality at 0 , which is immediate.

Next observe that the sequence φ_{ϵ} is increasing as $\epsilon \searrow 0$ and φ_{ϵ} is locally uniformly bounded from above. It follows from Proposition 1.2.1 that $\tilde{\varphi}:=$ sup* $_{\epsilon>0} \varphi_{\epsilon} \in \operatorname{PSH}(X)$. Moreover, $\tilde{\varphi}$ clearly extends φ.
(1) It suffices to verify that φ is locally bounded from above near each point of Z. The problem is local, so we may assume that X is a domain in \mathbb{C}^{n} with $n \geq 2$.

Assume that our assertion fails. Take $z \in Z$ so that there exists a sequence $\left(x_{j}\right)_{j}$ in $X \backslash Z$ such that

$$
\lim _{j \rightarrow \infty} \varphi\left(x_{j}\right)=\infty
$$

Since Z has codimension at least 2 , we could take a complex line L passing through z and intersects Z only on a discrete set. After shrinking X, we may assume that

$$
L \cap Z=\{z\} .
$$

Take an open ball $B_{n}(z, r) \Subset X$. After adding a constant to φ, we may guarantee that $\varphi<0$ on $L \cap \partial B_{n}(z, r)$. Since φ is upper semi-continuous, we could find an open neighbourhood U of $L \cap \partial B_{n}(z, r)$ such that

$$
\left.\varphi\right|_{U}<0
$$

For each $j \geq 1$, take a complex line L_{j} passing through x_{j} such that $L_{j} \rightarrow L$ as $j \rightarrow \infty$. Here the convergence is in the obvious sense. Then for large enough j, we know have

$$
L_{j} \cap \partial B_{n}(z, r) \subseteq U
$$

It follows from the sub-mean value inequality that $\varphi\left(x_{j}\right)<0$ for large enough j, which is a contradiction.

Lemma 1.2.1 Let $\varphi \in \operatorname{PSH}\left(\left(\Delta^{*}\right)^{n}\right)$ be an $\left(S^{1}\right)^{n}$-invariant plurisubharmonic function. Then φ is finite everywhere.

Proof It clearly suffices to handle the case $n=1$. In this case, by $\frac{H 176}{[H K} 76$, Theorem 2.12], the map

$$
\log r \mapsto \int_{0}^{1} \varphi(r \exp (2 \pi \mathrm{i} \theta)) \mathrm{d} \theta=\varphi(r)
$$

is a convex function of $\log r$. So the set $\{r \in(0,1): \varphi(r)=-\infty\}$ is convex. But φ is almost everywhere finite by Proposition 1.2.4. Since φ is S^{1}-invariant, $\left.\varphi\right|_{(0,1)}$ is almost everywhere finite. It follows from the convexity that it is everywhere finite. \square

Corollary 1.2.1 Let $\left(\varphi_{j}\right)_{j \in \mathbb{Z}_{>0}}$ be a sequence in $\operatorname{PSH}(X)$ such that $\varphi_{j} \xrightarrow{L_{\text {loc }}^{1}} \varphi \in$ $\operatorname{PSH}(X)$. Then the set

$$
\left\{x \in X: \varphi(x) \neq \varlimsup_{j \rightarrow \infty} \varphi_{j}(x)\right\}
$$

is pluripolar.
Proof We firstobserve that $\left(\varphi_{j}\right)_{j}$ is locally uniformly bounded from above. This follows from [GZ17, Exercise 1.20].

For each $j \geq 1$, let

$$
\psi_{j}=\sup _{k \geq j}^{*} \varphi_{k}
$$

Then $\psi_{j} \in \operatorname{PSH}(X)$ by Proposition 1.2.1. Moreover, $\left(\psi_{j}\right)_{j}$ is a decreasing sequence and $\psi_{j} \geq \varphi_{j}$ for all j. So by Proposition 1.2.1 again, $\psi:=\inf _{j} \psi_{j} \in \operatorname{PSH}(X)$. On the other hand, by Proposition 1.2.3, there is a pluripolar set $Z \subseteq X$ such that for any $x \in X \backslash Z$, we have $\psi(x)=\varlimsup_{j} \varphi_{j}(x)$. Since $\varphi_{j} \xrightarrow{L_{\text {loc }}^{1}} \varphi$, we can find a set $Y \subseteq X$ with zero Lebesgue measure such that $\varphi_{j}(x) \rightarrow \varphi(x)$ for all $x \in X \backslash Y$.

In particular, for any $x \in X \backslash(Y \cup Z)$, we have

$$
\psi(x)=\varphi(x)
$$

But thanks to Proposition 1.2.5, the equality holds everywhere. Therefore, for all $x \in X \backslash Z$,

$$
\varphi(x)=\varlimsup_{j \rightarrow \infty} \varphi_{j}(x)
$$

prop:Kis
Proposition 1.2.6 (Kiselman's principle) Let $\Omega \subseteq \mathbb{C}^{m} \times \mathbb{C}^{n}$ be a pseudoconvex domain. Assume that for each $z \in \mathbb{C}^{m}$, the set

$$
\Omega_{z}:=\left\{w \in \mathbb{C}^{n}:(z, w) \in \Omega\right\}
$$

has the form $E+\mathbb{R}^{n}$, where $E \subseteq \mathbb{R}^{n}$ is a subset. Let $\varphi \in \operatorname{PSH}(\Omega)$, assume that φ is independent of the imaginary part of the variable in \mathbb{C}^{n}. Let Ω^{\prime} be the projection of Ω to \mathbb{C}^{m}. Define $\psi: \Omega^{\prime} \rightarrow[-\infty, \infty)$ as follows:

$$
\psi(z)=\inf _{w \in \Omega_{z}} \varphi(z, w)
$$

Then either $\psi \equiv-\infty$ or $\psi \in \operatorname{PSH}\left(\Omega^{\prime}\right)$.
See ${ }^{\text {DemBook }}$ [Demlizb, Theorem 7.5].

1.3 Plurifine topology

1.3.1 Plurifine topology on domains

Let $\Omega \subseteq \mathbb{C}^{n}(n \in \mathbb{N})$ be a domain.
Definition 1.3.1 The plurifine topology on Ω is the weakest topology making all \mathbb{R}-valued plurisubharmonic functions on Ω continuous.

We want to distinguish the Euclidean topology from the plurifine topology. In the whole book, topological notions without adjectives refer to those with respect to the Euclidean topology. We include the symbol \mathcal{F} in order to denote those with respect to the plurifine topology. For example, we will say \mathcal{F}-open subset, \mathcal{F}-neighbourhood, \mathcal{F}-closure, etc. The \mathcal{F}-closure of a set $E \subseteq \Omega$ will be denoted by $\bar{E}^{\mathcal{F}}$. We remind the readers that in the whole book, we follow Bourbaki's convention, a neighbourhood is not necessarily open. Similarly, an \mathcal{F}-neighbourhood is not necessarily \mathcal{F}-open.

A priori, we should include Ω into the notations as well, but as we will see shortly in Corollary 1.3.1, this is usually unnecessary.

Proposition 1.3.1 The plurifine topology is finer than the Euclidean topology.
Proof It suffices to show that the unit ball $\left\{z \in \mathbb{C}^{n}:|z|<1\right\}$ is \mathcal{F}-open. This follows from the observation that this set can be written as

$$
\{\psi<0\} \text { with } \psi(z):=(\log |z|) \vee(-1)
$$

Definition 1.3.2 A subset $E \subseteq \Omega$ is thin at $x \in \Omega$ if one of the following conditions holds:
(1) $x \notin \bar{E}$;
(2) $x \in \bar{E}$ and there is an open neighbourhood $U \subseteq \Omega$ of x and $\varphi \in \operatorname{PSH}(U)$ such that

$$
\varlimsup_{y \rightarrow x, y \in E} \varphi(y)<\varphi(x)
$$

We say E is thin if it is thin at all $x \in \Omega$.
In the second case, the function φ can be very much improved.
prop:BTthin
Proposition 1.3.2 (Bedford-Taylor) Consider a set $E \subseteq \Omega$ and $x \in \bar{E}$. Assume that E is thin at x, then there is $\varphi \in \operatorname{PSH}\left(\mathbb{C}^{n}\right)$ satisfying the following properties:
(1) φ is locally bounded outside a neighbourhood of x;
(2) $\varphi(x)>-\infty$;
(3) $\varlimsup_{y \rightarrow x, y \in E} \varphi(y)=-\infty$.

Proof By definition, there is an open neighbourhood $U \subseteq \Omega$ of x and $\psi \in \operatorname{PSH}(U)$ such that

$$
\varlimsup_{y \rightarrow x, y \in E} \psi(y)<\psi(x) .
$$

Without loss of generality, we may assume that $x=0, U$ is the unit ball in $\mathbb{C}^{n}, \psi<0$ and $\left.\psi\right|_{U \cap E}<-1$, while $\psi(0)=-\eta>-1$.

As ψ is upper semicontinuous, we may choose $\delta_{j}>0$ for all large enough $j \in \mathbb{Z}_{>0}$ such that $\psi(y)<-\eta+2^{-j-1}$ when $y \in \mathbb{C}^{n}$ satisfies $|y|<\delta_{j}$. Now we let

$$
\varphi_{j}(z):=\left\{\begin{aligned}
\left(\frac{2^{-j-1}}{\log \left|\delta_{j}\right|} \log |z|\right) \vee\left(\psi(z)+2^{-j}\right), & \text { if }|z|<\delta_{j} \\
& \frac{2^{-j-1}}{\log \left|\delta_{j}\right|} \log |z|,
\end{aligned} \quad \text { if }|z| \geq \delta_{j} .\right.
$$

Then $\varphi_{j} \in \operatorname{PSH}\left(\mathbb{C}^{n}\right)$ and $\varphi_{j}(0)=2^{-j}$. It suffices to take $\varphi=\sum_{j} \varphi_{j}$.

Theorem 1.3.1 (Cartan) Consider $x \in \Omega$ and a set $E \subseteq \Omega$. Assume that $x \in E$. Then the following are equivalent:
(1) E is an \mathcal{F}-neighbourhood of x;
(2) $\Omega \backslash E$ is thin at x.

Proof (2) \Longrightarrow (1). We may assume that $x \in \overline{\Omega \backslash E}$. Otherwise, our assertion follows from Proposition 1.3.1.

By Proposition 1.3.2, there is $\varphi \in \operatorname{PSH}\left(\mathbb{C}^{n}\right)$ and an open neighbourhood $U \subseteq \Omega$ of x such that

$$
\varphi(x)>\sup _{y \in U \cap(\Omega \backslash E)} \varphi(y)=: \lambda
$$

Let $F=\{y \in \Omega: \varphi(y)>\lambda\}$. Then $x \in F$ and F is \mathcal{F}-open. Moreover, $U \cap F \subseteq E$. By Proposition 1.3.1, we conclude (1).
$(1) \Longrightarrow(2)$. We may always replace E by smaller \mathcal{F}-neighbourhoods of x. In particular, we may assume that E has the following form

$$
\left\{y \in U: \varphi_{1}(y)>\lambda_{1}, \ldots, \varphi_{m}(y)>\lambda_{m}\right\}
$$

where $U \subseteq \Omega$ is an open neighbourhood of $x, \varphi_{1}, \ldots, \varphi_{m}$ are \mathbb{R}-valued psh functions on Ω and $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}$. Since a finite union of thin sets is still thin, we may assume that $m=1$. In this case, $\Omega \backslash E$ is clearly thin at x.

Theorem 1.3.2 A basis of the plurifine topology on Ω is given by sets of the following form:

$$
\begin{equation*}
\{x \in U: \varphi(x)>0\}, \tag{1.2}
\end{equation*}
$$

\{eq:basis_fine\}
where $U \subseteq \Omega$ is an open subset and $\varphi \in \operatorname{PSH}(U)$.

Proof We first show that sets of the form (1.2) are \mathcal{F}-open. By Theorem 1.3.1, it suffices to show its complement in Ω is thin at x, which is obvious.

Now consider $x \in \Omega$ and an \mathcal{F}-open neighbourhood $V \subseteq \Omega$ of x. We want to find a set of the form (1.2) contained in V and containing x.

Write $E=\Omega \backslash V$. In case $x \in \operatorname{Int} V$, there is nothing to prove. So we may assume that $x \in \bar{E}$. By Theorem 1.3.1, E is thin at x. By definition, there is an open neighbourhood $U \subseteq \Omega$ of x and $\varphi \in \operatorname{PSH}(U)$ such that

$$
\varlimsup_{y \rightarrow x, y \in E \cap U} \varphi(y)<\varphi(x) .
$$

We may assume that $\left.\varphi\right|_{E \cap U} \leq 0<\varphi(x)$, Then the set $\{y \in U: \varphi(y)>0\}$ suffices for our purpose.

Corollary 1.3.1 Let $\Omega_{1} \subseteq \Omega_{2} \subseteq \mathbb{C}^{n}$ be two non-empty open subsets. Then the plurifine topology on Ω_{1} is the same as the subspace topology induced from the plurifine topology on Ω_{2}.

Corollary 1.3.2 Let L be an affine subspace of \mathbb{C}^{n}, then the plurifine topology on L is the same as the subspace topology induced from the plurifine topology on \mathbb{C}^{n}.

Proof We may assume that $L=\mathbb{C}^{k} \times\{0\}$ for some $k \leq n$. We write the coordinate z on \mathbb{C}^{n} as $\left(z^{\prime}, z^{\prime \prime}\right)$ with $z \in \mathbb{C}^{k}$ and $z^{\prime \prime} \in \mathbb{C}^{n-k}$.

Consider an \mathcal{F}-open set $U \subseteq \mathbb{C}^{n}$ and $x=\left(x^{\prime}, 0\right) \in U \cap L$. We want to show that $U \cap L$ (identified with a subset of \mathbb{C}^{k}) is an \mathcal{F}-neighbourhood of x^{\prime} in L. By Theorem 1.3.2, we may assume that there are open subsets $U^{\prime} \subseteq \mathbb{C}^{k}$ containing x^{\prime} and $U^{\prime \prime} \subseteq \mathbb{C}^{n-k}$ containing 0 together with a psh function ψ on $U^{\prime} \times U^{\prime \prime}$ such that

$$
x \in\left\{\left(z^{\prime}, z^{\prime \prime}\right) \in U^{\prime} \times U^{\prime \prime}: \psi\left(z^{\prime}, z^{\prime \prime}\right)>0\right\} \subseteq \Omega .
$$

It follows that

$$
x^{\prime} \in\left\{z^{\prime} \in U^{\prime}: \psi\left(z^{\prime}, 0\right)>0\right\} \subseteq U \cap L
$$

Conversely, if $U \subseteq \mathbb{C}^{k}$ is an \mathcal{F}-open subset, we claim that $U \times \mathbb{C}^{n-k}$ is \mathcal{F}-open in \mathbb{C}^{n}. In fact, suppose that $\left(x^{\prime}, x^{\prime \prime}\right) \in U \times \mathbb{C}^{n-k}$. By Theorem 1.3.1, we can find an open neighbourhood $V \subseteq \mathbb{C}^{k}$ of x^{\prime} and a psh function φ on U such that

$$
x^{\prime} \in\{y \in U: \varphi(y)>0\} \subseteq U
$$

We define $\psi\left(z^{\prime}, z^{\prime \prime}\right):=\varphi\left(z^{\prime}\right)$. Then

$$
\left(x^{\prime}, x^{\prime \prime}\right) \in\left\{y \in U \times \mathbb{C}^{n}: \psi(y)>0\right\} \subseteq U \times \mathbb{C}^{n-k}
$$

Corollary 1.3.3 Let $\Omega \subseteq \mathbb{C}^{n}$ be an \mathcal{F}-open subset and $x \in \Omega$. Then x has a compact \mathcal{F}-neighbourhood contained in Ω.

Proof By Theorem 1.3.2, we may assume that there is a locally compact open set $U \subseteq \mathbb{C}^{n}$ and a psh function φ on U such that $\Omega=\{y \in U: \varphi(y)>0\}$.

Take a compact neighbourhood K of x in U. Now $\{y \in K: \varphi(y) \geq \varphi(x) / 2\}$ is a compact \mathcal{F}-neighbourhood of x contained in Ω.

Corollary 1.3.4 Let $\Omega \in \mathbb{C}^{n}, \Omega^{\prime} \subseteq \mathbb{C}^{n^{\prime}}$ be two domains and $F: \Omega^{\prime} \rightarrow \Omega$ be a surjective holomorphic map. Then F is \mathcal{F}-continuous.

Proof It suffices to show that the inverse image $F^{-1}(U)$ of each \mathcal{F}-open subset $U \subseteq \Omega$ is \mathcal{F}-open. By Theorem 1.3.2, after possibly shrinking Ω and Ω^{\prime}, we may assume that U has the form $\{x \in \Omega: \psi(x)>0\}$, where $\psi \in \operatorname{PSH}(\Omega)$. Since $F^{*} \psi \in \operatorname{PSH}\left(\Omega^{\prime}\right)$ by Proposition 1.1.4, we find that

$$
F^{-1}(U)=\left\{y \in \Omega^{\prime}: F^{*} \psi(y)>0\right\}
$$

is \mathcal{F}-open.

1.3.2 Plurifine topology on manifolds

Let X be a complex manifold.
Definition 1.3.3 The plurifine topology on X is the topology with a basis consisting of sets of the form $F^{-1}(V)$, where $U \subseteq X$ is an open subset and $F: U \rightarrow \Omega$ is a biholomorphic morphism with $\Omega \subseteq \mathbb{C}^{n}$ is a domain for some $n \in \mathbb{N}$ and $V \subseteq \Omega$ is \mathcal{F}-open.

It follows from Corollary 1.3.4 that the plurifine topologies on domains defined in Definition 1.3.3 and in Definition 1.3.1 coincide.

We refer to Definition 1.5.1 for the notion of quasi-plurisubharmonic functions.
Proposition 1.3.3 Let $\varphi \in \operatorname{QPSH}(X)$, then $\left.\varphi\right|_{\{\varphi \neq-\infty\}}$ is \mathcal{F}-continuous.
Proof The problem is local, so we may assume that $X \subseteq \mathbb{C}^{n}$ is a domain and $\varphi=\psi+g$, where $\psi \in \operatorname{PSH}(X)$ and $g \in C^{\infty}(X)$ and $|g| \leq C$ for some $C>0$. Take an open interval $(a, b) \subseteq \mathbb{R}$, it suffices to show that

$$
U:=\{x \in X: a<\varphi(x)<b\}=\{x \in X: a-g(x)<\psi(x)<b-g(x)\}
$$

is \mathcal{F}-open. Take $x \in U$, we can find an open neighbourhood V of x in U such that

$$
\sup _{y \in V}(a-g(y))<\psi(x)<\inf _{y \in V}(b-g(y)) .
$$

Therefore,

$$
\left\{z \in V: \sup _{y \in V}(a-g(y))<\psi(z)<\inf _{y \in V}(b-g(y))\right\}
$$

is an \mathcal{F}-open neighbourhood of z in U. We conclude that U is \mathcal{F}-open.

Lemma 1.3.1 Let $Z \subseteq X$ be a pluripolar subset. Then

$$
\overline{X \backslash Z}^{\mathcal{F}}=X
$$

Proof The problem is local, so we may assume that X is a domain in \mathbb{C}^{n} and $Z=\{\varphi=-\infty\}$ for some $\varphi \in \operatorname{PSH}(X)$. We need to show that $\{\varphi>-\infty\}$ is \mathcal{F}-dense.

Let $x \in X$ be a point with $\varphi(x)=-\infty$ and $U \subseteq X$ be an \mathcal{F}-open neighbourhood of x in X. We need to show that $U \cap\{\varphi>-\infty\} \neq \varnothing$.

Thanks to Theorem 1.3.2, after shrinking U, we may assume that there is $\psi \in$ $\operatorname{PSH}(X)$ such that $U=\{\psi>0\}$. Observe that U is not a pluripolar set: otherwise, $\psi \leq 0$ almost everywhere hence everywhere by Proposition 1.2.5. So $\left.\varphi\right|_{U} \not \equiv-\infty$. We conclude.

Corollary 1.3.5 Let $\varphi, \psi \in \operatorname{QPSH}(X)$. Set

$$
W=\{x \in X: \min \{\varphi(x), \psi(x)\}=-\infty\}
$$

Then for any pluripolar set $Z \subseteq X$, we have

$$
\sup _{X \backslash W}(\varphi-\psi)=\sup _{X \backslash W \cup Z}(\varphi-\psi), \quad \inf _{X \backslash W}(\varphi-\psi)=\inf _{X \backslash W \cup Z}(\varphi-\psi) .
$$

Proof This is an immediate consequence of Lemma 1.3.1 and Proposition 1.3.3.

1.4 Lelong numbers and multiplier ideal sheaves

Let X be a complex manifold.
Definition 1.4.1 Let $\varphi \in \operatorname{PSH}(X)$ and $x \in X$. The Lelong number $v(\varphi, x)$ of φ at x is defined as follows: take an open neighbourhood U of x in X and a biholomorphic map $F: U \rightarrow \Omega$, where Ω is a domain in \mathbb{C}^{n}. Then we define
$v(\varphi, x):=\sup \left\{\gamma \in \mathbb{R}_{\geq 0}:\left.\varphi\right|_{U}\left(F^{-1}(y)\right) \leq \gamma \log |y-F(x)|^{2}+O(1)\right.$ as $\left.y \rightarrow F(x)\right\}$.
\{eq:nuvarphix\}

Observe that $v(\varphi, x)$ does not depend on the choices of U and F. Furthermore, it follows from Proposition 1.4.1 below that the supremum in (1.3) is a maximum.

Remark 1.4.1 Our definition of the Lelong number is not standard. It differs from the standard definition by a factor of 2 .

Proposition 1.4.1 Let $\varphi \in \operatorname{PSH}\left(B_{n}(0,1)\right)$. Then

$$
\begin{equation*}
v(\varphi, 0)=\lim _{r \rightarrow 0+} \frac{\sup _{B_{n}(0, r)} \varphi}{\log r^{2}} \in[0, \infty) \tag{1.4}
\end{equation*}
$$

Proof It follows from Proposition 1.1.2 that the limit in (1.4) exists and is finite. We shall denote the limit by $v^{\prime}(\varphi, 0)$ for the time being.

We first observe that by Proposition 1.1.2,

$$
\begin{equation*}
\varphi(x) \leq v^{\prime}(\varphi, 0) \log |x|^{2}+\sup _{B_{n}(0,1)} \varphi \tag{1.5}
\end{equation*}
$$

\{eq:varphixlocalupperbd\}
when $x \in B_{n}(0,1)$. In particular, $v(\varphi, x) \geq v^{\prime}(\varphi, 0)$.
In order to argue the reverse inequality, we may assume that $v(\varphi, x)>0$.
Next observe that by (1.3), for each small enough $\epsilon>0$, we can find $r_{0} \in(0,1)$ and $C>0$ so that for all $x \in B_{n}\left(0, r_{0}\right)$, we have

$$
\varphi(x) \leq(v(\varphi, 0)-\epsilon) \log |x|^{2}+C .
$$

It follows that $v^{\prime}(\varphi, 0) \geq v(\varphi, 0)-\epsilon$. Letting $\epsilon \rightarrow 0+$, we conclude.
We recall Siu's semicontinuity theorem.
Theorem 1.4.1 Let $\varphi \in \operatorname{PSH}(X)$, then the map $X \ni x \mapsto v(\varphi, x)$ is upper semicontinuous with respect to the Zariski topology.
For an elegant proof we refer to $\frac{\text { Dem12 }}{[\mathrm{Dem} 12 \mathrm{a} \text {, Theorem 2.10]. }}$
Proposition 1.4.2 Let $\varphi, \psi \in \operatorname{PSH}(X), \lambda \in \mathbb{R}_{>0}$ and $x \in X$, then

$$
\begin{aligned}
v(\varphi \vee \psi, x) & =\min \{v(\varphi, x), v(\psi, x)\}, \\
v(\varphi+\psi, x) & =v(\varphi, x)+v(\psi, x), \\
v(\lambda \varphi, x) & =\lambda v(\varphi, x)
\end{aligned}
$$

Proof All properties are local, so we may assume that $X=B_{n}(0,1)$ for some $n \in \mathbb{N}$. All properties follow directly from Proposition 1.4.1.
cor: supsLelong
Corollary 1.4.1 Let $\left(\varphi_{i}\right)_{i \in I}$ be a non-empty family in $\operatorname{PSH}(X)$ uniformly bounded from above and $x \in X$, then

$$
v\left(\sup _{i \in I} \varphi_{i}, x\right)=\inf _{i \in I} v\left(\varphi_{i}, x\right)
$$

Proof We observe that the \leq inequality. It remains to argue the reverse inequality.
It follows from Proposition 1.2.2 that we may assume that I is countable. When I is finite, this is already proved in Proposition 1.4.2. Otherwise, we may further assume that $I=\mathbb{Z}_{>0}$. Thanks to Proposition 1.4.2, we may further assume that $\left(\varphi_{i}\right)_{i \in \mathbb{Z}_{>0}}$ is an increasing sequence. Furthermore, since the problem is local, we may assume that $X=B_{n}(0,1)$ for some $n \in \mathbb{N}$. In this case, by (1.5), we have

$$
\varphi_{i}(x) \leq v\left(\varphi_{i}, 0\right) \log |x|^{2}+C
$$

for all $x \in B_{n}(0,1)$ and all $i \geq 1$ and C is a constant independent of i. In particular, thanks to Proposition 1.2.3, for almost all $x \in B_{n}(0,1)$, we have

$$
\varphi(x) \leq \lim _{i \rightarrow \infty} v\left(\varphi_{i}, 0\right) \log |x|^{2}+C
$$

Thanks of Proposition 1.2.5, the same holds for all x and hence

$$
v\left(\sup _{i \in \mathbb{Z}_{>0}}^{*} \varphi_{i}, x\right) \geq \lim _{i \rightarrow \infty} v\left(\varphi_{i}, x\right)
$$

We conclude.
Definition 1.4.2 Let $F \subseteq X$ be a non-empty analytic subset. Then we define the generic Lelong number of φ along F as

$$
v(\varphi, F):=\min _{x \in F} v(\varphi, x)
$$

Note that the minimum is obtained by Theorem 1.4.1.
Definition 1.4.3 Let $\varphi \in \operatorname{PSH}(X)$. Let E be a prime divisor over X (see Definition B.1.1). Take a proper bimeromorphic morphism $\pi: Y \rightarrow X$ from a complex manifold Y such that E is a prime divisor on Y, then we define the generic Lelong number of φ along E as

$$
v(\varphi, E):=v\left(\pi^{*} \varphi, E\right)
$$

It follows from Theorem 1.4.1 that $v(\varphi, E)$ does not depend on the choice of π.
Definition 1.4.4 Let $\varphi \in \operatorname{PSH}(X)$, the multiplier ideal sheaf $\mathcal{I}(\varphi)$ of φ is by definition the ideal sheaf given by

$$
\Gamma(U, I(\varphi))=\left\{f \in O_{X}(U):|f|^{2} \exp (-\varphi) \in L_{\mathrm{loc}}^{1}(U)\right\}
$$

for any open subset $U \subseteq X$.
Remark 1.4.2 This definition is different from a few standard references, where instead of $\exp (-\varphi)$, they use $\exp (-2 \varphi)$. The conventions adopted in the current book is the most convenient one as far as the author knows. It simplifies a number of formulae.

Proposition 1.4.3 (Nadel) Let $\varphi \in \operatorname{PSH}(X)$. Then $\mathcal{I}(\varphi)$ is coherent.
See $\begin{gathered}\text { Dem12 } \\ \text { [Tem } 12 a, ~ P r o p o s i t i o n ~ 5.7] . ~\end{gathered}$
Theorem 1.4.2 Let $\varphi, \psi \in \operatorname{PSH}(X)$, then

$$
I(\varphi+\psi) \subseteq I(\varphi) \cdot I(\psi)
$$

See $\begin{gathered}\text { Dem12 } \\ \text { Dem } 12 a, ~ T h e o r e m ~ 14.2] . ~\end{gathered}$
The two invariants are related by the following simple result:
Proposition 1.4.4 Let $\varphi \in \operatorname{PSH}(X)$ and E be a prime divisor over X. Then

$$
v(\varphi, E)=\lim _{k \rightarrow \infty} \frac{1}{k} \operatorname{ord}_{E} \mathcal{I}(k \varphi) .
$$

See [DX21 [VX21, Proposition 2.14]. We remind the readers that this particular form of the formula is compatible with our conventions of v and \mathcal{I}.

Also observe the following simple lemma:
1ma:blowupLelong
thm: valuativemulti
Theorem 1.4.3 Let $\varphi \in \operatorname{PSH}(X)$. Let $x \in X$ and $f \in O_{X, x}$. Then the following are equivalent:
(1) $f \in \mathcal{I}(\varphi)_{x}$;
(2) there exists $\epsilon>0$ such that for any prime divisor E over X such that x is contained in the center of E on X, we have

$$
\operatorname{ord}_{E}(f) \geq(1+\epsilon) v(\varphi, E)-\frac{1}{2} A_{X}(E) .
$$

Here A_{X} denotes the log discrepancy. We refer to ${ }_{[\text {Bou17 }}^{\text {Bou17 }}$, Corollary 10.18] for the proof and the precise definition of A_{X}.

Theorem 1.4.4 (Guan-Zhou) Let $\varphi, \psi_{j} \in \operatorname{PSH}(X)\left(j \in \mathbb{Z}_{>0}\right)$ such that ψ_{j} is an increasing sequence converging to φ almost everywhere. Then for any $x \in X$, the germs satisfy

$$
\mathcal{I}\left(\psi_{j}\right)_{x}=I(\varphi)_{x}
$$

when j is large enough.
See $[G Z 1515$, Hiep14 14$]$ for the proof.
prop:pull-backmis
Proposition 1.4.5 Let $\pi: Y \rightarrow X$ be a smooth morphism between complex manifolds. Assume that $\varphi \in \operatorname{PSH}(X)$, then

$$
\mathcal{I}\left(\pi^{*} \varphi\right)=\pi^{*} I(\varphi)
$$

Proof It follows from ${ }^{[5 \mathrm{SHC6}} 60$, Théorème 3.10] that locally π can be written as the composition of an étale morphism and a projection. It suffices to handle the two cases separately.

Recall that in the complex analytic setting, an étale morphism is locally biholomorphic, so there is nothing to prove in this case.

Next, assume that $Y=X \times U$, where $U \subseteq \mathbb{C}^{n}$ is a domain and π is the natural projection. It follows from Fubini's theorem that

$$
\mathcal{I}\left(\pi^{*} \varphi\right) \subseteq \pi^{*} I(\varphi)
$$

The reverse inequality is proved in $\frac{\text { Dem } 12}{[D e m} 12 \mathrm{a}$, Proposition 14.3$]^{3}$.
def:restidealsheaf
Definition 1.4.5 Given a coherent ideal sheaf I on X, the restriction $\operatorname{Res}_{Y} I$ is the inverse image ideal sheaf given by

$$
\begin{equation*}
\operatorname{Res}_{Y} \mathcal{I}:=\mathcal{I} /\left(\mathcal{I} \cap \mathcal{I}_{Y}\right) \tag{1.6}
\end{equation*}
$$

\{eq:RestI\}
where \mathcal{I}_{Y} is the ideal sheaf defining Y.
In the literature, it is common to denote this sheaf by the misleading notation $\left.\mathcal{I}\right|_{Y}$.
There is a natural morphism

$$
\begin{equation*}
i_{Y}^{*} \mathcal{I}=I /\left(I \cdot I_{Y}\right) \rightarrow \operatorname{Res}_{Y} I \tag{1.7}
\end{equation*}
$$

where $i_{Y}: Y \rightarrow X$ is the inclusion.
Theorem 1.4.5 (Ohsawa-Takegoshi) Let Y be a submanifold of X and $\varphi \in \operatorname{PSH}(X)$. Assume that $\left.\varphi\right|_{Y} \not \equiv-\infty$, then

$$
\mathcal{I}\left(\left.\varphi\right|_{Y}\right) \subseteq \operatorname{Res}_{Y} \mathcal{I}(\varphi)
$$

See $\frac{\text { Dem12 }}{[D e m} 12 \mathrm{a}$, Theorem 14.1].

1.5 Quasi-plurisubharmonic functions

In practice, it is important to consider a variant of plurisubharmonic functions. We will fix a complex manifold X together with a closed real smooth (1,1)-form θ on X.

Definition 1.5.1 A θ-plurisubharmonic function on X is a function $\varphi: X \rightarrow[-\infty, \infty)$ such that for each $x \in X$ and each open neighbourhood U of x in X satisfying the condition that $\theta=\mathrm{dd}^{\mathrm{c}} g$ for some smooth function g on U, we have $g+\left.\varphi\right|_{U} \in \operatorname{PSH}(U)$. The set of θ-psh functions on X is denoted by $\operatorname{PSH}(X, \theta)$.

A quasi-plurisubharmonic function on X is a function $\varphi: X \rightarrow[-\infty, \infty)$ such that there exists a smooth closed real $(1,1)$-form θ^{\prime} on X such that $\varphi \in \operatorname{PSH}\left(X, \theta^{\prime}\right)$. The set of quasi-plurisubharmonic functions on X is denoted by $\operatorname{QPSH}(X)$.

There is a natural non-strict partial order on $\operatorname{QPSH}(X)$ defined as follows:
Definition 1.5.2 Assume that X is compact. Given $\varphi, \psi \in \operatorname{QPSH}(X)$, we say that φ is more singular than ψ and write $\varphi \leq \psi$ if there is $C \in \mathbb{R}$ such that $\varphi \leq \psi+C$. We also say ψ is less singular than φ and write $\psi \leq \varphi$.

In case $\varphi \leq \psi$ and $\psi \leq \varphi$, we say φ and ψ has the same singularity types. We write $\varphi \sim \psi$ in this case.

[^1]Remark 1.5.1 The proceeding results concerning plurisubharmonic functions can be extended mutatis mutandis to quasi-plurisubharmonic functions. We will apply these extensions without further explanations.

Proposition 1.5.1 Assume that X is compact. Let θ be a closed real smooth $(1,1)$-form on X. Then for any $a, b \in \mathbb{R}, a \leq b$, the set

$$
\left\{\varphi \in \operatorname{PSH}(X, \theta): \sup _{X} \varphi \in[a, b]\right\}
$$

is compact with respect to the L^{1}-topology. Moreover, $\varphi \mapsto \sup _{X} \varphi$ is L^{1}-continuous for $\varphi \in \operatorname{PSH}(X, \theta)$.
This is an immediate consequence of $[\mathrm{GZ17}$, Proposition 8.5, Exercise 1.20].
Proposition 1.5.2 Assume that X is compact. Let θ be a closed real smooth $(1,1)$-form on X and E be a prime divisor over E. Then

$$
\sup \{v(\varphi, E): \varphi \in \operatorname{PSH}(X, \theta)\}<\infty
$$

Proof It follows from the proof of Corollary 1.4.1 that $v(\bullet, E)$ is upper semicontinuous with respect to the L^{1}-topology on $\operatorname{PSH}(X, \theta)$. Thus, the desired upper bound follows from Proposition 1.5.1.
prop:PSHpullbij
Proposition 1.5.3 Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism from a compact Kähler manifold Y. Let θ be a closed real smooth $(1,1)$-form on X. Then the pull-back gives a bijection

$$
\pi^{*}: \operatorname{PSH}(X, \theta) \xrightarrow{\sim} \operatorname{PSH}\left(Y, \pi^{*} \theta\right)
$$

This follows from a more general result Theorem B.1.1.

1.6 Analytic singularities

Definition 1.6.1 We say $\varphi \in \operatorname{QPSH}(X)$ has analytic singularities if for each $x \in X$, we can find an open neighbourhood U of x such that $\left.\varphi\right|_{U}$ has the form:

$$
\begin{equation*}
c \log \left(\left|f_{1}\right|^{2}+\cdots+\left|f_{N}\right|^{2}\right)+R \tag{1.8}
\end{equation*}
$$

where f_{1}, \ldots, f_{N} are holomorphic functions on $U, c \in \mathbb{Q}_{>0}$ and R is a bounded function on U.

When R can be taken to be smooth, we say φ has neat analytic singularities .
Suppose that there is a coherent ideal $I \subseteq O_{X}$ on X such that we can choose U so that the f_{1}, \ldots, f_{N} can be chosen as the generators of $\Gamma(U, I)$ and c is independent of the choice of U, we say φ has analytic singularities of type (c, I).

Each potential with analytic singularities, has a type. The type is not uniquely determined. We refer to $[\mathrm{BOOO} 2 \mathrm{a}]$ and $[\mathrm{BO}$

Proposition 1.6.1 Let $\varphi, \psi \in \operatorname{QPSH}(X)$ be potentials with analytic singularities, then so are $\lambda \varphi(\lambda \in \mathbb{Q}>0), \varphi+\psi$ and $\varphi \vee \psi$.
Proof The $\lambda \varphi$ assertion is trivial. The \vee assertion is proved in Dem15 15 , Proposition 4.1.8]. The addition assertion is easy and is left to the readers.

Definition 1.6.2 Let D be an effective \mathbb{Q}-divisor on X. We say $\varphi \in \operatorname{QPSH}(X)$ has \log singularities (along D) on X if for each $x \in X$, there is an open neighbourhood U of x such that
(1) $\left.D\right|_{U}$ has finitely many irreducible components and can be written as

$$
\left.D\right|_{U}=\sum_{i=1}^{N} a_{i} D_{i}
$$

with D_{i} being prime divisors on $D, a_{i} \in \mathbb{Q}>0$ and there is a holomorphic function s_{i} on U defining D_{i}, and
(2) we have

$$
\begin{equation*}
\left.\varphi\right|_{U}=a_{i} \sum_{i} \log \left|s_{i}\right|^{2}+R \tag{1.9}
\end{equation*}
$$

where R is a bounded function on U.
By Proposition 1.6.1, φ has analytic singularities.
Lemma 1.6.1 Suppose that θ is a closed smooth real $(1,1)$-form on X, a compact Kähler manifold and $\varphi \in \operatorname{PSH}(X, \theta)$. Suppose that φ has log singularities along an effective \mathbb{Q}-divisor D on X. Then the cohomology class $[\theta]-[D]$ is nef.

Moreover, if in addition θ_{φ} is a Kähler current, then the cohomology class $[\theta]-[D]$ is ample.

Proof The first assertion follows immediately from the fact that R in (1.9) has bounded coefficients.

The second assertion follows immediately from the first.
The following proposition follows immediate from the definitions:
Proposition 1.6.2 Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism from a complex manifold Y. Suppose that $\varphi \in \operatorname{QPSH}(X)$ has analytic singularities (resp. has log singularities along an effective \mathbb{Q}-divisor D). Then $\pi^{*} \varphi$ has analytic singularities (resp. has log singularities along $\pi^{*} D$).

Theorem 1.6.1 Assume that X is compact. Suppose that $\varphi \in \operatorname{QPSH}(X)$ has analytic singularities. Then there is a modification $\pi: Y \rightarrow X$ such that $\pi^{*} \varphi$ has log singularities.
For a proof, we refer to the arguments on [MO77
def:quasiequsing
def:analy-sing
Definition 1.6.4 Let $I \subseteq O_{X}$ be an analytic coherent ideal sheaf and $c \in \mathbb{Q}_{>0}$. A function $\varphi \in \operatorname{QPSH}(X)$ is said to have gentle analytic singularities (of type (c, \mathcal{I})) if
(1) φ has analytic singularities of type (c, \mathcal{I});
(2) $\mathrm{e}^{\varphi / c}: X \rightarrow \mathbb{R}_{\geq 0}$ is a smooth function;
(3) there is a proper bimeromorphic morphism $\pi: \tilde{X} \rightarrow X$ from a Kähler manifold \tilde{X} and an effective \mathbb{Z}-divisor D on \tilde{X} such that one can write $\pi^{*} \varphi$ locally as

$$
\pi^{*} \varphi=c \log |g|^{2}+h,
$$

where g is a local equation of the divisor D and h is smooth.

Proposition 1.6.3 Let X be a compact Kähler manifold and θ be a closed real smooth $(1,1)$-form on X. Consider $\varphi \in \operatorname{PSH}(X, \theta)$. Let $\left(\varphi_{j}\right)_{j}$ and $\left(\psi_{j}\right)_{j}$ be two quasi-equisingular approximations of φ. Then for any $\epsilon>0$ and any $j>0$, we can find $k_{0}>0$ such that for any $k \geq k_{0}$, we have

$$
\psi_{k} \leq(1-\epsilon) \varphi_{j}
$$

See [Dem 15 15, Corollary 4.1.7].
def:Iinfty
Definition 1.6.3 Let X be a compact Kähler manifold and θ be a closed real smooth (1,1)-form on X. Consider $\varphi \in \operatorname{PSH}(X, \theta)$. A sequence $\left(\varphi_{j}\right)_{j \in \mathbb{Z}_{>0}}$ in $\operatorname{QPSH}(X)$ is quasi-equisingular approximation of φ if
(1) φ_{j} has analytic singularities for each j;
(2) φ_{j} is decreasing with limit φ;
(3) there is a decreasing sequence $\epsilon_{j} \geq 0$ with limit 0 and a Kähler form ω on X such that $\varphi_{j} \in \operatorname{PSH}\left(X, \theta+\epsilon_{j} \omega\right)$;
(4) for each $\lambda^{\prime}>\lambda>0$, there is $j>0$ such that

$$
\mathcal{I}\left(\lambda^{\prime} \varphi_{j}\right) \subseteq I(\lambda \varphi)
$$

We also say $\theta_{\varphi_{j}}$ is a quasi-equisingular approximation of θ_{φ}.
heorem 1.6.2 Let X be a compact Kähler manifold and θ be a closed real smooth $(1,1)$-form on X. Then any $\varphi \in \operatorname{PSH}(X, \theta)$ admits a quasi-equisingular approximation $\left(\varphi_{j}\right)_{j \in \mathbb{Z}_{>0}}$.

Moreover, we can guarantee that φ_{j} has gentle analytic singularities of type $\left(2^{-j}, \mathcal{I}\left(2^{j} \varphi\right)\right)$.
We refer to ${ }^{\text {DPSO01 }}$ [TPS01] for the proof.
Quasi-equisingular approximations are essentially unique in the following sense:

Definition 1.6.5 Assume that X is compact. Let $\varphi \in \operatorname{QPSH}(X)$ be a potential with analytic singularities. Then we define $I_{\infty}(\varphi)$ as the ideal sheaf consisting of germs f of holomorphic functions such that $|f|^{2} \exp (-\varphi)$ is locally bounded.

Lemma 1.6.2 Assume that X is compact. Let $\varphi \in \operatorname{QPSH}(X)$ be a potential with analytic singularities. The sheaf $\mathcal{I}_{\infty}(\varphi)$ is a coherent sheaf.

Proof By Theorem 1.6.1, we may find a modification $\pi: Y \rightarrow X$ such that $\pi^{*} \varphi$ has \log singularities. Observe that

$$
\mathcal{I}_{\infty}(\varphi)=\pi_{*} I\left(\pi^{*} \varphi\right)
$$

so we may replace X and φ by Y and $\pi^{*} \varphi$ and assume that φ has \log singularities along an effective \mathbb{Q}-divisor D. We decompose D into its irreducible components:

$$
D=\sum_{i=1}^{N} a_{i} D_{i}
$$

In this case, observe that

$$
\mathcal{I}_{\infty}(\varphi)=O\left(-\sum_{i=1}^{N}\left(\left\lceil a_{i}\right\rceil D_{i}\right)\right)
$$

is clearly coherent.
Lemma 1.6.3 Assume that X is compact. Let $\varphi \in \operatorname{QPSH}(X)$ be a potential with analytic singularities. Then for any $\epsilon>0$, we can find $k_{0}>0$ such that for each $k \geq k_{0}$, we have

$$
\mathcal{I}(k(1+\epsilon) \varphi) \subseteq I_{\infty}(k \varphi)
$$

See 部有15 15 , Proposition 4.1.6].
Theorem 1.6.3 Let X be a connected compact Kähler manifold and $Y \subseteq X$ be a connected submanifold. Take a Kähler form ω on X and $\varphi \in \operatorname{PSH}\left(Y,\left.\omega\right|_{Y}\right)$ such that $\left.\omega\right|_{Y}+\operatorname{dd}^{\mathrm{c}} \varphi$ is a Kähler current and that e^{φ} is a Hölder continuous function on V. Then there exists $\tilde{\varphi} \in \operatorname{PSH}(X, \omega)$ satisfying
(1) $\left.\tilde{\varphi}\right|_{Y}=\varphi$;
(2) $\omega_{\tilde{\varphi}}$ is a Kähler current.

In addition, if φ has analytic singularities, then so does $\tilde{\varphi}$.

$$
\text { See } \frac{\text { DRWNXZ }}{\left[D R W \mathrm{~N}^{+}\right.} 23 \text {, Theorem 6.1]. }
$$

1.7 The space of currents

Let X be a connected compact Kähler manifold of dimension n and $\alpha \in \mathrm{H}^{1,1}(X, \mathbb{R})$.
Definition 1.7.1 Let Y be a complex manifold and $m \in \mathbb{N}$. We say an (m, m)-current T on Y is positive if either $m>n$ or for any smooth (1,0)-forms $\beta_{1}, \ldots, \beta_{n-m}$ on X, the measure

$$
T \wedge \mathrm{i} \beta_{1} \wedge \overline{\beta_{1}} \wedge \cdots \wedge \mathrm{i} \beta_{n-m} \wedge \overline{\beta_{n-m}}
$$

is positive.

Definition 1.7.2 We say α is pseudo-effective if there is a closed positive (1,1)-current in α.

We say α is big if there is a closed positive (1,1)-current T in α dominating a Kähler form. Such currents are called Kähler currents.

Definition 1.7.3 We introduce the following notations:
(1) $\mathcal{Z}_{+}(X)$ denotes the space of closed positive $(1,1)$-currents on X;
(2) given a pseudo-effective $(1,1)$-class α on X, we write $\mathcal{Z}_{+}(X, \alpha)$ for the set of $T \in \mathcal{Z}_{+}(X)$ such that $[T]=\alpha ;$

Given $T, T^{\prime} \in \mathcal{Z}_{+}(X)$, we write $T \leq T^{\prime}$ and say T is more singular than T^{\prime} if when we write $T=\theta+\operatorname{dd}^{\mathrm{c}} \varphi, T^{\prime}=\theta^{\prime}+\operatorname{dd}^{\mathrm{c}} \varphi^{\prime}$, we have $\varphi \leq \varphi^{\prime}$. We write $T \sim T^{\prime}$ if $T \leq T^{\prime}$ and $T^{\prime} \leq T$. In this case, we say T and T^{\prime} have the same singularity type.
rmk:qpshtocurrents
Remark 1.7.1 Observe that

$$
\mathcal{Z}_{+}(X) / \sim \cong \operatorname{QPSH}(X) / \sim
$$

canonically. The correspondence sends the class of a closed positive current $\theta_{\varphi}=$ $\theta+\operatorname{dd}^{\mathrm{c}} \varphi$ to the class of φ.

We will adopt the following convention: whenever we have a notion for quasiplurisubharmonic functions which depends only on the singularity type, we use the same notation and the same definition for closed positive $(1,1)$-currents.
def:polarlocus
Definition 1.7.4 Given $T \in \mathcal{Z}_{+}(X)$. We represent T as $\theta+\operatorname{dd}^{\mathrm{c}} \varphi$ for some closed smooth real $(1,1)$-form θ on X and $\varphi \in \operatorname{PSH}(X, \theta)$, then the polar locus of T is defined as the set $\{\varphi=-\infty\}$.

It is clear that the polar locus of T is independent of the choices of θ and φ.
lma:Siudec
Lemma 1.7.1 (Siu's decomposition) Let E be a prime divisor on X. Then for any closed positive $(1,1)$-current T on X, the difference $T-v(T, E)[E]$ is a closed positive (1, 1)-current.
Here $[E]$ is the current of integration associated with E. See ${ }_{\text {GH14 }}^{[G 14} 14$, Page 386, Example 1] for the definition of [E]. See [Dem 12 a, Lemma 2.17] for the proof.

1.8 Plurisubharmonic metrics on line bundles

A natural source of quasi-plurisubharmonic functions is the metrics on line bundles.
Let X be a connected compact Kähler manifold and L be a holomorphic line bundle on X. Usually, we do not distinguish L from the associated invertible sheaf $O_{X}(L)$.

Definition 1.8.1 Let V be a 1-dimensional complex linear space. A Hermitian form h on V is a map $h: V \times V \rightarrow \mathbb{C}$ such that
(1) h is \mathbb{C}-linear in the second variable and conjugate linear in the first, and (2)

$$
|v|_{h}^{2}:=h(v, v) \in \mathbb{R}_{>0}
$$

for each $v \in V \backslash\{0\}$.
We usually identify h with the quadratic form $V \rightarrow \mathbb{R}$ sending v to $|v|_{h}^{2}$.
The singular Hermitian form on V is the map $V \rightarrow\{0, \infty\}$ sending 0 to 0 and other elements to ∞.

We write $|v|_{h}=\sqrt{|v|_{h}^{2}}$.
Definition 1.8.2 A Hermitian metric h on L is a family of Hermitian forms $\left(h_{x}\right)_{x \in X}$, such that
(1) for each $x \in X, h_{x}$ is a Hermitian form on L_{x}, and
(2) for each local section s of $O_{X}(L)$, the map $x \mapsto|s(x)|_{h_{x}}$ is smooth.

The pair (L, h) is called a Hermitian line bundle. We shall write $\mathrm{dd}^{\mathrm{c}} h=c_{1}(L, h)$ for the first Chern form of h, normalized so that

$$
\left[c_{1}(L, h)\right]=c_{1}(L)
$$

The map $x \mapsto|s(x)|_{h_{x}}$ will be denoted by $|s|$.
Proposition 1.8.1 (Lelong-Poincaré) Let $s \in H^{0}(X, L)$ be non-zero and h be a Hermitian metric on L. Then

$$
c_{1}(L, h)+\mathrm{dd}^{\mathrm{c}} \log |s|_{h}^{2}=[Z(s)]
$$

where $Z(s)$ is the prime divisor defined by s and $[\bullet]$ denote the associated current of integration.
See $\frac{\text { Dem12 }}{[\text { Dem } 12 \mathrm{a}, ~(3.11)] .}$
Definition 1.8.3 A plurisubharmonic metric h on L is a family $\left(h_{x}\right)_{x}$ such that
(1) for each $x \in X, h_{x}$ is either a Hermitian form on L_{x} or the singular Hermitian form, and
(2) there is a Hermitian metric h_{0} on L and $\varphi \in \operatorname{PSH}\left(X, c_{1}\left(L, h_{0}\right)\right)$ such that for each $x \in X$ and each $v \in L_{x}$, we have

$$
|v|_{h_{x}}^{2}=\left\{\begin{array}{r}
0, \text { if } v=0 \tag{1.10}\\
|v|_{h_{0, x}}^{2} \mathrm{e}^{-\varphi(x)}, \text { if } v \neq 0
\end{array}\right.
$$

The (first) Chern current of h is by definition

$$
\operatorname{dd}^{\mathrm{c}} h=c_{1}(L, h):=c_{1}\left(L, h_{0}\right)+\operatorname{dd}^{\mathrm{c}} \varphi .
$$

We shall write the plurisubharmonic metric defined by (1.10) as $h \exp (-\varphi)$. As the readers can easily verify, our conventions guarantee that $c_{1}(L, h)$ does not depend on the choice of h_{0}.

Remark 1.8.1 In the literature, some people prefer the convention that in (1.10), neither side has the square.

We shall need the following Ohsawa-Takegoshi type extension theorem.
Theorem 1.8.1 Assume that L is big and T is a holomorphic line bundle on X. Fix a Hermitian metric r on T. Take a Kähler form ω on X. Let $Y \subseteq X$ be a connected submanifold of dimension m. Suppose that $\varphi \in \operatorname{PSH}(X, \theta-\delta \omega)$ for some $\delta>0$ and $\left.\varphi\right|_{Y} \not \equiv-\infty$. Then there exists $k_{0}(\delta, r)>0$ such that for all $k \geq k_{0}$ and $s \in H^{0}\left(Y,\left.T \otimes L\right|_{Y} ^{k} \otimes \mathcal{I}\left(\left.k \varphi\right|_{Y}\right)\right)$, there exists an extension $\tilde{s} \in H^{0}\left(X, T \otimes L^{k} \otimes \mathcal{I}(k \varphi)\right)$ such that

$$
\int_{X}\left(h^{k} \otimes r\right)(\tilde{s}, \tilde{s}) \mathrm{e}^{-k \varphi} \omega^{n} \leq\left. C \int_{Y}\left(h^{k} \otimes r\right)(s, s) \mathrm{e}^{-\left.k \varphi\right|_{Y}} \omega\right|_{Y} ^{m}
$$

where $C>0$ is an absolute constant, independent of the data (φ, s, k).
This is a special case of $\frac{\operatorname{His} 12}{[\mathrm{His1}} 2$, Theorem 1.4].
prop: Bergman_approx
Proposition 1.8.2 Let (L, h) be a Hermitian line bundle on X and $\operatorname{set} \theta=c_{1}(L, h)$. Let $\left(T, h_{T}\right)$ be a Hermitian line bundle on X. Assume that $\varphi \in \operatorname{PSH}(X, \theta)$ is a potential with analytic singularities such that θ_{φ} is a Kähler current. Fix a Kähler form ω on X. For each $k \geq 1$, we let

$$
\begin{equation*}
\varphi_{k}:=\frac{1}{k} \log \sup _{\substack{s \in \mathrm{H}^{0}\left(X, L^{k} \otimes T\right) \\ \int_{X} h^{k} \otimes h_{T}(s, s) \mathrm{e}^{-k \varphi}} \omega^{n} \leq 1} h^{k} \otimes h_{T}(s, s) . \tag{1.11}
\end{equation*}
$$

Then for any $k \geq 0$,

$$
\varphi \leq \varphi_{k} \leq \alpha_{k} \varphi
$$

where $\alpha_{k} \in(0,1)$ is an increasing sequence with limit 1 .
Note that when k is large enough, $\varphi_{k} \in \operatorname{PSH}(X, \theta)$. We refer to ${ }_{[D X 21}^{D 21}$, Remark 2.9] for the proof.

Chapter 2
 Non-pluripolar products

Let X be a complex manifold and $\varphi_{1}, \ldots, \varphi_{p} \in \operatorname{PSH}(X)(p \in \mathbb{N})$. When the functions $\varphi_{1}, \ldots, \varphi_{p}$ are all smooth, there is an obvious definition of a current

$$
\begin{equation*}
\operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p} \tag{2.1}
\end{equation*}
$$

by the usual differential calculus. It is of interest to extend this construction to the case where the φ_{i} 's have worse regularities.

There are a number of different approaches to this problem. In this book, we will choose the so-called non-pluripolar theory due to Bedford-Taylor, Guedj-Zeriahi and Boucksom-Eyssidieux-Guedj-Zeriahi. The reason is that the non-pluripolar theory is the only known theory satisfying the following two features: it is defined for all psh singularities (at least in the global setting) and it satisfies a monotonicity theorem.

We will recall the Bedford-Taylor theory in Section 2.1 and the non-pluripolar theory in Section 2.2.

Some key properties of the non-pluripolar products are recalled in Section 2.3.

2.1 Bedford-Taylor theory

Let X be a complex manifold and $\varphi_{1}, \ldots, \varphi_{p} \in \operatorname{PSH}(X)(p \in \mathbb{N})$ be locally bounded plurisubharmonic functions on X^{1}. In this case, there is a canonical definition of the Monge-Ampère type product (2.1).

Definition 2.1.1 We define the closed positive (p, p)-current (2.1) on X as follows: we make an induction on $p \geq 0$. When $p=0$, we define (2.1) as the $(0,0)$-current [X]. When $p>0$, we let

$$
\operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p}:=\operatorname{dd}^{\mathrm{c}}\left(\varphi_{1} \operatorname{dd}^{\mathrm{c}} \varphi_{2} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p}\right)
$$

[^2]We call (2.1) the Bedford-Taylor product .
Proposition 2.1.1 The product $\mathrm{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \mathrm{dd}^{\mathrm{c}} \varphi_{p}$ is a closed positive (p, p)-current on X. Moreover, the product is symmetric in the φ_{i} 's.
See $\frac{\text { GZ17 }}{[G Z 17}$, Proposition 3.3, Corollary 3.12].
The Bedford-Taylor theory has many satisfactory properties.
Theorem 2.1.1 Let $\left(\varphi_{i}^{j}\right)_{j}$ be decreasing sequences (resp. increasing sequences) of locally bounded psh functions on X converging (resp. converging a.e.) to locally bounded psh function φ_{i}, where $i=1, \ldots, p$. Then

$$
\varphi_{0}^{j} \operatorname{dd}^{\mathrm{c}} \varphi_{1}^{j} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p}^{j} \rightharpoonup \varphi_{0} \operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p}
$$

as $j \rightarrow \infty$. In particular, if φ_{0}^{j} is the constant sequence 1 , we have

$$
\operatorname{dd}^{\mathrm{c}} \varphi_{1}^{j} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p}^{j} \rightharpoonup \operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p}
$$

Here the notation ${ }_{Z 1} \overrightarrow{7}$ denotes the weak-* convergence of currents.
We refer to [GZ17, Theorem 3.18, Theorem 3.23] for the proofs.

2.2 The non-pluripolar products

sec:npp
The proof of all results in this section can be found in $\left.{ }_{[B E G Z 10}^{[B Z} \mathcal{L} 10\right]$.
Let X be a connected complex manifold of dimension n.
Definition 2.2.1 Let $\varphi_{1}, \ldots, \varphi_{p} \in \operatorname{PSH}(X)$. We set

$$
O_{k}:=\bigcap_{j=1}^{p}\left\{\varphi_{j}>-k\right\}, \quad k \in \mathbb{Z}_{>0} .
$$

We say that $\operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p}$ is well-defined if for each open subset $U \subseteq X$ admitting a Kähler form ω on U, for each compact subset $K \subseteq U$, we have

$$
\begin{equation*}
\left.\sup _{k \geq 0} \int_{K \cap O_{k}}\left(\bigwedge_{j=1}^{p} \operatorname{dd}^{\mathrm{c}}\left(\varphi_{j} \vee(-k)\right)\right)\right|_{U} \wedge \omega^{n-p}<\infty \tag{2.2}
\end{equation*}
$$

\{eq:welldefinepluri\}

In this case, we define the non-pluripolar product $\operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p}$ by

$$
\begin{equation*}
\mathbb{1}_{O_{k}} \operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p}=\mathbb{1}_{O_{k}} \bigwedge_{j=1}^{p} \operatorname{dd}^{\mathrm{c}}\left(\varphi_{j} \vee(-k)\right) \tag{2.3}
\end{equation*}
$$

\{eq:npp\}
on $\bigcup_{k \geq 0} O_{k}$ and make a zero-extension to X.

Proposition 2.2.1 Let $\varphi_{1}, \ldots, \varphi_{p} \in \operatorname{PSH}(X)$.
(1) The product $\mathrm{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \mathrm{dd}^{\mathrm{c}} \varphi_{p}$ is local with respect to the plurifine topology in the following sense: Let $O \subseteq X$ be a plurifine open subset and $\psi_{1}, \ldots, \psi_{p} \in \operatorname{PSH}(X)$. Assume that

$$
\left.\varphi_{j}\right|_{o}=\left.\psi_{j}\right|_{o}, \quad j=1, \ldots, p
$$

and that

$$
\bigwedge_{j=1}^{p} \mathrm{dd}^{\mathrm{c}} \varphi_{j} \text { and } \bigwedge_{j=1}^{p} \mathrm{dd}^{\mathrm{c}} \psi_{j}
$$

are both well-defined, then

$$
\begin{equation*}
\left.\bigwedge_{j=1}^{p} \operatorname{dd}^{\mathrm{c}} \varphi_{j}\right|_{O}=\left.\bigwedge_{j=1}^{p} \operatorname{dd}^{\mathrm{c}} \psi_{j}\right|_{O} \tag{2.4}
\end{equation*}
$$

If furthermore O is open in the usual topology, then the product

$$
\left.\bigwedge_{j=1}^{p} \mathrm{dd}^{\mathrm{c}} \varphi_{j}\right|_{O}
$$

on O is well-defined and

$$
\begin{equation*}
\left.\bigwedge_{j=1}^{p} \operatorname{dd}^{\mathrm{c}} \varphi_{j}\right|_{O}=\left.\bigwedge_{j=1}^{p} \operatorname{dd}^{\mathrm{c}} \varphi_{j}\right|_{o} \tag{2.5}
\end{equation*}
$$

Let \mathcal{U} be an open covering of X. Then $\operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \mathrm{dd}^{\mathrm{c}} \varphi_{p}$ is well-defined if and only if each of the following product is well-defined

$$
\left.\bigwedge_{j=1}^{p} \mathrm{dd}^{\mathrm{c}} \varphi_{j}\right|_{U}, \quad U \in \mathcal{U}
$$

(2) The current $\operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \mathrm{dd}^{\mathrm{c}} \varphi_{p}$ and the fact that it is well-defined depend only on the currents $\mathrm{dd}^{\mathrm{c}} \varphi_{j}$, not on specific φ_{j}.
(3) When $\varphi_{1}, \ldots, \varphi_{p} \in L_{\text {loc }}^{\infty}(X)$, the product $\operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p}$ is well-defined and is equal to the Bedford-Taylor product.
(4) Assume that $\operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p}$ is well-defined, then $\operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p}$ puts not mass on pluripolar sets.
(5) Assume that $\operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \mathrm{dd}^{\mathrm{c}} \varphi_{p}$ is well-defined, then $\bigwedge_{j=1}^{p} \mathrm{dd}^{\mathrm{c}} \varphi_{j}$ is a closed positive (p, p)-current on X.
(6) The product is multilinear: Let $\psi_{1} \in \operatorname{PSH}(X)$, then

$$
\begin{equation*}
\operatorname{dd}^{\mathrm{c}}\left(\varphi_{1}+\psi_{1}\right) \wedge \bigwedge_{j=2}^{p} \operatorname{dd}^{\mathrm{c}} \varphi_{j}=\operatorname{dd}^{\mathrm{c}} \varphi_{1} \wedge \bigwedge_{j=2}^{p} \operatorname{dd}^{\mathrm{c}} \varphi_{j}+\operatorname{dd}^{\mathrm{c}} \psi_{1} \wedge \bigwedge_{j=2}^{p} \operatorname{dd}^{\mathrm{c}} \varphi_{j} \tag{2.6}
\end{equation*}
$$

in the sense that left-hand side is well-defined if and only if both terms on right-hand side are well-defined, and the equality holds in that case.

Definition 2.2.2 Let T_{1}, \ldots, T_{p} be closed positive $(1,1)$-currents on X. We say that $T_{1} \wedge \cdots \wedge T_{p}$ is well-defined if there exists an open covering \mathcal{U} of X, such that on each $U \in \mathcal{U}$, we can find $\varphi_{j}^{U} \in \operatorname{PSH}(U)(j=1, \ldots, p)$ such that

$$
\operatorname{dd}^{\mathrm{c}} \varphi_{j}^{U}=T_{j}, \quad j=1, \ldots, p
$$

and such that $\operatorname{dd}^{\mathrm{c}} \varphi_{1}^{U} \wedge \cdots \wedge \mathrm{dd}^{\mathrm{c}} \varphi_{p}^{U}$ is well-defined. In this case, we define the non-pluripolar product $T_{1} \wedge \cdots \wedge T_{p}$ as the closed positive (p, p)-current on X defined by

$$
\begin{equation*}
\left.\left(T_{1} \wedge \cdots \wedge T_{p}\right)\right|_{U}=\operatorname{dd}^{\mathrm{c}} \varphi_{1}^{U} \wedge \cdots \wedge \operatorname{dd}^{\mathrm{c}} \varphi_{p}^{U}, \quad U \in \mathcal{U} \tag{2.7}
\end{equation*}
$$

Proposition 2.2.1 can be formulated in terms of currents without any difficulty.
Proposition 2.2.2 Let X be a compact Kähler manifold and T_{1}, \ldots, T_{p} are closed positive $(1,1)$-currents on X. Then $T_{1} \wedge \cdots \wedge T_{p}$ is well-defined.

This proposition explains why we usually work in the setting of compact Kähler manifolds.

2.3 Properties of non-pluripolar products

Let X be a connected compact Kähler manifold of dimension n and $\theta, \theta_{1}, \ldots, \theta_{n}$ be closed real smooth (1, 1)-forms on X.

We write

$$
\begin{equation*}
\operatorname{PSH}(X, \theta)_{>0}=\left\{\varphi \in \operatorname{PSH}(X, \theta): \int_{X} \theta_{\varphi}^{n}>0\right\} . \tag{2.8}
\end{equation*}
$$

\{eq: PSHpos\}
The non-pluripolar product θ_{φ}^{n} is well-defined thanks to Proposition 2.2.2.
Remark 2.3.1 Suppose that X is a connected complex manifold of dimension 0, namely, X is a single point. In this case, by definition, the non-pluripolar product θ_{φ}^{n} is given by the current of integration at the unique point. $\operatorname{So} \operatorname{PSH}(X, \theta)_{>0}=\operatorname{PSH}(X, \theta) \cong \mathbb{R}$ in this case and $\int_{X} \theta_{\varphi}^{n}=1$ for all $\varphi \in \operatorname{PSH}(X, \theta)$.

Proposition 2.3.1 Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism from a Kähler manifold Y and $\varphi_{i} \in \operatorname{PSH}\left(X, \theta_{i}\right)$ for $i=1, \ldots, n$. Then

$$
\int_{Y} \pi^{*} \theta_{1, \pi^{*} \varphi_{1}} \wedge \cdots \wedge \pi^{*} \theta_{n, \pi^{*} \varphi_{n}}=\int_{X} \theta_{1, \varphi_{1}} \wedge \cdots \wedge \theta_{n, \varphi_{n}}
$$

Proof This follows immediately from Proposition 2.2.1 (1) and (4).

We shall write

$$
\begin{equation*}
V_{\theta}=\sup \{\varphi \in \operatorname{PSH}(X, \theta): \varphi \leq 0\} \tag{2.9}
\end{equation*}
$$

It follows from Proposition 1.2.1 that $V_{\theta} \in \operatorname{PSH}(X, \theta)$ if $\operatorname{PSH}(X, \theta) \neq \varnothing$.
Theorem 2.3.1 (Semicontinuity theorem) Let $\varphi_{j}, \varphi_{j}^{k} \in \operatorname{PSH}\left(X, \theta_{j}\right)\left(k \in \mathbb{Z}_{>0}\right.$, $j=1, \ldots, n)$. Let $\chi \geq 0$ be a bounded function such that there are $\eta_{1}, \eta_{2} \in \operatorname{QPSH}(X)$ with $\eta_{1}+\chi=\eta_{2}$.

Assume that for any $j=1, \ldots, n$ and $i=1, \ldots, m$, as $k \rightarrow \infty$, either φ_{j}^{k} decreases to $\varphi_{j} \in \operatorname{PSH}(X, \theta)$ or increases to $\varphi_{j} \in \operatorname{PSH}(X, \theta)$ almost everywhere. Then for any open set $U \subseteq X$, we have

$$
\begin{equation*}
\underline{\lim }_{k \rightarrow \infty} \int_{U} \chi \theta_{1, \varphi_{1}^{k}} \wedge \cdots \wedge \theta_{n, \varphi_{n}^{k}} \geq \int_{U} \chi \theta_{1, \varphi_{1}} \wedge \cdots \wedge \theta_{n, \varphi_{n}} \tag{2.10}
\end{equation*}
$$

\{eq:semicon1\}
DDNL18mono
See [DOTVLI8t, Theorem 2.3].
thm:mono
Theorem 2.3.2 (Monotonicity theorem) Let $\varphi_{j}, \psi_{j} \in \operatorname{PSH}\left(X, \theta_{j}\right)$ for $j=1, \ldots, n$. Assume that $\varphi_{j} \geq \psi_{j}$ for every j, then

$$
\int_{X} \theta_{1, \varphi_{1}} \wedge \cdots \theta_{n, \varphi_{n}} \geq \int_{X} \theta_{1, \psi_{1}} \wedge \cdots \theta_{n, \psi_{n}}
$$

DDNL18mono
See [1FTNLIBt, Theorem 1.1].
As a corollary, we obtain that
Corollary 2.3.1 Fix a directed set I. For each $j=1, \ldots, n$, take an increasing net $\left(\varphi_{j}^{i}\right)_{i \in I}$ in $\operatorname{PSH}\left(X, \theta_{j}\right)$, uniformly bounded from above. Set

$$
\varphi_{j}:=\sup _{i \in I}^{*} \varphi_{j}^{i} .
$$

Then

$$
\begin{equation*}
\lim _{i \in I} \int_{X} \theta_{1, \varphi_{1}^{i}} \wedge \cdots \wedge \theta_{n, \varphi_{n}^{i}}=\int_{X} \theta_{1, \varphi_{1}} \wedge \cdots \wedge \theta_{n, \varphi_{n}} \tag{2.11}
\end{equation*}
$$

Proof We may assume that I is infinite as there is nothing to prove otherwise. Thanks to Theorem 2.3.2, we already know the \leq inequality in (2.11). We prove the reverse inequality. When $I \cong \mathbb{Z}_{>0}$ as directed sets, the reverse inequality follows from Theorem 2.3.1. In general, by Choquet's lemma Proposition 1.2.2, we can find a countable infinite subset $R \subseteq I$ such that

$$
\sup _{r \in R}^{*} \varphi_{j}^{r}=\sup _{i \in I}^{*} \varphi_{j}^{i}
$$

for all $j=1, \ldots, n$. We fix a bijection $R \cong \mathbb{Z}_{>0}$. For any $j=1, \ldots, n$, we will then denote elements $\varphi_{j}^{r}(r \in R)$ by $\varphi_{j}^{1}, \varphi_{j}^{2}, \ldots$ We shall write

$$
\psi_{j}^{a}=\varphi_{j}^{1} \vee \cdots \vee \varphi_{j}^{a}
$$

for each $a \in \mathbb{Z}_{>0}$.

It follows from the fact that I is a directed set and Theorem 2.3.2 that

$$
\lim _{i \in I} \int_{X} \theta_{1, \varphi_{1}^{i}} \wedge \cdots \wedge \theta_{n, \varphi_{n}^{i}} \geq \lim _{a \rightarrow \infty} \int_{X} \theta_{1, \psi_{1}^{a}} \wedge \cdots \wedge \theta_{n, \psi_{n}^{a}}
$$

From the special case mentioned above, we know that the right-hand side is exactly the right-hand side of (2.11), so we conclude.

Lemma 2.3.1 Let $\varphi, \psi \in \operatorname{PSH}(X, \theta), \varphi \leq \psi$ and $\int_{X} \theta_{\varphi}^{n}>0$. Then for any

$$
\begin{equation*}
a \in\left(1,\left(\frac{\int_{X} \theta_{\psi}^{n}}{\int_{X} \theta_{\psi}^{n}-\int_{X} \theta_{\varphi}^{n}}\right)^{1 / n}\right) \tag{2.12}
\end{equation*}
$$

there is $\eta \in \operatorname{PSH}(X, \theta)_{>0}$ such that

$$
a^{-1} \eta+\left(1-a^{-1}\right) \psi \leq \varphi
$$

The fraction in (2.12) is understood as ∞ if $\int_{X} \theta_{\psi}^{n}=\int_{X} \theta_{\varphi}^{n}$. In particular, thanks to Theorem 2.3.2, the interval (2.12) is non-empty.

We write

$$
\begin{align*}
P_{\theta}(a \varphi+(1-a) \psi) & =\sup ^{*}\left\{\eta \in \operatorname{PSH}(X, \theta): a^{-1} \eta+\left(1-a^{-1}\right) \psi \leq \varphi\right\} \tag{2.13}\\
& \in \operatorname{PSH}(X, \theta)
\end{align*}
$$

Remark 2.3.2 The notation $P_{\theta}(a \varphi+(1-a) \psi)$ might lead to some potential confusions. But the author cannot come up with a better notation.

Observe that

$$
\begin{equation*}
a^{-1} P_{\theta}(a \varphi+(1-a) \psi)+\left(1-a^{-1}\right) \psi \leq \varphi . \tag{2.14}
\end{equation*}
$$

In fact, this equation holds outside a pluripolar set by Proposition 1.2.3, hence it holds everywhere by Proposition 1.2.5.

Proof Withoutloss of generality, we may assume that $\varphi \leq \psi \leq 0$.
We refer to [DNTVL2T5, Lemma 4.3] for the proof of the existence of $\eta \in \operatorname{PSH}(X, \theta)$ satisfying the given inequality. Next we argue that $P_{\theta}(a \varphi+(1-a) \psi) \in \operatorname{PSH}(X, \theta)_{>0}$. Choose

$$
a^{\prime} \in\left(a,\left(\frac{\int_{X} \theta_{\psi}^{n}}{\int_{X} \theta_{\psi}^{n}-\int_{X} \theta_{\varphi}^{n}}\right)^{1 / n}\right)
$$

It follows from (2.13) that

$$
P_{\theta}(a \varphi+(1-a) \psi) \geq \frac{a}{a^{\prime}} P_{\theta}\left(a^{\prime} \varphi+\left(1-a^{\prime}\right) \psi\right)+\frac{a^{\prime}-a}{a^{\prime}} \varphi
$$

Therefore, by Theorem 2.3.2, we have

$$
\int_{X} \theta_{P_{\theta}(a \varphi+(1-a) \psi)}^{n} \geq \frac{\left(a^{\prime}-a\right)^{n}}{a^{\prime n}} \int_{X} \theta_{\varphi}^{n}>0
$$

Lemma 2.3.2 For any $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$, there is $\psi \in \operatorname{PSH}(X, \theta)$ such that
(1) θ_{ψ} is a Kähler current, and
(2) $\psi \leq \varphi$.

In particular, there is an increasing sequence $\left(\varphi_{i}\right)_{i}$ in $\operatorname{PSH}(X, \theta)$ converging almost everywhere to φ such that $\theta_{\varphi_{i}}$ is a Kähler current for all $i \geq 1$.

Proof Using Lemma 2.3.1, we can find $\epsilon>0$ and $\gamma \in \operatorname{PSH}(X, \theta)$ such that

$$
\frac{\epsilon}{1+\epsilon} V_{\theta}+\frac{1}{1+\epsilon} \gamma \leq \varphi
$$

We observe that the cohomology class $[\theta]$ is big as a consequence of $\frac{\text { BEGZ10 }}{[B E G Z} 10$, Proposition 1.22]. Therefore, we can take $\eta \in \operatorname{PSH}(X, \theta)$ such that θ_{η} is a Kähler current and $\eta \leq 0$. Then we may take

$$
\psi=\frac{\epsilon}{1+\epsilon} \eta+\frac{1}{1+\epsilon} \gamma .
$$

For the latter claim, it suffices to take

$$
\varphi_{i}=\left(1-(i+1)^{-1}\right) \varphi+(i+1)^{-1} \psi .
$$

lma:existsecposmass
Lemma 2.3.3 Let L be a holomorphic line bundle on X with $\theta \in c_{1}(L)$. Assume that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$, then there exists $k_{0}>0$ such that for each $k \geq k_{0}$, we have

$$
\mathrm{H}^{0}\left(X, L^{k} \otimes \mathcal{I}(k \varphi)\right) \neq 0
$$

Proof By Lemma 2.3.2, we may, further assume that θ_{φ} is a Kähler current. In this case, the result follows from [Jem 12a, Theorem 13.21].

Theorem 2.3.3 Let $\varphi_{0}, \varphi_{1} \in \operatorname{PSH}(X, \theta)$. Then the map

$$
[0,1] \ni t \mapsto \log \int_{X} \theta_{t \varphi_{1}+(1-t) \varphi_{0}}^{n}
$$

is concave.
See [DNL191og a] for the proof.
Remark 2.3.3 Here and in the sequel, when we write expressions like $t \varphi+(1-t) \psi$ for $\varphi, \psi \in \operatorname{QPSH}(X)$, we will follow the convention that when $t=0$, the value is ψ and when $t=1$, the value is φ.

Chapter 3

The envelope operators

chap: enve
In this chapter, we study two envelope operators lying at the heart of the whole theory. The first envelope, called the P-envelope, is defined using the non-pluripolar masses, while the second, called the I-envelope, is defined using the multiplier ideal sheaves. The corresponding theories are developed in Section 3.1 and Section 3.2 respectively.

Later on in Chapter 6, we will develop corresponding P and I-partial orders associated with these envelopes, allowing us to compare the singularities.

3.1 The P-envelope

sec: Penv
In this section, X will denote a connected compact Kähler manifold of dimension n.

3.1.1 Rooftop operator and the definition of the P-envelope

We will fix a smooth closed real $(1,1)$-form θ on X.
def:rooftop
Definition 3.1.1 Given $\varphi, \psi \in \operatorname{PSH}(X, \theta)$, we define their rooftop operator as follows:

$$
\varphi \wedge \psi=\sup \{\eta \in \operatorname{PSH}(X, \theta): \eta \leq \varphi, \eta \leq \psi\}
$$

When we want to be more specific, we could also write $\varphi \wedge_{\theta} \psi$. Suppose that $\varphi \wedge \psi$ is not identically $-\infty$, then we have $\varphi \wedge \psi \in \operatorname{PSH}(X, \theta)$ by Proposition 1.2.1.
prop:landfinitecond1
Proposition 3.1.1 Assume that $\varphi, \psi, \eta \in \operatorname{PSH}(X, \theta)$ and

$$
\int_{X} \theta_{\varphi}^{n}+\int_{X} \theta_{\psi}^{n}>\int_{X} \theta_{\eta}^{n}, \quad \varphi \vee \psi \leq \eta
$$

Then $\varphi \wedge \psi \in \operatorname{PSH}(X, \theta)$.

We refer to $\begin{gathered}\text { DDNLmetric } \\ {[D I T N L 2 T 5, ~ L e m m a ~ 5.1] ~ f o r ~ t h e ~ p r o o f . ~}\end{gathered}$
thm: diamond
Theorem 3.1.1 Assume that $\varphi, \psi \in \operatorname{PSH}(X, \theta)$ and $\varphi \wedge \psi \in \operatorname{PSH}(X, \theta)$. Then

$$
\int_{X} \theta_{\varphi}^{n}+\int_{X} \theta_{\psi}^{n} \leq \int_{X} \theta_{\varphi \vee \psi}^{n}+\int_{X} \theta_{\varphi \wedge \psi}^{n}
$$

We refer to DDDNLmetric [DDTNL2Ib, Theorem 5.4] for the proof.
We recall that the relations \leq and \sim are introduced in Definition 1.5.2.
Definition 3.1.2 Given $\varphi \in \operatorname{PSH}(X, \theta)$, we define its P-envelope as follows:

$$
\begin{equation*}
P_{\theta}[\varphi]:=\sup ^{*}\{\psi \in \operatorname{PSH}(X, \theta): \psi \leq 0, \psi \leq \varphi\} . \tag{3.1}
\end{equation*}
$$

\{eq:Pthetavarphi\}

Observe that by Proposition 1.2.1, we have $P_{\theta}[\varphi] \in \operatorname{PSH}(X, \theta)$. Moreover, the definition can be equivalently described as

$$
\begin{equation*}
P_{\theta}[\varphi]=\sup _{C \in \mathbb{Z}_{>0}}^{*}(\varphi+C) \wedge V_{\theta} \tag{3.2}
\end{equation*}
$$

Recall that V_{θ} is introduced in (2.9). Observe that for any $C \in \mathbb{R}$, we have $(\varphi+C) \wedge V_{\theta} \in$ $\operatorname{PSH}(X, \theta)$ and

$$
(\varphi+C) \wedge V_{\theta} \sim \varphi
$$

Proposition 3.1.2 Let $\theta^{\prime}=\theta+\mathrm{dd}^{\mathrm{c}} \mathrm{g}$ for some $g \in C^{\infty}(X)$. Then for any $\varphi \in$ $\operatorname{PSH}(X, \theta)$, we have $\varphi-g \in \operatorname{PSH}\left(X, \theta^{\prime}\right)$ and

$$
P_{\theta}[\varphi] \sim P_{\theta^{\prime}}\left[\varphi^{\prime}\right] .
$$

Proof By symmetry, it suffices to show that

$$
P_{\theta}[\varphi] \leq P_{\theta^{\prime}}\left[\varphi^{\prime}\right] .
$$

We may assume that $g \geq 0$. Then for any $\psi \in \operatorname{PSH}(X, \theta)$ with $\psi \leq \varphi$ and $\psi \leq 0$, we set $\psi^{\prime}:=\psi-g \in \operatorname{PSH}\left(X, \theta^{\prime}\right)$. Then $\psi^{\prime} \leq \varphi^{\prime}$ and $\psi^{\prime} \leq 0$, so $\psi^{\prime} \leq P_{\theta^{\prime}}\left[\varphi^{\prime}\right]$. Since ψ is arbitrary, it follows that

$$
P_{\theta}[\varphi]-g \leq P_{\theta^{\prime}}\left[\varphi^{\prime}\right] .
$$

The P-envelope preserves the non-pluripolar masses:
Proposition 3.1.3 Suppose that $\theta_{1}, \ldots, \theta_{n}$ be smooth closed real $(1,1)$-forms on X. Let $\varphi_{i} \in \operatorname{PSH}\left(X, \theta_{i}\right)$ for each $i=1, \ldots, n$. Then

$$
\begin{equation*}
\int_{X} \theta_{1, P_{\theta_{1}}\left[\varphi_{1}\right]} \wedge \cdots \wedge \theta_{n, P_{\theta_{n}}\left[\varphi_{n}\right]}=\int_{X} \theta_{1, \varphi_{1}} \wedge \cdots \wedge \theta_{n, \varphi_{n}} \tag{3.3}
\end{equation*}
$$

Proof For each $C \in \mathbb{Z}_{>0}$ and each $i=1, \ldots, n$, we have

$$
\left(\varphi_{i}+C\right) \wedge V_{\theta_{i}} \sim \varphi_{i}
$$

It follows from Theorem 2.3.2 that

$$
\int_{X} \theta_{1,\left(\varphi_{1}+C\right) \wedge V_{\theta_{1}}} \wedge \cdots \wedge \theta_{n,\left(\varphi_{n}+C\right) \wedge V_{\theta_{n}}}=\int_{X} \theta_{1, \varphi_{1}} \wedge \cdots \wedge \theta_{n, \varphi_{n}}
$$

So (3.3) follows from (3.2) and Corollary 2.3.1.
Conversely, Proposition 3.1 .3 characterizes the P-envelope:
Theorem 3.1.2 Assume that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$, then

$$
\begin{equation*}
P_{\theta}[\varphi]=\sup \left\{\psi \in \operatorname{PSH}(X, \theta): \psi \leq 0, \varphi \leq \psi, \int_{X} \theta_{\varphi}^{n}=\int_{X} \theta_{\psi}^{n}\right\} \tag{3.4}
\end{equation*}
$$

\{eq:Penvdef\}

In particular, in this case,

$$
\begin{equation*}
P_{\theta}\left[P_{\theta}[\varphi]\right]=P_{\theta}[\varphi] . \tag{3.5}
\end{equation*}
$$

DDNLsurv , Theorem 3.14] for the proof. In general, we do not know if We refer to $[\mathrm{DTENL} 23$, Theorem 3.14] for the proof. In general, we do not know if
(3.5) holds when $\int_{X} \theta_{\varphi}^{n}>0$. We expect it to be wrong. According to our general philosophy, the P-envelope operator is the correct object only when the non-pluripolar mass is positive. We will avoid using the degenerate case in the whole book.

Definition 3.1.3 If $\varphi=P_{\theta}[\varphi]$ and $\int_{X} \theta_{\varphi}^{n}>0$, we say φ is a model potential.
We remind the readers that the notion of model potentials depends heavily on the choice of θ. When there is a risk of confusion, we also say φ is a model potential in $\operatorname{PSH}(X, \theta)$.

Remark 3.1.1 Definition 3.1.3 is different from the common definition in the literature: We impose the extra condition $\int_{X} \theta_{\varphi}^{n}>0$. The author believes that this is the only case where this notion is natural. We sometimes emphasize this point by saying $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$ is a model potential.

There are plenty of model potentials:
Corollary 3.1.1 Let $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$, then $P_{\theta}[\varphi]$ is a model potential in $\operatorname{PSH}(X, \theta)$. Moreover,

$$
\int_{X} \theta_{P_{\theta}[\varphi]}^{n}=\int_{X} \theta_{\varphi}^{n}
$$

Proof This follows immediately from Theorem 3.1.2 and Proposition 3.1.3.

3.1.2 Properties of the P-envelope

Let $\theta, \theta_{1}, \theta_{2}$ be smooth closed real (1, 1)-forms on X.
prop:Penvbimero
Proposition 3.1.4 Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism from a Kähler manifold Y to X. Then for any $\varphi \in \operatorname{PSH}(X, \theta)$, we have

$$
P_{\pi^{*} \theta}\left[\pi^{*} \varphi\right]=\pi^{*} P_{\theta}[\varphi] .
$$

In particular, a potential $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$ is model if and only if $\pi^{*} \varphi \in$ $\operatorname{PSH}\left(Y, \pi^{*} \theta\right)_{>0}$ is model.
Proof This follows immediately from Proposition 1.5.3.
We have the following concavity property of the P-envelope.

Proposition 3.1.5

(1) Suppose that $\varphi \in \operatorname{PSH}(X, \theta)$ and $\lambda \in \mathbb{R}_{>0}$, then

$$
P_{\lambda \theta}[\lambda \varphi]=\lambda P_{\theta}[\varphi] .
$$

(2) Suppose that $\varphi_{1} \in \operatorname{PSH}\left(X, \theta_{1}\right)$ and $\varphi_{2} \in \operatorname{PSH}\left(X, \theta_{2}\right)$, then

$$
P_{\theta_{1}+\theta_{2}}\left[\varphi_{1}+\varphi_{2}\right] \geq P_{\theta_{1}}\left[\varphi_{1}\right]+P_{\theta_{2}}\left[\varphi_{2}\right] .
$$

Proof (1) This is obvious by definition.
(2) Suppose that $\psi_{1} \in \operatorname{PSH}\left(X, \theta_{1}\right)$ and $\psi_{2} \in \operatorname{PSH}\left(X, \theta_{2}\right)$ satisfy

$$
\psi_{i} \leq 0, \quad \psi_{i} \leq \varphi_{i}
$$

for $i=1,2$. Then

$$
\psi_{1}+\psi_{2} \leq 0, \quad \psi_{1}+\psi_{2} \leq \varphi_{1}+\varphi_{2}
$$

It follows from (3.1) that

$$
\psi_{1}+\psi_{2} \leq P_{\theta_{1}+\theta_{2}}\left[\varphi_{1}+\varphi_{2}\right]
$$

Since ψ_{1} and ψ_{2} are arbitrary, we conclude.
Proposition 3.1.6 Let $\varphi, \psi \in \operatorname{PSH}(X, \theta)$. Assume that

$$
\varphi=P_{\theta}[\varphi], \quad \psi=P_{\theta}[\psi], \quad \varphi \wedge \psi \not \equiv-\infty .
$$

Then

$$
\begin{equation*}
P_{\theta}[\varphi \wedge \psi]=\varphi \wedge \psi \tag{3.6}
\end{equation*}
$$

\{eq:Pthetaphilandpsi\}
Proof Observe that we obviously have

$$
P_{\theta}[\varphi \wedge \psi] \leq P_{\theta}[\varphi]=\varphi, \quad P_{\theta}[\varphi \wedge \psi] \leq P_{\theta}[\psi]=\psi
$$

So the \leq direction in (3.6) holds. The reverse direction is trivial.

$$
\theta_{P_{\theta}[\varphi]}^{n} \leq \mathbb{1}_{\left\{P_{\theta}[\varphi]=0\right\}} \theta^{n} .
$$

See [DJTVLI8も, Theorem 3.8] for the proof.
Proposition 3.1.7 Let $\left(\varphi_{j}\right)_{j \in I}$ be a decreasing net of potentials in $\operatorname{PSH}(X, \theta)$ satisfying $P_{\theta}\left[\varphi_{j}\right]=\varphi_{j}$ for each $j \in I$ and $\varphi:=\inf _{j} \varphi_{j} \not \equiv-\infty$. Then $P_{\theta}[\varphi]=\varphi$.

Proof It follows from Proposition 1.2.1 that $\varphi \in \operatorname{PSH}(X, \theta)$. Therefore, for each $j \in I$,

$$
\varphi \leq P_{\theta}[\varphi] \leq P_{\theta}\left[\varphi_{j}\right]=\varphi_{j}
$$

Therefore, $\varphi=P_{\theta}[\varphi]$.

prop:vol_limit_model

Proposition 3.1.8 Let $\left(\epsilon_{j}\right)_{j \in I}$ be a decreasing net in $\mathbb{R}_{\geq 0}$ with limit 0 . Take a Kähler form ω on X. Consider a decreasing net $\varphi_{j} \in \operatorname{PSH}\left(X, \theta+\epsilon_{j} \omega\right)(j \in I)$ satisfying

$$
\begin{equation*}
P_{\theta+\epsilon_{j} \omega}\left[\varphi_{j}\right]=\varphi_{j} \tag{3.7}
\end{equation*}
$$

with pointwise limit $\varphi \not \equiv-\infty$. Then

$$
\begin{equation*}
\lim _{j \in I} \int_{X}\left(\theta+\epsilon_{j} \omega\right)_{\varphi_{j}}^{n}=\int_{X} \theta_{\varphi}^{n} \tag{3.8}
\end{equation*}
$$

Moreover, if $\int_{X} \theta_{\varphi}^{n}>0$, then for any prime divisor E over X, we have

$$
\begin{equation*}
\lim _{j \in I} v\left(\varphi_{j}, E\right)=v(\varphi, E) \tag{3.9}
\end{equation*}
$$

\{eq:Palmostmodeltemp\}
\{eq:massmodeldec\}
\{eq:Lelongcontdecseq\}

Proof Observe that $\varphi \in \operatorname{PSH}(X, \theta)$. By Theorem 2.3.2, we have

$$
\frac{\lim }{j \in I} \int_{X}\left(\theta+\epsilon_{j} \omega\right)_{\varphi_{j}}^{n} \geq \frac{\lim }{j \in I} \int_{X}\left(\theta+\epsilon_{j} \omega\right)_{\varphi}^{n}=\int_{X} \theta_{\varphi}^{n}
$$

We now argue the reverse inequality.
Fix $j_{0} \in I$, we have

$$
\begin{aligned}
\varlimsup_{j \in I} \int_{X}\left(\theta+\epsilon_{j} \omega\right)_{\varphi_{j}}^{n} & =\varlimsup_{j \in I} \int_{\left\{\varphi_{j}=0\right\}}\left(\theta+\epsilon_{j} \omega\right)_{\varphi_{j}}^{n} \\
& \leq \varlimsup_{j \in I} \int_{\left\{\varphi_{j}=0\right\}}\left(\theta+\epsilon_{j_{0}} \omega\right)_{\varphi_{j}}^{n} \\
& \leq \int_{\{\varphi=0\}}\left(\theta+\epsilon_{j_{0}} \omega\right)_{\varphi}^{n},
\end{aligned}
$$

where in the first line we used (303nand Theorem 3.1.3, and in the last linewe have used the fact that $\varphi_{j} \searrow \varphi$ and [DTNLETF, Proposition 4.6] (see also [DTNLZ23, Lemma 2.11]). Taking limit with respect to j_{0}, we arrive at the desired conclusion:

$$
\varlimsup_{j \in I} \int_{X}\left(\theta+\epsilon_{j} \omega\right)_{\varphi_{j}}^{n} \leq{\underset{j}{j_{0} \in I}}^{\lim _{\{\varphi=0\}}}\left(\theta+\epsilon_{j_{0}} \omega\right)_{\varphi}^{n}=\int_{\{\varphi=0\}} \theta_{\varphi}^{n} \leq \int_{X} \theta_{\varphi}^{n}
$$

This finishes the proof of (3.8).

It remains to argue (3.9). By Lemma 2.3.1 and (3.8), for any $\epsilon \in(0,1)$ and j big enough there exists $\psi_{j} \in \operatorname{PSH}\left(X, \theta+\epsilon_{j} \omega\right)$ such that $(1-\epsilon) \varphi_{j}+\epsilon \psi_{j} \leq \varphi$. This implies that for j big enough we have

$$
(1-\epsilon) v\left(\varphi_{j}, E\right)+\epsilon v\left(\psi_{j}, E\right) \geq v(\varphi, E) \geq v\left(\varphi_{j}, E\right)
$$

On the other hand, the Lelong numbers $v\left(\psi_{j}, E\right)$ admit an upper bound for various j by Proposition 1.5.2. So taking limit with respect to j, we conclude (3.9).

Corollary 3.1.2 Let $\left(\varphi_{j}\right)_{j \in I}$ be a decreasing net of potentials in $\operatorname{PSH}(X, \theta)$ with pointwise limit $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$. Then

$$
P_{\theta}[\varphi]=\inf _{j \in I} P_{\theta}\left[\varphi_{j}\right] .
$$

Proof We may assume that I is infinite since otherwise, there is nothing to prove.
Let $\eta=\inf _{i \in I} P_{\theta}\left[\varphi_{i}\right]$. We clearly have $0 \geq \eta \geq P_{\theta}[\varphi]$.
By Proposition 3.1.8, we have

$$
\lim _{i \in I} \int_{X} \theta_{\varphi_{i}}^{n}=\int_{X} \theta_{\varphi}^{n}>0
$$

So by Lemma 2.3.1, we can find a decreasing net $\epsilon_{i} \searrow 0(i \in I)$ with $\epsilon_{i} \in(0,1)$ and $\psi_{i} \in \operatorname{PSH}(X, \theta)$ such that for all $i \in I$,

$$
\left(1-\epsilon_{i}\right) \varphi_{i}+\epsilon_{i} \psi_{i} \leq \varphi, \quad \psi_{i} \leq \varphi_{i}
$$

By Proposition 3.1.5, we have

$$
\eta+\epsilon_{i} P_{\theta}\left[\psi_{i}\right] \leq\left(1-\epsilon_{i}\right) \eta+\epsilon_{i} P_{\theta}\left[\psi_{i}\right] \leq\left(1-\epsilon_{i}\right) P_{\theta}\left[\varphi_{i}\right]+\epsilon_{i} P_{\theta}\left[\psi_{i}\right] \leq P_{\theta}[\varphi] .
$$

Observe that the L^{1}-norms of $P_{\theta}\left[\psi_{i}\right]$ (with respect to a fixed volume form) are uniformly bounded by Proposition 1.5.1. Taking limit with respect to $i \in I$, we conclude that $\eta \leq P_{\theta}[\varphi]$ almost everywhere by Proposition 1.2.5.

Remark 3.1.2 The arguments like the last sentence in the proof of Corollary 3.1.2 is very common. We will usually omit the details.

Corollary 3.1.3 Let $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$ be a model potential. Let ω be a Kähler form on X. Then

$$
\varphi=\inf _{\epsilon>0} P_{\theta+\epsilon \omega}[\varphi] .
$$

Proof Clearly, we have the \leq direction and the right-hand side is non-positive. So by Theorem 3.1.2, it suffices to show that they have the same mass, which follows from Proposition 3.1.8.

Proposition 3.1.9 Let $\left(\varphi_{i}\right)_{i \in I}$ be an increasing net of potentials in $\operatorname{PSH}(X, \theta)_{>0}$ uniformly bounded from above. Let $\varphi:=\sup ^{*_{i \in I}} \varphi_{i}$. Then

$$
\sup _{i \in I}^{*} P_{\theta}\left[\varphi_{i}\right]=P_{\theta}[\varphi] .
$$

In particular, if φ_{i} is model for all $i \in I$, then so is φ.
Proof We may assume that I is infinite since otherwise, there is nothing to prove. We write

$$
\eta:=\sup _{i \in I} P_{\theta}\left[\varphi_{i}\right] .
$$

Then it is clear that $\eta \leq P_{\theta}[\varphi]$.
By Corollary 2.3.1, we have

$$
\lim _{i \in I} \int_{X} \theta_{\varphi_{i}}^{n}=\int_{X} \theta_{\varphi}^{n}>0
$$

So by Lemma 2.3.1, we can find a decreasing net $\epsilon_{i} \searrow 0(i \in I)$ with $\epsilon \in(0,1)$ and $\psi_{i} \in \operatorname{PSH}(X, \theta)(i \in I)$ such that for all $i \in I$,

$$
\left(1-\epsilon_{i}\right) \varphi+\epsilon_{i} \psi_{i} \leq \varphi_{i} .
$$

By Proposition 3.1.5, we have

$$
P_{\theta}[\varphi]+\epsilon_{i} P_{\theta}\left[\psi_{i}\right] \leq\left(1-\epsilon_{i}\right) P_{\theta}[\varphi]+\epsilon_{i} P_{\theta}\left[\psi_{i}\right] \leq \eta .
$$

Taking limit with respect to i, we conclude that $P_{\theta}[\varphi] \leq \eta$ (c.f. Remark 3.1.2).

3.1.3 Relative full mass classes

Let θ be a smooth closed real $(1,1)$-form on X representing a big cohomology class. Fix a model potential $\phi \in \operatorname{PSH}(X, \theta)_{>0}$.

Definition 3.1.4 We define

$$
\begin{aligned}
\operatorname{PSH}(X, \theta ; \phi) & :=\{\eta \in \operatorname{PSH}(X, \theta): \eta \leq \phi\}, \\
\mathcal{E}^{\infty}(X, \theta ; \phi) & :=\{\eta \in \operatorname{PSH}(X, \theta): \eta \sim \phi\}, \\
\mathcal{E}(X, \theta ; \phi) & :=\left\{\eta \in \operatorname{PSH}(X, \theta ; \phi): \int_{X} \theta_{\varphi}^{n}=\int_{X} \theta_{\phi}^{n}\right\}, \\
\mathcal{E}^{1}(X, \theta ; \phi) & :=\left\{\eta \in \mathcal{E}(X, \theta ; \phi): \int_{X}|\phi-\eta| \theta_{\eta}^{n}<\infty\right\} .
\end{aligned}
$$

Potentials in the last three classes are said to have minimal singularities, full mass and finite energy relative to ϕ respectively.

We have the following inclusions:

$$
\begin{equation*}
\mathcal{E}^{\infty}(X, \theta ; \phi) \subseteq \mathcal{E}^{1}(X, \theta ; \phi) \subseteq \mathcal{E}(X, \theta ; \phi) \subseteq \operatorname{PSH}(X, \theta ; \phi) \tag{3.10}
\end{equation*}
$$

The only non-trivial part is the first inclusion, which follows from Theorem 2.3.2.

Proposition 3.1.10 Let $\varphi \in \operatorname{PSH}(X, \theta)$. Then the following are equivalent:
(1) $\varphi \in \mathcal{E}(X, \theta ; \phi)$;
(2) $P_{\theta}[\varphi]=\phi$.

Proof $(2) \Longrightarrow$ (1). This follows from Proposition 3.1.3.
$(1) \Longrightarrow$ (2). Note that ϕ is a candidate of $P_{\theta}[\varphi]$ as in (3.4). So $P_{\theta}[\varphi]=\phi$.
In order to handle the finite energy classes, it is convenient to introduce the following quantity:
Definition 3.1.5 We define the Monge-Ampère energy $E_{\theta}^{\phi}: \mathcal{E}^{\infty}(X, \theta ; \phi) \rightarrow \mathbb{R}$ as follows

$$
\begin{equation*}
E_{\theta}^{\phi}(\varphi):=\frac{1}{n+1} \sum_{j=0}^{n} \int_{X}(\varphi-\phi) \theta_{\varphi}^{j} \wedge \theta_{\phi}^{n-j} \tag{3.11}
\end{equation*}
$$

\{eq:Edefbdd\}

More generally, we extend E_{θ}^{ϕ} to a functional $E_{\theta}^{\phi}: \operatorname{PSH}(X, \theta ; \phi) \rightarrow[-\infty, \infty)$ as follows

$$
\begin{equation*}
E_{\theta}^{\phi}(\varphi):=\inf \left\{E_{\theta}^{\phi}(\psi): \psi \in \mathcal{E}^{\infty}(X, \theta ; \phi), \varphi \leq \psi\right\} \tag{3.12}
\end{equation*}
$$

(2) $E_{\theta}^{\phi}(\varphi)>-\infty$.

When the conditions are satisfied, (3.11) holds.
Given $\varphi, \psi \in \mathcal{E}^{1}(X, \theta ; \phi)$, we have the following cocycle equality

$$
\begin{equation*}
E_{\theta}^{\phi}(\psi)-E_{\theta}^{\phi}(\varphi)=\frac{1}{n+1} \sum_{j=0}^{n} \int_{X}(\psi-\varphi) \theta_{\psi}^{j} \wedge \theta_{\varphi}^{n-j} \tag{3.13}
\end{equation*}
$$

See ${ }^{\text {BEGZ10 }}[\mathrm{BEGZ} 10$, Proposition 2.11] and [DNL18big .
DDNL18big
prop:relrooftopclosed
Proposition 3.1.12 Assume that $\varphi, \psi \in \mathcal{E}(X, \theta ; \phi)\left(\operatorname{resp} . \mathcal{E}^{1}(X, \theta ; \phi), \mathcal{E}^{\infty}(X, \theta ; \phi)\right)$, then so is $\varphi \wedge \psi$.

Proof The case of $\mathcal{E}^{\infty}(X, \theta ; \phi)$ is trivial.
We consider the case $\mathcal{E}(X, \theta ; \phi)$. It follows from Proposition 3.1.1 that $\varphi \wedge \psi \in$ $\operatorname{PSH}(X, \theta)$. By Theorem 3.1.1, we have

$$
\int_{X} \theta_{\varphi \wedge \psi}^{n} \geq \int_{X} \theta_{\phi}^{n} .
$$

By Theorem 2.3.2, equality holds. By Theorem 3.1.2, we conclude that

$$
P_{\theta}[\varphi \wedge \psi]=\phi .
$$

Finally, the case $\mathcal{E}^{1}(X, \theta ; \phi)$ is proved in Xia23Mabuchi $[X 1 a 23$, Theorem 4.13] (the arXiv version).

Proposition 3.1.13 Let $\varphi, \psi \in \operatorname{PSH}(X, \theta)$ be potentials such that $\psi \leq \phi$ and $\varphi \leq \psi$. Assume that $\varphi \in \mathcal{E}(X, \theta ; \phi)$ (resp. $\left.\mathcal{E}^{1}(X, \theta ; \phi), \mathcal{E}^{\infty}(X, \theta ; \phi)\right)$, then so is ψ.
 rem 2.3.2. The case $\mathcal{E}^{1}(X, \theta ; \phi)$ follows from [Xiaz3a, Proposition 4.5] (arXiv version).

Proposition 3.1.14 Let $\left(\varphi_{i}\right)_{i \in I}$ be a uniformly bounded from above non-empty family in $\mathcal{E}(X, \theta ; \phi)\left(\right.$ resp. $\left.\mathcal{E}^{1}(X, \theta ; \phi), \mathcal{E}^{\infty}(X, \theta ; \phi)\right)$, then so is $\sup _{i} \varphi_{i}$.

Proof It suffices to handle the case where $\varphi_{i} \in \mathcal{E}(X, \theta ; \phi)$ for all $i \in I$. The remaining two cases follow from Proposition 3.1.13.

Step 1. We first assume that I is finite. In this case, we can easily further reduce to the case where $I=\{0,1\}$. Assume that $\varphi_{0}, \varphi_{1} \in \mathcal{E}(X, \theta ; \phi)$. Observe that $\varphi_{0} \leq \phi$ and $\varphi_{1} \leq \phi$, hence $\varphi_{0} \vee \varphi_{1} \leq \phi$. On the other hand, by Theorem 2.3.2, $\varphi_{0} \vee \varphi_{1}$ and ϕ have the same mass.

Step 2. We come back to the case where I is infinite.
By Proposition 1.2.2, we may assume that $I=\mathbb{Z}_{>0}$ as an ordered set. Moreover, by Step 1, we may assume that the sequence $\left(\varphi_{i}\right)_{i}$ is increasing. Furthermore, we may

[^3]assume that $\varphi_{i} \leq 0$ for all i. Then we know that $\varphi_{i} \leq \phi$. Therefore, $\sup ^{*}{ }_{i} \varphi_{i} \leq \phi$. But they have the same mass as a consequence of Corollary 2.3.1. So we conclude using Theorem 3.1.2.

Proposition 3.1.15 Let $\varphi, \psi \in \mathcal{E}(X, \theta ; \phi)$. Then

$$
\sup _{C \geq 0} *(\varphi+C) \wedge \psi=\psi
$$

Proof Since for each $C \geq 0$,

$$
(\varphi \wedge \psi+C) \wedge \psi \leq(\varphi+C) \wedge \psi \leq \psi
$$

 case, the result is proved in [EDTVLI86, Theorem 3.8, Corollary 3.11].

3.2 The I-envelope

From the algebraic point of view, a more natural envelope operator is given by the I-envelope.

In this section, X will denote a connected compact Kähler manifold of dimension n.

3.2.1 I-equivalence

prop:Iequivchar
Proposition 3.2.1 Given $\varphi, \psi \in \operatorname{QPSH}(X)$, the following are equivalent:
(1) For any $k \in \mathbb{Z}_{>0}$, we have

$$
\mathcal{I}(k \varphi)=I(k \psi)
$$

(2) for any $\lambda \in \mathbb{R}_{>0}$, we have

$$
I(\lambda \varphi)=I(\lambda \psi)
$$

(3) for any modification $\pi: Y \rightarrow X$ and any $y \in Y$, we have

$$
v\left(\pi^{*} \varphi, y\right)=v\left(\pi^{*} \psi, y\right) ;
$$

(4) for any proper bimeromorphic morphism $\pi: Y \rightarrow X$ from a Kähler manifold and any $y \in Y$, we have

$$
v\left(\pi^{*} \varphi, y\right)=v\left(\pi^{*} \psi, y\right)
$$

(5) for any prime divisor E over X, we have

$$
v(\varphi, E)=v(\psi, E)
$$

See Definition B.1.1 for the definition of prime divisors over X. We remind the readers that in the whole book, a modification of a compact complex space means a finite composition of blow-ups with smooth centers. This terminology is highly non-standard.

Proof (4) \Longleftrightarrow (5). This follows from Lemma 1.4.1.
(3) \Longleftrightarrow (5). This follows from Corollary B.1.1.
$(1) \Longrightarrow$ (5). This follows from Proposition 1.4.4.
$(5) \Longrightarrow$ (2). This follows from Theorem 1.4.3.
$(2) \Longrightarrow$ (1). This is trivial.
Definition 3.2.1 Given $\varphi, \psi \in \operatorname{QPSH}(X)$, we say they are \mathcal{I}-equivalent and write $\varphi \sim_{I} \psi$ if the equivalent conditions in Proposition 3.2.1 are satisfied.

Proposition 3.2.2 Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism from a Kähler manifold Y to X. Then for $\varphi, \psi \in \operatorname{QPSH}(X)$, we the following are equivalent:
(1) $\varphi \sim_{I} \psi$;
(2) $\pi^{*} \varphi \sim_{I} \pi^{*} \psi$.

Proof $(1) \Longrightarrow$ (2). This follows from Proposition 3.2.1(4).
$(2) \Longrightarrow(1)$. This follows from the simple fact that

$$
\mathcal{I}(k \varphi)=\pi_{*}\left(\omega_{Y / X} \otimes \mathcal{I}\left(k \pi^{*} \varphi\right)\right), \quad \mathcal{I}(k \psi)=\pi_{*}\left(\omega_{Y / X} \otimes \mathcal{I}\left(k \pi^{*} \psi\right)\right)
$$

Proposition 3.2.3 Let $\varphi, \varphi^{\prime}, \psi, \psi^{\prime} \in \operatorname{QPSH}(X)$ and $\lambda>0$. Assume that $\varphi \sim_{I} \psi$ and $\varphi^{\prime} \sim_{I} \psi^{\prime}$, then

$$
\varphi \vee \varphi^{\prime} \sim_{I} \psi \vee \psi^{\prime}, \quad \varphi+\varphi^{\prime} \sim_{I} \psi+\psi^{\prime}, \quad \lambda \varphi \sim_{I} \lambda \psi
$$

Similarly, if $\left(\varphi_{i}\right)_{i \in I},\left(\psi_{i}\right)_{i \in I}$ are two non-empty uniformly bounded from above families in $\operatorname{PSH}(X, \theta)$ for some closed smooth real $(1,1)$-form θ on X such that $\varphi_{i} \sim_{I} \psi_{i}$ for all $i \in I$, then

$$
\sup _{i \in I}^{*} \varphi_{i} \sim_{I} \sup _{i \in I}^{*} \psi_{i}
$$

Proof This follows from Proposition 1.4.2 and Corollary 1.4.1.

3.2.2 The definition of the I-envelope

We will fix a smooth closed real $(1,1)$-form θ on X.
Definition 3.2.2 Given $\varphi \in \operatorname{PSH}(X, \theta)$, we define its I-envelope as follows:

$$
\begin{equation*}
P_{\theta}[\varphi]_{I}:=\sup ^{*}\left\{\psi \in \operatorname{PSH}(X, \theta): \psi \leq 0, \psi \sim_{I} \varphi\right\} \tag{3.14}
\end{equation*}
$$

\{eq:Ienvelopedef\}
If $\varphi=P_{\theta}[\varphi]_{I}$, we say φ is an I-model potential $($ in $\operatorname{PSH}(X, \theta))$.

Note that by Proposition 1.2.1, $P_{\theta}[\varphi]_{I} \in \operatorname{PSH}(X, \theta)$.
prop:Ienvindeptheta
Proposition 3.2.4 Let $\theta^{\prime}=\theta+\mathrm{dd}^{\mathrm{c}} \mathrm{g}$ for some $g \in C^{\infty}(X)$. Then for any $\varphi \in$ $\operatorname{PSH}(X, \theta)$, we have $\varphi-g \in \operatorname{PSH}\left(X, \theta^{\prime}\right)$ and

$$
P_{\theta}[\varphi]_{I} \sim P_{\theta^{\prime}}\left[\varphi^{\prime}\right]_{I} .
$$

The proof is similar to that of Proposition 3.1.2, so we omit it.
prop:Ienvelopebimero
Proposition 3.2.5 Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism from a connected Kähler manifold Y to X. Then for $\varphi \in \operatorname{PSH}(X, \theta)$, we have

$$
P_{\pi^{*} \theta}\left[\pi^{*} \varphi\right]_{I}=\pi^{*} P_{\theta}[\varphi]_{I}
$$

Proof The proof is similar to that of Proposition 3.1.4 in view of Proposition 3.2.2.ם
Proposition 3.2.6 Let $\varphi \in \operatorname{PSH}(X, \theta)$, then

$$
\varphi \sim_{I} P_{\theta}[\varphi]_{I}
$$

In particular,

$$
P_{\theta}\left[P_{\theta}[\varphi]_{I}\right]_{I}=P_{\theta}[\varphi]_{I}
$$

and the upper semicontinuous regularization in (3.14) is not necessary.
Proof In view of Proposition 3.2.1, it suffices to show that for $k \in \mathbb{Z}_{>0}$, we have

$$
\begin{equation*}
\mathcal{I}(k \varphi)=\mathcal{I}\left(k P_{\theta}[\varphi]_{I}\right) \tag{3.15}
\end{equation*}
$$

\{eq:IenvelopepreservLelong\}
By Proposition 1.2.2, we can find $\psi_{i} \in \operatorname{PSH}(X, \theta)\left(i \in \mathbb{Z}_{>0}\right)$ such that $\psi_{i} \leq 0$, $\psi_{i} \sim_{I} \varphi$ for all $i \geq 1$ and

$$
\sup _{i>0}^{*} \psi_{i}=P_{\theta}[\varphi]_{I}
$$

By Proposition 3.2.3, we may replace ψ_{i} by $\psi_{1} \vee \cdots \vee \psi_{i}$ and assume that the sequence ψ_{i} is increasing. In this case, it follows from the strong openness theorem Theorem 1.4.4 that for each $k \in \mathbb{Z}_{>0}$, we have

$$
\mathcal{I}(k \varphi)=\mathcal{I}\left(k \psi_{j}\right)=\mathcal{I}\left(k P_{\theta}[\varphi]_{I}\right)
$$

for j large enough.
def:volqpsh
Definition 3.2.3 Let $\varphi \in \operatorname{PSH}(X, \theta)$, we define the $\operatorname{volume} \operatorname{vol}(\theta, \varphi)$ as

$$
\operatorname{vol}(\theta, \varphi)=\int_{X}\left(\theta+\operatorname{dd}^{\mathrm{c}} P_{\theta}[\varphi]_{I}\right)^{n}
$$

Proposition 3.2.7 Let $\theta^{\prime}=\theta+\mathrm{dd}^{\mathrm{c}} \mathrm{g}$ for some $g \in C^{\infty}(X)$. Then for any $\varphi \in$ $\operatorname{PSH}(X, \theta)$, we have $\varphi-g \in \operatorname{PSH}\left(X, \theta^{\prime}\right)$ and

$$
\operatorname{vol}(\theta, \varphi)=\operatorname{vol}\left(\theta^{\prime}, \varphi^{\prime}\right)
$$

Proof This follows immediately from Proposition 3.2.4 and Theorem 2.3.2.
In view of Proposition 3.2.7, we could write

$$
\begin{equation*}
\operatorname{vol} \theta_{\varphi}=\operatorname{vol}(\theta, \varphi) \tag{3.16}
\end{equation*}
$$

\{eq:volcurrdef\}

The \mathcal{I}-envelope and the P-envelope are related in a simple manner.
Proposition 3.2.8 Let $\varphi \in \operatorname{PSH}(X, \theta)$, then

$$
P_{\theta}[\varphi] \leq P_{\theta}[\varphi]_{I}, \quad \varphi \sim_{I} P_{\theta}[\varphi]
$$

Proof It suffices to show that $\varphi \sim_{I} P_{\theta}[\varphi]$. Namely, for each $k \in \mathbb{Z}_{>0}$, we have

$$
\begin{equation*}
\mathcal{I}(k \varphi)=\mathcal{I}\left(k P_{\theta}[\varphi]\right) \tag{3.17}
\end{equation*}
$$

\{eq:IkvarphiIkP\}
It follows from (3.2) and the strong openness theorem Theorem 1.4.4 that

$$
\mathcal{I}\left(k P_{\theta}[\varphi]\right)=\mathcal{I}\left((k \varphi+C) \wedge k V_{\theta}\right)
$$

when C is large enough. Since $(k \varphi+C) \wedge k V_{\theta} \sim k \varphi$, we have

$$
\mathcal{I}\left((k \varphi+C) \wedge k V_{\theta}\right)=\mathcal{I}(k \varphi)
$$

and (3.17) follows.
Corollary 3.2.1 Let $\varphi \in \operatorname{PSH}(X, \theta)$, then

$$
\int_{X} \theta_{\varphi}^{n} \leq \operatorname{vol} \theta_{\varphi}
$$

Proof This follows from Proposition 3.2.8, Theorem 2.3.2 and Proposition 3.1.3.
We note the following special case:
Proposition 3.2.9 Let $\varphi \in \operatorname{PSH}(X, \theta)$. Assume that φ has analytic singularities, then

$$
\varphi \sim P_{\theta}[\varphi] \sim_{P} P_{\theta}[\varphi]_{I} .
$$

Proof In view of Proposition 3.2.8, it suffices to show that

$$
\begin{equation*}
P_{\theta}[\varphi]_{I} \leq \varphi . \tag{3.18}
\end{equation*}
$$

$$
\text { \{eq:Pprecvarphitemp1\} }
$$

By Proposition 3.2.5 and Theorem 1.6.1, we may assume that φ has \log singularities along an effective \mathbb{Q}-divisor D. By rescaling using Proposition 3.2.10, we may assume that D is a divisor. Take quasi-equisingular approximations $\left(\eta_{j}\right)_{j}$ and $\left(\varphi_{j}\right)_{j}$ of $P_{\theta}[\varphi]_{I}$ and of φ respectively. Recall that by Theorem 1.6.2, we can guarantee that η_{j} and φ_{j} both have the singularity type $\left(2^{-j}, \mathcal{I}\left(2^{j} \varphi\right)\right)$ and hence $\eta_{j} \sim \varphi_{j}$ for all $j \geq 1$. On the other hand, it is clear that $\varphi_{j} \sim \varphi$ for all $j \geq 1$. So (3.18) follows. \square

3.2.3 Properties of the I-envelope

Let $\theta, \theta_{1}, \theta_{2}$ be smooth closed real (1,1)-forms on X.
We have the following concavity property of the I-envelope.
Proposition 3.2.10
(1) Suppose that $\varphi \in \operatorname{PSH}(X, \theta)$ and $\lambda \in \mathbb{R}_{>0}$, then

$$
P_{\lambda \theta}[\lambda \varphi]_{I}=\lambda P_{\theta}[\varphi]_{I} .
$$

(2) Suppose that $\varphi_{1} \in \operatorname{PSH}\left(X, \theta_{1}\right)$ and $\varphi_{2} \in \operatorname{PSH}\left(X, \theta_{2}\right)$, then

$$
P_{\theta_{1}+\theta_{2}}\left[\varphi_{1}+\varphi_{2}\right]_{I} \geq P_{\theta_{1}}\left[\varphi_{1}\right]_{I}+P_{\theta_{2}}\left[\varphi_{2}\right]_{I}
$$

(3) Suppose that $\varphi_{1} \in \operatorname{PSH}\left(X, \theta_{1}\right)$ and $\varphi_{2} \in \operatorname{PSH}\left(X, \theta_{2}\right)$, then

$$
P_{\theta_{1}+\theta_{2}}\left[\varphi_{1}+\varphi_{2}\right]_{I} \sim_{I} P_{\theta_{1}}\left[\varphi_{1}\right]_{I}+P_{\theta_{2}}\left[\varphi_{2}\right]_{I} .
$$

(4) Suppose that $\varphi_{1}, \varphi_{2} \in \operatorname{PSH}(X, \theta)$, then

$$
P_{\theta}\left[\varphi_{1} \vee \varphi_{2}\right]_{I} \sim_{I} P_{\theta}\left[\varphi_{1}\right]_{I} \vee P_{\theta}\left[\varphi_{2}\right]_{I}
$$

Proof (1) This is obvious by definition.
(2) Suppose that $\psi_{1} \in \operatorname{PSH}\left(X, \theta_{1}\right)$ and $\psi_{2} \in \operatorname{PSH}\left(X, \theta_{2}\right)$ satisfy

$$
\psi_{i} \leq 0, \quad \psi_{i} \sim_{I} \varphi_{i}
$$

for $i=1,2$. Then thanks to Proposition 3.2.3,

$$
\psi_{1}+\psi_{2} \leq 0, \quad \psi_{1}+\psi_{2} \sim_{I} \varphi_{1}+\varphi_{2}
$$

It follows that

$$
\psi_{1}+\psi_{2} \leq P_{\theta_{1}+\theta_{2}}\left[\varphi_{1}+\varphi_{2}\right]_{I}
$$

Since ψ_{1} and ψ_{2} are arbitrary, we conclude.
(3) This follows easily from Proposition 3.2.6 and Proposition 3.2.3.
(4) The proof is similar to that of (3). We omit the details.

Lemma 3.2.1 Let $\varphi, \psi \in \operatorname{QPSH}(X)$. Assume that $\varphi \leq \psi$, then

$$
P_{\theta}[\varphi]_{I} \leq P_{\theta}[\psi]_{I} .
$$

Proof It suffices to observe that $P_{\theta}[\varphi]_{I} \vee \psi \sim_{I} \psi$ as a consequence of Proposition 1.4.2 and Proposition 3.2.6.

Proposition 3.2.11 Consider a decreasing net $\left(\varphi_{i}\right)_{i \in I}$ of model potentials in $\operatorname{PSH}(X, \theta)_{>0}$. Suppose that $\varphi:=\inf _{i \in I} \varphi_{i} \not \equiv-\infty$ and $\int_{X} \theta_{\varphi}^{n}>0$. Then

$$
\inf _{i \in I} P_{\theta}\left[\varphi_{i}\right]_{I}=P_{\theta}[\varphi]_{I} .
$$

Proof Let $\eta=\inf _{i \in I} P_{\theta}\left[\varphi_{i}\right]_{I}$. We clearly have $\eta \geq P_{\theta}[\varphi]_{I}$ as a consequence of Lemma 3.2.1.

By Proposition 3.1.8, we have

$$
\lim _{i \in I} \int_{X} \theta_{\varphi_{i}}^{n}=\int_{X} \theta_{\varphi}^{n}>0
$$

So by Lemma 2.3.1, we can find a decreasing net $\epsilon_{i} \searrow 0(i \in I)$ with $\epsilon_{i} \in(0,1)$ and $\psi_{i} \in \operatorname{PSH}(X, \theta)$ such that for all $i \in I$,

$$
\left(1-\epsilon_{i}\right) \varphi_{i}+\epsilon_{i} \psi_{i} \leq \varphi .
$$

By Proposition 3.2.10, we have

$$
\left(1-\epsilon_{i}\right) \eta+\epsilon_{i} P_{\theta}\left[\psi_{i}\right]_{I} \leq\left(1-\epsilon_{i}\right) P_{\theta}\left[\varphi_{i}\right]_{I}+\epsilon_{i} P_{\theta}\left[\psi_{i}\right]_{I} \leq P_{\theta}[\varphi]_{I}
$$

Taking limit with respect to i, we conclude that $\eta \leq P_{\theta}[\varphi]_{I}$ (c.f. Remark 3.1.2).
Proposition 3.2.12 Let $\left(\varphi_{i}\right)_{i \in I}$ be an increasing net in $\operatorname{PSH}(X, \theta)_{>0}$ uniformly bounded from above. Let $\varphi:=\sup ^{*}{ }_{i \in I} \varphi_{i}$. Then

$$
\sup _{i \in I} P_{\theta}\left[\varphi_{i}\right]_{I}=P_{\theta}[\varphi]_{I} .
$$

Proof Let $\eta=\sup ^{*}{ }_{i \in I} P_{\theta}\left[\varphi_{i}\right]_{I}$. Then $\eta \leq P_{\theta}[\varphi]_{I}$ as a consequence of Lemma 3.2.1.

By Corollary 2.3.1, we have

$$
\lim _{i \in I} \int_{X} \theta_{\varphi_{i}}^{n}=\int_{X} \theta_{\varphi}^{n}>0
$$

So by Lemma 2.3.1, we can find a decreasing net $\epsilon_{i} \searrow 0(i \in I)$ with $\epsilon_{i} \in(0,1)$ and $\psi_{i} \in \operatorname{PSH}(X, \theta)$ such that for all $i \in I$,

$$
\left(1-\epsilon_{i}\right) \varphi+\epsilon_{i} \psi_{i} \leq \varphi_{i}
$$

By Proposition 3.2.10, we have

$$
P_{\theta}[\varphi]_{I}+\epsilon_{i} P_{\theta}\left[\psi_{i}\right]_{I} \leq\left(1-\epsilon_{i}\right) P_{\theta}[\varphi]_{I}+\epsilon_{i} P_{\theta}\left[\psi_{i}\right]_{I} \leq P_{\theta}\left[\varphi_{i}\right]_{I} \leq \eta .
$$

Taking limit with respect to i, we conclude that $\eta \geq P_{\theta}[\varphi]_{I}$ (c.f. Remark 3.1.2).
Remark 3.2.1 One could also define the following interpolation between the I envelope and the P-envelope: Suppose $\varphi \in \operatorname{PSH}(X, \theta)_{>0}, k \in\{0, \ldots, n\}$. Then we let

$$
\begin{aligned}
P_{\theta, j}[\varphi]:=\sup ^{*}\{\psi \in \operatorname{PSH}(X, \theta): \psi \leq 0, \varphi & \leq \psi, \int_{X} \theta_{\varphi}^{j} \wedge \theta_{P_{\theta}[\varphi]_{I}}^{n-j} \\
& \left.=\int_{X} \theta_{\psi}^{j} \wedge \theta_{P_{\theta}[\psi]_{I}}^{n-j}\right\}
\end{aligned}
$$

Based on the techniques developed in Chapter 6, one could show that $P_{\theta, j}[\bullet]$ is a projection operator. When $j=0$, this operator reduces to the P-envelope, while when $j=n$, this operator reduces to the I-envelope.

Chapter 4

Geodesic rays in the space of potentials

chap:rays
In this chapter, we study subgeodesics and geodesics in the space of quasiplurisubharmonic functions. Unlike what one usually finds in the literature, here we are carrying out the constructions in the space of Kähler potentials with prescribed singularities. The usual regularization techniques break down in this setup.

The results in Section 4.2 seem to be new, although they have been applied without proofs in the literature.

4.1 Subgeodesics

Let X be a connected compact Kähler manifold of dimension n and θ be a smooth closed real (1,1)-form on X representing a big cohomology class.

Definition 4.1.1 Let us fix $\varphi_{0}, \varphi_{1} \in \operatorname{PSH}(X, \theta)$. A subgeodesic from φ_{0} to φ_{1} is a family $\left(\varphi_{t}\right)_{t \in(0,1)}$ in $\operatorname{PSH}(X, \theta)$ such that
(1) if we define

$$
\Phi: X \times\left\{z \in \mathbb{C}: \mathrm{e}^{-1}<|z|<1\right\} \rightarrow[-\infty, \infty), \quad(x, z) \mapsto \varphi_{-\log |z|}(x)
$$

then Φ is $p_{1}^{*} \theta$-psh, where $p_{1}: X \times\left\{z \in \mathbb{C}: \mathrm{e}^{-1}<|z|<1\right\} \rightarrow X$ is the natural projection;
(2) when $t \rightarrow 0+$ (resp. to $1-$), φ_{t} converges to φ_{0} (resp. φ_{1}) with respect to the L^{1}-topology.

We also say $\left(\varphi_{t}\right)_{t \in[0,1]}$ is a subgeodesic.
We say Φ is the complexification of the subgeodesic $\left(\varphi_{t}\right)_{t}$.
When we do not want to specify φ_{0} and φ_{1}, we shall say $\left(\varphi_{t}\right)_{t \in(0,1)}$ is a subgeodesic. In general, there are no subgeodesics from φ_{0} to φ_{1}.

Proposition 4.1.1 Let $\varphi_{0}, \varphi_{1} \in \operatorname{PSH}(X, \theta)$ and $\left(\varphi_{t}\right)_{t \in(0,1)}$ be a subgeodesic from φ_{0} to φ_{1}. Then for each $x \in X,[0,1] \ni t \mapsto \varphi_{t}(x)$ is a convex function.

Proof For each $x \in X$, the map

$$
\left\{z \in \mathbb{C}: \mathrm{e}^{-1}<|z|<1\right\} \rightarrow[-\infty, \infty), \quad z \mapsto \Phi(x, z)
$$

is either subharmonic or constantly $-\infty$, as follows from Definition 4.1.1 (1) and Proposition 1.1.4. In the latter case, the convexity of [0, 1] $\ni t \mapsto \varphi_{t}(x)$ is trivial. In the former case, the convexity on the interval $(0,1)$ follows from Proposition 1.1.3.

In order to verify the convexity at the boundary, let us fix $s \in(0,1)$. We need to show that

$$
\begin{equation*}
\varphi_{s}(x) \leq s \varphi_{1}(x)+(1-s) \varphi_{0}(x) \tag{4.1}
\end{equation*}
$$

\{eq:varphisconvextemp1\}
for all $x \in X$. Thanks to Proposition 1.2.5, it suffices to prove this for almost all x.
Take a set $Z \subseteq X$ with zero Lebesgue measure such that for all $x \in X \backslash Z$, we have
(1) $\varphi_{t}(x) \neq-\infty$ for all $t \in[0,1] \cap \mathbb{Q}$;
(2) $\varphi_{t}(x) \rightarrow \varphi_{0}(x)$ as $t \rightarrow 0+$ and $\varphi_{t}(x) \rightarrow \varphi_{1}(x)$ as $t \rightarrow 1-$.

For all such x, the convexity of φ guarantees that $\varphi_{t}(x) \neq-\infty$ for all $t \in[0,1]$ and $t \mapsto \varphi_{t}(x)$ is convex for $t \in[0,1]$. In particular, (4.1) holds.

Proposition 4.1.2 Let $\left(\varphi_{0}^{i}\right)_{i \in I}$, $\left(\varphi_{1}^{i}\right)_{i \in I}$ be two non-empty uniformly bounded from above families in $\operatorname{PSH}(X, \theta)$. Let $\left(\varphi_{t}^{i}\right)_{t \in(0,1)}$ be subgeodesics from φ_{0}^{i} to φ_{1}^{i} for each $i \in I$. Then

$$
\left(\sup _{i \in I} * \varphi_{t}^{i}\right)_{t \in(0,1)}
$$

is a subgeodesic from sup* ${ }_{i} \varphi_{0}^{i}$ to $\sup ^{*}{ }_{i} \varphi_{1}^{i}$.
Proof We may assume that $\varphi_{0}^{i}, \varphi_{1}^{i} \leq 0$ for all $i \in I$. Then it follows that $\varphi_{t}^{i} \leq 0$ for all $t \in(0,1)$ and all $i \in I$ by Proposition 4.1.1.

We define

$$
\varphi_{t}:=\sup _{i \in I}^{*} \varphi_{t}^{i} \in \mathcal{E}(X, \theta ; \phi)
$$

for all $t \in[0,1]$. Observe that $[0,1] \ni t \mapsto \varphi_{t}$ is convex by the same argument leading to (4.1).

Let $\left(\psi_{t}\right)_{t \in(0,1)}$ be the subgeodesic whose complexification Φ_{ψ} corresponds to $\sup _{i} \Phi_{\varphi^{i}}$, where $\Phi_{\varphi^{i}}$ is the complexification of $\left(\varphi_{t}^{i}\right)_{t \in(0,1)}$. Then clearly, $\varphi_{t} \leq \psi_{t}$ for each $t \in(0,1)$. On the other hand, by Proposition 1.2.3,

$$
\psi_{t}=\sup _{i \in I} \varphi_{t}^{i}=\varphi_{t} \quad \text { almost everywhere }
$$

for almost all $t \in(0,1)$. Therefore, using Proposition 1.2.5, we find $\psi_{t}=\varphi_{t}$ for almost all $t \in(0,1)$. Since both functions are convex in t, we conclude that $\psi_{t}=\varphi_{t}$ for all $t \in(0,1)$.

It remains to argue that $\varphi_{t} \xrightarrow{L^{1}} \varphi_{0}$ as $t \rightarrow 0+$ and $\varphi_{t} \xrightarrow{L^{1}} \varphi_{1}$ as $t \rightarrow 1-$. By symmetry, it suffices to argue the former. In fact, we know that for any $t \in(0,1)$ and any $j \in I$,

$$
\varphi_{t}^{j} \leq \varphi_{t} \leq t \varphi_{1}+(1-t) \varphi_{0}
$$

where the latter inequality follows from Proposition 4.1.1. Letting $t \rightarrow 0+$ and then taking limit with respect to j, we conclude.

4.2 Geodesics in the space of potentials

Let X be a connected compact Kähler manifold of dimension n and θ be a smooth closed real $(1,1)$-form on X representing a big cohomology class. Fix a model potential $\phi \in \operatorname{PSH}(X, \theta)_{>0}$. See Definition 3.1.3 for the definition.

Definition 4.2.1 Let $\varphi_{0}, \varphi_{1} \in \mathcal{E}(X, \theta ; \phi)$. The geodesic $\left(\varphi_{t}\right)_{t \in(0,1)}$ from φ_{0} to φ_{1} is a family of potentials $\varphi_{t} \in \operatorname{PSH}(X, \theta)$ such that

$$
\begin{gather*}
\varphi_{t}=\sup ^{*}\left\{\eta_{t}:\left(\eta_{s}\right)_{s} \text { is a subgeodesic from } \psi_{0} \text { to } \psi_{1},\right. \\
\left.\psi_{0}, \psi_{1} \in \operatorname{PSH}(X, \theta), \psi_{0} \leq \varphi_{0}, \psi_{1} \leq \varphi_{1}\right\} \tag{4.2}
\end{gather*}
$$

We refer to Section 3.1.3 for the definition of $\mathcal{E}(X, \theta ; \phi)$.
Definition 4.2.2 Let $\left(\varphi_{t}\right)_{t \in[a, b]}(a, b \in \mathbb{R}, a \leq b)$ be a curve in $\mathcal{E}(X, \theta ; \phi)$. We say $\left(\varphi_{t}\right)_{t \in[a, b]}$ is a geodesic if the curve $\left(\varphi_{t(b-a)+a}\right)_{t \in(0,1)}$ is a geodesic from φ_{a} to φ_{b}.

We also say $\left(\varphi_{t}\right)_{t \in[a, b]}$ is a geodesic in $\mathcal{E}(X, \theta ; \phi)$ from φ_{a} to φ_{b}.
Proposition 4.2.1 Given $\varphi_{0}, \varphi_{1} \in \mathcal{E}(X, \theta ; \phi)$, the geodesic $\left(\varphi_{t}\right)_{t \in(0,1)}$ from φ_{0} to φ_{1} is a subgeodesic from φ_{0} to φ_{1} and $\varphi_{t} \in \mathcal{E}(X, \theta ; \phi)$ for each $t \in(0,1)$.

Moreover, for any $0 \leq a \leq b \leq 1$, the restriction $\left(\varphi_{t}\right)_{t \in[a, b]}$ is a geodesic.
If furthermore $\varphi_{0}, \varphi_{1} \in \mathcal{E}^{1}(X, \theta ; \phi)$ (resp. $\left.\mathcal{E}^{\infty}(X, \theta ; \phi)\right)$, then $\varphi_{t} \in \mathcal{E}^{1}(X, \theta ; \phi)$ (resp. $\left.\mathcal{E}^{\infty}(X, \theta ; \phi)\right)$ for all $t \in(0,1)$.

Proof Without loss of generality, we may assume that $\varphi_{0}, \varphi_{1} \leq \phi$. It follows from Proposition 4.1.1 that $\varphi_{t} \leq \phi$ for all $t \in(0,1)$. In fact, we have the stronger estimate

$$
\begin{equation*}
\varphi_{t} \leq t \varphi_{1}+(1-t) \varphi_{0}, \quad t \in(0,1) \tag{4.3}
\end{equation*}
$$

\{eq:geodesicconvextemp1\}
We first observe that when $\varphi_{0}, \varphi_{1} \in \mathcal{E}(X, \theta ; \phi)$, so is $\varphi_{0} \wedge \varphi_{1}$, see Proposition 3.1.12. In particular, the constant subgeodesic $t \mapsto \varphi_{0} \wedge \varphi_{1}$ is a candidate in (4.2). So

$$
\begin{equation*}
\varphi_{t} \geq \varphi_{0} \wedge \varphi_{1}, \quad t \in(0,1) \tag{4.4}
\end{equation*}
$$

\{eq:varphitgeqlandtemp1\}
By Proposition 4.1.2, $\left(\varphi_{t}\right)_{t \in(0,1)}$ is a subgeodesic. It follows from Proposition 3.1.13 that $\varphi_{t} \in \mathcal{E}(X, \theta ; \phi)$ for all $t \in(0,1)$.

Next, we show that as $t \rightarrow 0+$, we have $\varphi_{t} \xrightarrow{L^{1}} \varphi_{0}$. The corresponding result at $t=1$ is similar.

We first argue the special case where $\varphi_{0} \leq \varphi_{1}$. Take a constant $C>0$ such that

$$
\varphi_{0}-C \leq \varphi_{1} .
$$

Then $\left(\varphi_{0}-C t\right)_{t \in(0,1)}$ is clearly a candidate in (4.2). Therefore, for all $t \in(0,1)$,

$$
\begin{equation*}
\varphi_{0}-C t \leq \varphi_{t} \leq t \varphi_{1}+(1-t) \varphi_{0} \tag{4.5}
\end{equation*}
$$

It follows that $\varphi_{t} \xrightarrow{L^{1}} \varphi_{0}$ as $t \rightarrow 0+$.
Let us come back to the general case. By (4.3), we know that for all $t \in(0,1)$,

$$
\sup _{X} \varphi_{t} \leq\left(\sup _{X} \varphi_{0}\right) \vee\left(\sup _{X} \varphi_{1}\right)
$$

On the other hand, $\sup _{X} \varphi_{t} \geq \sup _{X} \varphi_{0} \wedge \varphi_{1}$. It follows from Proposition 1.5.1 that $\left\{\varphi_{t}: t \in(0,1)\right\}$ is a relatively compact subset of $\operatorname{PSH}(X, \theta)$ with respect to the L^{1}-topology.

Let ψ be an L^{1}-cluster point of φ_{t} as $t \searrow 0$, it suffices to show that $\psi=\varphi_{0}$.
For each $M \in \mathbb{N}$, we write

$$
\varphi_{0}^{M}=\varphi_{0} \wedge\left(\varphi_{1}+M\right)
$$

Observe that $\varphi_{0}^{M} \in \mathcal{E}(X, \theta ; \phi)$ by Proposition 3.1.12. Let $\left(\varphi_{t}^{M}\right)_{t \in(0,1)}$ be the geodesic from φ_{0}^{M} to φ_{1}. Then it is clear that $\varphi_{t}^{M} \leq \varphi_{t}$ for all $t \in(0,1)$. Therefore,

$$
\psi \geq \varphi_{0} \wedge\left(\varphi_{1}+M\right)
$$

almost everywhere hence everywhere by Proposition 1.2.5. On the other hand, by (4.3), $\psi \leq \varphi_{0}$. So it suffices to show that

$$
\varphi_{0} \wedge\left(\varphi_{1}+M\right) \xrightarrow{L^{1}} \varphi_{0}
$$

as $M \rightarrow \infty$. This is shown in Proposition 3.1.15.
Next, take $0 \leq a \leq b \leq 1$. We want to show that the restriction $\left(\varphi_{t}\right)_{t \in[a, b]}$ is the geodesic from φ_{a} to φ_{b}. We may assume that $a<b$. The argument is the standard balayage argument.

Let $\left(\psi_{t}\right)_{t \in(a, b)}$ be the (reparameterized) geodesic from φ_{a} to φ_{b}. It is easy to see that the curve $\left(\eta_{t}\right)_{t \in(0, \text {, deded }}$ defined by $\eta_{t}=\psi_{t}$ for $t \in(a, b)$ and $\eta_{t}=\varphi_{t}$ otherwise is a candidate in (4.2). See [GZZ17, Proposition 1.30]. So we conclude that $\eta_{t}=\varphi_{t}=\psi_{t}$ for $t \in(a, b)$.

Finally, assume furthermore that $\varphi_{0}, \varphi_{1} \in \mathcal{E}^{1}(X, \theta ; \phi)\left(\right.$ resp. $\left.\mathcal{E}^{\infty}(X, \theta ; \phi)\right)$. Thanks to (4.4), Proposition 3.1.12 and Proposition 3.1.13, we find $\varphi_{t} \in \mathcal{E}^{1}(X, \theta ; \phi)$ (resp. $\left.\mathcal{E}^{\infty}(X, \theta ; \phi)\right)$ for all $t \in(0,1)$.
prop:geodsupsublinear
Proposition 4.2.2 Let $\varphi_{1}, \varphi_{0} \in \mathcal{E}(X, \theta ; \phi)$ with $\varphi_{1} \leq \varphi_{0}$. Let $\left(\varphi_{t}\right)_{t \in(0,1)}$ be the geodesic from φ_{0} to φ_{1}. Then

$$
\begin{equation*}
t \sup _{\left\{\varphi_{0} \neq-\infty\right\}}\left(\varphi_{1}-\varphi_{0}\right)=\sup _{\left\{\varphi_{0} \neq-\infty\right\}}\left(\varphi_{t}-\varphi_{0}\right) \tag{4.6}
\end{equation*}
$$

for all $t \in(0,1]$.

Proof After replacing φ_{t} by $\varphi_{t}-C^{\prime} t$ for some large enough $C^{\prime}>0$, we may assume that $\varphi_{1} \leq \varphi_{0}$. It follows that $\varphi_{1} \leq \varphi_{t} \leq 0$ for all $t \in[0,1]$. Similarly, $[0,1] \ni t \mapsto \varphi_{t}$ is decreasing.

Let

$$
C=\sup _{\left\{\varphi_{1} \neq-\infty\right\}}\left(\varphi_{1}-\varphi_{0}\right) .
$$

Then by Proposition 1.2.5, we have

$$
\varphi_{1} \leq \varphi_{0}+C
$$

So $\varphi_{1}-C(1-t)$ is a candidate in (4.2) and hence

$$
\begin{equation*}
\varphi_{1}-C(1-t) \leq \varphi_{t}, \quad t \in(0,1) \tag{4.7}
\end{equation*}
$$

\{eq:varphilleqvarphittemp\}
By Proposition 4.2.1, we have $\varphi_{t} \xrightarrow{L^{1}} \varphi_{1}$ as $t \rightarrow 1-$. Since φ_{t} is decreasing in $t \in(0,1)$. It follows that $\varphi_{1}=\inf _{t \in(0,1)} \varphi_{t}$. Therefore, we can find a pluripolar set $Z \subseteq X$ such that $\varphi_{t}(x) \rightarrow \varphi_{1}(x)>-\infty$ as $t \rightarrow 1-$ for all $x \in X \backslash Z$.

Similarly, since $\varphi_{0}=\sup ^{*}{ }_{t \in(0,1)} \varphi_{t}$, after enlarging Z, we may also guarantee that $\varphi_{t}(x) \rightarrow \varphi_{0}(x)>-\infty$ as $t \rightarrow 0+$ for all $x \in X \backslash Z$ by Proposition 1.2.3.

For any such $x \in X \backslash Z$, the function $t \mapsto \varphi_{t}(x)$ is a real-valued continuous convex function on $[0,1]$. Hence,

$$
\varphi_{1}(x)-\varphi_{0}(x)=\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t} \varphi_{t}(x) \mathrm{d} t \leq \lim _{t \rightarrow 1-} \frac{\varphi_{1}(x)-\varphi_{t}(x)}{1-t} \leq C
$$

where the second inequality follows from (4.7).
Fix an arbitrary pluripolar set $Z^{\prime} \supseteq Z$. Taking supremum, we find that

$$
\begin{aligned}
\sup _{x \in X \backslash Z^{\prime}} \varphi_{1}(x)-\varphi_{0}(x) & =\sup _{x \in X, \varphi_{1}(x) \neq-\infty} \varphi_{1}(x)-\varphi_{0}(x) \\
& =\sup _{x \in X \backslash Z^{\prime}} \lim _{t \rightarrow 1-} \frac{\varphi_{1}(x)-\varphi_{t}(x)}{1-t}=C .
\end{aligned}
$$

Here we have applied Corollary 1.3.5.
Fix $s \in(0,1)$. The same argument shows that after enlarging Z^{\prime}, we may guarantee that

$$
\begin{equation*}
\sup _{\left\{\varphi_{1} \neq-\infty\right\}}\left(\varphi_{1}-\varphi_{0}\right)=\sup _{x \in X \backslash Z^{\prime}} \lim _{t \rightarrow 1-} \frac{\varphi_{1}(x)-\varphi_{t}(x)}{1-t}=\sup _{\left\{\varphi_{1} \neq-\infty\right\}} \frac{\varphi_{1}-\varphi_{s}}{1-s} \tag{4.8}
\end{equation*}
$$

On the other hand,

$$
\sup _{\left\{\varphi_{1} \neq-\infty\right\}}\left(\varphi_{1}-\varphi_{0}\right) \leq s \sup _{\left\{\varphi_{1} \neq-\infty\right\}} \frac{\varphi_{s}-\varphi_{0}}{s}+(1-s) \sup _{\left\{\varphi_{1} \neq-\infty\right\}} \frac{\varphi_{1}-\varphi_{s}}{1-s} .
$$

Together with (4.8), we find that

$$
\sup _{\left\{\varphi_{1} \neq-\infty\right\}}\left(\varphi_{1}-\varphi_{0}\right) \leq \sup _{\left\{\varphi_{1} \neq-\infty\right\}} \frac{\varphi_{s}-\varphi_{0}}{s}
$$

Using the convexity, we find that equality holds,

$$
\sup _{\left\{\varphi_{1} \neq-\infty\right\}} \frac{\varphi_{s}-\varphi_{0}}{s}=\sup _{\left\{\varphi_{1} \neq-\infty\right\}}\left(\varphi_{1}-\varphi_{0}\right) .
$$

Using Corollary 1.3.5, we conclude (4.6).
With an almost identical proof, we find
Proposition 4.2.3 Let $\varphi_{1}, \varphi_{0} \in \mathcal{E}^{\infty}(X, \theta ; \phi)$. Let $\left(\varphi_{t}\right)_{t \in(0,1)}$ be the geodesic from φ_{0} to φ_{1}. Then

$$
t \inf _{\{\phi \neq-\infty\}}\left(\varphi_{1}-\varphi_{0}\right)=\inf _{\{\phi \neq-\infty\}}\left(\varphi_{t}-\varphi_{0}\right)
$$

for all $t \in(0,1]$.
Definition 4.2.3 Let $\ell=\left(\ell_{t}\right)_{t \geq 0}$ be a curve in $\mathcal{E}(X, \theta ; \phi)$. We say ℓ is a geodesic ray in $\mathcal{E}(X, \theta ; \phi)$ emanating from ℓ_{0} if for each $0 \leq a \leq b$, the restriction $\left(\ell_{t}\right)_{t \in[a, b]}$ is a geodesic.

The set of geodesic rays in $\mathcal{E}(X, \theta ; \phi)$ emanating from ϕ is denoted by $\mathcal{R}(X, \theta ; \phi)$.
We say a geodesic ray $\ell \in \mathcal{R}(X, \theta ; \phi)$ has finite energy if $\ell_{t} \in \mathcal{E}^{1}(X, \theta ; \phi)$ for all $t>0$. The set of geodesic rays with finite energy is denoted by $\mathcal{R}^{1}(X, \theta ; \phi)$.

We say a geodesic ray $\ell \in \mathcal{R}(X, \theta ; \phi)$ is bounded if $\ell_{t} \in \mathcal{E}^{\infty}(X, \theta ; \phi)$ for all $t \geq 0$. The set of bounded geodesic rays is denoted by $\mathcal{R}^{\infty}(X, \theta ; \phi)$.

Given $\ell, \ell^{\prime} \in \mathcal{R}(X, \theta ; \phi)$, we write $\ell \leq \ell^{\prime}$ if $\ell_{t} \leq \ell_{t}^{\prime}$ for each $t \geq 0$.
When $\phi=V_{\theta}$, we usually omit it from the notations and write $\mathcal{R}(X, \theta), \mathcal{R}^{1}(X, \theta)$ and $\mathcal{R}^{\infty}(X, \theta)$,

Proposition 4.2.4 Let $\ell \in \mathcal{R}(X, \theta ; \phi)$. Then there is a constant $C>0$ such that

$$
\sup _{X} \ell_{t} \leq C t, \quad t \geq 0 .
$$

In fact, more precisely, we have

$$
\ell_{t} \leq \phi+C t
$$

Proof Let $Z=\{\phi=-\infty\}$. It follows from Proposition 4.2.2 that

$$
\ell_{t} \leq \phi+t \sup _{X \backslash Z}\left(\ell_{1}-\phi\right), \quad t \geq 0
$$

Since $\ell_{1} \in \mathcal{E}(X, \theta ; \phi)$, we have $\ell_{1} \leq \phi+C$ for some constant C and our conclusion follows.

Definition 4.2.4 We define the radial Monge-Ampère energy $\mathbf{E}^{\phi}: \mathcal{R}^{1}(X, \theta ; \phi) \rightarrow \mathbb{R}$ as follows:

$$
\mathbf{E}^{\phi}(\ell):=\varlimsup_{t \rightarrow \infty} \frac{E_{\theta}^{\phi}\left(\ell_{t}\right)}{t} .
$$

When $\phi=V_{\theta}$, we write \mathbf{E} instead of $\mathbf{E}^{V_{\theta}}$.
Thanks to Proposition 4.2.2, $\mathbf{E}^{\phi}(\ell)<\infty$.
def:d1onE12
Definition 4.2.5 Let $\varphi, \psi \in \mathcal{E}^{1}(X, \theta ; \phi)$, we define

$$
d_{1}(\varphi, \psi)=E_{\theta}^{\phi}(\varphi)+E_{\theta}^{\phi}(\psi)-2 E_{\theta}^{\phi}(\varphi \wedge \psi) .
$$

In particular, if $\varphi \leq \psi$, we have

$$
\begin{equation*}
d_{1}(\varphi, \psi)=E_{\theta}^{\phi}(\psi)-E_{\theta}^{\phi}(\varphi) . \tag{4.9}
\end{equation*}
$$

prop:d1geod_diff_E

Proposition 4.2.5 Let $\left(\varphi_{t}\right)_{t \in[a, b]}$ be a geodesic in $\mathcal{E}^{1}(X, \theta)$, then $t \mapsto E_{\theta}\left(\varphi_{t}\right)$ is a linear function of $t \in[a, b]$.

We expect that $t \mapsto E_{\theta}^{\phi}\left(\varphi_{t}\right)$ is linear in general. The author does not know how to prove this.

DDNL18fullmass
Proof This follows from [VNTVLI8c, Theorem 3.12].
Theorem 4.2.1 The function d_{1} defined in Definition 4.2.5 is a complete metric on $\mathcal{E}^{1}(X, \theta ; \phi)$.

The function $E_{\theta}^{\phi}: \mathcal{E}^{1}(X, \theta ; \phi) \rightarrow \mathbb{R}$ is continuous with respect to d_{1}.
Moreover, given a decreasing (resp. increasing) sequence $\left(\varphi_{j}\right)_{j \in \mathbb{Z}_{>0}}$ in $\mathcal{E}^{1}(X, \theta ; \phi)$ converging (resp. converging almost everywhere) to $\varphi \in \mathcal{E}^{1}(X, \theta ; \phi)$, then $\varphi_{j} \xrightarrow{d_{1}} \varphi$. See DDNL18big have no difficulty in generalizing all arguments to the current setting.

Theorem 4.2.2 Let $\varphi, \psi, \eta \in \mathcal{E}^{1}(X, \theta ; \phi)$. Then

$$
d_{1}(\varphi \vee \eta, \psi \vee \eta) \leq d_{1}(\varphi, \psi)
$$

See [Xia23Mabuchi $[$ Xia23a, Proposition 4.12] (Proposition 6.8 in the arXiv version).
Next we recall a few particular properties when $\phi=V_{\theta}$.

Proposition 4.2.6 Let $\ell, \ell^{\prime} \in \mathcal{R}^{1}(X, \theta)$ and $\ell \leq \ell^{\prime}$. Then

$$
\begin{equation*}
d_{1}\left(\ell, \ell^{\prime}\right)=\mathbf{E}\left(\ell^{\prime}\right)-\mathbf{E}(\ell) . \tag{4.10}
\end{equation*}
$$

\{eq:d1rayscompa\}

Proof This is a direct consequence of (4.9).
Proposition 4.2.7 Let $\ell, \ell^{\prime} \in \mathcal{R}^{1}(X, \theta)$. Then the map

$$
t \mapsto d_{1}\left(\ell_{t}, \ell_{t}^{\prime}\right)
$$

is convex.

See [DTNL2Tb, Proposition 2.10] for the proof. In particular, we can introduce
Definition 4.2.6 Let $\ell, \ell^{\prime} \in \mathcal{R}^{1}(X, \theta)$. We define

$$
d_{1}\left(\ell, \ell^{\prime}\right):=\lim _{t \rightarrow \infty} \frac{1}{t} d_{1}\left(\ell_{t}, \ell_{t}^{\prime}\right)
$$

Theorem 4.2.3 The function d_{1} defined in Definition 4.2 .6 is a metric and ($\left.\mathcal{R}^{1}(X, \theta), d_{1}\right)$ is a complete metric space.
See $\begin{aligned} & \text { DDNLmetric } \\ & {[D N F I L 215, ~ T h e o r e m ~ 2.14] ~ f o r ~ t h e ~ p r o o f . ~}\end{aligned}$
Proposition 4.2.8 $\operatorname{Let}\left(\varphi_{0}^{i}\right)_{i \in I},\left(\varphi_{1}^{i}\right)_{i \in I}$ be two uniformly bounded from above increasing nets in $\mathcal{E}^{\infty}(X, \theta)$. Let $\left(\varphi_{t}^{i}\right)_{t \in(0,1)}$ be the geodesic from φ_{0}^{i} to φ_{1}^{i} for each $i \in I$. Then

$$
\left(\sup _{i \in I} \varphi_{t}^{i}\right)_{t \in(0,1)}
$$

is the geodesic from $\sup ^{*}{ }_{i} \varphi_{0}^{i}$ to $\sup ^{*}{ }_{i} \varphi_{0}^{i}$.
Proof By Proposition 1.2.2 and Proposition 4.1 2 we may assume that I is countable. In this case, the assertion follows from [VNTIE-8c, Proposition 3.3] and Theorem 2.1.1.

Next we recall that \vee operator at the level of geodesic rays.

def:lorray1

Definition 4.2.7 Let $\ell, \ell^{\prime} \in \mathcal{R}(X, \theta)$. We define $\ell \vee \ell^{\prime}$ as the minimal ray in $\mathcal{R}(X, \theta)$ lying above both ℓ and ℓ^{\prime}.

Proposition 4.2.9 Given $\ell, \ell^{\prime} \in \mathcal{R}(X, \theta)$. Then $\ell \vee \ell^{\prime} \in \mathcal{R}(X, \theta)$ exists. Moreover, if $\ell, \ell^{\prime} \in \mathcal{R}^{1}(X, \theta)$, then so is $\ell \vee \ell^{\prime}$ and

$$
\begin{equation*}
\mathbf{E}\left(\ell \vee \ell^{\prime}\right)=\lim _{t \rightarrow \infty} \frac{1}{t} E_{\theta}\left(\ell_{t} \vee \ell_{t}^{\prime}\right) \tag{4.11}
\end{equation*}
$$

\{eq:Elor\}

Furthermore, if both $\ell, \ell^{\prime} \in \mathcal{R}^{\infty}(X, \theta)$, then so is $\ell \vee \ell^{\prime}$.
Proof For each $t>0$, let $\left(\ell_{s}^{\prime \prime t}\right)_{s \in[0, t]}$ be the geodesic from V_{θ} to $\ell_{t} \vee \ell_{t}^{\prime}$. Then clearly, for each fixed $s \geq 0, \ell_{s}^{\prime \prime t}$ is increasing in $t \in[s, \infty)$. Moreover, Proposition 4.2.4 guarantees that $\left(\sup _{X} \ell_{s}^{\prime \prime t}\right)_{t}$ is bounded from above for a fixed s. Let $\left(\ell \vee \ell^{\prime}\right)_{s}=$ sup $_{t \geq s} \ell_{s}^{\prime \prime t}$. Then Proposition 4.2 .8 guarantees that $\ell \vee \ell^{\prime}$ is a geodesic ray. It is clear that this ray is minimal among all rays dominating ℓ and ℓ^{\prime}.

Assume that $\ell, \ell^{\prime} \in \mathcal{R}^{1}(X, \theta)$, it follows from Proposition 3.1.13 that $\ell \vee \ell^{\prime} \in$ $\mathcal{R}^{1}(X, \theta)$. Next we compute its energy:

$$
\mathbf{E}\left(\ell \vee \ell^{\prime}\right)=E_{\theta}\left(\ell \vee \ell^{\prime}\right)_{1}=\lim _{t \rightarrow \infty} E_{\theta}\left(\ell_{1}^{\prime \prime t}\right)=\frac{1}{t} E_{\theta}\left(\ell_{t} \vee \ell_{t}^{\prime}\right),
$$

where we applied Proposition 4.2.5 and Theorem 4.2.1.
The last assertion is trivial.

Lemma 4.2.1 For any $\ell, \ell^{\prime} \in \mathcal{R}^{1}(X, \theta)$, we have

$$
\begin{equation*}
d_{1}\left(\ell, \ell^{\prime}\right) \leq d_{1}\left(\ell, \ell \vee \ell^{\prime}\right)+d_{1}\left(\ell^{\prime}, \ell \vee \ell^{\prime}\right) \leq C_{n} d_{1}\left(\ell, \ell^{\prime}\right) \tag{4.12}
\end{equation*}
$$

where $C_{n}=3(n+1) 2^{n+2}$.
Proof The first inequality is trivial. As for the second, we estimate

$$
\begin{aligned}
d_{1}\left(\ell, \ell \vee \ell^{\prime}\right) & =\mathbf{E}\left(\ell \vee \ell^{\prime}\right)-\mathbf{E}(\ell) \\
& =\lim _{t \rightarrow \infty} \frac{1}{t} \mathbf{E}\left(\ell_{t} \vee \ell_{t}^{\prime}\right)-\mathbf{E}(\ell) \\
& =\lim _{t \rightarrow \infty} \frac{1}{t} d_{1}\left(\ell_{t} \vee \ell_{t}^{\prime}, \ell_{t}\right),
\end{aligned}
$$

where one the first line, we applied Proposition 4.2.6, on the second line, we used (4.11), the first and the third lines follow from Proposition 4.2.6. In all, we find

$$
d_{1}\left(\ell, \ell \vee \ell^{\prime}\right)+d_{1}\left(\ell^{\prime}, \ell \vee \ell^{\prime}\right) \leq \lim _{t \rightarrow \infty} \frac{1}{t}\left(d_{1}\left(\ell_{t} \vee \ell_{t}^{\prime}, \ell_{t}\right)+d_{1}\left(\ell_{t} \vee \ell_{t}^{\prime}, \ell_{t}^{\prime}\right)\right)
$$

$$
d_{1}\left(\ell_{t} \vee \ell_{t}^{\prime}, \ell_{t}\right)+d_{1}\left(\ell_{t} \vee \ell_{t}^{\prime}, \ell_{t}^{\prime}\right) \leq 3(n+1) 2^{n+2} d_{1}\left(\ell_{t}, \ell_{t}^{\prime}\right)
$$

Now (4.12) follows.
ex:rayasspsh
Example 4.2.1 Let $\varphi \in \operatorname{PSH}(X, \theta)$. For each $C>0$, let $\left(\ell_{t}^{\varphi, C}\right)_{t \in[0, C]}$ be the geodesic from V_{θ} to $\left(V_{\theta}-C\right) \vee \varphi$. For each $t \geq 0$, the potential $\ell_{t}^{\varphi, C}$ is increasing in $C \in[t, \infty)$. We let

$$
\begin{equation*}
\ell_{t}^{\varphi}:=\sup _{C \geq t}^{*} \ell_{t}^{\varphi, C} \tag{4.13}
\end{equation*}
$$

Then $\ell^{\varphi} \in \mathcal{R}^{\infty}(X, \theta)$ and

$$
\begin{equation*}
\mathbf{E}\left(\ell^{\varphi}\right)=\frac{1}{n+1} \sum_{j=0}^{n}\left(\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}-\int_{X} \theta_{V_{\theta}}^{n}\right) \tag{4.14}
\end{equation*}
$$

Proof We first show that for each fixed $t \geq 0, \ell_{t}^{\varphi, C}$ is increasing in $C \geq t$.
To see this, choose $t \leq C_{1}<C_{2}$. We need to show that

$$
\ell_{t}^{\varphi, C_{1}} \leq \ell_{t}^{\varphi, C_{2}}
$$

Since both sides are geodesics for $t \in\left[0, C_{1}\right]$, it suffices to show that

$$
\begin{equation*}
\left(V_{\theta}-C_{1}\right) \vee \varphi \leq \ell_{C_{1}}^{\varphi, C_{2}} \tag{4.15}
\end{equation*}
$$

Then $\left(\left(V_{\theta}-t\right) \vee \varphi\right)_{t \in\left[0, C_{2}\right]}$ is a subgeodesic from V_{θ} to $\left(V_{\theta}-C_{2}\right) \vee \varphi$ by Proposition 4.1.2. At $t=0$ and $t=C_{1}$, it is dominated by the geodesic $\ell_{t}^{\varphi, C_{2}}$, hence by (4.2.1), we conclude that the same holds at $t=C_{1}$, which is exactly (4.15).

From Proposition 4.1.1, we know that for any $C \geq t>0$, we have

$$
\ell_{t}^{\varphi, C} \leq t\left(\left(V_{\theta}-C\right) \vee \varphi\right)+(1-t) V_{\theta} \leq 0
$$

So in (4.13), $\ell_{t}^{\varphi} \in \operatorname{PSH}(X, \theta)$ for any $t>0$. Also observe that by Proposition 4.2.1, we have $\ell_{t}^{\varphi} \in \mathcal{E}^{\infty}(X, \theta)$ for all $t>0$. It follows from Proposition 4.2.8 that $\ell^{\varphi} \in \mathcal{R}^{1}(X, \theta)$.

It remains to compute the energy of ℓ^{φ}.
We first fix $C \geq t>0$ and compute

$$
E_{\theta}\left(\ell_{t}^{\varphi, C}\right)=\frac{t}{C} E_{\theta}\left(\left(V_{\theta}-C\right) \vee \varphi\right)
$$

Letting $C \rightarrow \infty$ and applying Theorem 4.2.1, we find that

$$
E_{\theta}\left(\ell_{t}^{\varphi}\right)=\lim _{C \rightarrow \infty} \frac{t}{C} E_{\theta}\left(\left(V_{\theta}-C\right) \vee \varphi\right)
$$

It follows that

$$
\mathbf{E}\left(\ell^{\varphi}\right)=\lim _{C \rightarrow \infty} \frac{1}{C} E_{\theta}\left(\left(V_{\theta}-C\right) \vee \varphi\right)
$$

Using the definition of E_{θ}, it suffices to show that for each $j=0, \ldots, n$, we have

$$
\begin{equation*}
\lim _{C \rightarrow \infty} \int_{X} \frac{\left(V_{\theta}-C\right) \vee \varphi-V_{\theta}}{C} \theta_{\left(V_{\theta}-C\right) \vee \varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}=\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}-\int_{X} \theta_{V_{\theta}}^{n} \tag{4.16}
\end{equation*}
$$

For this purpose, for each $C>0$, we decompose X as $\left\{\varphi>V_{\theta}-C\right\}$ and $\left\{\varphi \leq V_{\theta}-C\right\}$. We have

$$
\begin{aligned}
& \int_{\left\{\varphi>V_{\theta}-C\right\}} \frac{\left(V_{\theta}-C\right) \vee \varphi-V_{\theta}}{C} \theta_{\left(V_{\theta}-C\right) \vee \varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j} \\
= & \int_{\left\{\varphi>V_{\theta}-C\right\}} \frac{\varphi-V_{\theta}}{C} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \int_{\left\{\varphi \leq V_{\theta}-C\right\}} \frac{\left(V_{\theta}-C\right) \vee \varphi-V_{\theta}}{C} \theta_{\left(V_{\theta}-C\right) \vee \varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j} \\
= & -\int_{\left\{\varphi \leq V_{\theta}-C\right\}} \theta_{\left(V_{\theta}-C\right) \vee \varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j} \\
= & -\int_{X} \theta_{V_{\theta}}^{n}+\int_{\left\{\varphi>V_{\theta}-C\right\}} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j} .
\end{aligned}
$$

Observe that for $C>0$, the functions $\mathbb{1}_{\left\{\varphi>V_{\theta}-C\right\}} C^{-1}\left(\varphi-V_{\theta}\right)$ is defined almost everywhere and is bounded. When $C \rightarrow \infty$, these functions converge to 0 almost everywhere. Therefore, (4.16) follows.

Chapter 5

Toric pluripotential theory on ample line bundles

In this chapter, we briefly recall the toric pluripotential theory relative to an ample line bundle. The general case of big line bundles will be handled in Chapter 12 after developing the powerful machinery of partial Okounkov bodies in Chapter 10. The main new result is Theorem 5.3.1 computing the L^{2}-sections of a Hermitian big line bundle in the toric setting.

5.1 Toric setup

Let T be a complex torus of dimension n and $T_{c} \subset T(\mathbb{C})$ denotes the corresponding compact torus. Write M for its character lattice, which is a free Abelian group of rank n. Similarly, let N be cocharacter lattice of T. Let $P \subseteq M_{\mathbb{R}}=M \otimes_{\mathbb{Z}} \mathbb{R}$ be a full-dimensional smooth ${ }^{1}$ lattice polytope.

Let Σ be the normal fan of P. The notation $\Sigma(1)$ denotes the set of rays in Σ. For each $\rho \in \Sigma(1)$, let $u_{\rho} \in N$ denote the ray generator of ρ, namely the first non-zero element in $N \cap \rho$. We write

$$
P=\left\{m \in M_{\mathbb{R}}:\left\langle m, u_{\rho}\right\rangle \geq-a_{\rho} \text { for all } \rho \in \Sigma(1)\right\}
$$

Let $\operatorname{Supp}_{P}: N_{\mathbb{R}} \rightarrow \mathbb{R}$ denote the support function of P. Recall that the support function (Example A.1.2) of P is defined as

$$
\operatorname{Supp}_{P}(n)=\max \{(m, n): m \in P\}
$$

CLS11
Our convention differs from โELS511, Proposition 4.2.14] by a minus sign.
Let $X=X_{\Sigma}$ be the smooth projective toric variety corresponding to Σ. There is a canonical embedding $T \subseteq X$ as a dense Zariski open subset. Let D be the Cartier

[^4]divisor on X defined by P :
$$
D=\sum_{\rho \in \Sigma(1)} a_{\rho} D_{\rho}
$$
where D_{ρ} is the toric prime divisor defined by ρ under the orbit-cone correspondence. Let L be the toric line bundle induced by P, namely $L=\bar{\nu}_{X}\left(D_{\rho}\right)$. Since P has full dimension, L^{k} is very ample for each $k \geq n-1$ by fCLS 11 , Corollary 2.2.19], we actually know that L is ample.

We will choose the base e for the logarithm map

$$
\mathbb{C}^{*} \rightarrow \mathbb{R}, \quad z \mapsto \log |z|^{2}
$$

This choice will be fixed throughout the whole section. Since we have a canonical identification $T(\mathbb{C}) \cong N \otimes_{\mathbb{Z}} \mathbb{C}^{*}$, we obtain an identification $T(\mathbb{C}) / T_{c} \cong N_{\mathbb{R}}$. This gives a tropicalization map

$$
\begin{equation*}
\text { Trop: } T(\mathbb{C}) \rightarrow N_{\mathbb{R}} \tag{5.1}
\end{equation*}
$$

5.2 Toric plurisubharmonic functions

We continue to use the notations of Section 5.1.
Lemma 5.2.1 Let $F: N_{\mathbb{R}} \rightarrow[-\infty, \infty]$ be a function. Then the following are equivalent:
(1) F is convex and takes values in \mathbb{R}, and
(2) Trop* F is plurisubharmonic on $T(\mathbb{C})$.

Proof We may choose an identification $N \cong \mathbb{Z}^{n}$ so that we have an identification $T(\mathbb{C}) \cong \mathbb{C}^{* n}$. Then Trop is identified with the map

$$
\text { Trop: } \mathbb{C}^{* n} \rightarrow \mathbb{R}^{n}, \quad\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\log \left|z_{1}\right|^{2}, \ldots, \log \left|z_{n}\right|^{2}\right)
$$

(1) \Longrightarrow (2). Let $F_{k} \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap \operatorname{Conv}\left(\mathbb{R}^{n}\right)$ be a decreasing sequence with limit F (see Proposition A.3.3). It follows from a straightforward computation that
$\mathrm{dd}^{\mathrm{c}} \operatorname{Trop}^{*} F_{k}\left(z_{1}, \ldots, z_{n}\right)=\frac{\mathrm{i}}{2 \pi} \sum_{i, j=1}^{n} \partial_{i j} F_{k}\left(\log \left|z_{1}\right|^{2}, \ldots, \log \left|z_{n}\right|^{2}\right) z_{i}^{-1}{\overline{z_{j}}}^{-1} \mathrm{~d} z_{i} \wedge \mathrm{~d} \overline{z_{j}}$.
\{eq:ddctrop\}
So Trop* F_{k} is plurisubharmonic. It follows from Proposition 1.2.1 that Trop* F is plurisubharmonic.
$(2) \Longrightarrow(1)$. It follows from Lemma 1.2.1 that F is finite. Moreover, take a radial mollifier, we may find a decreasing sequence φ_{k} of smooth psh functions on $\mathbb{C}^{* n}$ with
limit Trop* F. Write $\varphi_{k}=$ Trop* F_{k} for some function $F_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, it follows from (5.2) that F_{k} is convex for all k. Therefore, F is convex by Lemma A.1.2.

Let $G_{0}: M_{\mathbb{R}} \rightarrow(-\infty, \infty]$ be defined as

$$
G_{0}(m):=\left\{\begin{array}{r}
\frac{1}{2} \sum_{\rho \in \Sigma(1)}\left(\left\langle m, u_{\rho}\right\rangle+a_{\rho}\right) \log \left(\left\langle m, u_{\rho}\right\rangle+a_{\rho}\right), \text { if } m \in P \tag{5.3}\\
\infty, \text { otherwise }
\end{array}\right.
$$

This is a closed proper convex function and $G_{0} \sim \chi_{P}$. Let

$$
\begin{equation*}
F_{0}=G_{0}^{*} \in \mathcal{E}^{\infty}\left(N_{\mathbb{R}}, P\right) \tag{5.4}
\end{equation*}
$$

\{eq:FOdef\}
 Kähler form ω in $c_{1}(L)$.

Let $\mathrm{PSH}_{\text {tor }}(X, \omega)$ denote the set of T_{c}-invariant ω-psh functions.

thm:toricpsh

Theorem 5.2.1 There is a canonical bijection between the following three sets:
(1) The set of $\varphi \in \operatorname{PSH}_{\text {tor }}(X, \omega)$,
(2) the $\operatorname{set} \mathcal{P}\left(N_{\mathbb{R}}, P\right)$ in Definition A.3.1, namely, the set of convex functions $F: N_{\mathbb{R}} \rightarrow$ \mathbb{R} satisfying $F \leq \operatorname{Supp}_{P}$, and
(3) the set of closed proper convex functions $G \in \operatorname{Conv}\left(M_{\mathbb{R}}\right)$ satisfying

$$
\left.G\right|_{M_{\mathbb{R}} \backslash P} \equiv \infty .
$$

Proof The bijection between (2) and (3) is the classical Legendre duality. Given F as in (2), we construct $G=F^{*}$, see Proposition A.2.4.

The map from (1) to (2) is given as follows: given $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \omega)$, since φ is T_{c}-invariant, we can find $f: N_{\mathbb{R}} \rightarrow[-\infty, \infty)$ such that

$$
\left.\varphi\right|_{T(\mathbb{C})}=\text { Trop }^{*} f
$$

We then define $F=f+F_{0}$. By Lemma 5.2.1, $F(n)$ is finite for any $n \in N_{\mathbb{R}}$ and F is convex. Moreover, $F \leq \operatorname{Supp}_{P}$ since this holds for F_{0}.

Conversely, given a map $F \in \mathcal{P}\left(N_{\mathbb{R}}, P\right)$, then

$$
\operatorname{Trop}^{*}\left(F-F_{0}\right) \in \operatorname{PSH}\left(T(\mathbb{C}),\left.\omega\right|_{T(\mathbb{C})}\right)
$$

It follows from Theorem 1.2.1 that this function can be extended uniquely to an ω-psh function on X. The uniqueness of the extension guarantees its T_{c}-invariance.

The two maps are clearly inverse to each other.
Given $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \omega)$, we will write F_{φ} and G_{φ} for the convex functions given by Theorem 5.2.1.

Proposition 5.2.1 Given $\varphi, \psi \in \mathrm{PSH}_{\text {tor }}(X, \omega)$. The following are equivalent:
(1) $\varphi \leq \psi$,
(2) $F_{\varphi} \leq F_{\psi}$, and
(3) $G_{\varphi} \geq G_{\psi}$.

In particular, $\varphi \in \mathcal{E}^{\infty}(X, \theta)$ if and only if $F_{\varphi} \in \mathcal{E}^{\infty}\left(N_{\mathbb{R}}, P\right)$.
prop:toricpluscst

Proposition 5.2.3 Given $\varphi, \psi \in \operatorname{PSH}_{\text {tor }}(X, \omega)$, then $\varphi \wedge \psi \in \operatorname{PSH}_{\text {tor }}(X, \omega)$ and

$$
F_{\varphi \wedge \psi}=F_{\varphi} \wedge F_{\psi}, \quad G_{\varphi \wedge \psi}=G_{\varphi} \vee G_{\psi}
$$

Proof It is clear that $\varphi \wedge \psi \in \mathrm{PSH}_{\text {tor }}(X, \omega)$. The claim for G is obvious and the claim for F follows from Proposition A.2.2.

prop:toricseq

Proposition 5.2.4 Let $\left\{\varphi_{i}\right\}_{i \in I}$ be a family in $\mathrm{PSH}_{\text {tor }}(X, \omega)$ uniformly bounded from above. Then sup* ${ }_{i \in I} \varphi_{i} \in \operatorname{PSH}_{\text {tor }}(X, \omega)$ and

$$
F_{\text {sup }^{*}{ }_{i \in I} \varphi_{i}}=\sup _{i \in I} F_{\varphi_{i}}, \quad G_{\text {sup }^{*}{ }_{i \in I} \varphi_{i}}=\operatorname{cl} \bigwedge_{i \in I} G_{\varphi_{i}} .
$$

Moreover, if I is finite, then

$$
G_{\max _{i \in I} \varphi_{i}}=\bigwedge_{i \in I} G_{\varphi_{i}} .
$$

Similarly, if $\left\{\varphi_{i}\right\}_{i \in I}$ is a decreasing net in $\operatorname{PSH}_{\text {tor }}(X, \omega)$ such that $\inf _{i \in I} \varphi_{i} \not \equiv-\infty$, then $\inf _{i \in I} \varphi_{i} \in \operatorname{PSH}_{\text {tor }}(X, \omega)$ and

$$
F_{\inf _{i \in I} \varphi_{i}}=\inf _{i \in I} F_{\varphi_{i}}, \quad G_{\inf _{i \in I}} \varphi_{i}=\sup _{i \in I} G_{\varphi_{i}}
$$

Proof In both cases, the statement for F is clear. The corresponding statement for G is obtained via Proposition A.2.2.

Proposition 5.2.5 Let $\varphi \in \operatorname{PSH}_{\text {tor }}(X, \omega)$, then

$$
\begin{equation*}
\operatorname{Trop}_{*}\left(\left.\omega\right|_{T(\mathbb{C})}+\left.\operatorname{dd}^{\mathrm{C}} \varphi\right|_{T(\mathbb{C})}\right)^{n}=\operatorname{MA}_{\mathbb{R}}\left(F_{\varphi}\right) \tag{5.5}
\end{equation*}
$$

\{eq:tropMAmea\}
In particular,

$$
\int_{X} \omega_{\varphi}^{n}=\int_{N_{\mathbb{R}}} \operatorname{MA}_{\mathbb{R}}\left(F_{\varphi}\right)=n!\operatorname{vol} \overline{\left\{G_{\varphi}<\infty\right\}}
$$

and

$$
\int_{X} \omega^{n}=n!\operatorname{vol} P
$$

Proof We first prove (5.5). By Proposition A.3.3, we can find a decreasing sequence of smooth convex functions F_{j} on $N_{\mathbb{R}}$ with limit F_{φ}. We write $F_{j}=F_{\varphi_{j}}$ for some $\varphi_{j} \in \mathrm{PSH}_{\text {tor }}(X, \omega)$. By Theorem 2.1.1 and Theorem A.4.1, we may reduce to the case where F_{φ} is smooth. Then it suffices to carry out the straightforward computation using (5.2).

5.3 Toric pluripotential theory

Let us begin by consider the P-envelope.
Definition 5.3.1 Let $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \omega)$. We define its Newton body as

$$
\Delta(\omega, \varphi):=\overline{\left\{G_{\varphi}<\infty\right\}} \subseteq P
$$

By Proposition A.2.1, we have

$$
\Delta(\omega, \varphi)=\overline{\nabla F_{\varphi}\left(N_{\mathbb{R}}\right)}
$$

Proposition 5.3.1 Let $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \omega)$. Then $P_{\omega}[\varphi] \in \operatorname{PSH}_{\text {tor }}(X, \omega)$ and

$$
G_{P_{\omega}[\varphi]}(x)=\left\{\begin{array}{c}
G_{0}(x), \text { if } x \in \Delta(\omega, \varphi) \tag{5.6}\\
\infty, \text { otherwise }
\end{array}\right.
$$

\{eq:toricPenv\}

Proof By (3.2), we have

$$
P_{\omega}[\varphi]=\sup _{C \in \mathbb{R}}((\varphi+C) \wedge 0)
$$

It follows from Proposition 5.2.2, Proposition 5.2.3 and Proposition 5.2.4 that $P_{\omega}[\varphi] \in \mathrm{PSH}_{\text {tor }}(X, \omega)$. Moreover, by the same propositions, we have

$$
G_{P_{\omega}[\varphi]}=\inf _{C \in \mathbb{R}}\left(G_{0} \vee\left(G_{\varphi}-C\right)\right),
$$

which is clearly equal to the right-hand side of (5.6).
Next we prove a result of Yi Yao claiming that in the toric setting, all potentials are I-good.

Theorem 5.3.1 Let $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \omega)$, then

$$
h^{0}(X, L \otimes I(\varphi))=\#(\Delta(\omega, \varphi) \cap M)
$$

Proof It is well-known that $\mathrm{H}^{0}\left(X_{\mathrm{L}} L_{1}\right)$ can be identified with the vector space generated by χ^{m} for all $m \in P \cap M$, see $[E L S 11$, Proposition 4.3.3]. We will show that

$$
\begin{equation*}
\mathrm{H}^{0}(X, L \otimes I(\varphi))=\bigoplus_{m \in \Delta(\omega, \varphi) \cap M} \mathbb{C} \chi^{m} \tag{5.7}
\end{equation*}
$$

\{eq:toricL2sec \}

It is convenient to use explicit coordinates. We will identify N with \mathbb{Z}^{n} after choosing a basis. In this way, we get an identification $M=\mathbb{Z}^{n}$ and $T(\mathbb{C})=\mathbb{C}^{* n}$. In this case, we have

$$
\chi^{m}(z)=z^{m}
$$

with the multi-index notation.
Observe that $\mathrm{H}^{0}(X, L \otimes I(\varphi))$ is a $\mathbb{C}^{* n}$-invariant subspace of $\mathrm{H}^{0}(X, L)$, it follows that $\mathrm{H}^{0}(X, L \otimes I(\varphi))$ is the direct sum of suitable χ^{m} 's.

We first show that $\chi^{m} \in \mathrm{H}^{0}(X, L \otimes I(\varphi))$ for each $m \in \Delta(\omega, \varphi) \cap M$. We need to show that

$$
\int_{\mathbb{C}^{* n}}\left|\chi^{m}\right|^{2} \exp \left(-P_{\omega}[\varphi]\right) \omega^{n}<\infty
$$

Using Proposition 5.3.1 and Proposition 5.2.5, we find that the latter holds if and only if

$$
\int_{\mathbb{R}^{n}} \exp \left(\langle m, n\rangle-\operatorname{Supp}_{\Delta(\omega, \varphi)}(n)\right) \mathrm{MA}_{\mathbb{R}}\left(F_{0}\right)(n)<\infty
$$

which is obvious since

$$
\langle m, n\rangle-\operatorname{Supp}_{\Delta(\omega, \varphi)}(n) \leq 0
$$

Next we show that for any $m \in M \cap(P \backslash \Delta(\omega, \varphi))$, the function χ^{m} does not lie in $\mathrm{H}^{0}(X, L \otimes I(\varphi))$. Again, this means

$$
\int_{\mathbb{R}^{n}} \exp \left(\langle m, n\rangle-\operatorname{Supp}_{\Delta(\omega, \varphi)}(n)\right) \operatorname{MA}_{\mathbb{R}}\left(F_{0}\right)(n)=\infty
$$

By change of variables, this is equivalent to

$$
\int_{P} \exp \left(\left\langle m, \nabla G_{0}\left(m^{\prime}\right)\right\rangle-\operatorname{Supp}_{\Delta(\omega, \varphi)}\left(\nabla G_{0}\left(m^{\prime}\right)\right)\right) \mathrm{d} m^{\prime}=\infty
$$

Since m does not lie in $\Delta(\omega, \varphi)$, we can find $n_{0} \in \mathbb{R}^{n}$ such that

$$
\left\langle m, n_{0}\right\rangle-\operatorname{Supp}_{\Delta(\omega, \varphi)}\left(n_{0}\right)>0 .
$$

In particular, there are closed convex cones $C^{\prime} \subseteq C$ containing n_{0} in their interiors such that there exists $\epsilon>0$ such that

$$
\langle m, n\rangle-\operatorname{Supp}_{\Delta(\omega, \varphi)}(n) \geq \epsilon|n|
$$

for all $n \in C$ and C^{\prime} intersects the boundary of C only at 0 .
Thus, it would suffice to prove

$$
\begin{equation*}
\int_{P \cap\left\{\nabla G_{0} \subseteq C\right\}} \exp \left(\epsilon\left|\nabla G_{0}\left(m^{\prime}\right)\right|\right) \mathrm{d} m^{\prime}=\infty \tag{5.8}
\end{equation*}
$$

For each $\rho \in \Sigma(1)$, we write

$$
r_{\rho}\left(m^{\prime}\right)=\log \left(\left\langle m^{\prime}, u_{\rho}\right\rangle+a_{\rho}\right)+1, \quad m^{\prime} \in \mathbb{R}^{n}
$$

It follows from (5.3) that

$$
\nabla G_{0}\left(m^{\prime}\right)=\frac{1}{2} \sum_{\rho \in \Sigma(1)} r_{\rho}\left(m^{\prime}\right) u_{\rho}
$$

Take a cone σ in Σ such that $n_{0} \in-\operatorname{RelInt} \sigma$. Let $\rho_{1}, \ldots, \rho_{a}$ be the rays of σ. We may find rays $\rho_{a+1}, \ldots, \rho_{n} \in \Sigma(1)$ such that $u_{\rho_{1}}, \ldots, u_{\rho_{n}}$ form a basis of \mathbb{R}^{n}.

A subset of $P \cap\left\{\nabla G_{0} \subseteq C\right\}$ is given by those $m^{\prime} \in P$ such that for all $\rho \in \Sigma(1)$ different from $\rho_{1}, \ldots, \rho_{a}$, the function $r_{\rho}\left(m^{\prime}\right)$ is uniformly bounded, while m^{\prime} is close enough to the faces corresponding to the rays $\rho_{1}, \ldots, \rho_{n}$ and $\sum_{i=1}^{a} r_{\rho_{i}}\left(m^{\prime}\right) u_{\rho_{i}} \in C^{\prime}$. Replace the domain of integration in (5.8) to this region and the variable m^{\prime} to $r_{\rho_{1}}\left(m^{\prime}\right), \ldots, r_{\rho_{n}}\left(m^{\prime}\right)$, we find that the Jacobian is a polynomial in $r_{\rho_{1}}, \ldots, r_{\rho_{a}}$, while the integrand diverges exponentially. We conclude.

Corollary 5.3.1 Let $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \omega)$, then

$$
\lim _{k \rightarrow \infty} \frac{n!}{k^{n}} h^{0}\left(X, L^{k} \otimes I(k \varphi)\right)=n!\operatorname{vol} \Delta(\omega, \varphi)
$$

We interpret the full mass potentials studied in Section 3.1.3 in the toric setting. We have the following straightforward observation in the full mass case.

Proposition 5.3.2 Let $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \omega)$. Then the following are equivalent:
(1) $\varphi \in \mathcal{E}^{\infty}(X, \omega)$;
(2) $F_{\varphi} \sim F_{0}$;
(3) $G_{\varphi} \sim G_{0}$.

Proposition 5.3.3 Let $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \omega)$. Then the following are equivalent:
(1) $\varphi \in \mathcal{E}(X, \omega)$;
(2) $F_{\varphi} \in \mathcal{E}\left(N_{\mathbb{R}}, P\right)$;
(3) $\overline{\operatorname{Dom} G_{\varphi}}=P$.

Proof $(1) \Longleftrightarrow$ (3). By Proposition 5.2.5

$$
\int_{X} \omega_{\varphi}^{n}=\int_{T(\mathbb{C})}\left(\left.\omega\right|_{T(\mathbb{C})}+\left.\operatorname{dd}^{\mathrm{c}} \varphi\right|_{T(\mathbb{C})}\right)^{n}=n!\operatorname{vol} \overline{\operatorname{Dom} G_{\varphi}}, \quad \int_{X} \omega^{n}=n!\operatorname{vol} P
$$

Therefore, (1) and (3) are equivalent.
$(2) \Longleftrightarrow(3)$. This follows from Proposition A.2.1.
Proposition 5.3.4 Let $\varphi \in \operatorname{PSH}_{\text {tor }}(X, \omega)$, then

$$
E_{\omega}(\varphi)=n!\int_{P}\left(G_{0}-G_{\varphi}\right) \mathrm{d} \operatorname{vol}
$$

Proof ${ }_{\mathbb{B L t} 1}$ şffices to consider the case where φ is bounded. In this case, one could apply [BE13, Proposition 2.9].

Corollary 5.3.2 Let $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \omega)$. Then the following are equivalent:
(1) $\varphi \in \mathcal{E}^{1}(X, \omega)$;
(2) $F_{\varphi} \in \mathcal{E}^{1}\left(N_{\mathbb{R}}, P\right)$;
(3) $G_{\varphi} \in L^{1}(P)$.

Definition 5.3.2 We define

$$
\begin{aligned}
& \mathcal{E}_{\text {tor }}^{\infty}(X, \omega)=\mathcal{E}^{\infty}(X, \omega) \cap \operatorname{PSH}_{\text {tor }}(X, \omega), \\
& \mathcal{E}_{\text {tor }}^{1}(X, \omega)=\mathcal{E}^{1}(X, \omega) \cap \operatorname{PSH}_{\text {tor }}(X, \omega) \\
& \mathcal{E}_{\text {tor }}(X, \omega)=\mathcal{E}(X, \omega) \cap \operatorname{PSH}_{\text {tor }}(X, \omega)
\end{aligned}
$$

Corollary 5.3.3 Let $\varphi, \psi \in \mathcal{E}_{\text {tor }}^{1}(X, \omega)$, then

$$
d_{1}(\varphi, \psi)=-n!\int_{P}\left(G_{\varphi}+G_{\psi}-2 G_{\varphi \vee \psi}\right) \mathrm{d} \operatorname{vol} .
$$

prop:toricgeodseg
Proposition 5.3.5 Let $\varphi_{0}, \varphi_{1} \in \mathcal{E}_{\text {tor }}^{1}(X, \omega)$. The geodesic $\left(\varphi_{t}\right)_{t \in(0,1)}$ from φ_{0} to φ_{1} satisfies the following: for each $t \in(0,1), \varphi_{t} \in \mathcal{E}_{\text {tor }}^{1}(X, \omega)$ and

$$
G_{\varphi_{t}}=(1-t) G_{\varphi_{0}}+t G_{\varphi_{1}} .
$$

This will be proved more generally in Corollary 12.3.2.
Definition 5.3.3 We define

$$
\mathcal{R}_{\text {tor }}^{1}(X, \omega):=\left\{\ell \in \mathcal{R}^{1}(X, \omega): \ell_{t} \in \mathrm{PSH}_{\text {tor }}(X, \omega) \text { for all } t \geq 0\right\}
$$

Corollary 5.3.4 Let $\ell \in \mathcal{R}_{\text {tor }}^{1}(X, \omega)$. Then there is an integrable convex function $G^{\prime} \in \operatorname{Conv}\left(N_{\mathbb{R}}\right)$ with $\overline{\overline{\operatorname{Dom} G^{\prime}}}=P$ such that

$$
G_{\ell_{t}}=G_{0}+t G^{\prime}
$$

for all $t \geq 0$.
We could also make Example 4.2.1 concrete.
Proposition 5.3.6 Suppose that $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \omega)$. Then the ray ℓ^{φ} defined in Example 4.2.1 satisfies:

$$
G_{\ell_{t}}=G_{0}+t f_{\ell}, \quad f_{\ell}(x)=\min _{\substack{\lambda \in[0,1] \\ x_{1} \in P, x_{0} \in \Delta(\omega, \varphi) \\ \lambda x_{1}+(1-\lambda) x_{0}=x}} \lambda
$$

for any $t \geq 0$ and $x \in M_{\mathbb{R}}$.

Proof Recall that for each $C>0$, we defined $\left(\ell_{t}^{\varphi, C}\right)_{t}$ as the geodesic from 0 to $-C \vee \varphi$. By Proposition 5.2.2, Proposition 5.2.4, we have $G_{-C \vee \varphi}=\left(G_{0}+C\right) \wedge G_{\varphi}$. So by Proposition 5.3.5, we have

$$
G_{\ell_{t}^{\varphi, C}}=\frac{t}{C}\left(\left(G_{0}+C\right) \wedge G_{\varphi}\right)+\frac{C-t}{C} G_{0}
$$

for each $t \in[0, C]$.
Recall that for all $t \geq 0$,

$$
\ell_{t}=\sup _{C \geq t}^{*} \ell_{t}^{\varphi, C}
$$

It follows from Proposition 5.2.4 that

$$
G_{\ell_{t}}=\mathrm{cl} \inf _{C \geq t} \frac{t}{C}\left(\left(G_{0}+C\right) \wedge G_{\varphi}\right)+\frac{C-t}{C} G_{0}
$$

Since the infimum is clearly linear, the closure operation is not needed and $G_{\ell_{t}}$ is linear in t. So it suffices to compute the slope f :

$$
f_{\ell}:=\inf _{C>0} \frac{1}{C}\left(\left(G_{0}+C\right) \wedge G_{\varphi}\right)-\frac{1}{C} G_{0}
$$

We compute this limit using Proposition A.1.2: for $x \in M_{\mathbb{R}}$, we compute the slope as follows

$$
\begin{aligned}
f_{\ell}(x) & =\inf _{C>0} \inf _{\substack{\lambda \in(0,1) \\
x_{1}, x_{0} \in M_{\mathbb{R}} \\
\lambda x_{1}+(1-\lambda) x_{0}=x}} \lambda\left(\frac{G_{0}\left(x_{1}\right)}{C}+1\right)+\frac{1-\lambda}{C} G_{\varphi}\left(x_{0}\right)-\frac{G_{0}(x)}{C} \\
& =\inf _{\substack{\lambda \in(0,1) \\
x_{1}, x_{0} \in M_{\mathbb{R}} \\
\lambda x_{1}+(1-\lambda) x_{0}=x}} \inf _{C>0} \lambda\left(\frac{G_{0}\left(x_{1}\right)}{C}+1\right)+\frac{1-\lambda}{C} G_{\varphi}\left(x_{0}\right)-\frac{G_{0}(x)}{C} \\
& =\min _{\substack{\lambda \in[0,1] \\
x_{1} \in P, x_{0} \in \Delta(\omega, \varphi) \\
\lambda x_{1}+(1-\lambda) x_{0}=x}} \lambda .
\end{aligned}
$$

Part II The theory of I-good singularities

This part is the technical core of the whole book. We will develop the theory of I-good singularities.

We first develop some general techniques to compare the singularities in Chapter 6: The P-partial order, the \mathcal{I}-partial order and the d_{S}-pseudometric.

The P-partial order seems to be new. Some basic properties of the d_{S}-pseudometric have never appeared in the literature either.

Then in Chapter 7, we introduce the notion of \mathcal{I}-good singularities and characterize I-good singularities in different ways. In the algebraic situation, we establish the asymptotic Riemann-Roch formula.

In Chapter 8, we will develop two key techniques in the inductive study of singularities: The trace operator and the analytic Bertini theorem. Roughly speaking, the latter tells us the behaviour of a quasi-plurisubharmonic function along a general divisor, while the former handles the case of special divisors. We will establish a relative version of the asymptotic Riemann-Roch formula in the algebraic situation.

In Chapter 9, we develop the theory of test curves. These are curves of model potentials. The key technique is the Ross-Witt Nyström correspondence, which relates test curves with geodesic rays. The complete proof of the most general form of this correspondence has never appeared in the literature, so we will give the full details.

In Chapter 10, we develop the theory of partial Okounkov bodies, in both algebraic and transcendental setting. The partial Okounkov bodies can be regarded as non-toric extensions of the Newton bodies. It turns out that even in the toric setting, our techniques give non-trivial new results.

In Chapter 11, we develop the theory of b-divisors in the algebraic setting. We formulate the general form of the Chern-Weil formula in terms of b-divisors. We also relate the theory of partial Okounkov bodies to b-divisors.

Chapter 6 Comparison of singularities

chap: comp
In this chapter, we study several ways of comparing the singularities of quasiplurisubharmonic functions. In Section 6.1, we will introduce the P and \mathcal{I}-partial orders, closely related to the P and I-equivalence relations introduced in Chapter 3.

In Section 6.2, we introduce and study the d_{S}-pseudometric characterizing the differences between singularities. We will prove that a number of continuity results with respect to d_{S}.

6.1 The P and I-partial orders

Let X be a connected compact Kähler manifold of dimension n.

Recall that we have defined a (non-strict) partial order on $\operatorname{QPSH}(X)$ in Definition 1.5.2 to compare the singularity types of quasi-plurisubharmonic functions. The problem with this partial order is that it is too fine. In general, for our interest, it is helpful to consider rougher relations.

6.1.1 The definitions of the partial orders

Recall that the P-envelope is defined in Definition 3.1.2.
Definition 6.1.1 Let $\varphi, \psi \in \operatorname{QPSH}(X)$, we say φ is P-more singular than ψ and write $\varphi \leq_{P} \psi$ if for some closed smooth real (1,1)-form θ on X such that $\varphi, \psi \in$ $\operatorname{PSH}(X, \theta)_{>0}$, we have

$$
P_{\theta}[\varphi] \leq P_{\theta}[\psi] .
$$

Suppose that $\varphi \leq_{P} \psi$ and $\psi \leq_{P} \varphi$, we shall write $\varphi \sim_{P} \psi$ and say φ and ψ have the same P-singularity type.

This definition is independent of the choice of θ :

Lemma 6.1.1 Let $\varphi, \psi \in \operatorname{PSH}(X, \theta)_{>0}$. For any Kähler form ω on X, the following are equivalent:
(1) $P_{\theta}[\varphi] \leq P_{\theta}[\psi]$;
(2) $P_{\theta+\omega}[\varphi] \leq P_{\theta+\omega}[\psi]$.

In particular, \leq_{P} defines a non-strict partial order on $\mathrm{QPSH}(X)$.
Proof (1) implies (2). Observe that

$$
P_{\theta}[\varphi] \leq P_{\theta+\omega}[\varphi], \quad \varphi \leq P_{\theta}[\varphi]
$$

It follows from Theorem 3.1.2 that

$$
\begin{equation*}
P_{\theta+\omega}[\varphi]=P_{\theta+\omega}\left[P_{\theta}[\varphi]\right] \tag{6.1}
\end{equation*}
$$

\{eq: doubleP\}
A similar formula holds for ψ. So we see that (2) holds.
(2) implies (1). By (6.1), we may assume that φ and ψ are both model potentials in $\operatorname{PSH}(X, \theta)_{>0}$.

Observe that $\varphi \vee \psi \leq P_{\theta+\omega}[\psi]$. It follows that $P_{\theta+\omega}[\varphi \vee \psi] \leq P_{\theta+\omega}[\psi]$. The reverse inequality is trivial, so

$$
P_{\theta+\omega}[\varphi \vee \psi]=P_{\theta+\omega}[\psi]
$$

From the direction we have proved, for any $C \geq 1$,

$$
P_{\theta+C \omega}[\varphi \vee \psi]=P_{\theta+C \omega}[\psi]
$$

So by Proposition 3.1.3,

$$
\int_{X}\left(\theta+C \omega+\operatorname{dd}^{\mathrm{c}}(\varphi \vee \psi)\right)^{n}=\int_{X}\left(\theta+C \omega+\mathrm{dd}^{\mathrm{c}} \psi\right)^{n}
$$

Since both sides are polynomials in C, the equality extends to $C=0$, namely,

$$
\int_{X} \theta_{\varphi \vee \psi}^{n}=\int_{X} \theta_{\psi}^{n}
$$

In particular, $\varphi \vee \psi \leq P_{\theta}[\psi]=\psi$ by (3.4). So (1) follows.
As a first example of P-equivalence, we have:
Example 6.1.1 Let θ be a closed smooth real (1, 1)-form on X and $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$, then

$$
\varphi \sim_{P} P_{\theta}[\varphi] .
$$

This follows immediately from Theorem 3.1.2.
Proposition 6.1.1 Let $\varphi, \psi \in \operatorname{PSH}(X, \theta)$ and $\varphi \leq \psi$. Then the following are equivalent:
(1) $\varphi \sim_{P} \psi$;
(2) for each $j=0, \ldots, n$, we have

$$
\begin{equation*}
\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}=\int_{X} \theta_{\psi}^{j} \wedge \theta_{V_{\theta}}^{n-j} \tag{6.2}
\end{equation*}
$$

\{eq:mixedmassequal\}
Assume furthermore that $\varphi, \psi \in \operatorname{PSH}(X, \theta)_{>0}$, then these conditions are equivalent to the following:
(3) We have

$$
\int_{X} \theta_{\varphi}^{n}=\int_{X} \theta_{\psi}^{n}
$$

Recall that V_{θ} is introduced in (2.9).
Proof We first prove the equivalence between (1) and (3) when $\varphi, \psi \in \operatorname{PSH}(X, \theta)_{>0}$. (1) \Longrightarrow (3). Assume that $\varphi \sim_{P} \psi$. By Definition 6.1.1, we have

$$
P_{\theta}[\varphi]=P_{\theta}[\psi]
$$

So (3) follows from Proposition 3.1.3.
(3) \Longrightarrow (1). It follows from Theorem 3.1.2 that $P_{\theta}[\varphi]=P_{\theta}[\psi]$, so (1) follows. Let us come back to the general case.
(1) \Longrightarrow (2). Fix $j \in\{0, \ldots, n\}$, we argue (6.2).

Take a Kähler form ω on X. By Definition 6.1.1, for each $\epsilon>0$, we have

$$
P_{\theta+\epsilon \omega}[\varphi]=P_{\theta+\epsilon \omega}[\psi] .
$$

It follows from Proposition 3.1.3 that

$$
\begin{aligned}
\int_{X}\left(\theta+\epsilon \omega+\operatorname{dd}^{\mathrm{c}} \psi\right)^{j} \wedge \theta_{V_{\theta}}^{n-j} & =\int_{X}\left(\theta+\epsilon \omega+\operatorname{dd}^{\mathrm{c}} P_{\theta+\epsilon \omega}[\psi]\right)^{j} \wedge \theta_{V_{\theta}}^{n-j} \\
& =\int_{X}\left(\theta+\epsilon \omega+\operatorname{dd}^{\mathrm{c}} P_{\theta+\epsilon \omega}[\varphi]\right)^{j} \wedge \theta_{V_{\theta}}^{n-j} \\
& =\int_{X}\left(\theta+\epsilon \omega+\operatorname{dd}^{\mathrm{c}} \varphi\right)^{j} \wedge \theta_{V_{\theta}}^{n-j}
\end{aligned}
$$

Since the two extremes are both polynomials in ϵ, we conclude that the same holds when $\epsilon=0$, that is, (6.2) holds.
$(2) \Longrightarrow$ (1). Assume (6.2) holds for all $j=0, \ldots, n$. For each $t \in(0,1)$, we have

$$
\int_{X} \theta_{t \varphi+(1-t) V_{\theta}}^{n}=\int_{X} \theta_{t \psi+(1-t) V_{\theta}}^{n}
$$

by the binomial expansion. By the implication $(3) \Longrightarrow$ (1), we have

$$
t \varphi+(1-t) V_{\theta} \sim_{P} t \psi+(1-t) V_{\theta}
$$

for each $t \in(0,1)$.
Fix a Kähler form ω on X. From the implication (1) \Longrightarrow (3), we have

$$
\int_{X}(\theta+\omega)_{t \varphi+(1-t) V_{\theta}}^{n}=\int_{X}(\theta+\omega)_{t \psi+(1-t) V_{\theta}}^{n}
$$

Since both sides are polynomials in t, the same holds when $t=1$. From the implication (3) \Longrightarrow (1) again, we have $\varphi \sim_{P} \psi$.

Proposition 6.1.2 Given $\varphi, \psi \in \operatorname{QPSH}(X)$, the following are equivalent:
(1) For any $k \in \mathbb{Z}_{>0}$, we have

$$
I(k \varphi) \subseteq I(k \psi)
$$

(2) for any $\lambda \in \mathbb{R}_{>0}$, we have

$$
\mathcal{I}(\lambda \varphi) \subseteq \mathcal{I}(\lambda \psi)
$$

(3) for any modification $\pi: Y \rightarrow X$ and any $y \in Y$, we have

$$
v\left(\pi^{*} \varphi, y\right) \geq v\left(\pi^{*} \psi, y\right)
$$

(4) for any proper bimeromorphic morphism $\pi: Y \rightarrow X$ from a Kähler manifold and any $y \in Y$, we have

$$
v\left(\pi^{*} \varphi, y\right) \geq v\left(\pi^{*} \psi, y\right)
$$

(5) for any prime divisor E over X, we have

$$
v(\varphi, E) \geq v(\psi, E)
$$

Proof The proof is almost identical to that of Proposition 3.2.1, we omit the details.
Definition 6.1.2 Let $\varphi, \psi \in \operatorname{QPSH}(X)$, we say φ is \mathcal{I}-more singular than ψ and write $\varphi \leq_{I} \psi$ if the equivalent conditions in Proposition 6.1.2 are satisfied.

It is clear that \leq_{I} is a non-strict partial order on $\operatorname{QPSH}(X)$.
Note that $\varphi \leq_{I} \psi$ and $\psi \leq_{I} \varphi$ both hold if and only if $\varphi \sim_{I} \psi$ in the sense of Definition 3.2.1.

Lemma 6.1.2 Let $\varphi, \psi \in \operatorname{QPSH}(X)$. Then the following are equivalent:
(1) $\varphi \leq_{P} \psi\left(r e s p . ~ \varphi \leq_{I} \psi\right)$;
(2) $\varphi \vee \psi \sim_{P} \psi\left(r e s p . \varphi \vee \psi \sim_{I} \psi\right)$.

Proof Take a closed real smooth $(1,1)$-form θ on X such that $\varphi, \psi \in \operatorname{PSH}(X, \theta)_{>0}$. We only prove the P case, the I case is similar.
(2) \Longrightarrow (1). By (2) and Example 6.1.1, $P_{\theta}[\varphi \vee \psi]=P_{\theta}[\psi] \sim_{P} \psi$. But $\varphi \leq P_{\theta}[\varphi \vee \psi]$, so (1) follows.
$(1) \Longrightarrow$ (2). We may assume that φ, ψ are both model in $\operatorname{PSH}(X, \theta)_{>0}$ as

$$
P_{\theta}[\varphi \vee \psi]=P_{\theta}\left[P_{\theta}[\varphi] \vee P_{\theta}[\psi]\right] .
$$

Then $\varphi \leq \psi$ and (2) follows.

Corollary 6.1.1 Let $\varphi, \psi \in \operatorname{QPSH}(X)$. Assume that $\varphi \leq_{P} \psi$, then $\varphi \leq_{I} \psi$.
Proof This follows from Lemma 6.1.2 and Proposition 3.2.8.

Corollary 6.1.2 Assume that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$, then

$$
\begin{aligned}
P_{\theta}[\varphi] & =\sup \left\{\psi \in \operatorname{PSH}(X, \theta): \psi \leq 0, \psi \sim_{P} \varphi\right\} \\
& =\sup \left\{\psi \in \operatorname{PSH}(X, \theta): \psi \leq 0, \psi \leq_{P} \varphi\right\} .
\end{aligned}
$$

Proof Note that $\psi \sim_{P} \varphi$ implies that $\psi \in \operatorname{PSH}(X, \theta)_{>0}$ by Proposition 6.1.4. We observe that

$$
\begin{array}{r}
\sup \left\{\psi \in \operatorname{PSH}(X, \theta): \psi \leq 0, \psi \sim_{P} \varphi\right\} \\
=\sup \left\{\psi \in \operatorname{PSH}(X, \theta): \psi \leq 0, \varphi \leq \psi, \psi \sim_{P} \varphi\right\}
\end{array}
$$

by Lemma 6.1.2. So the first equality is a direct consequence of Proposition 6.1.1 and Theorem 3.1.2.

Next we prove the second equality. We only need to show that for any $\psi \in$ $\operatorname{PSH}(X, \theta)$ with $\psi \leq 0$ and $\psi \leq_{P} \varphi$, we have $\psi \leq P_{\theta}[\varphi]$.

By Lemma 6.1.2 and Example 6.1.1, we know that $P_{\theta}[\varphi] \vee \psi \sim_{P} \varphi$ and $P_{\theta}[\varphi] \vee \psi \leq 0$. It follows from the first equality that $\psi \leq P_{\theta}[\varphi]$.

Similarly, we have
Corollary 6.1.3 Assume that $\varphi \in \operatorname{PSH}(X, \theta)$, then

$$
P_{\theta}[\varphi]_{I}=\sup \left\{\psi \in \operatorname{PSH}(X, \theta): \psi \leq 0, \psi \leq_{I} \varphi\right\} .
$$

Proposition 6.1.3 Suppose that $\varphi, \psi \in \operatorname{QPSH}(X)$ and θ is a closed real smooth $(1,1)$-form on X such that $\varphi, \psi \in \operatorname{PSH}(X, \theta)$. Then the following are equivalent:
(1) $\varphi \leq_{I} \psi$;
(2) $P_{\theta}[\varphi]_{I} \leq P_{\theta}[\psi]_{I}$.

Proof $(1) \Longrightarrow(2)$. This follows immediately from Corollary 6.1.3.
$(2) \Longrightarrow(1)$. This follows from Proposition 3.2.6.

6.1.2 Properties of the partial orders

Now we state a more natural version of the monotonicity theorem Theorem 2.3.2.
Proposition 6.1.4 Let $\theta_{1}, \ldots, \theta_{n}$ be closed real smooth $(1,1)$-forms on X. Let $\varphi_{i}, \psi_{i} \in$ $\operatorname{PSH}\left(X, \theta_{i}\right)$ for $i=1, \ldots, n$. Assume that $\varphi_{i} \leq_{P} \psi_{i}$ for each i. Then

$$
\int_{X} \theta_{\varphi_{1}} \wedge \cdots \wedge \theta_{\varphi_{n}} \leq \int_{X} \theta_{\psi_{1}} \wedge \cdots \wedge \theta_{\psi_{n}}
$$

Proof Fix a Kähler form ω on X. For each $i=1, \ldots, n$, since $\varphi_{i} \leq_{P} \psi_{i}$, we have

$$
P_{\theta+\epsilon \omega}\left[\varphi_{i}\right] \leq P_{\theta+\epsilon \omega}\left[\psi_{i}\right]
$$

for all $\epsilon>0$. Therefore, by Proposition 3.1.3 and Theorem 2.3.2, we have

$$
\int_{X}(\theta+\epsilon \omega)_{\varphi_{1}} \wedge \cdots \wedge(\theta+\epsilon \omega)_{\varphi_{n}} \leq \int_{X}(\theta+\epsilon \omega)_{\psi_{1}} \wedge \cdots \wedge(\theta+\epsilon \omega)_{\psi_{n}}
$$

Since both sides are polynomials in ϵ, we find that the same holds at $\epsilon=0$, which is the desired inequality.

Proposition 6.1.5 Let $\varphi, \psi, \varphi^{\prime}, \psi^{\prime} \in \operatorname{QPSH}(X)$. Assume that

$$
\varphi \leq_{P} \psi, \quad \varphi^{\prime} \leq_{P} \psi^{\prime}
$$

Then

$$
\varphi+\varphi^{\prime} \leq_{P} \psi+\psi^{\prime}
$$

The same holds with \leq_{I} in place of \leq_{P}.
Proof Take a Kähler form ω on X such that $\varphi, \psi, \varphi^{\prime}, \psi^{\prime} \in \operatorname{PSH}(X, \omega)_{>0}$. The statement for \leq_{I} is a simple consequence of Proposition 1.4.2. We only need to handle the case of \leq_{P}.

Step 1. We first show that

$$
P_{\omega}[\varphi]+P_{\omega}\left[\varphi^{\prime}\right] \sim_{P} \varphi+\varphi^{\prime}
$$

In fact, we clearly have

$$
P_{\omega}[\varphi]+P_{\omega}\left[\varphi^{\prime}\right] \geq \varphi+\varphi^{\prime}
$$

So by Proposition 6.1.1, it suffices to show that they have the same volume. We compute

$$
\begin{aligned}
& \int_{X}\left(2 \omega+\operatorname{dd}^{\mathrm{c}} P_{\omega}[\varphi]+\mathrm{dd}^{\mathrm{c}} P_{\omega}\left[\varphi^{\prime}\right]\right)^{n} \\
= & \sum_{j=0}^{n}\binom{n}{j} \int_{X}\left(\omega+\mathrm{dd}^{\mathrm{c}} P_{\omega}[\varphi]\right)^{j} \wedge\left(\omega+\mathrm{dd}^{\mathrm{c}} P_{\omega}\left[\varphi^{\prime}\right]\right)^{n-j} \\
= & \sum_{j=0}^{n}\binom{n}{j} \int_{X} \omega_{\varphi}^{j} \wedge \omega_{\varphi^{\prime}}^{n-j} \\
= & \int_{X}\left(2 \omega+\varphi+\varphi^{\prime}\right)^{n},
\end{aligned}
$$

where we applied Proposition 3.1.3 on the third line.
Step 2. By Step 1, we may assume that $\varphi, \psi, \varphi^{\prime}, \psi^{\prime}$ are all model potentials. So $\varphi \leq \psi$ and $\varphi^{\prime} \leq \psi^{\prime}$. Our assertion follows.

Proposition 6.1.6 Let $\left(\varphi_{i}\right)_{i \in I},\left(\psi_{i}\right)_{i \in I}$ be uniformly bounded from above non-empty families in $\operatorname{QPSH}(X)$. Assume that there exists a closed smooth real $(1,1)$-form θ such that $\varphi_{i}, \psi_{i} \in \operatorname{PSH}(X, \theta)$ and $\varphi_{i} \leq_{P} \psi_{i}$ for all $i \in I$. Then

$$
\sup _{i \in I}^{*} \varphi_{i} \leq_{P} \sup _{i \in I}^{*} \psi_{i}
$$

The same holds with \leq_{I} in place of \leq_{P}.
Proof By increasing θ, we may assume that $\varphi_{i}, \psi_{i} \in \operatorname{PSH}(X, \theta)_{>0}$ for all $i \in I$. The statement for \leq_{I} is a simple consequence of Corollary 1.4.1, we only have to consider the statement for \leq_{P}.

Step 1. We first handle the case where I is a directed set and $\left(\varphi_{i}\right)_{i \in I}$ and $\left(\psi_{i}\right)_{i \in I}$ are increasing nets.

In this case, our assertion follows simply from Proposition 3.1.9.
Step 2. We handle the case where I is finite. We may assume that $I=\{0,1\}$. It suffices to show that

$$
P_{\theta}\left[\varphi_{0}\right] \vee P_{\theta}\left[\varphi_{1}\right] \sim_{P} \varphi_{0} \vee \varphi_{1} .
$$

For this purpose, it suffices to prove the following:

$$
P_{\theta}\left[\varphi_{0}\right] \vee \varphi_{1} \sim_{P} \varphi_{0} \vee \varphi_{1}
$$

The \geq_{P} direction is obvious. So thanks to Proposition 6.1.1, it suffices to argue that they have the same mass. We may assume that $\varphi_{0} \leq 0$. Thanks to Lemma 2.3.1, for each $\epsilon \in(0,1)$, we can find $\eta_{\epsilon} \in \operatorname{PSH}(X, \theta)_{>0}$ such that

$$
(1-\epsilon) P_{\theta}\left[\varphi_{0}\right]+\epsilon \eta_{\epsilon} \leq \varphi_{0}, \quad \eta_{\epsilon} \leq \varphi_{0} \leq P_{\theta}\left[\varphi_{0}\right] .
$$

In particular,

$$
(1-\epsilon)\left(P_{\theta}\left[\varphi_{0}\right] \vee \varphi_{1}\right)+\epsilon \eta_{\epsilon} \leq \varphi_{0} \vee \varphi_{1} .
$$

It follows from Theorem 2.3.2 that

$$
(1-\epsilon)^{n} \int_{X} \theta_{P_{\theta}\left[\varphi_{0}\right] \vee \varphi_{1}}^{n} \leq \int_{X} \theta_{\varphi_{0} \vee \varphi_{1}}^{n}
$$

Letting $\epsilon \rightarrow 0+$ and using Theorem 2.3.2 again, we conclude that

$$
\int_{X} \theta_{P_{\theta}\left[\varphi_{0}\right] \vee \varphi_{1}}^{n}=\int_{X} \theta_{\varphi_{0} \vee \varphi_{1}}^{n} .
$$

Our assertion is proved.
Step 3. The general case can be reduced to the two cases handled in Step 1 and Step 2. More precisely, by Proposition 1.2.2, we could find a countable subset $J \subseteq I$ such that

$$
\sup _{j \in J}^{*} \varphi_{j}=\sup _{i \in I}^{*} \varphi_{i}, \quad \sup _{i \in I}^{*} \psi_{j}=\sup _{i \in I}^{*} \psi_{i} .
$$

We may replace I by J and assume that I is countable. We may assume that I is infinite, as otherwise, we could apply Step 2 directly. So let us assume that $J=\mathbb{Z}_{>0}$. In this case, by Step 2 again, we may assume that both $\left(\varphi_{i}\right)_{i}$ and $\left(\psi_{i}\right)_{i}$ are increasing, which is the situation of Step 1.

6.2 The \boldsymbol{d}_{S}-pseudometric

Let X be a connected compact Kähler manifold of dimension n and θ be a closed real smooth (1,1)-form on X representing a big cohomology class. The goal of this section is to study a pseudometric on the space $\operatorname{PSH}(X, \theta)$.

6.2.1 The definition of the \boldsymbol{d}_{S}-pseudometric

Recall that for any $\varphi \in \operatorname{PSH}(X, \theta)$, the geodesic ray $\ell^{\varphi} \in \mathcal{R}^{1}(X, \theta)$ is defined in Example 4.2.1.

Definition 6.2.1 For $\varphi, \psi \in \operatorname{PSH}(X, \theta)$, we define

$$
d_{S}(\varphi, \psi):=d_{1}\left(\ell^{\varphi}, \ell^{\psi}\right) .
$$

When we want to be more specific, we write $d_{S, \theta}$ instead of d_{S}.
The d_{1} distance of geodesic rays is defined in Definition 4.2.6.
Proposition 6.2.1 The function d_{S} defined in Definition 6.2.1 is a pseudometric on $\operatorname{PSH}(X, \theta)$.

Proof This follows immediately from Theorem 4.2.3.
When studying a pseudometric, the first thing is to understand when the distance between two elements vanishes.

We first prove a preparation:
Lemma 6.2.1 Let $\varphi, \psi \in \operatorname{PSH}(X, \theta)$. Then

$$
d_{S}(\varphi, \psi) \leq d_{S}(\varphi, \varphi \vee \psi)+d_{S}(\psi, \varphi \vee \psi) \leq C_{n} d_{S}(\varphi, \psi)
$$

where $C_{n}=3(n+1) 2^{n+2}$.
Proof Observe that

$$
\begin{equation*}
\ell^{\varphi} \vee \ell^{\psi}=\ell^{\varphi \vee \psi} \tag{6.3}
\end{equation*}
$$

\{eq:elllorsingtype\}
In fact, it is clear that

$$
\ell^{\varphi} \leq \ell^{\varphi \vee \psi}, \quad \ell^{\psi} \leq \ell^{\varphi \vee \psi}
$$

so the \leq direction in (6.3) holds.
Conversely, if $\ell^{\prime} \in \mathcal{R}^{1}(X, \theta)$ and $\ell^{\prime} \geq \ell^{\varphi} \vee \ell^{\psi}$, then for each $t \geq 0$,

$$
\ell_{t}^{\prime} \geq\left(\left(V_{\theta}-t\right) \vee \varphi\right) \vee\left(\left(V_{\theta}-t\right) \vee \psi\right)=\left(V_{\theta}-t\right) \vee(\varphi \vee \psi)
$$

It follows that $\ell^{\prime} \geq \ell^{\varphi \vee \psi}$.
So our assertion follows from Lemma 4.2.1.
Proposition 6.2.2 Let $\varphi, \psi \in \operatorname{PSH}(X, \theta)$. Then the following are equivalent:
(1) $\varphi \sim_{P} \psi$;
(2) $d_{S}(\varphi, \psi)=0$.

In particular, $d_{S}\left(\varphi, P_{\theta}[\varphi]\right)=0$ for all $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$.
Proof By Lemma 6.1.2, we have $\varphi \sim_{P} \psi$ if and only if $\varphi \sim_{P} \varphi \vee \psi$ and $\psi \sim_{P} \varphi \vee \psi$. By Lemma 6.2.1, $d_{S}(\varphi, \psi)=0$ if and only if $d_{S}(\varphi, \varphi \vee \psi)=0$ and $d_{S}(\psi, \varphi \vee \psi)=0$. So it suffices to prove the assertion when $\varphi \leq \psi$. Assuming this, by Proposition 4.2.6 we have that 2 holds if and only if

$$
\mathbf{E}\left(\ell^{\varphi}\right)=\mathbf{E}\left(\ell^{\psi}\right)
$$

But using (4.14), this holds if and only if

$$
\sum_{j=0}^{n} \int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}=\sum_{j=0}^{n} \int_{X} \theta_{\psi}^{j} \wedge \theta_{V_{\theta}}^{n-j}
$$

But by Theorem 2.3.2, this holds if and only if for all $j=0, \ldots, n$,

$$
\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}=\int_{X} \theta_{\psi}^{j} \wedge \theta_{V_{\theta}}^{n-j}
$$

which is equivalent to 1 by Proposition 6.1.1.

lma:varphileqpsi_metric

Lemma 6.2.2 Suppose that $\varphi, \psi \in \operatorname{PSH}(X, \theta)$ and $\varphi \leq_{P} \psi$, then

$$
d_{S}(\varphi, \psi)=\frac{1}{n+1} \sum_{j=0}^{n}\left(\int_{X} \theta_{\psi}^{j} \wedge \theta_{V_{\theta}}^{n-j}-\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}\right)
$$

Proof This follows trivially from (4.14).
Corollary 6.2.1 Suppose that $\varphi, \psi, \eta \in \operatorname{PSH}(X, \theta)$ and $\varphi \leq_{P} \psi \leq_{P} \eta$. Then

$$
d_{S}(\varphi, \eta) \geq d_{S}(\varphi, \psi), \quad d_{S}(\varphi, \eta) \geq d_{S}(\psi, \eta)
$$

Proof This is an immediate consequence of Lemma 6.2.2 and Proposition 6.1.4.

Corollary 6.2.2 For any $\varphi, \psi \in \operatorname{PSH}(X, \theta)$, we have

$$
\begin{align*}
d_{S}(\varphi, \psi) & \leq \sum_{j=0}^{n}\left(2 \int_{X} \theta_{\varphi \vee \psi}^{j} \wedge \theta_{V_{\theta}}^{n-j}-\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}-\int_{X} \theta_{\psi}^{j} \wedge \theta_{V_{\theta}}^{n-j}\right) \tag{6.4}\\
& \leq C_{n} d_{S}(\varphi, \psi)
\end{align*}
$$

where $C_{n}=3(n+1) 2^{n+2}$.
In particular, if $\left(\varphi_{i}\right)_{i \in I}$ is a net in $\operatorname{PSH}(X, \theta)$ with d_{S}-limit φ, then for each $j=0, \ldots, n$,

$$
\lim _{i \in I} \int_{X} \theta_{\varphi_{i}}^{j} \wedge \theta_{V_{\theta}}^{n-j}=\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}=\int_{X} \theta_{\varphi_{i} \vee \varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}
$$

Proof The estimates (6.4) follows from the combination of Lemma 6.2.2 and Lemma 6.2.1.

The last assertion follows from (6.4) and Theorem 2.3.2.
Corollary 6.2.3 Suppose that $\varphi_{i} \in \operatorname{PSH}(X, \theta)(i \in I)$ be an increasing net, uniformly bounded from above. Then

$$
\varphi_{i} \xrightarrow{d_{S}} \sup _{j \in I}^{*} \varphi_{j} .
$$

Proof Write $\varphi=\sup ^{*}{ }_{j \in I} \varphi_{j}$. Recall that by Proposition 1.2.1, $\varphi \in \operatorname{PSH}(X, \theta)$. By Lemma 6.2.2, it suffices to show that for each $k=0, \ldots, n$, we have

$$
\lim _{j \in I} \int_{X} \theta_{\varphi_{j}}^{k} \wedge \theta_{V_{\theta}}^{n-k}=\int_{X} \theta_{\varphi}^{k} \wedge \theta_{V_{\theta}}^{n-k}
$$

The latter follows from Corollary 2.3.1.
By constrast, for decreasing nets, the situation is different:
Corollary 6.2.4 Suppose that $\varphi_{i} \in \operatorname{PSH}(X, \theta)$ is a decreasing net such that $\varphi:=$ $\inf _{i \in I} \varphi_{i} \not \equiv-\infty$. Then the following are equivalent:
(1) We have

$$
\varphi_{i} \xrightarrow{d_{S}} \varphi ;
$$

(2) for each $k=0, \ldots, n$, we have

$$
\begin{equation*}
\lim _{j \in I} \int_{X} \theta_{\varphi_{j}}^{k} \wedge \theta_{V_{\theta}}^{n-k}=\int_{X} \theta_{\varphi}^{k} \wedge \theta_{V_{\theta}}^{n-k} \tag{6.5}
\end{equation*}
$$

If we assume furthermore that $\int_{X} \theta_{\varphi}^{n}>0$, then the above conditions are equivalent to the following:
(3) We have

$$
\lim _{j \in I} \int_{X} \theta_{\varphi_{j}}^{n}=\int_{X} \theta_{\varphi}^{n}
$$

In the latter case, we also have

$$
\begin{equation*}
P_{\theta}[\varphi]=\inf _{j \in I} P_{\theta}\left[\varphi_{j}\right] . \tag{6.6}
\end{equation*}
$$

Proof Recall that by Proposition 1.2.1, $\varphi \in \operatorname{PSH}(X, \theta)$.
(1) \Longleftrightarrow (2). This follows immediately from Lemma 6.2.2.
$(2) \Longrightarrow$ (3). This is trivial.
(3) \Longrightarrow (2). Let $\left(b_{j}\right)_{j \in I}$ be a net converging to ∞ such that

$$
b_{j} \in\left(1,\left(\frac{\int_{X} \theta_{\varphi_{j}}^{n}}{\int_{X} \theta_{\varphi_{j}}^{n}-\int_{X} \theta_{\varphi}^{n}}\right)^{1 / n}\right)
$$

By Lemma 2.3.1, for each $j \in I$, we can find $\eta_{j} \in \operatorname{PSH}(X, \theta)$ such that

$$
b_{j}^{-1} \eta_{j}+\left(1-b_{j}^{-1}\right) \varphi_{j} \leq \varphi
$$

It follows from Theorem 2.3.2 that for any $k=0, \ldots, n$,

$$
\int_{X} \theta_{\varphi}^{k} \wedge \theta_{V_{\theta}}^{n-k} \geq\left(1-b_{j}^{-1}\right)^{k} \int_{X} \theta_{\varphi_{j}}^{k} \wedge \theta_{V_{\theta}}^{n-k}
$$

Taking the limit, we conclude the \leq direction in (6.5). The \geq direction follows from Theorem 2.3.2.

Finally, we argue (6.6).
Let $\psi_{j}=P_{\theta}\left[\varphi_{j}\right]$. It follows from Corollary 3.1.1 that ψ_{j} is a model potential. Let

$$
\psi=\inf _{j \in I} \psi_{j}
$$

It follows from Proposition 3.1.3 and Proposition 3.1.8 that

$$
\int_{X} \theta_{\psi}^{n}=\lim _{j \in I} \int_{X} \theta_{\psi_{j}}^{n}=\lim _{j \in I} \int_{X} \theta_{\varphi_{j}}^{n}=\int_{X} \theta_{\varphi}^{n}
$$

By Proposition 3.1.7, ψ is a model potential. So by Proposition 6.1.1, we have $\varphi \sim_{P} \psi$ and hence $\psi=P_{\theta}[\varphi]$ by Corollary 6.1.2.

Having understood the increasing and decreasing cases, we shall handle more general convergent sequences. In fact, since d_{S} is a pseudometric, the topology is completely determined by convergent sequences, so we do not need to consider nets in general.

Proposition 6.2.3 Let $\varphi_{j}, \varphi \in \operatorname{PSH}(X, \theta)(j \geq 1), \varphi_{j} \xrightarrow{d_{S}} \varphi$. Assume that there is $\delta>0$ such that

$$
\int_{X} \theta_{\varphi_{j}}^{n} \geq \delta, \quad \int_{X} \theta_{\varphi}^{n} \geq \delta
$$

for all j and the φ_{j} 's and φ are all model potentials. Then up to replacing $\left(\varphi_{j}\right)_{j}$ by a subsequence, there is a decreasing sequence $\psi_{j} \in \operatorname{PSH}(X, \theta)$ and an increasing sequence $\eta_{j} \in \operatorname{PSH}(X, \theta)$ such that
$(1) \psi_{j} \xrightarrow{d_{S}} \varphi, \eta_{j} \xrightarrow{d_{S}} \varphi ;$
(2) $\psi_{j} \geq \varphi_{j} \geq \eta_{j}$ for all j.

In fact, for any $j \geq 1$, we will take

$$
\eta_{j}=\inf _{k \in \mathbb{N}} \varphi_{j} \wedge \varphi_{j+1} \wedge \cdots \wedge \varphi_{j+k}, \quad \psi_{j}=\sup _{k \geq j}^{*} \varphi_{k}
$$

Proof We are free to replace $\left(\varphi_{j}\right)_{j}$ by a subsequence. So we may assume that

$$
\begin{equation*}
d_{S}\left(\varphi_{j}, \varphi_{j+1}\right) \leq C_{n}^{-2 j}, \quad d_{S}\left(\varphi, \varphi_{j}\right) \leq \frac{2^{-j-2}}{(n+1) C_{n}} \tag{6.7}
\end{equation*}
$$

where C_{n} is the constant in Corollary 6.2.2.
Step 1. We handle the ψ_{j} 's. For each $j \geq 1$ and $k \geq 1$, by Corollary 6.2 .2 we have

$$
\begin{aligned}
d_{S}\left(\varphi_{j}, \varphi_{j} \vee \varphi_{j+1} \vee \cdots \vee \varphi_{j+k}\right) & \leq C_{n} d_{S}\left(\varphi_{j}, \varphi_{j+1} \vee \cdots \vee \varphi_{j+k}\right) \\
& \leq C_{n} d_{S}\left(\varphi_{j}, \varphi_{j+1}\right)+C_{n} d_{S}\left(\varphi_{j+1}, \varphi_{j+1} \vee \cdots \vee \varphi_{j+k}\right)
\end{aligned}
$$

By iteration, we find

$$
\begin{array}{r}
d_{S}\left(\varphi_{j}, \varphi_{j} \vee \varphi_{j+1} \vee \cdots \vee \varphi_{j+k}\right) \leq \sum_{a=j}^{j+k-1} C_{n}^{a+1-j} d_{S}\left(\varphi_{a}, \varphi_{a+1}\right) \\
\leq \sum_{a=j}^{j+k-1} C_{n}^{a+1-j} C_{n}^{-2 a}=\frac{C_{n}^{1-2 j}}{1-C_{n}^{-1}}
\end{array}
$$

Using Corollary 6.2.3, we have

$$
\varphi_{j} \vee \varphi_{j+1} \vee \cdots \vee \varphi_{j+k} \xrightarrow{d_{S}} \psi_{j}
$$

as $k \rightarrow \infty$ and hence when $j \geq j_{0}$ for some j_{0}, we have

$$
\begin{equation*}
d_{S}\left(\varphi_{j}, \psi_{j}\right) \leq \frac{C_{n}^{1-2 j}}{1-C_{n}^{-1}} \leq \frac{1}{(n+1) C_{n} 2^{2+j}} \tag{6.8}
\end{equation*}
$$

We conclude that $\psi_{j} \xrightarrow{d_{S}} \varphi$.
Moreover, we observe that

$$
\begin{equation*}
\varphi=\inf _{j} P_{\theta}\left[\psi_{j}\right] \tag{6.9}
\end{equation*}
$$

\{eq:varphiexpressiontemp1\}
by Corollary 6.2.4.
Step 2. We consider the η_{j} 's.
For each $j \geq 1$ and $k \geq 0$, we let

$$
\eta_{j}^{k}:=\varphi_{j} \wedge \cdots \wedge \varphi_{j+k}
$$

Using the assumption (6.7) and Corollary 6.2.2, we have

$$
\left|\int_{X} \theta_{\varphi_{j}}^{n}-\int_{X} \theta_{\varphi}^{n}\right| \leq 2^{-j}
$$

Similarly, using (6.8), we have

$$
\left|\int_{X} \theta_{\psi_{j}}^{n}-\int_{X} \theta_{\varphi}^{n}\right| \leq 2^{-j}
$$

Step 2.1. Take j_{1} so that for $j \geq j_{1}, 2^{3-j}<\delta$. We claim that for a fixed $j \geq j_{0} \vee j_{1}$, for any $k \in \mathbb{N}$, we have $\eta_{j}^{k} \in \operatorname{PSH}(X, \theta)$ and

$$
\int_{X} \theta_{\eta_{j}^{k}} \geq \int_{X} \theta_{\varphi_{j}}^{n}-\sum_{a=0}^{k} 2^{-j-a+2}
$$

We argue by induction on $k \geq 0$. The case $k=0$ follows from Theorem 2.3.2. When $k>0$, assume that the case $k-1$ is known. Then

$$
\begin{aligned}
\int_{X} \theta_{\eta_{j}^{k-1}}^{n}+\int_{X} \theta_{\varphi_{j+k}}^{n} & >\int_{X} \theta_{\varphi_{j}}^{n}-\sum_{a=0}^{k-1} 2^{2-j-a}+\int_{X} \theta_{\psi_{j+k-1}}^{n}-2^{2-j-k} \\
& \geq \int_{X} \theta_{\varphi_{j}}^{n}-2^{3-j}+\int_{X} \theta_{\psi_{j+k-1}}^{n}>\int_{X} \theta_{\psi_{j+k-1}}^{n}
\end{aligned}
$$

It follows from Proposition 3.1.1 that $\eta_{j}^{k} \in \operatorname{PSH}(X, \theta)$. By Theorem 3.1.1, we deduce that

$$
\int_{X} \theta_{\varphi_{j+k}}^{n}+\int_{X} \theta_{\eta_{j}^{k-1}}^{n} \leq \int_{X} \theta_{\psi_{j+k-1}}^{n}+\int_{X} \theta_{\eta_{j}^{k}}^{n}
$$

Our claim therefore follows.
Step 2.2. It follows from Proposition 3.1.6 that

$$
P_{\theta}\left[\eta_{j}^{k}\right]=\eta_{k}^{j}
$$

By Proposition 3.1.8, we have

$$
\lim _{k \rightarrow \infty} \int_{X} \theta_{\varphi_{j}^{k}}^{n}=\int_{X} \theta_{\eta_{j}}^{n}
$$

By Step 1, for large enough j, we have

$$
\int_{X} \theta_{\eta_{j}}^{n} \geq \int_{X} \theta_{\varphi_{j}}^{n}-2^{3-j}>0
$$

Let $\eta=\sup ^{*}{ }_{j} \eta^{j}$. Observe that we also have

$$
\int_{X} \theta_{\eta_{j}}^{n} \leq \int_{X} \theta_{\psi_{j}}^{n}
$$

by Theorem 2.3.2. It follows that

$$
\int_{X} \theta_{\eta}^{n}=\lim _{j \rightarrow \infty} \int_{X} \theta_{\varphi_{j}}^{n}=\lim _{j \rightarrow \infty} \int_{X} \theta_{\psi_{j}}^{n}=\int_{X} \theta_{\varphi}^{n}
$$

Since $\eta_{j} \leq \varphi_{j} \leq \psi_{j} \leq 0$, we also have that $\eta_{j} \leq P_{\theta}\left[\psi_{j}\right]$. Therefore, by Corollary 6.2.4, we also have $\eta \leq \varphi$. It follows from Proposition 6.1.1 that $\eta \sim_{P} \varphi$. By Corollary 6.2.3 and Proposition 6.2.2, we have $\eta^{j} \xrightarrow{d_{S}} \varphi$.

Corollary 6.2.5 Let $\left(\varphi_{j}\right)_{j \in I}$ be a net in $\operatorname{PSH}(X, \theta)$. Assume that there is $\delta>0$ such that $\int_{X} \theta_{\varphi_{j}}^{n} \geq \delta$ for all $j \in I$. Then $\left(\varphi_{j}\right)_{j \in I}$ has a d_{S}-convergent subnet.

If moreover $\left(\varphi_{j}\right)_{j \in I}$ is decreasing, then $\left(\varphi_{j}\right)_{j \in I}$ itslef is convergent.
Proof Since the space of $\varphi \in \operatorname{PSH}(X, \theta)$ with $\int_{X} \theta_{\varphi}^{n} \geq \delta$ is a pseudometric space, its completeness can be characterized using sequences instead of nets. So we may assume that $\left(\varphi_{j}\right)_{j \in I}$ is a sequence.

Replacing φ_{j} by a subsequence, we may assume that (6.7) holds. By the proof of Proposition 6.2.3 Step 1, we may assume that φ_{j} is a decreasing sequence. In this case, by Proposition 6.2.2 and Corollary 6.1.2, we may assume that each φ_{j} is a model potential. Then φ_{j} converges by Corollary 6.2.4 and Proposition 3.1.8.

On the other hand, if $\left(\varphi_{j}\right)_{j \in I}$ is decreasing, then it is convergent by Corollary 6.2.4 and Proposition 3.1.8.
lma:dSsmallmult
Lemma 6.2.3 There is a constant $C>0$ such that for any $\varphi \in \operatorname{PSH}(X, \theta)$ satisfying that θ_{φ} is a Kähler current, we have

$$
d_{S, \theta}((1-\epsilon) \varphi, \varphi) \leq C \epsilon
$$

for $\epsilon>0$ such that $(1-\epsilon) \varphi \in \operatorname{PSH}(X, \theta)$.
Proof By Lemma 6.2.2, we can compute

$$
\begin{aligned}
d_{S, \theta}((1-\epsilon) \varphi, \varphi)= & \frac{1}{n+1} \sum_{j=0}^{n}\left(\int_{X} \theta_{(1-\epsilon) \varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}-\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}\right) \\
= & \frac{1}{n+1} \sum_{j=0}^{n}\left(\int_{X}(1-\epsilon)^{j} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}-\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}\right) \\
& +\sum_{j=0}^{n} \sum_{k=0}^{j-1}\binom{j}{k}(1-\epsilon)^{k} \epsilon^{j-k} \int_{X} \theta^{j-k} \wedge \theta_{\varphi}^{k} \wedge \theta_{V_{\theta}}^{n-j}
\end{aligned}
$$

Both terms are of the order of $O(\epsilon)$.

6.2.2 Convergence theorems

Lemma 6.2.4 Let $\left(\varphi_{i}\right)_{i \in I}$ be a net in $\operatorname{PSH}(X, \theta)$ and $\varphi \in \operatorname{PSH}(X, \theta)$. Assume that $\varphi_{i} \xrightarrow{d_{s}} \varphi$. Then for any $t \in(0,1]$,

$$
(1-t) \varphi_{i}+t V_{\theta} \xrightarrow{d_{S}}(1-t) \varphi+t V_{\theta} .
$$

Proof Fix $t \in(0,1]$, we write

$$
\varphi_{i, t}=(1-t) \varphi_{i}+t V_{\theta}, \quad \varphi_{t}=(1-t) \varphi+t V_{\theta}
$$

for any $i \in I$. By Corollary 6.2 .2 , it suffices to show that for each $j=0, \ldots, n$,

$$
\begin{equation*}
2 \int_{X} \theta_{\varphi_{i, t} \vee \varphi_{t}}^{j} \wedge \theta_{V_{\theta}}^{n-j}-\int_{X} \theta_{\varphi_{i, t}}^{j} \wedge \theta_{V_{\theta}}^{n-j}-\int_{X} \theta_{\varphi_{t}}^{j} \wedge \theta_{V_{\theta}}^{n-j} \rightarrow 0 \tag{6.10}
\end{equation*}
$$

\{eq:massconvafterpert \}

Observe that

$$
\varphi_{i, t} \vee \varphi_{t}=(1-t)\left(\varphi \vee \varphi_{i}\right)+t V_{\theta} .
$$

So after binary expansion, (6.10) follows from Corollary 6.2.2.
Similarly,
Lemma 6.2.5 Let $\varphi \in \operatorname{PSH}(X, \theta)$. For each $t \in(0,1)$, let $\varphi_{t}=(1-t) \varphi+t V_{\theta}$. Then

$$
\varphi_{t} \xrightarrow{d_{S}} \varphi
$$

as $t \rightarrow 0+$.
Proof By Lemma 6.2.2, we need to show that for each $j=1, \ldots, n$, we have

$$
\lim _{t \rightarrow 0+} \int_{X} \theta_{\varphi_{t}}^{j} \wedge \theta_{V_{\theta}}^{n-j}=\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}
$$

For this purpose, we compute

$$
\begin{aligned}
& \int_{X} \theta_{\varphi_{t}}^{j} \wedge \theta_{V_{\theta}}^{n-j}-\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j} \\
= & \sum_{i=0}^{j-1}\binom{j}{i}(1-t)^{i} t^{j-i} \theta_{\varphi}^{i} \wedge \theta_{V_{\theta}}^{n-i} .
\end{aligned}
$$

As $t \rightarrow 0+$, the right-hand side clearly tends to 0.
The following convergent theorem lies at the heart of the whole theory.
Theorem 6.2.1 Let $\theta_{1}, \ldots, \theta_{n}$ be smooth closed real $(1,1)$-forms on X representing big cohomology classes. Suppose that $\left(\varphi_{j}^{k}\right)_{k \in I}$ are nets in $\operatorname{PSH}\left(X, \theta_{j}\right)$ for $j=1, \ldots, n$ and $\varphi_{1}, \ldots, \varphi_{n} \in \operatorname{PSH}(X, \theta)$. We assume that $\varphi_{j}^{k} \xrightarrow{d_{S}} \varphi_{j}$ for each $j=1, \ldots, n$. Then

$$
\begin{equation*}
\lim _{k \in I} \int_{X} \theta_{1, \varphi_{1}^{k}} \wedge \cdots \wedge \theta_{n, \varphi_{n}^{k}}=\int_{X} \theta_{1, \varphi_{1}} \wedge \cdots \wedge \theta_{n, \varphi_{n}} \tag{6.11}
\end{equation*}
$$

Proof Since d_{S} is a pseudometric, in order to establish the continuity of mixed masses, it suffices to consider sequences instead of nets. So we may assume that $I=\mathbb{Z}_{>0}$ as ordered sets.

Step 1. We reduce to the case where $\varphi_{j}^{k}, \varphi_{j}$ all have positive masses and there is a constant $\delta>0$, such that for all j and k,

$$
\int_{X} \theta_{j, \varphi_{j}^{k}}^{n}>\delta
$$

Take $t \in(0,1)$. By Lemma 6.2.4, we have

$$
(1-t) \varphi_{j}^{k}+t V_{\theta_{j}} \xrightarrow{d_{S}}(1-t) \varphi_{j}+t V_{\theta_{j}}
$$

for each j. Assume that we have proved the special case of the theorem, we have

$$
\begin{aligned}
& \lim _{k \in I} \int_{X} \theta_{1,(1-t) \varphi_{1}^{k}+t V_{\theta_{1}}} \wedge \cdots \wedge \theta_{n,(1-t) \varphi_{n}^{k}+t V_{\theta_{n}}} \\
= & \int_{X} \theta_{1,(1-t) \varphi_{1}+t V_{\theta_{1}}} \wedge \cdots \wedge \theta_{n,(1-t) \varphi_{n}+t V_{\theta_{n}}} .
\end{aligned}
$$

Since both sides are polynomials in t, it follows that the same holds at $t=0$. From this, (6.11) follows.

Step 2. Next we may assume that $\varphi_{j}^{k}, \varphi_{j}$ are model potentials by Proposition 6.2.2 and Corollary 3.1.1.

It suffices to prove that any subsequence of $\int_{X} \theta_{1, \varphi_{1}^{k}} \wedge \cdots \wedge \theta_{n, \varphi_{n}^{k}}$ has a converging subsequence with limit $\int_{X} \theta_{1, \varphi_{1}} \wedge \cdots \wedge \theta_{n, \varphi_{n}}$. Thus, by Proposition 6.2.3 and Theorem 2.3.2, we may assume that for each fixed i, φ_{i}^{k} is either increasing or decreasing. We may assume that for $i \leq i_{0}$, the sequence is decreasing and for $i>i_{0}$, the sequence is increasing.

Recall that in (6.11) the \geq inequality always holds by Theorem 2.3.2, it suffices to prove

$$
\begin{equation*}
\varlimsup_{k \in I} \int_{X} \theta_{1, \varphi_{1}^{k}} \wedge \cdots \wedge \theta_{n, \varphi_{n}^{k}} \leq \int_{X} \theta_{1, \varphi_{1}} \wedge \cdots \wedge \theta_{n, \varphi_{n}} \tag{6.12}
\end{equation*}
$$

\{eq:limsup\}
By Theorem 2.3.2 in order to prove (6.12), we may assume that for $j>i_{0}$, the sequences φ_{j}^{k} are constant. Thus, we are reduced to the case where for all i, φ_{i}^{k} are decreasing.

In this case, for each i we may take an increasing sequence $b_{i}^{k}>1$, tending to ∞, such that

$$
\left(b_{i}^{k}\right)^{n} \int_{X} \theta_{i, \varphi_{i}}^{n} \geq\left(\left(b_{i}^{k}\right)^{n}-1\right) \int_{X} \theta_{i, \varphi_{i}^{k}}^{n}
$$

Let ψ_{i}^{k} be the maximal θ_{i}-psh function such that

$$
\left(b_{i}^{k}\right)^{-1} \psi_{i}^{k}+\left(1-\left(b_{i}^{k}\right)^{-1}\right) \varphi_{i}^{k} \leq \varphi_{i}
$$

whose existence is guaranteed by Lemma 2.3.1.
Then by Theorem 2.3.2 again,

$$
\prod_{i=1}^{n}\left(1-\left(b_{i}^{k}\right)^{-1}\right) \int_{X} \theta_{1, \varphi_{1}^{k}} \wedge \cdots \wedge \theta_{n, \varphi_{n}^{k}} \leq \int_{X} \theta_{1, \varphi_{1}} \wedge \cdots \wedge \theta_{n, \varphi_{n}}
$$

Letting $k \rightarrow \infty$, we conclude (6.12).
cor: dsconvcrit
Corollary 6.2.6 Suppose that $\left(\varphi_{i}\right)_{i \in I}$ is a net in $\operatorname{PSH}(X, \theta)$ and $\varphi \in \operatorname{PSH}(X, \theta)$. Then the following are equivalent:
(1) $\varphi_{i} \xrightarrow{d_{S}} \varphi$;
(2) $\varphi_{i} \vee \varphi \xrightarrow{d_{S}} \varphi$ and

$$
\begin{equation*}
\lim _{i \in I} \int_{X} \theta_{\varphi_{i}}^{j} \wedge \theta_{V_{\theta}}^{n-j}=\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j} \tag{6.13}
\end{equation*}
$$

\{eq:massconv_varphii\}
for each $j=0, \ldots, n$.
The corollary allows us to reduce a number of convergence problems related to d_{S} to the case $\varphi_{i} \geq \varphi$, which is much easier to handle by Lemma 6.2.2. This is the most handy way of establishing d_{S}-convergence in practice.
Proof (1) \Longrightarrow (2). $\varphi_{i} \vee \varphi \xrightarrow{d_{S}} \varphi$ follows from Corollary 6.2.2. While (6.13) follows from Theorem 6.2.1.
$(2) \Longrightarrow$ (1). By (6.4), we need to show that for each $j=0, \ldots, n$, we have

$$
2 \int_{X} \theta_{\varphi_{i} \vee \varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}-\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}-\int_{X} \theta_{\varphi_{i}}^{j} \wedge \theta_{V_{\theta}}^{n-j} \rightarrow 0
$$

This follows from Theorem 6.2.1 and (6.13).
Corollary 6.2.7 Let $\left(\varphi_{i}\right)_{i \in I}$ be a net in $\operatorname{PSH}(X, \theta)$ and $\varphi \in \operatorname{PSH}(X, \theta)$. Let ω be a Kähler form on X. Then the following are equivalent:
(1) $\varphi_{i} \xrightarrow{d_{S, \theta}} \varphi$;
(2) $\varphi_{i} \xrightarrow{d_{S, \theta+\omega}} \varphi$.

In particular, there is no risk when we simply write $\varphi_{i} \xrightarrow{d_{S}} \varphi$.
Proof $(1) \Longrightarrow(2)$. It suffices to show that for each $j=0, \ldots, n$, we have

$$
\begin{aligned}
& 2 \int_{X}(\theta+\omega)_{\varphi_{i} \vee \varphi}^{j} \wedge(\theta+\omega)_{V_{\theta+\omega}}^{n-j}-\int_{X}(\theta+\omega)_{\varphi_{i}}^{j} \wedge(\theta+\omega)_{V_{\theta+\omega}}^{n-j} \\
&-\int_{X}(\theta+\omega)_{\varphi}^{j} \wedge(\theta+\omega)_{V_{\theta+\omega}}^{n-j} \rightarrow 0
\end{aligned}
$$

Note that this quantity is a linear combination of terms of the following form:

$$
\begin{aligned}
2 \int_{X} \theta_{\varphi_{i} \vee \varphi}^{r} \wedge \omega^{j-r} \wedge(\theta+\omega)_{V_{\theta+\omega}}^{n-j} & -\int_{X} \theta_{\varphi_{i}}^{r} \wedge \omega^{j-r} \wedge(\theta+\omega)_{V_{\theta+\omega}}^{n-j} \\
& -\int_{X} \theta_{\varphi}^{r} \wedge \omega^{j-r} \wedge(\theta+\omega)_{V_{\theta+\omega}}^{n-j}
\end{aligned}
$$

where $r=0, \ldots, j$. By Theorem 6.2.1, it suffices to show that $\varphi \vee \varphi_{i} \xrightarrow{d_{S}} \varphi$. But this follows from Corollary 6.2.6.
$(2) \Longrightarrow$ (1). From the direction we already proved, for each $C \geq 1$, we have that

$$
\varphi_{i} \xrightarrow{d_{S, \theta+C \omega}} \varphi .
$$

By Theorem 6.2.1, it follows that

$$
\lim _{i \in I} \int_{X}(\theta+C \omega)_{\varphi_{i}}^{j} \wedge \theta_{V_{\theta}}^{n-j}=\int_{X}(\theta+C \omega)_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j}
$$

for all $j=0, \ldots, n$. It follows that

$$
\begin{equation*}
\lim _{i \in I} \int_{X} \theta_{\varphi_{i}}^{j} \wedge \theta_{V_{\theta}}^{n-j}=\int_{X} \theta_{\varphi}^{j} \wedge \theta_{V_{\theta}}^{n-j} \tag{6.14}
\end{equation*}
$$

\{eq:varphijmass_limit\}

By Corollary 6.2.6, it remains to show that $\varphi_{i} \vee \varphi \xrightarrow{d_{S, \theta}} \varphi$. By Corollary 6.2.6 again, we know that $\varphi_{i} \vee \varphi \xrightarrow{d_{S, \theta+\omega}} \varphi$. So it suffices to apply (6.14) to $\varphi_{i} \vee \varphi$ instead of φ_{i}, and we conclude by Lemma 6.2.2.

We sometimes need a slightly more general form.
Corollary 6.2.8 Let $\left(\varphi_{j}\right)_{j \in I},\left(\psi_{j}\right)_{j \in I}$ be nets in $\operatorname{PSH}(X, \theta)$. Consider a Kähler form ω on X. Then the following are equivalent:
(1) $d_{S, \theta}\left(\varphi_{i}, \psi_{i}\right) \rightarrow 0$;
(2) $d_{S, \theta+\omega}\left(\varphi_{i}, \psi_{i}\right) \rightarrow 0$.

In particular, we can write $d_{S}\left(\varphi_{i}, \psi_{i}\right) \rightarrow 0$ without ambiguity.
Proof The proof is similar to that of Corollary 6.2.7, which is therefore left to the readers.

We have the following sandwich criterion:
Corollary 6.2.9 Let $\left(\varphi_{i}\right)_{i \in I},\left(\psi_{i}\right)_{i \in I},\left(\eta_{i}\right)_{i \in I}$ be three nets in $\operatorname{PSH}(X, \theta)$ and $\varphi \in$ $\operatorname{PSH}(X, \theta)$. Assume that
(1) $\psi_{i} \leq_{P} \varphi_{i} \leq_{P} \eta_{i}$ for each $i \in I$;
(2) $\eta_{i} \xrightarrow{d_{S}} \varphi, \psi_{i} \xrightarrow{d_{S}} \varphi$.

Then $\varphi_{i} \xrightarrow{d_{S}} \varphi$.

Proof By Corollary 6.2.7, we may replace θ by $\theta+\omega$, where ω is a Kähler form on X. In particular, we may assume that $\varphi_{i}, \psi_{i}, \eta_{i} \in \operatorname{PSH}(X, \theta)_{>0}$ for all $i \in I$. By Proposition 6.2.2, we may assume that $\varphi_{i}, \psi_{i}, \eta_{i}$ are model potentials for all $i \in I$ and hence $\varphi_{i} \leq \psi_{i} \leq \eta_{i}$ for all $i \in I$.

It follows from Theorem 2.3.2 that for each $k=0, \ldots, n$, we have

$$
\int_{X} \theta_{\psi_{i}}^{k} \wedge \theta_{V_{\theta}}^{n-k} \leq \int_{X} \theta_{\varphi_{i}}^{k} \wedge \theta_{V_{\theta}}^{n-k} \leq \int_{X} \theta_{\eta_{i}}^{k} \wedge \theta_{V_{\theta}}^{n-k}
$$

for all $i \in I$. By Theorem 6.2.1, the limits of the both ends are $\int_{X} \theta_{\varphi}^{k} \wedge \theta_{V_{\theta}}^{n-k}$ as $j \rightarrow \infty$. It follows that

$$
\begin{equation*}
\lim _{i \in I} \int_{X} \theta_{\varphi_{i}}^{k} \wedge \theta_{V_{\theta}}^{n-k}=\int_{X} \theta_{\varphi}^{k} \wedge \theta_{V_{\theta}}^{n-k} \tag{6.15}
\end{equation*}
$$

By Corollary 6.2.6, it remains to prove that $\varphi_{i} \vee \varphi \xrightarrow{d_{S}} \varphi$. By Corollary 6.2.6, up to replacing ψ_{i} (resp. φ_{i}, η_{i}) by $\psi_{i} \vee \varphi\left(\right.$ resp. $\left.\varphi_{i} \vee \varphi, \eta_{i} \vee \varphi\right)$, we may assume from the beginning that $\psi_{i}, \varphi_{i}, \eta_{i} \geq \varphi$. Now $\varphi_{i} \xrightarrow{d_{S}} \varphi$ by (6.15) and Lemma 6.2.2.

Proposition 6.2.4 Let $\left(\varphi_{i}\right)_{i \in I},\left(\psi_{i}\right)_{i \in I}$ be nets in $\operatorname{PSH}(X, \theta)$ such that $\varphi_{i} \xrightarrow{d_{S}} \varphi \in$ $\operatorname{PSH}(X, \theta)$ and $\psi_{i} \xrightarrow{d_{S}} \psi \in \operatorname{PSH}(X, \theta)$. Assume that $\varphi_{i} \leq_{P} \psi_{i}$ for all $i \in I$. Then $\varphi \leq_{P} \psi$.

Proof It follows from Proposition 6.2.5 that

$$
\varphi_{i} \vee \psi_{i} \xrightarrow{d_{S}} \varphi \vee \psi
$$

By Lemma 6.1.2, we have $\varphi_{i} \vee \psi_{i} \sim_{P} \psi_{i}$ for all $i \in I$. In particular, by Proposition 6.2.2,

$$
\varphi_{i} \vee \psi_{i} \xrightarrow{d_{S}} \psi
$$

By Proposition 6.2.2 again, $\varphi \vee \psi \sim_{P} \psi$ and hence $\varphi \leq_{P} \psi$ by Lemma 6.1.2.

lma:dslor

Lemma 6.2.6 Let $\varphi, \psi, \eta \in \operatorname{PSH}(X, \theta)$, then

$$
\begin{equation*}
d_{S}(\varphi \vee \eta, \psi \vee \eta) \leq C_{n} d_{S}(\varphi, \psi) \tag{6.16}
\end{equation*}
$$

\{eq: dSmax\}
where $C_{n}=3(n+1) 2^{n+2}$.
Proof According to Corollary 6.2.2, we may assume that $\varphi \leq \psi$.
We will show that for each $C \geq t \geq 0$,

$$
\begin{equation*}
d_{1}\left(\ell_{t}^{\varphi \vee \eta, C}, \ell_{t}^{\psi \vee \eta, C}\right) \leq d_{1}\left(\ell_{t}^{\varphi, C}, \ell_{t}^{\psi, C}\right) \tag{6.17}
\end{equation*}
$$

When $C \rightarrow \infty$, by Corollary 2.3.1 and Theorem 4.2.1, it follows that

$$
d_{1}\left(\ell_{t}^{\varphi \vee \eta}, \ell_{t}^{\psi \vee \eta}\right) \leq d_{1}\left(\ell_{t}^{\varphi}, \ell_{t}^{\psi}\right)
$$

which implies (6.16).
It remains to argue (6.17). As $\varphi \leq \psi$, we know that

$$
d_{1}\left(\ell_{t}^{\varphi}, \ell_{t}^{\psi}\right)=\frac{t}{C} d_{1}\left(\ell_{C}^{\varphi}, \ell_{C}^{\psi}\right), \quad d_{1}\left(\ell_{t}^{\varphi \vee \eta}, \ell_{t}^{\psi \vee \eta}\right)=\frac{t}{C} d_{1}\left(\ell_{C}^{\varphi \vee \eta}, \ell_{C}^{\psi \vee \eta}\right)
$$

It suffices to handle the case $t=C$, namely,

$$
d_{1}\left(\varphi \vee \eta \vee\left(V_{\theta}-C\right), \psi \vee \eta \vee\left(V_{\theta}-C\right)\right) \leq d_{1}\left(\varphi \vee\left(V_{\theta}-C\right), \psi \vee\left(V_{\theta}-C\right)\right)
$$

This is a consequence of Theorem 4.2.2.
Proposition 6.2.5 Let $\left(\varphi_{i}\right)_{i \in I}\left(\right.$ resp. $\left.\left(\psi_{i}\right)_{i \in I}\right)$ be a net in $\operatorname{PSH}(X, \theta)$ such that $\varphi_{i} \xrightarrow{d_{S}}$ $\varphi \in \operatorname{PSH}(X, \theta)\left(\right.$ resp. $\left.\varphi_{i} \xrightarrow{d_{S}} \psi \in \operatorname{PSH}(X, \theta)\right)$. Then

$$
\varphi_{i} \vee \psi_{i} \xrightarrow{d_{S}} \varphi \vee \psi
$$

Proof We compute

$$
\begin{aligned}
d_{S}\left(\varphi_{i} \vee \psi_{i}, \varphi \vee \psi\right) & \leq d_{S}\left(\varphi_{i} \vee \psi_{i}, \varphi_{i} \vee \psi\right)+d_{S}\left(\varphi_{i} \vee \psi, \varphi \vee \psi\right) \\
& \leq C_{n}\left(d_{S}\left(\psi_{i}, \psi\right)+d_{S}\left(\varphi_{i}, \varphi\right)\right),
\end{aligned}
$$

where the second inequality follows from Lemma 6.2.6. The right-hand side converges to 0 by our hypothesis.
thm: dSadditivity Theorem 6.2.2 Let θ_{1}, θ_{2} be smooth real closed $(1,1)$-forms on X representing big cohomology classes. Suppose that $\left(\varphi_{i}\right)_{i \in I}\left(\right.$ resp. $\left.\left(\psi_{i}\right)_{i \in I}\right)$ be a net in $\operatorname{PSH}\left(X, \theta_{1}\right)$ (resp. $\left.\operatorname{PSH}\left(X, \theta_{2}\right)\right)$ and $\varphi \in \operatorname{PSH}\left(X, \theta_{1}\right)$ (resp. $\psi \in \operatorname{PSH}\left(X, \theta_{2}\right)$). Consider the following three conditions:
(1) $\varphi_{i} \xrightarrow[d_{S}]{d_{S}} \varphi$;
(2) $\psi_{i} \xrightarrow{d_{S}} \psi$;
(3) $\varphi_{i}+\psi_{i} \xrightarrow{d_{S}} \varphi+\psi$.

Then any two of these conditions imply the third.
Proof By Corollary 6.2.7, we may assume that θ_{1}, θ_{2} are both Kähler forms. We denote them by ω_{1}, ω_{2} instead. Let $\omega=\omega_{1}+\omega_{2}$.
$(1)+(2) \Longrightarrow(3)$. It suffices to show that for each $r=0, \ldots, n$,

$$
2 \int_{X} \omega_{\left(\varphi_{j}+\psi_{j}\right) \vee(\varphi+\psi)}^{r} \wedge \omega^{n-r}-\int_{X} \omega_{\varphi_{j}+\psi_{j}}^{r} \wedge \omega^{n-r}-\int_{X} \omega_{\varphi+\psi}^{r} \wedge \omega^{n-r} \rightarrow 0
$$

Observe that for each $j \in I$,

$$
\left(\varphi_{j}+\psi_{j}\right) \vee(\varphi+\psi) \leq \varphi_{j} \vee \varphi+\psi_{j} \vee \psi
$$

Thus, it suffices to show that

$$
2 \int_{X} \omega_{\varphi_{j} \vee \varphi+\psi_{j} \vee \psi}^{r} \wedge \omega-\int_{X} \omega_{\varphi_{j}+\psi_{j}}^{r} \wedge \omega^{n-r}-\int_{X} \omega_{\varphi+\psi}^{r} \wedge \omega^{n-r} \rightarrow 0
$$

The left-hand side is a linear combination of
$2 \int_{X} \omega_{1, \varphi_{j} \vee \varphi}^{a} \wedge \omega_{2, \psi_{j} \vee \psi}^{r-a} \wedge \omega^{n-r}-\int_{X} \omega_{1, \varphi_{j}}^{a} \wedge \omega_{2, \psi_{j}}^{r-a} \wedge \omega^{n-r}-\int_{X} \omega_{1, \varphi}^{a} \wedge \omega_{2, \psi}^{r-a} \wedge \omega^{n-r}$
with $a=0, \ldots, r$. Observe that $\varphi_{j} \vee \varphi \xrightarrow{d_{S}} \varphi$ and $\psi_{j} \vee \psi \xrightarrow{d_{S}} \psi$ by Corollary 6.2.2, each term tends to 0 by Theorem 6.2.1.
$(2)+(3) \Longrightarrow(1)$. This is similar.
$(1)+(3) \Longrightarrow(2)$. For each $C \geq 1$, from the direction we already proved,

$$
C \varphi_{i}+\psi_{i} \xrightarrow{d_{S}} C \varphi+\psi .
$$

By Theorem 6.2.1, for each $j=0, \ldots, n$,

$$
\begin{aligned}
& \lim _{i \in I} \int_{X}\left(C \omega_{1}+\omega_{2}+\operatorname{dd}^{\mathrm{c}}\left(C \varphi_{i}+\psi_{i}\right)\right)^{j} \wedge \omega_{2}^{n-j} \\
= & \int_{X}\left(C \omega_{1}+\omega_{2}+\operatorname{dd}^{\mathrm{c}}(C \varphi+\psi)\right)^{j} \wedge \omega_{2}^{n-j} .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\lim _{i \in I} \int_{X} \omega_{2, \psi_{i}}^{j} \wedge \omega_{2}^{n-j}=\int_{X} \omega_{2, \psi}^{j} \wedge \omega_{2}^{n-j} \tag{6.18}
\end{equation*}
$$

\{eq:psii_quant_conv\}
Therefore, 2 follows if $\psi_{i} \geq \psi$ for each i by Lemma 6.2.2.
Next we prove the general case. By the direction that we already proved, we know that $\varphi_{i}+\psi \xrightarrow{d_{S}} \varphi+\psi$. By Proposition 6.2.5, we have that

$$
\varphi_{i}+\psi_{i} \vee \psi \xrightarrow{d_{S}} \varphi+\psi
$$

It follows from the special case above that $\psi_{i} \vee \psi \xrightarrow{d_{S}} \psi$. It follows from (6.18) and Corollary 6.2.6 that (2) holds.

Theorem 6.2.3 The map

$$
P_{\theta}[\bullet]_{I}: \operatorname{PSH}(X, \theta)_{>0} \rightarrow \operatorname{PSH}(X, \theta)_{>0}
$$

is continuous with respect to d_{S}.
Proof Let $\left(\varphi_{i}\right)_{i \in \mathbb{Z}_{>0}}$ be a sequence in $\operatorname{PSH}(X, \theta)_{>0}$ such that $\varphi_{i} \xrightarrow{d_{S}} \varphi \in$ $\operatorname{PSH}(X, \theta)_{>0}$. We want to show that

$$
\begin{equation*}
P\left[\varphi_{i}\right]_{I} \xrightarrow{d_{S}} P[\varphi]_{I} \tag{6.19}
\end{equation*}
$$

We may assume that the φ_{i} 's and φ are all model potentials by Proposition 6.2.2.

By Proposition 6.2.3 and Corollary 6.2.9, we may assume that $\left(\varphi_{i}\right)_{i}$ is either increasing or decreasing. The two cases are handled by Proposition 3.2.12 and Proposition 3.2.11 respectively.

6.2.3 Continuity of invariants

Theorem 6.2.4 Let $\left(\varphi_{j}\right)_{j \in I}$ be a net in $\operatorname{PSH}(X, \theta)$ and $\varphi_{j} \xrightarrow{d_{S}} \varphi \in \operatorname{PSH}(X, \theta)$. Then for any prime divisor E over X, we have

$$
\begin{equation*}
\lim _{j \in I} v\left(\varphi_{j}, E\right)=v(\varphi, E) \tag{6.20}
\end{equation*}
$$

$$
\text { \{eq: convnu\} }
$$

Proof First observe that since d_{S} is a pseudometric, it suffices to prove (6.20) when $I=\mathbb{Z}_{>0}$ as partially ordered sets.

By Corollary 6.2.7, we may assume that the masses of φ_{j} and of φ are bounded from below by a positive constant.

By Theorem 6.2.3, we may assume that φ_{i} and φ are both I-model. When proving (6.20), we are free to pass to subsequences.

By Proposition 6.2.3, we may assume that the sequence $\left(\varphi_{i}\right)$ is either increasing or decreasing. In the increasing case, there is nothing to prove. In the decreasing case, (6.20) follows from Proposition 3.1.8.

Theorem 6.2.5 Let $\left(\varphi_{j}\right)_{j \in I}$ be a net in $\operatorname{PSH}(X, \theta)$ and $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$. Assume that $\varphi_{j} \xrightarrow{d_{S}} \varphi \in \operatorname{PSH}(X, \theta)$, then

$$
\begin{equation*}
\operatorname{vol} \theta_{\varphi_{j}} \rightarrow \operatorname{vol} \theta_{\varphi} \tag{6.21}
\end{equation*}
$$

\{eq:Ivolcont\}
Recall the volume is defined in Definition 3.2.3.
Proof It follows from Theorem 6.2.1 that

$$
\int_{X} \theta_{\varphi_{j}}^{n} \rightarrow \int_{X} \theta_{\varphi}^{n}
$$

We may therefore assume that $\int_{X} \theta_{\varphi_{j}}^{n}>0$ for all $j \in I$. Then by Theorem 6.2.3, we have

$$
P_{\theta}\left[\varphi_{j}\right]_{I} \xrightarrow{d_{S}} P_{\theta}[\varphi]_{I} .
$$

Therefore, (6.21) follows from Theorem 6.2.1.
Theorem 6.2.6 Let $\varphi_{j}, \varphi \in \operatorname{PSH}(X, \theta)\left(j \in \mathbb{Z}_{>0}\right)$. Assume that $\varphi_{j} \xrightarrow{d_{S}} \varphi$. Then for each $\lambda^{\prime}>\lambda>0$, there is $j_{0}>0$ so that for $j \geq j_{0}$,

$$
\begin{equation*}
\mathcal{I}\left(\lambda^{\prime} \varphi_{j}\right) \subseteq \mathcal{I}(\lambda \varphi) \tag{6.22}
\end{equation*}
$$

\{eq:quasi_equi_cond\}
Proof Fix $\lambda^{\prime}>\lambda>0$, we want to find $j_{0}>0$ so that for $j \geq j_{0}$, (6.22) holds.

Step 1. We first assume that φ has analytic singularities.
Let $\pi: Y \rightarrow X$ be a \log resolution of φ and let E_{1}, \ldots, E_{N} be all prime divisors of the singular part of φ on Y. Recall that a local holomorphic function f lies in the right-hand side of (6.22) if and only if

$$
\begin{equation*}
\operatorname{ord}_{E_{i}}(f)>\lambda \operatorname{ord}_{E_{i}}(\varphi)-\frac{1}{2} A_{X}\left(E_{i}\right) \tag{6.23}
\end{equation*}
$$

whenever they make sense. Here A_{X} denotes the log discrepancy. Similarly, f lies in the left-hand side of (6.22) implies that there is $\epsilon>0$ so that

$$
\operatorname{ord}_{E_{i}}(f) \geq(1+\epsilon) \lambda^{\prime} \operatorname{ord}_{E_{i}}\left(\varphi_{j}\right)-\frac{1}{2} A_{X}\left(E_{i}\right)
$$

As Lelong numbers are continuous with respect to d_{S} by Theorem 6.2.4, we can find $j_{0}>0$ so that when $j \geq j_{0}, \lambda^{\prime} \operatorname{ord}_{E_{i}}\left(\varphi_{j}\right) \geq \lambda \operatorname{ord}_{E_{i}}(\varphi)$ for all i. In particular, (6.23) follows.

Step 2. We handle the general case.
By Corollary 6.2.7, we are free to increase θ and assume that θ_{φ} is a Kähler current.

Take a quasi-equisingular approximation $\left(\psi_{k}\right)_{k}$ of φ. The existence is guaranteed by Theorem 1.6.2. Take $\lambda^{\prime \prime} \in\left(\lambda, \lambda^{\prime}\right)$, then by definition, we can find $k>0$ so that

$$
\mathcal{I}\left(\lambda^{\prime \prime} \psi_{k}\right) \subseteq \mathcal{I}(\lambda \varphi)
$$

Observe that $\varphi_{j} \vee \psi_{k} \xrightarrow{d_{S}} \psi_{k}$ as $j \rightarrow \infty$ by Proposition 6.2.5. By Step 1, we can find $j_{0}>0$ so that for $j \geq j_{0}$,

$$
\mathcal{I}\left(\lambda^{\prime}\left(\varphi_{j} \vee \psi_{k}\right)\right) \subseteq I\left(\lambda^{\prime \prime} \psi_{k}\right)
$$

It follows that for $j \geq j_{0}$,

$$
I\left(\lambda^{\prime} \varphi_{j}\right) \subseteq I(\lambda \varphi) .
$$

Chapter 7
 I-good singularities

In this chapter, we study the key notion in the whole theory: the I-good singularities. We will give several useful characterizations of I-good singularities. The key result is the asymptotic Riemann-Roch formula for Hermitian big line bundles Theorem 7.3.1.

7.1 The notion of I-good singularities

Let X be a connected compact Kähler manifold of dimension n.
Theorem 7.1.1 Let θ be a closed real smooth $(1,1)$-form on X representing a big cohomology class. Let $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$. Then the following are equivalent:
(1) There exists a sequence $\left(\varphi_{j}\right)_{j}$ in $\operatorname{PSH}(X, \theta)$ with analytic singularities such that $\varphi_{j} \xrightarrow{d_{S}} \varphi$.
(2) We have

$$
\begin{equation*}
\int_{X} \theta_{\varphi}^{n}=\operatorname{vol} \theta_{\varphi} \tag{7.1}
\end{equation*}
$$

\{eq:nppmassequalvolume\}
(3) We have

$$
P_{\theta}[\varphi]=P_{\theta}[\varphi]_{I} .
$$

In (1), we could in addition require that each $\theta_{\varphi_{j}}$ is a Kähler current.
Moreover, if θ_{φ} is a Kähler current, the sequence in (1) can be taken as any quasi-equisingular approximation of φ in $\operatorname{PSH}(X, \theta)$.

Proof $(1) \Longrightarrow$ (2). By Theorem 6.2.1, we may assume that $\int_{X} \theta_{\varphi_{j}}^{n}>0$ for all j. It follows from Proposition 3.2.9 that

$$
\int_{X} \theta_{\varphi_{j}}^{n}=\operatorname{vol} \theta_{\varphi_{j}}
$$

for any $j \geq 1$. Using Theorem 6.2.5 and Theorem 6.2.1, we conclude (7.1).
$(2) \Longleftrightarrow$ (3). This follows from Theorem 3.1.2.
(3) \Longrightarrow (1). Note that the condition in (1) characterizes the closure of analytic singularities in $\operatorname{PSH}(X, \theta)$.

Step 1. We first reduce to the case where θ_{φ} is a Kähler current.
By Lemma 2.3.2, we can find $\psi \in \operatorname{PSH}(X, \theta)$ so that θ_{ψ} is a Kähler current and $\psi \leq \varphi$. We let

$$
\psi_{j}=\left(1-j^{-1}\right) \varphi+j^{-1} \psi
$$

for each $j \in \mathbb{Z}_{>0}$. Then $\left(\psi_{j}\right)_{j}$ is an increasing sequence converging almost everywhere to φ. Then

$$
P_{\theta}\left[\psi_{j}\right]_{I} \xrightarrow{d_{S}} P_{\theta}[\varphi]_{I}=P_{\theta}[\varphi]
$$

by Proposition 3.2.12, Corollary 6.2.3. So it suffices to show that $P_{\theta}\left[\psi_{j}\right]_{I}$ lies in the closure of analytic singularities.

Step 2. We assume that θ_{φ} is a Kähler current. We show that $P_{\theta}[\varphi]_{I}$ lies in the closure of analytic singularities.

Let $\left(\varphi_{j}\right)_{j}$ be a quasi-equisingular approximation of φ in $\operatorname{PSH}(X, \theta)$. We will show that $\varphi_{j} \xrightarrow{d_{S}} P_{\theta}[\varphi]_{I}$. Let

$$
\psi=\inf _{j \in \mathbb{Z}_{>0}} P_{\theta}\left[\varphi_{j}\right] .
$$

We know that $\varphi_{j} \xrightarrow{d_{S}} \psi$ by Proposition 6.2.2, Proposition 3.1.8 and Corollary 6.2.4.
Moreover, observe that ψ is \mathcal{I}-model by Proposition 3.2.11 and Example 7.1.1. So it suffices to show that $\varphi \sim_{I} \psi$.

It is clear that $\psi \geq \varphi$. Conversely, it remains to argue that $\psi \leq_{I} \varphi$. For this purpose, take $\lambda>0$, we need to show that

$$
\mathcal{I}(\lambda \psi) \subseteq \mathcal{I}(\lambda \varphi)
$$

By the strong openness Theorem 1.4.4, we may take $\lambda^{\prime}>\lambda$ such that $I(\lambda \psi)=I\left(\lambda^{\prime} \psi\right)$, then it follows from the definition of the quasi-equisingular approximation that

$$
I\left(\lambda^{\prime} \psi\right) \subseteq I\left(\lambda^{\prime} \varphi_{j}\right) \subseteq I(\lambda \varphi)
$$

for large enough j. Our assertion follows.
def:Igoodpot
Definition 7.1.1 We say a potential $\varphi \in \operatorname{QPSH}(X)$ is I-good if for some smooth closed real $(1,1)$-form on X such that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$, we have

$$
\begin{equation*}
P_{\theta}[\varphi]=P_{\theta}[\varphi]_{I} . \tag{7.2}
\end{equation*}
$$

\{eq:envelopeeq\}
An immediate question is to verify that this definition is in dependent of the choice of θ.

Lemma 7.1.1 Let $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$ for some smooth closed real $(1,1)$-form θ on X. Take a Kähler form ω on X. Then the following are equivalent:
(1) $P_{\theta}[\varphi]=P_{\theta}[\varphi]_{I}$;
(2) $P_{\theta+\omega}[\varphi]=P_{\theta}[\varphi+\omega]_{I}$.

Proof (1) \Longrightarrow (2). By Theorem 7.1.1, we can find $\varphi_{j} \in \operatorname{PSH}(X, \theta)$ with analytic singularities such that $\varphi_{j} \xrightarrow{d_{S, \theta}} \varphi$. By Corollary 6.2.7, we have $\varphi_{j} \xrightarrow{d_{S, \theta+\omega}} \varphi$. Therefore, by Theorem 7.1.1 again, 2 holds.
$(2) \Longrightarrow$ (1). Suppose that (1) fails, so that

$$
\int_{X}\left(\theta+\operatorname{dd}^{\mathrm{c}} \varphi\right)^{n}<\int_{X}\left(\theta+\operatorname{dd}^{\mathrm{c}} P_{\theta}[\varphi]_{I}\right)^{n}
$$

It follows that

$$
\begin{aligned}
\int_{X}\left(\theta+\omega+\operatorname{dd}^{\mathrm{c}} \varphi\right)^{n} & =\sum_{i=0}^{n}\binom{n}{i} \int_{X} \theta_{\varphi}^{i} \wedge \omega^{n-i} \\
& <\sum_{i=0}^{n}\binom{n}{i} \int_{X} \theta_{P_{\theta}[\varphi]_{I}}^{i} \wedge \omega^{n-i} \\
& =\int_{X}\left(\theta+\omega+\operatorname{dd}^{\mathrm{c}} P_{\theta}[\varphi]_{I}\right)^{n} \\
& \leq \int_{X}\left(\theta+\omega+\operatorname{dd}^{\mathrm{c}} P_{\theta+\omega}[\varphi]_{I}\right)^{n}
\end{aligned}
$$

So (2) fails as well.
Corollary 7.1.1 Let θ be a closed real smooth (1,1)-form on X representing a big cohomology class. Let $\left(\varphi_{j}\right)_{j \in I}$ be a net of I-good potentials in $\operatorname{PSH}(X, \theta)$ such that $\varphi_{j} \xrightarrow{d_{S}} \varphi$. Then φ is \mathcal{I}-good.

Proof By Corollary 6.2.7, we may assume that $\varphi_{j}, \varphi \in \operatorname{PSH}(X, \theta)_{>0}$ for all $j \in I$. It follows from Theorem 7.1.1 that

$$
\int_{X} \theta_{\varphi_{j}}^{n}=\operatorname{vol} \theta_{\varphi_{j}}
$$

for all $j \in I$. Taking limit with respect to j with the help of Theorem 6.2.5 and Theorem 6.2.1, we conclude that

$$
\int_{X} \theta_{\varphi}^{n}=\operatorname{vol} \theta_{\varphi}
$$

Therefore, by Theorem 7.1.1 again, we find that φ is \mathcal{I}-good.

ex:analyIgood

ex:ImodelIgood

Example 7.1.1 Assume that $\varphi \in \operatorname{QPSH}(X)$ has analytic singularities. Then φ is I-good. This is proved in Proposition 3.2.9.

Example 7.1.2 Assume that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$ is an \mathcal{I}-model potential for some closed real smooth (1,1)-form θ on X. Then φ is I-good.

Corollary 7.1.2 Let $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$ and $\left(\epsilon_{j}\right)_{j}$ be a decreasing sequence in $\mathbb{R}_{\geq 0}$ with limit 0. Fix a Kähler form ω on X. Consider a decreasing sequence $\varphi_{j} \in$
$\operatorname{PSH}\left(X, \theta+\epsilon_{j} \omega\right)$ of potentials with analytic singularities for each $j \geq 1$. Assume that $\varphi=\inf _{j} \varphi_{j}$. Then the following are equivalent:
(1) $\varphi_{j} \xrightarrow{d_{S}} P_{\theta}[\varphi]_{I}$, and
(2) $\left(\varphi_{j}\right)_{j}$ is a quasi-equisingular approximation of φ.

Proof By Corollary 6.2.7 and Example 7.1.2, we may replace θ by $\theta+C \omega$ for some large constant $C>0$ and assume that $\varphi, \varphi_{j} \in \operatorname{PSH}(X, \theta-\omega)$ for all $j \geq 1$.
$(2) \Longrightarrow(1)$. This is already proved in the proof of Theorem 7.1.1.
$(1) \Longrightarrow(2)$. This follows from Theorem 6.2.6.
Example 7.1.3 Let $X=\mathbb{P}^{1}$ and ω be the Fubini-Study metric. Let $K \subseteq \mathbb{P}^{1}$ be a apglar Cantor sets carrying an atom free probability measure μ supported on K (see [Car83, Page 31]). Write $\mu=\omega+\Delta \varphi$ for some $\varphi \in \operatorname{SH}(X, \omega)$. Since μ is atom free, we know that all Lelong numbers of φ are 0 . On the other hand, φ has 0 non-pluripolar mass since K is pluripolar. In particular, $c \varphi$ for $c \in(0,1)$ is not I-good.

7.2 Properties of \mathcal{I}-good singularities

Let X be a connected compact Kähler manifold.
Proposition 7.2.1 Let $\varphi, \psi \in \operatorname{QPSH}(X)$ be I-good and $\lambda>0$. Then the following potentials are all I-good.
(1) $\varphi+\psi$;
(2) $\varphi \vee \psi$;
(3) $\lambda \varphi$.

Proof Take a closed real smooth $(1,1)$-form θ on X such that $\varphi, \psi \in \operatorname{PSH}(X, \theta)_{>0}$. It follows from Theorem 7.1.1 that there are sequences φ_{j}, ψ_{j} in $\operatorname{PSH}(X, \theta)$ with analytic singularities such that $\varphi_{j} \xrightarrow{d_{S}} \varphi$ and $\psi_{j} \xrightarrow{d_{S}} \psi$.

By Theorem 6.2.2, Proposition 6.2.5, we have

$$
\varphi_{j}+\psi_{j} \xrightarrow{d_{S}} \varphi+\psi, \quad \varphi_{j} \vee \psi_{j} \xrightarrow{d_{S}} \varphi \vee \psi .
$$

On the other hand, it is clear that

$$
\lambda \varphi_{j} \xrightarrow{d_{S}} \lambda \varphi .
$$

Therefore, our assertions follow from Theorem 7.1.1.
Proposition 7.2.2 Let $\left\{\varphi_{j}\right\}_{j \in I}$ be a non-empty family of I-good potentials. Assume that the family is uniformly bounded from above and there exists a closed real smooth $(1,1)$-form θ on X such that $\varphi_{j} \in \operatorname{PSH}(X, \theta)$ for all $j \in I$. Then $\sup ^{*}{ }_{j \in I} \varphi_{j}$ is I-good.

Proof Without loss of generality, we may assume that $\varphi_{j} \in \operatorname{PSH}(X, \theta)_{>0}$ for all $j \in I$.

When I is finite, this result follows from Proposition 7.2.1. When I is infinite, we may assume that $I=\mathbb{Z}_{>0}$ by Proposition 1.2.2. By Proposition 7.2.1, we may assume that the sequence $\left(\varphi_{j}\right)_{j}$ is increasing. In this case, as shown in Corollary 6.2.3,

$$
\varphi_{j} \xrightarrow{d_{S}} \sup _{i \in \mathbb{Z}_{>0}} \varphi_{i}
$$

Therefore, $\sup ^{*}{ }_{i \in \mathbb{Z}_{>0}} \varphi_{i}$ is I-good by Theorem 7.1.1.
Theorem 7.2.1 Let $\left(\varphi_{j}\right)_{j \in I}$ be a net in $\operatorname{PSH}(X, \theta)$ such that $\varphi_{j} \xrightarrow{d_{S}} \varphi \in \operatorname{PSH}(X, \theta)$. Assume that φ is I-good, then we have

$$
\begin{equation*}
\operatorname{vol} \theta_{\varphi_{j}} \rightarrow \operatorname{vol} \theta_{\varphi} \tag{7.3}
\end{equation*}
$$

Proof Fix a Kähler form ω on X. Then for any $\epsilon>0$, we have

$$
\begin{aligned}
\operatorname{vol}(\theta+\epsilon \omega)_{\varphi} & =\int_{X}\left(\theta+\epsilon \omega+\operatorname{dd}^{\mathrm{c}} P_{\theta+\epsilon \omega}[\varphi]_{I}\right)^{n} \\
& =\int_{X}\left(\theta+\epsilon \omega+\operatorname{dd}^{\mathrm{c}} \varphi\right)^{n} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\int_{X}\left(\theta+\epsilon \omega+\mathrm{dd}^{\mathrm{c}} P_{\theta+\epsilon \omega}[\varphi]_{I}\right)^{n} & \geq \int_{X}\left(\theta+\epsilon \omega+\operatorname{dd}^{\mathrm{c}} P_{\theta}[\varphi]_{I}\right)^{n} \\
& \geq \int_{X}\left(\theta+\operatorname{dd}^{\mathrm{c}} P_{\theta}[\varphi]_{I}\right)^{n} \\
& \geq \int_{X} \theta_{\varphi}^{n}
\end{aligned}
$$

Therefore,

$$
\operatorname{vol}(\theta+\epsilon \omega)_{\varphi}-\operatorname{vol} \theta_{\varphi} \leq \int_{X}\left(\theta+\epsilon \omega+\operatorname{dd}^{\mathrm{c}} \varphi\right)^{n}-\int_{X} \theta_{\varphi}^{n}
$$

The difference can be controled by a polynomial in ϵ without constant term independent of the choice of φ. We have a similar estimate for φ_{j} as well. So our assertion follows from Theorem 6.2.5.

Proposition 7.2.3 Let $\varphi, \psi \in \operatorname{PSH}(X, \theta)_{>0}$. Then
(1) we have

$$
\lim _{\epsilon \rightarrow 0+} \operatorname{vol}(\theta,(1-\epsilon) \varphi+\epsilon \psi)=\operatorname{vol}(\theta, \varphi)
$$

(2) Let ω be a Kähler form on X, then

$$
\operatorname{vol} \theta_{\varphi}=\lim _{\epsilon \rightarrow 0+} \operatorname{vol}(\theta+\epsilon \omega)_{\varphi}
$$

(3) Consider a prime divisor E on X. Then

$$
\operatorname{vol} \theta_{\varphi}=\operatorname{vol}\left(\theta_{\varphi}-v(\varphi, E)[E]\right)
$$

Proof (1) We need to show that

$$
\lim _{\epsilon \rightarrow 0+} \int_{X}\left(\theta+\operatorname{dd}^{\mathrm{c}} P_{\theta}[(1-\epsilon) \varphi+\epsilon \psi]_{I}\right)^{n}=\int_{X}\left(\theta+\operatorname{dd}^{\mathrm{c}} P_{\theta}[\varphi]_{I}\right)^{n} .
$$

By Proposition 3.2.10, for any $\epsilon \in(0,1)$,

$$
(1-\epsilon) \varphi+\epsilon \psi \sim_{I}(1-\epsilon) P_{\theta}[\varphi]_{I}+\epsilon P_{\theta}[\psi]_{I}
$$

In particular, we may replace φ and ψ by $P_{\theta}[\varphi]_{I}$ and $P_{\theta}[\psi]_{I}$ respectively. By Proposition 7.2.1, it remains to show that

$$
\lim _{\epsilon \rightarrow 0+} \int_{X}\left(\theta+\operatorname{dd}^{\mathrm{c}}((1-\epsilon) \varphi+\epsilon \psi)\right)^{n}=\int_{X}\left(\theta+\operatorname{dd}^{\mathrm{c}} \varphi\right)^{n}
$$

which is obvious.
(2) For each $\epsilon>0$,

$$
\begin{aligned}
\operatorname{vol}(\theta+\epsilon \omega)_{\varphi} & =\int_{X}\left(\theta+\epsilon \omega+\operatorname{dd}^{\mathrm{c}} P_{\theta+\epsilon \omega}[\varphi]_{I}\right)^{n} \\
& =\int_{X}\left(\theta+\epsilon \omega+\operatorname{dd}^{\mathrm{c}} P_{\theta+\epsilon \omega}\left[P_{\theta}[\varphi]_{I}\right]\right)^{n} \\
& =\int_{X}\left(\theta+\epsilon \omega+\operatorname{dd}^{\mathrm{c}} P_{\theta}[\varphi]_{I}\right)^{n},
\end{aligned}
$$

where the third equality follows from Example 7.1.2. Letting $\epsilon \rightarrow 0+$, we conclude.
(3) By (2), we may assume that θ_{φ} is a Kähler current. Take a quasi-equisingular approximation $\left(S_{j}\right)_{j}$ of $\theta_{\varphi}-v(\varphi, E)[E]$. By Theorem 6.2.2,

$$
S_{j}+v(\varphi, E)[E] \xrightarrow{d_{S}} \theta_{\varphi} .
$$

For each $j \geq 1$, the currents $S_{j}+v(\varphi, E)[E]$ and S_{j} are \mathcal{I}-good as follows from Proposition 7.2.1, we have

$$
\operatorname{vol}\left(S_{j}+v(\varphi, E)[E]\right)=\int_{X}\left(S_{j}+v(\varphi, E)[E]\right)^{n}=\int_{X} S_{j}^{n}=\operatorname{vol} S_{j}
$$

Letting $j \rightarrow \infty$, we conclude by Theorem 6.2.6.

7.3 The volume of Hermitian big line bundles

Let X be a connected compact Kähler manifold of dimension n.
Definition 7.3.1 A Hermitian pseudoeffective line bundle (L, h) on X consists of a pseudoeffective line bundle L on X together with a plurisubharmonic metric h on L.

A Hermitian big line bundle (L, h) on X is a big line bundle L on X together with a plurisubharmonic metric h on L such that $\operatorname{vol}\left(\mathrm{dd}^{\mathrm{c}} h\right)>0$.
When X admits a big line bundle, it is necessarily projective. See $\begin{gathered}\text { MMO7, } \\ \text { IVIIIOT, Theo- }\end{gathered}$ rem 2.2.26].

Theorem 7.3.1 Let (L, h) be a Hermitian big line bundle and T be a holomorphic line bundle on X. We have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{n!}{k^{n}} h^{0}\left(X, T \otimes L^{k} \otimes I\left(h^{k}\right)\right)=\operatorname{vol}\left(\mathrm{dd}^{\mathrm{c}} h\right) \tag{7.4}
\end{equation*}
$$

\{eq:DXmain1\}

In particular, the limit exists.
Remark 7.3.1 This theorem also holds for a general Hermitian pseudoeffective line bundle. The proof is more involyed ${ }^{\text {Bon9 }}$ We would haye to apply the singular holomorphic Morse inequality of Bonavero [Bon98]. See [$[\overline{\mathrm{FX}} 21$, Theorem 1.1].

For the proof, let us fix a smooth Hermitian metric h_{0} on L with $\theta=c_{1}\left(L, h_{0}\right)$. We identify h with $h_{0} \exp (-\varphi)$ for some $\varphi \in \operatorname{PSH}(X, \theta)$.

We first handle the case where φ has analytic singularities.
prop:DXmainanalytic
Proposition 7.3.1 Under the assumptions of Theorem 7.3.1, assume furthermore that φ has analytic singularities, then (7.4) holds.

Proof Step 1. Reduce to the case of log singularities.
Let $\pi: Y \rightarrow X$ be a modification such that $\pi^{*} \varphi$ has log singularities. In this case, for each $k \in \mathbb{Z}_{>0}$, we have

$$
h^{0}\left(X, T \otimes L^{k} \otimes \mathcal{I}(k h)\right)=h^{0}\left(Y, K_{Y / X} \otimes \pi^{*} T \otimes \pi^{*} L^{k} \otimes \mathcal{I}\left(k \pi^{*} h\right)\right)
$$

By Proposition 3.2.5, we have

$$
\operatorname{vol}\left(\operatorname{dd}^{\mathrm{c}} h\right)=\operatorname{vol}\left(\mathrm{dd}^{\mathrm{c}} \pi^{*} h\right)
$$

Therefore, it suffices to argue (7.4) with $K_{Y / X} \otimes \pi^{*} T, \pi^{*} L$ and $\pi^{*} h$ in place of T, L and h.

Step 2. Assume that D has log singularities along an effective \mathbb{Q}-divisor D, we decompose D into irreducible components, say

$$
D=\sum_{i=1}^{N} a_{i} D_{i}
$$

In this case, we can easily compute

$$
\mathcal{I}(k \varphi)=O_{X}\left(-\sum_{i=1}^{N}\left\lfloor k a_{i}\right\rfloor D_{i}\right)
$$

for each $k \in \mathbb{Z}_{>0}$. Observe that $L-D$ is nef (see Lemma 1.6.1), so we could apply the asymptotic Riemann-Roch theorem to conclude that

$$
\lim _{k \rightarrow \infty} \frac{n!}{k^{n}} h^{0}\left(X, T \otimes L^{k} \otimes O_{X}\left(-\sum_{i=1}^{N}\left\lfloor k a_{i}\right\rfloor D_{i}\right)\right)=(L-D)^{n} .
$$

Observe that by Proposition 1.8.1,

$$
\theta_{\varphi}=[D]+T,
$$

where T is a closed positive (1,1)-current with bounded potential. Therefore,

$$
(L-D)^{n}=\int_{X} T^{n}=\int_{X} \theta_{\varphi}^{n}
$$

By Example 7.1.1, we know that the right-hand side is exactly vol θ_{φ}.
Proof (Proof of Theorem 7.3.1) Step 1. We first handle the case where θ_{φ} is a Kähler current. Fix a Kähler form $\omega \geq \theta$ on X such that $\theta_{\varphi} \geq 2 \delta \omega$ for some $\delta \in(0,1)$.

Let $\left(\varphi_{j}\right)_{j}$ be a quasi-equisingular approximation of φ in $\operatorname{PSH}(X, \theta)$. We may assume that $\theta_{\varphi_{j}} \geq \delta \omega$ for all j. From Proposition 7.3.1, we know that for each $j \geq 1$,

$$
\varlimsup_{k \rightarrow \infty} \frac{n!}{k^{n}} h^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right) \leq \lim _{k \rightarrow \infty} \frac{n!}{k^{n}} h^{0}\left(X, T \otimes L^{k} \otimes \mathcal{I}\left(k \varphi_{j}\right)\right)=\operatorname{vol} \theta_{\varphi_{j}}
$$

It follows from Theorem 7.1.1 and Theorem 6.2.5 that the right-hand side converges to $\operatorname{vol} \theta_{\varphi}$ as $j \rightarrow \infty$. Therefore,

$$
\varlimsup_{k \rightarrow \infty} \frac{n!}{k^{n}} h^{0}\left(X, T \otimes L^{k} \otimes \mathcal{I}(k \varphi)\right) \leq \operatorname{vol} \theta_{\varphi}
$$

Conversely, fix an integer $N>\delta^{-1}$. From Theorem 7.1.1 and Theorem 6.2.1, we know that

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{X} \theta_{\varphi_{j}}^{n}=\int_{X} \theta_{P_{\theta}[\varphi]_{I}}^{n}>0 \tag{7.5}
\end{equation*}
$$

Therefore, by Lemma 2.3.1, we can find $j_{0}>0$ such that for $j \geq j_{0}$, there is $\psi \in \operatorname{PSH}(X, \theta)_{>0}$ with

$$
\begin{equation*}
\left(1-N^{-1}\right) \varphi_{j}+N^{-1} \psi \leq P_{\theta}[\varphi]_{I} . \tag{7.6}
\end{equation*}
$$

\{eq:quasiequmassconvtemp1\}

For each $k>0$, we write $k=k^{\prime} N-r$, where $k^{\prime} \in \mathbb{N}$ and $r \in\{0,1, \ldots, N-1\}$. Then we compute for $j>j_{0}$ and large enough k that

$$
\begin{aligned}
& h^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right) \\
\geq & h^{0}\left(X, T \otimes L^{-r} \otimes L^{k^{\prime} N} \otimes I\left(k^{\prime} N \varphi\right)\right) \\
\geq & h^{0}\left(X, T \otimes L^{-r} \otimes L^{k^{\prime} N} \otimes I\left(k^{\prime}\left(\psi+(N-1) \varphi_{j}\right)\right)\right) \\
\geq & h^{0}\left(X, T \otimes L^{-r} \otimes L^{k^{\prime} N} \otimes L^{k^{\prime}(N-1)} \otimes I\left(k^{\prime} N \varphi_{j}\right)\right),
\end{aligned}
$$

where the third line follows from (7.6), the fourth line can be argued as follows: for large enough k, there is a non-zero section $s \in H^{0}\left(X, L^{k^{\prime}} \otimes I\left(k^{\prime} \psi\right)\right)$ by Lemma 2.3.3; It follows from Lemma 1.6.3 that for large enough k,

$$
\mathcal{I}\left(k^{\prime} N \varphi_{j}\right) \subseteq \mathcal{I}_{\infty}\left(k^{\prime}(N-1) \varphi_{j}\right)
$$

It follows that multiplication by s gives an injective map

$$
\begin{array}{r}
\mathrm{H}^{0}\left(X, T \otimes L^{-r} \otimes L^{k^{\prime}(N-1)} \otimes I\left(k^{\prime} N \varphi_{j}\right)\right) \hookrightarrow \\
\mathrm{H}^{0}\left(X, T \otimes L^{-r} \otimes L^{k^{\prime} N} \otimes I\left(k^{\prime} \psi+k^{\prime}(N-1) \varphi_{j}\right)\right) .
\end{array}
$$

Next observe that

$$
(N-1) \theta+N \mathrm{dd}^{\mathrm{c}} \varphi_{j} \geq 0
$$

So Proposition 7.3.1 is applicable. We let $k \rightarrow \infty$ to conclude that

$$
\begin{aligned}
\varliminf_{k \rightarrow \infty} h^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right) & \left.\geq \frac{1}{n!\cdot N^{-n}} \int_{X}\left((N-1) \theta+N{d d^{\mathrm{c}}}^{\mathrm{c}}\right)^{j}\right)^{n} \\
& =\frac{1}{n!} \int_{X}\left(\left(1-N^{-1}\right) \theta+\mathrm{dd}^{\mathrm{c}} \varphi_{j}\right)^{n}
\end{aligned}
$$

Letting $j \rightarrow \infty$ and then $N \rightarrow \infty$ and using (7.5), we find that

$$
\varliminf_{k \rightarrow \infty} h^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right) \geq \int_{X} \theta_{P_{\theta}[\varphi]_{I}}^{n} .
$$

Step 2. We handle the general case. We may assume that φ is I-model.
Take an ample line bundle A on X and a Kähler form ω in $c_{1}(A)$. Then for any fixed $N \in \mathbb{Z}_{>0}$, we apply Step 1 to $L^{N} \otimes A$ in place of L and $T \otimes L^{i}$ with $i=0, \ldots, N-1$ in place of T, we have

$$
\varlimsup_{k \rightarrow \infty} \frac{n!}{k^{n}} h^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right) \leq \int_{X}\left(N^{-1} \omega+\theta+\operatorname{dd}^{\mathrm{c}} P_{\theta+N^{-1} \omega}[\varphi]_{I}\right)^{n}
$$

On the other hand, since φ is I-good by Example 7.1.2, we have

$$
P_{\theta+N^{-1} \omega}[\varphi]_{I}=P_{\theta+N^{-1} \omega}[\varphi] .
$$

It follows from Proposition 3.1.3 that

$$
\varlimsup_{k \rightarrow \infty} \frac{n!}{k^{n}} h^{0}\left(X, T \otimes L^{k} \otimes \mathcal{I}(k \varphi)\right) \leq \int_{X}\left(\theta+N^{-1} \omega+\operatorname{dd}^{\mathrm{c}} \varphi\right)^{n}
$$

Letting $N \rightarrow \infty$, we conclude

$$
\varlimsup_{k \rightarrow \infty} \frac{n!}{k^{n}} h^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right) \leq \int_{X} \theta_{\varphi}^{n}
$$

It remains to argue the reverse inequality.
Choose $\psi \in \operatorname{PSH}(X, \theta)$ such that θ_{ψ} is a Kähler current and $\psi \leq \varphi$. The existence of ψ is guaranteed by Lemma 2.3.2. Then for any $t \in(0,1)$, we set

$$
\varphi_{t}=(1-t) \varphi+t \psi
$$

It follows again from Step 1 that

$$
\varliminf_{k \rightarrow \infty} \frac{n!}{k^{n}} h^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right) \geq \lim _{k \rightarrow \infty} \frac{n!}{k^{n}} h^{0}\left(X, T \otimes L^{k} \otimes I\left(k \varphi_{t}\right)\right)=\operatorname{vol} \theta_{\varphi_{t}}
$$

On the other hand, by Corollary 6.2.3, we have $\varphi_{t} \xrightarrow{d_{S}} \varphi$ as $t \rightarrow 0+$. It follows from Theorem 6.2.5 that

$$
\lim _{t \rightarrow 0+} \operatorname{vol} \theta_{\varphi_{t}}=\operatorname{vol} \theta_{\varphi}
$$

So we find

$$
\varliminf_{k \rightarrow \infty} \frac{n!}{k^{n}} h^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right) \geq \operatorname{vol} \theta_{\varphi}
$$

Example 7.3.1 If X is a toric smooth projective variety and θ is invariant under the action of the compact torus. Suppose that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$ is also invariant under the action of the compact torus, then φ is I-good.

Proof Thanks to Lemma 7.1.1, we may assume that $\theta \in c_{1}(L)$ for some toric invariant ample line bundle L. In this case, the result follows from Theorem 7.1.1, Theorem 7.3.1 and Theorem 5.3.1.

Corollary 7.3.1 We have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{n!}{k^{n}} h^{0}\left(X, L^{k}\right)=\int_{X} \theta_{V_{\theta}}^{n} \tag{7.7}
\end{equation*}
$$

\{eq:volbig\}
This common quantity is the volume of L, usually denoted by vol L.

Chapter 8

The trace operator

In this chapter, we develop the theory of trace operators and prove the analytic Bertini theorem. These techniques allow us to make induction on the dimension while studying the singularities.

8.1 The definition of the trace operator

Let X be a connected compact Kähler manifold and $Y \subseteq X$ be an irreducible analytic subset. The trace operator gives a way to restrict a quadijoplurisubharmonic function on X to \tilde{Y}, the normalization of Y. It follows from $[\mathcal{G K} 20$, Proposition 3.5] that \tilde{Y} is a normal Kähler space. We refer to Appendix B for the pluripotential theory on unibranch Kähler spaces.

For later applications, we need this generality even if initially we are only interested in the smooth case.

We first observe that given $\varphi \in \operatorname{QPSH}(X)$ with analytic singularities such that $v(\varphi, Y)=0$, then $\left.\varphi\right|_{Y} \not \equiv-\infty$. This observation will be crucial in the sequel.

Proposition 8.1.1 Let $\varphi \in \operatorname{QPSH}(X)$. Consider a smooth closed real $(1,1)$-form on X and $\varphi \in \operatorname{PSH}(X, \theta)$ such that $v(\varphi, Y)=0$. Let $\left(\varphi_{i}\right)_{i},\left(\psi_{i}\right)_{i}$ be quasi-equisingular approximations of φ. Then

$$
\begin{equation*}
\lim _{i \rightarrow \infty} d_{S}\left(\left.\varphi_{i}\right|_{\tilde{Y}},\left.\psi_{i}\right|_{\tilde{Y}}\right)=0 \tag{8.1}
\end{equation*}
$$

\{eq:dsequivtemp1\}
The meaning of (8.1) is explained in Corollary 6.2.8.
Proof Take a Kähler form ω on X. By Corollary 6.2.8, we may assume that $\varphi, \varphi_{i}, \psi_{i} \in \operatorname{PSH}(X, \theta-\omega)$ for all $i \geq 1$. Replacing φ by $P_{\theta}[\varphi]_{I}$, we may assume that φ is I-good. It follows from Corollary 7.1.2 and Proposition 6.2.5 that we can assume $\varphi_{i} \leq \psi_{i}$ for all $i \geq 1$.

Take a decreasing sequence $\left(\epsilon_{j}\right)_{j}$ in $\mathbb{R}_{>0}$ with limit 0 such that $\left(1-\epsilon_{j}\right) \varphi_{j} \in$ $\operatorname{PSH}(X, \theta)$. We first observe that

$$
\lim _{i \rightarrow \infty} d_{S}\left(\left.\varphi_{i}\right|_{\tilde{Y}},\left.\left(1-\epsilon_{i}\right) \varphi_{i}\right|_{\tilde{Y}}\right)=0
$$

This is a consequence of Lemma 6.2.3.
Next by Proposition 1.6.3, we could find a subsequence $\left(\psi_{j_{i}}\right)_{i \in \mathbb{Z}_{>0}}$ of $\left(\psi_{j}\right)_{j}$ such that for each $i \geq 1$,

$$
\varphi_{j_{i}} \leq \psi_{j_{i}} \leq\left(1-\epsilon_{i}\right) \varphi_{i}
$$

Therefore, (8.1) follows from Corollary 6.2.1.
Definition 8.1.1 Let $\varphi \in \operatorname{QPSH}(X)$ such that $v(\varphi, Y)=0$. We say a potential $\psi \in \operatorname{QPSH}(\tilde{Y})$ is a trace operator of φ along Y if there is a smooth closed real $(1,1)$-form θ on X such that $\varphi \in \operatorname{PSH}(X, \theta)$ and a quasi-equisingular approximation $\left(\varphi_{j}\right)_{j}$ of φ such that

$$
\begin{equation*}
\left.\varphi_{j}\right|_{\tilde{Y}} \xrightarrow{d_{S}} \psi . \tag{8.2}
\end{equation*}
$$

By Corollary 6.2.5, the trace operator is always defined. Observe that by Proposition 8.1.1, the condition (8.2) is independent of the choice of $\left(\varphi_{j}\right)_{j}$. It is also independent of the choice of θ by Corollary 6.2.7.

Proposition 8.1.2 Let $\varphi \in \operatorname{QPSH}(X)$ such that $v(\varphi, Y)=0$. Suppose that ψ and ψ^{\prime} are trace operators of φ along Y. Then ψ and ψ^{\prime} are I-good and $\psi \sim_{P} \psi^{\prime}$.

Proof That ψ and ψ^{\prime} are \mathcal{I}-good follows from Theorem 7.1.1. The fact that $\psi \sim_{P} \psi^{\prime}$ follows from Proposition 8.1.1 and Proposition 6.2.2.

Definition 8.1.2 Let $\varphi \in \operatorname{QPSH}(X)$ such that $v(\varphi, Y)=0$. We write $\operatorname{Tr}_{Y}(\varphi)$ for any trace operator of φ along Y.

Given a closed smooth real $(1,1)$-form θ on X. When $\operatorname{Tr}_{Y}(\varphi)$ can be chosen to lie in $\operatorname{PSH}\left(\tilde{Y},\left.\theta\right|_{\tilde{Y}}\right)_{>0}$, we write

$$
\operatorname{Tr}_{Y}^{\theta}(\varphi):=P_{\left.\theta\right|_{\tilde{Y}}}\left[\operatorname{Tr}_{Y}(\varphi)\right]=P_{\left.\theta\right|_{\tilde{Y}}}\left[\operatorname{Tr}_{Y}(\varphi)\right]_{I}
$$

The trace operator $\operatorname{Tr}_{Y}(\varphi)$ is therefore well-defined only up to P-equivalence by Proposition 8.1.2.

Remark 8.1.1 As in Remark 1.7.1, the trace operator could also be applied to closed positive $(1,1)$-currents on X. If $T \in \mathcal{Z}_{+}(X, \alpha)$ (see Definition 1.7.3) and $\beta \in \mathrm{H}^{1,1}(\tilde{Y}, \mathbb{R})$, then we write

$$
\operatorname{Tr}_{Y}^{\beta}(T)
$$

for any closed positive $(1,1)$-current in β representing $\operatorname{Tr}_{Y}(T)$ when $v(T, Y)=0$.
Proposition 8.1.3 Let $\varphi \in \operatorname{QPSH}(X)$ such that $v(\varphi, Y)=0$. Assume that $\left.\varphi\right|_{Y} \not \equiv-\infty$. Then

$$
\left.\varphi\right|_{\tilde{Y}} \leq_{P} \operatorname{Tr}_{Y}(\varphi)
$$

Proof Take a Kähler form ω such that ω_{φ} is a Kähler current. Let $\left(\varphi_{j}\right)_{j}$ be a quasi-equisingular approximation of φ in $\operatorname{PSH}(X, \omega)$. We may assume that $\varphi_{j} \leq 0$ for all $j \geq 1$.

Then

$$
\begin{equation*}
\left.\varphi_{j}\right|_{\tilde{Y}} \leq P_{\left.\theta\right|_{\tilde{Y}}}\left[\left.\varphi_{j}\right|_{\tilde{Y}}\right] \tag{8.3}
\end{equation*}
$$

for all $j \geq 1$.
Thanks to Corollary 6.2.4,

$$
\begin{equation*}
\operatorname{Tr}_{Y}(\varphi) \sim_{P} \inf _{j \geq 1} P_{\left.\theta\right|_{\tilde{Y}}}\left[\left.\varphi_{j}\right|_{\tilde{Y}}\right] \tag{8.4}
\end{equation*}
$$

Letting $j \rightarrow \infty$ in (8.3), we conclude our assertion.
Example 8.1.1 Let $\varphi \in \operatorname{QPSH}(X)$ such that $v(\varphi, Y)=0$. Assume that φ has analytic singularities, then

$$
\left.\operatorname{Tr}_{Y}(\varphi) \sim_{P} \varphi\right|_{\tilde{Y}}
$$

Example 8.1.2 Let $\varphi \in \operatorname{QPSH}(X)$. Take a closed real smooth (1, 1$)$-form θ on X such that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$, then

$$
\operatorname{Tr}_{X}(\varphi) \sim_{P} P_{\theta}[\varphi]_{I}, \quad \operatorname{Tr}_{X}^{\theta}(\varphi)=P_{\theta}[\varphi]_{I}
$$

In particular, the trace operator can be regarded as a generalization of the I-envelope.
Example 8.1.3 Assume that $\varphi \in \operatorname{PSH}(X, \theta)$ for some closed smooth real $(1,1)$-form θ on X and

$$
\begin{equation*}
\lim _{\epsilon \searrow 0} \int_{Y}\left(\left.\theta\right|_{Y}+\left.\epsilon \omega\right|_{Y}+\mathrm{dd}^{\mathrm{c}} \operatorname{Tr}_{Y}^{\theta+\epsilon \omega}(\varphi)\right)^{m}>0 \tag{8.5}
\end{equation*}
$$

for any arbitrary choice of a Kähler form ω on X. Then it follows from Proposition 3.1.8 that $\operatorname{Tr}_{Y}^{\theta}(\varphi)$ is defined, and its mass is exact the above limit.

In particular, if θ_{φ} is a Kähler current, $\operatorname{Tr}_{Y}^{\theta}(\varphi)$ is always defined.
Remark 8.1.2 The trace operator allows us to introduce the following extension of the moving Seshadri constant: Let $T \in \mathcal{Z}_{+}(X, \alpha)$ and $x \in X$, we define
where $\operatorname{vol} \operatorname{Tr}_{V}^{\alpha| |_{\tilde{V}}} T=0$ if $\operatorname{Tr}_{V}^{\alpha \mid \tilde{V}} T$ is not defined. Here V runs over all positivedimensional closed irreducible analytic subsets of X containing x.

These moving Seshadri constants seem to be new.

8.2 Properties of the trace operator

Let X be a connected compact Kähler manifold and $Y \subseteq X$ be an irreducible analytic subset.

Proposition 8.2.1 Let $\varphi, \psi \in \operatorname{QPSH}(X), \lambda>0$. Assume that $v(\varphi, Y)=v(\psi, Y)=0$. Then we have the following:
(1) Suppose that $\varphi \leq_{I} \psi$, then $\operatorname{Tr}_{Y}(\varphi) \leq_{P} \operatorname{Tr}_{Y}(\psi)$.
(2) We have

$$
\operatorname{Tr}_{Y}(\varphi+\psi) \sim_{P} \operatorname{Tr}_{Y}(\varphi)+\operatorname{Tr}_{Y}(\psi)
$$

(3) We have

$$
\operatorname{Tr}_{Y}(\lambda \varphi) \sim_{P} \lambda \operatorname{Tr}_{Y}(\varphi)
$$

(4) We have

$$
\operatorname{Tr}_{Y}(\varphi \vee \psi) \sim_{P} \operatorname{Tr}_{Y}(\varphi) \vee \operatorname{Tr}_{Y}(\psi)
$$

Proof Take a closed smooth real $(1,1)$-form θ on X such that $\theta_{\varphi}, \theta_{\psi}$ are both Kähler currents. Let $\left(\varphi_{j}\right)_{j}$ and $\left(\psi_{j}\right)_{j}$ be quasi-equisingular approximations of φ and ψ in $\operatorname{PSH}(X, \theta)$ respectively.
(1) By Corollary 7.1.2 and Proposition 6.2.5, we may assume that $\varphi_{j} \leq \psi_{j}$ for all j. Then our assertion follows from Proposition 6.2.4.
(2) It follows from Theorem 6.2.2 that $\varphi_{j}+\psi_{j} \xrightarrow{d_{S}} P_{\theta}[\varphi]_{I}+P_{\theta}[\psi]_{I}$. However, by Proposition 3.2.10 and Proposition 7.2.1, we have

$$
P_{\theta}[\varphi]_{I}+P_{\theta}[\psi]_{I} \sim_{P} P_{\theta}[\varphi+\psi]_{I} .
$$

Therefore, by Proposition 6.2.2, Corollary 7.1.2 and Proposition 1.6.1, $\varphi_{j}+\psi_{j}$ is a quasi-equisingular approximation of $\varphi+\psi$. We conclude using Theorem 6.2.2.
(3) Let $\left(\lambda_{j}\right)_{j}$ be an increasing sequence of positive rational numbers with limit λ. Then $\left(\lambda_{j} \varphi_{j}\right)_{j}$ is a quasi-equisingular approximation of φ. Our assertion follows Lemma 6.2.3.
(4) By Proposition 6.2.5, we have

$$
\varphi_{j} \vee \psi_{j} \xrightarrow{d_{S}} P_{\theta}[\varphi]_{I} \vee P_{\theta}[\psi]_{I}
$$

By Proposition 3.2.10 and Proposition 7.2.1, we have

$$
P_{\theta}[\varphi]_{I} \vee P_{\theta}[\psi]_{I} \sim_{P} P_{\theta}[\varphi \vee \psi]_{I}
$$

Therefore, our assertion follows exactly as in the proof of (2).
prop:tracedeclimit
Proposition 8.2.2 Let $\left(\varphi_{j}\right)_{j \in I}$ be a decreasing net in $\operatorname{QPSH}(X)$. Assume that there exists a closed real smooth $(1,1)$-form θ such that $\varphi_{j} \in \operatorname{PSH}(X, \theta)$ for each $j \in I$.
Assume that $\varphi_{j} \xrightarrow{d_{S}} \varphi \in \operatorname{QPSH}(X)$ and $v(\varphi, Y)=0$. Then

$$
\operatorname{Tr}_{Y}\left(\varphi_{j}\right) \xrightarrow{d_{S}} \operatorname{Tr}_{Y}(\varphi) .
$$

Proof By Corollary 6.2.7, we may assume that there is a Kähler form ω on X such that $\varphi, \varphi_{j} \in \operatorname{PSH}(X, \theta-\omega)$ for all $j \in I$. Note that for each $j \geq 1$,

$$
\operatorname{Tr}_{Y}\left(\varphi_{j+1}\right) \leq_{P} \operatorname{Tr}_{Y}\left(\varphi_{j}\right)
$$

It follows from Proposition 8.2.1 and Corollary 6.2.5 that there exists $\psi \in \operatorname{PSH}\left(\tilde{Y},\left.\theta\right|_{\tilde{Y}}\right)$ such that $\operatorname{Tr}_{Y}\left(\varphi_{j}\right) \xrightarrow{d_{S}} \psi$.

For each j, we take a quasi-equisingular approximation $\left(\varphi_{j}^{k}\right)_{k}$ in $\operatorname{PSH}(X, \theta)$ of φ_{j}. Using Theorem 1.6.2, we may guarantee that

$$
\varphi_{j+1}^{k} \leq \varphi_{j}^{k}
$$

for each $j, k \geq 1$. In particular, $\left(\varphi_{j}^{j}\right)_{j}$ is a quasi-equisingular approximation of φ. By Proposition 6.2.4, we have $\psi \leq_{P} \operatorname{Tr}_{Y}(\varphi)$.

Conversely, by Proposition 8.2.1, $\operatorname{Tr}_{Y}\left(\varphi_{j}\right) \geq_{P} \operatorname{Tr}_{Y}(\varphi)$. It follows again from Proposition 6.2.4 that $\operatorname{Tr}_{Y}(\varphi) \leq_{P} \psi$.

Example 8.2.1 The trace operator is not continuous along increasing sequences. Let us consider the case $X=\mathbb{P}^{2}$ with coordinates $\left(z_{1}, z_{2}\right)$. Let ω_{FS} denote the Fubini-Study metric. The subvariety $Y \cong \mathbb{P}^{1}$ is defined by $z_{2}=0$. Consider an increasing sequence $\left(\varphi_{j}\right)_{j}$ in $\operatorname{PSH}\left(X, \omega_{\mathrm{FS}}\right)$, whose potentials near $(0,0)$ are given by

$$
\log \left|z_{1}\right|^{2} \vee\left(k^{-1} \log \left|z_{2}\right|^{2}\right)+\mathcal{O}(1)
$$

The pointwise restriction of these potentials to Y are given locally by

$$
\log \left|z_{1}\right|^{2}+O(1)
$$

On the other hand, locally

$$
\log \left|z_{1}\right|^{2} \vee\left(k^{-1} \log \left|z_{2}\right|^{2}\right) \rightarrow 0
$$

almost everywhere as $k \rightarrow \infty$. So the trace operator is not continuous along the sequence $\left(\varphi_{j}\right)_{j}$.

Lemma 8.2.1 Let $\pi: Z \rightarrow X$ be a proper bimeromorphic morphism with Z being a connected Kähler manifold. Assume that W (resp. Y) be analytic subsets in Z (resp. $X)$ of codimension 1 such that the restriction $\Pi: W \rightarrow Y$ of π is defined and is bimeromorphic, so that we have the following commutative diagram

Then for any $\varphi \in \operatorname{QPSH}(X)$ with $v(\varphi, Y)=0$, we have

$$
\begin{equation*}
\tilde{\Pi}^{*} \operatorname{Tr}_{Y}(\varphi) \sim_{P} \operatorname{Tr}_{W}\left(\pi^{*} \varphi\right) \tag{8.6}
\end{equation*}
$$

Proof We first observe that by Zariski's main theorem, $v\left(\pi^{*} \varphi, W\right)=0$. So the right-hand side of (8.6) makes sense.

Step 1. Assume that T has analytic singularities. It suffices to apply Example 8.1.1 to reformulate (8.6) as

$$
\left.\tilde{\Pi}^{*}\left(\left.\varphi\right|_{\tilde{Y}}\right) \sim_{P}\left(\pi^{*} \varphi\right)\right|_{\tilde{W}}
$$

In fact, the strict equality holds, which is nothing but the functoriality of pullbacks.
Step 2. Next we handle the general case. Up to replacing θ by $\theta+\omega$ for some Kähler form ω on X, we may assume that T is a Kähler current. Take a quasiequisingular approximation $\left(\varphi_{j}\right)_{j}$ of φ in $\operatorname{PSH}(X, \theta)$. By Corollary 7.1.2, $\left(\pi^{*} \varphi_{j}\right)_{j}$ is a quasi-equisingular approximation of $\pi^{*} \varphi$. From Step 1, we know that for each j,

$$
\tilde{\Pi}^{*} \operatorname{Tr}_{Y}\left(\varphi_{j}\right) \sim_{P} \operatorname{Tr}_{W}\left(\pi^{*} \varphi_{j}\right)
$$

Letting $j \rightarrow \infty$, we conclude (8.6) using Proposition 8.2.2.
Proposition 8.2.3 Let $\varphi \in \operatorname{QPSH}(X)$ with $v(\varphi, Y)=0$. Assume that Y is smooth. Then for any $\lambda>0$, we have

$$
\begin{equation*}
\mathcal{I}\left(\lambda \operatorname{Tr}_{Y}(\varphi)\right) \subseteq \operatorname{Res}_{Y} \mathcal{I}(\lambda \varphi) \tag{8.7}
\end{equation*}
$$

Proof Take a Kähler form ω on X such that ω_{φ} is a Kähler current.
Let $\left(\varphi_{j}\right)_{j}$ be a quasi-equisingular approximation of φ in $\operatorname{PSH}(X, \omega)$.
By definition, for each $j \geq 1$, we get that

$$
\operatorname{Tr}_{Y}(\varphi) \leq\left._{P} \varphi_{j}\right|_{Y}
$$

For any $\lambda^{\prime}>\lambda>0$, we can find $j>0$ so that

$$
\mathcal{I}\left(\lambda^{\prime} \varphi_{j}\right) \subseteq \mathcal{I}(\lambda \varphi)
$$

By Theorem 1.4.5, we have

$$
I\left(\lambda^{\prime} \operatorname{Tr}_{Y}(\varphi)\right) \subseteq I\left(\left.\lambda^{\prime} \varphi_{j}\right|_{Y}\right) \subseteq \operatorname{Res}_{Y} I\left(\lambda^{\prime} \varphi_{j}\right) \subseteq \operatorname{Res}_{Y} I(\lambda \varphi)
$$

Thanks to Theorem 1.4.4, we conclude (8.7).
Lastly, we turn our attention to global sections. For this we will need the following global Ohsawa-Takegoshi extension theorem for the trace operator:

Theorem 8.2.1 Let L be a big line bundle on X and θ is a closed real smooth $(1,1)$-form on X representing $c_{1}(L)$. Suppose that $\varphi \in \operatorname{PSH}(X, \theta)$ and θ_{φ} is a Kähler current. Assume that $v(\varphi, Y)=0$. Let T be a holomorphic line bundle on X. Then there exists k_{0} such that for all $k \geq k_{0}$ and $s \in \mathrm{H}^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes I\left(k \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)\right)$, there exists an extension $\tilde{s} \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes \mathcal{I}(k \varphi)\right)$.

It is of interest to know if one could control the L^{2}-norm of \tilde{s} in the above result.
Proof Fix a Kähler form ω on X. We may assume that $Y \neq X$ and that $\theta_{\varphi} \geq 3 \delta \omega$ for some $\delta>0$. Let $\left(\varphi_{j}\right)_{j}$ be the decreasing quasi-equisingular approximation of φ in $\operatorname{PSH}(X, \theta)$. We can assume that $\theta_{\varphi_{j}} \geq 2 \delta \omega$ for all $j \geq 1$. Also, there exists $\epsilon_{0}>0$ such that $\theta_{(1+\epsilon) \varphi_{j}} \geq \delta \omega$ for any $\epsilon \in\left(0, \epsilon_{0}\right)$. Take $k_{0}=k_{0}(\delta)$ as in Theorem 1.8.1.

We fix $k \geq k_{0}$ and $s \in \mathrm{H}^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes I\left(k \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)\right)$. By Theorem 1.4.4, there exists $\epsilon \in\left(0, \epsilon_{0}\right)$ such that $s \in \mathrm{H}^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes I\left(k(1+\epsilon) \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)\right)$.

Since $\operatorname{Tr}_{Y}^{\theta}(\varphi) \leq\left.\varphi_{j}\right|_{Y}$, we obtain that $s \in \mathrm{H}^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes \mathcal{I}\left(\left.k(1+\epsilon) \varphi_{j}\right|_{Y}\right)\right)$. Due to Theorem 1.8.1 there exists $\tilde{s}_{j} \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes I\left(k(1+\epsilon) \varphi_{j}\right)\right)$ such that $\left.\tilde{s}_{j}\right|_{Y}=s$, for all j.

But by definition of quasi-equisingular approximation, we obtain that for high enough j the inclusion $\mathcal{I}\left(k(1+\epsilon) \varphi_{j}\right) \subseteq \mathcal{I}(k \varphi)$ holds. As a result, $\tilde{s}_{j} \in \mathrm{H}^{0}(X, T \otimes$ $L^{k} \otimes I(k \varphi)$) for high enough j, finishing the argument.

8.3 Restricted volumes

Let X be a connected projective manifold of dimension n and $Y \subseteq$ be a connected submanifold of dimension m. Consider a big line bundle L on X, a Hermitian metric h_{0} on L with $\theta=c_{1}\left(L, h_{0}\right)$. Let A be a very ample line bundle on X. Take a Hermitian metric h_{A} on A such that $\omega=\mathrm{dd}^{\mathrm{c}} h_{A}$ is a Kähler form.

Using the trace operator, one could prove the following generalization of Theorem 7.3.1.

Theorem 8.3.1 Let h be a singular plurisubharmonic metric on L with $v\left(\operatorname{dd}^{\mathrm{c}} h, Y\right)=0$. Assume that

$$
\begin{equation*}
\lim _{\epsilon \searrow 0}\left(\operatorname{Tr}_{Y}^{c_{1}\left(\left.L\right|_{Y}\right)+\epsilon \omega}\left(c_{1}(L, h)\right)\right)^{m}>0 \tag{8.8}
\end{equation*}
$$

Then for any holomorphic line bundle T on X we have that

$$
\begin{equation*}
\int_{Y}\left(\operatorname{Tr}_{Y}^{c_{1}\left(\left.L\right|_{Y}\right)}\left(c_{1}(L, h)\right)\right)^{m}=\lim _{k \rightarrow \infty} \frac{m!}{k^{m}} h^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes \operatorname{Res}_{Y}\left(\mathcal{I}\left(h^{k}\right)\right)\right) \tag{8.9}
\end{equation*}
$$

Recall that Res_{Y} is defined in Definition 1.4.5. Observe that by Example 8.1.3, (8.8) implies that $\operatorname{Tr}_{Y}^{c_{1}\left(\left.L\right|_{Y}\right)}\left(c_{1}(L, h)\right)$ is defined. So (8.9) is defined.

We will identify h with $\varphi \in \operatorname{PSH}(X, \theta)$ as in (1.10).
We only need to consider the case $Y \neq X$, since otherwise, the result is proved in Theorem 7.3.1. We will always assume $Y \neq X$ in the sequel.

Lemma 8.3.1 There is $\psi_{Y} \in \operatorname{QPSH}(X)$ with neat analytic singularities such that $\left\{\psi_{Y}=-\infty\right\}=Y$ and in an open neighbourhood of Y, we have

$$
\begin{equation*}
\psi_{Y}(x)=2(n-m) \log \operatorname{dist}(x, Y) \tag{8.10}
\end{equation*}
$$

\{eq: Psi_Y_def\}
for some Riemannian distance function $\operatorname{dist}(\cdot, Y)$.
See Definition 1.6.1 for the definition of neat analytic singularities.
See [Fin22, Lemma 2.3] for the proof.
Lemma 8.3.2 The multiplier ideal sheaf of ψ_{Y} can be calculated as

$$
\begin{equation*}
\mathcal{I}\left(\psi_{Y}\right)=I_{Y} . \tag{8.11}
\end{equation*}
$$

$$
\text { \{eq:mis_psi\} }
$$

Moreover, given $y \in Y$ and $\epsilon>0$, for any germ $f \in \mathcal{I}_{Y, y}$ we have

$$
\begin{equation*}
\int_{U}|f|^{\epsilon} \mathrm{e}^{-\psi_{Y}} \omega^{n}<\infty \tag{8.12}
\end{equation*}
$$

\{eq:integrabilitypsiY\}
where U is an open neighbourhood of y in X.
In other words, ψ_{Y} has log canonical singularities.
Proof Since ψ_{Y} is locally bounded away from Y, it suffices to prove (8.11) along Y. Fix $y \in Y$, and we will verify (8.11) germ-wise at y.

Take an open neighbourhood $U \subset X$ of y and a biholomorphic map $F: U \rightarrow V \times W$, where V is an open neighbourhood of y in Y and W is a connected open subset in \mathbb{C}^{n-m} containing 0 , such that $F(Y \cap U)=V \times\{0\}$. For any $x \in U$, write x_{V}, x_{W} for the two components of $F(x)$ in V and W respectively. We denote the coordinates in \mathbb{C}^{n-m} as w_{1}, \ldots, w_{n-m}.

Due to (8.10), after possibly shrinking U, we may assume that

$$
\exp \left(-\psi_{Y}(x)\right)=\left|x_{W}\right|^{2 m-2 n}+\mathcal{O}(1)
$$

for any $x \in U \backslash Y$.
Given $f \in \mathcal{I}_{Y, y}$, after shrinking U, we may assume that there exists $g_{1}, \ldots, g_{n-m} \in$ $\mathrm{H}^{0}\left(V \times W, O_{V \times W}\right)$ such that

$$
f=\sum_{i=1}^{n-m} w_{i} g_{i}
$$

In order to verify $f \in \mathcal{I}\left(\psi_{Y}\right)_{y}$, it suffices to show $w_{i} g_{i} \in \mathcal{I}\left(\left(\sum_{i=1}^{n-m}\left|w_{i}\right|^{2}\right)^{m-n}\right)_{F(y)}$, which follows from Fubini's theorem. The proof of (8.12) is similar.

Conversely, take $f \in I\left(\psi_{Y}\right)$, the similar application of Fubini's theorem shows that after possible shrinking U, we have $\left.f\right|_{Y}=0$. By Rückert's Nullstellensatz f(GR84, Page 67], it follows that $f \in \mathcal{I}_{Y}$.

Lemma 8.3.3 Assume that φ has analytic singularity type and θ_{u} is a Kähler current. Suppose that $\left.\varphi\right|_{Y} \not \equiv-\infty$. Then

$$
\begin{equation*}
\int_{Y}\left(\left.\theta\right|_{Y}+\left.\mathrm{dd}^{\mathrm{c}} \varphi\right|_{Y}\right)^{m}=\lim _{k \rightarrow \infty} \frac{m!}{k^{m}} \operatorname{dim}_{\mathbb{C}}\left\{\left.s\right|_{Y}: s \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right)\right\} . \tag{8.13}
\end{equation*}
$$

Recall that I_{∞} is defined in Definition 1.6.5.
Proof Suppose that $\epsilon \in(0,1)$ is small enough so that $(1-\epsilon) u \in \operatorname{PSH}(X, \theta)$.
Using Theorem 7.3.1 we can start to write the following sequence of inequalities:

$$
\begin{aligned}
& \frac{1}{m!} \int_{Y}\left(\left.\theta\right|_{Y}+\left.\operatorname{dd}^{\mathrm{c}} \varphi\right|_{Y}\right)^{m} \\
= & \lim _{k \rightarrow \infty} \frac{1}{k^{m}} h^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes I\left(\left.k \varphi\right|_{Y}\right)\right) \\
\leq & \lim _{k \rightarrow \infty} \frac{1}{k^{m}} \operatorname{dim}\left\{\left.s\right|_{Y}: s \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right)\right\} \quad \text { by Theorem 1.8.1 } \\
\leq & \varlimsup_{k \rightarrow \infty} \frac{1}{k^{m}} \operatorname{dim}\left\{\left.s\right|_{Y}: s \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right)\right\} \\
\leq & \varlimsup_{k \rightarrow \infty} \frac{1}{k^{m}} \operatorname{dim}\left\{\left.s\right|_{Y}: s \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes I_{\infty}((1-\epsilon) k \varphi)\right)\right\} \quad \text { by Lemma 1.6.3 } \\
\leq & \varlimsup_{k \rightarrow \infty} \frac{1}{k^{m}} \operatorname{dim}_{\mathbb{C}}\left\{s \in \mathrm{H}^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k}\right): \log h^{k}(s, s) \leq\left.(1-\epsilon) k \varphi\right|_{Y}\right\} \\
\leq & \varlimsup_{k \rightarrow \infty} \frac{1}{k^{m}} h^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes I\left(\left.(1-\epsilon) k \varphi\right|_{Y}\right)\right) \\
= & \frac{1}{m!} \int_{Y}\left(\left.\theta\right|_{Y}+\left.(1-\epsilon) \operatorname{dd}^{\mathrm{c}} \varphi\right|_{Y}\right)^{m} \quad \text { by Theorem 7.3.1. }
\end{aligned}
$$

Letting $\epsilon \rightarrow 0$, (8.13) follows from multi-linearity of the non-pluripolar product.
Proposition 8.3.1 In the setting of Theorem 8.3.1, assume that $\mathrm{dd}^{\mathrm{c}} h$ is a Kähler current. Then (8.9) holds.

Proof Let $\left(\varphi_{j}\right)_{j}$ a quasi-equisingular approximation of φ in $\operatorname{PSH}(X, \theta)$. After possibly replacing $\left(\varphi_{j}\right)_{j}$ by a subsequence, there exists $\epsilon_{0} \in(0,1) \cap \mathbb{Q}$ such that $\theta_{(1-\epsilon)^{2} \varphi_{j}}$ and $\theta_{(1-\epsilon) \varphi_{j}}$ are also Kähler currents for any $\epsilon \in\left(0, \epsilon_{0}\right)$.

We claim that for any $j \geq 1$ and $k \in \mathbb{N}$, we have

$$
\begin{equation*}
\mathcal{I}_{\infty}\left((1-\epsilon) k \varphi_{j}\right) \cap \mathcal{I}\left(\psi_{Y}\right) \subseteq \mathcal{I}\left((1-\epsilon)^{2} k \varphi_{j}+\psi_{Y}\right) \tag{8.14}
\end{equation*}
$$

Take $x \in X$, and it suffices to argue (8.14) along the germ of x. Since ψ_{Y} is locally bounded outside Y, we may assume that $x \in Y$. Recall that by Lemma 8.3.2, $\mathcal{I}\left(\psi_{Y}\right)=I_{Y}$.

Let $f \in \mathcal{I}_{\infty}\left((1-\epsilon) k \varphi_{j}\right)_{x} \cap \mathcal{I}\left(\psi_{Y}\right)_{x}$. Then there is an open neighbourhood U of x in X such that $|f|^{2(1-\epsilon)} \mathrm{e}^{-k(1-\epsilon)^{2} \varphi_{j}} \leq C$ holds on $U \backslash\left\{\varphi_{j}=-\infty\right\}$ for some $C>0$, hence

$$
\begin{aligned}
\int_{U}|f|^{2} \mathrm{e}^{-k(1-\epsilon)^{2} \varphi_{j}-\psi_{Y}} \omega^{n} & =\int_{U}|f|^{2(1-\epsilon)} \mathrm{e}^{-k(1-\epsilon)^{2} \varphi_{j}}|f|^{2 \epsilon} \mathrm{e}^{-\psi_{Y}} \omega^{n} \\
& \leq C \int_{U}|f|^{2 \epsilon} \mathrm{e}^{-\psi_{Y}} \omega^{n}<\infty
\end{aligned}
$$

where the last inequality follows from Lemma 8.3.2. We have proved the claim (8.14).
Next we consider the following composition morphism of coherent sheaves on Y :

$$
\begin{equation*}
\operatorname{Res}_{Y} I_{\infty}\left((1-\epsilon) k \varphi_{j}\right) \hookrightarrow \frac{I\left((1-\epsilon)^{2} k \varphi_{j}\right)}{\mathcal{I}_{\infty}\left((1-\epsilon) k \varphi_{j}\right) \cap I_{Y}} \rightarrow \frac{I\left((1-\epsilon)^{2} k \varphi_{j}\right)}{\mathcal{I}\left((1-\epsilon)^{2} k \varphi_{j}+\psi_{Y}\right)} \tag{8.15}
\end{equation*}
$$

Here we have identified the coherent O_{X}-modules supported on Y with coherent O_{Y}-modules. Note that the target of (8.15) is also supported on Y as ψ_{Y} is locally bounded outside Y. We denote the coherent O_{Y}-module whose pushforward to X gives $\frac{I\left((1-\epsilon)^{2} k \varphi_{j}\right)}{I\left((1-\epsilon)^{2} k \varphi_{j}+\psi_{Y}\right)}$ by $I_{k, j}$.

In (8.15), the first map is the inclusion and the second one is the obvious projection induced by (8.14). Although in general the second map fails to be injective, we observe that the composition is still injective as $I\left((1-\epsilon)^{2} k \varphi_{j}+\psi_{Y}\right) \subseteq \mathcal{I}\left(\psi_{Y}\right)=I_{Y}$. Therefore, for any $k \in \mathbb{N}$, we have an injective morphism of coherent O_{Y}-modules:

$$
\begin{equation*}
\left.\left.\left.\left.L\right|_{Y} ^{k} \otimes T\right|_{Y} \otimes \operatorname{Res}_{Y} I_{\infty}\left((1-\epsilon) k \varphi_{j}\right) \hookrightarrow L\right|_{Y} ^{k} \otimes T\right|_{Y} \otimes I_{k, j} \tag{8.16}
\end{equation*}
$$

\{eq:injLkTideal\}
Using Theorem 7.3.1 we can start the following inequalities:

$$
\begin{aligned}
& \frac{1}{m!} \int_{Y}\left(\left.\theta\right|_{Y}+\operatorname{dd}^{\mathrm{c}} \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)^{m} \\
= & \lim _{k \rightarrow \infty} \frac{1}{k^{m}} h^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes I\left(k \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)\right) \quad \text { by Theorem 7.3.1 } \\
\leq & \lim _{k \rightarrow \infty} \frac{1}{k^{m}} h^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes \operatorname{Res}_{Y}(\mathcal{I}(k \varphi))\right) \quad \text { by Theorem 1.4.5 } \\
\leq & \varlimsup_{k \rightarrow \infty} \frac{1}{k^{m}} h^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes \operatorname{Res}_{Y}(\mathcal{I}(k \varphi))\right) \\
\leq & \varlimsup_{k \rightarrow \infty} \frac{1}{k^{m}} h^{0}\left(Y,\left.\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes I\left(k \varphi_{j}\right)\right|_{Y}\right) \\
\leq & \varlimsup_{k \rightarrow \infty} \frac{1}{k^{m}} h^{0}\left(Y,\left.\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes \mathcal{I}_{\infty}\left((1-\epsilon) k \varphi_{j}\right)\right|_{Y}\right) \quad \text { by Lemma 1.6.3 } \\
\leq & \varlimsup_{k \rightarrow \infty} \frac{1}{k^{m}} h^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes \mathcal{I}_{k, j}\right) \quad \text { by }(8.16) \\
\leq & \varlimsup_{k \rightarrow \infty} \frac{1}{k^{m}} \operatorname{dim}_{\mathbb{C}}\left\{\left.s\right|_{Y}: s \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes \frac{I}{\mathcal{I}\left((1-\epsilon)^{2} k \varphi_{j}+\psi_{Y}\right)}\right)\right\} \\
= & \varlimsup_{k \rightarrow \infty} \frac{1}{k^{m}} \operatorname{dim}_{\mathbb{C}}\left\{\left.s\right|_{Y}: s \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes I\left((1-\epsilon)^{2} k \varphi_{j}\right)\right)\right\} \quad \text { (see below) } \\
= & \frac{1}{m!} \int_{Y}\left(\left.\theta\right|_{Y}+\left.(1-\epsilon)^{2} \operatorname{dd}^{\mathrm{c}} \varphi_{j}\right|_{Y}\right)^{m} \quad \text { by Lemma 8.3.3, }
\end{aligned}
$$

CDM17
where in the penultimate line we used $[\mathrm{CDM17}$, 17 , Theorem 1.1(6)] for $q=0$. Letting $\epsilon \rightarrow \infty$ and then $j \rightarrow \infty$ the result follows.

Proof (Proof of Theorem 8.3.1) Using Proposition 8.2.3 and Theorem 7.3.1 we obtain that

$$
\begin{aligned}
\int_{Y}\left(\left.\theta\right|_{Y}+\operatorname{dd}^{\mathrm{c}} \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)^{m} & =\lim _{k \rightarrow \infty} \frac{m!}{k^{m}} h^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes I\left(k \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)\right) \\
& \leq \underline{\lim }_{k \rightarrow \infty} \frac{m!}{k^{m}} h^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes \operatorname{Res}_{Y}(\mathcal{I}(k \varphi))\right)
\end{aligned}
$$

Now we address the other direction in (8.9). Let $\phi \in \mathrm{H}^{0}(X, A)$ be a section that does not vanish identically on Y. Such ϕ exists since A is very ample.

We fix $k_{0} \in \mathbb{N}$. For any $k \geq 0$, we have that $k=q k_{0}+r$ with $q, r \in \mathbb{N}$ and $r \in\left\{0, \ldots, k_{0}-1\right\}$. Also, we have an injective linear map

$$
\mathrm{H}^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes I\left(\left.k \varphi\right|_{Y}\right)\right) \xrightarrow{\cdot \phi^{\otimes q}} \mathrm{H}^{0}\left(Y,\left.\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes A\right|_{Y} ^{q} \otimes \mathcal{I}\left(\left.k \varphi\right|_{Y}\right)\right) .
$$

Therefore,

$$
\begin{aligned}
& \varlimsup_{k \rightarrow \infty} \frac{m!}{k^{m}} h^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes I\left(\left.k \varphi\right|_{Y}\right)\right) \\
\leq & \varlimsup_{k \rightarrow \infty} \frac{m!}{k^{m}} h^{0}\left(Y,\left.\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes A\right|_{Y} ^{q} \otimes I\left(\left.k \varphi\right|_{Y}\right)\right) \\
= & \frac{1}{k_{0}^{m}} \varlimsup_{q \rightarrow \infty} \frac{m!}{q^{m}} h^{0}\left(Y,\left.\left.\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{q k_{0}} \otimes A\right|_{Y} ^{q} \otimes L\right|_{Y} ^{r} \otimes \mathcal{I}\left(\left.k \varphi\right|_{Y}\right)\right) \\
\leq & \frac{1}{k_{0}^{m}} \varlimsup_{q \rightarrow \infty} \frac{m!}{q^{m}} h^{0}\left(Y,\left.\left.\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{q k_{0}} \otimes A\right|_{Y} ^{q} \otimes L\right|_{Y} ^{r} \otimes \mathcal{I}\left(\left.k_{0} q \varphi\right|_{Y}\right)\right) \\
= & \int_{Y}\left(\left.\theta\right|_{Y}+\left.k_{0}^{-1} \omega\right|_{Y}+\operatorname{dd}^{\mathrm{c}} \operatorname{Tr}_{Y}^{\theta+k_{0}^{-1} \omega}(\varphi)\right)^{m} \\
= & \int_{Y}\left(\left.\theta\right|_{Y}+\left.k_{0}^{-1} \omega\right|_{Y}+\operatorname{dd}^{\mathrm{c}} \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)^{m},
\end{aligned}
$$

where in the fourth line we have used that $k_{0} q \leq k$ and in the last line we have used Proposition 8.3.1 for the big line bundle $L^{k_{0}} \otimes A$, the Kähler current $k_{0} \theta_{u}-\mathrm{dd}^{\mathrm{c}} \log g=$ $k_{0} \theta_{u}+\omega$, and twisting bundle $T \otimes L^{r}$. Letting $k_{0} \rightarrow \infty$, we conclude that

$$
\varlimsup_{k \rightarrow \infty} \frac{m!}{k^{m}} h^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes I\left(\left.k \varphi\right|_{Y}\right)\right) \leq \int_{Y}\left(\left.\theta\right|_{Y}+\operatorname{dd}^{\mathrm{c}} \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)^{m}
$$

thm: rest_volume_2
Theorem 8.3.2 Let $\varphi \in \operatorname{PSH}(X, \theta)$ such that $v(\varphi, Y)=0$. Assume that θ_{φ} is a Kähler current. Then

$$
\int_{Y}\left(\left.\theta\right|_{Y}+\operatorname{dd}^{\mathrm{c}} \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)^{m}=\lim _{k \rightarrow \infty} \frac{m!}{k^{m}} \operatorname{dim}_{\mathbb{C}}\left\{\left.s\right|_{Y}: s \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes \mathcal{I}(k \varphi)\right)\right\}
$$

Proof This is a consequence of Theorem 7.3.1, Theorem 8.2.1 and Theorem 8.3.1:

$$
\begin{aligned}
\int_{Y}\left(\left.\theta\right|_{Y}+\mathrm{dd}^{\mathrm{c}} \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)^{m} & =\lim _{k \rightarrow \infty} \frac{m!}{k^{m}} h^{0}\left(Y,\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes I\left(k \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)\right) \\
& \leq \varliminf_{k \rightarrow \infty} \frac{m!}{k^{m}} \operatorname{dim}_{\mathbb{C}}\left\{\left.s\right|_{Y}: s \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right)\right\} \\
& \leq \varlimsup_{k \rightarrow \infty} \frac{m!}{k^{m}} \operatorname{dim}_{\mathbb{C}}\left\{\left.s\right|_{Y}: s \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right)\right\} \\
& \leq \lim _{k \rightarrow \infty} \frac{m!}{k^{m}} h^{0}\left(Y,\left.\left.\left.T\right|_{Y} \otimes L\right|_{Y} ^{k} \otimes I(k \varphi)\right|_{Y}\right) \\
& =\int_{Y}\left(\left.\theta\right|_{Y}+\operatorname{dd}^{\mathrm{c}} \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)^{m}
\end{aligned}
$$

Remark $\&_{0 \times 2}^{3} l_{4}$ One could also show that when (8.8) fails, the right-hand side of (8.9) is 0 . See [DX24].

8.4 Analytic Bertini theorems

Let X be a connected projective manifold of dimension $n \geq 1$.
The analytic Bertini theorem handles the restriction along a generic subvariety.
thm: Bert
Theorem 8.4.1 Let $\varphi \in \operatorname{QPSH}(X)$. Let $p: X \rightarrow \mathbb{P}^{N}$ be a morphism $(N \geq 1)$. Define

$$
\mathcal{G}:=\left\{H \in\left|O_{\mathbb{P}^{N}}(1)\right|: H^{\prime}:=H \cap X \text { is smooth and } \mathcal{I}\left(\left.\varphi\right|_{H^{\prime}}\right)=\operatorname{Res}_{H^{\prime}}(\mathcal{I}(\varphi))\right\} .
$$

Then $\mathcal{G} \subseteq\left|O_{\mathbb{P}^{N}}(1)\right|$ is co-pluripolar.
Recall that co-pluripolar sets are defined in Definition 1.1.4. We adopt the convention that $I(-\infty)=0$.

Remark 8.4.1 Here and in the sequel, we slightly abuse the notation by writing $H \cap X$ for $p^{-1} H$, the scheme-theoretic inverse image of H. In other words, $H \cap X:=H \times \times_{\mathbb{P}^{N}} X$.

By definition, any $H \in\left|O_{\mathbb{P}^{N}}(1)\right|$ such that $p^{-1} H=\emptyset$ lies in \mathcal{G}.
Proof Take an ample line bundle L with a smooth Hermitian metric h such that $c_{1}(L, h)+\operatorname{dd}^{\mathrm{c}} \varphi \geq 0$, where $c_{1}(L, h)$ is the first Chern form of (L, h), namely the curvature form of h. We introduce $\Lambda:=\left|O_{\mathbb{P}^{N}}(1)\right|$ to simplify our notations.

Step 1. We prove that the following set is co-pluripolar:

$$
\begin{aligned}
& \mathcal{G}_{L}:=\left\{H \in \Lambda: H \cap X \text { is smooth and } \mathrm{H}^{0}\left(H \cap X,\left.\omega_{H \cap X} \otimes L\right|_{H \cap X} \otimes \mathcal{I}\left(\left.\varphi\right|_{H \cap X}\right)\right)=\right. \\
& \left.\qquad \mathrm{H}^{0}\left(H \cap X,\left.\omega_{H \cap X} \otimes L\right|_{H \cap X} \otimes \operatorname{Res}_{H \cap X}(\mathcal{I}(\varphi))\right)\right\} .
\end{aligned}
$$

Here $\omega_{H \cap X}$ denotes the dualizing sheaf of $H \cap X$.
Let $U \subseteq \Lambda \times X$ be the closed subvariety whose \mathbb{C}-points correspond to pairs $(H, x) \in \Lambda \times X$ with $p(x) \in H$. Let $\pi_{1}: U \rightarrow \Lambda$ be the natural projection. We may assume that π_{1} is surjective, as otherwise there is nothing to prove.

Observe that U is a local complete intersection scheme by Krulls Hauptidfalsggtz and a fortiori a Cohen-Macaulay scheme. It follows from miracle flatness $[\sqrt{7 a t} 89$, Theorem 23.1] that the natural projection $\pi_{2}: U \rightarrow X$ is flat. As the fibers of π_{2} over closed points of X are isomorphic to \mathbb{P}^{N-1}, it follows that π_{2} is smooth. Thus, U is smooth as well. Moreover, observe that

$$
\begin{equation*}
I\left(\pi_{2}^{*} \varphi\right)=\pi_{2}^{*} I(\varphi) \tag{8.17}
\end{equation*}
$$

\{eq:pi2pullvarphiItemp1\}
by Proposition 1.4.5.
In the following, we will construct pluripolar sets $\Sigma_{1} \subseteq \Sigma_{2} \subseteq \Sigma_{3} \subseteq \Sigma_{4} \subseteq \Lambda$ such that the behaviour of π_{1} is improved successively on the complement of Σ_{i}.

Step 1.1. The usual Bertini theorem shows that there is a proper Zariski closed set $\Sigma_{1} \subseteq \Lambda$ such that π_{1} has smooth fibres outside Σ_{1}. Enlarging Σ_{1}, we could guarantee that π_{1} and $\mathcal{I}\left(\pi_{2}^{*} \varphi\right)$ are both flat outside Σ_{1}. See [$[\mathcal{G} 65$, Théorème 6.9.1]. Then after further enlarging Σ_{1} so that H avoids all associated points of $O_{X} / \mathcal{I}(\varphi)$, for all $H \in \Lambda \backslash \Sigma_{1}$. Let $\pi_{1, H}$ denote the fibre of π_{1} at H and write $i_{H}: \pi_{1, H} \rightarrow U$ for the inclusion morphism. We arrive at

$$
\operatorname{Res}_{\pi_{1, H}}\left(\mathcal{I}\left(\pi_{2}^{*} \varphi\right)\right)=i_{H}^{*} \mathcal{I}\left(\pi_{2}^{*} \varphi\right)
$$

for all $H \in \Lambda \backslash \Sigma_{1} .{ }^{1}$
Step 1.2. By Grauert's coherence theorem,

$$
\mathcal{F}^{i}:=R^{i} \pi_{1 *}\left(\omega_{U / \Lambda} \otimes \pi_{2}^{*} L \otimes I\left(\pi_{2}^{*} \varphi\right)\right)
$$

is coherent for all i. Here $\omega_{U / \Lambda}$ denotes the relative dualizing sheaf of the morphism $U \rightarrow \Lambda$. Thus, there is a proper Zariski closed set $\Sigma_{2} \subseteq \Lambda$ such that
(1) $\Sigma_{2} \supseteq \Sigma_{1}$.
(2) The \mathcal{F}^{i}, s are locally free outside Σ_{2}.

We write $\mathcal{F}=\mathcal{F}^{0}$. By cohomology and base change [नar [नar 77 , Theorem III.12.11], for any $H \in \Lambda \backslash \Sigma_{2}$, the fibre $\left.\mathcal{F}\right|_{H}$ of \mathcal{F} is given by

$$
\left.\mathcal{F}\right|_{H}=\mathrm{H}^{0}\left(\pi_{1, H},\left.\left.\omega_{U / \Lambda}\right|_{\pi_{1, H}} \otimes \pi_{2}^{*} L\right|_{\pi_{1, H}} \otimes \operatorname{Res}_{\pi_{1, H}}\left(\mathcal{I}\left(\pi_{2}^{*} \varphi\right)\right)\right) .
$$

Step 1.3. In order to proceed, we need to make use of the Hodge metrichps \mathcal{H}_{8} on \mathcal{F} defined in [HPS18]. We briefly recall its definition in our setting. By [HPS18, Section 22], we can find a proper Zariski closed set $\Sigma_{3} \subseteq \Lambda$ such that
(1) $\Sigma_{3} \supseteq \Sigma_{2}$,
(2) π_{1} is smooth outside Σ_{3},
(3) both \mathcal{F} and $\pi_{1 *}\left(\omega_{U / \Lambda} \otimes \pi_{2}^{*} L\right) / \mathcal{F}$ are locally free outside Σ_{3}, and
(4) for each i,

$$
R^{i} \pi_{1 *}\left(\omega_{U / \Lambda} \otimes \pi_{2}^{*} L\right)
$$

is locally free outside Σ_{3}.
${ }^{1}$ This subtle point was overlooked in the proof of $\left[\frac{X i a B e r}{[X i a 22 a}\right]$.

Then for any $H \in \Lambda \backslash \Sigma_{3}$,

$$
\left.\mathrm{H}^{0}\left(H \cap X,\left.\omega_{H \cap X} \otimes L\right|_{H \cap X} \otimes \mathcal{I}\left(\left.\varphi\right|_{H \cap X}\right)\right) \subseteq \mathcal{F}\right|_{H} \subseteq \mathrm{H}^{0}\left(H \cap X,\left.\omega_{H \cap X} \otimes L\right|_{H \cap X}\right)
$$

HPS18
See [FTPS 18, Lemma 22.1].
Now we can give the definition of the Hodge metric on $\Lambda \backslash \Sigma_{3}$. Given any $H \in \Lambda \backslash \Sigma_{3}$, any $\left.\alpha \in \mathcal{F}\right|_{H}$, the Hodge metric is defined as

$$
h_{\mathcal{H}}(\alpha, \alpha):=\int_{X \cap H}|\alpha|_{h}^{2} \mathrm{e}^{-\varphi} \in[0, \infty] .
$$

Observe that $h_{\mathcal{H}}(\alpha, \alpha)<\infty$ if and only if $\alpha \in \mathrm{H}_{\notin H P S \cap}^{0}\left(H,\left.\omega_{H \cap X 1}^{\otimes} L_{8}\right|_{H \cap X} \otimes \mathcal{I}\left(\left.\varphi\right|_{H \cap X}\right)\right)$. Moreover, $h_{\mathcal{H}}(\alpha, \alpha)>0$ if $\alpha \neq 0$. It is shown in [TPS18] (c.f. [PT18, Theorem 3.3.5]) that $h_{\mathcal{H}}$ is indeed a singular Hermitian metric, and it extends to a positive metric on \mathcal{F}.

Step 1.4. The determinant $\operatorname{det} h_{\mathcal{H}}$ is singular at all $H \in \Lambda \backslash \Sigma_{3}$ such that

$$
\mathrm{H}^{0}\left(H \cap X,\left.\omega_{H \cap X} \otimes L\right|_{H \cap X} \otimes I\left(\left.\varphi\right|_{H \cap X}\right)\right) \neq\left.\mathcal{F}\right|_{H}
$$

As the map π_{2} is smooth, we have $\pi_{2}^{*} \mathcal{I}(\varphi)=\mathcal{I}\left(\pi_{2}^{*} \varphi\right)$ by Proposition 1.4.5. Under the identification $\pi_{1, H} \cong H \cap X$, we have

$$
\operatorname{Res}_{\pi_{1, H}}\left(\pi_{2}^{*} I(\varphi)\right) \cong \operatorname{Res}_{H \cap X}(I(\varphi))
$$

Thus, we have the following inclusions:

$$
\begin{aligned}
& \mathrm{H}^{0}\left(H \cap X,\left.\omega_{H \cap X} \otimes L\right|_{H \cap X} \otimes I\left(\left.\varphi\right|_{H \cap X}\right)\right) \\
& \subseteq \mathrm{H}^{0}\left(H \cap X,\left.\omega_{H \cap X} \otimes L\right|_{H \cap X} \otimes \operatorname{Res}_{H \cap X}(\mathcal{I}(\varphi))\right),
\end{aligned}
$$

the right-hand side being $\left.\mathcal{F}\right|_{H}$.
Recall that the first inclusion follows from Theorem 1.4.5. Hence, $\operatorname{det} h_{\mathcal{H}}$ is singular at all $H \in\left|O_{\mathbb{P}^{N}}(1)\right| \backslash \Sigma_{3}$ such that

$$
\begin{aligned}
& \mathrm{H}^{0}\left(H \cap X,\left.\omega_{H \cap X} \otimes L\right|_{H \cap X} \otimes I\left(\left.\varphi\right|_{H \cap X}\right)\right) \\
& \neq \mathrm{H}^{0}\left(H \cap X,\left.\omega_{H \cap X} \otimes L\right|_{H \cap X} \otimes \operatorname{Res}_{H \cap X}(I(\varphi))\right) .
\end{aligned}
$$

Let Σ_{4} be the μ nion of Σ_{3} and the set of all such H. Since the Hodge metric $h_{\mathcal{H}}$ is positive ([FTT18, Theorem 3.3.5] and [FTPS18, Theorem 21.1]), its determinant $\operatorname{det} h_{\mathcal{H}}$ is also positive ([KRau15, Proposition 1.3] and [FTPS18, Proposition 25.1]), it follows that Σ_{4} is pluripolar. As a consequence, \mathcal{G}_{L} is co-pluripolar.

Step 2.

Fix an ample invertible sheaf S on X. The same result holds with $L \otimes S^{\otimes a}$ in place of L. Thus, the set

$$
A:=\bigcap_{a=0}^{\infty} \mathcal{G}_{L \otimes S^{\otimes a}}
$$

is co-pluripolar. For each $H \in W$ such that $X \cap H$ is smooth and $I\left(\left.\varphi\right|_{X \cap H}\right) \neq$ $\operatorname{Res}_{H \cap X}(\mathcal{I}(\varphi))$, let \mathcal{K} be the following cokernel:

$$
0 \rightarrow \mathcal{I}\left(\left.\varphi\right|_{X \cap H}\right) \rightarrow \operatorname{Res}_{H \cap X}(\mathcal{I}(\varphi)) \rightarrow \mathcal{K} \rightarrow 0
$$

By Serre vanishing theorem, taking a large enough, we may guarantee that

$$
H^{1}\left(X \cap H,\left.\omega_{X \cap H} \otimes\left(L \otimes S^{\otimes a}\right)\right|_{X \cap H} \otimes \mathcal{I}\left(\left.\varphi\right|_{X \cap H}\right)\right)=0
$$

and

$$
\mathrm{H}^{0}\left(X \cap H,\left.\omega_{X \cap H} \otimes\left(L \otimes S^{\otimes a}\right)\right|_{X \cap H} \otimes \mathcal{K}\right) \neq 0
$$

Then

$$
\begin{array}{r}
\mathrm{H}^{0}\left(X \cap H,\left.\omega_{X \cap H} \otimes\left(L \otimes S^{\otimes a}\right)\right|_{X \cap H} \otimes I\left(\left.\varphi\right|_{X \cap H}\right)\right) \neq \\
\mathrm{H}^{0}\left(X \cap H,\left.\omega_{X \cap H} \otimes\left(L \otimes S^{\otimes a}\right)\right|_{X \cap H} \otimes \operatorname{Res}_{H \cap X}(I(\varphi))\right) .
\end{array}
$$

Thus, $H \notin A$. We conclude that \mathcal{G} is co-pluripolar.
In the sequel of this section, we fix a base-point free linear system Λ on X.
Corollary 8.4.1 Let $\varphi \in \operatorname{QPSH}(X)$. Then there is a co-pluripolar subset $\Lambda^{\prime} \subseteq \Lambda$ such that $\left.\varphi\right|_{H} \not \equiv-\infty$ for any $H \in \Lambda^{\prime}$.
Proof This follows immediately from Theorem 8.4.1.
Corollary 8.4.2 Assume that $n \geq 2$. Let $\varphi \in \operatorname{QPSH}(X)$. Then there is a co-pluripolar set $\Lambda^{\prime} \subseteq \Lambda$ such that any $H \in \Lambda^{\prime}$ is connected and smooth, $v(\varphi, H)=0$ and we have

$$
\left.\operatorname{Tr}_{H}(\varphi) \sim_{I} \varphi\right|_{H}
$$

The assumption $n \geq 2$ is only to guarantee that a general element $H \in \Lambda$ is connected, since we developed most of our theories only in this case.
Proof First observe that the set $\{x \in X: v(\varphi, x)>0\}$ is a countable union of proper analytic subsets by Theorem 1.4.1. It follows that a very general element in Λ is not contained in this set.

Fix an ample line bundle L so that there is a smooth psh metric h_{L} such that $c_{1}\left(L, h_{L}\right)+\operatorname{dd}^{\mathrm{c}} \varphi$ is a Kähler current. Thanks to Theorem 8.4.1, we can find a co-pluripolar set $\Lambda^{\prime} \subseteq \Lambda$ such that each $H \in \Lambda^{\prime}$ satisfies the following:
(1) H is smooth;
(2) $v(\varphi, H)=0$;
(3) $I\left(\left.k \varphi\right|_{H}\right)=\operatorname{Res}_{H}(\mathcal{I}(\varphi))$ for all $k>0$.

It follows from Theorem 8.3.1 and Theorem 7.3.1 that

$$
\int_{H}\left(\left.c_{1}\left(L, h_{L}\right)\right|_{H}+\operatorname{dd}^{\mathrm{c}} \operatorname{Tr}_{Y}^{c_{1}\left(L, h_{L}\right)}(\varphi)\right)^{n-1}=\int_{H}\left(\left.c_{1}\left(L, h_{L}\right)\right|_{H}+\left.\operatorname{dd}^{\mathrm{c}} \varphi\right|_{H}\right)^{n-1} .
$$

Since $\left.\varphi\right|_{H} \leq \operatorname{Tr}_{Y}(\varphi)$ by Proposition 8.1.3, our assertion follows.

Lemma 8.4.1 Assume that $n \geq 2$. Let T be a closed positive $(1,1)$-current on X with $\int_{X} T^{n}>0$. Then there is a co-pluripolar set $\Lambda^{\prime} \subseteq \Lambda$ such that any $H \in \Lambda^{\prime}$ is connected and smooth, $\left.T\right|_{H}$ is well-defined and satisfies

$$
\left.\int_{H} T\right|_{H} ^{n-1}>0
$$

Proof Write $T=\theta_{\varphi}$ for some smooth closed real (1,1)-form θ on X and $\varphi \in$ $\operatorname{PSH}(X, \theta)_{>0}$. Thanks to Lemma 2.3.2, we can find $\psi \in \operatorname{PSH}(X, \theta)$ such that θ_{ψ} is a Kähler current and $\psi \leq \varphi$. By Corollary 8.4.1, we can find a co-pluripolar set $\Lambda^{\prime} \subseteq \Lambda$ such that each $H \in \Lambda^{\prime}$ satisfies:
(1) H is smooth and connected;
(2) the restriction $\left.\psi\right|_{H}$ is not identically $-\infty$.

Therefore, $\left.\psi\right|_{H} \leq\left.\varphi\right|_{H}$ are two potentials in $\operatorname{PSH}\left(H,\left.\theta\right|_{H}\right)$ for any $H \in \Lambda^{\prime}$. Our assertion follows from Theorem 2.3.2.
cor:tracegeneralwelldef
Corollary 8.4.3 Assume that $n \geq 2$. Let T be a closed positive $(1,1)$-current on X with $\operatorname{vol} T>0$. Then there is a co-pluripolar set $\Lambda^{\prime} \subseteq \Lambda$ such that any $H \in \Lambda^{\prime}$ is connected and smooth, and $\operatorname{Tr}_{H}^{\left.[T]\right|_{H}}(T)$ is well-defined.

Proof This follows from Example 8.1.3, Corollary 8.4.2 and Lemma 8.4.1.
Proposition 8.4.1 Assume that $n \geq 2$. Let $\varphi, \psi \in \operatorname{QPSH}(X)$. Assume that $\varphi \leq_{P} \psi$. Then there is a co-pluripolar set $\Lambda^{\prime} \subseteq \Lambda$ such that any $H \in \Lambda^{\prime}$ is connected and smooth, and $\left.\varphi\right|_{H} \leq\left._{P} \psi\right|_{H}$.

Proof Thanks to Lemma 6.1.2, we may replace φ by $\varphi \vee \psi$ and assume that $\varphi \sim_{P} \psi$. It suffices to show that $\left.\left.\varphi\right|_{H} \sim \psi\right|_{H}$.

Take a smooth closed real $(1,1)$-form θ on X so that $\varphi, \psi \in \operatorname{PSH}(X, \theta)_{>0}$. It suffices to compare φ and ψ with $P_{\theta}[\varphi]$, so without loss of generality, we may assume that ψ is a model potential in $\operatorname{PSH}(X, \theta)_{>0}$. Up to adding a constant to φ, we may then assume that $\varphi \leq \psi$. It follows from Lemma 2.3.1 that we can find a sequence $\left(\eta_{j}\right)_{j}$ in $\operatorname{PSH}(X, \theta)_{>0}$ such that

$$
j^{-1} \eta_{j}+\left(1-j^{-1}\right) \psi \leq \varphi
$$

for all $j \geq 2$. By Corollary 8.4.1, Lemma 8.4.1, we can find a co-pluripolar set $\Lambda^{\prime} \subseteq \Lambda$ such that any $H \in \Lambda^{\prime}$ satisfies:
(1) H is smooth and connected;
(2) $\left.\eta_{j}\right|_{H} \in \operatorname{PSH}\left(H,\left.\theta\right|_{H}\right)_{>0}$ for all $j \geq 2$ and $\left.\psi\right|_{H} \in \operatorname{PSH}\left(H,\left.\theta\right|_{H}\right)_{>0}$.

Therefore, taking Proposition 3.1.5 into account, we arrive at

$$
j^{-1} P_{\left.\theta\right|_{H}}\left[\left.\eta_{j}\right|_{H}\right]+\left(1-j^{-1}\right) P_{\left.\theta\right|_{H}}\left[\left.\psi\right|_{H}\right] \leq P_{\left.\theta\right|_{H}}\left[\left.\varphi\right|_{H}\right]
$$

for all $j \geq 2$. Letting $j \rightarrow \infty$, we conclude that

$$
P_{\left.\theta\right|_{H}}\left[\left.\psi\right|_{H}\right] \leq P_{\left.\theta\right|_{H}}\left[\left.\varphi\right|_{H}\right]
$$

and hence $\left.\psi\right|_{H} \leq\left._{P} \varphi\right|_{H}$.
Lemma 8.4.2 Assume that $n \geq 2$. Let θ be a closed smooth (1, 1$)$-form on X representing a big cohomology class and $\left(\varphi_{j}\right)_{j}$ be a decreasing sequence in $\operatorname{PSH}(X, \theta)$. Assume that $\varphi \in \operatorname{PSH}(X, \theta)$ and $\varphi_{j} \xrightarrow{d_{S}} \varphi$. Then there is a co-pluripolar set $\Lambda^{\prime} \subseteq \Lambda$ such that any $H \in \Lambda^{\prime}$ is connected and smooth, $\left.\varphi_{j}\right|_{H} \not \equiv-\infty$ for all $j \geq 1,\left.\varphi\right|_{H} \not \equiv-\infty$, and

$$
\left.\left.\varphi_{j}\right|_{H} \xrightarrow{d_{S}} \varphi\right|_{H} .
$$

Proof By Corollary 6.2.7, we may assume that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$. Using Lemma 2.3.1, we could find a decreasing sequence $\left(\epsilon_{j}\right)_{j}$ in $(0,1)$ with limit 0 and $\eta_{j} \in \operatorname{PSH}(X, \theta)_{>0}$ such that $\eta_{j} \leq \varphi$ and

$$
\epsilon_{j} \eta_{j}+\left(1-\epsilon_{j}\right) \varphi_{j} \leq \varphi
$$

By Corollary 8.4.1, Lemma 8.4.1, we can find a co-pluripolar set $\Lambda^{\prime} \subseteq \Lambda$ such that any $H \in \Lambda^{\prime}$ satisfies:
(1) H is smooth and connected;
(2) $\left.\eta_{j}\right|_{H} \in \operatorname{PSH}\left(H,\left.\theta\right|_{H}\right)_{>0}$ for all $j \geq 1$ and $\left.\varphi\right|_{H} \in \operatorname{PSH}\left(H,\left.\theta\right|_{H}\right)_{>0}$.

Therefore, taking Proposition 3.1.5 into account, we arrive at

$$
\epsilon_{j} P_{\left.\theta\right|_{H}}\left[\left.\eta_{j}\right|_{H}\right]+\left(1-\epsilon_{j}\right) P_{\left.\theta\right|_{H}}\left[\left.\varphi_{j}\right|_{H}\right] \leq P_{\left.\theta\right|_{H}}\left[\left.\varphi\right|_{H}\right]
$$

Letting $j \rightarrow \infty$, we get

$$
\lim _{j \rightarrow \infty} P_{\left.\theta\right|_{H}}\left[\left.\varphi_{j}\right|_{H}\right] \leq P_{\left.\theta\right|_{H}}\left[\left.\varphi\right|_{H}\right]
$$

By Theorem 2.3.2 and Proposition 3.1.8, we conclude that

$$
\lim _{j \rightarrow \infty} \int_{H}\left(\left.\theta\right|_{H}+\left.\operatorname{dd}^{\mathrm{c}} \varphi_{j}\right|_{H}\right)^{n-1}=\int_{H}\left(\left.\theta\right|_{H}+\left.\mathrm{dd}^{\mathrm{c}} \varphi\right|_{H}\right)^{n-1}
$$

Therefore, using Corollary 6.2.4, we conclude that $\left.\left.\varphi_{j}\right|_{H} \xrightarrow{d_{S}} \varphi\right|_{H}$.
Corollary 8.4.4 Assume that $n \geq 2$. Let $\varphi \in \operatorname{QPSH}(X)$ be an I-good potential. Then there is a co-pluripolar set $\Lambda^{\prime} \subseteq \Lambda$ such that any $H \in \Lambda^{\prime}$ satisfies:
(1) H is connected and smooth;
(2) $\left.\varphi\right|_{H} \in \operatorname{PSH}\left(X,\left.\theta\right|_{H}\right)$ is I-good;
(3) $v(\varphi, H)=0$;
(4) $\left.\operatorname{Tr}_{H} \varphi \sim_{P} \varphi\right|_{H}$.

Furthermore, if θ is a closed smooth real $(1,1)$-form on X such that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$, then we could further guarantee that $\operatorname{Tr}_{H}(\varphi)$ has a representative $\operatorname{Tr}_{H}(\varphi) \in$ $\operatorname{PSH}\left(H,\left.\theta\right|_{H}\right)_{>0}$ for all $H \in \Lambda^{\prime}$.

Proof This is a consequence of Lemma 8.4.2, Theorem 7.1.1, Corollary 8.4.2 and Corollary 8.4.3.

Chapter 9

Test curves

In this chapter, we develop the theory of test curves. Roughly speaking, a test curve is a concave curve of model potentials. In Section 9.2, we will prove the Ross-Witt Nyström correspondence, through which the test curves are related to geodesic rays in the space of quasi-plurisubharmonic functions. In Section 9.4, we define operations on test curves, anticipating applications in non-Archimedean pluripotential theory in Chapter 13.

9.1 The notion of test curves

Let X be a connected compact Kähler manifold of dimension n and θ be a smooth closed real $(1,1)$-form on X representing a big cohomology class.
def:testcur
Definition 9.1.1 A test curve Γ in $\operatorname{PSH}(X, \theta)$ consists of a real number $\Gamma_{\text {max }}$ together with a map $\left(-\infty, \Gamma_{\max }\right) \rightarrow \operatorname{PSH}(X, \theta)$ denoted by $\tau \mapsto \Gamma_{\tau}$ satisfying the following conditions:
(1) The map $\tau \mapsto \Gamma_{\tau}$ is concave and decreasing;
(2) each Γ_{τ} is a model potential;
(3) the potential

$$
\begin{equation*}
\Gamma_{-\infty}:=\sup _{\tau<\Gamma_{\max }} \Gamma_{\tau} \tag{9.1}
\end{equation*}
$$

satisfies

$$
\int_{X}\left(\theta+\operatorname{dd}^{\mathrm{c}} \Gamma_{-\infty}\right)^{n}>0
$$

Let $\phi \in \operatorname{PSH}(X, \theta)_{>0}$ be a model potential. The set of test curves Γ with $\Gamma_{-\infty}=\phi$ is denoted by $\mathrm{TC}(X, \theta ; \phi)$.

The union of all $\operatorname{TC}(X, \theta ; \phi)$'s for various model potentials $\phi \in \operatorname{PSH}(X, \theta)_{>0}$ is denoted by $\mathrm{TC}(X, \theta)_{>0}$.

By (2), $\sup _{X} \Gamma_{\tau}=0$ for each $\tau<\Gamma_{\max } . \operatorname{So} \Gamma_{-\infty} \in \operatorname{PSH}(X, \theta)$ by Proposition 1.2.1. Moreover, $\Gamma_{-\infty}$ is a model potential by Proposition 3.1.9.
rmk:extendtestcur
Remark 9.1.1 Sometimes it is convenient to extend Γ_{τ} to $\tau \geq \Gamma_{\max }$ as well. This can be done as follows: for $\tau>\Gamma_{\max }$, we set $\Gamma_{\tau} \equiv-\infty$. For $\tau=\Gamma_{\max }$, we set

$$
\Gamma_{\tau}:=\inf _{\tau^{\prime}<\Gamma_{\max }} \Gamma_{\tau^{\prime}} \in \operatorname{PSH}(X, \theta) .
$$

We will always make this extension in the sequel.
Recall that according to our general principle, we only talk about model potentials when a potential has positive mass. Fortunately, this principle is not violated in the above definition, as shown below:
lma:testcurvposmass
Lemma 9.1.1 Assume that $\Gamma \in \operatorname{TC}(X, \theta)_{>0}$. Then for each $\tau<\Gamma_{\max }$, we have

$$
\begin{equation*}
\int_{X}\left(\theta+\mathrm{dd}^{\mathrm{c}} \Gamma_{\tau}\right)^{n}>0 . \tag{9.2}
\end{equation*}
$$

\{eq:dalethtauposmass\}

Proof Fix $\tau \in\left(-\infty, \Gamma_{\max }\right)$.
By assumption, $\Gamma_{-\infty}$ has positive mass. By Corollary 2.3.1, we have

$$
\int_{X} \theta_{\Gamma_{-\infty}}^{n}=\lim _{\tau \rightarrow-\infty} \int_{X} \theta_{\Gamma_{\tau}}^{n} .
$$

In particular, for a sufficiently small $\tau_{0}<\tau$, we have

$$
\int_{X} \theta_{\Gamma_{\tau_{0}}}^{n}>0 .
$$

Now take $\tau^{\prime} \in\left(\tau, \Gamma_{\max }\right)$ and $t \in(0,1)$ so that

$$
\tau=(1-t) \tau^{\prime}+t \tau_{0}
$$

From the concavity of Γ, we find that

$$
\Gamma_{\tau} \geq(1-t) \Gamma_{\tau^{\prime}}+t \Gamma_{\tau_{0}}
$$

By Theorem 2.3.2,

$$
\int_{X} \theta_{\Gamma_{\tau}}^{n} \geq \int_{X} \theta_{(1-t) \Gamma_{\tau^{\prime}}+t \Gamma_{\tau_{0}}}^{n} \geq t^{n} \int_{X} \theta_{\Gamma_{\tau_{0}}}^{n}>0
$$

and (9.2) follows.
Proposition 9.1.1 Let $\Gamma \in \mathrm{TC}(X, \theta)_{>0}$. Then the map

$$
\left[-\infty, \Gamma_{\max }\right) \rightarrow \mathbb{R}, \quad \tau \mapsto \log \int_{X} \theta_{\Gamma_{\tau}}^{n}
$$

is concave and continuous.
Proof The concavity of this function follows from Theorem 2.3.3 and Theorem 2.3.2. The continuity at $-\infty$ is a consequence of Corollary 2.3.1.

Definition 9.1.2 Let $\phi \in \operatorname{PSH}(X, \theta)_{>0}$ be a model potential.
A test curve $\Gamma \in \mathrm{TC}(X, \theta ; \phi)$ is said to be bounded if for τ small enough, $\Gamma_{\tau}=\phi$. The subset of bounded test curves is denoted by $\mathrm{TC}^{\infty}(X, \theta ; \phi)$. In this case, we write

$$
\Gamma_{\min }:=\left\{\tau \in \mathbb{R}: \Gamma_{\tau}=\phi\right\} .
$$

A test curve $\Gamma \in \mathrm{TC}(X, \theta ; \phi)$ is said to have finite energy if

$$
\begin{equation*}
\mathbf{E}^{\phi}(\Gamma):=\Gamma_{\max } \int_{X} \theta_{\phi}^{n}+\int_{-\infty}^{\Gamma_{\max }}\left(\int_{X} \theta_{\Gamma_{\tau}}^{n}-\int_{X} \theta_{\phi}^{n}\right) \mathrm{d} \tau>-\infty . \tag{9.3}
\end{equation*}
$$

The subset of test curves with finite energy is denoted by $\operatorname{TC}^{1}(X, \theta ; \phi)$.
We first observe that the notion of test curves does not really depend on the choice of θ within its cohomology class.

prop:testcurveindeptheta

Proposition 9.1.2 Let θ^{\prime} be another smooth closed real $(1,1)$-form on X representing the same cohomology class as θ. Let $\phi \in \operatorname{PSH}(X, \theta)_{>0}$ be a model potential. Let $\phi^{\prime} \in \operatorname{PSH}\left(X, \theta^{\prime}\right)_{>0}$ be the unique model potential satisfying $\phi \sim \phi^{\prime}$.

Then there is a canonical bijection

$$
\mathrm{TC}(X, \theta ; \phi) \xrightarrow{\sim} \mathrm{TC}\left(X, \theta^{\prime} ; \phi^{\prime}\right) .
$$

This bijection induces the following bijections:

$$
\mathrm{TC}^{1}(X, \theta ; \phi) \xrightarrow{\sim} \mathrm{TC}^{1}\left(X, \theta^{\prime} ; \phi^{\prime}\right), \quad \mathrm{TC}^{\infty}(X, \theta ; \phi) \xrightarrow{\sim} \mathrm{TC}^{\infty}\left(X, \theta^{\prime} ; \phi^{\prime}\right) .
$$

These bijections satisfy the obvious cocycle conditions.
Proof Choose $g \in C^{\infty}(X)$ such that $\theta^{\prime}=\theta+\mathrm{dd}^{\mathrm{c}} g$. Given any $\Gamma \in \mathrm{TC}(X, \theta ; \phi)$, we observe that $\Gamma^{\prime}:\left(-\infty, \Gamma_{\max }\right) \rightarrow \operatorname{PSH}\left(X, \theta^{\prime}\right)$ defined as

$$
\tau \mapsto P_{\theta^{\prime}}\left[\Gamma_{\tau}-g\right]
$$

lies in $\operatorname{TC}\left(X, \theta^{\prime} ; \phi^{\prime}\right)$. Moreover, the choice of g is irrelevant since for any other choice of g, say g^{\prime}, we have

$$
\Gamma_{\tau}-g \sim \Gamma_{\tau}-g^{\prime} .
$$

All assertions follow directly from the definition.
Proposition 9.1.3 Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism from a compact Kähler manifold. Then the pointwise pull-back induces a bijection

$$
\pi^{*}: \mathrm{TC}(X, \theta ; \phi) \xrightarrow{\sim} \mathrm{TC}\left(Y, \pi^{*} \theta ; \pi^{*} \phi\right) .
$$

Proof This follows immediately from Proposition 3.1.4.
Proposition 9.1.4 Let Γ be a test curve in $\operatorname{PSH}(X, \theta)$. For each $x \in X$, the map $\mathbb{R} \ni \tau \mapsto \Gamma_{\tau}(x)$ is a closed concave function. Moreover, the map is proper as long as $\Gamma_{\Gamma_{\text {max }}}(x) \neq-\infty$.

The notion of closedness is recalled in Definition A.1.6.
Proof We argue the closedness. Fix $x \in X$. Assume that $\Gamma_{\tau}(x) \neq-\infty$ for some $\tau \in \mathbb{R}$. We only need to argue the upper-semicontinuity of $\tau \mapsto \Gamma_{\tau}(x)$. The upper semi-continuity is clear at $\tau \geq \Gamma_{\max }$, so we are reduced to prove the following:

$$
\begin{equation*}
\Gamma_{\tau}=\inf _{\tau^{\prime}<\tau} \Gamma_{\tau^{\prime}} \tag{9.4}
\end{equation*}
$$

for any $\tau<\Gamma_{\max }$. Take $\tau^{\prime \prime} \in\left(\tau, \Gamma_{\max }\right)$. Outside the polar locus of $\Gamma_{\tau^{\prime \prime}}$, we know that (9.4) holds by continuity. So (9.4) holds everywhere by Proposition 1.2.5.

The final assertion is trivial.
Definition 9.1.3 Let $\Gamma \in \mathrm{TC}(X, \theta)_{>0}$ and ω be a smooth closed real positive (1, 1)form. Then we define $P_{\theta+\omega}[\Gamma] \in \mathrm{TC}(X, \theta+\omega)_{>0}$ as follows:
(1) Define

$$
P_{\theta+\omega}[\Gamma]_{\max }=\Gamma_{\max } ;
$$

(2) for each $\tau<\Gamma_{\max }$, define

$$
P_{\theta+\omega}[\Gamma]_{\tau}=P_{\theta+\omega}\left[\Gamma_{\tau}\right]
$$

It follows form Proposition 3.1.5 that $P_{\theta+\omega}[\Gamma] \in \mathrm{TC}(X, \theta+\omega)_{>0}$.

9.2 Ross-Witt Nyström correspondence

Let X be a connected compact Kähler manifold of dimension n and θ be a smooth closed real (1,1)-form on X representing a big cohomology class. Fix a model potential $\phi \in \operatorname{PSH}(X, \theta)_{>0}$.

Proposition 9.1.4 allows us to talk about the Legendre transforms in the expected way.

The general definition of the Legendre transform Definition A.2.1 can be translated as follows:

Definition 9.2.1 Let $\Gamma \in \mathrm{TC}(X, \theta ; \phi)$. We define its Legendre transform as $\Gamma^{*}:[0, \infty) \rightarrow \operatorname{PSH}(X, \theta)$ given by

$$
\begin{equation*}
\Gamma_{t}^{*}=\sup _{\tau \in \mathbb{R}}\left(t \tau+\Gamma_{\tau}\right) \tag{9.5}
\end{equation*}
$$

\{eq:testcurveLegtran\}

Remark 9.2.1 Here we do not talk about the case $t<0$ because its behaviour is pretty trivial: take $x \in X$, if $\Gamma_{\tau}(x)=-\infty$ for all τ, then $\Gamma_{t}^{*}=-\infty$; otherwise, $\Gamma_{t}^{*}=\infty$.

As we will see later on, the information about $t \geq 0$ suffices to characterize Γ.
We have made a non-trivial claim that $\Gamma_{t}^{*} \in \operatorname{PSH}(X, \theta)$ for all $t \geq 0$. Let us prove this.

Lemma 9.2.1 Let $\Gamma \in \mathrm{TC}(X, \theta ; \phi)$. Then $\Gamma_{t}^{*} \in \operatorname{PSH}(X, \theta)$ for all $t \geq 0$. In fact, Γ is upper semicontinuous as a function of $X \times(0, \infty)$.
Proof We first observe that for each $x \in X$, we have

$$
\Gamma_{t}^{*}(x) \leq t \Gamma_{\max }<\infty
$$

Let $R=\{a+\mathrm{i} b \in \mathbb{C}: a>0\}$. We consider

$$
F: X \times R \rightarrow[-\infty, \infty), \quad(x, a+\mathrm{i} b) \mapsto \Gamma_{a}^{*}(x)
$$

Let $\pi: X \times R \rightarrow X$ be the natural projection. Observe that the upper semicontinuous envelope G of F is $\pi^{*} \theta$-psh by Proposition 1.2.1. It suffices to show that $F=G$. We let

$$
E:=\{(x, z) \in X \times R: F(x, z)<G(x, z)\} .
$$

We want to argue that $E=\varnothing$. Clearly, E can be written as $B \times \mathrm{i}$ for some set $B \subseteq X \times(0, \infty)$. Since E is a pluripolar set by Proposition 1.2.3, it has zero Lebesgue measure. Hence, B has zero Lebesgue measure. For each $x \in X$, write

$$
B_{x}=\{t \in(0, \infty):(t, x) \in B\} .
$$

By Fubini theorem, B_{x} has zero 1-dimensional Lebesgue measure for all $x \in X \backslash Z$, where $Z \subseteq X$ is a subset of measure 0 . We may assume that $Z \supseteq\left\{\Gamma_{-\infty}=0\right\}$ so that for $x \in X \backslash Z, \Gamma_{t}(x) \neq-\infty$ for all $t>0$.

For any $x \in X \backslash Z$, both $t \mapsto F(x, t)$ and $G(x, t)$ are convex functions with values in \mathbb{R} on $(0, \infty)$. They agree almost everywhere, hence everywhere by their continuity. It follows that for $x \in X \backslash Z$, we have $B_{x}=0$.

By Theorem A.2.1, for any $x \in X$, we have

$$
\Gamma_{\tau}(x)=\inf _{t>0}(F(t, x)-t \tau), \quad \tau<\Gamma_{\max }
$$

On the other hand, let

$$
\chi_{\tau}(x)=\inf _{t>0}(G(t, x)-t \tau), \quad \tau<\Gamma_{\max }, x \in X
$$

By Kiselman's principle Proposition 1.2.6, $\chi_{\tau} \in \operatorname{PSH}(X, \theta)$. But on $X \backslash Z$, we already know that $\Gamma_{\tau}=\chi_{\tau}$ for all $\tau<\Gamma_{\max }$. By Proposition 1.2.5, they are equal everywhere. By Theorem A.2.1 again, we find that $F=G$.

Lemma 9.2.2 Let $\Gamma \in \mathrm{TC}(X, \theta ; \phi)$, then

$$
\sup _{X} \Gamma_{t}^{*}=t \Gamma_{\max }
$$

for all $t \geq 0$.
In particular, $t \mapsto \Gamma_{t}^{*}-t \Gamma_{\max }$ is a decreasing function in $t \geq 0$.
Proof Choose $x \in X$ such that $\Gamma_{\Gamma_{\max }}(x)=0$. Then

$$
\Gamma_{t}^{*}(x)=t \Gamma_{\max }
$$

by definition. On the other hand, since $\Gamma_{\tau} \leq 0$ for all $\tau<\Gamma_{\max }$, we have

$$
\sup _{X} \Gamma_{t}^{*} \leq t \Gamma_{\max } .
$$

Lemma 9.2.3 Given $\Gamma \in \operatorname{TC}(X, \theta ; \phi)$, we have $\Gamma^{*} \in \mathcal{R}(X, \theta ; \phi)$.
Proof It follows from Lemma 9.2.1, (9.5) and Proposition 1.2.1 that Γ^{*} is a subgeodesic (in the sense that for each $0 \leq a \leq b$, the restriction $\left(\Gamma_{t}^{*}\right)_{t \in(a, b)}$ is a subgeodesic from Γ_{a}^{*} to Γ_{b}^{*}).

First observe that as $t \rightarrow 0+$, we have

$$
\begin{equation*}
\Gamma_{t}^{*} \xrightarrow{L^{1}} \phi . \tag{9.6}
\end{equation*}
$$

To see this, first observe that by (9.5), for any fixed $t>0$ and any $x \in X$ with $\phi(x) \neq-\infty$, we have

$$
\Gamma_{t}^{*}(x) \leq t \Gamma_{\max }+\phi(x)
$$

By Proposition 1.2.5, the same holds everywhere. Therefore, any L^{1}-cluster point ψ of Γ_{t}^{*} as $t \rightarrow 0$ satisfies $\psi \leq \phi$. On the other hand, for any fixed $\tau<\Gamma_{\max }$, by (9.5), we have

$$
\Gamma_{t}^{*} \geq \Gamma_{\tau}+t \tau
$$

for any $t>0$. So $\psi \geq \Gamma_{\tau}$ almost everywhere and hence everywhere by Proposition 1.2.5. It follows that $\psi \geq \phi$. Therefore, $\psi=\phi$. On the other hand, from the above estimates and Proposition 1.5.1 that $\left(\Gamma_{t}^{*}\right)_{t \in(0,1)}$ is a relative compact subset in $\operatorname{PSH}(X, \theta)$ with respect to the L^{1}-topology. We therefore conclude (9.6).

Assume that Γ^{*} is not a geodesic ray. Then we can find $0 \leq a<b$ such that $\left(\Gamma_{t}^{*}\right)_{t \in(a, b)}$ differs from the geodesic $\left(\eta_{t}\right)_{t \in(a, b)}$ from Γ_{a}^{*} to Γ_{b}^{*}. We consider the subgeodesic $\left(\ell_{t}\right)_{t>0}$ given by $\ell_{t}=\eta_{t}$ for $t \in(a, b)$ and $\ell_{t}=\Gamma_{t}^{*}$ otherwise. Consider the Legendre transform

$$
\Gamma_{\tau}^{\prime}=\inf _{t>0}\left(\ell_{t}-t \tau\right), \quad \tau \in \mathbb{R}
$$

Then $\Gamma_{\tau}^{\prime} \geq \Gamma_{\tau}$ and $\Gamma_{\tau}^{\prime} \in \operatorname{PSH}(X, \theta) \cup\{-\infty\}$ by Proposition 1.2.6 for all $\tau \in \mathbb{R}$.
We claim that

$$
\Gamma_{\tau}^{\prime} \leq \Gamma_{\tau}+(b-a)\left(\Gamma_{\max }-\tau\right), \quad \tau \in \mathbb{R}
$$

Observe that $\Gamma_{\tau}^{\prime} \equiv-\infty$ when $\tau>\Gamma_{\max }$ by Lemma 9.2.2. So it suffices to consider $\tau \leq \Gamma_{\max }$. In this case, we compute

$$
\inf _{t \in[a, b]}\left(\ell_{t}-t \tau\right) \leq \Gamma_{b}^{*}-b \tau \leq(b-a)\left(\Gamma_{\max }-\tau\right) \inf _{t \in[a, b]}\left(\Gamma_{t}^{*}-t \tau\right)
$$

where we applied Lemma 9.2.2. In particular, for any $\tau<\Gamma_{\max }$, we have

$$
\Gamma_{\tau}^{\prime} \leq \Gamma_{\tau}
$$

On the other hand, by definition of Γ_{τ}^{\prime}, we clearly have $\Gamma_{\tau}^{\prime} \leq 0$ for all $\tau<\Gamma_{\max }$. It follows from the fact that Γ_{τ} is a model potential that $\Gamma_{\tau}=\Gamma_{\tau}^{\prime}$ for all $\tau<\Gamma_{\max }$. Therefore, by Theorem A.2.1, we have $\Gamma_{t}^{*}=\ell_{t}^{\prime}$ for all $t>0$, which is a contradiction. \square

Theorem 9.2.1 The Legendre transform in Definition 9.2.1 is a bijection

$$
\mathrm{TC}(X, \theta ; \phi) \xrightarrow{\sim} \mathcal{R}(X, \theta ; \phi) .
$$

Moreover, this bijection restricts to the following bijections:

$$
\mathrm{TC}^{1}(X, \theta ; \phi) \xrightarrow{\sim} \mathcal{R}^{1}(X, \theta ; \phi), \quad \mathrm{TC}^{\infty}(X, \theta ; \phi) \xrightarrow{\sim} \mathcal{R}^{\infty}(X, \theta ; \phi)
$$

For any $\Gamma \in \operatorname{TC}^{1}(X, \theta ; \phi)$, we have

$$
\begin{equation*}
\mathbf{E}^{\phi}(\Gamma)=\mathbf{E}^{\phi}\left(\Gamma^{*}\right) \tag{9.7}
\end{equation*}
$$

Proof It follows from Lemma 9.2.3 that the forward map is well-defined.
The inverse map is of course also given by the Legendre transform: given $\ell \in \mathcal{R}(X, \theta ; \phi)$, its Legendre transform is given by

$$
\begin{equation*}
\ell_{\tau}^{*}:=\inf _{t>0}\left(\ell_{t}-t \tau\right), \quad \tau \in \mathbb{R} . \tag{9.8}
\end{equation*}
$$

By Proposition 4.2.4, there is a constant $C>0$ such that $\ell_{t} \leq C t$.
Note that it follows from Proposition 1.2.6 that $\ell_{\tau}^{*} \in \operatorname{PSH}(X, \theta) \cup\{-\infty\}$ for all $\tau \in \mathbb{R}$.

We need to argue for any $\tau \in \mathbb{R}$ such that $\ell_{\tau}^{*} \not \equiv-\infty$, we have $P_{\theta}\left[\ell_{\tau}^{*}\right]=\ell_{\tau}^{*}$. Fix such τ and some $C>0$. It suffices to show that

$$
\begin{equation*}
\left(\ell_{\tau}^{*}+C\right) \wedge \phi \leq \ell_{\tau}^{*} \tag{9.9}
\end{equation*}
$$

\{eq: ellstarleqetemp1\}
For this purpose, let us consider the following geodesics: for any $M>0$ and $t \in[0,1]$, let

$$
\ell_{t}^{1, M}=\ell_{t M}-t M \tau, \quad \ell_{t}^{2, M}=\left(\ell_{\tau}^{*}+C\right) \wedge \phi-C t
$$

It is clear that at $t=0,1$, we have $\ell_{t}^{2, M} \leq \ell_{t}^{1, M}$. Hence, the same holds for all $t \in[0,1]$. In particular, for any fixed $s \in[0,1]$, we have

$$
\left(\ell_{\tau}^{*}+C\right) \wedge \phi-C s \leq \ell_{s M}-s M
$$

Take infimum with respect to $M \geq 1$ and then the supremum with respect to s, we conclude (9.9).

The two operations are inverse to each other thanks to Theorem A.2.1.
Next we consider the bounded situation. Suppose that $\Gamma \in \operatorname{TC}^{\infty}(X, \theta ; \phi)$. Take $\tau_{0} \in \mathbb{R}$ so that $\Gamma_{\tau}=\phi$ for all $\tau \leq \tau_{0}$. It follows from that

$$
\Gamma_{t}^{*} \geq \phi+t \tau_{0}
$$

for all $t>0$. Therefore, $\Gamma_{t}^{*} \sim \phi$ for all $t>0$ and hence $\Gamma^{*} \in \mathcal{R}^{\infty}(X, \theta ; \phi)$.

Conversely, suppose that $\ell \in \mathcal{R}^{\infty}(X, \theta ; \phi)$. Thanks to Proposition 4.2.3, there is a constant $C>0$ such that

$$
\ell_{t} \geq \phi-C t
$$

Therefore, according to (9.8), we have

$$
\ell_{\tau}^{*} \geq \inf _{t>0} \phi-(C+\tau) t=\phi
$$

if $\tau \leq-C$. Therefore, $\ell_{\tau}^{*}=\phi$ for all $\tau \leq-C$.
Finally, it remains to handle (9.7). Take $\Gamma \in \operatorname{TC}^{\infty}(X, \theta ; \phi)$. We may assume that $\Gamma_{\text {max }}=0$ after a translation.

For $N \in \mathbb{Z}_{>0}, M \in \mathbb{Z}$, we introduce the following:

$$
\Gamma_{t}^{*, N, M}:=\max _{\substack{k \in \mathbb{Z} \\ k \leq M}}\left(\Gamma_{k / 2^{N}}+t k / 2^{N}\right) \in \mathcal{E}^{\infty}(X, \theta ; \phi), \quad t>0
$$

Moreover, we now argue that

$$
\begin{equation*}
\frac{t}{2^{N}} \int_{X} \theta_{\Gamma_{(M+1) / 2^{N}}^{n}} \leq E_{\theta}^{\phi}\left(\Gamma_{t}^{*, N, M+1}\right)-E_{\theta}^{\phi}\left(\Gamma_{t}^{*, N, M}\right) \leq \frac{t}{2^{N}} \int_{X} \theta_{\Gamma_{M / 2^{N}}}^{n} \tag{9.10}
\end{equation*}
$$

Indeed, for elementary reasons:

$$
\begin{align*}
\int_{X}\left(\Gamma_{t}^{*, N, M+1}-\Gamma_{t}^{*, N, M}\right) \theta_{\Gamma_{t}^{*, N, M+1}}^{n} & \leq E_{\theta}^{\phi}\left(\Gamma_{t}^{*, N, M+1}\right)-E_{\theta}^{\phi}\left(\Gamma_{t}^{*, N, M}\right) \tag{9.11}\\
& \leq \int_{X}\left(\Gamma_{t}^{*, N, M+1}-\Gamma_{t}^{*, N, M}\right) \theta_{\Gamma_{t}^{*, N, M}}^{n}
\end{align*}
$$

Clearly $\Gamma_{t}^{*, N, M+1} \geq \Gamma_{t}^{*, N, M}$, and using τ-concavity, we notice that

$$
U_{t}:=\left\{\Gamma_{t}^{*, N, M+1}-\Gamma_{t}^{*, N, M}>0\right\}=\left\{\Gamma_{\left.(M+1) / 2^{N}+2^{-N} t-\Gamma_{M / 2^{N}}>0\right\} . . . ~}\right.
$$

Moreover, on U_{t} we have

$$
\Gamma_{t}^{*, N, M+1}=\Gamma_{(M+1) / 2^{N}}+t(M+1) / 2^{N}, \quad \Gamma_{t}^{*, N, M}=\Gamma_{M / 2^{N}}+t M / 2^{N}
$$

We also note that U_{t} is an open set in the plurifine topology, implying that

$$
\begin{aligned}
\left.\theta_{\Gamma_{(M+1) / 2^{N}}}^{n}\right|_{U_{t}} & =\left.\theta_{\Gamma_{t}^{*, N, M+1}}^{n}\right|_{U_{t}} \\
\left.\quad \theta_{\Gamma_{M / 2^{N}}}^{n}\right|_{U_{t}} & =\left.\theta_{\Gamma_{t}^{*, N, M}}^{n}\right|_{U_{t}} .
\end{aligned}
$$

Recall that $\theta_{\Gamma_{M / 2^{N}}}^{n}$ and $\theta_{\Gamma_{(M+1) / 2^{N}}}^{n}$ are supported on the sets $\left\{\Gamma_{M / 2^{N}}=0\right\}$ and $\left\{\Gamma_{(M+1) / 2^{N}}=0\right\}$ respectively, see Theorem 3.1.3. Since $\left\{\Gamma_{(M+1) / 2^{N}}=0\right\} \subseteq U_{t}$ and $\left\{\Gamma_{(M+1) / 2^{N}}=0\right\} \subseteq\left\{\Gamma_{M / 2^{N}}=0\right\}$, applying the above to (9.11), we arrive at (9.10).

Fixing N, let $M=\left\lfloor 2^{N} \Gamma_{\min }\right\rfloor$. Then repeated application of (9.10) yields

$$
\sum_{M+1 \leq j \leq 0} \frac{t}{2^{N}} \int_{X} \theta_{\Gamma_{j / 2^{N}}^{n}}^{n} \leq E_{\theta}^{\phi}\left(\Gamma_{t}^{*, N, 0}\right)-E_{\theta}^{\phi}\left(E_{t}^{*, N, M}\right) \leq \sum_{M \leq j \leq-1} \frac{t}{2^{N}} \int_{X} \theta_{\Gamma_{j / 2^{N}}^{n}}^{n}
$$

Since $M \leq 2^{N} \Gamma_{\min }$, we have that

$$
\Gamma_{t}^{*, N, M}=\Gamma_{M / 2^{N}}+t M / 2^{N}=\phi+t M / 2^{N}
$$

we can continue to write

$$
\sum_{j=M+1}^{0} \frac{t}{2^{N}}\left(\int_{X} \theta_{\Gamma_{j / 2^{N}}^{n}}^{n}-\int_{X} \theta_{\phi}^{n}\right) \leq E_{\phi}^{\theta}\left(\Gamma_{t}^{*, N, 0}\right) \leq \sum_{j=M}^{-1} \frac{t}{2^{N}}\left(\int_{X} \theta_{\Gamma_{j / 2^{N}}^{n}}^{n}-\int_{X} \theta_{\phi}^{n}\right)
$$

We now notice that we have Riemann sums on both the left and right of the above inequality. Using Proposition 9.1.1, it is possible to let $N \rightarrow \infty$ and obtain

$$
E_{\phi}^{\theta}\left(\Gamma_{t}^{*}\right)=t \mathbf{E}^{\phi}(\Gamma)
$$

So (9.7) follows as desired. Note that we have furthermore shown that $t \mapsto E_{\phi}^{\theta}\left(\Gamma_{t}^{*}\right)$ is linear.

Finally, let us come back to the general case. Let $\Gamma \in \operatorname{TC}(X, \theta ; \phi)$. Again, we may assume that $\Gamma_{\max }=0$. For each $\epsilon>0$, we introduce $\Gamma^{\epsilon} \in \mathrm{TC}^{\infty}(X, \theta ; \phi)$ as follows:
(1) Let $\Gamma_{\text {max }}^{\epsilon}=0$, and
(2) for each $\tau<0$, we set

$$
\left.\left.\Gamma_{\tau}^{\epsilon}=P_{\theta}[(1+\epsilon \tau) \vee 0) \Gamma_{\tau}+(1-(1+\epsilon \tau) \vee 0)\right) \phi\right] .
$$

It follows from Corollary 3.1.2 that for each $\tau<0$, the sequence Γ_{τ}^{ϵ} is a decreasing sequence with limit Γ_{τ} as $\epsilon \searrow 0$. Therefore, by Proposition 3.1.8, we have

$$
\lim _{\epsilon \rightarrow 0+} \int_{X}\left(\theta+\operatorname{dd}^{\mathrm{c}} \Gamma_{\tau}^{\epsilon}\right)^{n}=\int_{X}\left(\theta+\operatorname{dd}^{c} \Gamma_{\tau}\right)^{n}
$$

for all $\tau<0$. Hence, by the monotone convergence theorem, we find

$$
\begin{equation*}
\mathbf{E}^{\phi}(\Gamma)=\lim _{\epsilon \rightarrow 0+} \mathbf{E}^{\phi}\left(\Gamma^{\epsilon}\right)=\lim _{\epsilon \rightarrow 0+} \mathbf{E}^{\phi}\left(\Gamma^{\epsilon, *}\right) \tag{9.12}
\end{equation*}
$$

\{eq:EphiGammatemp1\}

Furthermore, according to Proposition A.2.2, we have

$$
\Gamma_{t}^{*}=\inf _{\epsilon>0} \Gamma_{t}^{\epsilon, *}
$$

for all $t>0$.
Now suppose that $\Gamma \in \operatorname{TC}^{1}(X, \theta ; \phi)$. Then it follows from Theorem 4.2.1 that for each $t>0$,

$$
E_{\theta}^{\phi}\left(\Gamma_{t}^{*}\right)=\lim _{\epsilon \rightarrow 0+} E_{\theta}^{\phi}\left(\Gamma_{t}^{\epsilon, *}\right)=t \mathbf{E}^{\phi}(\Gamma)
$$

Hence, $\Gamma^{*} \in \mathcal{E}^{1}(X, \theta ; \phi)$.

Conversely, suppose that $\Gamma^{*} \in \mathcal{E}^{1}(X, \theta ; \phi)$. Then (9.12) implies that $\Gamma \in$ $\operatorname{TC}^{1}(X, \theta ; \phi)$.

As an immediate consequence of the proof, we have
Corollary 9.2.1 Let $\ell \in \mathcal{R}^{1}(X, \theta ; \phi)$, then $[0, \infty) \ni t \mapsto E_{\theta}^{\phi}\left(\ell_{t}\right)$ is linear.
Corollary 9.2.2 Let $\ell \in \mathcal{R}(X, \theta ; \phi)$. Then $\sup _{X} \ell_{t}=\ell_{\max }^{*} t$.
Proof This follows from Lemma 9.2.2 and Theorem 9.2.1.

9.3 I-model test curves

Let X be a connected compact Kähler manifold of dimension n and θ be a smooth closed real $(1,1)$-form on X representing a big cohomology class. Fix a model potential $\phi \in \operatorname{PSH}(X, \theta)_{>0}$.

Definition 9.3.1 A test curve $\Gamma \in \mathrm{TC}(X, \theta ; \phi)$ is I-model if for any $\tau<\Gamma_{\max }$, the potential Γ_{τ} is I-model.

The subset of \mathcal{I}-model test curves in $\mathrm{TC}(X, \theta ; \phi)$ is denoted by $\operatorname{PSH}^{\mathrm{NA}}(X, \theta ; \phi)$.
The set of I-model test curves in $\operatorname{PSH}(X, \theta)$ for any model potential $\phi \in$ $\operatorname{PSH}(X, \theta)_{>0}$ is denoted by $\operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$.

Proposition 9.3.1 Let $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$. Then $\Gamma_{-\infty}$ is an I-model potential.
Proof This follows from Proposition 3.2.12.
Proposition 9.3.2 Let θ^{\prime} be another smooth closed real (1,1)-form on X representing the same cohomology class as θ. Then there is a canonical bijection

$$
\operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0} \xrightarrow{\sim} \mathrm{PSH}^{\mathrm{NA}}\left(X, \theta^{\prime}\right)_{>0} .
$$

This bijection satisfies the obvious cocycle condition.
Proof This is an immediate consequence of Proposition 9.1.2 and Example 7.1.2.ם
Proposition 9.3.3 Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism from a compact Kähler manifold. Then the pointwise pull-back induces a bijection

$$
\pi^{*}: \operatorname{PSH}^{\mathrm{NA}}(X, \theta ; \phi) \xrightarrow{\sim} \mathrm{PSH}^{\mathrm{NA}}\left(Y, \pi^{*} \theta ; \pi^{*} \phi\right)
$$

Proof This is an immediate consequence of Proposition 9.1.3 and Proposition 3.2.5.ם
Definition 9.3.2 Given $\Gamma \in \operatorname{TC}(X, \theta ; \phi)$, we define its I-envelope $P_{\theta}[\Gamma]_{I}$ as the $\operatorname{map}\left(-\infty, \Gamma_{\max }\right) \rightarrow \operatorname{PSH}(X, \theta)$ given by

$$
\tau \mapsto P_{\theta}\left[\Gamma_{\tau}\right]_{I}
$$

prop:transitionPI
Proposition 9.3.4 Let $\Gamma \in \mathrm{TC}(X, \theta ; \phi)$, then

$$
P_{\theta}[\Gamma]_{I} \in \operatorname{PSH}^{\mathrm{NA}}\left(X, \theta ; P_{\theta}[\phi]_{I}\right)
$$

More generally, for any closed real smooth positive $(1,1)$-form ω on X, we have

$$
P_{\theta+\omega}[\Gamma]_{I} \in \operatorname{PSH}^{\mathrm{NA}}\left(X, \theta+\omega ; P_{\theta+\omega}[\phi]_{I}\right)
$$

Proof The only non-trivial point is to show that

$$
\sup _{\tau<\Gamma_{\max }} P_{\theta}\left[\Gamma_{\tau}\right]_{I}=P_{\theta}[\phi]_{I}, \quad \sup _{\tau<\Gamma_{\max }}^{*} P_{\theta+\omega}\left[\Gamma_{\tau}\right]_{I}=P_{\theta+\omega}[\phi]_{I}
$$

This follows from Proposition 3.2.12.

9.4 Operations on test curves

Let X be a connected compact Kähler manifold of dimension n and $\theta, \theta^{\prime}, \theta^{\prime \prime}$ be smooth closed real (1, 1)-forms on X representing big cohomology classes.
def:potestcurve
Definition 9.4.1 Given $\Gamma, \Gamma^{\prime} \in \mathrm{TC}(X, \theta)_{>0}$, we say $\Gamma \leq \Gamma^{\prime}$ if for all $\Gamma_{\max } \leq \Gamma_{\max }^{\prime}$ and for all $\tau<\Gamma_{\max }$, we have

$$
\begin{equation*}
\Gamma_{\tau} \leq \Gamma_{\tau}^{\prime} \tag{9.13}
\end{equation*}
$$

\{eq: GammatauGammap\}
Observe that (9.13) actually holds for all $\tau \in \mathbb{R}$. It is easy to verify that for all \leq defines a partial order on $\operatorname{TC}(X, \theta)_{>0}$.

Lemma 9.4.1 Let $\Gamma, \Gamma^{\prime} \in \mathrm{TC}(X, \theta)_{>0}$ and ω be a closed real smooth positive (1,1)-form on X. Then the following are equivalent:
(1) $\Gamma \leq \Gamma^{\prime}$;
(2) $P_{\theta+\omega}[\Gamma]=P_{\theta+\omega}\left[\Gamma^{\prime}\right]$.

Proof It suffices to observe that we could rewrite (9.13) as

$$
\Gamma_{\tau} \leq_{P} \Gamma_{\tau}^{\prime}
$$

since both potentials are model.
def:sumtestcur
Definition 9.4.2 Let $\Gamma \in \mathrm{TC}(X, \theta)_{>0}$ and $\Gamma^{\prime} \in \mathrm{TC}\left(X, \theta^{\prime}\right)_{>0}$, then we define $\Gamma+\Gamma^{\prime} \in$ $\mathrm{TC}\left(X, \theta+\theta^{\prime}\right)_{>0}$ as follows:
(1) we set

$$
\left(\Gamma+\Gamma^{\prime}\right)_{\max }:=\Gamma_{\max }+\Gamma_{\max }^{\prime}
$$

(2) for any $\tau<\left(\Gamma+\Gamma^{\prime}\right)_{\max }$, we define

$$
\begin{equation*}
\left(\Gamma+\Gamma^{\prime}\right)_{\tau}:=P_{\theta}\left[\sup _{t \in \mathbb{R}}\left(\Gamma_{t}+\Gamma_{\tau-t}^{\prime}\right)\right] . \tag{9.14}
\end{equation*}
$$

Lemma 9.4.2 Let $\Gamma \in \mathrm{TC}(X, \theta)_{>0}$ and $\Gamma^{\prime} \in \mathrm{TC}\left(X, \theta^{\prime}\right)_{>0}$, then for any $\tau<(\Gamma+$ $\left.\Gamma^{\prime}\right)_{\max }$, we have

$$
\sup _{t \in \mathbb{R}}\left(\Gamma_{t}+\Gamma_{\tau-t}^{\prime}\right) \in \operatorname{PSH}(X, \theta)
$$

This potential is \mathcal{I}-good if $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$ and $\Gamma^{\prime} \in \mathrm{PSH}^{\mathrm{NA}}\left(X, \theta^{\prime}\right)_{>0}$.
In particular, (9.14) in Definition 9.4.2 makes sense.
Proof Let

$$
\eta_{\tau}=\sup _{t \in \mathbb{R}}\left(\Gamma_{t}+\Gamma_{\tau-t}^{\prime}\right)=\sup _{t<\Gamma_{\max }, \tau-t<\Gamma_{\max }^{\prime}}\left(\Gamma_{t}+\Gamma_{\tau-t}^{\prime}\right)
$$

for all $\tau \in \mathbb{R}$. Set

$$
Z=\left\{x \in X: \Gamma_{-\infty}(x)=-\infty \text { or } \Gamma_{-\infty}^{\prime}(x)=-\infty\right\} .
$$

It follows from Proposition A.2.3 that for any $x \in X \backslash Z$, we have

$$
\eta_{t}^{*}(x)=\Gamma_{t}^{*}(x)+\Gamma_{t}^{\prime *}(x)
$$

for all $t>0$. The same trivially holds when $x \in Z$, so the equation holds everywhere. In particular, by Theorem A.2.1 and Proposition 1.2.6, we have

$$
\eta_{\tau}=\left(\Gamma^{*}+\Gamma^{*}\right)_{\tau}^{*} \in \operatorname{PSH}\left(X, \theta+\theta^{\prime}\right) \cup\{-\infty\}
$$

Next, assume that Γ and Γ^{\prime} are I-model. We need to argue that so is $\Gamma+\Gamma^{\prime}$. Fix $\tau<\Gamma_{\max }+\Gamma_{\max }^{\prime}$. Then for each $t \in \mathbb{R}$ such that $t<\Gamma_{\max }$ and $\tau-t<\Gamma_{\max }^{\prime}$, we know that $\Gamma_{t} \in \operatorname{PSH}(X, \theta)_{>0}$ and $\Gamma_{\tau-t}^{\prime} \in \operatorname{PSH}\left(X, \theta^{\prime}\right)_{>0}$ by Lemma 9.1.1. It follows from Example 7.1.2 that Γ_{t} and $\Gamma_{\tau-t}^{\prime}$ are both I-good, hence so is $\Gamma_{t}+\Gamma_{\tau-t}^{\prime} \in$ $\operatorname{PSH}\left(X, \theta+\theta^{\prime}\right)_{>0}$ by Proposition 7.2.1. Therefore, η_{τ} is I-good by Proposition 7.2.2. Therefore, $\Gamma+\Gamma^{\prime}$ is I-model.

Proposition 9.4.1 Let $\Gamma \in \mathrm{TC}(X, \theta)_{>0}$ and $\Gamma^{\prime} \in \mathrm{TC}\left(X, \theta^{\prime}\right)_{>0}$, then $\Gamma+\Gamma^{\prime} \in$ $\mathrm{TC}\left(X, \theta+\theta^{\prime}\right)_{>0}$. Moreover,

$$
\begin{equation*}
\left(\Gamma+\Gamma^{\prime}\right)_{-\infty}=P_{\theta+\theta^{\prime}}\left[\Gamma_{-\infty}+\Gamma_{-\infty}^{\prime}\right] . \tag{9.15}
\end{equation*}
$$

\{eq: sumGammaGammap\}
When $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$ and $\Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}\left(X, \theta^{\prime}\right)_{>0}$, we have $\Gamma+\Gamma^{\prime} \in$ $\operatorname{PSH}^{\mathrm{NA}}\left(X, \theta+\theta^{\prime}\right)_{>0}$.

The operation + is commutative and associative.
Proof It follows immediately from Lemma 9.4.2 that $\Gamma+\Gamma^{\prime} \in \mathrm{TC}\left(X, \theta+\theta^{\prime}\right)_{>0}$, and it lies in $\operatorname{PSH}^{\mathrm{NA}}\left(X, \theta+\theta^{\prime}\right)_{>0}$ if $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$ and $\Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}\left(X, \theta^{\prime}\right)_{>0}$.

We argue (9.15). By definition, for any small enough τ, we have

$$
\left(\Gamma+\Gamma^{\prime}\right)_{-\infty} \geq\left(\Gamma+\Gamma^{\prime}\right)_{2 \tau} \geq_{P} \Gamma_{\tau}+\Gamma_{\tau}^{\prime}
$$

Letting $\tau \rightarrow-\infty$ and applying Proposition 6.2.4 and Theorem 6.2.2, we find that

$$
\left(\Gamma+\Gamma^{\prime}\right)_{-\infty} \geq_{P} \Gamma_{-\infty}+\Gamma_{-\infty}^{\prime} .
$$

On the other hand, for each small enough τ, we have

$$
\left(\Gamma+\Gamma^{\prime}\right)_{\tau} \sim_{P} \sup _{t \in \mathbb{R}}\left(\Gamma_{t}+\Gamma_{\tau-t}^{\prime}\right) \leq_{P} \Gamma_{-\infty}+\Gamma_{-\infty}^{\prime}
$$

by Proposition 6.1.5 and Proposition 6.2.4. We apply Proposition 6.2.4 again, we conclude that

$$
\left(\Gamma+\Gamma^{\prime}\right)_{-\infty} \leq_{P} \Gamma_{-\infty}+\Gamma_{-\infty}^{\prime}
$$

So (9.15) follows.
Finally, let us show that + is commutative and associative. Commutativity is obvious. Let $\Gamma^{\prime \prime} \in \mathrm{TC}\left(X, \theta^{\prime \prime}\right)_{>0}$. Then we want to show that

$$
\left(\Gamma+\Gamma^{\prime}\right)+\Gamma^{\prime \prime}=\Gamma+\left(\Gamma^{\prime}+\Gamma^{\prime \prime}\right) .
$$

First observe that

$$
\left(\left(\Gamma+\Gamma^{\prime}\right)+\Gamma^{\prime \prime}\right)_{\max }=\left(\Gamma+\left(\Gamma^{\prime}+\Gamma^{\prime \prime}\right)\right)_{\max }
$$

Fix τ less than this common value. We observe that

$$
\begin{gathered}
\quad\left(\left(\Gamma+\Gamma^{\prime}\right)+\Gamma^{\prime \prime}\right)_{\tau} \\
=P_{\theta}\left[\sup _{t_{1} \in \mathbb{R}}\left(\left(\Gamma+\Gamma^{\prime}\right)_{t_{1}}+\Gamma_{\tau-t_{1}}^{\prime \prime}\right)\right] \\
\sim_{P} \sup _{t_{1} \in \mathbb{R}}\left(\left(\Gamma+\Gamma^{\prime}\right)_{t_{1}}+\Gamma_{\tau-t_{1}}^{\prime \prime}\right) \\
\sim_{P} \sup _{t_{1}, t_{2} \in \mathbb{R}}\left(\Gamma_{t_{2}}+\Gamma_{t_{1}-t_{2}}^{\prime}+\Gamma_{\tau-t_{1}}^{\prime \prime}\right),
\end{gathered}
$$

where in the last line, we applied Proposition 6.2.4 and Proposition 6.1.5. Similarly, for $\left(\Gamma+\left(\Gamma^{\prime}+\Gamma^{\prime \prime}\right)\right)_{\tau}$, we get the same expression. The associativity follows.

Lemma 9.4.3 Let $\Gamma \in \mathrm{TC}(X, \theta)_{>0}$ and $\Gamma^{\prime} \in \mathrm{TC}\left(X, \theta^{\prime}\right)_{>0}$, then for any closed smooth positive (1,1)-forms ω and ω^{\prime} on X, we have

$$
P_{\theta+\omega+\theta^{\prime}+\omega^{\prime}}\left[\Gamma+\Gamma^{\prime}\right]=P_{\theta+\omega}[\Gamma]+P_{\theta^{\prime}+\omega^{\prime}}[\Gamma] .
$$

Proof Observe that

$$
P_{\theta+\omega+\theta^{\prime}+\omega^{\prime}}\left[\Gamma+\Gamma^{\prime}\right]_{\max }=\left(P_{\theta+\omega}[\Gamma]+P_{\theta^{\prime}+\omega^{\prime}}[\Gamma]\right)_{\max }=\Gamma_{\max }+\Gamma_{\max }^{\prime}
$$

Take $\tau \in \mathbb{R}$ less than this common value, we need to verify that

$$
\left(\Gamma+\Gamma^{\prime}\right)_{\tau} \sim_{P}\left(P_{\theta+\omega}[\Gamma]+P_{\theta^{\prime}+\omega^{\prime}}[\Gamma]\right)_{\tau}
$$

By definition, this means that

$$
\sup _{t \in \mathbb{R}}\left(\Gamma_{t}+\Gamma_{\tau-t}^{\prime}\right) \sim_{P} \sup _{t \in \mathbb{R}}\left(P_{\theta+\omega}\left[\Gamma_{t}\right]+P_{\theta^{\prime}+\omega^{\prime}}\left[\Gamma_{\tau-t}^{\prime}\right]\right)
$$

This is a consequence of Proposition 6.1.5 and Proposition 6.1.6.
Definition 9.4.3 Let $\Gamma \in \mathrm{TC}(X, \theta)_{>0}$ and $C \in \mathbb{R}$, we define $\Gamma+C \in \mathrm{TC}(X, \theta)_{>0}$ as follows:
(1) We set

$$
(\Gamma+C)_{\max }:=\Gamma_{\max }+C
$$

(2) for any $\tau<(\Gamma+C)_{\max }$, we set

$$
\Gamma_{\tau}:=\Gamma_{\tau-C}
$$

It is obvious that if $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$, then so is $\Gamma+C$.
Proposition 9.4.2 Let $\Gamma \in \mathrm{TC}(X, \theta)_{>0}, \Gamma \in \mathrm{TC}\left(X, \theta^{\prime}\right)_{>0}$ and $C, C^{\prime} \in \mathbb{R}$, then
(1) $\left(\Gamma+\Gamma^{\prime}\right)+C=\Gamma+\left(\Gamma^{\prime}+C\right)=(\Gamma+C)+\Gamma^{\prime}$;
(2) $\Gamma+\left(C+C^{\prime}\right)=(\Gamma+C)+C^{\prime}$.

Proof (1) We first observe that

$$
\left(\left(\Gamma+\Gamma^{\prime}\right)+C\right)_{\max }=\left(\Gamma+\left(\Gamma^{\prime}+C\right)\right)_{\max }=\left((\Gamma+C)+\Gamma^{\prime}\right)_{\max }=\Gamma_{\max }+\Gamma_{\max }^{\prime}+C
$$

Take any $\tau \in \mathbb{R}$ less than this common value. We compute

$$
\begin{aligned}
\left(\left(\Gamma+\Gamma^{\prime}\right)+C\right)_{\tau} & =\left(\Gamma+\Gamma^{\prime}\right)_{\tau-C}=P_{\theta+\theta^{\prime}}\left[\sup _{t \in \mathbb{R}}\left(\Gamma_{t}+\Gamma_{\tau-C-t}^{\prime}\right)\right] \\
\left(\Gamma+\left(\Gamma^{\prime}+C\right)\right)_{\tau} & =P_{\theta+\theta^{\prime}}\left[\sup _{t \in \mathbb{R}}\left(\Gamma_{t}+\left(\Gamma^{\prime}+C\right)_{\tau-t}\right)\right]=P_{\theta+\theta^{\prime}}\left[\sup _{t \in \mathbb{R}}\left(\Gamma_{t}+\Gamma_{\tau-C-t}^{\prime}\right)\right], \\
\left((\Gamma+C)+\Gamma^{\prime}\right)_{\tau} & =P_{\theta+\theta^{\prime}}\left[\sup _{t \in \mathbb{R}}\left((\Gamma+C)_{C+t}+\Gamma_{\tau-C-t}^{\prime}\right)\right] \\
& =P_{\theta+\theta^{\prime}}\left[\sup _{t \in \mathbb{R}}\left(\Gamma_{t}+\Gamma_{\tau-C-t}^{\prime}\right)\right] .
\end{aligned}
$$

(2) Observe that

$$
\left(\Gamma+\left(C+C^{\prime}\right)\right)_{\max }=\left((\Gamma+C)+C^{\prime}\right)_{\max }=\Gamma_{\max }+C+C^{\prime} .
$$

For any $\tau \in \mathbb{R}$ less than this value, we have

$$
\left(\Gamma+\left(C+C^{\prime}\right)\right)_{\tau}=\Gamma_{\tau-C-C^{\prime}}=\left((\Gamma+C)+C^{\prime}\right)_{\tau}
$$

Definition 9.4.4 Let $\Gamma, \Gamma^{\prime} \in \mathrm{TC}(X, \theta)_{>0}$. We define $\Gamma \vee \Gamma^{\prime} \in \mathrm{TC}(X, \theta)_{>0}$ as follows:
(1) We set

$$
\left(\Gamma \vee \Gamma^{\prime}\right)_{\max }:=\Gamma_{\max } \vee \Gamma_{\max }^{\prime}
$$

and
(2) for any $\tau<\left(\Gamma \vee \Gamma^{\prime}\right)_{\max }$, we define

$$
\begin{equation*}
\left(\Gamma \vee \Gamma^{\prime}\right)_{\tau}:=P_{\theta}\left[\mathrm{CE}\left(\rho \mapsto \Gamma_{\rho} \vee \Gamma_{\rho}^{\prime}\right)\right] . \tag{9.16}
\end{equation*}
$$

Recall that the upper convex hull CE is defined in Definition A.1.4. Trivially, we have $\Gamma \vee \Gamma^{\prime} \geq \Gamma$ and $\Gamma \vee \Gamma^{\prime} \geq \Gamma^{\prime}$.
Lemma 9.4.4 Let $\Gamma, \Gamma^{\prime} \in \mathrm{TC}(X, \theta)_{>0}$. Then for any $\tau<\Gamma_{\max } \vee \Gamma_{\max }^{\prime}$, we have

$$
\mathrm{CE}\left(\rho \mapsto \Gamma_{\rho} \vee \Gamma_{\rho}^{\prime}\right)_{\tau} \in \operatorname{PSH}(X, \theta)
$$

This potential is I-good if $\Gamma, \Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$.
In particular, (9.16) in Definition 9.4.4 makes sense.
Proof To simply the notations, we write

$$
\psi_{\tau}=\mathrm{CE}\left(\rho \mapsto \Gamma_{\rho} \vee \Gamma_{\rho}^{\prime}\right)_{\tau}
$$

for all $\tau \in \mathbb{R}$. Thanks to Proposition A.2.2, we have

$$
\begin{equation*}
\psi_{t}^{*}(x)=\Gamma_{t}^{*}(x) \vee \Gamma_{t}^{\prime *}(x) \tag{9.17}
\end{equation*}
$$

for all $t>0$ as long as $\Gamma_{\tau}(x) \neq-\infty$ and $\Gamma_{\tau}(x) \neq-\infty$ for some $\tau \in \mathbb{R}$. Otherwise, assume that $x \in X$ is such that $\Gamma_{\tau}=-\infty$ for all $\tau \in \mathbb{R}$, then by definition, $\psi_{\tau}(x)=\Gamma_{\tau}^{\prime}(x)$ for all $\tau \in \mathbb{R}$. Therefore, $\Gamma_{t}^{*}(x)=-\infty$ for all $t>0$ and hence (9.17) continues to hold. Therefore, we have shown that

$$
\psi_{t}^{*}=\Gamma_{t}^{*} \vee \Gamma_{t}^{\prime *} \in \operatorname{PSH}(X, \theta) .
$$

It follows from Proposition 4.1.2 that $\left(\psi_{t}^{*}\right)_{t \in[a, b]}$ is a subgeodesic for any $0<a<b$.
Next we observe that ψ_{\bullet} is closed by definition. So it follows from Proposition A.2.2 and Proposition 1.2.6 that

$$
\psi_{\tau}=\left(\psi_{\bullet}^{*}\right)_{\tau}^{*} \in \operatorname{PSH}(X, \theta) \cup\{-\infty\}
$$

Due to Proposition 9.1.4 and Proposition A.1.2, there is a pluripolar set $Z \subseteq X$ such that for $x \in X \backslash Z$, we have

$$
\psi_{\tau}(x)=\sup \left\{\lambda \Gamma_{\rho}(x)+(1-\lambda) \Gamma_{\rho^{\prime}}^{\prime}(x): \lambda \in(0,1), \rho, \rho^{\prime} \in \mathbb{R}, \lambda \rho+(1-\lambda) \rho^{\prime}=\tau\right\}
$$

for all $\tau<\Gamma_{\max } \vee \Gamma_{\max }^{\prime}$. It follows from Proposition 1.2.5 that

$$
\begin{equation*}
\psi_{\tau}=\sup ^{*}\left\{\lambda \Gamma_{\rho}+(1-\lambda) \Gamma_{\rho^{\prime}}^{\prime}: \lambda \in(0,1), \rho, \rho^{\prime} \in \mathbb{R}, \lambda \rho+(1-\lambda) \rho^{\prime}=\tau\right\} \tag{9.18}
\end{equation*}
$$

for all $\tau<\Gamma_{\max } \vee \Gamma_{\max }^{\prime}$.
It follows from (9.18) that ψ_{τ} is \mathcal{I}-good if $\Gamma, \Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$, thanks to Proposition 7.2.1 and Proposition 7.2.2.
cor:testcurvlorprop
Corollary 9.4.1 Let $\Gamma, \Gamma^{\prime} \in \mathrm{TC}(X, \theta)_{>0}$. Then $\Gamma \vee \Gamma^{\prime} \in \mathrm{TC}(X, \theta)_{>0}$ and

$$
\begin{equation*}
\left(\Gamma \vee \Gamma^{\prime}\right)_{-\infty}=P_{\theta}\left[\Gamma_{-\infty} \vee \Gamma_{-\infty}^{\prime}\right] \tag{9.19}
\end{equation*}
$$

If $\Gamma, \Gamma^{\prime} \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$, then $\Gamma \vee \Gamma^{\prime} \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$.
For each $\Gamma^{\prime \prime} \in \mathrm{TC}(X, \theta)_{>0}$ and each $\Gamma^{\prime \prime} \geq \Gamma$ and $\Gamma^{\prime \prime} \geq \Gamma^{\prime}$, we have $\Gamma^{\prime \prime} \geq \Gamma \vee \Gamma^{\prime}$. Moreover, the operation \vee is associative and commutative.

Proof It follows immediately from Lemma 9.4.4 that $\Gamma \vee \Gamma^{\prime} \in \mathrm{TC}(X, \theta)_{>0}$, and it lies in $\mathrm{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$ if $\Gamma, \Gamma^{\prime} \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$.

The argument of (9.19) is very similar to that of (9.15), which we leave to the readers.

Take $\Gamma^{\prime \prime}$ as in the statement of the proposition. First observe that

$$
\Gamma_{\max }^{\prime \prime} \geq \Gamma_{\max } \vee \Gamma_{\max }^{\prime}=\left(\Gamma \vee \Gamma^{\prime}\right)_{\max }
$$

Take $\tau<\left(\Gamma \vee \Gamma^{\prime}\right)_{\max }$, we argue that

$$
\Gamma_{\tau}^{\prime \prime} \geq\left(\Gamma \vee \Gamma^{\prime}\right)_{\tau}
$$

By the concavity of $\Gamma^{\prime \prime}$, this is equivalent to

$$
\Gamma_{\tau}^{\prime \prime} \geq \Gamma_{\tau} \vee \Gamma_{\tau}^{\prime}
$$

Therefore,

$$
\Gamma^{\prime \prime} \geq \Gamma \vee \Gamma^{\prime}
$$

The commutativity and associativity of \vee are trivial.
Lemma 9.4.5 Let $\Gamma, \Gamma^{\prime} \in \mathrm{TC}(X, \theta)_{>0}$ and ω be a closed smooth positive $(1,1)$-form on X. Then

$$
P_{\theta+\omega}\left[\Gamma \vee \Gamma^{\prime}\right]=P_{\theta+\omega}[\Gamma] \vee P_{\theta+\omega}\left[\Gamma^{\prime}\right] .
$$

Proof We first observe that

$$
\left(P_{\theta+\omega}\left[\Gamma \vee \Gamma^{\prime}\right]\right)_{\max }=\left(P_{\theta+\omega}[\Gamma] \vee P_{\theta+\omega}\left[\Gamma^{\prime}\right]\right)_{\max }=\Gamma_{\max } \vee \Gamma_{\max }^{\prime} .
$$

Let $\tau \in \mathbb{R}$ be less than this common value. We need to show that

$$
\left(\Gamma \vee \Gamma^{\prime}\right)_{\tau} \sim_{P}\left(P_{\theta+\omega}[\Gamma] \vee P_{\theta+\omega}\left[\Gamma^{\prime}\right]\right)_{\tau}
$$

We need the formula (9.18) proved in the proof of Lemma 9.4.4:

$$
\left(\Gamma \vee \Gamma^{\prime}\right)_{\tau}=\sup ^{*}\left\{\lambda \Gamma_{\rho}+(1-\lambda) \Gamma_{\rho^{\prime}}^{\prime}: \lambda \in(0,1), \rho, \rho^{\prime} \in \mathbb{R}, \lambda \rho+(1-\lambda) \rho^{\prime}=\tau\right\}
$$

A similar result holds with $P_{\theta+\omega}[\Gamma]$ and $P_{\theta+\omega}\left[\Gamma^{\prime}\right]$ in place of Γ and Γ^{\prime}. So our assertion is a direct consequence of Proposition 6.1.5 and Proposition 6.1.6.

$$
\begin{equation*}
\sup _{i \in I} \Gamma_{\max }^{i}<\infty \tag{9.20}
\end{equation*}
$$

Then we define $\sup ^{*}{ }_{i \in I} \Gamma^{i} \in \mathrm{TC}(X, \theta)_{>0}$ as follows:
(1) We set

$$
\left(\sup _{i \in I}^{*} \Gamma^{i}\right)_{\max }=\sup _{i \in I} \Gamma_{\max }^{i}
$$

(2) for any $\tau<\sup _{i \in I} \Gamma_{\max }^{i}$, we let

$$
\left(\sup _{i \in I} \Gamma^{i}\right)_{\tau}:=\sup _{i \in I} * \Gamma_{\tau}^{i} .
$$

Proposition 9.4.3 Let $\left(\Gamma^{i}\right)_{i \in I}$ be an increasing net in $\mathrm{TC}(X, \theta)_{>0}$ satisfying (9.20). Then $\sup _{i \in I}^{*} \Gamma^{i}$ as defined in Definition 9.4.5 lies in $\sup _{i \in I} \Gamma^{i} \in \mathrm{TC}(X, \theta)_{>0}$. Moreover, if $\Gamma^{i} \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$ for all $i \in I$, then sup ${ }_{i} \in I \quad \Gamma^{i}$ lies in $\mathrm{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$ as well.

Moreover, we have

$$
\begin{equation*}
\left(\sup _{i \in I} * \Gamma^{i}\right)_{-\infty}=\sup _{i \in I} * \Gamma_{-\infty}^{i} \tag{9.21}
\end{equation*}
$$

\{eq: Gammiminf\}

Proof The first assertion follows easily from Proposition 3.1.9, while the second follows from Proposition 3.2.12.

It remains to argue (9.21). Without loss of generality, we may assume that I contains a minimal element i_{0}.

By Proposition 1.2.3, there is a pluripolar set $Z \subseteq X$ such that for any $x \in X \backslash Z$,

$$
\left(\sup _{i \in I} * \Gamma^{i}\right)_{-\infty}(x)=\sup _{\tau<\Gamma_{\max }^{i_{0}}}\left(\sup _{i \in I} * \Gamma_{\tau}^{i}\right)(x)=\sup _{\tau<\Gamma_{\max }^{i_{0}}, i \in I} \Gamma_{\tau}^{i}(x)=\sup _{i \in I} \Gamma_{-\infty}^{i}(x)
$$

So they are equal everywhere by Proposition 1.2.5.
Lemma 9.4.6 Let $\left(\Gamma^{i}\right)_{i \in I}$ be an increasing net in $\operatorname{TC}(X, \theta)_{>0}$ satisfying (9.20). Assume that ω is a closed smooth positive $(1,1)$-form on X. Then

$$
P_{\theta+\omega}\left[\sup _{i \in I} \Gamma^{i}\right]=\sup _{i \in I} P_{\theta+\omega}\left[\Gamma^{i}\right]
$$

Proof Observe that

$$
\left(P_{\theta+\omega}\left[\sup _{i \in I} * \Gamma^{i}\right]\right)_{\max }=\left(\sup _{i \in I} * P_{\theta+\omega}\left[\Gamma^{i}\right]\right)_{\max }=\sup _{i \in I} \Gamma_{\max }^{i} .
$$

Fix $\tau \in \mathbb{R}$ less than this common value.
It suffices to show that

$$
\left(\sup _{i \in I}^{*} \Gamma^{i}\right)_{\tau}=\left(\sup _{i \in I}^{*} P_{\theta+\omega}\left[\Gamma^{i}\right]\right)_{\tau}
$$

This is an immediate consequence of Proposition 6.1.6.

def:testcurvsupsgeneral

Definition 9.4.6 Let $\left(\Gamma^{i}\right)_{i \in I}$ be a non-empty family in $\mathrm{TC}(X, \theta)_{>0}$ satisfying (9.20). Then we define

$$
\begin{equation*}
\sup _{i \in I}^{*} \Gamma^{i}:=\sup _{J \in \operatorname{Fin}(I)}^{*}\left(\bigvee_{j \in J} \Gamma^{j}\right) \tag{9.22}
\end{equation*}
$$

\{eq:generalsupstestcurv\}

Observe that by Definition 9.4.4, we have

$$
\sup _{J \in \operatorname{Fin}(I)}\left(\bigvee_{j \in J} \Gamma^{j}\right)_{\max }=\sup _{i \in I} \Gamma_{\max }^{i}<\infty
$$

So (9.22) makes sense. In particular,

$$
\begin{equation*}
\left(\sup _{i \in I} \Gamma^{i}\right)_{\max }=\sup _{i \in I} \Gamma_{\max }^{i} . \tag{9.23}
\end{equation*}
$$

It is clear that Definition 9.4.6 extends both Definition 9.4.5 and Definition 9.4.4.
Proposition 9.4.4 Let $\left(\Gamma^{i}\right)_{i \in I}$ be a non-empty family in $\mathrm{TC}(X, \theta)_{>0}$ satisfying (9.20). Then $\sup _{i \in I}^{*} \Gamma^{i} \in \mathrm{TC}(X, \theta)_{>0}$. Moreover, if $\Gamma^{i} \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$, then so is $\sup _{i \in I}{ }^{i}{ }^{i}$.

Finally, we have

$$
\begin{equation*}
\left(\sup _{i \in I} \Gamma^{i}\right)_{-\infty}=P_{\theta}\left[\sup _{i \in I}^{*} \Gamma_{-\infty}^{i}\right] \tag{9.24}
\end{equation*}
$$

Proof The first assertion and the second follow from Proposition 9.4.3 and Corollary 9.4.1.

It remains to argue (9.24). For this purpose, it suffices to show that

$$
\left(\sup _{i \in I} * \Gamma^{i}\right)_{-\infty} \sim_{P} \sup _{i \in I} \Gamma_{-\infty}^{i} .
$$

For any $J \in \operatorname{Fin}(I)$, it follows from Corollary 9.4.1 and Proposition 6.1.6 that

$$
\left(\bigvee_{j \in J} \Gamma^{j}\right)_{-\infty} \sim_{P} \bigvee_{j \in J} \Gamma_{-\infty}^{j}
$$

From this, applying Proposition 6.1.6 and Proposition 9.4.3, we conclude our assertion.

Lemma 9.4.7 Let $\left(\Gamma^{i}\right)_{i \in I}$ be a non-empty family in $\mathrm{TC}(X, \theta)_{>0}$ satisfying (9.20). Assume that ω is a closed smooth positive $(1,1)$-form on X. Then

$$
P_{\theta+\omega}\left[\sup _{i \in I} \Gamma^{i}\right]=\sup _{i \in I} P_{\theta+\omega}\left[\Gamma^{i}\right]
$$

Proof This is a direct consequence of Lemma 9.4.6 and Lemma 9.4.5.
Proposition 9.4.5 Let $\left(\Gamma^{i}\right)_{i \in I}$ be a non-empty family in $\mathrm{TC}(X, \theta)_{>0}$ satisfying (9.20). Then there is a countable subset $I^{\prime} \subseteq I$ such that

$$
\sup _{i \in I} \operatorname{l}^{i}=\sup _{i \in I^{\prime}}^{*} \Gamma^{i}
$$

Proof We may assume that I is infinite.
It follows from Proposition 1.2.2 that we can find a countable subset $I^{\prime} \subseteq I$ such that for each

$$
\tau \in\left(-\infty, \sup _{i \in I} \Gamma_{\max }^{i}\right) \cap \mathbb{Q}
$$

we have

$$
\sup _{i \in I}^{*} \Gamma_{\tau}^{i}=\sup _{i \in I^{\prime}}^{*} \Gamma_{\tau}^{i}
$$

Let $\Gamma^{\prime}=\sup ^{*}{ }_{i \in I^{\prime}} \Gamma^{i}$. Then clearly, $\Gamma^{\prime} \leq \Gamma$. We claim that they are actually equal. For this purpose, it suffices to show that for any $\tau<\sup _{i \in I}^{*} \Gamma_{\text {max }}^{i}$, we have

$$
\int_{X}\left(\theta+\mathrm{dd}^{\mathrm{c}} \Gamma_{\tau}^{\prime}\right)^{n}=\int_{X}\left(\theta+\mathrm{dd}^{\mathrm{c}} \Gamma_{\tau}\right)^{n}
$$

Since we know that this holds on a dense subset of τ, this holds everywhere by Theorem 2.3.3.

Proposition 9.4.6 Let $\left(\Gamma^{i}\right)_{i \in I}$ be a non-empty family in $\mathrm{TC}(X, \theta)_{>0}$ satisfying (9.20). Let $C \in \mathbb{R}$. Then

$$
\sup _{i \in I}^{*}\left(\Gamma^{i}+C\right)=\sup _{i \in I}^{*} \Gamma^{i}+C
$$

Suppose that $\left(\Gamma^{\prime i}\right)_{i \in I}$ is another family in $\mathrm{TC}(X, \theta)_{>0}$ satisfying (9.20). Suppose that $\Gamma^{i} \leq \Gamma^{\prime i}$ for all $i \in I$, then

$$
\sup _{i \in I}^{*} \Gamma^{i} \leq \sup _{i \in I}^{*} \Gamma^{\prime i}
$$

Proof This is immediate by definition.
def:res Definition 9.4.7 Let $\Gamma \in \mathrm{TC}(X, \theta)_{>0}$ and $\lambda>0$, we define $\lambda \Gamma \in \mathrm{TC}(X, \lambda \theta)_{>0}$ as follows:
(1) We set

$$
(\lambda \Gamma)_{\max }=\lambda \Gamma_{\max }
$$

(2) for any $\tau<\lambda \Gamma_{\max }$, we set

$$
(\lambda \Gamma)_{\tau}=\lambda \Gamma_{\lambda^{-1} \tau} .
$$

Proposition 9.4.7 Let $\Gamma \in \mathrm{TC}(X, \theta)_{>0}$ and $\lambda>0$, then $\lambda \Gamma$ as defined in Definition 9.4.7 lies in $\mathrm{TC}(X, \lambda \theta)_{>0}$. Moreover, if $\Gamma \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$, then $\lambda \Gamma \in$ $\operatorname{PSH}^{\mathrm{NA}}(X, \lambda \theta)_{>0}$.

We have

$$
\begin{equation*}
(\lambda \Gamma)_{-\infty}=\lambda \Gamma_{-\infty} \tag{9.25}
\end{equation*}
$$

prop:resclacompat
Proposition 9.4.8 Let $\Gamma \in \mathrm{TC}(X, \theta)_{>0}, \Gamma^{\prime} \in \mathrm{TC}\left(X, \theta^{\prime}\right)_{>0}, C \in \mathbb{R}$ and $\lambda, \lambda^{\prime}>0$, we have

$$
\begin{aligned}
\lambda\left(\Gamma+\Gamma^{\prime}\right) & =\lambda \Gamma+\lambda \Gamma^{\prime} \\
\left(\lambda \lambda^{\prime}\right) \Gamma & =\lambda\left(\lambda^{\prime} \Gamma\right) \\
\lambda(\Gamma+C) & =\lambda \Gamma+\lambda C
\end{aligned}
$$

Suppose that $\left(\Gamma^{i}\right)_{i \in I}$ is a non-empty family in $\mathrm{TC}(X, \theta)_{>0}$ satisfying (9.20), then

$$
\lambda\left(\sup _{i \in I}^{*} \Gamma^{i}\right)=\sup _{i \in I}^{*}\left(\lambda \Gamma^{i}\right)
$$

lma:testcurvrescompatible
Lemma 9.4.8 Let $\Gamma \in \mathrm{TC}(X, \theta)_{>0}$ and $\lambda>0$. Then for any closed smooth positive $(1,1)$-form ω on X, we have

$$
P_{\lambda(\theta+\omega)}[\lambda \Gamma]=\lambda P_{\theta+\omega}[\Gamma]
$$

Proof This is clear by definition.

Chapter 10

The theory of Okounkov bodies

In this chapter, we apply our theory of singularities to the study of Okounkov bodies. We establish the theory of partial Okounkov bodies, which are convex bodies constructed from a given plurisubharmonic singularity. These objects allow us to reduce many problems in pluripotential theory to problems in convex geometry, which are usually simpler.

We will establish two related theories. One in the algebraic setting in Section 10.2 and one in the transcendental setting in Section 10.3.

10.1 Flags and valuations

10.1.1 The algebraic setting

Let X be an irreducible normal projective variety of dimension n.
Definition 10.1.1 An admissible flag Y_{\bullet} on X is a flag of subvarieties

$$
X=Y_{0} \supseteq Y_{1} \supseteq \cdots \supseteq Y_{n}
$$

such that Y_{i} is irreducible of codimension i and is smooth at the point Y_{n}.
Given any admissible flag Y_{\bullet}, we can define a rank n valuation $v_{Y_{\bullet}}: \mathbb{C}(X)^{\times} \rightarrow \mathbb{Z}^{n}$. Here we consider \mathbb{Z}^{n} as a totally ordered Abelian group with the lexicographic order. We sometimes write $\mathbb{Z}_{\text {lex }}^{n}$ to emphasize this point.

The automorphism group $\operatorname{Aut}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ of $\mathbb{Z}_{\text {lex }}^{n}$ is then identified with the subgroup of $\operatorname{GL}(n, \mathbb{Z})$ consisting of matrices of the form $\mathrm{I}+U$, where I is the identity matrix and U is a strictly upper triangular matrix with elements in \mathbb{Z}.

We recall the definition: Let $s \in \mathbb{C}(X)^{\times}$. Let $v(s)_{1}=\operatorname{ord}_{Y_{1}} s$. After localization around Y_{n}, we can take a local defining equation t^{1} of Y_{1}, set $s_{1}=\left.\left(s\left(t^{1}\right)^{-\nu_{1}(s)}\right)\right|_{Y_{1}}$. Then $s_{1} \in \mathbb{C}\left(Y_{1}\right)^{\times}$. We can repeat this construction with Y_{2} in place of Y_{1} to get $v(s)_{2}$ and s_{2}. Repeating this construction n times, we get

$$
v_{Y \boldsymbol{\bullet}}(s)=v(s)=\left(v(s)_{1}, v(s)_{2}, \ldots, v(s)_{n}\right) \in \mathbb{Z}^{n}
$$

It is easy to verify that v is indeed a rank n valuation.
The same construction can be applied to define $v_{Y_{\bullet}}(s)$ when $s \in \mathrm{H}^{0}(X, L)$ or $v_{Y_{\bullet}}(D)$ when D is an effective divisor on X.

Remark 10.1.1 Conversely, by a theorem of Abhyankar, any valuation of $\mathbb{C}(X)$ with Noetherian valuation ring of rank n is equivalent to a valuation taking value in \mathbb{Z}^{n}, see $\left[\mathrm{FFK}^{2} 8\right.$, Chapter 0, Theorem 6.5.2]. As shown in [EKLR ${ }^{+17}$, Theorem 2.9], any such valuation is equivalent ${ }^{1}$ to (but not necessarily equal to) a valuation induced by an admissible flag on a modification of X.

10.1.2 The transcendental setting

Let X be a connected compact Kähler manifold of dimension n.
Definition 10.1.2 A smooth flag Y_{\bullet} on X consists of a flag of connected submanifolds of X :

$$
X=Y_{0} \supseteq Y_{1} \supseteq \cdots \supseteq Y_{n},
$$

where Y_{i} has dimension $n-i$.
In this section, we will fix a smooth flag Y_{\bullet} on X.
Definition 10.1.3 Let T be a closed positive (1,1)-current on X. We define the valuation of T along Y_{\bullet} as

$$
v_{Y_{\bullet}}(T)=\left(v_{Y_{\bullet}}(T)_{1}, \ldots, v_{Y_{\bullet}}(T)_{n}\right) \in \mathbb{R}_{\geq 0}^{n}
$$

by induction on n. When $n=0$, we define $v_{Y_{\bullet}}(T)$ as the unique point in \mathbb{R}^{0}. When $n>1$, we define

$$
v_{Y_{\mathbf{\bullet}}}(T)_{1}(T)=v\left(T, Y_{1}\right)
$$

Then for $i=2, \ldots, n$, we define

$$
v_{Y_{\mathbf{\bullet}}}(T)_{i}=v_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\operatorname{Tr}_{Y_{1}}\left(T-v\left(T, Y_{1}\right)\left[Y_{1}\right]\right)\right)_{i-1} .
$$

Proposition 10.1.1 Let T be a closed positive (1,1)-current on X. Then $v_{Y_{\bullet}}(T) \in \mathbb{R}_{\geq 0}^{n}$ defined in Definition 10.1.3 is independent of the choices of the trace operators in the definition. Moreover, $v_{Y_{0}}(T)$ depends only on the \mathcal{I}-equivalence class of T.

Proof We will prove both statements at the same time by induction on $n \geq 0$. The case $n=0$ is trivial.

[^5]Let us consider the case $n>0$ and assume that the result is known in dimension $n-1$. We first observe that $v_{Y_{\bullet}}(T)$ is independent of the choice of the trace operator: different choices of $\operatorname{Tr}_{Y_{1}}\left(T-v\left(T, Y_{1}\right)\left[Y_{1}\right]\right)$ are I-equivalent by Proposition 8.1.2. Therefore, by induction, its valuation is well-defined.

Next, let T^{\prime} be another closed positive $(1,1)$-current such that $T \sim_{I} T^{\prime}$. Using Proposition 3.2.1, we know that $v\left(T, Y_{1}\right)=v\left(T^{\prime}, Y_{1}\right)$. Therefore,

$$
T-v\left(T, Y_{1}\right)\left[Y_{1}\right] \sim_{I} T^{\prime}-v\left(T^{\prime}, Y_{1}\right)\left[Y_{1}\right] .
$$

It follows by induction that

$$
v_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\operatorname{Tr}_{Y_{1}}\left(T-v\left(T, Y_{1}\right)\left[Y_{1}\right]\right)\right)=v_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\operatorname{Tr}_{Y_{1}}\left(T^{\prime}-v\left(T^{\prime}, Y_{1}\right)\left[Y_{1}\right]\right)\right) .
$$

Example 10.1.1 When X is projective, we have

$$
v_{Y_{\mathbf{0}}}([D])=v_{Y_{\mathbf{0}}}(D),
$$

where the right-hand side is defined in Section 10.1.1.
Proposition 10.1.2 Let T, S be closed positive (1,1)-currents on $X, \lambda \in \mathbb{R}_{\geq 0}$. Then
(1) if $T \leq_{I} S$, we have

$$
\begin{equation*}
v_{Y_{\bullet}}(T) \geq_{\operatorname{lex}} v_{Y_{\bullet}}(S) \tag{10.1}
\end{equation*}
$$

\{eq:nuTS\}
(2) We have the following additivity property:

$$
\begin{equation*}
v_{Y_{\boldsymbol{\bullet}}}(T+S)=v_{Y_{\bullet}}(T)+v_{Y_{\bullet}}(S), \quad v_{Y_{\bullet}}(\lambda T)=\lambda v_{Y_{\bullet}}(T) \tag{10.2}
\end{equation*}
$$

Proof (1) We make an induction on $n \geq 0$. The case $n=0,1$ is trivial. Assume that $n \geq 2$ and the case $n-1$ is known. Observe that $v\left(T, Y_{1}\right) \geq v\left(S, Y_{1}\right)$, if the inequality is strict, we are done. So let us assume that $v\left(T, Y_{1}\right)=v\left(S, Y_{1}\right)$. By Proposition 8.2.1, we find that

$$
\operatorname{Tr}_{Y_{1}}\left(T-v\left(T, Y_{1}\right)\left[Y_{1}\right]\right) \leq_{I} \operatorname{Tr}_{Y_{1}}\left(S-v\left(T, Y_{1}\right)\left[Y_{1}\right]\right)
$$

By the inductive hypothesis, we conclude (10.1).
(2) We make an induction on $n \geq 0$. The cases $n=0,1$ are trivial. Assume that $n \geq 2$ and the case $n-1$ is known. By Proposition 1.4.2, we have

$$
v\left(T+S, Y_{1}\right)=v\left(T, Y_{1}\right)+v\left(S, Y_{1}\right), \quad v\left(\lambda T, Y_{1}\right)=\lambda v\left(T, Y_{1}\right) .
$$

By Proposition 8.2.1, we have

$$
\begin{aligned}
\operatorname{Tr}_{Y_{1}}\left(T+S-v\left(T+S, Y_{1}\right)\left[Y_{1}\right]\right) & \sim_{P} \operatorname{Tr}_{Y_{1}}\left(T-v\left(T, Y_{1}\right)\left[Y_{1}\right]\right)+\operatorname{Tr}_{Y_{1}}\left(S-v\left(S, Y_{1}\right)\left[Y_{1}\right]\right), \\
\operatorname{Tr}_{Y_{1}}\left(\lambda T-v\left(\lambda T, Y_{1}\right)\left[Y_{1}\right]\right) & \sim_{P} \lambda \operatorname{Tr}_{Y_{1}}\left(T-v\left(T, Y_{1}\right)\left[Y_{1}\right]\right) .
\end{aligned}
$$

By the inductive hypothesis, we conclude (10.2).

Definition 10.1.4 Let $\pi: Z \rightarrow X$ be a proper bimeromorphic morphism with Z being a Kähler manifold. We say that a smooth flag W_{\bullet} on Z is a lifting of Y_{\bullet} to Z if the restriction of π to $W_{i} \rightarrow Y_{i}$ is defined and bimeromorphic for each $i=0, \ldots, n$.

In this case, we define $\operatorname{cor}\left(Y_{\bullet}, \pi\right) \in \operatorname{Aut}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ inductively as follows:

$$
\operatorname{cor}\left(Y_{\bullet}, \pi\right):=\left[\begin{array}{l}
1-v_{W_{1}} \supseteq \cdots \supseteq W_{n}\left(\left.\left(\pi^{*}\left[Y_{1}\right]-\left[W_{1}\right]\right)\right|_{W_{1}}\right) \tag{10.3}\\
0 \operatorname{cor}\left(Y_{1} \supseteq \cdots \supseteq Y_{n},\left.\pi\right|_{W_{1}}: W_{1} \rightarrow Y_{1}\right)
\end{array}\right] .
$$

We observe that a lifting W_{\bullet} of Y_{\bullet} on Z is unique if it exists. For each $i=0, \ldots, n-1$, the component W_{i+1} is necessarily the strict transform of Y_{i+1} with respect to the bimeromorphic morphism $W_{i} \rightarrow Y_{i}$. We shall also say that $\left(W_{\bullet}, \operatorname{cor}\left(Y_{\bullet}, \pi\right)\right)$ is the lifting of Y_{\bullet} to Z.

Proposition 10.1.3 Let $\pi: Z \rightarrow X, p: Z^{\prime} \rightarrow Z$ be proper bimeromorphic morphisms with Z and Z^{\prime} being Kähler manifolds. Assume that Y_{\bullet} admits a lifting W_{\bullet} (resp. W_{\bullet}^{\prime}) to Z (resp. Z^{\prime}). Then

$$
\begin{equation*}
\operatorname{cor}\left(Y_{\bullet}, \pi \circ p\right)=\operatorname{cor}\left(Y_{\bullet}, \pi\right) \operatorname{cor}\left(W_{\bullet}, p\right) \tag{10.4}
\end{equation*}
$$

\{eq: cormul\}
Proof We let $\pi^{\prime}=\pi \circ p$:

We make induction on $n \geq 1$. The case $n=1$ is trivial. Assume that $n \geq 2$ and the case $n-1$ has been solved. Then by (10.3), the desired formula (10.4) can be reformulated as

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & -v_{W_{1}^{\prime}} \supseteq \cdots \supseteq W_{n}^{\prime}\left(\left.\left(\pi^{\prime *}\left[Y_{1}\right]-\left[W_{1}^{\prime}\right]\right)\right|_{W_{1}^{\prime}}\right) \\
0 & \operatorname{cor}\left(Y_{1} \supseteq \cdots \supseteq Y_{n},\left.\pi^{\prime}\right|_{W_{1}^{\prime}}: W_{1}^{\prime} \rightarrow Y_{1}\right)
\end{array}\right]=} \\
& {\left[\begin{array}{l}
1-v_{W_{1}} \supseteq \cdots \supseteq W_{n}\left(\left.\left(\pi^{*}\left[Y_{1}\right]-\left[W_{1}\right]\right)\right|_{W_{1}}\right) \\
0 \operatorname{cor}\left(Y_{1} \supseteq \cdots \supseteq Y_{n},\left.\pi\right|_{W_{1}}: W_{1} \rightarrow Y_{1}\right)
\end{array}\right] .} \\
& {\left[\begin{array}{cc}
1 & -v_{W_{1}^{\prime} \supseteq \cdots \supseteq W_{n}^{\prime}}\left(\left.\left(p^{*}\left[W_{1}\right]-\left[W_{1}^{\prime}\right]\right)\right|_{W_{1}^{\prime}}\right) \\
0 \operatorname{cor}\left(W_{1} \supseteq \cdots \supseteq W_{n},\left.p\right|_{W_{1}^{\prime}}: W_{1}^{\prime} \rightarrow W_{1}\right)
\end{array}\right]}
\end{aligned}
$$

By the inductive hypothesis, this is equivalent to

$$
\begin{gathered}
v_{W_{1}^{\prime} \supseteq \cdots \supseteq W_{n}^{\prime}}\left(\left.\left(\pi^{\prime *}\left[Y_{1}\right]-\left[W_{1}^{\prime}\right]\right)\right|_{W_{1}^{\prime}}\right)=v_{W_{1}^{\prime} \supseteq \cdots \supseteq W_{n}^{\prime}}\left(\left.\left(p^{*}\left[W_{1}\right]-\left[W_{1}^{\prime}\right]\right)\right|_{W_{1}^{\prime}}\right)+ \\
v_{W_{1} \supseteq \cdots \supseteq W_{n}}\left(\left.\left(\pi^{*}\left[Y_{1}\right]-\left[W_{1}\right]\right)\right|_{W_{1}}\right) \operatorname{cor}\left(W_{1} \supseteq \cdots \supseteq W_{n},\left.p\right|_{W_{1}^{\prime}}: W_{1}^{\prime} \rightarrow W_{1}\right),
\end{gathered}
$$

which can be further rewritten as

$$
\begin{aligned}
v_{W_{1}^{\prime} \supseteq \cdots \supseteq W_{n}^{\prime}}\left(\left.\left(\pi^{\prime *}\left[Y_{1}\right]-\left[W_{1}^{\prime}\right]\right)\right|_{W_{1}^{\prime}}\right) & =v_{W_{1}^{\prime} \supseteq \cdots \supseteq W_{n}^{\prime}}\left(\left.\left(p^{*}\left[W_{1}\right]-\left[W_{1}^{\prime}\right]\right)\right|_{W_{1}^{\prime}}\right)+ \\
& v_{W_{1}^{\prime} \supseteq \cdots \supseteq W_{n}^{\prime}}\left(\left.\left.p\right|_{W_{1}^{\prime}} ^{*}\left(\pi^{*}\left[Y_{1}\right]-\left[W_{1}\right]\right)\right|_{W_{1}}\right) .
\end{aligned}
$$

This follows from Proposition 10.1.2.
Proposition 10.1.4 Let $\pi: Z \rightarrow X$ be a proper bimeromorphic morphism with Z being a Kähler manifold. Let W_{\bullet} be a lifting of Y_{\bullet}, then for any closed positive (1,1)-current T on X, we have

$$
\begin{equation*}
v_{W_{\bullet}}\left(\pi^{*} T\right)=v_{Y_{\bullet}}(T) \operatorname{cor}\left(Y_{\bullet}, \pi\right) \tag{10.5}
\end{equation*}
$$

Proof We make induction on $n \geq 0$. The case $n=0$ is trivial. In general, assume that $n \geq 1$ and the result is proved in dimension $n-1$.

For simplicity, we write $v=v_{Y_{0}}$ and $v^{\prime}=v_{W_{0} .}$. Let μ (resp. μ^{\prime}) be the valuation of currents defined by the truncated flag $Y_{1} \supseteq \cdots \supseteq Y_{n}$ (resp. $W_{1} \supseteq \cdots \supseteq W_{n}$). Then we need to show that

$$
\begin{align*}
& {\left[v^{\prime}\left(\pi^{*} T\right)_{1} \mu^{\prime}\left(\operatorname{Tr}_{W_{1}}\left(\pi^{*} T-v^{\prime}\left(\pi^{*} T\right)_{1}\left[W_{1}\right]\right)\right)\right] } \tag{10.6}\\
= & {\left[v(T)_{1} \mu\left(\operatorname{Tr}_{Y_{1}}\left(T-v(T)_{1}\left[Y_{1}\right]\right)\right)\right] \operatorname{cor}\left(Y_{\bullet}, \pi\right) . }
\end{align*}
$$

\{eq:mubiration\}

By Zariski's main theorem,

$$
v^{\prime}\left(\pi^{*} T\right)_{1}=v(T)_{1}=: c
$$

By the inductive hypothesis, we have

$$
\begin{equation*}
\mu^{\prime}\left(\Pi^{*} \operatorname{Tr}_{Y_{1}}\left(T-c\left[Y_{1}\right]\right)\right)=\mu\left(\operatorname{Tr}_{Y_{1}}\left(T-c\left[Y_{1}\right]\right)\right) \operatorname{cor}\left(Y_{1} \supseteq \cdots \supseteq Y_{n}, \Pi\right) \tag{10.7}
\end{equation*}
$$

\{eq: ind_hypos\}
where $\Pi: W_{1} \rightarrow Y_{1}$ is the restriction of π. By Lemma 8.2.1 and Proposition 8.2.1,

$$
\begin{gathered}
\Pi^{*} \operatorname{Tr}_{Y_{1}}\left(T-c\left[Y_{1}\right]\right) \sim_{P} \operatorname{Tr}_{W_{1}}\left(\pi^{*}\left(T-c\left[Y_{1}\right]\right)\right) \\
\sim_{P} \operatorname{Tr}_{W_{1}}\left(\pi^{*} T-c\left[W_{1}\right]\right)+c \operatorname{Tr}_{W_{1}}\left(\pi^{*}\left[Y_{1}\right]-\left[W_{1}\right]\right) .
\end{gathered}
$$

So

$$
\mu^{\prime}\left(\Pi^{*} \operatorname{Tr}_{Y_{1}}\left(T-c\left[Y_{1}\right]\right)\right)=\mu^{\prime}\left(\operatorname{Tr}_{W_{1}}\left(\pi^{*} T-c\left[W_{1}\right]\right)\right)+c \mu^{\prime}\left(\operatorname{Tr}_{W_{1}}\left(\pi^{*}\left[Y_{1}\right]-\left[W_{1}\right]\right)\right)
$$

Combining the above with (10.7), we see that (10.6) follows.
Theorem 10.1.1 Let $\pi: Z \rightarrow X$ be a proper bimeromorphic morphism from a reduced complex space Z. Then there is a modification $W \rightarrow X$ dominating $Z \rightarrow X$ such that Y_{\bullet} admits a lifting to W.

Proof By Hironaka's Chow lemma, we may assume that π is a modification.
We begin by setting $W_{0}=Z$. We will construct W_{i} inductively for each i. Assume that for $0 \leq i<n$ a smooth partial flag $W_{0} \supset \cdots \supset W_{i}$ has been constructed on a modification $\pi_{i}: Z_{i} \rightarrow Z$ so that $\pi \circ \pi_{i}$ restricts to bimeromorphic morphisms $W_{j} \rightarrow Y_{j}$ for each $j=0, \ldots, i$.

By Zariski's main theorem, $W_{i} \rightarrow Y_{i}$ is an isomorphism outside a codimension 2 subset of Y_{i}. We let W_{i+1} be the strict transform of Y_{i+1} in W_{i}. The problem is that W_{i+1} is not necessarily smooth.

We will further modify Z_{i} and lift W_{1}, \ldots, W_{i+1} in order to make the flag smooth. Take the embedded resolution of $\left(W_{j}, W_{i+1}\right)$, say $W_{j}^{\prime} \rightarrow W_{j}$ for each $j=0, \ldots, i$.

We have canonical embeddings $W_{i}^{\prime} \hookrightarrow W_{i-1}^{\prime} \hookrightarrow \cdots \hookrightarrow W_{0}^{\prime}$ making the following diagram commutative:

Let W_{i+1}^{\prime} be the strict transform of W_{i+1} in W_{i}^{\prime}. It suffices to define π_{i+1} as the morphism $W_{0}^{\prime} \rightarrow Z_{i} \rightarrow Z$ and replace $W_{0} \supset \cdots \supset W_{i+1}$ by $W_{0}^{\prime} \supset \cdots \supset W_{i+1}^{\prime}$.

10.2 Algebraic partial Okounkov bodies

Let X be a connected smooth complex projective variety of dimension n and (L, h) be a Hermitian big line bundle on X.

Let h_{0} be a smooth Hermitian metric on L. Let $\theta=c_{1}\left(L, h_{0}\right)$. Then we can identify h with a function $\varphi \in \operatorname{PSH}(X, \theta)$. We will use interchangeably the notations (θ, φ) and (L, h).

Fix a rank n valuation $v: \mathbb{C}(X)^{\times} \rightarrow \mathbb{Z}^{n}$, which without loss of generality can be assumed to be surjective.

We will adopt the notations of Appendix C.2.

10.2.1 The spaces of sections

Definition 10.2.1 We will write

$$
\begin{aligned}
\Gamma(\theta, \varphi) & :=\left\{(v(s), k): k \in \mathbb{N}, s \in \mathrm{H}^{0}\left(X, L^{k} \otimes I(k \varphi)\right)^{\times}\right\} \\
\Delta_{k}(\theta, \varphi) & :=\operatorname{Conv}\left\{k^{-1} v(f): f \in \mathrm{H}^{0}\left(X, L^{k} \otimes I(k \varphi)\right)^{\times}\right\} \subseteq \mathbb{R}^{n}, \quad k \geq 0 .
\end{aligned}
$$

When $\theta=V_{\theta}$, we simply write $\Gamma(L)$ and $\Delta_{k}(L)$ instead.
Here Conv denotes the convex hull. For large enough $k, \Delta_{k}(\theta, \varphi)$ is non-empty thanks to Theorem 7.3.1.

Definition 10.2.2 Assume that φ has analytic singularities. We define

$$
\begin{equation*}
\Gamma^{\infty}(\theta, \varphi):=\left\{(v(s), k): k \in \mathbb{N}, s \in \mathrm{H}^{0}\left(X, L^{k} \otimes I_{\infty}(k \varphi)\right)^{\times}\right\} \tag{10.8}
\end{equation*}
$$

For later use, we introduce a twisted version as well.
Definition 10.2.3 If T is a holomorphic line bundle on X, we introduce

$$
\begin{aligned}
\Delta_{k, T}(\theta, \varphi) & :=\operatorname{Conv}\left\{k^{-1} v(f): f \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes \mathcal{I}(k \varphi)\right)^{\times}\right\} \subseteq \mathbb{R}^{n}, \\
\Delta_{k, T}(L) & :=\operatorname{Conv}\left\{k^{-1} v(f): f \in \mathrm{H}^{0}\left(X, T \otimes L^{k}\right)^{\times}\right\} \subseteq \mathbb{R}^{n}
\end{aligned}
$$

10.2.2 Algebraic Okounkov bodies

Proposition 10.2.1 There is a convex body $\Delta \in \mathcal{K}_{n}$ such that $\Gamma(L) \in \mathcal{S}^{\prime}(\Delta)$.
Proof Step 1. We first show that there is $\Delta \in \mathcal{K}_{n}$ such that $\Delta_{k}(L) \subseteq \Delta$. For this purpose, using Remark 10.1.1, we may assume that v is induced by an admissible flag Y_{\bullet} on X.

Fix $s \in \mathrm{H}^{0}\left(X, L^{k}\right)^{\times}$for some $k \in \mathbb{Z}_{>0}$. Assume that $s \neq 0$. We need to show that for each $i=1, \ldots, n, v(s)_{i} \leq C k$ for some constant $C>0$, independent of the choices of k and s.

Fix an ample divisor H on X. Take a large enough integer $b_{1}>0$ such that

$$
\left(L-b_{1} Y_{1}\right) \cdot H^{n-1}<0
$$

Then $v(s)_{1} \leq b_{1} k$. Next take a large enough integer b_{2} such that

$$
\left(\left.\left(L-a Y_{1}\right)\right|_{Y_{1}}-b_{2} Y_{2}\right) \cdot H^{n-2}<0
$$

It follows that $v(s)_{2} \leq b_{2} k$. Continue in this manner, we conclude that $v(s)_{i} / k$ is bounded for each i.

Step 2. Observe that $\Gamma(L)$ is clearly a semigroup. It remains to show that $\Gamma(L)$ generates \mathbb{Z}^{n+1} as an Abelian group.

For this purpose, take two very ample divisors A and B so that $L=O_{X}(A-B)$. After choosing A and B ample enough, we may guarantee that there exist sections $s_{0} \in \mathrm{H}^{0}(X, A), t_{i} \in \mathrm{H}^{0}(X, B)$ for $i=0, \ldots, n$ such that

$$
v\left(s_{0}\right)=v\left(t_{0}\right)=0
$$

and $v\left(t_{i}\right)$ is the i-th unit vector $e_{i} \in \mathbb{R}^{n}$ for $i=1, \ldots, n$.
Since L is big, we can find $m_{0}>0$ such that for any $m \geq m_{0}$ we can find an effective divisor F_{m} on X linearly equivalent to $m L-B$. Let $f_{m}=v\left(\left[F_{m}\right]\right)$. Then we find that

$$
\left(f_{m}, m\right),\left(f_{m}+e_{1}, m\right), \ldots,\left(f_{m}+e_{n}, m\right) \in \Gamma(L)
$$

Since $(m+1) L$ is linearly equivalent to $A+F_{m}$, so

$$
\left(f_{m}, m+1\right) \in \Gamma(L)
$$

It follows that $\Gamma(L)$ generates \mathbb{Z}^{n+1}.
Thanks to Proposition 10.2.1, we can introduce the next definition.
Definition 10.2.4 We define the Okounkov body of L with respect to the valuation v as

$$
\Delta_{v}(L):=\Delta(\Gamma(L))
$$

prop:Okounonlydepnum
Proposition 10.2.2 The Okounkov body $\Delta_{v}(L)$ depends only on the numerical class of L.
See $\frac{\text { LMO9 }}{\text { [LITO09, Proposition 4.1] for the elegant proof. }}$

cor:Okounvol

Corollary 10.2.1 We have

$$
\begin{equation*}
\operatorname{vol} \Delta_{v}(L)=\frac{1}{n!} \operatorname{vol} L \tag{10.9}
\end{equation*}
$$

Proof This follows immediately from Proposition 10.2.1 and Theorem C.2.1.
prop:GammaepsSp
Proposition 10.2.3 Assume that φ has analytic singularities and θ_{φ} is a Kähler current. Then we have

$$
\Gamma^{\infty}(\theta, \varphi) \in \mathcal{S}^{\prime}(X, \theta)
$$

and

$$
\operatorname{vol} \Gamma^{\infty}(\theta, \varphi)=\frac{1}{n!} \int_{X} \theta_{\varphi}^{n}
$$

Proof Replacing X by a modification, we may assume that φ has \log singularities along an effective \mathbb{Q}-divisor D. See Theorem 1.6.1.

In this case,

$$
\Gamma^{\infty}(\theta, \varphi)=\left\{(v(s), k): k \in \mathbb{N}, s \in \mathrm{H}^{0}\left(X, L^{k} \otimes O_{X}(-\lfloor k D\rfloor)\right) .\right\}
$$

Since $L-D$ is ample by Lemma 1.6.1, our assertion follows from the same argument as Proposition 10.2.1.

We first extend Theorem C.2.1 to the twisted case.
Proposition 10.2.4 For any holomorphic line bundle T on X, as $k \rightarrow \infty$

$$
\Delta_{k, T}(L) \xrightarrow{d_{\text {Haus }}} \Delta_{v}(L) .
$$

Proof As L is big, we can take $k_{0} \in \mathbb{Z}_{>0}$ so that
(1) $T^{-1} \otimes L^{k_{0}}$ admits a non-zero global holomorphic section s_{0}, and
(2) $T \otimes L^{k_{0}}$ admits a non-zero global holomorphic section s_{1}.

Then for $k \in \mathbb{Z}_{>k_{0}}$, we have injective linear maps

$$
\mathrm{H}^{0}\left(X, L^{k-k_{0}}\right) \xrightarrow{\times s_{1}} \mathrm{H}^{0}\left(X, T \otimes L^{k}\right) \xrightarrow{\times s_{0}} \mathrm{H}^{0}\left(X, L^{k+k_{0}}\right) .
$$

It follows that

$$
\left(k-k_{0}\right) \Delta_{k-k_{0}}(L)+v\left(s_{1}\right) \subseteq k \Delta_{k, T}(L) \subseteq\left(k+k_{0}\right) \Delta_{k+k_{0}}(L)-v\left(s_{0}\right)
$$

Using Theorem C.2.1, we conclude.
Proposition 10.2.5 Let L^{\prime} be another big line bundle on X. Then

$$
\Delta_{v}(L)+\Delta_{v}\left(L^{\prime}\right) \subseteq \Delta_{v}\left(L \otimes L^{\prime}\right)
$$

Proof Observe that for each $k \in \mathbb{N}$, we have

$$
\Delta_{k}(L)+\Delta_{k}\left(L^{\prime}\right) \subseteq \Delta_{k}\left(L \otimes L^{\prime}\right)
$$

So our assertion follows immediately from Theorem C.2.1.
Proposition 10.2.6 For any $a \in \mathbb{Z}_{>0}$, we have

$$
\Delta_{v}\left(L^{a}\right)=a \Delta_{v}(L)
$$

Proof This is an immediate consequence of Theorem C.2.1.

10.2.3 Construction of partial Okounkov bodies

Theorem 10.2.1 We have

$$
\Gamma(\theta, \varphi) \in{\overline{\mathcal{S}^{\prime}\left(\Delta_{\nu}(L)\right)}}_{>0}
$$

This theorem allows us to give the following definition:
Definition 10.2.5 The partial Okounkov body of (L, h) is defined as

$$
\begin{equation*}
\Delta_{v}(L, h)=\Delta_{v}(\theta, \varphi):=\Delta(\Gamma(\theta, \varphi)) \tag{10.10}
\end{equation*}
$$

\{eq:Deltalbdef\}

When v is induced by an admissible flag Y_{\bullet} on X (see Definition 10.1.1), we also say that $\Delta_{v}(\theta, \varphi)$ the partial Okounkov body of (L, h) or of (θ, φ) with respect to Y_{\bullet}. In this case, we also write $\Delta_{Y_{\bullet}}$ instead of Δ_{ν}.

Corollary 10.2.2 We have

$$
\begin{equation*}
\operatorname{vol} \Delta_{\nu}(\theta, \varphi)=\frac{1}{n!} \operatorname{vol} \theta_{\varphi} \tag{10.11}
\end{equation*}
$$

Proof This follows immediately from Theorem 10.2.1, Theorem 7.3.1 and Theorem C.2.2.

We will prove Theorem 10.2.1 and Corollary 10.2.2 at the same time.
Proof Step 1. We first assume that φ has analytic singularities and θ_{φ} is a Kähler current.

We claim that

$$
\begin{equation*}
d_{\mathrm{sg}}\left(\Gamma^{\infty}(\theta, \varphi), \Gamma(\theta, \varphi)\right)=0 \tag{10.12}
\end{equation*}
$$

\{eq:Ganma0Gammaanalytic\}
Observe that for each $\epsilon \in \mathbb{Q}_{>0}$, we have

$$
\mathrm{H}^{0}\left(X, L^{k} \otimes I_{\infty}(k \varphi)\right) \subseteq \mathrm{H}^{0}\left(X, L^{k} \otimes I(k \varphi)\right) \subseteq \mathrm{H}^{0}\left(X, L^{k} \otimes I_{\infty}(k(1-\epsilon) \varphi)\right)
$$

for all large enough k. This is a consequence of Lemma 1.6.3. Therefore, it suffices to show that

$$
\lim _{\bigotimes \ni \epsilon \rightarrow 0+} \operatorname{vol} \Gamma^{\infty}(\theta,(1-\epsilon) \varphi)=\operatorname{vol} \Gamma^{\infty}(\theta, \varphi) .
$$

This follows from the explicit formula in Proposition 10.2.3.
Step 2. We next handle the case where θ_{φ} is a Kähler current.
Let $\left(\varphi_{j}\right)_{j}$ be a quasi-equisingular approximation of φ in $\operatorname{PSH}(X, \theta)$. Then $\varphi_{j} \xrightarrow{d_{S}}$ $P_{\theta}[\varphi]_{I}$ by Corollary 7.1.2.

In this case, it suffices to prove that

$$
\begin{equation*}
\Gamma\left(\theta, \varphi_{j}\right) \xrightarrow{d_{\mathrm{sg}}} \Gamma(\theta, \varphi) . \tag{10.13}
\end{equation*}
$$

\{eq:WtoWclaim\}
In fact, by Theorem 7.3.1, we have

$$
\begin{aligned}
& d_{\mathrm{sg}}\left(\Gamma\left(\theta, \varphi_{j}\right), \Gamma(\theta, \varphi)\right) \\
= & \varlimsup_{k \rightarrow \infty} k^{-n}\left(\mathrm{H}^{0}\left(X, L^{k} \otimes I\left(k \varphi_{j}\right)\right)-\mathrm{H}^{0}\left(X, L^{k} \otimes I(k \varphi)\right)\right) \\
= & \lim _{k \rightarrow \infty} k^{-n} \mathrm{H}^{0}\left(X, L^{k} \otimes I\left(k \varphi_{j}\right)\right)-\lim _{k \rightarrow \infty} k^{-n} \mathrm{H}^{0}\left(X, L^{k} \otimes I(k \varphi)\right) \\
= & \frac{1}{n!} \operatorname{vol} \theta_{\varphi_{j}}-\frac{1}{n!} \operatorname{vol} \theta_{\varphi} .
\end{aligned}
$$

Letting $j \rightarrow \infty$, we conclude (10.13) by Theorem 6.2.5.
Step 3. Now we only assume that $\operatorname{vol} \theta_{\varphi}>0$. We may replace φ with $P_{\theta}[\varphi]_{I}$ and then assume that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$.

Take a potential $\psi \in \operatorname{PSH}(X, \theta)$ such that $\psi \leq \varphi$ and θ_{ψ} is a Kähler current. The existence of ψ is proved in Lemma 2.3.2. For each $\epsilon \in(0,1)$, let $\varphi_{\epsilon}=(1-\epsilon) \varphi+\epsilon \psi$. It suffices to show that

$$
\Gamma\left(\theta, \varphi_{\epsilon}\right) \xrightarrow{d_{\mathrm{sg}}} \Gamma(\theta, \varphi)
$$

as $\epsilon \rightarrow 0+$. We compute using Theorem 7.3.1:

$$
\begin{aligned}
& d_{\mathrm{sg}}\left(\Gamma\left(\theta, \varphi_{\epsilon}\right), \Gamma(\theta, \varphi)\right) \\
= & \varlimsup_{k \rightarrow \infty} k^{-n}\left(\mathrm{H}^{0}\left(X, L^{k} \otimes I(k \varphi)\right)-\mathrm{H}^{0}\left(X, L^{k} \otimes I\left(k \varphi_{\epsilon}\right)\right)\right) \\
= & \lim _{k \rightarrow \infty} k^{-n} \mathrm{H}^{0}\left(X, L^{k} \otimes I(k \varphi)\right)-\lim _{k \rightarrow \infty} k^{-n} \mathrm{H}^{0}\left(X, L^{k} \otimes \mathcal{I}\left(k \varphi_{\epsilon}\right)\right) \\
= & \frac{1}{n!} \operatorname{vol} \theta_{\varphi}-\frac{1}{n!} \operatorname{vol} \theta_{\varphi_{\epsilon}} \\
\rightarrow & 0
\end{aligned}
$$

by Theorem 6.2 .5 , as $\epsilon \rightarrow 0+$.
Remark 10.2.1 It follows from the proof that if φ has analytic singularities and θ_{φ} is a Kähler current, then (10.12) holds.

If we take a modification $\pi: Y \rightarrow X$ such that $\pi^{*} \varphi$ has log singularities along an effective \mathbb{Q}-divisor D on Y, then

$$
\Delta_{v}(\theta, \varphi)=\Delta_{v}\left(\pi^{*} L-D\right)+v(D)
$$

10.2.4 Basic properties of partial Okounkov bodies

Proposition 10.2.7 The partial Okounkov body $\Delta_{v}(L, h)$ depends only on $\mathrm{dd}^{\mathrm{c}} h$, not on the explicit choices of L, h_{0}, h.

Thanks to this result, given a closed positive $(1,1)$-current $T \in c_{1}(L)$ on X with $\int_{X} T^{n}>0$, we can write

$$
\Delta_{v}(T):=\Delta_{v}(\theta, \varphi)
$$

if $T=\theta+\operatorname{dd}^{\mathrm{c}} \varphi$ for some $\varphi \in \operatorname{PSH}(X, \theta)$.
Proof There are two different claims to prove, as detailed in the two steps below.
Step 1. Let h_{0}^{\prime} be another Hermitian metric on L. Set $\theta^{\prime}=c_{1}\left(L, h_{0}^{\prime}\right)$. Write $\operatorname{dd}^{\mathrm{c}} f=\theta-\theta^{\prime}$. Let $\varphi^{\prime}=\varphi+f \in \operatorname{PSH}\left(X, \theta^{\prime}\right)$. Then

$$
\begin{equation*}
\Delta_{\nu}(\theta, \varphi)=\Delta_{\nu}\left(\theta^{\prime}, \varphi^{\prime}\right) \tag{10.14}
\end{equation*}
$$

\{eq:DeltaDelta1\}
This is obvious since $\Gamma(\theta, \varphi)=\Gamma\left(\theta^{\prime}, \varphi^{\prime}\right)$.
Step 2. Let L^{\prime} be another big line bundle on X. By Step 1, we may assume that the reference Hermitian metric h_{0}^{\prime} on L^{\prime} is such that $c_{1}\left(L^{\prime}, h_{0}^{\prime}\right)=\theta$.

Let h^{\prime} be a plurisubharmonic metric on L^{\prime} with $c_{1}(L, h)=c_{1}\left(L^{\prime}, h^{\prime}\right)$. Then

$$
\Delta_{v}(L, h)=\Delta_{v}\left(L^{\prime}, h^{\prime}\right)
$$

From our construction, we may assume that $c_{1}(L, h)$ has analytic singularities. After taking a birational resolution, it suffices to deal with the case where $c_{1}(L, h)$ has analytic singularities along an effective \mathbb{Q}-divisors D. By rescaling, we may also
assume that D is a divisor. By Remark 10.2.1, we further reduce to the case where $c_{1}(L, h)$ is not singular.

In this case, the assertion is proved in Proposition 10.2.2.
Proposition 10.2.8 Let $\varphi, \psi \in \operatorname{PSH}(X, \theta)_{>0}$. Assume that $\varphi \leq_{I} \psi$, then

$$
\begin{equation*}
\Delta_{v}(\theta, \varphi) \subseteq \Delta_{v}(\theta, \psi) \tag{10.15}
\end{equation*}
$$

\{eq:Deltacomp\}
Proof This follows from Corollary C.2.2.
Theorem 10.2.2 The Okounkov body map

$$
\Delta_{v}(\theta, \bullet):\left(\operatorname{PSH}(X, \theta)_{>0}, d_{S}\right) \rightarrow\left(\mathcal{K}_{n}, d_{\text {Haus }}\right)
$$

is continuous.
Proof Let $\varphi_{j} \rightarrow \varphi$ be a d_{S}-convergent sequence in $\operatorname{PSH}(X, \theta)_{>0}$. We want to show that

$$
\begin{equation*}
\Delta_{v}\left(\theta, \varphi_{j}\right) \xrightarrow{d_{\text {Haus }}} \Delta_{v}(\theta, \varphi) . \tag{10.16}
\end{equation*}
$$

\{eq:Deltavjv\}
By Proposition 10.2.8, we may assume that all φ_{j} 's and φ are model potentials.
By Theorem C.1.1 and Proposition 6.2.3, we may assume that $\left(\varphi_{j}\right)_{j}$ is either decreasing or increasing. By Theorem 6.2.3, we may further assume that the φ_{j} 's are I-model. In both cases, we claim that

$$
\Gamma\left(\theta, \varphi_{j}\right) \xrightarrow{d_{\mathrm{sg}}} \Gamma(\theta, \varphi)
$$

as $j \rightarrow \infty$. In fact, using Theorem 7.3.1, we can compute

$$
\begin{aligned}
d_{\mathrm{sg}}\left(\Gamma\left(\theta, \varphi_{j}\right), \Gamma(\theta, \varphi)\right) & =\varlimsup_{k \rightarrow \infty} k^{-n}\left|\mathrm{H}^{0}\left(X, L^{k} \otimes I\left(k \varphi_{j}\right)\right)-\mathrm{H}^{0}\left(X, L^{k} \otimes I(k \varphi)\right)\right| \\
& =\frac{1}{n!}\left|\operatorname{vol} \theta_{\varphi_{j}}-\operatorname{vol} \theta_{\varphi}\right|
\end{aligned}
$$

which converges to 0 by Theorem 6.2.5.
Proposition 10.2.9 Let $\pi: Y \rightarrow X$ be a modification. Then

$$
\Delta_{v}\left(\pi^{*} L, \pi^{*} h\right)=\Delta_{v}(L, h)
$$

Proof Thanks to Proposition 3.2.5, we may assume that φ is I-model. By Theorem 7.1.1, we can find a sequence $\left(\varphi_{j}\right)_{j}$ with analytic singularities in $\operatorname{PSH}(X, \theta)$ such that $\varphi_{j} \xrightarrow{d_{S}} \varphi$. It is clear that $\pi^{*} \varphi_{j} \xrightarrow{d_{S}} \pi^{*} \varphi$. By Theorem 10.2.2, we may then reduce to the case where φ has analytic singularities. In this case, it suffices to apply Remark 10.2.1.

Proposition 10.2.10 Let $\left(L^{\prime}, h^{\prime}\right)$ be another Hermitian big line bundle on X. Then

$$
\Delta_{v}(L, h)+\Delta_{v}\left(L^{\prime}, h^{\prime}\right) \subseteq \Delta_{v}\left(L \otimes L^{\prime}, h \otimes h^{\prime}\right)
$$

Proof Take a smooth metric h_{0}^{\prime} on L^{\prime} and let $\theta^{\prime}=c_{1}\left(L^{\prime}, h_{0}^{\prime}\right)$. We identify h^{\prime} with $\varphi^{\prime} \in \operatorname{PSH}\left(X, \theta^{\prime}\right)$. Then we need to show

$$
\begin{equation*}
\Delta_{v}(\theta, \varphi)+\Delta_{v}\left(\theta^{\prime}, \varphi^{\prime}\right) \subseteq \Delta_{v}\left(\theta+\theta^{\prime}, \varphi+\varphi^{\prime}\right) \tag{10.17}
\end{equation*}
$$

By Theorem 7.1.1, we can find sequences $\left(\varphi_{j}\right)_{j}$ and $\left(\varphi_{j}^{\prime}\right)_{j}$ in $\operatorname{PSH}(X, \theta)_{>0}$ and $\operatorname{PSH}\left(X, \theta^{\prime}\right)_{>0}$ respectively such that
(1) φ_{j} and φ_{j}^{\prime} both have analytic singularities for all $j \geq 1$, and
(2) $\varphi_{j} \xrightarrow{d_{S}} \varphi, \varphi_{j}^{\prime} \xrightarrow{d_{S}} \varphi^{\prime}$.

Then $\varphi_{j}+\varphi_{j}^{\prime} \in \operatorname{PSH}\left(X, \theta+\theta^{\prime}\right)_{>0}$ and $\varphi_{j}+\varphi_{j}^{\prime} \xrightarrow{d_{S}} \varphi+\varphi^{\prime}$ by Theorem 6.2.2. Thus, by Theorem 10.2.2, we may assume that φ and ψ both have analytic singularities. Taking a birational resolution, we may further assume that they have \log singularities. By Remark 10.2.1, we reduce to the case without singularities, in which case the result is just Proposition 10.2.5.

Theorem 10.2.3 Let $\varphi, \psi \in \operatorname{PSH}(X, \theta)_{>0}$. Then for any $t \in(0,1)$,

$$
\begin{equation*}
\Delta_{v}(\theta, t \varphi+(1-t) \psi) \supseteq t \Delta_{v}(\theta, \varphi)+(1-t) \Delta_{v}(\theta, \psi) \tag{10.18}
\end{equation*}
$$

Proof We may assume that t is rational as a consequence of Theorem 10.2.2. Similarly, as in the proof of Proposition 10.2.10, we could reduce to the case where both φ and ψ have analytic singularities. In this case, let $N>0$ be an integer such that $N t$ is an integer. Then for any $s \in \mathrm{H}^{0}\left(X, L^{k} \otimes I_{\infty}(k \varphi)\right)$ and $r \in \mathrm{H}^{0}\left(X, L^{k} \otimes I_{\infty}(k \psi)\right)$, we have

$$
s^{t N} \otimes r^{N-t N} \in \mathrm{H}^{0}\left(X, L^{k N} \otimes I_{\infty}(N t \varphi+(N-N t) \psi)\right)
$$

By Theorem C.2.1 and Remark 10.2.1, (10.18) follows.

prop:res

Proposition 10.2.11 For any $a \in \mathbb{Z}_{>0}$,

$$
\Delta_{\nu}(a \theta, a \varphi)=a \Delta_{\nu}(\theta, \varphi)
$$

Proof As in the proof of Proposition 10.2.10, we may assume that φ has \log singularities. Using Remark 10.2.1, we reduce to the case without the singularity φ, which is proved in Proposition 10.2.6.

In particular, if T is a closed positive $(1,1)$-current on X with $\int_{X} T^{n}>0$ and such that

$$
[T] \in \mathrm{NS}^{1}(X)_{\mathbb{Q}}
$$

we can define

$$
\begin{equation*}
\Delta_{v}(T):=a^{-1} \Delta_{v}(a T) \tag{10.19}
\end{equation*}
$$

\{eq:DeltanuTalgebraic1\}
for a sufficiently divisible positive integer a.
We also need the following perturbation. Let A be an ample line bundle on X. Fix a Hermitian metric h_{A} on A such that $\omega:=c_{1}\left(A, h_{A}\right)$ is a Kähler form on X.

Proposition 10.2.12 As $\delta \searrow 0$, the convex bodies $\Delta_{v}\left(\theta+\delta \omega+\mathrm{dd}^{\mathrm{c}} \varphi\right)$ are decreasing and

$$
\Delta_{\nu}\left(\theta+\delta \omega+\operatorname{dd}^{\mathrm{c}} \varphi\right) \xrightarrow{d_{\text {Haus }}} \Delta_{\nu}\left(\theta_{\varphi}\right) .
$$

Proof Let $0 \leq \delta<\delta^{\prime}$ be two rational numbers. Take $C \in \mathbb{N}_{>0}$ divisible enough, so that $C \delta$ and $C \delta^{\prime}$ are both integers. Then by Proposition 10.2.10,

$$
\Delta_{v}\left(C \theta+C \delta \omega+C \mathrm{dd}^{\mathrm{c}} \varphi\right) \subseteq \Delta_{v}\left(C \theta+C \delta^{\prime} \omega+C \operatorname{dd}^{\mathrm{c}} \varphi\right)
$$

It follows that

$$
\Delta_{\nu}\left(\theta+\delta \omega+\operatorname{dd}^{\mathrm{c}} \varphi\right) \subseteq \Delta_{\nu}\left(\theta+\delta^{\prime} \omega+\operatorname{dd}^{\mathrm{c}} \varphi\right)
$$

On the other hand,

$$
\operatorname{vol} \Delta_{\nu}\left(\theta+\delta \omega+\operatorname{dd}^{\mathrm{c}} \varphi\right)=\frac{1}{n!} \operatorname{vol}(\theta+\delta \omega)_{\varphi}=\frac{1}{n!} \int_{X}(\theta+\delta \omega)_{P_{\theta}[\varphi]_{I}}^{n}
$$

where we applied Example 7.1.2. As $\delta \rightarrow 0+$, the right-hand side converges to

$$
\operatorname{vol} \Delta_{v}(\theta, \varphi)=\frac{1}{n!} \operatorname{vol} \theta_{\varphi}
$$

Our assertion therefore follows.

10.2.5 The Hausdorff convergence property of partial Okounkov bodies

Let T be a holomorphic line bundle on X.

thm: HCP

Theorem 10.2.4 As $k \rightarrow \infty$, we have $\Delta_{k, T}(\theta, \varphi) \xrightarrow{d_{\text {Haus }}} \Delta_{\nu}(\theta, \varphi)$.
Although we are only interested in the untwisted case, the proof given below requires twisted case.

Lemma 10.2.1 Assume that φ has analytic singularities and θ_{φ} is a Kähler current, then as $k \rightarrow \infty$,

$$
\Delta_{k, T}(\theta, \varphi) \xrightarrow{d_{\text {Haus }}} \Delta_{v}(\theta, \varphi) .
$$

Proof Up to replacing X by a birational model and twisting T accordingly, we may assume that φ has \log singularities along an effective \mathbb{Q}-divisor D, see Proposition 10.2.9 and Theorem 1.6.1.

Take a small enough $\epsilon \in \mathbb{Q}_{>0}$. In this case, for large enough $k \in \mathbb{Z}_{>0}$ we have
$\mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes \mathcal{I}_{\infty}(k \varphi)\right) \subseteq \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes \mathcal{I}(k \varphi)\right) \subseteq \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes \mathcal{I}_{\infty}(k(1-\epsilon) \varphi)\right)$.
Take an integer $N \in \mathbb{Z}_{>0}$ so that $N D$ is a divisor and $N \epsilon$ is an integer.
Let Δ^{\prime} be the limit of a subsequence of $\left(\Delta_{k, T}(\theta, \varphi)\right)_{k}$, say the sequence defined by the indices k_{1}, k_{2}, \ldots. We want to show that $\Delta^{\prime}=\Delta(\theta, \varphi)$.

There exists $t \in\{0,1, \ldots, N-1\}$ such that $k_{i} \equiv t$ modulo N for infinitely many i, up to replacing k_{i} by a subsequence, we may assume that $k_{i} \equiv t$ modulo N for all i. Write $k_{i}=N g_{i}+t$. Then for large enough i, we have

$$
\begin{aligned}
\mathrm{H}^{0}\left(X, T \otimes L^{-N+t} \otimes L^{N\left(g_{i}+1\right)}\right. & \left.I_{\infty}\left(N\left(g_{i}+1\right) \varphi\right)\right) \subseteq \mathrm{H}^{0}\left(X, T \otimes L^{k_{i}} \otimes I\left(k_{i} \varphi\right)\right) \\
& \subseteq \mathrm{H}^{0}\left(X, T \otimes L^{t} \otimes L^{N g_{i}} \otimes I_{\infty}\left(g_{i} N(1-\epsilon) \varphi\right)\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
&\left(g_{i}+1\right) \Delta_{g_{i}+1, T \otimes L^{-N+t}}(N L-N D)+N\left(g_{i}+1\right) v(D) \subseteq\left(N g_{i}+t\right) \Delta_{k, T}(\theta, \varphi) \\
& \subseteq g_{i} \Delta_{g_{i}, T \otimes L^{t}}(N L-N(1-\epsilon) D)+N g_{i}(1-\epsilon) v(D) .
\end{aligned}
$$

Letting $i \rightarrow \infty$, by Proposition 10.2.4,

$$
\Delta_{v}(L-D)+v(D) \subseteq \Delta^{\prime} \subseteq \Delta_{v}(L-(1-\epsilon) D)+(1-\epsilon) v(D) .
$$

Letting $\epsilon \rightarrow 0+$, we find that

$$
\Delta_{v}(L-D)+v(D)=\Delta^{\prime}
$$

It follows from Theorem C.1.1 that

$$
\Delta_{k, T}(\theta, \varphi) \xrightarrow{d_{\text {Haus }}} \Delta_{v}(L-D)+v(D)=\Delta_{v}(\theta, \varphi)
$$

as $k \rightarrow \infty$.
Lemma 10.2.2 Assume that θ_{φ} is a Kähler current, then as $\mathbb{Q} \ni \beta \rightarrow 0+$, we have

$$
\Delta_{v}((1-\beta) \theta, \varphi) \xrightarrow{d_{\text {Haus }}} \Delta_{v}(\theta, \varphi)
$$

Here and in the sequel, $\Delta_{\nu}((1-\beta) \theta, \varphi)=\Delta_{\nu}\left((1-\beta) \theta+\operatorname{dd}^{\mathrm{c}} \varphi\right)$.
Proof By Proposition 10.2.10, we have

$$
\Delta_{v}((1-\beta) \theta, \varphi)+\beta \Delta_{v}(L) \subseteq \Delta_{v}(\theta, \varphi)
$$

In particular, if Δ^{\prime} is the Hausdorff limit of a subsequence of $(\Delta((1-\beta) \theta, \varphi))_{\beta}$, then $\Delta^{\prime} \subseteq \Delta_{\nu}(\theta, \varphi)$. But

$$
\begin{array}{r}
\operatorname{vol} \Delta^{\prime}=\lim _{\beta \rightarrow 0+} \Delta_{v}((1-\beta) \theta, \varphi)=\lim _{\beta \rightarrow 0+} \int_{X}\left((1-\beta) \theta+\operatorname{dd}^{\mathrm{c}} P_{(1-\beta) \theta}[\varphi]_{I}\right)^{n} \\
=\int_{X}\left(\theta+\operatorname{dd}^{\mathrm{c}} P_{\theta}[\varphi]_{I}\right)^{n}
\end{array}
$$

where the last step follows easily from Theorem 11.2.1. It follows that $\Delta^{\prime}=\Delta_{v}(\theta, \varphi)$. We conclude by Theorem C.1.1.

Proof (Proof of Theorem 10.2.4) Fix a Kähler form $\omega \geq \theta$ on X.

Step 1. We first handle the case where θ_{φ} is a Kähler current, say $\theta_{\varphi} \geq 2 \delta \omega$ for some $\delta \in(0,1)$. Take a quasi-equisingular approximation $\left(\varphi_{j}\right)_{j}$ of φ in $\operatorname{PSH}(X, \theta)$. We may assume that $\theta_{\varphi_{j}} \geq \delta \omega$ for all $j \geq 1$.

Let Δ^{\prime} be a limit of a subsequence of $\left(\Delta_{k, T}(\theta, \varphi)\right)_{k}$. Let us say the indices of the subsequence are $k_{1}<k_{2}<\cdots$. By Theorem C.1.1, it suffices to show that $\Delta^{\prime}=\Delta_{v}(\theta, \varphi)$.

Observe that for each $j \geq 1$, we have $\Delta^{\prime} \subseteq \Delta_{v}\left(\theta, \varphi_{j}\right)$ by Lemma 10.2.1. Letting $j \rightarrow \infty$, we find $\Delta^{\prime} \subseteq \Delta_{v}(\theta, \varphi)$. Therefore, it suffices to prove that

$$
\begin{equation*}
\operatorname{vol} \Delta^{\prime} \geq \operatorname{vol} \Delta_{v}(\theta, \varphi) \tag{10.20}
\end{equation*}
$$

Fix an integer $N>\delta^{-1}$. Observe that for any $j \geq 1$, we have $\varphi_{j} \in \operatorname{PSH}\left(X,\left(1-N^{-1}\right) \theta\right)$. Similarly, $\varphi \in \operatorname{PSH}\left(X,\left(1-N^{-1}\right) \theta\right)$. By Lemma 10.2.2, it suffices to argue that

$$
\begin{equation*}
\operatorname{vol} \Delta^{\prime} \geq \operatorname{vol} \Delta_{v}\left(\left(1-N^{-1}\right) \theta, \varphi\right) \tag{10.21}
\end{equation*}
$$

For this purpose, we are free to replace k_{i} 's by a subsequence, so we may assume that $k_{i} \equiv a$ modulo q for all $i \geq 1$, where $a \in\{0,1, \ldots, q-1\}$. We write $k_{i}=g_{i} q+a$. Observe that for each $i \geq 1$,

$$
\mathrm{H}^{0}\left(X, T \otimes L^{k_{i}} \otimes \mathcal{I}\left(k_{i} \varphi\right)\right) \supseteq \mathrm{H}^{0}\left(X, T \otimes L^{-q+a} \otimes L^{g_{i} q+q} \otimes \mathcal{I}\left(\left(g_{i} q+q\right) \varphi\right)\right)
$$

Up to replacing T by $T \otimes L^{-q+a}$, we may therefore assume that $a=0$.
By Lemma 2.3.1, we can find $k^{\prime} \in \mathbb{Z}_{>0}$ such that for all $k \geq k^{\prime}$, there is $\psi \in \operatorname{PSH}(X, \theta)_{>0}$ satisfying

$$
P_{\theta}[\varphi]_{I} \geq\left(1-N^{-1}\right) \varphi_{k}+N^{-1} \psi_{k}
$$

Fix $k \geq k^{\prime}$. It suffices to show that

$$
\begin{equation*}
\Delta_{v}\left(\left(1-N^{-1}\right) \theta, \varphi_{k}\right)+v^{\prime} \subseteq \Delta^{\prime} \tag{10.22}
\end{equation*}
$$

for some $v^{\prime} \in \mathbb{R}^{n}$. In fact, if this is true, we have

$$
\operatorname{vol} \Delta^{\prime} \geq \operatorname{vol} \Delta\left(\left(1-N^{-1}\right) \theta, \varphi_{k}\right)
$$

Letting $k \rightarrow \infty$ and applying Theorem 10.2 .2, we conclude (10.21).
It remains to prove (10.22). By the proof of Theorem 7.3.1, there is $j_{0}>0$ such that for any $j \geq j_{0}$, we can find a non-zero section $s_{j} \in \mathrm{H}^{0}\left(X, L^{j} \otimes I\left(j \psi_{k}\right)\right)$ such that we get an injective linear map

$$
\mathrm{H}^{0}\left(X, T \otimes L^{(N-1) j} \otimes I\left(j N \varphi_{k}\right)\right) \xrightarrow{\times s_{j}} \mathrm{H}^{0}\left(X, T \otimes L^{j N} \otimes I(j N \varphi)\right)
$$

In particular, when $j=k_{i}$ for some i large enough, we then find

$$
\Delta_{k_{i}, T}\left((N-1) \theta, N \varphi_{k}\right)+\left(k_{i}\right)^{-1} v\left(s_{k_{i}}\right) \subseteq N \Delta_{k_{i}, T}(\theta, \varphi)
$$

We observe that $\left(k_{i}\right)^{-1} v\left(s_{k_{i}}\right)$ is bounded as both convex bodies appearing in this equation are bounded when i varies. Then by Lemma 10.2.1, there is a vector $v^{\prime} \in \mathbb{R}^{n}$ such that (10.22) holds.

Step 2. Next we handle the general case.
Let Δ^{\prime} be the Hausdorff limit of a subsequence of $\left(\Delta_{k, T}(\theta, \varphi)\right)_{k}$, say the subsequence with indices $k_{1}<k_{2}<\cdots$. By Theorem C.1.1, it suffices to prove that $\Delta^{\prime}=\Delta_{v}(\theta, \varphi)$.

Take $\psi \in \operatorname{PSH}(X, \theta)$ such that θ_{ψ} is a Kähler current and $\psi \leq \varphi$. The existence of ψ follows from Lemma 2.3.2.

Then for any $\epsilon \in \mathbb{Q} \cap(0,1)$,

$$
\Delta_{k, T}(\theta, \varphi) \supseteq \Delta_{k, T}(\theta,(1-\epsilon) \varphi+\epsilon \psi)
$$

for all $k \geq 1$. It follows from Step 1 that

$$
\Delta^{\prime} \supseteq \Delta_{v}(\theta,(1-\epsilon) \varphi+\epsilon \psi)
$$

Letting $\epsilon \rightarrow 0$ and applying Theorem 10.2.2, we have $\Delta^{\prime} \supseteq \Delta_{\nu}(\theta, \varphi)$. It remains to establish that

$$
\begin{equation*}
\operatorname{vol} \Delta^{\prime} \leq \operatorname{vol} \Delta_{v}(\theta, \varphi) \tag{10.23}
\end{equation*}
$$

For this purpose, we are free to replace $k_{1}<k_{2}<\cdots$ by a subsequence. Fix $q>0$, we may then assume that $k_{i} \equiv a$ modulo q for all $i \geq 1$ for some $a \in\{0,1, \ldots, q-1\}$. We write $k_{i}=g_{i} q+a$. Observe that

$$
\mathrm{H}^{0}\left(X, T \otimes L^{k_{i}} \otimes I\left(k_{i} \varphi\right)\right) \subseteq \mathrm{H}^{0}\left(X, T \otimes L^{a} \otimes L^{g_{i} q} \otimes I\left(g_{i} q \varphi\right)\right)
$$

Up to replacing T by $T \otimes L^{a}$, we may assume that $a=0$.
Take a very ample line bundle H on X and fix a Kähler form $\omega \in c_{1}(H)$, take a non-zero section $s \in \mathrm{H}^{0}(X, H)$.

We have an injective linear map

$$
\mathrm{H}^{0}\left(X, T \otimes L^{j q} \otimes I(j q \varphi)\right) \xrightarrow{\times s^{j}} \mathrm{H}^{0}\left(X, T \otimes H^{j} \otimes L^{j q} \otimes I(j q \varphi)\right)
$$

for each $j \geq 1$. In particular, for each $i \geq 1$,

$$
k_{i} \Delta_{k_{i}, T}(q \theta, q \varphi)+k_{i} v(s) \subseteq k_{i} \Delta_{k_{i}, T}(\omega+q \theta, q \varphi) .
$$

Letting $i \rightarrow \infty$, by Step 1 , we have

$$
q \Delta^{\prime}+v(s) \subseteq \Delta_{v}(\omega+q \theta, q \varphi)
$$

So

$$
\operatorname{vol} \Delta^{\prime} \leq \operatorname{vol} \Delta_{\nu}\left(q^{-1} \omega+\theta, \varphi\right)=\int_{X}\left(q^{-1} \omega+\theta+\operatorname{dd}^{\mathrm{c}} P_{q^{-1} \omega+\theta}[\varphi]_{I}\right)^{n}
$$

By Example 7.1.2,

$$
\operatorname{vol} \Delta^{\prime} \leq \int_{X}\left(q^{-1} \omega+\theta+\operatorname{dd}^{\mathrm{c}} P_{\theta}[\varphi]_{I}\right)^{n}
$$

Letting $q \rightarrow \infty$, we conclude (10.23).

10.2.6 Recover Lelong numbers from partial Okounkov bodies

Theorem 10.2.5 Let E be a prime divisor on X. Let Y_{\bullet} be an admissible flag with $E=Y_{1}$. Then

$$
\begin{equation*}
v(\varphi, E)=\min _{x \in \Delta_{\bullet}(\theta, \varphi)} x_{1} . \tag{10.24}
\end{equation*}
$$

Here x_{1} denotes the first component of x.
Proof Replacing φ by $P_{\theta}[\varphi]_{I}$, we may assume that φ is I-good.
Step 1. We first reduce to the case where φ has analytic singularities.
By Theorem 7.1.1, we can find a sequence $\left(\varphi_{j}\right)_{j}$ in $\operatorname{PSH}(X, \theta)_{>0}$ with analytic singularities such that $\varphi_{j} \xrightarrow{d_{S}} \varphi$. It follows from Theorem 10.2.2 that

$$
\Delta_{Y_{\bullet}}\left(\theta, \varphi_{j}\right) \xrightarrow{d_{\text {Haus }}} \Delta_{Y \cdot}(\theta, \varphi) .
$$

Therefore,

$$
\lim _{j \rightarrow \infty} \min _{x \in \Delta_{Y_{\bullet}}\left(\theta, \varphi_{j}\right)} x_{1}=\min _{x \in \Delta_{\bullet}(\theta, \varphi)} x_{1} .
$$

In view of Theorem 6.2.4, it suffices to prove (10.24) with φ_{j} in place of φ.
Step 2. Assume that φ has analytic singularities. In view of Proposition 10.2.9 and Theorem 1.6.1, after replacing X by a birational model, we may assume that φ has log singularities along an effective \mathbb{Q}-divisor F.

Perturbing L by an ample \mathbb{Q}-line bundle by Proposition 10.2 .12 , we may assume that θ_{φ} is a Kähler current. Therefore, $L-F$ is ample by Lemma 1.6.1. Finally, by rescaling, we may assume that F is a divisor and L is a line bundle.

By Theorem 10.2.4, we know that

$$
\min _{x \in \Delta_{Y_{\bullet}}(\theta, \varphi)} x_{1}=\lim _{k \rightarrow \infty} \min _{x \in \Delta_{k}(\theta, \varphi)} x_{1} .
$$

By definition,

$$
\min _{x \in \Delta_{k}(\theta, \varphi)} x_{1}=k^{-1} \operatorname{ord}_{E} \mathrm{H}^{0}\left(X, L^{k} \otimes I(k \varphi)\right) .
$$

It remains to show that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k^{-1} \operatorname{ord}_{E} \mathrm{H}^{0}\left(X, L^{k} \otimes \mathcal{I}(k \varphi)\right)=\lim _{k \rightarrow \infty} k^{-1} \operatorname{ord}_{E} \mathcal{I}(k \varphi) \tag{10.25}
\end{equation*}
$$

\{eq:temp1\}
The \geq direction is trivial, we prove the converse. Observe that

$$
\mathrm{H}^{0}\left(X, L^{k} \otimes I(k \varphi)\right)=\mathrm{H}^{0}\left(X, L^{k} \otimes O_{X}(-k F)\right), \quad \mathcal{I}(k \varphi)=O(-k F)
$$

As $L-F$ is ample, for large enough k, we have

$$
\operatorname{ord}_{E} \mathrm{H}^{0}\left(X, L^{k} \otimes O_{X}(-k F)\right)=\operatorname{ord}_{E}(k F)
$$

Thus, (10.25) is clear.
Corollary 10.2.3 Let $\varphi, \psi \in \operatorname{PSH}(X, \theta)_{>0}$. If

$$
\Delta_{W_{\mathbf{0}}}\left(\pi^{*} \theta, \pi^{*} \varphi\right) \subseteq \Delta_{W_{\mathbf{0}}}\left(\pi^{*} \theta, \pi^{*} \psi\right)
$$

for all birational models $\pi: Y \rightarrow X$ and all admissible flags W_{\bullet} on Y, then $\varphi \leq_{I} \psi$.
Proof This follows immediately from Theorem 10.2.5.
cor:numin
Corollary 10.2.4 Let E be a prime divisor over X. Then

$$
\begin{equation*}
v\left(V_{\theta}, E\right)=\lim _{k \rightarrow \infty} \frac{1}{k} \operatorname{ord}_{E} \mathrm{H}^{0}\left(X, L^{k}\right) \tag{10.26}
\end{equation*}
$$

Proof This follows from Theorem 10.2.5 and the fact that $\Delta_{Y_{\mathbf{\bullet}}}\left(\theta, V_{\theta}\right)=\Delta_{Y_{\mathbf{\bullet}}}(L)$ for any admissible flag Y_{\bullet} on X.

10.3 Transcendental partial Okounkov bodies

sec:tpob
Let X be a connected compact Kähler manifold of dimension n. Fix a smooth flag Y_{\bullet} on X.

10.3.1 The traditional approach to the Okounkov body problem

Definition 10.3.1 Let α be a big cohomology class on X. We define the Okounkov body of α as

$$
\Delta_{Y_{\bullet}}(\alpha):=\overline{\left\{v_{Y_{\bullet}}(S): S \in \mathcal{Z}_{+}(X, \alpha), S \text { has gentle analytic singularities }\right\}}
$$

\{eq:twodefspob\}

See Definition 1. 84.4 for the definition of gentle analytic singularities.
The results of $\left[D R W \mathrm{~N}^{+} 23\right]$ can be summarized as follows:
thm:Okounkovtranmain
Theorem 10.3.1 For any big cohomology class α on X, the set $\Delta_{Y_{\bullet}}(\alpha) \subseteq \mathbb{R}^{n}$ is a convex body satisfying the following properties:
(1) we have

$$
\operatorname{vol} \Delta_{Y \bullet}(\alpha)=\frac{1}{n!} \operatorname{vol} \alpha
$$

(2) Given another big cohomology class α^{\prime} on X, we have

$$
\Delta_{Y_{\mathbf{0}}}(\alpha)+\Delta_{Y_{\mathbf{0}}}\left(\alpha^{\prime}\right) \subseteq \Delta_{Y_{\mathbf{0}}}\left(\alpha+\alpha^{\prime}\right)
$$

(3) Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism with Y being a Kähler manifold. Assume that $\left(W_{\bullet}, g\right)$ is the lifting of Y_{\bullet} to Y, then

$$
\Delta_{W \cdot}\left(\pi^{*} \alpha\right)=\Delta_{Y_{\bullet}}(\alpha) g
$$

(4) The map $\alpha \mapsto \Delta_{Y_{\bullet}}(\alpha)$ is continuous in the big cone with respect to the Hausdorff metric;
(5) For any small enough $t>0$, we have

$$
\left\{y \in \mathbb{R}^{n-1}:(t, y) \in \Delta_{Y_{\bullet}}(\beta)\right\}=\Delta_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\left.\left(\beta-t\left[Y_{1}\right]\right)\right|_{Y_{1}}\right)
$$

10.3.2 Definitions of partial Okounkov bodies

Let θ be a closed real smooth (1,1)-form on X representing a big cohomology class α.

Let $T=\theta_{\varphi} \in \mathcal{Z}_{+}(X, \alpha)$. We shall define a convex body $\Delta_{Y_{\bullet}}(T) \subseteq \mathbb{R}^{n}$, which is also written as $\Delta_{Y_{\bullet}}(\theta, \varphi)$. This convex body is called the partial Okounkov body of T with respect to the flag Y_{\bullet}.

10.3.2.1 The case of analytic singularities

Definition 10.3.2 When T is a Kähler current with analytic singularities, we take a modification $\pi: Y \rightarrow X$ so that
(1)

$$
\begin{equation*}
\pi^{*} T=[D]+R, \tag{10.28}
\end{equation*}
$$

\{eq:resolveanalytic\}
where D is an effective \mathbb{Q}-divisor on Y and R is a closed positive $(1,1)$-current with bounded potential, and
(2) the lifting $\left(Z_{\bullet}, g\right)$ of Y_{\bullet} to Y exists.

Define

$$
\Delta_{Y_{\mathbf{0}}}(T):=\Delta_{Z_{\bullet}}([R]) g^{-1}+v_{Z_{\bullet}}([D]) g^{-1}
$$

The existence of π is guaranteed by Theorem 1.6.1 and Theorem 10.1.1.
Lemma 10.3.1 The convex body $\Delta_{Y .}(T)$ defined in Definition 10.3.2 is independent of the choice of π.

Proof Take another map $\pi^{\prime}: Y^{\prime} \rightarrow X$ with the same properties. We want to show that π and π^{\prime} defines the same $\Delta_{Y_{\bullet}}(T)$. We may assume that π^{\prime} dominates π through $p: Y^{\prime} \rightarrow Y$, so that we have a commutative diagram

We take D and R as in (10.28). Then

$$
\pi^{\prime *} T=\left[p^{*} D\right]+p^{*} R
$$

Write $\left(Z_{\bullet}, g\right)$ and $\left(Z_{\bullet}^{\prime}, g^{\prime}\right)$ for the liftings of Y_{\bullet} to Y and Y^{\prime} respective. We need to prove that

$$
\Delta_{Z_{0}}([R]) g^{-1}+v_{Z_{0}}([D]) g^{-1}=\Delta_{Z_{0}}\left(\left[p^{*} R\right]\right) g^{\prime-1}+v_{Z_{0}}\left(\left[p^{*} D\right]\right) g^{\prime-1} .
$$

This follows Theorem 10.3.1, Proposition 10.1.4 and Proposition 10.1.3.
Note that from the above proof, we could describe the bimeromorphic behaviour of $\Delta_{Y_{\bullet}}(T)$ as follows:
lma:lift0kounana
Lemma 10.3.2 Let $T \in \mathcal{Z}_{+}(X, \alpha)$ be a Kähler current with analytic singularities. Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism and $\left(W_{\bullet}, g\right)$ be the lifting of Y_{\bullet} to Y. Then

$$
\Delta_{W_{\bullet}}\left(\pi^{*} T\right)=\Delta_{Y_{\bullet}}(T) g
$$

Lemma 10.3.3 Assume that $T, S \in \mathcal{Z}_{+}(X, \alpha)$ are two Kähler currents with analytic singularities and $T \leq S$, then

$$
\Delta_{Y_{\mathbf{\bullet}}}(T) \subseteq \Delta_{Y_{\bullet}}(S) \subseteq \Delta_{Y_{\bullet}}(\alpha)
$$

Moreover,

$$
\begin{equation*}
\operatorname{vol} \Delta_{Y_{\bullet}}(T)=\frac{1}{n!} \int_{X} T^{n} \tag{10.29}
\end{equation*}
$$

\{eq:volpobanaly\}
Proof We first show that

$$
\Delta_{Y_{\mathbf{0}}}(T) \subseteq \Delta_{Y_{\mathbf{0}}}(S)
$$

Using Lemma 10.3.2, we may assume that T and S have \log singularities along effective \mathbb{Q}-divisors E and F respectively. By assumption, $E \geq F$. Replacing T and S by $T-[F]$ and $S-[F]$ respectively, we may assume that $F=0$.

In this case, we need to show that

$$
\Delta_{Y_{\boldsymbol{\bullet}}}(\alpha) \supseteq \Delta_{Y_{\boldsymbol{\bullet}}}(\alpha-[E])+v_{Y_{\boldsymbol{\bullet}}}([E])
$$

which is obvious.
Next we prove that

$$
\Delta_{Y_{\bullet}}(T) \subseteq \Delta_{Y_{\bullet}}(\alpha)
$$

By Lemma 10.3 .2 and Theorem 10.3.1 again, we may assume that T has \log singularities. We take D and β as in (10.28). We need to show that

$$
\Delta_{Y_{\mathbf{0}}}(\alpha-[D])+v_{Y_{\mathbf{0}}}([D]) \subseteq \Delta_{Y_{\mathbf{0}}}(\alpha)
$$

which is again obvious.
Finally, (10.29) follows immediately from Theorem 10.3.1.

10.3.2.2 The case of Kähler currents

def:POBKahcurr
Definition 10.3.3 Let $T \in \mathcal{Z}_{+}(X, \alpha)$ be a Kähler current. Take a quasi-equisingular approximation $\left(T_{j}\right)_{j}$ of T in $\mathcal{Z}_{+}(X, \alpha)$. Then we define

$$
\Delta_{Y_{\bullet}}(T):=\bigcap_{j=1}^{\infty} \Delta_{Y_{\bullet}}\left(T_{j}\right)
$$

Lemma 10.3.4 The convex body $\Delta_{Y_{0}}(T)$ in Definition 10.3.3 is independent of the choices of the T_{j} 's.

In particular, if T also has analytic singularities, then the $\Delta_{Y_{0}}(T)$'s defined in Definition 10.3.3 and in Definition 10.3.2 coincide.
Proof Let $\left(S_{j}\right)_{j}$ be another quasi-equisingular approximation of T in $\mathcal{Z}_{+}(X, \alpha)$. By Proposition 1.6.3, for any small rational $\epsilon>0, j>0$, we can find $k>0$ so that

$$
S_{k} \leq(1-\epsilon) T_{j}
$$

It is more convenient to use the language of θ-psh functions at this point. Let ψ_{k} (resp. φ_{k}) denote the potentials in $\operatorname{PSH}(X, \theta)$ corresponding to S_{k} (resp. T_{k}) for each $k \geq 1$. Note that ψ_{k} and φ_{k} are unique up to additive constants.

By Lemma 10.3.3,

$$
\bigcap_{k=1}^{\infty} \Delta_{Y_{\mathbf{\bullet}}}\left(\theta, \psi_{k}\right) \subseteq \Delta_{Y_{\mathbf{\bullet}}}\left(\theta,(1-\epsilon) \varphi_{j}\right)
$$

On the other hand, observe that

$$
\bigcap_{\epsilon \in \mathbb{Q}_{>0}} \Delta_{Y \bullet}\left(\theta,(1-\epsilon) \varphi_{j}\right)=\Delta_{Y \bullet}\left(\theta, \varphi_{j}\right)
$$

In fact, the \supseteq direction follows from Lemma 10.3.3, so it suffices to show that the two sides have the same volume, which follows from (10.29).

It follows that

$$
\bigcap_{k=1}^{\infty} \Delta_{Y \cdot}\left(\theta, \psi_{k}\right) \subseteq \bigcap_{j=1}^{\infty} \Delta_{Y_{\bullet}}\left(\theta, \varphi_{j}\right) .
$$

The other inclusion follows by symmetry.
The same argument shows that

Corollary 10.3.1 Suppose that $T, S \in \mathcal{Z}_{+}(X, \alpha)$ are two Kähler currents satisfying $T \leq_{I}$ S. Then

$$
\Delta_{Y_{\bullet}}(T) \subseteq \Delta_{Y_{\bullet}}(S) \subseteq \Delta_{Y_{\bullet}}(\alpha)
$$

Proposition 10.3.1 Let $T \in \mathcal{Z}_{+}(X, \alpha)$ be a Kähler current. Then

$$
\begin{equation*}
\operatorname{vol} \Delta_{Y_{\bullet}}(T)=\frac{1}{n!} \operatorname{vol} T \tag{10.30}
\end{equation*}
$$

Proof Take a quasi-equisingular approximation $\left(T_{j}\right)_{j}$ of T in $\mathcal{Z}_{+}(X, \alpha)$. Note that $\Delta_{Y_{\boldsymbol{*}}}\left(T_{j}\right)$ is decreasing in j, as follows from Lemma 10.3.3. Our assertion follows from (10.29) and Theorem 6.2.5.

Lemma 10.3.5 Let $T \in \mathcal{Z}_{+}(X, \alpha)$ be a Kähler current and ω be a Kähler form on X. Then

$$
\begin{equation*}
\Delta_{Y_{\bullet}}(T) \subseteq \Delta_{Y_{\bullet}}(T+\omega) \tag{10.31}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\Delta_{Y_{\bullet}}(T)=\bigcap_{\epsilon>0} \Delta_{Y_{\bullet}}(T+\epsilon \omega) . \tag{10.32}
\end{equation*}
$$

Proof We first prove (10.31). Taking quasi-equisingular approximations, we reduce immediately to the case where T has analytic singularities. By Lemma 10.3.2, we may assume that T has log singularities. Take D and R as in (10.28). By definition again, it suffices to show that

$$
\Delta_{Y_{\bullet}}([\beta]) \subseteq \Delta_{Y_{\boldsymbol{\bullet}}}([\beta+\omega])
$$

which is clear by definition.
Next we prove (10.32). Thanks to (10.31), it remains to prove that both sides have the same volume:

$$
\lim _{\epsilon \rightarrow 0+} \operatorname{vol}(T+\epsilon \omega)=\operatorname{vol} T
$$

This is proved in Proposition 7.2.3.

10.3.2.3 The general case

Definition 10.3.4 Let $T \in \mathcal{Z}_{+}(X, \alpha)$. Take a Kähler form ω on X, we define

$$
\begin{equation*}
\Delta_{Y_{\bullet}}(T)=\bigcap_{j=1}^{\infty} \Delta_{Y \cdot}\left(T+j^{-1} \omega\right) . \tag{10.33}
\end{equation*}
$$

The same definition makes sense when α is only pseudo-effective.
This definition is clearly independent of the choice of ω by Lemma 10.3.5. Moreover, it extends Definition 10.3.3 and Definition 10.3.2 as a result of Lemma 10.3.5.

Remark 10.3.1 When α is pseudoeffective but not big and T has minimal singularities, Definition 10.3.4 differs from all known definitions of $\Delta_{Y_{\mathbf{0}}}(\alpha)$ in the literature. But in view of Lemma 10.3.7, our definition seems to be the most natural one.

The main properties of $\Delta_{Y_{\bullet}}(T)$ are summarized as follows:
Theorem 10.3.2 The convex bodies $\Delta_{Y_{\mathbf{e}}}(T)$'s satisfies the following properties:
(1) Suppose that $T \in \mathcal{Z}_{+}(X, \alpha)_{>0}$, We have

$$
\begin{equation*}
\operatorname{vol} \Delta_{Y_{\bullet}}(T)=\frac{1}{n!} \operatorname{vol} T \tag{10.34}
\end{equation*}
$$

(2) For $T, S \in \mathcal{Z}_{+}(X, \alpha)$ satisfying $T \leq_{I} S$, we have

$$
\Delta_{Y_{\bullet}}(T) \subseteq \Delta_{Y_{\bullet}}(S) \subseteq \Delta_{Y_{\bullet}}(\alpha)
$$

(3) For any current $T \in \mathcal{Z}_{+}(X, \alpha)$ with minimal singularities, we have

$$
\Delta_{Y_{\bullet}}(T)=\Delta_{Y_{\bullet}}(\alpha) .
$$

(4) The map $\mathcal{Z}_{+}(X, \alpha)_{>0} \rightarrow \mathcal{K}_{n}$ given by $T \mapsto \Delta_{Y_{\bullet}}(T)$ is continuous, where we endow the d_{S}-pseudometric on $\mathcal{Z}_{+}(X, \alpha)_{>0}$ and the Hausdorff topology on \mathcal{K}_{n}.
(5) Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism with Y being a Kähler manifold. Assume that the lifting $\left(W_{\bullet}, g\right)$ of Y_{\bullet} to Y exists, then for any $T \in$ $\mathcal{Z}_{+}(X, \alpha)_{>0}$, we have

$$
\Delta_{W_{\bullet}}\left(\pi^{*} T\right)=\Delta_{Y_{\bullet}}(T) g
$$

(6) For $T, S \in \mathcal{Z}_{+}(X, \alpha)$, we have

$$
\begin{equation*}
\Delta_{Y_{\bullet}}(T)+\Delta_{Y_{\bullet}}(S) \subseteq \Delta_{Y_{\bullet}}(T+S) \tag{10.35}
\end{equation*}
$$

\{eq:pobadditiv\}
Proof (1) By (10.33) and (10.30), for any Kähler form ω on X,

$$
\operatorname{vol} \Delta_{Y_{\bullet}}(T)=\lim _{j \rightarrow \infty} \Delta_{Y_{\bullet}}\left(T+j^{-1} \omega\right)=\frac{1}{n!} \lim _{j \rightarrow \infty} \operatorname{vol}\left(T+j^{-1} \omega\right)
$$

The right-hand side is computed in Proposition 7.2.3. Hence, (10.34) follows.
(2) Fix a Kähler form ω on X. By Corollary 10.3.1, for each $j \geq 1$,

$$
\Delta_{Y \cdot}\left(T+j^{-1} \omega\right) \subseteq \Delta_{Y \mathbf{0}}\left(S+j^{-1} \omega\right) \subseteq \Delta_{Y_{\mathbf{0}}}\left(\alpha+j^{-1}[\omega]\right)
$$

It remains to show that

$$
\Delta_{Y_{\bullet}}(\alpha)=\bigcap_{j=1}^{\infty} \Delta_{Y_{\bullet}}\left(\alpha+j^{-1}[\omega]\right)
$$

The \subseteq direction is clear. Comparing the volumes using Theorem 10.3.1, we conclude that equality holds.
(3) This follows from (1) and (2).
(4) Let $\left(T_{j}\right)_{j}$ be a sequence in $\mathcal{Z}_{+}(X, \alpha)_{>0}$ converging to $T \in \mathcal{Z}_{+}(X, \alpha)_{>0}$ with respect to d_{S}. We want to show that $\Delta_{Y_{\boldsymbol{\bullet}}}\left(T_{j}\right) \xrightarrow{d_{\text {Haus }}} \Delta_{Y \cdot}(T)$. By Proposition 6.2.3 and (2), we may assume that the singularity type of T_{j} is either increasing or decreasing. In both cases, the continuity follows from (1).
(5) We may assume that T is I-good. It follows from (4) and Theorem 7.1.1 that we could reduce to the case where T has analytic singularities. Our assertion follows from Lemma 10.3.2.
(6) By (10.33), in order to prove (10.35), we may assume that T and S are both Kähler currents. Take quasi-equisingular approximations $\left(T_{j}\right)_{j}$ and $\left(S_{j}\right)_{j}$ of T and S respectively. By Theorem $6.2 .2, T_{j}+S_{j} \xrightarrow{d_{S}} T+S$. By (4), we may therefore assume that T and S have analytic singularities. Replacing X by a suitable modification, we may assume that T and S both have \log singularities, say

$$
T=[D]+R, \quad S=\left[D^{\prime}\right]+R^{\prime}
$$

where D and D^{\prime} are \mathbb{Q}-divisors on X and β and β^{\prime} are closed positive $(1,1)$-currents with bounded potentials. We need to show that

$$
\Delta_{Y_{\mathbf{0}}}([R])+\Delta_{Y_{\boldsymbol{\bullet}}}\left(\left[R^{\prime}\right]\right)+v_{Y_{\boldsymbol{\bullet}}}([D])+v_{Y_{\mathbf{0}}}\left(\left[D^{\prime}\right]\right) \subseteq \Delta_{Y_{\boldsymbol{\bullet}}}\left(\left[R+R^{\prime}\right]\right)+v_{Y_{\mathbf{\bullet}}}\left(\left[D+D^{\prime}\right]\right) .
$$

By Proposition 10.1.2, this is equivalent to

$$
\Delta_{Y_{\bullet}}([R])+\Delta_{Y_{\bullet}}\left(\left[R^{\prime}\right]\right) \subseteq \Delta_{Y_{\bullet}}\left(\left[R+R^{\prime}\right]\right)
$$

which is already proved in Theorem 10.3.1.
Corollary 10.3.2 Assume that L is a big line bundle on X and h is a plurisubharmonic metric on L with positive volume. Then

$$
\begin{equation*}
\Delta_{Y_{\bullet}}\left(\mathrm{dd}^{\mathrm{c}} h\right)=\Delta_{Y_{\bullet}}(L, h) \tag{10.36}
\end{equation*}
$$

\{eq:tran0kounandalgokoun\}
Similarly, the definition (10.19) is compatible with the definition in Definition 10.3.4.
Proof We may assume that $\mathrm{dd}^{\mathrm{c}} h$ has positive mass and is I-good. By the $d_{S^{-}}$ continuity of both sides of (10.36) as proved in Theorem 10.3.2 and Theorem 10.2.2, together with Theorem 7.1.1, we may assume that $\mathrm{dd}^{\mathrm{c}} h$ has analytic singularities.

In this case, using the birational invariance of both sides of (10.36) as proved in Proposition 10.2.9 and Theorem 10.3.2, we may assume that $\mathrm{dd}^{\mathrm{c}} h$ has \log singularities. Finally, after all these reductions, the equality (10.36) holds by construction.

10.3.3 The valuative characterization

In this section, we will characterize the partial Okounkov bodies using valuations of currents.

1ma:Kahlerclassokounrest

Lemma 10.3.6 Let β be a nef class on X. Then

$$
\begin{equation*}
\left\{y \in \mathbb{R}^{n-1}:(0, y) \in \Delta_{Y_{\cdot}}(\beta)\right\}=\Delta_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\left.\beta\right|_{Y_{1}}\right) . \tag{10.37}
\end{equation*}
$$

Proof Step 1. We first reduce to the case where β is a Kähler class.
Take a Kähler class α on X. It follows from the volume formula in Theorem 10.3.1 that

$$
\Delta_{Y_{0}}(\beta)=\bigcap_{\epsilon>0} \Delta_{Y_{0}}(\beta+\epsilon \alpha), \quad \Delta_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\left.\beta\right|_{Y_{1}}\right)=\bigcap_{\epsilon>0} \Delta_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\left.\beta\right|_{Y_{1}}+\epsilon \alpha| |_{Y_{1}}\right) .
$$

So it suffices to prove (10.37) with $\beta+\epsilon \alpha$ in place of β.
Step 2. Assume that α is a Kähler class. The \supseteq direction in (10.37) follows from the extension theorem Theorem 1.6.3. To prove the other direction, recall that by Theorem 10.3.1, for $t>0$ small enough, we have

$$
\left\{y \in \mathbb{R}^{n-1}:(t, y) \in \Delta_{Y_{0}}(\beta)\right\}=\Delta_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\left(\beta-t\left[Y_{1}\right]\right) \mid Y_{Y_{1}}\right) .
$$

As $t \rightarrow 0+$, the right-hand side converges to $\Delta_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\left.\beta\right|_{Y_{1}}\right)$ with respect to the Hausdorff metric as a consequence of Theorem 10.3.1, while the left-hand side converges to

$$
\left\{y \in \mathbb{R}^{n-1}:(0, y) \in \Delta_{Y_{\bullet}}(\beta)\right\}
$$

by Lemma C.1.2. We conclude our assertion.
Lemma 10.3.7 Let $T \in \mathcal{Z}_{+}(X, \alpha)$ be a Kähler current. Assume that $v\left(T, Y_{1}\right)=0$, then

$$
\begin{equation*}
\left\{y \in \mathbb{R}^{n-1}:(0, y) \in \Delta_{Y_{0}}(T)\right\}=\Delta_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\operatorname{Tr}_{Y_{1}}^{\alpha \alpha Y_{1}}(T)\right) . \tag{10.38}
\end{equation*}
$$

More generally, if $T \in \mathcal{Z}_{+}(X, \alpha)$ and $v\left(T, Y_{1}\right)=0$, suppose in addition that $\operatorname{Tr}_{Y_{1}}^{\alpha \mid Y_{1}}(T)$ is defined, then (10.38) still holds.

See Remark 8.1.1 for the definition of $\operatorname{Tr}_{Y_{1}}^{\alpha \mid Y_{1}}(T)$. Note that $\Delta_{Y_{1} \supseteq \ldots \supseteq Y_{n}}\left(\operatorname{Tr}_{Y_{1}}^{\alpha \mid Y_{1}}(T)\right)$ is independent of the choice of the representative $\operatorname{Tr}_{Y_{1}}^{\alpha \mid Y_{1}}(T)$.
Remark 10.3.2 More generally, the same argument shows the following result: Let $k=0, \ldots, n$ and $T \in \mathcal{Z}_{+}(X, \alpha)$ such that $v\left(T, Y_{k}\right)=0$. Assume that $\operatorname{Tr}_{Y_{k}}^{\alpha \mid Y_{k}}(T)$ is defined, then

$$
\begin{equation*}
\left\{y \in \mathbb{R}^{n-k}:(0, \ldots, 0, y) \in \Delta_{Y_{\bullet}}(T)\right\}=\Delta_{Y_{k} \supseteq \cdots \supseteq Y_{n}}\left(\operatorname{Tr}_{Y_{k}}^{\left.\alpha\right|_{Y_{k}}}(T)\right) . \tag{10.39}
\end{equation*}
$$

This contradicts $\frac{\mathrm{CPW} 17}{[T P W} 17$, Theorem 1.1]. ${ }^{2}$ Also note that this result extends $\frac{\text { Jow10 }}{[\mathrm{TOW} 10} 10$, Theorem 3.4] and hence gives simpler proofs of [JOW 10 , Theorem A, Theorem B].

[^6]Proof Let ω be a Kähler form on X. The last assertion follows from the first by perturbing θ to $\theta+\epsilon \omega$.

Step 1. We first handle the case where T has analytic singularities. Let $\pi: Z \rightarrow X$ be a modification such that
(1) Y_{\bullet} admits a lifting $\left(W_{\bullet}, g\right)$, and
(2) $\pi^{*} T=[D]+R$, where D is an effective \mathbb{Q}-divisor on Z and R is closed positive (1,1)-current with bounded potential.

This is possible by Theorem 1.6.1 and Theorem 10.1.1.
By Lemma 8.2.1,

$$
\Pi^{*} \operatorname{Tr}_{Y_{1}}(T) \sim{ }_{P} \operatorname{Tr}_{W_{1}}\left(\pi^{*} T\right)
$$

where $\Pi: W_{1} \rightarrow Y_{1}$ is the restriction of π. It follows from Theorem 10.3.2 that

$$
\begin{aligned}
\Delta_{W_{1} \supseteq \cdots \supseteq W_{n}}\left(\operatorname{Tr}_{W_{1}}\left(\pi^{*} T\right)\right) & =\Delta_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\operatorname{Tr}_{Y_{1}}(T)\right) \operatorname{cor}\left(Y_{1} \supseteq \cdots \supseteq Y_{n}, \Pi\right), \\
\Delta_{W_{\bullet}}\left(\pi^{*} T\right) & =\Delta_{Y_{\bullet}}(T) g .
\end{aligned}
$$

Taking (10.3) into account, we find that it suffices to show that

$$
\left\{y \in \mathbb{R}^{n-1}:(0, y) \in \Delta_{W_{\bullet}}\left(\pi^{*} T\right)\right\}=\Delta_{W_{1} \supseteq \cdots \supseteq W_{n}}\left(\operatorname{Tr}_{W_{1}}\left(\pi^{*} T\right)\right)
$$

We may assume that π is the identity map. Then we have

$$
T=[D]+R,\left.\quad T\right|_{Y_{1}}=\left.[D]\right|_{Y_{1}}+\left.R\right|_{Y_{1}}
$$

Note that $\left.[D]\right|_{Y_{1}}$ is the current of integration along an effective \mathbb{Q}-divisor on Y_{1}.
In particular,

$$
\begin{aligned}
\Delta_{Y_{\bullet}}(T) & =\Delta_{Y_{\bullet}}([R])+v_{Y_{\bullet}}([D]), \\
\Delta_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\left.T\right|_{Y_{1}}\right) & =\Delta_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\left.[R]\right|_{Y_{1}}\right)+v_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\left.[D]\right|_{Y_{1}}\right) .
\end{aligned}
$$

So it suffices to show that

$$
\left\{y \in \mathbb{R}^{n-1}:(0, y) \in \Delta_{Y_{\bullet}}([R])\right\}=\Delta_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\left.[R]\right|_{Y_{1}}\right),
$$

which is exactly Lemma 10.3.6.
Step 2. Next we consider the case where T is a Kähler current. Take a quasiequisingular approximation $\left(T_{j}\right)_{j}$ of T in $\mathcal{Z}_{+}(X, \alpha)$. From Step 1, we know that for large $j \geq 1$,

$$
\left\{y \in \mathbb{R}^{n-1}:(0, y) \in \Delta_{Y_{\bullet}}\left(T_{j}\right)\right\}=\Delta_{Y_{1} \supseteq \cdots \supseteq Y_{n}}\left(\operatorname{Tr}_{Y_{1}}\left(T_{j}\right)\right)
$$

Letting $j \rightarrow \infty$ and applying Theorem 10.3.2 and Proposition 8.2.2, we conclude (10.38).

Theorem 10.3.3 Assume that $T \in \mathcal{Z}_{+}(X, \alpha)_{>0}$ is a Kähler current. We have

$$
\begin{equation*}
\min _{\mathrm{lex}} \Delta_{Y_{\bullet}}(T)=v_{Y_{\bullet}}(T) \tag{10.40}
\end{equation*}
$$

Here the minimum is with respect to the lexicographic order.
Proof We make induction on $n \geq 0$. The case $n=0$ is of course trivial. Let us assume that $n>0$ and the case $n-1$ has been proved.

We first observe that by Theorem 10.3.2,

$$
\Delta_{Y_{\bullet}}\left(T-v\left(T, Y_{1}\right)\left[Y_{1}\right]\right)+\left(v\left(T, Y_{1}\right), 0, \ldots, 0\right) \subseteq \Delta_{Y_{\bullet}}(T)
$$

Comparing the volumes of both sides using Theorem 10.3.2 and Proposition 7.2.3, we find that equality holds:

$$
\Delta_{Y_{\bullet}}\left(T-v\left(T, Y_{1}\right)\left[Y_{1}\right]\right)+\left(v\left(T, Y_{1}\right), 0, \ldots, 0\right)=\Delta_{Y \cdot}(T)
$$

Replacing T by $T-v\left(T, Y_{1}\right)\left[Y_{1}\right]$, we may therefore assume that $v\left(T, Y_{1}\right)=0$. It suffices to apply Lemma 10.3.7 and the inductive hypothesis.

Corollary 10.3.3 For any $T \in \mathcal{Z}_{+}(X, \alpha)$,

$$
v_{Y_{\mathbf{\bullet}}}(T) \in \Delta_{Y_{\mathbf{\bullet}}}(T) \subseteq \Delta_{Y_{\bullet}}(\alpha)
$$

Proof When T is a Kähler current, this follows from Theorem 10.3.3.
In general, by definition, $v_{Y_{\mathbf{\bullet}}}(T)=v_{Y_{\mathbf{\bullet}}}(T+\omega)$ for any Kähler form ω on X. It follows that

$$
v_{Y_{\mathbf{\bullet}}}(T) \in \Delta_{Y_{\mathbf{\bullet}}}(T+\omega)
$$

for any Kähler form ω. It follows that $v_{Y_{\bullet}}(T) \in \Delta_{Y_{\mathbf{\bullet}}}(T)$.
Theorem 10.3.4 For any $T \in \mathcal{Z}_{+}(X, \alpha)_{>0}$,

$$
\begin{equation*}
\Delta_{Y_{\bullet}}(T)=\overline{\left\{v_{Y \mathbf{\bullet}}(S): S \in \mathcal{Z}_{+}(X, \alpha), S \leq_{I} T\right\}} \tag{10.41}
\end{equation*}
$$

\{eq:DeltaTequalallval\}
In particular,

$$
\Delta_{Y_{\bullet}}(\alpha)=\overline{\left\{v_{Y_{\boldsymbol{\bullet}}}(T): T \in \mathcal{Z}_{+}(X, \alpha)\right\}} .
$$

Remark 10.3.3 We expect that the closure operation in (10.41) is not necessary. This problem is closely related to the Dirichlet problem of the trace operator, see Page 238 for more details.

Proof The \supseteq direction in (10.41) follows from Corollary 10.3.3 and Theorem 10.3.2(2).

Let us write

$$
D_{Y_{\mathbf{\bullet}}}(T)=\left\{v_{Y_{\mathbf{\bullet}}}(S): S \in \mathcal{Z}_{+}(X, \alpha), S \leq_{I} T\right\}
$$

for the time being.
Step 1. Assume that T has analytic singularities. We have

$$
\begin{aligned}
\Delta_{Y_{\bullet}}(T) & \supseteq \overline{D_{Y_{\bullet}}(T)} \\
& \supseteq \overline{\left\{v_{Y_{\bullet}}(S): \mathcal{Z}_{+}(X, \alpha) \ni S \text { has gentle analytic singularities, } S \leq T\right\}} .
\end{aligned}
$$

It follows easily from Theorem 10.3.1 that the volume of the right-hand side is equal to the volume of $\Delta_{Y_{\mathbf{\bullet}}}(T)$, so (10.41) holds.

Step 2. Assume that T is a Kähler current. Take a quasi-equisingular approximation $T_{j} \in \mathcal{Z}_{+}(X, \alpha)$ of T. Next we use the language of psh functions. Let $\varphi_{j}, \varphi \in$ $\operatorname{PSH}(X, \theta)$ be the potentials corresponding to T_{j}, T for each $j \geq 1$.

Fix an integer $N>0$. For large enough $j \geq 1$, we can find $\psi \in \operatorname{PSH}(X, \theta)_{>0}$ such that

$$
P_{\theta}[\varphi]_{I} \geq\left(1-N^{-1}\right) \varphi_{j}+N^{-1} \psi_{j}
$$

The existence of ψ_{j} follows from Lemma 2.3.1. It follows that

$$
\begin{aligned}
D_{Y_{\bullet}}(T) & \supseteq D_{Y_{\bullet}}\left(\theta+\operatorname{dd}^{\mathrm{c}}\left(\left(1-N^{-1}\right) \varphi_{j}+N^{-1} \psi_{j}\right)\right) \\
& \supseteq\left(1-N^{-1}\right) D_{Y_{\bullet}}\left(T_{j}\right)+N^{-1} D_{Y_{\bullet}}\left(\theta+\mathrm{dd}^{\mathrm{c}} \psi_{j}\right) .
\end{aligned}
$$

By Theorem C.1.1, up to replacing T_{j} by a subsequence, we may guarantee that $\overline{D_{Y_{\mathbf{\bullet}}}\left(\theta+\mathrm{dd}^{\mathrm{c}} \psi_{j}\right)}$ admits a Hausdorff limit contained in $\Delta_{Y_{\bullet}}(\alpha)$ as $j \rightarrow \infty$. Let $j \rightarrow \infty$ and $N \rightarrow \infty$ then it follows that

$$
\overline{D_{Y_{\bullet}}(T)} \supseteq \bigcap_{j=1}^{\infty} D_{Y_{\bullet}}\left(T_{j}\right)
$$

By Lemma C.1.3,

$$
\overline{D_{Y_{\mathbf{\bullet}}}(T)} \supseteq \bigcap_{j=1}^{\infty} D_{Y_{\mathbf{\bullet}}}\left(T_{j}\right)=\bigcap_{j=1}^{\infty} \overline{D_{Y_{\mathbf{\bullet}}}\left(T_{j}\right)} .
$$

Therefore, by Step 1, we conclude that

$$
\Delta_{Y \bullet}(T)=\bigcap_{j=1}^{\infty} \overline{\Delta_{Y_{\bullet}}\left(T_{j}\right)}=\bigcap_{j=1}^{\infty} \overline{D_{Y_{\bullet}}\left(T_{j}\right)} \subseteq \overline{D_{Y \bullet}(T)} .
$$

The reverse direction is already known.
Step 3. Finally, consider the general case. Take a Kähler current $T^{\prime} \in \mathcal{Z}_{+}(X, \alpha)$ more singular than T. For each $\epsilon \in(0,1)$. The existence of T^{\prime} is proved in Lemma 2.3.2. We know that

$$
\Delta_{Y_{\bullet}}\left((1-\epsilon) T+\epsilon T^{\prime}\right)=\overline{D_{Y_{\bullet}}\left((1-\epsilon) T+\epsilon T^{\prime}\right)} \subseteq \overline{D_{Y_{\bullet}}(T)}
$$

Letting $\epsilon \rightarrow 0+$ and using Proposition 7.2.3, we find that

$$
\Delta_{Y_{\mathbf{\bullet}}}(T) \subseteq \overline{D_{Y_{\mathbf{0}}}(T)}
$$

As the other inclusion is already known, we conclude.

$$
\begin{equation*}
\min _{\text {lex }} \Delta_{Y_{\bullet}}(T)=v_{Y_{\bullet}}(T) . \tag{10.42}
\end{equation*}
$$

Proof By Theorem 10.3.4, it is clear that

$$
\min _{\operatorname{lex}} \Delta_{Y_{\bullet}}(T) \leq_{\operatorname{lex}} v_{Y_{\bullet}}(T) .
$$

On the other hand, we clearly have

$$
\Delta_{Y_{\mathbf{\bullet}}}(T) \subseteq \Delta_{Y_{\mathbf{\bullet}}}(T+\omega)
$$

for any Kähler form ω on X. It follows that

$$
\min _{\operatorname{lex}} \Delta_{Y_{\bullet}}(T) \geq_{\operatorname{lex}} \min _{\operatorname{lex}} \Delta_{Y_{\bullet}}(T+\omega)
$$

By Theorem 10.3.3, the right-hand side is just $v_{Y_{\mathbf{\bullet}}}(T+\omega)=\nu_{Y_{\mathbf{\bullet}}}(T)$. We conclude the proof.

10.4 Okounkov test curves

Fix $n \in \mathbb{N}$. Let $\Delta, \Delta^{\prime} \subseteq \mathbb{R}^{n}$ be convex bodies with positive volume. The standard Lebesgue measure on \mathbb{R}^{n} is denoted by vol.

We refer to Appendix C for the notations \mathcal{K}_{n} and $d_{\text {Haus }}$.
Definition 10.4.1 An Okounkov test curve relative to Δ consists of
(1) a number $\Delta_{\max } \in \mathbb{R}$ and
(2) an assignment $\left(-\infty, \Delta_{\max }\right) \ni \tau \mapsto \Delta_{\tau} \in \mathcal{K}_{n}$ satisfying
a. the assignment $\tau \mapsto \Delta_{\tau}$ is a decreasing and concave;
b. we have $\Delta_{\tau} \xrightarrow{d_{\text {Haus }}} \Delta$ as $\tau \rightarrow-\infty$.

The set of Okounkov test curves relative to Δ is denoted by $\mathrm{TC}(\Delta)$.
An Okounkov test curve Δ_{\bullet} is bounded if $\Delta_{\tau}=\Delta$ when τ is small enough. The subset of bounded Okounkov test curves is denoted by $\mathrm{TC}^{\infty}(\Delta)$.

An Okounkov test curve $\Delta_{\text {。 }}$ is said to have finite energy if

$$
\begin{equation*}
\mathbf{E}\left(\Delta_{\bullet}\right):=n!\Delta_{\max } \operatorname{vol} \Delta+n!\int_{-\infty}^{\Delta_{\max }}\left(\operatorname{vol} \Delta_{\tau}-\operatorname{vol} \Delta\right) \mathrm{d} \tau>-\infty . \tag{10.43}
\end{equation*}
$$

The subset of Okounkov test curves with finite energy is denoted by $\mathrm{TC}^{1}(\Delta)$.
Given $\Delta_{\bullet} \in \operatorname{TC}\left(\Delta_{)}\right.$and $\Delta_{\bullet}^{\prime} \in \mathrm{TC}\left(\Delta^{\prime}\right)$, we say $\Delta_{\bullet} \leq \Delta_{\bullet}^{\prime}$ if $\Delta_{\max } \leq \Delta_{\max }^{\prime}$ and for any $\tau<\Delta_{\max }$, we have $\Delta_{\tau} \subseteq \Delta_{\tau}^{\prime}$.

Here concavity in (2)b refers to the concavity with respect to the Minkowski sum. Sometimes it is convenient to introduce

$$
\begin{equation*}
\Delta_{\Delta_{\max }}=\bigcap_{\tau<\Delta_{\max }} \Delta_{\tau} \in \mathcal{K}_{n} \tag{10.44}
\end{equation*}
$$

We shall always make this extension in the sequel when we talk about $\Delta_{\Delta_{\max }}$. Observe that $\left(-\infty, \Delta_{\max }\right] \ni \tau \mapsto \Delta_{\tau}$ is still concave.

Proposition 10.4.1 Any Okounkov test curve $\left(\Delta_{\tau}\right)_{\tau<\Delta_{\max }}$ relative to Δ is continuous in τ. Moreover, vol $\Delta_{\tau}>0$ for all $\tau<\Delta_{\text {max }}$.

Proof We first claim that vol $\Delta_{\tau^{\prime}}>0$ for all $\tau^{\prime}<\Delta_{\text {max }}$. By Condition (2)b in Definition 10.4.1 and Theorem C.1.2, we know that $\operatorname{vol} \Delta_{\tau^{\prime \prime}}>0$ when $\tau^{\prime \prime}$ is small enough. Fix one such $\tau^{\prime \prime}$. We may assume that $\tau^{\prime \prime} \leq \tau^{\prime}$ since otherwise there is nothing to prove. Next take $\tau^{\prime \prime \prime} \in\left(\tau^{\prime}, \Delta_{\max }\right)$. Take $t \in(0,1)$ such that $\tau^{\prime}=t \tau^{\prime \prime \prime}+(1-t) \tau^{\prime \prime}$. It follows that

$$
\operatorname{vol} \Delta_{\tau^{\prime}} \geq \operatorname{vol}\left(t \Delta_{\tau^{\prime \prime \prime}}+(1-t) \Delta_{\tau^{\prime \prime}}\right) \geq(1-t)^{n} \operatorname{vol} \Delta_{\tau^{\prime \prime}}>0
$$

Next we claim that vol Δ_{τ} is continuous for $\tau<\Delta_{\max }$. In fact, it follows from Theorem C.1.4 that $\left(-\infty, \Delta_{\max }\right) \ni \tau \mapsto \log \operatorname{vol} \Delta_{\tau}$ is concave, the continuity follows.

Next we show that

$$
\Delta_{\tau}=\bigcap_{\tau^{\prime}<\tau} \Delta_{\tau^{\prime}}
$$

The \supseteq direction is obvious. By the continuity of the volume, both sides have the same volume and the volume is positive, we therefore obtain the equality.

Similarly, we have

$$
\Delta_{\tau}=\overline{\bigcup_{\tau^{\prime}>\tau} \Delta_{\tau^{\prime}}}
$$

The continuity of Δ_{τ} at $\tau<\Delta_{\max }$ is proved.
Definition 10.4.2 A test function on Δ is a function $F: \Delta \rightarrow[-\infty, \infty)$ such that
(1) F is concave,
(2) F is finite on $\operatorname{Int} \Delta$, and
(3) F is upper semicontinuous.

A test function F is bounded if F is bounded from below.
A test function F has finite energy if

$$
\begin{equation*}
\mathbf{E}(F):=n!\int_{\Delta} F \mathrm{~d} \lambda>-\infty . \tag{10.45}
\end{equation*}
$$

\{eq: EF$\}$

Definition 10.4.3 Let $\Delta_{\bullet} \in \mathrm{TC}(\Delta)$. We define its Legendre transform as

$$
G\left[\Delta_{\bullet}\right]: \Delta \rightarrow[-\infty, \infty), \quad a \mapsto \sup \left\{\tau<\Delta_{\max }: a \in \Delta_{\tau}\right\}
$$

Given a test function $F: \Delta \rightarrow[-\infty, \infty)$, we define its inverse Legendre transform $\Delta[F]$ • as the Okounkov test curve relative to Δ defined as follows:
(1) $\Delta[F]_{\max }=\sup _{\Delta} F$, and
(2) for each $\tau<\sup _{\Delta} F$, we set

$$
\Delta[F]_{\tau}=\{x \in \Delta: F \geq \tau\}
$$

We observe that

$$
\begin{equation*}
G\left[\Delta_{\bullet}\right](a)=\max \left\{\tau \leq \Delta_{\max }: a \in \Delta_{\tau}\right\}, \text { if } G\left[\Delta_{\bullet}\right](a)>-\infty \tag{10.46}
\end{equation*}
$$

Lemma 10.4.1 Let $\Delta_{\bullet} \in \operatorname{TC}(\Delta)$. Then $G\left[\Delta_{\bullet}\right]$ defined in Definition 10.4 .3 is a test function.

Similar, if $F: \Delta \rightarrow[-\infty, \infty)$ is a test function, then $\Delta[F]$ • is an Okounkov test curve.

Proof First suppose that $\Delta_{\bullet} \in \mathrm{TC}(\Delta)$. We want to verify that $G\left[\Delta_{\bullet}\right]$ satisfies the conditions in Definition 10.4.2.

We first verify the concavity. Take $a, b \in \Delta$. We want to prove that for any $t \in(0,1)$,

$$
\begin{equation*}
G\left[\Delta_{\bullet}\right](t a+(1-t) b) \geq t G\left[\Delta_{\bullet}\right](a)+(1-t) G\left[\Delta_{\bullet}\right](b) \tag{10.47}
\end{equation*}
$$

$$
\text { \{eq: GDeltamax\} }
$$

[^7]Firstly, for each $\tau<\sup _{\Delta} F$, the set $\Delta[F](\tau)$ is a convex body as F is concave and usc. Moreover, $\Delta[F]_{\tau}$ is clearly decreasing in τ.

Secondly, for each $a \in \Delta$, we can write $a=\lim _{i} a_{i}$ with $a_{i} \in \operatorname{Int} \Delta$. By assumption, F is finite at a_{i}. Thus,

$$
a \in \overline{\{F>-\infty\}}=\overline{\bigcup_{\tau<\sup _{\Delta} F} \Delta[F]_{\tau}}
$$

By Theorem C.1.3, $\Delta[F]_{\tau} \xrightarrow{d_{\text {Haus }}} \Delta$ as $\tau \rightarrow-\infty$.
Thirdly, $\Delta[F]$ is concave. To see, take $\tau, \tau^{\prime}<\Delta_{\max }$, we need to prove that for any $t \in(0,1)$,

$$
\begin{equation*}
\Delta[F]_{t \tau+(1-t) \tau^{\prime}} \supseteq t \Delta[F]_{\tau}+(1-t) \Delta[F]_{\tau^{\prime}} \tag{10.49}
\end{equation*}
$$

\{eq:Deconc\}
Let $a \in \Delta[F]_{\tau}$ and $b \in \Delta[F]_{\tau^{\prime}}$. We have $F(a) \geq \tau$ and $F(b) \geq \tau^{\prime}$. As F is concave, we have $F(t a+(1-t) b) \geq t \tau+(1-t) \tau^{\prime}$. Thus,

$$
t a+(1-t) b \in \Delta[F]_{t \tau+(1-t) \tau^{\prime}}
$$

and (10.49) follows.

thm: Okotestcurve

Theorem 10.4.1 The Legendre transform and inverse Legendre transform are inverse to each other, defining a bijection between $\mathrm{TC}(\Delta)$ and the set of test functions on Δ.

Under this bijection, $\mathrm{TC}^{1}(\Delta)$ corresponds to test functions on Δ with finite energy and $\mathrm{TC}^{\infty}(\Delta)$ corresponds to bounded test functions on Δ.

Proof Thanks to Lemma 10.4.1, in order to prove the first assertion, it only remains to see that the Legendre transform and the inverse Legendre transform are inverse to each other, which is immediate by definition.

It is obvious that $\mathrm{TC}^{\infty}(\Delta)$ corresponds to bounded test curves. Moreover, a direct computation shows that if $\Delta_{\bullet} \in \mathrm{TC}(\Delta)$, then

$$
\mathbf{E}\left(\Delta_{\bullet}\right)=\mathbf{E}\left(G\left[\Delta_{\bullet}\right]\right)
$$

concluding the $\mathrm{TC}^{1}(\Delta)$ case.
Proposition 10.4.2 Let $\left(\Delta^{i}\right)_{i \in I}$ be a decreasing net in \mathcal{K}_{n}. Consider a decreasing net $\left(\Delta_{\bullet}^{i}\right)_{i \in I}$ with $\Delta_{\bullet}^{i} \in \mathrm{TC}\left(\Delta^{i}\right)$ for all $i \in I$ such that there is $\Delta_{\bullet} \in \mathrm{TC}(\Delta)$ satisfying the following properties:
(1) $\Delta_{\max }=\lim _{i \in I} \Delta_{\text {max }}^{i}$;
(2) for any $\tau<\Delta_{\max }$, we have $\Delta_{\tau}^{i} \xrightarrow{d_{\text {Haus }}} \Delta_{\tau}$.

Then for any $a \in \Delta$, we have

$$
\begin{equation*}
\lim _{i \in I} G\left[\Delta_{\bullet}^{i}\right](a)=G\left[\Delta_{\bullet}\right](a) \tag{10.50}
\end{equation*}
$$

\{eq:pwconvLegendre\}
Note that in general,

$$
\Delta \subsetneq \bigcap_{i \in I} \Delta^{i}
$$

Proof Fix $a \in \Delta$. It follows immediately from the definition of G that the net $\left(G\left[\Delta_{\bullet}^{i}\right](a)\right)_{i \in I}$ is decreasing and the \geq direction in (10.50) holds. Let us prove the reverse inequality. Let τ denote the left-hand side of (10.50) for the moment. By definition, for any $\epsilon>0$ and any $i \in I$, we have $a \in \Delta_{\tau-\epsilon}^{i}$. It follows that

$$
a \in \Delta_{\tau-\epsilon}^{\infty}
$$

Therefore,

$$
\tau \leq G\left[\Delta_{\bullet}\right](a)
$$

Similarly, for increasing nets, we have:

prop:incnetLegend

Proposition 10.4.3 Let $\left(\Delta^{i}\right)_{i \in I}$ be an increasing net in \mathcal{K}_{n} with Hausdorff limit Δ such that $\operatorname{vol} \Delta^{i}>0$ for all $i \in I$. Consider an increasing net $\left(\Delta_{\bullet}^{i}\right)_{i \in I}$ with $\Delta_{\bullet}^{i} \in \operatorname{TC}\left(\Delta^{i}\right)$ for all $i \in I$. Let $\Delta_{\max }=\lim _{i \in I} \Delta_{\max }^{i}$. For any $\tau<\Delta_{\max }$, let Δ_{τ} be the Hausdorff limit of Δ_{τ}^{i}. Then $\Delta_{\bullet} \in \mathrm{TC}(\Delta)$ and

$$
\begin{equation*}
\lim _{i \in I} G\left[\Delta_{\bullet}^{i}\right](a)=G\left[\Delta_{\bullet}\right](a) \tag{10.51}
\end{equation*}
$$

for any $a \in \operatorname{Int} \Delta$.
Proof It is obvious that $\Delta_{\bullet} \in \mathrm{TC}(\Delta)$.
Fix $a \in \operatorname{Int} \Delta$. Then up to replacing I by a subnet, we may assume that $a \in \Delta^{i}$ for all $i \in I$. By definition, the net $\left(G\left[\Delta_{\bullet}^{i}\right](a)\right)_{i \in I}$ is increasing and the \leq direction in (10.51) holds. Let us write $\tau=G\left[\Delta_{\bullet}\right]$ (a) for the time being. By definition of G, for any $\epsilon>0$, we have

$$
a \in \Delta_{\tau-\epsilon / 2}
$$

The concavity of $\Delta_{-\bullet}$ guarantees that

$$
a \in \operatorname{Int} \Delta_{\tau-\epsilon}
$$

It follows that there is a subnet J in I such that for all $j \in J$,

$$
a \in \Delta_{\tau-\epsilon}^{j}
$$

Therefore,

$$
\tau-\epsilon \leq G\left[\Delta_{\bullet}^{j}\right](a)
$$

Taking the limit with respect to j and then with respect to ϵ, we conclude the desired inequality.

Definition 10.4.4 Let Δ_{\bullet}, be an Okounkov test curve relative to Δ. We define the Duistermaat-Heckman measure $\mathrm{DH}\left(\Delta_{\bullet}\right)$ as

$$
\mathrm{DH}\left(\Delta_{\bullet}\right):=G\left[\Delta_{\bullet}\right]_{*}(\mathrm{vol}) .
$$

It is a Radon measure on \mathbb{R}.
In other words, $\mathrm{DH}\left(\Delta_{\bullet}\right)$ is the distribution of the random variable $G\left[\Delta_{\bullet}\right]$.
Proposition 10.4.4 Let $\Delta_{\bullet} \in \mathrm{TC}(\Delta)$. Let $m \in \mathbb{Z}_{>0}$. Then the m-th moment of the $\mathrm{DH}\left(\Delta_{\bullet}\right)$ is given by

$$
\begin{equation*}
\int_{\mathbb{R}} x^{m} \mathrm{DH}\left(\Delta_{\bullet}\right)(x)=\Delta_{\max }^{m} \operatorname{vol} \Delta+m \int_{-\infty}^{\Delta_{\max }} \tau^{m-1}\left(\operatorname{vol} \Delta_{\tau}-\operatorname{vol} \Delta\right) \mathrm{d} \tau \tag{10.52}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{DH}\left(\Delta_{\bullet}\right)=\operatorname{vol} \Delta \tag{10.53}
\end{equation*}
$$

\{eq:massDHm1\}

Proof In fact, (10.53) follows immediately from the definition, while (10.52) follows form a straightforward computation:

$$
\begin{aligned}
& \int_{\mathbb{R}} x^{m} \mathrm{DH}\left(\Delta_{\bullet}\right)(x) \\
= & \int_{\Delta} G\left[\Delta_{\bullet}\right](a)^{m} \mathrm{~d} \operatorname{vol}(a) \\
= & \int_{\Delta}\left(\Delta_{\max }^{m}-\int_{G\left[\Delta_{\bullet}\right](a)}^{\Delta_{\max }} m \tau^{m-1} \mathrm{~d} \tau\right) \mathrm{d} \operatorname{vol}(a) \\
= & \Delta_{\max }^{m} \operatorname{vol} \Delta-m \int_{\mathbb{R}} \int_{\Delta} \mathbb{1}_{\left[G\left(\Delta_{\bullet}\right](a), \Delta_{\max }\right]}(\tau) \tau^{m-1} \mathrm{~d} \operatorname{vol}(a) \mathrm{d} \tau \\
= & \Delta_{\max }^{m} \operatorname{vol} \Delta-m \int_{-\infty}^{\Delta_{\max }} \int_{\Delta \backslash \Delta_{\tau}} \tau^{m-1} \mathrm{~d} \operatorname{vol}(a) \mathrm{d} \tau \\
= & \Delta_{\max }^{m} \operatorname{vol} \Delta-m \int_{-\infty}^{\Delta_{\max }} \tau^{m-1}\left(\operatorname{vol} \Delta-\operatorname{vol} \Delta_{\tau}\right) \mathrm{d} \tau .
\end{aligned}
$$

lma:DHmconv
Lemma 10.4.2 Let $\left(\Delta^{i}\right)_{i \in I}$ be a decreasing net in \mathcal{K}_{n} with limit Δ. Suppose that $\left(\Delta_{\bullet}^{i}\right)_{i \in I}$ is a decreasing net with $\Delta_{\bullet}^{i} \in \mathrm{TC}\left(\Delta^{i}\right)$. Suppose that there is $\Delta_{\bullet} \in \mathrm{TC}(\Delta)$ such that
(1) $\Delta_{\max }=\lim _{i \in I} \Delta_{\text {max }}^{i}$;
(2) for any $\tau<\Delta_{\max }$, we have $\Delta_{\tau}^{i} \xrightarrow{d_{\text {Haus }}} \Delta_{\tau}$.

Then $\mathrm{DH}\left(\Delta_{\bullet}^{i}\right) \rightharpoonup \mathrm{DH}\left(\Delta_{\bullet}\right)$.
Proof It follows from Proposition 10.4.2 that

$$
G\left[\Delta_{\bullet}^{i}\right] \rightarrow G\left[\Delta_{\bullet}\right]
$$

pointwisely on Δ. Our assertion then follows from the dominated convergence theorem.
Similarly, we have

Lemma 10.4.3 Let $\left(\Delta^{i}\right)_{i \in I}$ be an increasing net in \mathcal{K}_{n} with Hausdorff limit Δ such that vol $\Delta^{i}>0$ for all $i \in I$. Consider an increasing net $\left(\Delta_{\bullet}^{i}\right)_{i \in I}$ with $\Delta_{\bullet}^{i} \in \mathrm{TC}\left(\Delta^{i}\right)$ for all $i \in I$. Let $\Delta_{\bullet} \in \mathrm{TC}(\Delta)$ be defined as
(1) $\Delta_{\max }=\lim _{i \in I} \Delta_{\max }^{i}$;
(2) for any $\tau<\Delta_{\max }, \Delta_{\tau}$ is the Hausdorff limit of Δ_{τ}^{i}.

Then we have

$$
\mathrm{DH}\left(\Delta_{\bullet}^{i}\right) \rightharpoonup \mathrm{DH}\left(\Delta_{\bullet}\right) .
$$

Proof It follows from Proposition 10.4.3 that

$$
G\left[\Delta_{\bullet}^{i}\right] \rightarrow G\left[\Delta_{\mathbf{\bullet}}\right]
$$

almost everywhere on Δ. Our assertion then follows from the dominated convergence theorem.

The main source of Okounkov test curves is the following:
Theorem 10.4.2 Let X be a connected compact Kähler manifold and θ be a closed smooth real $(1,1)$-form on X representing a big cohomology class α. Let Y_{\bullet} be a smooth flag on X and $\Gamma \in \mathrm{TC}(X, \theta)_{>0}$. Then the map

$$
\left(-\infty, \Gamma_{\max }\right) \ni \tau \mapsto \Delta_{Y_{\mathbf{0}}}(\theta, \Gamma)_{\tau}:=\Delta_{Y_{\mathbf{0}}}\left(\theta, \Gamma_{\tau}\right)
$$

defines an Okounkov test curve relative to $\Delta_{Y_{0}}\left(\theta, \Gamma_{-\infty}\right)$.
If furthermore $\Gamma \in \mathrm{TC}^{1}\left(X, \theta ; \Gamma_{-\infty}\right)$ (resp. $\mathrm{TC}^{\infty}\left(X, \theta ; \Gamma_{-\infty}\right)$), then we have $\Delta_{Y_{\mathbf{\bullet}}}(\theta, \Gamma) \in \operatorname{TC}^{1}\left(\Delta_{Y_{\bullet}}\left(\theta, \Gamma_{-\infty}\right)\right)\left(\right.$ resp. $\left.\mathrm{TC}^{\infty}\left(\Delta_{Y_{\bullet}}\left(\theta, \Gamma_{-\infty}\right)\right)\right)$.
See Definition 9.1.1 and Definition 9.1.2 for the relevant definitions.
Proof Consider $\Gamma \in \mathrm{TC}(X, \theta)_{>0}$. We need to verify that $\Delta_{Y_{\bullet}}(\theta, \Gamma)$ is an Okounkov test curve relative to $\Delta_{Y_{\mathbf{0}}}\left(\theta, \Gamma_{-\infty}\right)$.

First observe that $\tau \mapsto \Delta_{Y}\left(\theta, \Gamma_{\tau}\right)$ is concave and decreasing for $\tau<\Gamma_{\max }$. This is a direct consequence of Theorem 10.3.4.

Next we show that as $\tau \rightarrow-\infty$, we have

$$
\Delta_{Y_{\mathbf{0}}}\left(\theta, \Gamma_{\tau}\right) \xrightarrow{d_{\text {Haus }}} \Delta_{Y_{\mathbf{\bullet}}}\left(\theta, \Gamma_{-\infty}\right) .
$$

It suffices to compute

$$
\begin{aligned}
\lim _{\tau \rightarrow-\infty} \operatorname{vol} \Delta_{Y_{\bullet}}\left(\theta, \Gamma_{\tau}\right)=\frac{1}{n!} \lim _{\tau \rightarrow-\infty} \operatorname{vol}\left(\theta+\operatorname{dd}^{\mathrm{c}} \Gamma_{\tau}\right)= & \frac{1}{n!} \\
& \operatorname{vol}\left(\theta+\operatorname{dd}^{\mathrm{c}} \Gamma_{-\infty}\right) \\
& =\operatorname{vol} \Delta_{Y_{\bullet}}\left(\theta, \Gamma_{-\infty}\right)
\end{aligned}
$$

where we applied Theorem 10.3.2 and Theorem 6.2.5.
When $\Gamma \in \operatorname{TC}^{\infty}\left(X, \theta ; \Gamma_{-\infty}\right)$, it is clear that $\Delta_{Y_{0}}(\theta, \Gamma) \in \operatorname{TC}^{\infty}\left(\Delta_{Y_{\mathbf{0}}}\left(\theta, \Gamma_{-\infty}\right)\right)$.
When $\Gamma \in \operatorname{TC}^{1}\left(X, \theta ; \Gamma_{-\infty}\right)$, by Theorem 10.3.2(1), (9.3) and (10.43), we have

$$
\mathbf{E}^{\Gamma-\infty}(\Gamma)=\mathbf{E}\left(\Delta_{Y \cdot}(\theta, \Gamma)\right) .
$$

So $\Gamma \in \operatorname{TC}^{1}\left(\Delta_{Y_{\mathbf{e}}}\left(\theta, \Gamma_{-\infty}\right)\right)$.

Chapter 11

The theory of b-divisors

chap:bdiv
In this chapter, we study the theory of b-divisors. In Section 11.2, we prove a Chern-Weil type formula, which relates volumes of currents to intersection numbers.

In Section 11.3, we prove that the algebraic partial Okounkov bodies constructed in Chapter 10 have natural interpretations in terms of the b-divisors.

11.1 The intersection theory of b-divisors

In this section, we briefly recall the intersection theory of Dang-Favre [DF22].
Let X be a connected smooth projective variety of dimension n.
Definition 11.1.1 A birational model of X is a projective birational morphism $\pi: Y \rightarrow X$ from a smooth variety Y. A morphism between two birational models $\pi: Y \rightarrow X$ and $\pi^{\prime}: Y^{\prime} \rightarrow X$ is a morphism $Y \rightarrow Y^{\prime}$ over X.

We write $\operatorname{Bir}(X)$ for the isomorphism classes of birational models of X. It is a directed set under the partial ordering of domination.

We will usually be sloppy by omitting π and say Y is a birational model of X.
We write $\mathrm{NS}^{1}(X)$ for the Néron-Severi group of X and $\mathrm{NS}^{1}(X)_{K}$ for $\mathrm{NS}^{1}(X) \otimes_{\mathbb{Z}} K$ for any subfield K of \mathbb{R}. Given $\alpha, \beta \in \operatorname{NS}^{1}(X)_{K}$, we write $\alpha \leq \beta$ if $\beta-\alpha$ is pseudoeffective.

Definition 11.1.2 A Weil b-divisor \mathbb{D} on X is an assignment that associates with each $(\pi: Y \rightarrow X) \in \operatorname{Bir}(X)$ a class $\mathbb{D}_{Y}=\mathbb{D}_{\pi} \in \mathrm{NS}^{1}(Y)_{\mathbb{R}}$ such that when $\pi^{\prime}: Y^{\prime} \rightarrow X$ dominates π through $p: Y^{\prime} \rightarrow Y$, we have

$$
p_{*} \mathbb{D}_{Y^{\prime}}=\mathbb{D}_{Y} .
$$

The set of Weil b-divisors on X is denoted by bWeil (X).
A Weil b-divisor \mathbb{D} on X is Cartier if there is $(\pi: Y \rightarrow X) \in \operatorname{Bir}(X)$ such that for any $\left(\pi^{\prime}: Y^{\prime} \rightarrow X\right) \in \operatorname{Bir}(X)$ which dominates π through $p: Y^{\prime} \rightarrow Y$, we have

$$
\mathbb{D}_{Y^{\prime}}=p^{*} \mathbb{D}_{Y}
$$

In this case we say \mathbb{D} is determined on Y or \mathbb{D} has an incarnation \mathbb{D}_{Y} on Y and write $\mathbb{D}=\mathbb{D}\left(\mathbb{D}_{Y}\right)$. We also say \mathbb{D} is a Cartier b-divisor. The linear space of Cartier b -divisors is denoted by $\mathrm{bCart}(X)$.

Our definition simply means

$$
\begin{align*}
& \operatorname{bWeil}(X)=\underset{(\pi: Y \rightarrow X) \in \operatorname{Bir}(X)}{\lim _{\overleftrightarrow{(\pi}}} \mathrm{NS}^{1}(Y)_{\mathbb{R}} \tag{11.1}\\
& \operatorname{bCart}(X)=\underset{(\pi: Y \rightarrow X) \in \operatorname{Bir}(X)}{\underset{\lim }{\longrightarrow}} \mathrm{NS}^{1}(Y)_{\mathbb{R}}
\end{align*}
$$

\{eq:bdivprojlim\}
in the category of vector spaces.
We endow bWeil (X) with the projective limit topology, then the first equation in (11.1) becomes a projective limit in the category of locally convex linear spaces. Clearly, $\mathrm{bCart}(X)$ is dense in $\mathrm{bWeil}(X)$.
Definition 11.1.3 A Cartier b-divisor \mathbb{D} on X is nef (resp. big) if some incarnation is (equivalently all incarnations are) nef (resp. big).

A Weil b-divisor \mathbb{D} on X is nef if it lies in the closure of the set of nef Cartier b-divisors.

Write bWeil ${ }_{\text {nef }}(X)$ for the set of nef Weil b-divisors on X.
A Weil b-divisor \mathbb{D} on X is pseudo-effective if for all $(\pi: Y \rightarrow X) \in \operatorname{Bir}(X)$, $\mathbb{D}_{Y} \geq 0$.

We introduce a partial ordering on $\mathrm{bWeil}(X)$:

$$
\mathbb{D} \leq \mathbb{D}^{\prime} \text { if and only if } \mathbb{D}_{Y} \leq \mathbb{D}_{Y}^{\prime} \text { for all }(\pi: Y \rightarrow X) \in \operatorname{Bir}(X)
$$

We summarise Dang-Favre's results:

Definition 11.1.4 Let $\mathbb{D}_{i} \in \operatorname{bWeil}(X)(i=1, \ldots, n)$ be nef Cartier b-divisors on X. We define $\left(\mathbb{D}_{1}, \ldots, \mathbb{D}_{n}\right) \in \mathbb{R}$ as follows: take $(\pi: Y \rightarrow X) \in \operatorname{Bir}(X)$ such that all $\mathbb{D}_{i}^{\prime} s$ are determined on Y. Then define

$$
\begin{equation*}
\left(\mathbb{D}_{1}, \ldots, \mathbb{D}_{n}\right):=\left(\mathbb{D}_{1, Y}, \ldots, \mathbb{D}_{n, Y}\right) . \tag{11.2}
\end{equation*}
$$

The intersection number $\left(\mathbb{D}_{1}, \ldots, \mathbb{D}_{n}\right)$ does not depend on the choice of Y.
Theorem 11.1.2 ([10 22 , Proposition 3.1,Theorem 3.2]) There is a unique pairing

$$
\left(\operatorname{bWeil}_{\text {nef }}(X)\right)^{n} \rightarrow \mathbb{R}_{\geq 0}
$$

extending the pairing in Definition 11.1.4 such that
(1) The pairing is monotonically increasing in each variable.
(2) The pairing is continuous along decreasing nets in each variable.

Moreover, this pairing has the following properties:
(1) It is symmetric, multilinear.
(2) It is usc in each variable.

Definition 11.1.5 We define the volume of $\mathbb{D} \in \operatorname{bWeil}_{\text {nef }}(X)$ by

$$
\begin{equation*}
\operatorname{vol} \mathbb{D}=(\mathbb{D}, \ldots, \mathbb{D}) \tag{11.3}
\end{equation*}
$$

\{eq:volbdivdef\}

We say $\mathbb{D} \in \operatorname{bWeil}_{\text {nef }}(X)$ is $b i g$ if $\operatorname{vol} \mathbb{D}>0$.
Note that the definition of bigness is compatible with the definition in Definition 11.1.3 in the case of Cartier b-divisors.

Lemma 11.1.1 Let $\mathbb{D} \in \operatorname{bWeil}_{\text {nef }}(X)$, then

$$
\operatorname{vol} \mathbb{D}=\inf _{(Y \rightarrow X) \in \operatorname{Bir}(X)} \operatorname{vol} \mathbb{D}_{Y}=\lim _{(Y \rightarrow X) \in \operatorname{Bir}(X)} \operatorname{vol} \mathbb{D}_{Y}
$$

Proof By Theorem 11.1.1, we can find a decreasing net \mathbb{D}^{α} of nef Cartier b-divisors on X converging to \mathbb{D}. Clearly,

$$
\operatorname{vol} \mathbb{D}^{\alpha}=\inf _{Y \rightarrow X} \operatorname{vol} \mathbb{D}_{Y}^{\alpha}
$$

It follows from Theorem 11.1.2 and the continuity of the volume functional ELELVITO5, Corollary 2.6] that

$$
\operatorname{vol} \mathbb{D}=\inf _{\alpha} \inf _{Y \rightarrow X} \operatorname{vol} \mathbb{D}_{Y}^{\alpha}=\inf _{Y \rightarrow X} \operatorname{vol} \mathbb{D}_{Y}
$$

On the other hand, as in general push-forward will increase the volume, we see that $\operatorname{vol} \mathbb{D}_{Y}$ is decreasing in Y, so we conclude.

11.2 The singularity b-divisors

Let X be a connected smooth projective variety over \mathbb{C} of dimension n. Let $\alpha \in$ $\mathrm{NS}^{1}(X)_{\mathbb{R}}$ be a big class and T be a closed positive $(1,1)$-current in α.

Fix a closed real smooth $(1,1)$-form θ in $c_{1}(L)$ and we can write $T=\theta_{\varphi}$ for some $\varphi \in \operatorname{PSH}(X, \theta)$.

Definition 11.2.1 Define the singularity divisor $\operatorname{Sing}_{X} T$ of T as the formal sum

$$
\begin{equation*}
\operatorname{Sing}_{X} T:=\sum_{E} v(T, E) E \tag{11.4}
\end{equation*}
$$

where E runs over all prime divisors contained in X.
The singularity divisor is not a Weil divisor in general.
Note that this is a countable sum by Siu's semicontinuity theorem. Although $\operatorname{Sing}_{X} T$ is not a divisor in general, it does define a closed positive $(1,1)$-current due to Siu's decomposition. Moreover, the numerical class [$\operatorname{Sing}_{X} T$] in $\operatorname{NS}^{1}(X)_{\mathbb{B}}$ is also well-defined by treating the sum in (11.4) as a sum of numerical classes [BFJO9, Proposition 1.3].

Definition 11.2.2 The singularity b-divisor $\operatorname{Sing} T$ of T is the b-divisor over X defined by

$$
(\operatorname{Sing} T)_{Y}:=\left[\operatorname{Sing}_{Y} \pi^{*} T\right]
$$

where $(\pi: Y \rightarrow X) \in \operatorname{Bir}(X)$.
Define

$$
\mathbb{D}(T):=\mathbb{D}(\alpha)-\operatorname{Sing} T
$$

Here $\mathbb{D}(\alpha)$ is the Cartier b-divisor determined by α on X.
We are ready to derive the first version of the Chern-Weil formula.
Theorem 11.2.1 The b-divisor $\mathbb{D}(T)$ is a nef b-divisor and if in addition $\operatorname{vol} T>0$,

$$
\begin{equation*}
\operatorname{vol} \mathbb{D}(T)=\operatorname{vol} T \tag{11.5}
\end{equation*}
$$

Proof Step 1. We first handle the case where T has analytic singularities. After replacing X by a modification, we may assume that T has log singularities along an effective \mathbb{Q}-divisor D on X. Namely, we can write

$$
T=[D]+R,
$$

where R is a closed positive $(1,1)$-current with bounded potential. In this case, $\mathbb{D}(T)=\mathbb{D}(\alpha-D)$, which is nef. In order to prove (11.5), it suffices to show that

$$
\begin{equation*}
\int_{X} T^{n}=\left((\alpha-D)^{n}\right) \tag{11.6}
\end{equation*}
$$

\{eq:temp14\}
which is obvious.
Step 2. Assume that T is a Kähler current. Take a quasi-equisingular approximation $\left(T_{j}\right)_{j}$ of T in $\mathcal{Z}_{+}(X, \theta)$. By Theorem 6.2.5, we have

$$
\lim _{j \rightarrow \infty} \operatorname{vol} T_{j}=\operatorname{vol} T
$$

In view of Step 1 and Theorem 11.1.2, it remains to show that $\mathbb{D}\left(T_{j}\right) \rightarrow \mathbb{D}(T)$ as $j \rightarrow \infty$. In more concrete terms, this means that for any $(\pi: Y \rightarrow X) \in \operatorname{Bir}(X)$,

$$
\left[\operatorname{Sing}_{Y}\left(\pi^{*} T_{j}\right)\right] \rightarrow\left[\operatorname{Sing}_{Y}\left(\pi^{*} T\right)\right]
$$

in $\mathrm{NS}^{1}(Y)_{\mathbb{R}}$. This obviously follows from Theorem 6.2 .4 if $\operatorname{Sing}\left(\pi^{*} T\right)$ has only finitely many components. In general, fix an ample class ω in $\mathrm{NS}^{1}(Y)$. We want to show that
for any $\epsilon>0$, we can find $j_{0}>0$ so that when $j \geq j_{0}$,

$$
\begin{equation*}
\left[\operatorname{Sing}_{Y}\left(\pi^{*} T_{j}\right)\right] \geq\left[\operatorname{Sing}_{Y}\left(\pi^{*} T\right)\right]-\epsilon \omega \tag{11.7}
\end{equation*}
$$

Write

$$
\left[\operatorname{Sing}_{Y}\left(\pi^{*} T\right)\right]=\sum_{i=1}^{\infty} a_{i} E_{i}, \quad\left[\operatorname{Sing}\left(\pi^{*} T_{j}\right)\right]=\sum_{i=1}^{\infty} a_{i}^{j} E_{i}
$$

Then $a_{i}^{j} \leq a_{i}$. We can find $N>0$ large enough, so that

$$
\left[\operatorname{Sing}_{Y}\left(\pi^{*} T\right)\right] \leq \sum_{i=1}^{N} a_{i} E_{i}+\frac{\epsilon}{2} \omega
$$

By Theorem 6.2.4, we can take j_{0} large enough so that for $j>j_{0}$,

$$
\left(a_{i}-a_{i}^{j}\right) E_{i} \leq \frac{\epsilon}{2 N} \omega, \quad i=1, \ldots, N
$$

Then (11.7) follows.
Step 3. Assume that $\operatorname{vol} T>0$.
By Lemma 2.3.2, we can take a Kähler current $S \in \alpha$ such that $S \leq T$. Consider $\epsilon S+(1-\epsilon) T$ for $\epsilon \in(0,1)$. When $\epsilon \rightarrow 0+$, we have $\epsilon S+(1-\epsilon) T \xrightarrow{d_{S}} T$. Using Theorem 6.2.5, we reduce immediately to the situation of Step 2 .

Step 4. We handle the general case.
Take a Kähler form ω on X From Step 3, we know that for any $\epsilon>0, \mathbb{D}(T)+\epsilon \mathbb{D}(\omega)$ is a nef b-divisor. It follows immediately that $\mathbb{D}(T)$ is nef.

Corollary 11.2.1 Assume that vol $T>0$, then T is \mathcal{I}-good if and only if

$$
\operatorname{vol} \mathbb{D}(T)=\int_{X} T^{n}
$$

Proof This follows from Theorem 11.2.1 and Theorem 7.3.1.
Theorem 11.2.2 The map $\mathbb{D}: \operatorname{PSH}(X, \theta) \rightarrow \operatorname{bWeil}(X)$ is continuous. Here on $\operatorname{PSH}(X, \theta)$ we take the d_{S}-pseudometric.
Proof Let $\varphi_{i} \in \operatorname{PSH}(X, \theta)$ be a sequence converging to $\varphi \in \operatorname{PSH}(X, \theta)$ with respect to d_{S}. We want to show that

$$
\mathbb{D}\left(\theta+\operatorname{dd}^{\mathrm{c}} \varphi_{i}\right) \rightarrow \mathbb{D}(T)
$$

As $\varphi_{i} \xrightarrow{d_{S}} \varphi$ implies that $\pi^{*} \varphi_{i} \xrightarrow{d_{S}} \pi^{*} \varphi$ for any $(\pi: Y \rightarrow X) \in \operatorname{Bir}(X)$, it suffices to prove

$$
\begin{equation*}
\left[\operatorname{Sing}_{X} \varphi_{i}\right] \rightarrow\left[\operatorname{Sing}_{X} \varphi\right] \quad \text { in } \operatorname{NS}^{1}(X)_{\mathbb{R}} \tag{11.8}
\end{equation*}
$$

Write

$$
\operatorname{Sing}_{X} \varphi_{i}=\sum_{E} a_{i}^{E} E, \quad \operatorname{Sing}_{X} \varphi=\sum_{E} a^{E} E
$$

where E runs over all prime divisors on X. By Theorem 6.2.4, $a_{i}^{E} \rightarrow a^{E}$ as $i \rightarrow \infty$. When the number of E 's is finite, (11.8) follows trivially. Otherwise, we write the prime divisors on X having positive coefficients in either $\operatorname{Sing}_{X} \varphi_{i}$ or $\operatorname{Sing}_{X} \varphi$ as E_{1}, E_{2}, \ldots

We fix a basis e_{1}, \ldots, e_{N} of the finite-dimensional vector space $\operatorname{NS}^{1}(X)_{\mathbb{R}}$, so that the pseudo-effective cone is contained in the cone $\sum_{d} \mathbb{R}_{\geq 0} e_{d}$. Write

$$
E_{i}=\sum_{d=1}^{N} f_{i}^{d} e_{d}, \quad i=1,2, \ldots
$$

Then we need to show that for any $d=1, \ldots, N$,

$$
\lim _{i \rightarrow \infty} \sum_{j=1}^{\infty} a_{i}^{E_{j}} f_{j}^{d}=\sum_{j=1}^{\infty} a^{E_{j}} f_{j}^{d}
$$

This follows from the dominated convergence theorem, since

$$
\sum_{j=1}^{\infty} a_{i}^{E_{j}}\left[E_{j}\right] \leq \alpha, \quad \sum_{j=1}^{\infty} a^{E_{j}}\left[E_{j}\right] \leq \alpha
$$

A mixed version of Theorem 11.2.1 is also true:
Theorem 11.2.3 Let $T_{1}, \ldots, T_{n} \in \mathcal{Z}_{+}(X)$ such that $\operatorname{vol} T_{i}>0$ for each $i=1, \ldots, n$. Then

$$
\begin{equation*}
\frac{1}{n!}\left(\mathbb{D}\left(T_{1}\right), \ldots, \mathbb{D}\left(T_{n}\right)\right) \geq \frac{1}{n!} \int_{X} T_{1} \wedge \cdots \wedge T_{n} \tag{11.9}
\end{equation*}
$$

If the T_{i} 's are I-good, then equality holds.
Proof This follows from Theorem 11.2.1 and Proposition 7.2.1.

11.3 Okounkov bodies of b-divisors

Let X be a connected projective manifold of dimension n and (L, h) be a Hermitian big line bundle on X.

Fix a smooth flag Y_{\bullet} on X. Let $v=v_{Y_{\bullet}}: \mathbb{C}(X)^{\times} \rightarrow \mathbb{Z}^{n}$ be the valuation associated with Y_{\bullet}.
thm: pobbd
Theorem 11.3.1 The partial Okounkov body $\Delta_{Y_{\bullet}}(L, h)$ admits the following expression:

$$
\begin{equation*}
\Delta_{Y_{\bullet}}(L, h)=v_{Y_{\mathbf{\bullet}}}\left(\operatorname{dd}^{\mathrm{c}} h\right)+\lim _{\pi: Z \rightarrow X} \Delta_{Y_{\bullet}}\left(c_{1}\left(\pi^{*} L\right)-\left[\operatorname{Sing}_{Z}\left(\pi^{*} h\right)\right]\right) \tag{11.10}
\end{equation*}
$$

\{eq:DeltaasHlim\}
where π runs over the directed set of projective birational morphisms to X with Z normal.

Here the limit is a Hausdorff limit.
This theorem suggests that we define

$$
\begin{equation*}
\Delta_{Y_{\bullet}}\left(\mathbb{D}\left(\mathrm{dd}^{\mathrm{c}} h\right)\right):=\lim _{\pi: Z \rightarrow X} \Delta_{Y_{\bullet}}\left(c_{1}\left(\pi^{*} L\right)-\left[\operatorname{Sing}_{Z}\left(\pi^{*} h\right)\right]\right) . \tag{11.11}
\end{equation*}
$$

Then one could rewrite (11.10) as

$$
\Delta_{Y_{\bullet}}(L, h)=\Delta_{Y_{\bullet}}\left(\mathbb{D}\left(\mathrm{dd}^{\mathrm{c}} h\right)\right)+v_{Y_{\mathbf{\bullet}}}\left(\mathrm{dd}^{\mathrm{c}} h\right) .
$$

Remark 11.3.1 (11.11) shows that the partial Okounkov bodies are algebraic objects in nature.

One should be able to prove the existence of the limits like (11.11) over other base fields, at least after assuming the existence of resolution of singularities. If so, one would get an interesting extension of the theory of partial Okounkov bodies.

Lemma 11.3.1 Let T be a closed positive $(1,1)$-current on X. Then we have

$$
\begin{equation*}
\lim _{\pi: Z \rightarrow X} v\left(\operatorname{Sing}_{Z}\left(\pi^{*} T\right)\right)=v(T), \tag{11.12}
\end{equation*}
$$

where π runs over the directed set of projective birational morphisms to X with Z normal.

Proof Given $\pi: Z \rightarrow X$, we let W_{1} denote the strict transform of Y_{1} in Z. The restriction $\pi_{1}: W_{1} \rightarrow Y_{1}$ is necessarily birational. Let \widetilde{W}_{1} be the normalization of W_{1}. Let $\widetilde{\pi}_{1}$ denote the normalization of π_{1} so that we have a commutative diagram

We will argue by induction. The case $n=0$ is trivial. Assume that $n>0$ and the case $n-1$ is known.

We may clearly assume that $v\left(T, Y_{1}\right)=0$. By definition, we have

$$
v(T)=\left(0, \mu\left(\operatorname{Tr}_{Y_{1}}(T)\right)\right),
$$

where μ denotes the valuation induced by the flag $Y_{1} \supseteq Y_{2} \supseteq \cdots \supseteq Y_{n}$.
Observe that birational morphisms of the form $\pi_{1}: W_{1} \rightarrow Y_{1}$ are cofinal in the directed set of projective birational morphisms of Y_{1}. This is obvious since the modifications given by compositions of blow-ups with smooth centers on Y_{1} are cofinal. It suffices to blow-up X with the same centers.

Therefore, by the inductive hypothesis applied to $\operatorname{Tr}_{Y_{1}} T$, it suffices to argue that

$$
\begin{equation*}
v\left(\operatorname{Sing}_{Z}\left(\pi^{*} T\right)\right)=\left(0, \mu\left(\operatorname{Sing}_{\widetilde{W}_{1}} \widetilde{\pi}_{1}^{*}\left(\operatorname{Tr}_{Y_{1}}(T)\right)\right)\right) \tag{11.13}
\end{equation*}
$$

From Lemma 8.2.1, we know that

$$
\tilde{\pi}_{1}^{*} \operatorname{Tr}_{Y_{1}}(T) \sim_{P} \operatorname{Tr}_{W_{1}}\left(\pi^{*} T\right) .
$$

So we only need to prove

$$
v\left(\operatorname{Sing}_{Z}\left(\pi^{*} T\right)\right)=\left(0, \mu\left(\operatorname{Sing}_{\widetilde{W_{1}}}\left(\operatorname{Tr}_{W_{1}}\left(\pi^{*} T\right)\right)\right)\right.
$$

This is reduced to the following statement:

$$
\begin{equation*}
\operatorname{Tr}_{W_{1}} \operatorname{Sing}_{Z}\left(\pi^{*} T\right) \sim_{P} \operatorname{Sing}_{\widetilde{W_{1}}}\left(\operatorname{Tr}_{W_{1}}\left(\pi^{*} T\right)\right) \tag{11.14}
\end{equation*}
$$

In order to prove this, we may add a Kähler form to T and assume that T is a Kähler current. Take a quasi-equisingular approximation $\left(T_{j}\right)_{j}$ of T. Then $\left(\pi^{*} T_{j}\right)_{j}$ is a quasi-equisingular approximation of $\pi^{*} T$. Thanks to Proposition 8.2.2, we have

$$
\operatorname{Tr}_{W_{1}}\left(\pi^{*} T_{j}\right) \xrightarrow{d_{S}} \operatorname{Tr}_{W_{1}}\left(\pi^{*} T\right)
$$

Therefore, as in the proof of Theorem 11.2.2, we find that Sing_{Z} and $\operatorname{Sing}_{\widetilde{W_{1}}}$ are both continuous along this sequence as well. So we finally reduce to the case where T has analytic singularities.

In this case, arguing as before, we may assume replace π by a modification dominating it so that $\pi^{*} T \sim[D]$ for an effective \mathbb{Q}-divisor D on Z, in which case (11.14) is clear.

Proof (The proof of Theorem 11.3.1) It would be more convenient to use the language of currents. We shall write $T=\mathrm{dd}^{\mathrm{c}} h$.

Instead of arguing (11.10), we shall argue a slightly more general version: for any $\alpha \in \operatorname{NS}^{1}(X)_{\mathbb{R}}$, we have

$$
\begin{equation*}
\Delta_{Y_{\bullet}}(T)=v(T)+\lim _{\pi: Z \rightarrow X} \Delta_{Y_{\bullet}}\left(\alpha-\left[\operatorname{Sing}_{Z}\left(\pi^{*} T\right)\right]\right) \tag{11.15}
\end{equation*}
$$

\{eq:mainvar\}

We argue by induction on n. The case $n=0$ is of course trivial. Let us assume that $n>0$ and the result is known in dimension $n-1$.

We may replace T by $T-v\left(T, Y_{1}\right)\left[Y_{1}\right]$ and α by $\alpha-v\left(T, Y_{1}\right)\left[Y_{1}\right]$, so that we may reduce to the case where $v\left(T, Y_{1}\right)=0$.

For any projective birational morphism $\pi: Z \rightarrow X$ with Z normal, it follows from Theorem 10.3.4 (which also holds for a normal variety, as can be seen after passing to a resolution) that we have

$$
\Delta_{Y .}\left(\pi^{*} \alpha-\left[\operatorname{Sing}_{Z}\left(\pi^{*} T\right)\right]\right)=\overline{\left\{v(S): S \in \pi^{*} \alpha-\left[\operatorname{Sing}_{Z}\left(\pi^{*} T\right)\right]\right\}}
$$

Therefore,

$$
\Delta_{Y_{\bullet}}\left(\pi^{*} \alpha-\left[\operatorname{Sing}_{Z}\left(\pi^{*} T\right)\right]\right)+v\left(\operatorname{Sing}_{Z}\left(\pi^{*} T\right)\right) \subseteq \overline{\left\{v(S): S \in \alpha, \pi^{*} S \geq \operatorname{Sing}_{Z}\left(\pi^{*} T\right)\right\}}
$$

We observe that the right-hand side is decreasing with respect to π, which together with Lemma 11.3.1 implies that the net of convex bodies $\Delta_{Y_{\mathbf{e}}}\left(c_{1}\left(\pi^{*} L\right)-\left[\operatorname{Sing}_{Z}\left(\pi^{*} T\right)\right]\right)$ for various Z is uniformly bounded. Suppose that Δ is the limit of a subnet. Then we have

$$
\Delta+v(T) \subseteq \overline{\left\{v(S): S \in c_{1}(L), S \leq_{I} T\right\}}
$$

As shown in Theorem 10.3.4, the right-hand side is exactly $\Delta_{Y_{\bullet}}(T)$. So

$$
\Delta+v(T) \subseteq \Delta_{Y \cdot}(T)
$$

But observe that both sides have the same volume, as computed in Theorem 10.3.2 and Theorem 11.2.1. So equality holds.

It follows from the Blaschke selection theorem Theorem C.1.1 that the limit in (11.15) exists and (11.15) holds.

Part III Applications

In this part, we explain a few applications of the theory developed in this book. In Chapter 12, we develop the pluripotential theory on big line bundles on toric varieties. This theory depends crucially on the theory of partial Okounkov bodies developed in Chapter 10.

In Chapter 13, we develop the transcendental theory of non-Archimedean metrics based on the theory of test curves developed in Chapter 9.

In Chapter 14, we prove the convergence of partial Bergman measures.

Chapter 12 Toric pluripotential theory on big line bundles

In this chapter, we develop the toric pluripotential theory on big line bundles. Our development here is based on the theory of partial Okounkov bodies developed in Chapter 10. We will deduce two non-trivial consequences from the general theory: Corollary 12.2 .2 and Theorem 12.2.2. The author does not know how to prove either result without relying on partial Okounkov bodies.

12.1 Toric setup

Let T be a complex torus of dimension n with character lattice M and cocharacter lattice N. Consider a rational polyhedral fan Σ in $N_{\mathbb{R}}$ corresponding to an n-dimensional smooth toric variety X.

Let D be a T-invariant big divisor on X. Then $P_{D} \subseteq M_{\mathbb{R}}$ be the lattice polytope generated by $u \in M$ such that

$$
D+\operatorname{div} \chi^{u} \geq 0
$$

Let $L=O_{X}(D)$. Note that replacing D by a linearly equivalent divisor amounts to replace D by an integral translation.

We shall fix a smooth T_{c}-invariant metric h_{0} on L. Let $\theta=c_{1}\left(L, h_{0}\right)$. Fix a smooth function $F_{\theta}: N_{\mathbb{R}} \rightarrow \mathbb{R}$ such that

$$
\theta=\mathrm{dd}^{\mathrm{c}} \operatorname{Trop}^{*} F_{\theta}
$$

Note that F_{θ} is well-defined up to a linear term.
We will consider a T-invariant subvariety $Y \subseteq X$. Since X is smooth, so is Y. Let σ be the cone in Σ corresponding to Y and Q be the face of P corresponding to Y.

Recall that the cocharacter lattice $N(\sigma)$ of Y is given by $N / N \cap\langle\sigma\rangle$, where $\langle\sigma\rangle$ is the linear span of σ. See [$[\mathbb{L} 11,(3.2 .6)]$. In particular, the character lattice $M(\sigma)$ of Y can be naturally identified with the linear span of Q. Let $i_{\sigma}: M(\sigma) \rightarrow M$ be the corresponding inclusion.

Take $m_{\sigma} \in M \cap P_{D}$ so that $-\operatorname{Supp}_{-P_{D}}$ coincides with m_{σ} on σ. Observe that m_{σ} is uniquely determined only when σ has full dimension.

12.2 Toric partial Okounkov bodies

12.2.1 Newton bodies

Let $\mathrm{PSH}_{\text {tor }}(X, \theta)$ be the set of T_{c}-invariant functions in $\operatorname{PSH}(X, \theta)$.
Definition 12.2.1 A function $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \theta)$ can be written as

$$
\left.\varphi\right|_{T(\mathbb{C})}=\text { Trop }^{*} f
$$

for some unique $f: N_{\mathbb{R}} \rightarrow[-\infty, \infty)$. Then we define

$$
F_{\varphi}: N_{\mathbb{R}} \rightarrow \mathbb{R}
$$

as follows:

$$
\begin{equation*}
F_{\varphi}=F_{\theta}+f \tag{12.1}
\end{equation*}
$$

Observe that F_{φ} is a convex function and takes finite values by Lemma 5.2.1. It is well-defined up to a linear term.

Definition 12.2.2 Let $\varphi \in \operatorname{PSH}_{\text {tor }}(X, \theta)$, we define its Newton body as

$$
\Delta(\theta, \varphi):=\overline{\nabla F_{\varphi}\left(N_{\mathbb{R}}\right)} \subseteq M_{\mathbb{R}}
$$

Observe that $\Delta(\theta, \varphi)$ depends only on the current θ_{φ}, not on the choices of θ and F_{θ}.

12.2.2 Partial Okounkov bodies

There are some canonical choices of smooth flags in the toric setting.
Recall that for each $\rho \in \Sigma(1), u_{\rho}$ denotes the ray generator of ρ. Since X is smooth and projective, we could choose a full-dimensional cone σ in Σ with rays $\rho_{1}, \ldots, \rho_{n} \in \Sigma(1)$ such that $u_{\rho_{1}}, \ldots, u_{\rho_{n}}$ form a basis of N. Define

$$
Y_{i}=D_{\rho_{1}} \cap \cdots \cap D_{\rho_{i}}, \quad i=1, \ldots, n .
$$

Then Y_{\bullet} is a smooth flag on X. Let

$$
\begin{equation*}
\Phi: M \rightarrow \mathbb{Z}^{n}, \quad m \mapsto\left(\left\langle m-m_{\sigma}, u_{\rho_{1}}\right\rangle, \ldots,\left\langle m-m_{\sigma}, u_{\rho_{n}}\right\rangle\right) . \tag{12.2}
\end{equation*}
$$

$$
\{\text { eq:isoMZncanonical\} }
$$

Then Φ is an isomorphism of lattices. It induces an \mathbb{Z}-affine isomorphism

$$
\Phi_{\mathbb{R}}: M_{\mathbb{R}} \rightarrow \mathbb{R}^{n}
$$

Proposition 12.2.1 We have

$$
\begin{equation*}
v_{Y \bullet}\left(H^{0}\left(X, L^{k}\right)^{\times}\right)=\Phi\left(\left(k P_{D}\right) \cap M\right) \tag{12.3}
\end{equation*}
$$

for any $k \in \mathbb{Z}_{>0}$. In particular,

$$
\begin{equation*}
\Delta_{Y_{\bullet}}(L)=\Phi_{\mathbb{R}}\left(P_{D}\right) \tag{12.4}
\end{equation*}
$$

Proof Up to replacing D by a linearly equivalent divisor, we may assume that $\left.D\right|_{U_{\sigma}}=0$, where U_{σ} is the affine subvariety of X corresponding to σ. Then $m_{\sigma}=0$.

It suffices to prove (12.3) for $k=1$. Let $s \in H^{0}(X, L)$ be a non-zero section, say χ^{u} for some $u \in P_{D} \cap M$. The zero-locus of s is given by

$$
D+\sum_{i=1}^{n}\left\langle u, u_{\rho_{i}}\right\rangle D_{\rho_{i}}
$$

Therefore,

$$
v_{Y_{\bullet}}(s)=\left(\left\langle u, u_{\rho_{1}}\right\rangle, \ldots,\left\langle u, u_{\rho_{n}}\right\rangle\right)=\Phi(u) .
$$

So (12.3) follows.
Theorem 12.2.1 Let $\varphi \in \operatorname{PSH}_{\text {tor }}(X, \theta)_{>0}$, then

$$
\begin{equation*}
\Phi_{\mathbb{R}}(\Delta(\theta, \varphi))=\Delta_{Y \cdot}(\theta, \varphi) \tag{12.5}
\end{equation*}
$$

Proof Up to replacing D by a linearly equivalent divisor, we may assume that $\left.D\right|_{U_{\sigma}}=0$, where U_{σ} is the affine subvariety of X corresponding to σ. Then $m_{\sigma}=0$.

Step 1. We first reduce to the case where θ_{φ} is a Kähler current.
By Lemma 2.3.2, we can find $\psi \in \operatorname{PSH}(X, \theta)$ such that $\psi \leq \varphi$ and θ_{ψ} is a Kähler current. Taking the average along T_{c}, we may assume that ψ is T_{c}-invariant.

For each $t \in(0,1)$, we let

$$
\varphi_{t}=(1-t) \psi+t \varphi
$$

Suppose that Kähler current case is known. Then we get

$$
\Phi_{\mathbb{R}}\left(\Delta\left(\theta, \varphi_{t}\right)\right)=\Delta_{Y_{\bullet}}\left(\theta, \varphi_{t}\right)
$$

for any $t \in(0,1)$. It follows from Theorem A.4.2 that

$$
\Phi_{\mathbb{R}}(\Delta(\theta, \varphi)) \supseteq \Phi_{\mathbb{R}}\left(\Delta\left(\theta, \varphi_{t}\right)\right) \supseteq \Delta_{Y \cdot}\left(\theta, \varphi_{t}\right)
$$

for any $t \in(0,1)$. Thanks to Theorem 10.2.2, we have

$$
\Phi_{\mathbb{R}}(\Delta(\theta, \varphi)) \supseteq \Delta_{Y}(\theta, \varphi)
$$

Compare the volumes of both sides using Proposition 12.2.2 and (10.11), we find that

$$
n!\operatorname{vol} \Phi_{\mathbb{R}}(\Delta(\theta, \varphi))=\int_{X} \theta_{\varphi}^{n}=\operatorname{vol} \theta_{\varphi}=n!\operatorname{vol} \Delta_{Y \cdot}(\theta, \varphi)
$$

In particular, we conclude (12.5).
Step 2. We handle the case where θ_{φ} is a Kähler current.
Let $\left(\varphi_{j}\right)_{j}$ be a quasi-equisingular approximation of φ in $\operatorname{PSH}(X, \theta)$.
We may assume that φ_{j} is T_{c}-invariant for each $j \geq 1$ from the construction of [Dem12 12a, Theorem 13.21].

Now assume that the result is known for each φ_{j}. Then

$$
\Phi_{\mathbb{R}}\left(\Delta\left(\theta, \varphi_{j}\right)\right)=\Delta_{Y \cdot}\left(\theta, \varphi_{j}\right) .
$$

In particular, by Proposition 12.2.2 again,

$$
\Phi_{\mathbb{R}}(\Delta(\theta, \varphi)) \subseteq \Delta_{Y \cdot}\left(\theta, \varphi_{j}\right)
$$

for each $j \geq 1$. It follows from Theorem 10.2.2 that

$$
\Phi_{\mathbb{R}}(\Delta(\theta, \varphi)) \subseteq \Delta_{Y_{\bullet}}(\theta, \varphi)
$$

Compare the volumes of both sides using Proposition 12.2.2, (10.11) and Theorem 5.3.1, we conclude (12.5).

Step 3. It remains to handle the case where φ has analytic singularities and θ_{φ} is a Kähler current. In fact, we may assume that φ has the form

$$
\varphi=\log \sum_{i=1}^{a}\left|s_{i}\right|_{h_{0}}^{2}+O(1)
$$

where $s_{1}, \ldots, s_{d e m} \in_{12} H^{0}(X, L)$. This follows from the proof of Step 2 and the construction of [Dem 12 a, Theorem 13.21].

Let $u_{1}, \ldots, u_{a} \in P_{D} \cap M$ be the lattice points corresponding to s_{1}, \ldots, s_{a}. Observe that $\Delta(\theta, \varphi)$ is the convex envelope of u_{1}, \ldots, u_{a} by Lemma A.5.2.

Then for any $m \in M$ and $k \in \mathbb{Z}_{>0}, m \in k P_{D}$ if and only if

$$
\left|\chi^{m}\right|_{h_{0}^{k}}^{2} \mathrm{e}^{-k \varphi}
$$

is bounded from above. It follows that

$$
\Phi(k \Delta(\theta, \varphi) \cap M) \subseteq k \Delta_{k}(\theta, \varphi)
$$

The notation Δ_{k} is defined Section 10.2. Letting $k \rightarrow \infty$ and applying Theorem 10.2.4, we find that

$$
\Phi_{\mathbb{R}}(\Delta(\theta, \varphi)) \subseteq \Delta(\theta, \varphi)
$$

Compare the volumes of both sides using Proposition 12.2.2 and (10.11), we conclude that the equality holds and (12.5) follows.

As another consequence we have
cor:toricLelong
cor:toricLelong2

Corollary 12.2.1 Let E be a T-invariant prime divisor on X corresponding to a ray with ray generator $n \in N$. Then for any $\varphi \in \mathrm{PSH}_{\mathrm{tor}}(X, \theta)_{>0}$, we have

$$
v(\varphi, E)=\inf \left\{\left\langle m-m_{\sigma}, n\right\rangle: m \in \Delta(\theta, \varphi)\right\},
$$

where σ is the ray in Σ corresponding to E.
Proof This follows immediately from Theorem 12.2.1 and Theorem 10.2.5. In fact, since X is projective and smooth, there is always a T-invariant smooth flag Y_{\bullet} with $Y_{1}=E$.

Corollary 12.2.2 For any T-invariant subvariety $Y \subseteq X$ corresponding to a cone σ in Σ and any $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \theta)_{>0}$. Then the following are equivalent:
(1) $v(\varphi, Y)=0$;
(2) There is a point $m \in \Delta(\theta, \varphi)$ such that $\left(m-m_{\rho}\right) \cdot u_{\rho}=0$ for any 1-dimensional face ρ of σ.

Proof Let ρ_{1}, \ldots, u_{r} be the rays of σ. Up to replacing D by a translation, we may assume that $m_{\sigma}=0$.

Let $\pi: Z \rightarrow X$ be the blow-up of X along Y. Observe that $\Delta(\theta, \varphi)=\Delta\left(\pi^{*} \theta, \pi^{*} \varphi\right)$. On the other hand, the ray corresponding to the exceptional divisor E is generated by $u_{\rho_{1}}+\cdots+u_{\rho_{r}}$. Since X is smooth, this yector is primitive.

It follows from Corollary 12.2.1 and [BOUO2a, Corollaire 1.1.8] that

$$
\begin{equation*}
v(\varphi, Y)=v\left(\pi^{*} \varphi, E\right)=\inf \left\{\left(m, u_{\rho_{1}}+\cdots+u_{\rho_{r}}\right): m \in \Delta(\theta, \varphi)\right\} \tag{12.6}
\end{equation*}
$$

\{eq: nuvarphiYtoric1\}
Our assertion follows.
It follows from (12.6) that

$$
v(\varphi, Y) \geq \sum_{i=1}^{a} v\left(\varphi, E_{i}\right)
$$

where the E_{i} 's are the prime divisors corresponding to the rays of σ. This inequality seems to be new as well.

Theorem 12.2.2 We have

$$
F_{V_{\theta}} \in \mathcal{E}\left(N_{\mathbb{R}}, P_{D}\right)
$$

Proof Take $\varphi=V_{\theta}$ in Theorem 12.2.1, we find

$$
\Phi_{\mathbb{R}}\left(\Delta\left(\theta, V_{\theta}\right)\right)=\Delta_{Y \cdot}\left(\theta, V_{\theta}\right)=\Phi_{\mathbb{R}}\left(P_{D}\right)
$$

where we applied Proposition 12.2.1 in the second equality. Therefore,

$$
\Delta\left(\theta, V_{\theta}\right)=P_{D}
$$

Proposition 12.2.2 Let $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \theta)$, then

$$
\begin{equation*}
\operatorname{Trop}_{*}\left(\left.\theta\right|_{T(\mathbb{C})}+\left.\operatorname{dd}^{\mathrm{c}} \varphi\right|_{T(\mathbb{C})}\right)^{n}=\operatorname{MA}_{\mathbb{R}}\left(F_{\varphi}\right) \tag{12.7}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\int_{X} \theta_{\varphi}^{n}=\int_{N_{\mathbb{R}}} \operatorname{MA}_{\mathbb{R}}\left(F_{\varphi}\right)=n!\operatorname{vol} \Delta(\theta, \varphi) \tag{12.8}
\end{equation*}
$$

\{eq:tropMAmea2\}
\{eq:toricmass2\}
and

$$
\begin{equation*}
\int_{X} \theta_{V_{\theta}}^{n}=n!\operatorname{vol} P \tag{12.9}
\end{equation*}
$$

Proof Take F_{0} as in (5.4) and ω denotes the corresponding Kähler form.
Then for any large enough $C>0, \theta+C \omega$ is a Kähler form. So we conclude from Proposition 5.2.5 that

$$
\operatorname{Trop}_{*}\left(\left.(\theta+C \omega)\right|_{T(\mathbb{C})}+\left.\operatorname{dd}^{\mathrm{c}} \varphi\right|_{T(\mathbb{C})}\right)^{n}=\operatorname{MA}_{\mathbb{R}}\left(F_{\varphi}+C F_{0}\right)
$$

Since both sides are polynomials in C, we conclude that the same holds for $C=0$. Therefore, (12.7) follows.
(12.8) is a direct consequence, while (12.9) follows from Theorem 12.2.2.

12.3 The pluripotential theory

Theorem 12.3.1 There is a canonical bijection between the following sets:
(1) the set of $\varphi \in \mathrm{PSH}_{\mathrm{tor}}(X, \theta)$;
(2) the set of $F \in \mathcal{P}\left(N_{\mathbb{R}}, P_{D}\right)$ satisfying $F \leq F_{V_{\theta}}$, and
(3) the set of closed proper convex functions $G \in \operatorname{Conv}\left(M_{\mathbb{R}}\right)$ satisfying

$$
G \geq F_{V_{\theta}}^{*}
$$

As before, we write F_{φ}, G_{φ} for the functions determined by this construction.
Proof The proof is similar to that of Theorem 5.2.1, but due to its importance, we give the proof. Again, the correspondence between (2) and (3) is proved in Proposition A.2.4.

Given φ, we can construct F_{φ} in (2) as explained earlier. Conversely, given $F \in \mathcal{P}\left(N_{\mathbb{R}}, P_{D}\right)$ such that $F \leq F_{V_{\theta}}$. Then

$$
\operatorname{Trop}^{*}\left(F-F_{\theta}\right) \in \operatorname{PSH}\left(T(\mathbb{C}),\left.\theta\right|_{T(\mathbb{C})}\right)
$$

Since $F \leq F_{V_{\theta}}$, we see that $\operatorname{Trop}^{*}\left(F-F_{\theta}\right)$ is bounded from above. It follows that Grauert-Remmert's extension theorem Theorem 1.2.1 is applicable, and this function extends to a unique θ-psh function φ. The uniqueness of the extension guarantees that $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \theta)$.

The two maps are clearly inverse to each other.
We fix a model potential $\phi \in \mathrm{PSH}_{\text {tor }}(X, \theta)_{>0}$ with Newton body $\Delta(\theta, \phi)$.
A similar argument guarantees the folloiwng:
Corollary 12.3.1 There is a canonical bijection between the following sets:
(1) the set of $\varphi \in \mathrm{PSH}_{\mathrm{tor}}(X, \theta ; \phi)$,
(2) the set of $F \in \mathcal{P}\left(N_{\mathbb{R}}, \Delta(\theta, \phi)\right)$ satisfying $F \leq F_{V_{\theta}}$, and
(3) the set of closed proper convex functions $G \in \operatorname{Conv}\left(M_{\mathbb{R}}\right)$ satisfying

$$
G \geq F_{V_{\theta}}^{*},\left.\quad G\right|_{M_{\mathbb{R}} \backslash \Delta(\theta, \phi)}=\infty
$$

Moreover, under these correspondences, we have the following bijections:
(1) the set $\mathcal{E}_{\text {tor }}(X, \theta ; \phi)$,
(2) the set of $F \in \mathcal{E}\left(N_{\mathbb{R}}, \Delta(\theta, \phi)\right)$ satisfying $F \leq F_{V_{\theta}}$, and
(3) the set of closed proper convex functions $G \in \operatorname{Conv}\left(M_{\mathbb{R}}\right)$ satisfying

$$
G \geq F_{V_{\theta}}^{*},\left.\quad G\right|_{\operatorname{Int} P}<\infty
$$

Here the notation $\mathcal{E}_{\text {tor }}(X, \theta ; \phi)$ means $\mathcal{E}(X, \theta ; \phi) \cap \operatorname{PSH}_{\text {tor }}(X, \theta)$.
With an almost identical argument, we arrive at
Proposition 12.3.1 Let $\varphi_{0}, \varphi_{1} \in \mathrm{PSH}_{\text {tor }}(X, \theta)$. There is a canonical bijection between the following sets:
(1) the set of T_{c}-invariant subgeodesics from φ_{0} to φ_{1},
(2) the set of convex functions $F: N_{\mathbb{R}} \times(0,1) \rightarrow \mathbb{R}$ such that for each $r \in(0,1)$, the function

$$
F_{r}: N_{\mathbb{R}} \rightarrow \mathbb{R}, \quad n \mapsto F(n, r)
$$

satisfies $F_{r} \rightarrow F_{\varphi_{1}}$ (resp. $F_{r} \rightarrow F_{\varphi_{0}}$) everywhere as $r \rightarrow 1-($ resp. $r \rightarrow 0+$), and
(3) the set of convex functions Ψ on $M_{\mathbb{R}} \times \mathbb{R}$ such that

$$
\Psi(m, s) \geq G_{\varphi_{0}}(m) \vee\left(G_{\varphi_{1}}(m)+s\right)
$$

Note that Ψ in (3) is nothing but the Legendre transform of F. As an immediate corollary,
Corollary 12.3.2 Let $\varphi_{0}, \varphi_{1} \in \mathcal{E}_{\text {tor }}(X, \theta)$. Then the geodesic $\left(\varphi_{t}\right)_{t \in(0,1)}$ from φ_{0} to φ_{1} corresponds to the lower convex envelope Definition A.1.4 of the function

$$
N_{\mathbb{R}} \times[0,1] \rightarrow \mathbb{R}, \quad(n, t) \mapsto t F_{\varphi_{1}}(n)+(1-t) F_{\varphi_{0}}(n)
$$

Moreover, we have

$$
\begin{equation*}
G_{\varphi_{t}}=(1-t) G_{\varphi_{1}}+t G_{\varphi_{0}} \tag{12.10}
\end{equation*}
$$

\{eq: Glinear \}
Proof The first assertion follows immediately from Proposition 12.3.1. It remains to argue (12.10).

Let $F: N_{\mathbb{R}} \times[0,1]$ be the map $(n, t) \mapsto F_{\varphi_{t}}(n)$.
It follows from the correspondence in Proposition 12.3.1 that the Legendre transform of F is given by $G_{\varphi_{0}} \vee\left(G_{\varphi_{1}}+s\right)$. From this we conclude that

$$
G_{\varphi_{t}}(m)=-\sup _{s \in \mathbb{R}}\left(s t-G_{\varphi_{0}}(m) \vee\left(G_{\varphi_{1}}(m)+s\right)\right)=(1-t) G_{\varphi_{1}}(m)+t G_{\varphi_{0}}(m) .
$$

The proofs of the following results are similar to the ample case studied in Chapter 5. We omit the details.
prop:toricpluscstbig
Proposition 12.3.2 Given $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \theta)$ and $C \in \mathbb{R}$. We have

$$
F_{\varphi+C}=F_{\varphi}+C, \quad G_{\varphi+C}=G_{\varphi}-C
$$

Proposition 12.3.3 Given $\varphi, \psi \in \operatorname{PSH}_{\text {tor }}(X, \theta)$, then $\varphi \wedge \psi \in \operatorname{PSH}_{\text {tor }}(X, \theta)$ and

$$
F_{\varphi \wedge \psi}=F_{\varphi} \wedge F_{\psi}, \quad G_{\varphi \wedge \psi}=G_{\varphi} \vee G_{\psi} .
$$

Proposition 12.3.4 Let $\left\{\varphi_{i}\right\}_{i \in I}$ be a family in $\mathrm{PSH}_{\text {tor }}(X, \theta)$ uniformly bounded from above. Then sup* ${ }_{i \in I} \varphi_{i} \in \operatorname{PSH}_{\text {tor }}(X, \theta)$ and

$$
F_{\sup ^{*}{ }_{i \in I} \varphi_{i}}=\sup _{i \in I} F_{\varphi_{i}}, \quad G_{\text {sup }^{*}}^{i \in I} \varphi_{i}=\operatorname{cl} \bigwedge_{i \in I} G_{\varphi_{i}}
$$

Moreover, if I is finite, then

$$
G_{\max _{i \in I} \varphi_{i}}=\bigwedge_{i \in I} G_{\varphi_{i}}
$$

Similarly, if $\left\{\varphi_{i}\right\}_{i \in I}$ is a decreasing net in $\operatorname{PSH}_{\text {tor }}(X, \theta)$ such that $\inf _{i \in I} \varphi_{i} \not \equiv-\infty$, then $\inf _{i \in I} \varphi_{i} \in \operatorname{PSH}_{\text {tor }}(X, \theta)$ and

$$
F_{\inf _{i \in I} \varphi_{i}}=\inf _{i \in I} F_{\varphi_{i}}, \quad G_{\inf _{i \in I}} \varphi_{i}=\sup _{i \in I} G_{\varphi_{i}}
$$

Proposition 12.3.5 Let $\varphi \in \operatorname{PSH}_{\text {tor }}(X, \theta)$. Then $P_{\theta}[\varphi] \in \operatorname{PSH}_{\text {tor }}(X, \theta)$ and

$$
G_{P_{\theta}[\varphi]}(x)=\left\{\begin{array}{c}
G_{V_{\theta}}(x), \text { if } x \in \overline{\left\{G_{\varphi}(x)<\infty\right\}} \tag{12.11}\\
\infty, \text { otherwise }
\end{array}\right.
$$

\{eq:toricPenvbig\}

As a consequence, we have
Corollary 12.3.3 Let $\varphi, \psi \in \mathrm{PSH}_{\text {tor }}(X, \theta)_{>0}$. Then the following are equivalent:
(1) $\varphi \sim{ }_{P} \psi$;
(2) $\Delta(\theta, \varphi)=\Delta(\theta, \psi)$.

Next we consider the trace operator. For this purpose, we will need to fix a T-invariant subvariety $Y \subseteq X$. Since X is smooth, so is Y. Let σ be the cone in Σ corresponding to Y and Q be the face of P corresponding to Y.
prop:traceoptoric
Proposition 12.3.6 Let $\varphi \in \mathrm{PSH}_{\text {tor }}(X, \theta)_{>0}$. Consider a T-invariant subvariety Y corresponding to a face Q of P. Suppose that $v(\varphi, Y)=0$ and $\operatorname{vol}\left(\left.\theta\right|_{Y}, \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)>0$. Then

$$
\begin{equation*}
\Delta\left(\left.\theta\right|_{Y}, \operatorname{Tr}_{Y}^{\theta}(\varphi)\right)=\left(i_{\sigma}+m_{\sigma}\right)_{\mathbb{R}}^{*}(\Delta(\theta, \varphi) \cap Q) \tag{12.12}
\end{equation*}
$$

In particular, $\left.\operatorname{Tr}_{Y}(\varphi) \sim_{P} \varphi\right|_{Y}$ if $\left.\varphi\right|_{Y} \not \equiv-\infty$.
Observe that the condition $v(\varphi, Y)=0$ means exactly that $\Delta(\theta, \varphi) \cap Q \neq \varnothing$ by Corollary 12.2.2.
Proof Perturbing θ slightly, we may assume that θ_{φ} is a Kähler current. Let $\left(\varphi_{j}\right)_{j}$ be a quasi-equisingular approximation of φ in $\mathrm{PSH}_{\text {tor }}(X, \theta)$. It follows from the continuity of the partial Okounkov bodies Theorem 10.2.2 and the continuity of the trace operator Proposition 8.2.2 that it suffices to handle the case where φ has analytic singularities. We need to show that

$$
\Delta\left(\left.\theta\right|_{Y},\left.\varphi\right|_{Y}\right)=\left(i_{\sigma}+m_{\sigma}\right)_{\mathbb{R}}^{*}(\Delta(\theta, \varphi) \cap Q)
$$

It is enough to observe that

$$
G_{\left.\varphi\right|_{Y}}=\left.\left(i_{\sigma}+m_{\sigma}\right)_{\mathbb{R}}^{*} G_{\varphi}\right|_{Q}
$$

The argument is contained in $\stackrel{\text { BGPS } 14}{[\text { BGPS }} 14$, Proof of Proposition 4.8.9].
Finally, observe that if $\left.\operatorname{bif}_{1}\right|_{Y} \not \equiv-\infty$, the right-hand side of (12.12) is nothing but $\Delta\left(\left.\theta\right|_{Y},\left.\varphi\right|_{Y}\right)$ using $[\mathbb{B G P S} 14$, Proof of Proposition 4.8.9]. So we conclude that $\left.\varphi\right|_{Y} \sim_{P} \operatorname{Tr}_{Y}(\varphi)$.

Chapter 13
 Non-Archimedean pluripotential theory

chap: NAapp
In this chapter, we will establish the non-Archimedean pluripotential theory using the theory of I-good singularities.

We also construct the Duistermaat-Heckman measure of a non-Archimedean metric in Section 13.3.

13.1 The definition of non-Archimedean metrics

Let X be a connected compact Kähler manifold of dimension n. Let Käh (X) be the set of Kähler forms on X with the partial order given as follows: we say $\omega \leq \omega^{\prime}$ if $\omega \geq \omega^{\prime}$. Note that the ordered set $\operatorname{Käh}(X)$ is a directed set.

Let θ be a closed smooth real $(1,1)$-form.
Definition 13.1.1 We define

$$
\operatorname{PSH}^{\mathrm{NA}}(X, \theta)=\lim _{\omega \in \overleftarrow{K a ̆ h}(X)} \operatorname{PSH}^{\mathrm{NA}}(X, \theta+\omega)_{>0}
$$

in the category of sets, where the transition maps are given as follows: suppose that $\omega, \omega^{\prime} \in$ Käh and $\omega \geq \omega^{\prime}$, then the transition map is defined in Proposition 9.3.4:

$$
\begin{equation*}
P_{\theta+\omega^{\prime}}[\bullet]_{I}: \operatorname{PSH}^{\mathrm{NA}}\left(X, \theta+\omega^{\prime}\right)_{>0} \rightarrow \operatorname{PSH}^{\mathrm{NA}}(X, \theta+\omega)_{>0} \tag{13.1}
\end{equation*}
$$

[^8]In general, we denote the components of $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ in $\operatorname{PSH}^{\mathrm{NA}}(X, \theta+\omega)$ by $P_{\theta+\omega^{\prime}}[\Gamma]_{I}$.

Remark 13.1.1 Thanks to Proposition 9.3.2, for any other θ^{\prime} representing [θ], we have a canonical bijection

$$
\mathrm{PSH}^{\mathrm{NA}}(X, \theta) \xrightarrow{\sim} \mathrm{PSH}^{\mathrm{NA}}\left(X, \theta^{\prime}\right)
$$

Moreover, these bijections satisfy the cocycle condition. If we view the set of closed real smooth $(1,1)$-forms representing $[\theta]$ as a category with a unique morphism between any two objects, then we can define

$$
\operatorname{PSH}^{\mathrm{NA}}(X,[\theta])=\lim _{\theta} \operatorname{PSH}^{\mathrm{NA}}(X, \theta)
$$

This definition is independent of the choice of the explicit representative of the cohomology class [θ].

However, given the fact that our notations are already quite heavy, we decide to stick to the set $\mathrm{PSH}^{\mathrm{NA}}(X, \theta)$. The readers should verify that all constructions below are independent of the choice of θ within its cohomology class.

Proposition 13.1.1 Let $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$. Then given $\omega, \omega^{\prime} \in \operatorname{Käh}(X)$ with $\omega \leq \omega^{\prime}$, we have

$$
P_{\theta+\omega}\left[P_{\theta+\omega^{\prime}}[\Gamma]_{I,-\infty}\right]=P_{\theta+\omega}[\Gamma]_{I,-\infty}
$$

Proof Since $P_{\theta+\omega^{\prime}}[\Gamma]_{I,-\infty}$ is I-good by Example 7.1.2, it follows that

$$
P_{\theta+\omega}\left[P_{\theta+\omega^{\prime}}[\Gamma]_{I,-\infty}\right]=P_{\theta+\omega}\left[P_{\theta+\omega^{\prime}}[\Gamma]_{I,-\infty}\right]_{I}
$$

Our assertion follows from Proposition 3.2.12.
prop:NAposNAemb
Proposition 13.1.2 There is a natural injective map

$$
\operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0} \hookrightarrow \mathrm{PSH}^{\mathrm{NA}}(X, \theta), \quad \Gamma \mapsto\left(P_{\theta+\omega}[\Gamma]_{I}\right)_{\omega \in \operatorname{Käh}(X)} .
$$

In the sequel, we will not distinguish an element in $\operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$ with its image in $\mathrm{PSH}^{\mathrm{NA}}(X, \theta)$.
Proof It is obvious that this map is well-defined. It suffices to argue its injectivity. Suppose that $\Gamma, \Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$ and

$$
P_{\theta+\omega}[\Gamma]_{I}=P_{\theta+\omega}\left[\Gamma^{\prime}\right]_{I}
$$

for some Kähler form ω on X. Then for any $\tau<\Gamma_{\max }$, we have

$$
\Gamma_{\tau} \sim_{\mathcal{I}} \Gamma_{\tau}^{\prime}
$$

by Proposition 6.1.3. It follows again from Proposition 6.1.3 that

$$
\Gamma_{\tau}=\Gamma_{\tau}^{\prime}
$$

Definition 13.1.2 Let $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$. We define $\Gamma_{\text {max }}$ as $P_{\theta+\omega}[\Gamma]_{I, \max }$ for any Kähler form ω on X.

Note that under the identification of Proposition 13.1.2, for any $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$, this definition is compatible with the notion of $\Gamma_{\max }$ in Definition 9.1.1.

Definition 13.1.3 Let $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$, we define its volume as follows:

$$
\operatorname{vol} \Gamma:=\lim _{\omega \in \operatorname{Käh}(X)} \int_{X}\left(\theta+\omega+\operatorname{dd}^{\mathrm{c}} P_{\theta+\omega^{\prime}}[\Gamma]_{I,-\infty}\right)^{n} \in[0, \infty)
$$

Observe that the net is decreasing, so the limit exists.
Proposition 13.1.3 Let $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$. Then

$$
\operatorname{vol} \Gamma=\int_{X}\left(\theta+\mathrm{dd}^{\mathrm{c}} \Gamma_{-\infty}\right)^{n}
$$

Proof This follows from Proposition 3.1.8, Corollary 3.1.3 and Proposition 13.1.1.ם
Definition 13.1.4 Let ω be a closed real smooth positive (1, 1)-form on X. We define the map

$$
P_{\theta+\omega}[\bullet]_{I}: \operatorname{PSH}^{\mathrm{NA}}(X, \theta) \rightarrow \operatorname{PSH}^{\mathrm{NA}}(X, \theta+\omega)
$$

as follows: given $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$, we define $P_{\theta+\omega}[\Gamma]_{I}$ as the element such that for any $\omega^{\prime} \in \operatorname{Käh}(X)$, we have

$$
P_{\theta+\omega+\omega^{\prime}}\left[P_{\theta+\omega}[\Gamma]_{I}\right]_{I}=P_{\theta+\omega+\omega^{\prime}}[\Gamma]_{I} .
$$

It is straightforward to check that under the identification of Proposition 13.1.2, the $\operatorname{map} P_{\theta+\omega}[\bullet]_{I}$ extends the map (13.1).

Proposition 13.1.4 The maps $P_{\theta+\omega}[\bullet]_{I}$ in Definition 13.1.4 together induce a bijection

$$
\begin{equation*}
\operatorname{PSH}^{\mathrm{NA}}(X, \theta) \xrightarrow{\sim}{\underset{\omega}{\omega \in \operatorname{Käh}(X)}}_{\lim } \operatorname{PSH}^{\mathrm{NA}}(X, \theta+\omega) \tag{13.2}
\end{equation*}
$$

Proof It is a tautology that the maps $P_{\theta+\omega}[\bullet]_{I}$ in Definition 13.1.4 are compatible with the transition maps. So the map (13.2) is well-defined. It is injective by the same argument as Proposition 13.1.2. We argue the surjectivity.

By unfolding the definitions, an object in the target of (13.2) is an assignment: with each $\omega \in \operatorname{Käh}(X)$, we associate a family $\left(\Gamma^{\omega, \omega^{\prime}}\right)_{\omega^{\prime} \in \operatorname{Käh}(X)}$ satisfying:
(1) $\Gamma^{\omega, \omega^{\prime}} \in \operatorname{PSH}^{\mathrm{NA}}\left(X, \theta+\omega+\omega^{\prime}\right)_{>0}$ for each $\omega, \omega^{\prime} \in \operatorname{Käh}(X)$;
(2) for each $\omega, \omega^{\prime}, \omega^{\prime \prime} \in \operatorname{Käh}(X)$ satisfying $\omega^{\prime \prime} \geq \omega^{\prime}$, we have

$$
P_{\theta+\omega+\omega^{\prime \prime}}\left[\Gamma^{\omega, \omega^{\prime}}\right]_{I}=\Gamma^{\omega, \omega^{\prime \prime}}
$$

(3) for each $\omega, \omega^{\prime}, \omega^{\prime \prime} \in \operatorname{Käh}(X)$ satisfying $\omega \leq \omega^{\prime}$, we have

$$
P_{\theta+\omega^{\prime}+\omega^{\prime \prime}}\left[\Gamma^{\omega, \omega^{\prime \prime}}\right]_{I}=\Gamma^{\omega^{\prime}, \omega^{\prime \prime}}
$$

The preimage of such an object is given by the family $\left(\Gamma^{\omega}\right)_{\omega \in K a ̈ h(X)}$ given by

$$
\Gamma^{\omega}=\Gamma^{\omega / 2, \omega / 2}
$$

The fact that the image of Γ is as expected is a tautology, which we leave to the readers.

With an almost identical argument involving Proposition 3.1.8, we get
Proposition 13.1.5 The maps $P_{\theta+\omega}[\bullet]_{I}$ in Definition 13.1.4 and the injective maps Proposition 13.1.2 together induce bijections

$$
\begin{equation*}
\operatorname{PSH}^{\mathrm{NA}}(X, \theta) \underset{\omega}{\sim} \underset{\omega}{\lim } \operatorname{PSH}^{\mathrm{NA}}(X, \theta+\omega)_{>0} \xrightarrow{\sim} \underset{\omega}{\lim _{\omega}} \operatorname{PSH}^{\mathrm{NA}}(X, \theta+\omega), \tag{13.3}
\end{equation*}
$$

where ω runs over either the partially ordered set of all smooth closed real positive (1,1)-forms with positive volume on X or $\operatorname{Käh}(X)$.

Corollary 13.1.1 Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism from a compact Kähler manifold Y. Then π^{*} induces a bijection

$$
\operatorname{PSH}^{\mathrm{NA}}(X, \theta) \xrightarrow{\sim} \operatorname{PSH}^{\mathrm{NA}}\left(Y, \pi^{*} \theta\right) .
$$

Proof This follows immediately from Proposition 13.1.5.
It is immediate to verify that π^{*} in Corollary 13.1.1 extends the map Proposition 9.3.3.

13.2 Operations on non-Archimedean metrics

Let X be a connected compact Kähler manifold of dimension n and $\theta, \theta^{\prime}, \theta^{\prime \prime}$ be closed real smooth $(1,1)$-forms on X representing big cohomology classes.

Definition 13.2.1 Let $\Gamma, \Gamma^{\prime} \in \operatorname{PSH}^{N A}(X, \theta)$. We say $\Gamma \leq \Gamma^{\prime}$ if $\Gamma_{\max } \leq \Gamma_{\max }^{\prime}$ and for some $\omega \in \operatorname{Käh}(X)$, we have

$$
P_{\theta+\omega}[\Gamma]_{I} \geq P_{\theta+\omega}\left[\Gamma^{\prime}\right]_{I}
$$

This notion is independent of the choice of ω thanks to (9.13).
Moreover, we have the following:
Proposition 13.2.1 Let $\Gamma, \Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ and ω be a closed smooth positive $(1,1)$-form on X, then the following are equivalent:
(1) $\Gamma \leq \Gamma^{\prime}$;
(2) $P_{\theta+\omega}[\Gamma]_{I} \leq P_{\theta+\omega}\left[\Gamma^{\prime}\right]_{I}$.

Proof This follows immediately from (9.13).
Observe that this definition coincides with the corresponding definition in Definition 9.4.1 when $\Gamma, \Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$.
def: sumNAmetrics
Definition 13.2.2 Let $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ and $\Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}\left(X, \theta^{\prime}\right)$. Then we define $\Gamma+\Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}\left(X, \theta+\theta^{\prime}\right)$ as the unique element such that for any $\omega \in \operatorname{Käh}(X)$, we have

$$
P_{\theta+\omega}\left[\Gamma+\Gamma^{\prime}\right]_{I}=P_{\theta+\omega}[\Gamma]_{I}+P_{\theta+\omega}\left[\Gamma^{\prime}\right]_{I}
$$

This definition yields an element in $\operatorname{PSH}^{\mathrm{NA}}\left(X, \theta+\theta^{\prime}\right)$ by Lemma 9.4.3.
Proposition 13.2.2 Let $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ and $\Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}\left(X, \theta^{\prime}\right)$. Suppose that ω, ω^{\prime} are two smooth closed positive $(1,1)$-forms on X. Then

$$
P_{\theta+\omega+\theta^{\prime}+\omega^{\prime}}\left[\Gamma+\Gamma^{\prime}\right]_{I}=P_{\theta+\omega}[\Gamma]_{I}+P_{\theta^{\prime}+\omega^{\prime}}\left[\Gamma^{\prime}\right]_{I}
$$

Proof This is a direct consequence of Lemma 9.4.3.
Proposition 13.2.3 The operation + is commutative and associative: for any $\Gamma \in$ $\operatorname{PSH}^{\mathrm{NA}}(X, \theta), \Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}\left(X, \theta^{\prime}\right)$ and $\Gamma^{\prime \prime} \in \operatorname{PSH}^{\mathrm{NA}}\left(X, \theta^{\prime \prime}\right)$, we have

$$
\Gamma+\Gamma^{\prime}=\Gamma^{\prime}+\Gamma, \quad\left(\Gamma+\Gamma^{\prime}\right)+\Gamma^{\prime \prime}=\Gamma+\left(\Gamma^{\prime}+\Gamma^{\prime \prime}\right) .
$$

Proof This is a direct consequence of Proposition 9.4.1.
Definition 13.2.3 Let $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ and $C \in \mathbb{R}$. We define $\Gamma+C \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ as the unique element such that for any $\omega \in \operatorname{Käh}(X)$, we have

$$
P_{\theta+\omega}[\Gamma+C]=P_{\theta+\omega}[\Gamma]+C .
$$

It is obvious from Definition 9.4.3 that $\Gamma+C \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$. It is also obvious that this definition extends Definition 9.4.3.

Proposition 13.2.4 Let $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ and $C \in \mathbb{R}$. Suppose that ω is a smooth closed positive $(1,1)$-form on X. Then

$$
P_{\theta+\omega}[\Gamma]_{I}+C=P_{\theta+\omega}[\Gamma+C]_{I} .
$$

Proof This is clear by definition.
Proposition 13.2.5 Let $\Gamma \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta)$, $\Gamma \in \mathrm{PSH}^{\mathrm{NA}}\left(X, \theta^{\prime}\right)$ and $C, C^{\prime} \in \mathbb{R}$, then
(1) $\left(\Gamma+\Gamma^{\prime}\right)+C=\Gamma+\left(\Gamma^{\prime}+C\right)=(\Gamma+C)+\Gamma^{\prime}$;
(2) $\Gamma+\left(C+C^{\prime}\right)=(\Gamma+C)+C^{\prime}$.

Proof This is a direct consequence of Proposition 9.4.2.
Definition 13.2.4 Let $\Gamma, \Gamma^{\prime} \in \operatorname{PSH}^{N A}(X, \theta)$, we define $\Gamma \vee \Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ as the unique element such that for any $\omega \in \operatorname{Käh}(X)$, we have

$$
P_{\theta+\omega}\left[\Gamma \vee \Gamma^{\prime}\right]_{I}=P_{\theta+\omega}[\Gamma]_{I} \vee P_{\theta+\omega}\left[\Gamma^{\prime}\right]_{I} .
$$

It follows from Lemma 9.4.5 that $\Gamma \vee \Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ and this definition extends the corresponding definition in Definition 9.4.4.

Proposition 13.2.6 Let $\Gamma, \Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ and ω be a closed smooth positive $(1,1)$-form on X. Then

$$
P_{\theta+\omega}\left[\Gamma \vee \Gamma^{\prime}\right]_{I}=P_{\theta+\omega}[\Gamma]_{I} \vee P_{\theta+\omega}\left[\Gamma^{\prime}\right]_{I}
$$

Proof This is a direct consequence of Lemma 9.4.5.
Proposition 13.2.7 The operation \vee is commutative and associative.
In particular, given a finite non-empty family $\left(\Gamma^{i}\right)_{i \in I}$ in $\operatorname{PSH}^{\mathrm{NA}}(X, \theta)$, we then define $\bigvee_{i \in I} \Gamma^{i}$ in the obvious way.

Proof This is a direct consequence of Corollary 9.4.1.
Definition 13.2.5 Let $\left(\Gamma^{i}\right)_{i \in I}$ be a non-empty family in $\operatorname{PSH}^{\mathrm{NA}}(X, \theta)$. Assume that

$$
\begin{equation*}
\sup _{i \in I} \Gamma_{\max }^{i}<\infty \tag{13.4}
\end{equation*}
$$

\{eq:supPSHNAmaxfinite\}

Then we define $\sup _{i \in I}^{*} \Gamma^{i} \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ as the unique element such that for any $\omega \in \operatorname{Käh}(X)$, we have

$$
P_{\theta+\omega}\left[\sup _{i \in I} \Gamma^{i}\right]=\sup _{i \in I} * P_{\theta+\omega}\left[\Gamma^{i}\right] .
$$

It follows immediately from Lemma 9.4.7 that $\sup _{i \in I}^{*} \Gamma^{i} \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ and this definition extends Definition 9.4.6. Moreover, this definition clearly extends Definition 13.2.4 as well.

Proposition 13.2.8 Let $\left(\Gamma^{i}\right)_{i \in I}$ be a non-empty in $\operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ satisfying (13.4). Assume that ω is a closed smooth positive $(1,1)$-form on X. Then

$$
P_{\theta+\omega}\left[\sup _{i \in I} \Gamma^{i}\right]=\sup _{i \in I} P_{\theta+\omega}\left[\Gamma^{i}\right]
$$

Proof This is a direct consequence of Lemma 9.4.7.
Proposition 13.2.9 Let $\left(\Gamma^{i}\right)_{i \in I}$ be a non-empty in $\operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ satisfying (13.4). Then there exists a countable subfamily $I^{\prime} \subseteq I$ such that

$$
\sup _{i \in I}^{*} \Gamma^{i}=\sup _{i \in I^{\prime}}{ }^{\prime} \Gamma^{i}
$$

Proof For any fixed $\omega \in \operatorname{Käh}(X)$, thanks to Proposition 9.4.5, we could find a countable subfamily $I^{\prime} \subseteq I$ such that

$$
\sup _{i \in I}^{*} P_{\theta+\omega}\left[\Gamma^{i}\right]_{I}=\sup _{i \in I^{\prime}} P_{\theta+\omega}\left[\Gamma^{i}\right]_{I} .
$$

It suffices to show that for any other $\omega^{\prime} \in \operatorname{Käh}(X)$, we have

$$
\sup _{i \in I}^{*} P_{\theta+\omega^{\prime}}\left[\Gamma^{i}\right]_{I}=\sup _{i \in I^{\prime}}^{*} P_{\theta+\omega^{\prime}}\left[\Gamma^{i}\right]_{I} .
$$

This is an immediate consequence of Proposition 6.1.6.
prop: supGammiotherprop2
Proposition 13.2.10 Let $\left(\Gamma^{i}\right)_{i \in I}$ be a non-empty family in $\operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ satisfying (13.4). Let $C \in \mathbb{R}$. Then

$$
\sup _{i \in I}^{*}\left(\Gamma^{i}+C\right)=\sup _{i \in I} * \Gamma^{i}+C
$$

Suppose that $\left(\Gamma^{\prime i}\right)_{i \in I}$ is another family in $\operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ satisfying (13.4). Suppose that $\Gamma^{i} \leq \Gamma^{\prime i}$ for all $i \in I$, then

$$
\sup _{i \in I}^{*} \Gamma^{i} \leq \sup _{i \in I}^{*} \Gamma^{i}
$$

Proof This is an immediate consequence of Proposition 9.4.6.
Definition 13.2.6 Let $\left(\Gamma_{i}\right)_{i \in I}$ be a decreasing net in $\operatorname{PSH}^{\mathrm{NA}}(X, \theta)$. Assume that

$$
\begin{equation*}
\inf _{i \in I} \Gamma_{i, \max }>-\infty \tag{13.5}
\end{equation*}
$$

\{eq:decnetcontition\}
then we define $\inf _{i \in I} \Gamma_{i} \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ as the unique element such that for each $\omega \in \operatorname{Käh}(X)$, the component

$$
P_{\theta+\omega}\left[\inf _{i \in I} \Gamma_{i}\right]_{I} \in \mathrm{PSH}^{\mathrm{NA}}(X, \theta+\omega)_{>0}
$$

is defined as follows:
(1) We set

$$
\left(P_{\theta+\omega}\left[\inf _{i \in I} \Gamma_{i}\right]_{I}\right)_{\max }=\inf _{i \in I} \Gamma_{i, \max }
$$

(2) for any $\tau<\inf _{i \in I} \Gamma_{i, \text { max }}$, we define

$$
\begin{equation*}
\left(P_{\theta+\omega}\left[\inf _{i \in I} \Gamma_{i}\right]_{I}\right)_{\tau}=\inf _{i \in I} P_{\theta+\omega}\left[\Gamma_{i, \tau}\right]_{I} . \tag{13.6}
\end{equation*}
$$

\{eq: decnettestcurdef\}

We observe that

$$
P_{\theta+\omega}\left[\inf _{i \in I} \Gamma_{i}\right]_{I} \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta+\omega)_{>0}
$$

This follows from Proposition 3.2.11. Now it is clear that $\inf _{i \in I} \Gamma_{i} \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$.
Proposition 13.2.11 Let $\left(\Gamma^{i}\right)_{i \in I}$ be a decreasing net in $\operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ satisfying (13.5). Let $C \in \mathbb{R}$. Then

$$
\inf _{i \in I}\left(\Gamma^{i}+C\right)=\inf _{i \in I} \Gamma^{i}+C
$$

Suppose that $\left(\Gamma^{\prime i}\right)_{i \in I}$ is another decreasing net in $\operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ satisfying (13.5). Suppose that $\Gamma^{i} \leq \Gamma^{\prime i}$ for all $i \in I$, then

$$
\inf _{i \in I} \Gamma^{i} \leq \inf _{i \in I} \Gamma^{i}
$$

Proof This is clear by definition.
Definition 13.2.7 Let $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ and $\lambda \in \mathbb{R}_{>0}$, then we define $\lambda \Gamma \in$ $\operatorname{PSH}^{\mathrm{NA}}(X, \lambda \theta)$ as the unique element such that for any $\omega \in \operatorname{Käh}(X)$, we have

$$
P_{\lambda \theta+\omega}[\lambda \Gamma]_{I}=\lambda P_{\theta+\lambda^{-1} \omega}[\Gamma]_{I}
$$

It follows immediately from Lemma 9.4.8 that $\lambda \Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \lambda \theta)$ and this definition extends Definition 9.4.7.

Proposition 13.2.12 Let $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ and $\lambda \in \mathbb{R}_{>0}$. Then for any closed smooth positive $(1,1)$-form ω on X, we have

$$
P_{\lambda \theta+\omega}[\lambda \Gamma]_{I}=\lambda P_{\theta+\lambda^{-1} \omega}[\Gamma]_{I} .
$$

Proof This follows immediately from Lemma 9.4.8.
Proposition 13.2.13 Let $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta), \Gamma^{\prime} \in \operatorname{PSH}^{\mathrm{NA}}\left(X, \theta^{\prime}\right), C \in \mathbb{R}$ and $\lambda, \lambda^{\prime}>$ 0, we have

$$
\begin{aligned}
\lambda\left(\Gamma+\Gamma^{\prime}\right) & =\lambda \Gamma+\lambda \Gamma^{\prime}, \\
\left(\lambda \lambda^{\prime}\right) \Gamma & =\lambda\left(\lambda^{\prime} \Gamma\right), \\
\lambda(\Gamma+C) & =\lambda \Gamma+\lambda C .
\end{aligned}
$$

Suppose that $\left(\Gamma^{i}\right)_{i \in I}$ is a non-empty family in $\operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ satisfying (13.4), then

$$
\lambda\left(\sup _{i \in I}^{*} \Gamma^{i}\right)=\sup _{i \in I}^{*}\left(\lambda \Gamma^{i}\right)
$$

If $\left(\Gamma^{i}\right)_{i \in I}$ is a decreasing net in $\mathrm{PSH}^{\mathrm{NA}}(X, \theta)$ satisfying (13.5), then

$$
\lambda\left(\inf _{i \in I} \Gamma^{i}\right)=\inf _{i \in I}\left(\lambda \Gamma^{i}\right) .
$$

Proof Everything except the last assertion follows from Proposition 9.4.8. The last assertion is obvious by definition.

Definition 13.2.8 Let $\Gamma \in \operatorname{PSH}^{N A}(X, \theta)$. Let $Y \subseteq X$ be an irreducible analytic subset. We say that the trace operator of Γ along Y is well-defined if

$$
v\left(P_{\theta+\omega^{\prime \prime}}\left[\Gamma_{\tau}\right]_{I}, Y\right)=0
$$

for small enough τ and any $\omega^{\prime \prime} \in \operatorname{Käh}(X)$. We define

$$
\left(\operatorname{Tr}_{Y}(\Gamma)\right)_{\max }:=\sup \left\{\tau<\Gamma_{\max }: v\left(P_{\theta+\omega^{\prime \prime}}\left[\Gamma_{\tau}\right]_{I}, Y\right)=0\right\}
$$

In this case, we define $\operatorname{Tr}_{Y}(\Gamma) \in \operatorname{PSH}^{\mathrm{NA}}\left(\tilde{Y},\left.\theta\right|_{\tilde{Y}}\right)$ as the unique element such that for any $\omega \in \operatorname{Käh}(\tilde{Y})$, the component

$$
P_{\left.\theta\right|_{\tilde{Y}}+\omega}\left[\operatorname{Tr}_{Y}(\Gamma)\right]_{I} \in \operatorname{PSH}^{\mathrm{NA}}\left(Y,\left.\theta\right|_{\tilde{Y}}+\omega\right)_{>0}
$$

is defined as follows:
(1) We let

$$
\begin{equation*}
\left(P_{\left.\theta\right|_{\tilde{Y}}+\omega}\left[\operatorname{Tr}_{Y}(\Gamma)\right]_{I}\right)_{\max }=\left(\operatorname{Tr}_{Y}(\Gamma)\right)_{\max } \tag{13.7}
\end{equation*}
$$

(2) for each $\tau \in \mathbb{R}$ less than the common value (13.7), we define

$$
P_{\left.\theta\right|_{\tilde{Y}}+\omega}\left[\operatorname{Tr}_{Y}(\Gamma)\right]_{I, \tau}:=P_{\left.\theta\right|_{\tilde{Y}}+\omega}\left[\operatorname{Tr}_{Y}^{\theta+\tilde{\omega}}\left(P_{\theta+\tilde{\omega}}[\Gamma]_{I, \tau}\right)\right],
$$

where $\tilde{\omega}$ is an arbitrary Kähler form on X such that $\omega \geq\left.\tilde{\omega}\right|_{\tilde{Y}}$.
It follows from ${ }_{[G K 20}^{\text {GK2 }} 20$, Proposition 3.5] that \tilde{Y} is a normal Kähler space. We observe that the choice of the trace operator $\operatorname{Tr}_{Y}^{\theta+\tilde{\omega}}\left(P_{\theta+\tilde{\omega}}[\Gamma]_{I, \tau}\right)$ is irrelevant since two different choice are \mathcal{I}-equivalent. Moreover,

$$
\left(P_{\left.\theta\right|_{\tilde{Y}}+\omega}\left[\operatorname{Tr}_{Y}(\Gamma)\right]_{I}\right)_{\tau}
$$

is I-model by Proposition 8.1.2.
Furthermore,

$$
P_{\left.\theta\right|_{\tilde{Y}}+\omega}\left[\operatorname{Tr}_{Y}(\Gamma)\right]_{I} \in \operatorname{PSH}^{\mathrm{NA}}\left(Y,\left.\theta\right|_{\tilde{Y}}+\omega\right)_{>0}
$$

is a consequence of Proposition 8.2.1. It is therefore clear that $\operatorname{Tr}_{Y}(\Gamma) \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$.
Proposition 13.2.14 Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism from a compact Kähler manifold Y. Then all definitions in this section are invariant under pulling-back to Y.

The meaning is clear in most cases. In the case of the trace operator, this means the following: suppose that $Z \subseteq X$ is an analytic subset and $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)$ has non-trivial restriction to Z. Suppose that Z is not contained in the non-isomorphism locus of π so that the strict transform W of Z is defined. If we write Π : $W \rightarrow Z$ for the restriction of π and $\tilde{\Pi}: \tilde{W} \rightarrow \tilde{Z}$ the strict transform of Π, then we have

$$
\tilde{\Pi}^{*} \operatorname{Tr}_{Z}(\Gamma)=\operatorname{Tr}_{W}\left(\pi^{*} \Gamma\right) .
$$

Proof We only prove the assertion for the trace operator, as the other proofs are similar.

We shall use the notations above. Observe that for any closed positive smooth $(1,1)$-form on X with positive mass, we have

$$
\left(\tilde{\Pi}^{*} \operatorname{Tr}_{Z}(\Gamma)\right)_{\max }=\left(\operatorname{Tr}_{Z}(\Gamma)\right)_{\max }=\sup \left\{\tau<\Gamma_{\max }: v\left(P_{\theta+\omega}\left[\Gamma_{\tau}\right]_{I}, Z\right)=0\right\}
$$

and

$$
\begin{aligned}
\left(\operatorname{Tr}_{W}\left(\pi^{*} \Gamma\right)\right)_{\max } & =\sup \left\{\tau<\Gamma_{\max }: v\left(P_{\pi^{*} \theta+\pi^{*} \omega}\left[\pi^{*} \Gamma_{\tau}\right]_{I}, W\right)=0\right\} \\
& =\sup \left\{\tau<\Gamma_{\max }: v\left(\pi^{*} P_{\theta+\omega}\left[\Gamma_{\tau}\right]_{I}, W\right)=0\right\} \\
& =\sup \left\{\tau<\Gamma_{\max }: v\left(P_{\theta+\omega}\left[\Gamma_{\tau}\right]_{I}, Z\right)=0\right\} .
\end{aligned}
$$

Here we applied implicitly Proposition 13.1.5. Therefore,

$$
\left(\tilde{\Pi}^{*} \operatorname{Tr}_{Z}(\Gamma)\right)_{\max }=\left(\operatorname{Tr}_{W}\left(\pi^{*} \Gamma\right)\right)_{\max }
$$

Let $\tau \in \mathbb{R}$ be less than this common value. Take a closed smooth Kähler form ω (resp. ω^{\prime}) on \tilde{Z} (resp. \tilde{W}) with positive mass. We may assume that $\omega^{\prime} \geq \tilde{\Pi}^{*} \omega$. Take a Kähler form $\tilde{\omega}$ on Y (resp. $\tilde{\omega}^{\prime}$ on X) such that

$$
\omega^{\prime} \geq\left.\tilde{\omega}^{\prime}\right|_{\tilde{W}}, \quad \omega \geq\left.\tilde{\omega}\right|_{\tilde{Z}}
$$

Without loss of generality, we may assume that

$$
\tilde{\omega}^{\prime} \geq \pi^{*} \tilde{\omega}
$$

It suffices to show that

$$
\operatorname{Tr}_{W}^{\pi^{*} \theta+\tilde{\omega}^{\prime}}\left(P_{\pi^{*} \theta+\tilde{\omega}^{\prime}}\left[\pi^{*} \Gamma\right]_{I, \tau}\right) \sim_{P} \tilde{\Pi}^{*} \operatorname{Tr}_{Z}^{\theta+\tilde{\omega}}\left[P_{\theta+\tilde{\omega}}[\Gamma]_{I, \tau}\right]
$$

Using Proposition 8.2.1, this is equivalent to

$$
\operatorname{Tr}_{W}\left(P_{\pi^{*} \theta+\pi^{*} \omega}\left[\pi^{*} \Gamma\right]_{I, \tau}\right) \sim_{P} \tilde{\Pi}^{*} \operatorname{Tr}_{Z}\left[P_{\theta+\tilde{\omega}}[\Gamma]_{I, \tau}\right]
$$

This is a consequence of Lemma 8.2.1.

13.3 Duistermaat-Heckman measures

Let X be a connected compact Kähler manifold of dimension n and θ be a closed real smooth (1,1)-form on X representing a big cohomology class.
def: DHm Definition 13.3.1 Assume that X admits a smooth flag Y_{\bullet}. Let $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$. The Duistermaat-Heckman measure $\mathrm{DH}(\Gamma)$ of an element $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$ is defined as

$$
\mathrm{DH}(\Gamma):=n!\cdot \mathrm{DH}\left(\Delta_{Y_{\bullet}}(\theta, \Gamma)\right) .
$$

Recall that $\Delta_{Y_{\mathbf{0}}}(\theta, \Gamma) \in \operatorname{TC}\left(\Delta_{Y_{\mathbf{0}}}\left(\theta, \Gamma_{-\infty}\right)\right)$ is defined in Theorem 10.4.2. See Definition 10.4.4 for the definition of the Duistermaat-Heckman measure of an Okounkov test curve..

Theorem 13.3.1 The Duistermaat-Heckman measure $\mathrm{DH}(\Gamma)$ of $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$ in Definition 13.3.1 is independent of the choice of the smooth flag $Y_{\text {. }}$. Furthermore, for any $m \in \mathbb{Z}_{>0}$, the m-th moment of $\mathrm{DH}(\Gamma)$ is given by

$$
\begin{equation*}
\int_{\mathbb{R}} x^{m} \mathrm{DH}(\Gamma)(x)=\Gamma_{\max }^{m} \operatorname{vol} \Gamma+m \int_{-\infty}^{\Gamma_{\max }} \tau^{m-1}\left(\operatorname{vol}\left(\theta+\mathrm{dd}^{\mathrm{c}} \Gamma_{\tau}\right)-\operatorname{vol} \Gamma\right) \mathrm{d} \tau \tag{13.8}
\end{equation*}
$$

if $m>0$ and

$$
\begin{equation*}
\int_{\mathbb{R}} \mathrm{DH}(\Gamma)=\operatorname{vol} \Gamma \tag{13.9}
\end{equation*}
$$

Proof Assume furthermore that Γ is bounded, we observe that the moments of the random variable $G\left[\Delta_{Y_{\mathbf{\bullet}}}(\theta, \Gamma)\right]$ as computed in Proposition 10.4.4 are independent of the choice of the flag: In fact, they are given by (13.8) and (13.9) thanks to Theorem 10.3.2(1). Since the Duistermaat-Heckman measure has bounded support in this case (c.f. Theorem 10.4.1), we conclude that $\mathrm{DH}(\Gamma)$ is uniquely determined.

In general, Γ is the decreasing limit of the sequence $\Gamma \vee \Gamma^{k}$ as $k \rightarrow \infty$, where $\Gamma^{k}:(-\infty,-k) \rightarrow \operatorname{PSH}(X, \theta)$ takes the constant value $\Gamma_{-\infty}$. It follows from the argument of Theorem 9.2 .1 that $\Delta_{Y_{\bullet}}(\Gamma)_{\tau}$ is the decreasing limit of $\Delta_{Y_{\boldsymbol{*}}}\left(\Gamma \vee \Gamma^{k}\right)_{\tau}$ for any $\tau<\Gamma_{\max }$. So $\mathrm{DH}\left(\Gamma \vee \Gamma^{k}\right) \rightharpoonup \mathrm{DH}(\Gamma)$ by Lemma 10.4.2. It follows that $\mathrm{DH}(\Gamma)$ is independent of the choice of the flag.

More generally, when X does not admit a smooth flag, we could make a modification $\pi: Y \rightarrow X$ so that Y admits a flag. We define

$$
\begin{equation*}
\mathrm{DH}(\Gamma):=\mathrm{DH}\left(\pi^{*} \Gamma\right) . \tag{13.10}
\end{equation*}
$$

It follows from Theorem 10.3.2(5) that this measure is independent of the choice of π.
Proposition 13.3.1 Let $\left(\Gamma^{i}\right)_{i \in I}$ be a net in $\operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$ and $\Gamma \in \operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0}$. Assume one of the following conditions holds:
(1) The net $\left(\Gamma^{i}\right)_{i \in I}$ is decreasing and $\Gamma=\inf _{i \in I} \Gamma^{i}$. Assume that

$$
\operatorname{vol} \Gamma=\lim _{i \in I} \operatorname{vol} \Gamma^{i}
$$

(2) The net $\left(\Gamma^{i}\right)_{i \in I}$ is increasing and $\Gamma=\sup _{i \in I}^{*} \Gamma^{i}$.

Then

$$
\begin{equation*}
\mathrm{DH}\left(\Gamma^{i}\right) \rightharpoonup \mathrm{DH}(\Gamma) \tag{13.11}
\end{equation*}
$$

Proof We may assume that X admits a smooth flag Y_{\bullet}.
Assume (1). We want to derive (13.11) from Proposition 10.4.2. It boils down to prove the following: for any $\tau<\Gamma_{\text {max }}$, we have

$$
\Delta_{Y_{\bullet}}\left(\theta, \Gamma_{\tau}^{i}\right) \xrightarrow{d_{\text {Haus }}} \Delta_{Y_{\bullet}}\left(\theta, \Gamma_{\tau}\right)
$$

This follows immediately from Theorem 10.3.2(1).
The proof under the assumption (2) is similar. We only need to apply Proposition 10.4.3 instead of Proposition 10.4.2.

Chapter 14
 Partial Bergman kernels

chap:Berg
In this chapter, we prove the convergence of the partial Bergman kernels.

14.1 Partial envelopes

In this section, let X be a connected compact Kähler manifold of dimension n and $K \subseteq X$ be a closed non-pluripolar set. Let θ be a smooth closed real $(1,1)$-form on X representing a pseudoeffective cohomology class. Fix $\varphi \in \operatorname{PSH}(X, \theta)$.

Definition 14.1.1 Given a function $v: K \rightarrow[-\infty, \infty)$, we introduce the relative P-envelope of φ (with respect to K, v, θ) as

$$
\begin{equation*}
P_{\theta, K}[\varphi](v):=\sup ^{*}\left\{\eta \in \operatorname{PSH}(X, \theta):\left.\eta\right|_{K} \leq v \text { and } \eta \leq \varphi\right\} . \tag{14.1}
\end{equation*}
$$

Similarly, we define the relative I-envelope of φ (with respect to K, v, θ) as

$$
\begin{equation*}
P_{\theta, K}[\varphi]_{I}(v):=\sup ^{*}\left\{\eta \in \operatorname{PSH}(X, \theta):\left.\eta\right|_{K} \leq v \text { and } \eta \leq_{I} \varphi\right\} \tag{14.2}
\end{equation*}
$$

Observe that when v is bounded, we neither envelope is identically $-\infty$. When $K=X$ and $v=0$, these definitions reduce to the usual P-envelope and I-envelope of φ.

It would be helpful to consider the following auxiliary functions:

$$
\begin{aligned}
P_{\theta, K}^{\prime}[\varphi](v) & :=\sup \left\{\eta \in \operatorname{PSH}(X, \theta):\left.\eta\right|_{K} \leq v \text { and } \eta \leq \varphi\right\}, \\
P_{\theta, K}^{\prime}[\varphi]_{I}(v) & :=\sup \left\{\eta \in \operatorname{PSH}(X, \theta):\left.\eta\right|_{K} \leq v \text { and } \eta \leq_{\mathcal{I}} \varphi\right\} .
\end{aligned}
$$

We note the following maximum principles, that follow from the above definitions:

Lemma 14.1.1 Let $v \in C^{0}(K)$. Let $\eta \in \operatorname{PSH}(X, \theta)$. Assume that $\eta \leq \varphi$, then

$$
\sup _{K}(\eta-v)=\sup _{\{\eta \neq-\infty\}}\left(\eta-P_{\theta, K}^{\prime}[\varphi](v)\right)=\sup _{\left\{P_{\theta, K}^{\prime}[\varphi](v) \neq-\infty\right\}}\left(\eta-P_{\theta, K}^{\prime}[\varphi](v)\right) .
$$

Proof We prove the first equality at first. We write $S=\{\eta=-\infty\}$.
By definition, $\left.P_{\theta, K}^{\prime}[\varphi](v)\right|_{K} \leq v$, so

$$
\left.\left(h-P_{\theta, K}^{\prime}[\varphi](v)\right)\right|_{K \backslash S} \geq\left.\eta\right|_{K \backslash S}-\left.v\right|_{K \backslash S}
$$

This implies that

$$
\sup _{K}(\eta-v) \leq \sup _{X \backslash S}\left(\eta-P_{\theta, K}^{\prime}[\varphi](v)\right) .
$$

Conversely, observe that $\sup _{K}(\eta-v)>-\infty$ as K is non-pluripolar. Let $\eta^{\prime}:=$ $\eta-\sup _{K}(\eta-v)$, then η^{\prime} is a candidate in the definition of $P_{\theta, K}^{\prime}[\varphi](v)$, hence $\eta^{\prime} \leq P_{\theta, K}^{\prime}[\varphi](v)$, namely,

$$
\eta-\sup _{K}(\eta-v) \leq P_{\theta, K}^{\prime}[\varphi](v),
$$

the latter implies that

$$
\sup _{K}(\eta-v) \geq \sup _{X \backslash S}\left(\eta-P_{\theta, K}^{\prime}[\varphi](v)\right),
$$

finishing the proof of the first identity.
We have $\left\{P_{\theta, K}^{\prime}[\varphi](v)=-\infty\right\} \subseteq S$, and we notice that points in $S \backslash\left\{P_{\theta, K}^{\prime}[\varphi](v)=\right.$ $-\infty\}$ do not contribute to the supremum of $\eta-P_{\theta, K}^{\prime}[\varphi](v)$ on $X \backslash\left\{P_{\theta, K}^{\prime}[\varphi](v)=-\infty\right\}$, hence the last equality of (14.3) also follows.

Next, we make the following observations about the singularity types of our envelopes:

Lemma 14.1.2 For any $v \in C^{0}(K)$ we have

$$
P_{\theta, K}[\varphi](v) \sim P_{\theta}[\varphi], \quad P_{\theta, K}[\varphi]_{I}(v) \sim P_{\theta}[\varphi]_{I} .
$$

If φ has analytic singularities, we have

$$
\begin{equation*}
P_{\theta, K}[\varphi](v)=P_{\theta, K}[\varphi]_{I}(v) \tag{14.4}
\end{equation*}
$$

\{eq:relativePandPIana\}
Proof Let $C>0$ such that $-C \leq v \leq C$. Then

$$
P_{\theta}[\varphi]-C \leq P_{\theta, K}[\varphi](v) .
$$

Since K is non-pluripolar, for $\eta \in \operatorname{PSH}\left(X_{C \in Q}\right)_{\sim}$ the condition $\left.\eta\right|_{K} \leq v \leq C$ implies that $\eta \leq \tilde{C}$ on X for some $\tilde{C}:=\tilde{C}(C, K)>0\{[G Z 07$, Corollary 4.3]. This implies that

$$
P_{\theta, K}[\varphi](v) \leq P_{\theta}[\varphi]+\tilde{C},
$$

giving

$$
P_{\theta, K}[\varphi](v) \sim P_{\theta}[\varphi] .
$$

The exact same argument applies in case of the relative I-envelope.
Next assume that φ has analytic singularities, then we have that

$$
\varphi \sim P_{\theta}[\varphi]_{I}
$$

by Proposition 3.2.9. In particular, for $\eta \in \operatorname{PSH}(X, \theta), \eta \leq \varphi$ if and only if $\eta \leq P_{\theta}[\varphi]_{I}$. So (14.4) follows.

Corollary 14.1.1 Let $v \in C^{0}(X)$. Then

$$
P_{\theta, K}[\varphi]_{I}(v)=P_{\theta, X}\left[P_{\theta, K}[\varphi]_{I}(v)\right]_{I}(v)
$$

Proof By definition, we have

$$
\begin{aligned}
& P_{\theta, X}\left[P_{\theta, K}[\varphi]_{I}(v)\right]_{I}(v) \\
= & \sup ^{*}\left\{\eta \in \operatorname{PSH}(X, \theta):\left.\eta\right|_{K} \leq v, \eta \leq_{I} P_{\theta, K}[\varphi]_{I}(v)\right\} \\
= & \sup ^{*}\left\{\eta \in \operatorname{PSH}(X, \theta):\left.\eta\right|_{K} \leq v, \eta \leq_{I} \varphi\right\} \\
= & P_{\theta, K}[\varphi]_{I}(v),
\end{aligned}
$$

where we applied Lemma 14.1.2 on the thrid line.
lma:PKoutsidepps
Lemma 14.1.3 Assume that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$. Let $v \in C^{0}(K)$. Let $S \subseteq X$ be a pluripolar set and $\eta \in \operatorname{PSH}(X, \theta)_{>0}$ with $\eta \leq \varphi$. Assume that $\left.\eta\right|_{K \backslash S} \leq\left. v\right|_{K \backslash S}$, then $\eta \leq P_{\theta, K}[\varphi](v)$.

Proof By Theorem 1.1.5, there is $\chi \in \operatorname{PSH}(X, \theta)$, such that $\left.\chi\right|_{S} \equiv-\infty$. We claim that we can choose χ so that

$$
\chi \leq \eta
$$

In fact, since $\int_{X} \theta_{\eta}^{n}>0$, fixing some χ and $\epsilon \in(0,1)$ small enough, we have

$$
\int_{X} \theta_{\epsilon \mathcal{X}+(1-\epsilon) V_{\theta}}^{n}+\int_{X} \theta_{\eta}^{n}>\int_{X} \theta_{V_{\theta}}^{n}
$$

Thus, by Proposition 3.1.1, we have

$$
\left(\epsilon \chi+(1-\epsilon) V_{\theta}\right) \wedge \eta \in \operatorname{PSH}(X, \theta)
$$

It suffices to replace χ by $\left(\epsilon \chi+(1-\epsilon) V_{\theta}\right) \wedge \eta$.
Fix $\chi \leq \eta$ as above. For any $\delta \in(0,1)$, we have

$$
\left.(1-\delta) \eta\right|_{K}+\left.\delta \chi\right|_{K} \leq v, \quad(1-\delta) \eta+\delta \chi \leq \varphi
$$

Hence,

$$
(1-\delta) \eta+\delta \chi \leq P_{\theta, K}[\varphi](v)
$$

Letting $\delta \rightarrow 0+$, we conclude that $\eta \leq P_{\theta, K}[\varphi](v)$.
cor: PKtoPX
Corollary 14.1.2 Assume that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$. Let $v \in C^{0}(K)$. Then

$$
P_{\theta, K}[\varphi](v)=P_{\theta, X}[\varphi]\left(P_{\theta, K}\left[V_{\theta}\right](v)\right) .
$$

Proof It is clear that

$$
P_{\theta, K}[\varphi](v) \leq P_{\theta, X}[\varphi]\left(P_{\theta, K}\left[V_{\theta}\right](v)\right)
$$

For the reverse direction, it suffices to prove that any $\eta \in \operatorname{PSH}(X, \theta)$ such that

$$
\eta \leq \varphi, \quad \eta \leq P_{\theta, K}\left[V_{\theta}\right](v)
$$

we have

$$
\begin{equation*}
\eta \leq P_{\theta, K}[\varphi](v) \tag{14.5}
\end{equation*}
$$

\{eq: etaleqPthetaKtemp1\}
As φ has positive mass, we can assume that η has positive mass as well. Let

$$
S=\left\{P_{\theta, K}\left[V_{\theta}\right](v)>P_{\theta, K}^{\prime}\left[V_{\theta}\right](v)\right\}
$$

By Proposition 1.2.3, S is a pluripolar set. Observe that

$$
\left.\eta\right|_{K \backslash S} \leq\left. v\right|_{K \backslash S} .
$$

Hence, (14.5) follows from Lemma 14.1.3.
The next result motivates our terminology to call the measures $\theta_{P_{\theta, K}[\varphi](v)}^{n}$ the partial equilibrium measures of our context:

Lemma 14.1.4 Let $v \in C^{0}(K)$. Then

$$
\int_{X \backslash K} \theta_{P_{\theta, K}[\varphi](v)}^{n}=0
$$

Moreover, $\left.P_{\theta, K}[\varphi](v)\right|_{K}=v$ almost everywhere with respect to $\theta_{P_{\theta, K}[\varphi](v)}^{n}$. More precisely, we have

$$
\begin{equation*}
\theta_{P_{\theta, K}[\varphi](v)}^{n} \leq \mathbb{1}_{K \cap\left\{P_{\theta, K}[\varphi](v)=P_{\theta, K}\left[V_{\theta}\right](v)=v\right\}} \theta_{P_{\theta, K}\left[V_{\theta}\right](v)}^{n} . \tag{14.6}
\end{equation*}
$$

\{eq: thetaPKuv\}
Proof Step 1. We address the case where $\varphi=V_{\theta}$.
Let $S \subseteq X$ be a closed pluripolar set, such that V_{θ} is locally bounded on $X \backslash S$. This is possible because we can always find a Kähler current with analytic singularities in the cohomology class $[\theta]$, as a consequence of Theorem 1.6.2.

For the first assertion, it suffices to show that $\theta_{P_{\theta, K}\left[V_{\theta}\right](v)}^{n}$ does not charge any open ball $B \Subset X \backslash(S \cup K)$.

By Proposition 1.2.2, we can take an increasing sequence $\left(\eta_{j}\right)_{j}$ in $\operatorname{PSH}(X, \theta)$ such that

$$
\eta_{j} \rightarrow P_{\theta, K}\left[V_{\theta}\right](v) \text { almost everywhere, }\left.\quad \eta_{j}\right|_{K} \leq v \text { for all } j \geq 1
$$

By [BT82, Proposition 9.1], for each $j \geq 1$, we can find $\gamma_{j} \in \operatorname{PSH}(X, \theta)$, such that $\left(\theta+\left.\mathrm{dd}^{\mathrm{c}} \gamma_{j}\right|_{B}\right)^{n}=0$ and w_{j} agrees with η_{j} outside B. Note that $\left(\gamma_{j}\right)_{j}$ is clearly increasing and

$$
\gamma_{j} \geq \eta_{j},\left.\quad \gamma_{j}\right|_{K} \leq v
$$

for all $j \geq 1$.
It follows that γ_{j} converges to $P_{\theta, K}\left[V_{\theta}\right](v)$ almost everywhere as well. By Theorem 2.3.1, we find that $\theta_{P_{\theta, K}\left[V_{\theta}\right](v)}^{n}$ does not charge B, as desired.

For the second assertion, let $x \in(X \backslash S) \cap K$ be a point such that $P_{\theta, K}\left[V_{\theta}\right](v)(x)<$ $v(x)-\epsilon$ for some $\epsilon>0$. Let B be a ball centered at x, small enough so that θ has a local potential on B, allowing us to identify θ-psh functions with psh functions (on $B)$. By shrinking B, we can further guarantee
(1) $\bar{B} \subseteq X \backslash S$.
(2) $\left.P_{\theta, K}\left[V_{\theta}\right](v)\right|_{\bar{B}}<v(x)-\epsilon$.
(3) $\left.v\right|_{\bar{B} \cap K}>v(x)-\epsilon$.

Construct the sequences η_{j}, γ_{j} as above. On B, by choosing a local potential of θ, we may identify η_{j}, γ_{j} with the corresponding psh functions in a neighborhood of \bar{B}. By (2), we have $\gamma_{j} \leq v(x)-\epsilon$ on ∂B, hence by the comparison principle, $\left.\gamma_{j}\right|_{B} \leq v(x)-\epsilon$. By (3), we have $\left.\gamma_{j}\right|_{B \cap K} \leq\left. v\right|_{B \cap K}$. Thus, we conclude that $\theta_{P_{\theta, K}\left[V_{\theta}\right](v)}^{n}$ does not charge B, as in the previous paragraph.

Step 2. We handle the general case. We can assume $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$. Indeed, due to Lemma 14.1.2 and Theorem 2.3.2, we have that

$$
\int_{X} \theta_{P_{\theta, K}[\varphi](v)}^{n}=\int_{X} \theta_{\varphi}^{n}
$$

Hence, there is nothing to prove if $\int_{X} \theta_{\varphi}^{n}=0$.
By Corollary 14.1.2,

$$
P_{\theta, K}[\varphi](v)=P_{\theta, X}[\varphi]\left(P_{\theta, K}\left[V_{\theta}\right](v)\right)
$$

DDNL18mono
Now $\frac{\text { DDNL18mono }}{[D T M T 18 \mathrm{~b}}$, Theorem 3.8] gives

$$
\begin{aligned}
\theta_{P_{\theta, K}[\varphi](v)}^{n} & \leq \mathbb{1}_{\left\{P_{\theta, K}[\varphi](v)=P_{\theta, K}\left[V_{\theta}\right](v)\right\}} \theta_{P_{\theta, K}\left[V_{\theta}\right](v)}^{n} \\
& \leq \mathbb{1}_{\left\{P_{\theta, K}[\varphi](v)=v\right\}} \theta_{P_{\theta, K}\left[V_{\theta}\right](v)}^{n}
\end{aligned}
$$

where in the second inequality we have used Step 1.
Corollary 14.1.3 Let $v \in C^{0}(K)$.

$$
\begin{align*}
\int_{(X \backslash K) \cup\left\{P_{\theta, K}[\varphi](v)<v\right\}} & \theta_{P_{\theta, K}[\varphi](v)}^{n}
\end{align*}=0,
$$

Proof The first equation in (14.7) follows from Lemma 14.1.4. For the second, we can assume that

$$
\begin{equation*}
\int_{X} \theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n}>0 \tag{14.8}
\end{equation*}
$$

otherwise there is nothing to prove. By definition, we have

$$
P_{\theta, K}[\varphi]_{I}(v)=P_{\theta, K}\left[P_{\theta}[\varphi]_{I}\right]_{I}(v) .
$$

Next we show that

$$
P_{\theta, K}\left[P_{\theta}[\varphi]_{I}\right]_{I}(v)=P_{\theta, K}\left[P_{\theta}[\varphi]_{I}\right](v) .
$$

The \geq direction is trivial. It remains to prove the reverse inequality. By Lemma 14.1.2, we get that

$$
P_{\theta, K}\left[P_{\theta}[\varphi]_{I}\right]_{I}(v) \sim P_{\theta}[\varphi]_{I}
$$

Due to Proposition 1.2.3, we get that

$$
P_{\theta, K}\left[P_{\theta}[\varphi]_{I}\right]_{I}(v) \leq v
$$

on $K \backslash S$, where $S \subseteq X$ is a pluripolar set. As a result, due to (14.8), Lemma 14.1.3 allows to conclude that

$$
P_{\theta, K}\left[P_{\theta}[\varphi]_{I}\right]_{I}(v) \leq P_{\theta, K}\left[P_{\theta}[\varphi]_{I}\right](v)
$$

Since

$$
P_{\theta, K}\left[P_{\theta}[\varphi]_{I}\right]_{I}(v)=P_{\theta, K}[\varphi]_{I}(v),
$$

we get that the second equation in (14.7), using the first.
Proposition 14.1.1 Assume that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$. Let $v \in C^{0}(K)$. Then

$$
\begin{equation*}
P_{\theta, K}[\varphi](v)=P_{\theta, K}\left[P_{\theta}[\varphi]\right](v) \tag{14.9}
\end{equation*}
$$

\{eq: interm_eq\}
In particular,

$$
P_{\theta, K}[\varphi](v)=P_{\theta, K}\left[P_{\theta, K}[\varphi](v)\right](v) .
$$

Proof The \leq direction in (14.9) is obvious. We to prove the reverse inequality. As $P_{\theta, K}[\varphi](v)$ and $P_{\theta, K}\left[P_{\theta}\left[\varphi_{B D}\right](\mathcal{H})\right.$ have the same singularity types by Lemma 14.1.2, by the domination principle [INTVLIB5, Corollary 3.10], it suffices to show that
$P_{\theta, K}[\varphi](v) \geq P_{\theta, K}\left[P_{\theta}[\varphi]\right](v)$ almost everywhere with respect to $\theta_{P_{\theta, K}[\varphi](v)}^{n}$. (14.10)
\{eq:PthetaKtemp1\}
By (14.6),

$$
P_{\theta, K}[\varphi](v)=P_{\theta, K}\left[V_{\theta}\right](v)=v
$$

almost everywhere with respect to $\theta_{P_{\theta, K}[\varphi](v)}^{n}$. Hence,

$$
P_{\theta, K}\left[P_{\theta}[\varphi]\right](v)=v
$$

almost everywhere with respect to $\theta_{P_{\theta, K}[\varphi](v)}^{n}$. We conclude that

$$
P_{\theta, K}[\varphi](v)=P_{\theta, K}\left[P_{\theta}[\varphi]\right](v)
$$

Finally, (14.10) follows from Lemma 14.1.2 and (14.9).
Definition 14.1.2 Given $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$, the partial equilibrium energy functional $\mathcal{E}_{[\varphi], K}^{\theta}: C^{0}(K) \rightarrow \mathbb{R}$ of $v \in C^{0}(K)$ as follows

$$
\begin{equation*}
\mathcal{E}_{\theta, K}^{\varphi}(v):=E_{\theta}^{P_{\theta}[\varphi]_{I}}\left(P_{\theta, K}[\varphi]_{I}(v)\right) \tag{14.11}
\end{equation*}
$$

Recall that the energy $E_{\theta}^{P_{\theta}[\varphi]_{I}}$ functional is defined in Definition 3.1.5.
Note that by Lemma 14.1.2, we have

$$
P_{\theta, K}[\varphi]_{I}(v) \in \mathcal{E}^{\infty}\left(X, \theta ; P_{\theta}[\varphi]_{I}\right)
$$

so $\mathcal{E}_{\theta, K}^{\varphi}(v) \in \mathbb{R}$.
prop: differential_P
Proposition 14.1.2 Let $K \subseteq X$ be a closed non-pluripolar set, $v, f \in C^{0}(K)$ and $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$. Then $\mathbb{R} \ni t \mapsto \mathcal{E}_{\theta, K}^{\varphi}(v+t f)$ is differentiable and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathcal{E}_{\theta, K}^{\varphi}(v+t f)=\int_{K} f \theta_{P_{\theta, K}[\varphi]_{I}(v+t f)}^{n} \tag{14.12}
\end{equation*}
$$

\{eq: ddtI\}
for all $t \in \mathbb{R}$.
Proof We may assume that φ is I-model by replacing φ by $P_{\theta}[\varphi]_{I}$.
Note that it suffices to prove (14.12) at $t=0$, which is equivalent to

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{E_{\theta}^{\varphi}\left(P_{\theta, K}[\varphi]_{I}(v+t f)\right)-E_{\theta}^{\varphi}\left(P_{\theta, K}[\varphi]_{I}(v)\right)}{t}=\int_{K} f \theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n} \tag{14.13}
\end{equation*}
$$

\{eq: to_prove_1\}
By switching f to $-f$, we may assume that $t>0$ in the above limit.
By the comparison principle [FITNIB5, Proposition 3.5] and Proposition 3.1.11, we find

$$
\begin{aligned}
& E_{\theta}^{\varphi}\left(P_{\theta, K}[\varphi]_{I}(v+t f)\right)-E_{\theta}^{\varphi}\left(P_{\theta, K}[\varphi]_{I}(v)\right) \\
= & \frac{1}{n+1} \sum_{i=0}^{n} \int_{X}\left(P_{\theta, K}[\varphi]_{I}(v+t f)-P_{\theta, K}[\varphi]_{I}(v)\right) \theta_{P_{\theta, K}[\varphi]_{I}(v+t f)}^{i} \wedge \theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n-i} \\
\leq & \int_{X}\left(P_{\theta, K}[\varphi]_{I}(v+t f)-P_{\theta, K}[\varphi]_{I}(v)\right) \theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n} .
\end{aligned}
$$

By Lemma 14.1.4,

$$
\int_{X}\left(P_{\theta, K}[\varphi]_{I}(v+t f)-P_{\theta, K}[\varphi]_{I}(v)\right) \theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n} \leq t \int_{K} f \theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n}
$$

Thus, we get the inequality,

$$
\varlimsup_{t \rightarrow 0+} \frac{E_{\theta}^{\varphi}\left(P_{\theta, K}[\varphi]_{I}(v+t f)\right)-E_{\theta}^{\varphi}\left(P_{\theta, K}[\varphi]_{I}(v)\right)}{t} \leq \int_{K} f \theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n}
$$

Similarly, we have

$$
\begin{aligned}
& E_{\theta}^{\varphi}\left(P_{\theta, K}[\varphi]_{I}(v+t f)\right)-E_{\theta}^{\varphi}\left(P_{\theta, K}[\varphi]_{I}(v)\right) \\
\geq & \int_{X}\left(P_{\theta, K}[\varphi]_{I}(v+t f)-P_{\theta, K}[\varphi](v)\right) \theta_{P_{\theta, K}[\varphi]_{I}(v+t f)}^{n} \\
\geq & t \int_{K} f \theta_{P_{\theta, K}[\varphi]_{I}(v+t f)}^{n} .
\end{aligned}
$$

Together with the above, this implies (14.13).
lem: global_env_approx
Lemma 14.1.5 Fix a Kähler form ω on X. For $v \in C^{0}(K)$ there exists an increasing bounded sequence $\left(v_{j}^{-}\right)_{j}$ in $C^{\infty}(X)$ and a decreasing bounded sequence $\left(v_{j}^{+}\right)_{j}$ in $C^{\infty}(X)$, such that for all $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$ and $\delta \in[0,1]$ we have
(1) $P_{\theta+\delta \omega, X}[\varphi]\left(v_{j}^{+}\right) \searrow P_{\theta+\delta \omega, K}[\varphi](v)$,
(2) $P_{\theta+\delta \omega, X}[\varphi]\left(v_{j}^{-}\right) \nearrow P_{\theta+\delta \omega, K}[\varphi](v)$ almost everywhere,
(3) $\sup _{X}\left|v_{j}^{-}\right| \leq C, \sup _{X}\left|v_{j}^{+}\right| \leq C$ for some constant C depending only on $\|v\|_{C^{0}(K)}$, K and $\theta+\omega$, and

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \mathcal{E}_{\theta, K}^{\varphi}\left(v_{j}^{-}\right)=\mathcal{E}_{\theta, K}^{\varphi}(v), \quad \lim _{j \rightarrow \infty} \mathcal{E}_{\theta, K}^{\varphi}\left(v_{j}^{+}\right)=\mathcal{E}_{\theta, K}^{\varphi}(v) \tag{4}
\end{equation*}
$$

Proof We fix $\delta \in[0,1]$. First we prove the existence of $\left(v_{j}^{-}\right)_{j}$. Let

$$
C_{K, v}:=\sup \left\{\sup _{X} \eta: \eta \in \operatorname{PSH}(X, \theta+\omega),\left.\eta\right|_{K} \leq v\right\} .
$$

Since K is non-pluripolar, we have that $C_{K, v} \in \mathbb{R}$. Now define $\tilde{v}: X \rightarrow \mathbb{R}$ as

$$
\tilde{v}(x)=\left\{\begin{aligned}
v(x), & x \in K \\
C_{k, v}+1, & x \in X \backslash K
\end{aligned}\right.
$$

Since \tilde{v} is lower semicontinuous, there exists an increasing and uniformly bounded sequence $\left(v_{j}^{-}\right)_{j}$ in $C^{\infty}(X)$, such that $v_{j}^{-} \nearrow \tilde{v}$.

Observe that $P_{\theta+\delta \omega, X}[\varphi]\left(v_{j}^{-}\right)$is increasing in $j \geq 1$, and

$$
P_{\theta+\delta \omega, X}[\varphi]\left(v_{j}^{-}\right) \leq P_{\theta+\delta \omega, K}[\varphi](v)
$$

To prove that

$$
P_{\theta+\delta \omega, X}[\varphi]\left(v_{j}^{-}\right) \nearrow P_{\theta+\delta \omega, K}[\varphi](v)
$$

almost everywhere, let η be a candidate for $P_{\theta+\delta \omega, K}[\varphi](v)$ such that $\sup _{K}(\eta-v)<0$. Then, since η is upper semicontinuous and $\eta<\tilde{v}$, by Dini's lemma there exists $j_{0}>0$
such that $\eta<v_{j}^{-}$for $j \geq j_{0}$, i.e.

$$
\eta \leq P_{\theta+\delta \omega, X}[\varphi]\left(v_{j}^{-}\right),
$$

proving existence of $\left(v_{j}^{-}\right)_{j}$.
Next, we prove the existence of $\left(v_{j}^{+}\right)_{j}$. Since

$$
h:=P_{\theta+\omega, K}\left[V_{\theta+\omega}\right](v) \vee\left(\inf _{K} v-1\right)
$$

is usc, there exists a decreasing and uniformly bounded sequence $\left(v_{j}^{+}\right)_{j}$ in $C^{\infty}(X)$, such that $v_{j}^{+} \searrow h$. Trivially,

$$
\chi:=\lim _{j \rightarrow \infty} P_{\theta+\delta \omega, X}[\varphi]\left(v_{j}^{+}\right) \geq P_{\theta+\delta \omega, K}[\varphi](v) .
$$

In particular, χ has positive mass, since it has the same singularity types as $P_{\theta+\delta \omega, K}[\varphi](v)$ by Lemma 14.1.2. We introduce

$$
S:=\left\{P_{\theta+\omega, K}^{\prime}\left[V_{\theta+\omega}\right](v)<P_{\theta+\omega, K}\left[V_{\theta+\omega}\right](v)\right\}
$$

By Proposition 1.2.3, S is a pluripolar set. Observe that

$$
P_{\theta+\delta \omega, X}[\varphi]\left(v_{j}^{+}\right) \leq v_{j}^{+}
$$

for all $j \geq 1$. Thus, $\chi \leq h$. On the other hand, $h \leq v$ on $K \backslash S$. So in particular, $\left.\chi\right|_{K \backslash S} \leq\left. v\right|_{K \backslash S}$. By Lemma 14.1.2 we also have that $\chi \sim P_{\theta+\delta \omega, K}[\varphi]$ (v). Hence, by Lemma 14.1.3,

$$
\chi \leq P_{\theta+\delta \omega, K}\left[P_{\theta+\delta \omega, K}[\varphi](v)\right](v)=P_{\theta+\delta \omega, K}[\varphi](v)
$$

where we also used the last statement of Proposition 14.1.1.
Finally observe that (4) follows from Lemma 14.1.2, Lemma 14.1.5 and Theorem 2.3.1.

Proposition 14.1.3 Let $K \subseteq X$ be a compact and non-pluripolar subset. Let $v \in$ $C^{0}(K)$. Let $\varphi_{j}, \varphi \in \operatorname{PSH}(X, \theta)_{>0}(j \geq 1)$ with $\varphi_{j} \xrightarrow{d_{S}} \varphi$. Then the following hold:
(1) If $\varphi_{j} \searrow \varphi$, then $P_{\theta, K}\left[\varphi_{j}\right]_{I}(v) \searrow P_{\theta, K}[\varphi]_{I}(v)$ and $P_{\theta, K}\left[\varphi_{j}\right](v) \searrow$ $P_{\theta, K}[u](v)$.
(2) If $\varphi_{j} \nearrow \varphi$ almost everywhere then $P_{\theta, K}\left[\varphi_{j}\right]_{I}(v) \nearrow P_{\theta, K}[\varphi]_{I}(v)$ almost everywhere, and $P_{\theta, K}\left[\varphi_{j}\right](v) \nearrow P_{\theta, K}[\varphi](v)$ almost everywhere.

Proof (1) By Theorem 6.2.1, we have

$$
\lim _{j \rightarrow \infty} \int_{X} \theta_{\varphi_{j}}^{n}=\int_{X} \theta_{\varphi}^{n}
$$

It follows from Lemma 2.3.1 that there is a decreasing sequence $\epsilon_{j} \searrow 0$ with $\epsilon_{j} \in(0,1)$ and $\eta_{j} \in \operatorname{PSH}(X, \theta)$ such that

$$
\left(1-\epsilon_{j}\right) \varphi_{j}+\epsilon_{j} \eta_{j} \leq \varphi
$$

By the concavity similar to Proposition 3.2.10, we get

$$
\begin{aligned}
\left(1-\epsilon_{j}\right) P_{\theta, K}\left[\varphi_{j}\right]_{I}(v)+\epsilon_{j} P_{\theta, K}\left[\eta_{j}\right]_{I}(v) & \leq P_{\theta, K}\left[\left(1-\epsilon_{j}\right) \varphi_{j}+\epsilon_{j} \eta_{j}\right]_{I}(v) \\
& \leq P_{\theta, K}[\varphi]_{I}(v)
\end{aligned}
$$

Since $\left(\varphi_{j}\right)_{j}$ is decreasing, so is $\left(P_{\theta, K}\left[\varphi_{j}\right]_{I}(v)\right)_{j}$, hence

$$
\psi:=\lim _{j \rightarrow \infty} P_{\theta}\left[\varphi_{j}\right]_{I}(v) \geq P_{\theta, K}[\varphi]_{I}(v)
$$

exists. Since $\epsilon_{j} \rightarrow 0$ and $\sup _{X} P_{\theta, K}\left[\eta_{j}\right]_{\mathcal{I}}(v)$ is bounded, we can let $j \rightarrow \infty$ in the above estimate to conclude that

$$
\psi=P_{\theta, K}[\varphi]_{I}(v) .
$$

The same ideas yield that

$$
P_{\theta, K}\left[\varphi_{j}\right](v) \searrow P_{\theta, K}[\varphi](v)
$$

The proof of (2) is similar and is left to the readers.

14.2 Quantization of partial equilibrium measures

Let X be a connected compact Kähler manifold of dimension n and L be a pseudoeffective line bundle on X. Let h be a Hermitian metric on L and set $\theta=c_{1}(L, h)$. Let (T, h_{T}) be a Hermitian line bundle on X. Take a Kähler form ω on X so that

$$
\int_{X} \omega^{n}=1
$$

14.2.1 Bernstein-Markov measures

Let $K \subseteq X$ be a closed non-pluripolar subset. Let v be a measurable function on K and let μ be a positive Borel probability measure on K. We introduce the following functions on $\mathrm{H}^{0}\left(X, L^{k} \otimes T\right)(k \geq 1)$, with values possibly equaling ∞ :

$$
\begin{aligned}
& N_{v, v}^{k}(s):=\left(\int_{K} h^{k} \otimes h_{T}(s, s) \mathrm{e}^{-k v} \mathrm{~d} v\right)^{1 / 2} \\
& N_{v, K}^{k}(s):=\sup _{K \backslash\{v=-\infty\}}\left(h^{k} \otimes h_{T}(s, s) \mathrm{e}^{-k v}\right)^{1 / 2}
\end{aligned}
$$

We start with the following elementary observation:
lma:mononorm
Lemma 14.2.1 Let $v_{1} \leq v_{2}$ be two measurable functions on X. Assume that $\left\{v_{1}=\right.$ $-\infty\}=\left\{v_{2}=-\infty\right\}$. Then for any $s \in \mathrm{H}^{0}\left(X, L^{k} \otimes T\right)(k \geq 1)$, we have

$$
N_{v_{1}, K}^{k}(s) \geq N_{v_{2}, K}^{k}(s)
$$

If v puts no mass on $\{v=-\infty\}$ then we always have

$$
\begin{equation*}
N_{v, v}^{k}(s) \leq N_{v, K}^{k}(s) \tag{14.14}
\end{equation*}
$$

def:weightedss
def:BMmeasure

Definition 14.2.1 A weighted subset of X is a pair (K, v) consisting of a closed non-pluripolar subset $K \subseteq X$ and a function $v \in C^{0}(K)$.

Definition 14.2.2 Let (K, v) be a weighted subset of X. A positive Borel probability measure v on K is Bernstein-Markov with respect to (K, v) if for each $\epsilon>0$, there is a constant $C_{\epsilon}>0$ such that

$$
\begin{equation*}
N_{v, K}^{k}(s) \leq C_{\epsilon} \mathrm{e}^{\epsilon k} N_{v, v}^{k}(s) \tag{14.15}
\end{equation*}
$$

for any $s \in \mathrm{H}^{0}\left(X, L^{k} \otimes T\right)$ and any $k \in \mathbb{N}$. We write $\mathrm{BM}(K, v)$ for the set of Bernstein-Markov measures with respect to (K, v).

BBWN11
As pointed out in $[B B W 11]$, any volume form on X is Bernstein-Markov with respect to (X, v), with $v \in C^{\infty}(X)$.

Proposition 14.2.1 Assume that (K, v) is a weighted subset of X, then
(1) $N_{v, K}^{k}$ is a norm on $\mathrm{H}^{0}\left(X, L^{k} \otimes T\right)$.
(2) For any $v \in \mathrm{BM}(K, v), N_{v, v}^{k}$ is a norm on $\mathrm{H}^{0}\left(X, L^{k} \otimes T\right)$.

Proof (1) As v is bounded, $N_{v, K}^{k}$ is clearly finite on $\mathrm{H}^{0}\left(X, L^{k} \otimes T\right)$. In order to show that it is a norm, it suffices to show that for any $s \in \mathrm{H}^{0}\left(X, L^{k} \otimes T\right), N_{v, K}^{k}(s)=0$ implies that $s=0$. In fact, we have $\left.s\right|_{K}=0$, hence $s=0$ by the connectedness of X.
(2) As v is bounded, clearly $N_{v, v}^{k}$ is finite and satisfies the triangle inequality. Non-degeneracy follows from the fact that $N_{v, K}^{k}$ is a norm and (14.15).

14.2.2 Partial Bergman kernels

In this section, we fix a weighted subset (K, v) of X and $v \in \mathrm{BM}(K, v)$.
Definition 14.2.3 For any $\varphi \in \operatorname{PSH}(X, \theta)$, we introduce the partial Bergman kernels of φ (with respect to (K, v)) as follows: For any $k \geq 0$, we introduce

$$
\begin{align*}
B_{v, \varphi, v}^{k}(x):=\sup & \left\{h^{k} \otimes h_{T}(s, s) \mathrm{e}^{-k v}(x): N_{v, v}^{k}(s, s) \leq 1\right. \tag{14.16}\\
s & \left.\in \mathrm{H}^{0}\left(X, L^{k} \otimes T \otimes \mathcal{I}(k \varphi)\right)\right\}, \quad x
\end{align*}
$$

We extend $B_{v, \varphi, v}^{k}$ to the whole X by setting it to be 0 outside K.
The partial Bergman measures of φ (with respect to (K, v)) are defined as

$$
\begin{equation*}
\beta_{v, \varphi, v}^{k}:=\frac{n!}{k^{n}} B_{v, \varphi, v}^{k} \mathrm{~d} v \tag{14.17}
\end{equation*}
$$

for each $k \geq 0$.
Observe that

$$
\begin{equation*}
\int_{K} \beta_{v, \varphi, v}^{k}=\frac{n!}{k^{n}} h^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right) \tag{14.18}
\end{equation*}
$$

The goal of this section is to prove the following theorem:
Theorem 14.2.1 Suppose that $\varphi \in \operatorname{PSH}(X, \theta)_{>0}$. Let (K, v) be a weighed subset of X, let $v \in \mathrm{BM}(K, v)$. Then

$$
\begin{equation*}
\beta_{v, \varphi, v}^{k} \rightharpoonup \theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n} \tag{14.19}
\end{equation*}
$$

as $k \rightarrow \infty$.
Proposition 14.2.2 Let $\varphi \in \operatorname{PSH}(X, \theta)$ be a potential with analytic singularities such that θ_{φ} is a Kähler current. If $v \in C^{\infty}(X)$, then

$$
\begin{equation*}
\beta_{v, \varphi, \omega^{n}}^{k} \rightharpoonup \theta_{P_{\theta, X}[\varphi]_{I}(v)}^{n}=\theta_{P_{\theta, X}[\varphi](v)}^{n} \tag{14.20}
\end{equation*}
$$

as $k \rightarrow \infty$.
Proof The equality part in (14.20) follows from Lemma 14.1.2. We start with noticing that as $k \rightarrow \infty$,

$$
\beta_{v, \varphi, \omega^{n}}^{k} \leq \beta_{v, V_{\theta}, \omega^{n}}^{k} \rightharpoonup \theta_{P_{\theta, X}\left[V_{\theta}\right](v)}^{n}=\mathbb{1}_{\left\{v=P_{\theta, X}\left[V_{\theta}\right](v)\right\}} \theta_{v}^{n},
$$

\square
where the convergence follows from $[\operatorname{Ber} 11$, Theorem 1.2], and the last identity is due to [DNT21, Corollary 3.4]. Let μ be the weak limit of a subsequence of $\beta_{v, \varphi, \omega^{n}}^{k}$, then we obtain that

$$
\begin{equation*}
\mu \leq \mathbb{1}_{\left\{v=P_{\theta, X}\left[V_{\theta}\right](v)\right\}} \theta_{v}^{n} . \tag{14.21}
\end{equation*}
$$

Let $k \underset{B}{k} 0, s \in \mathrm{H}^{0}\left(X, L^{k} \otimes T \otimes I(k \varphi)\right)$ be a section such that $N_{v, \omega^{n}}^{k}(s, s) \leq 1$. Then by [Berv9, Lemma 4.1], there exists $C>0$ such that

$$
h^{k} \otimes h_{T}(s, s) \mathrm{e}^{-k v} \leq B_{v, \varphi, \omega^{n}}^{k} \leq B_{v, V_{\theta}, \omega^{n}}^{k} \leq k^{n} C .
$$

This implies that

$$
\frac{1}{k} \log h^{k} \otimes h_{T}(s, s) \leq v+\frac{\log C}{k}+n \frac{\log k}{k} .
$$

We define φ_{k} as in Proposition 1.8.2. Take $\alpha_{k} \nearrow 1$ as in Proposition 1.8.2. Then

$$
\frac{1}{k} \log h^{k} \otimes h_{T}(s, s) \leq \varphi_{k} \leq \alpha_{k} \varphi
$$

Let $\epsilon>0$. We notice that $\frac{1}{k} \log h^{k} \otimes h_{T}(s, s) \in \operatorname{PSH}(X, \theta+\epsilon \omega)$ for all $k \geq k_{0}(\epsilon)$. In particular,

$$
\frac{1}{k} \log h^{k} \otimes h_{T}(s, s)-\frac{\log C}{k}-n \frac{\log k}{k} \leq P_{\theta+\epsilon \omega, X}\left[\alpha_{k} \varphi\right](v) .
$$

Now taking supremum over all candidates s, we obtain that

$$
\begin{equation*}
B_{v, \varphi, \omega^{n}}^{k} \leq C k^{n} \mathrm{e}^{k\left(P_{\theta+\epsilon \omega, X}\left[\alpha_{k} \varphi\right](v)-v\right)}, \quad k \geq k_{0} \tag{14.22}
\end{equation*}
$$

\{eq: smooth_Berg_est \}
We claim that μ does not put mass on $\left\{P_{\theta+\epsilon \omega, X}[\varphi](v)<v\right\}$ for any $\epsilon>0$. Since

$$
P_{\theta+\epsilon \omega, X}\left[\alpha_{k} \varphi\right](v) \searrow P_{\theta+\epsilon \omega, X}[\varphi](v)
$$

by Proposition 14.1.3, we get that

$$
\left\{P_{\theta+\epsilon \omega, X}\left[\alpha_{k} \varphi\right](v)<v\right\} \nearrow\left\{P_{\theta+\epsilon \omega, X}[\varphi](v)<v\right\} .
$$

As a result, to argue the claim, it suffices to show that μ does not put mass on the set $\left\{P_{\theta+\epsilon \omega, X}\left[\alpha_{k} \varphi\right](v)<v\right\}$ for any k. Note that the latter set is open, hence (14.22) implies our claim.

Since φ has analytic singularities, we have that

$$
P_{\theta+\epsilon \omega, X}[\varphi](v) \sim \varphi
$$

for all $\epsilon \geq 0$ by Lemma 14.1.2 and Proposition 3.2.9. As a result,

$$
P_{\theta+\epsilon \omega, X}[\varphi](v) \searrow P_{\theta, X}[\varphi](v)
$$

and we can let $\epsilon \searrow 0$ to conclude that μ does not put mass on $\left\{P_{\theta, X}[\varphi](v)<v\right\}=$ $\bigcup_{\epsilon>0}\left\{P_{\theta+\epsilon \omega, X}[\varphi](v)<v\right\}$. Putting this together with (14.21), we obtain that

$$
\mu \leq \mathbb{1}_{\left\{P_{\theta, X}[\varphi](v)=v\right\}} \theta_{v}^{n}=\theta_{P_{\theta, X}[\varphi](v)}^{n},
$$

where the last equality is due to $\mathbb{\text { DNT19 }}$, Corollary 3.4]. Comparing total masses via (14.18) and Theorem 7.3.1, we conclude that $\mu=\theta_{P_{\theta, X}[\varphi](v)}^{n}$. As μ is an arbitrary cluster point of $\beta_{v, \varphi, \omega^{n}}^{k}$, we conclude that $\beta_{v, \varphi, \omega^{n}}^{k}$ converges weakly to $\theta_{P_{\theta, X}[\varphi](v)}^{n}$, as $k \rightarrow \infty$.

Definition 14.2.4 Take $k \geq 0$ and $\varphi \in \operatorname{PSH}(X, \theta)$, let $\operatorname{Norm}\left(\mathrm{H}^{0}\left(X, L^{k} \otimes T \otimes \mathcal{I}(k \varphi)\right)\right)$ be the space of Hermitian norms on the vector space $\mathrm{H}^{0}\left(X, L^{k} \otimes T \otimes I(k \varphi)\right)$.

Let $\mathcal{L}_{k, \varphi}: \operatorname{Norm}\left(\mathrm{H}^{0}\left(X, L^{k} \otimes T \otimes I(k \varphi)\right)\right) \rightarrow \mathbb{R}$ be the partial Donaldson functional:

$$
\begin{equation*}
\mathcal{L}_{k, \varphi}(H)=\frac{n!}{k^{n+1}} \log \frac{\operatorname{vol}\{s: H(s) \leq 1\}}{\operatorname{vol}\left\{s: N_{0, \omega^{n}}^{k}(s) \leq 1\right\}} \tag{14.23}
\end{equation*}
$$

where vol is simply the Euclidean volume.
prop: quant_I_smooth
Proposition 14.2.3 Let $w, w^{\prime} \in C^{0}(X)$ and $\varphi \in \operatorname{PSH}(X, \theta)$ be a potential with analytic singularities such that θ_{φ} is a Kähler current, then

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\mathcal{L}_{k, \varphi}\left(N_{w, \omega^{n}}^{k}\right)-\mathcal{L}_{k, \varphi}\left(N_{w^{\prime}, \omega^{n}}^{k}\right)\right)=\mathcal{E}_{\theta, X}^{\varphi}(w)-\mathcal{E}_{\theta, X}^{\varphi}\left(w^{\prime}\right) \tag{14.24}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathcal{L}_{k, \varphi}\left(N_{w, \omega^{n}}^{k}\right)=\mathcal{E}_{\theta, X}^{\varphi}(w) . \tag{14.25}
\end{equation*}
$$

Proof First observe that by Proposition 14.2.1, for any $k \geq 0, N_{w, \omega^{n}}^{k}$ and $N_{w^{\prime}, \omega^{n}}^{k}$ are both norms, hence the expressions inside the limit in (14.24) make sense.

To start, we make the following observation:

$$
\begin{aligned}
\mathcal{L}_{k, \varphi}\left(N_{w, \omega^{n}}^{k}\right)-\mathcal{L}_{k, \varphi}\left(N_{w^{\prime}, \omega^{n}}^{k}\right) & =\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t} \mathcal{L}_{k, \varphi}\left(N_{w+t\left(w^{\prime}-w\right), \omega^{n}}^{k}\right) \mathrm{d} t \\
& =\int_{0}^{1} \int_{X}\left(w^{\prime}-w\right) \beta_{w+t\left(w^{\prime}-w\right), \varphi, \omega^{n}}^{k} \mathrm{~d} t
\end{aligned}
$$

By Proposition 14.2.2, we have

$$
\lim _{k \rightarrow \infty} \int_{X}\left(w^{\prime}-w\right) \beta_{w+t\left(w^{\prime}-w\right), \varphi, \omega^{n}}^{k}=\int_{X}\left(w^{\prime}-w\right) \theta_{P_{\theta, X}[\varphi]\left(w+t\left(w^{\prime}-w\right)\right)}^{n}
$$

By Theorem 7.3.1, we have $\left|\int_{X}\left(w^{\prime}-w\right) \beta_{w+t\left(w^{\prime}-w\right), u, \omega^{n}}^{k}\right| \leq C \sup _{X}\left|w-w^{\prime}\right|$. Hence, by the dominated convergence theorem we obtain that

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left(\mathcal{L}_{k, \varphi}\left(N_{w, \omega^{n}}^{k}\right)-\mathcal{L}_{k, \varphi}\left(N_{w^{\prime}, \omega^{n}}^{k}\right)\right) & =\int_{0}^{1} \int_{X}\left(w^{\prime}-w\right) \theta_{P_{\theta, X}[\varphi]\left(w+t\left(w^{\prime}-w\right)\right)}^{n} \mathrm{~d} t \\
& =\mathcal{E}_{\theta, X}^{\varphi}(w)-\mathcal{E}_{\theta, X}^{\varphi}\left(w^{\prime}\right)
\end{aligned}
$$

where in the last line we have used Proposition 14.1.2.
Finally, (14.25) is just a special case of (14.24) with $w^{\prime}=0$.
lem: BML Lemma 14.2.2 Let $\varphi \in \operatorname{PSH}(X, \theta)$. Let (K, v) be a weighted subset of X. Let $v \in \operatorname{BM}(K, v)$. Then

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\mathcal{L}_{k, \varphi}\left(N_{v, K}^{k}\right)-\mathcal{L}_{k, \varphi}\left(N_{v, v}^{k}\right)\right)=0 \tag{14.26}
\end{equation*}
$$

\{eq: Bern_Mark_implies\}

Proof This is a direct consequence of the definition of Bernstein-Markov measures (14.15).

Corollary 14.2.1 Let $w \in C^{0}(X), \varphi \in \operatorname{PSH}(X, \theta)$ be a potential with analytic singularities such that θ_{φ} is a Kähler current. Then

$$
\lim _{k \rightarrow \infty} \mathcal{L}_{k, \varphi}\left(N_{w, X}^{k}\right)=\mathcal{E}_{\theta, X}^{\varphi}(w)
$$

Proof This follows from Lemma 14.2.2 and Proposition 14.2.3 and the fact that $\omega^{n} \in \operatorname{BM}(X, 0)$.

Proposition 14.2.4 Let $\varphi \in \operatorname{PSH}(X, \theta)$ be a potential with analytic singularities such that θ_{φ} is a Kähler current. Let $(K, v),\left(K^{\prime}, v^{\prime}\right)$ be two weighted subsets of X. Then

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\mathcal{L}_{k, \varphi}\left(N_{v, K}^{k}\right)-\mathcal{L}_{k, \varphi}\left(N_{v^{\prime}, K^{\prime}}^{k}\right)\right)=\mathcal{E}_{\theta, K}^{\varphi}(v)-\mathcal{E}_{\theta, K^{\prime}}^{\varphi}\left(v^{\prime}\right) \tag{14.27}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \mathcal{L}_{k, \varphi}\left(N_{v, K}^{k}\right)=\mathcal{E}_{\theta, K}^{\varphi}(v) \tag{14.28}
\end{equation*}
$$

Proof First observe that by Proposition 14.2.1, for any $k>0, N_{v, K}^{k}$ and $N_{v^{\prime}, K^{\prime}}^{k}$ are both norms, hence the expressions inside the limit in (14.27) make sense. Moreover, (14.28) is just a special case of (14.27) for $K^{\prime}=X$ and $v^{\prime}=0$.

To prove (14.27) it is enough to show that for any fixed $w \in C^{\infty}(X)$ we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left(\mathcal{L}_{k, \varphi}\left(N_{v, K}^{k}\right)-\mathcal{L}_{k, \varphi}\left(N_{w, \omega^{n}}^{k}\right)\right)=\mathcal{E}_{\theta, K}^{\varphi}(v)-\mathcal{E}_{\theta, X}^{\varphi}(w) \tag{14.29}
\end{equation*}
$$

For $\epsilon \in(0,1)$ small enough we have that $\theta_{(1-\epsilon) \varphi}$ is still a Kähler current. Let us fix such ϵ, along with an arbitrary $\epsilon^{\prime} \in(0,1)$.

Let $\left(v_{j}^{-}\right)_{j},\left(v_{j}^{+}\right)_{j}$ be the sequences of smooth functions constructed in Lemma 14.1.5 for the data (K, v).

By Proposition 1.8.2 there exists $k_{0}\left(\epsilon, \epsilon^{\prime}\right) \in \mathbb{N}$ such that

$$
\frac{1}{k} \log h^{k} \otimes h_{T}(s, s) \leq(1-\epsilon) u
$$

and $\frac{1}{k} \log h^{k} \otimes h_{T}(s, s) \in \operatorname{PSH}\left(X, \theta+\epsilon^{\prime} \omega\right)$ for any $s \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes I(k \varphi)\right)$, as long as $k \geq k_{0}\left(\epsilon, \epsilon^{\prime}\right)$.

In particular, Lemma 14.1.1 gives that

$$
\begin{gathered}
N_{P_{\theta+\epsilon^{\prime} \omega, K}^{\prime}}^{k}[(1-\epsilon) \varphi](v), X \\
N_{P_{\theta+\epsilon^{\prime} \omega, X}^{\prime}[(1-\epsilon) \varphi]\left(v_{j}^{-}\right), X}^{k}(s)=N_{v, K}^{k}(s), \\
N_{P_{j}^{-}, X}^{k}(s), \\
P_{\theta+\epsilon^{\prime} \omega, X}^{\prime}[(1-\epsilon) \varphi]\left(v_{j}^{+}\right), X
\end{gathered}(s)=N_{v_{j}^{+}, X}^{k}(s) ., ~ \$
$$

As

$$
P_{\theta+\epsilon^{\prime} \omega, X}^{\prime}[(1-\epsilon) \varphi]\left(v_{j}^{-}\right) \leq P_{\theta+\epsilon^{\prime} \omega, K}^{\prime}[(1-\epsilon) \varphi](v) \leq P_{\theta+\epsilon^{\prime} \omega, X}^{\prime}[(1-\epsilon) \varphi]\left(v_{j}^{+}\right),
$$

by Lemma 14.2.1 we have

$$
N_{v_{j}^{+}, X}^{k}(s) \leq N_{v, K}^{k}(s) \leq N_{v_{j}^{-}, X}^{k}(s), \quad s \in \mathrm{H}^{0}\left(X, T \otimes L^{k} \otimes \mathcal{I}(k \varphi)\right), k \geq k_{0}\left(\epsilon, \epsilon^{\prime}\right)
$$

Composing with $\mathcal{L}_{k, \varphi}$ we arrive at

$$
\mathcal{L}_{k, \varphi}\left(N_{v_{j}^{-}, X}^{k}\right) \leq \mathcal{L}_{k, \varphi}\left(N_{v, K}^{k}\right) \leq \mathcal{L}_{k, \varphi}\left(N_{v_{j}^{+}, X}^{k}\right), k \geq k_{0}\left(\epsilon, \epsilon^{\prime}\right)
$$

For any $j>0$, by Corollary 14.2 .1 we get

$$
\begin{aligned}
\mathcal{E}_{\theta, X}^{\varphi}\left(v_{j}^{-}\right)-\mathcal{E}_{\theta, X}^{\varphi}(w) & =\lim _{k \rightarrow \infty}\left(\mathcal{L}_{k, \varphi}\left(N_{v_{j}^{+}, X}^{k}\right)-\mathcal{L}_{k, \varphi}\left(N_{w, X}^{k}\right)\right) \\
& \leq \lim _{k \rightarrow \infty}\left(\mathcal{L}_{k, \varphi}\left(N_{v, K}^{k}\right)-\mathcal{L}_{k, \varphi}\left(N_{w, X}^{k}\right)\right) \\
& \leq \varlimsup_{k \rightarrow \infty}\left(\mathcal{L}_{k, \varphi}\left(N_{v, K}^{k}\right)-\mathcal{L}_{k, \varphi}\left(N_{w, X}^{k}\right)\right) \\
& \leq \lim _{k \rightarrow \infty}\left(\mathcal{L}_{k, \varphi}\left(N_{v_{j}^{-}, X}^{k}\right)-\mathcal{L}_{k, \varphi}\left(N_{w, X}^{k}\right)\right) \\
& =\mathcal{E}_{\theta, X}^{\varphi}\left(v_{j}^{+}\right)-\mathcal{E}_{\theta, X}^{\varphi}(w) .
\end{aligned}
$$

Using Lemma 14.1.5, we can let $j \rightarrow \infty$ to arrive at

$$
\begin{aligned}
\mathcal{E}_{\theta, K}^{\varphi}(v)-\mathcal{E}_{\theta, K}^{\varphi}(w) & \leq \varliminf_{k \rightarrow \infty}^{\lim }\left(\mathcal{L}_{k, \varphi}\left(N_{v, K}^{k}\right)-\mathcal{L}_{k, \varphi}\left(N_{w, X}^{k}\right)\right) \\
& \leq \varlimsup_{k \rightarrow \infty}\left(\mathcal{L}_{k, \varphi}\left(N_{v, K}^{k}\right)-\mathcal{L}_{k, \varphi}\left(N_{w, X}^{k}\right)\right) \\
& \leq \mathcal{E}_{\theta, K}^{\varphi}(v)-\mathcal{E}_{\theta, K}^{\varphi}(w)
\end{aligned}
$$

Hence, (14.29) follows.
Corollary 14.2.2 Let $\varphi \in \operatorname{PSH}(X, \theta)$ be a potential with analytic singularities such that θ_{φ} is a Kähler current. Let (K, v) be a weighted subset of X. Assume that $v \in \operatorname{BM}(K, v)$. Then

$$
\lim _{k \rightarrow \infty} \mathcal{L}_{k, \varphi}\left(N_{v, v}^{k}\right)=\mathcal{E}_{\theta, K}^{\varphi}(v)
$$

Proof Our claim follows from Proposition 14.2.4 and Lemma 14.2.2.
Proposition 14.2.5 Suppose that $\varphi \in \operatorname{PSH}(X, \theta)$ be a potential with analytic singularities such that θ_{φ} is a Kähler current. Let (K, v) be a weighted subset of X. Let $v \in \operatorname{BM}(K, v)$. Then

$$
\beta_{v, \varphi, v}^{k} \rightharpoonup \theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n}=\theta_{P_{\theta, K}[\varphi](v)}^{n}
$$

weakly as $k \rightarrow \infty$.
Proof For $w \in C^{0}(X)$, let

$$
f_{k}(t):=\mathcal{L}_{k, \varphi}\left(N_{v+t w, v}^{k}\right), \quad g(t):=\mathcal{E}_{\theta, K}^{\varphi}(v+t w)
$$

By Corolbary 14.2.2 $\underline{\lim }_{k \rightarrow \infty} f_{k}(t)=g(t)$. Note that f_{k} is concave by Hölder's inequality (see [BBWN11, Proposition 2.4]), so by [BB10, Lemma 7.6], $\lim _{k \rightarrow \infty} f_{k}^{\prime}(0)=$ $g^{\prime}(0)$, which is equivalent to $\beta_{v, \varphi, v}^{k} \rightharpoonup \theta_{P_{\theta, K}[\varphi](v)}^{n}$, by Proposition 14.1.2.
prop:mainKahcurr Proposition 14.2.6 Suppose that $\varphi \in \operatorname{PSH}(X, \theta)$ such that θ_{φ} is a Kähler current. Let (K, v) be a weighted subset of X and $v \in \operatorname{BM}(K, v)$. Then

$$
\begin{equation*}
\beta_{v, \varphi, v}^{k} \rightharpoonup \theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n} \tag{14.30}
\end{equation*}
$$

as $k \rightarrow \infty$.
Proof Let μ be the weak limit of a subsequence of $\beta_{v, \varphi, v}^{k}$. We claim that

$$
\begin{equation*}
\mu \leq \theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n} . \tag{14.31}
\end{equation*}
$$

\{eq:inproofmuleq\}
Observe that this claim implies the conclusion. In fact, by Theorem 7.3.1, we have equality of the total masses, so equality holds in (14.31). As μ is an arbitrary cluster point of the sequence $\left(\beta_{v, \varphi, v}^{k}\right)_{k}$, we get (14.30).

It remains to prove (14.31). Let $\left(\varphi_{j}\right)$ be a quasi-equisingular approximation of φ in $\operatorname{PSH}(X, \theta)$. We may assume that $\theta_{\varphi_{j}}$ is a Kähler current for all $j \geq 1$. By Lemma 14.1.2, Corollary 7.1.2, we know that

$$
\varphi_{j} \xrightarrow{d_{S}} P_{\theta, K}[\varphi]_{I}(v) .
$$

In particular,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \int_{X} \theta_{P_{\theta, K}\left[\varphi_{j}\right]_{I}(v)}^{n}=\int_{X} \theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n} \tag{14.32}
\end{equation*}
$$

Observe that

$$
\beta_{v, \varphi, v}^{k} \leq \beta_{v, \varphi_{j}, v}^{k}
$$

for any $k \geq 1$. As $v \in \operatorname{BM}(K, v)$, by Proposition 14.2.5,

$$
\mu \leq \theta_{P_{\theta, K}\left[\varphi_{j}\right]_{I}(v)}^{n},
$$

for any $j \geq 1$ fixed. By Proposition 14.1.3,

$$
P_{\theta, K}\left[\varphi_{j}\right]_{I}(v) \searrow P_{\theta, K}[\varphi]_{I}(v)
$$

as $j \rightarrow \infty$. Hence, by (14.32) and Theorem 2.3.1, (14.31) follows.
Proof (Proof of Theorem 14.2.1) By Lemma 14.1.2, we have that

$$
\begin{aligned}
\mathrm{H}^{0}\left(X, L^{k} \otimes T \otimes I(k \varphi)\right) & =\mathrm{H}^{0}\left(X, L^{k} \otimes T \otimes I\left(k P_{\theta}[\varphi]_{I}\right)\right) \\
& =\mathrm{H}^{0}\left(X, L^{k} \otimes T \otimes \mathcal{I}\left(k P_{\theta, K}[\varphi]_{I}(v)\right)\right)
\end{aligned}
$$

This allows us to replace φ with $P_{\theta, K}[\varphi]_{I}(v)$.
By Lemma 2.3.2, there exists $\varphi_{j} \in \operatorname{PSH}(X, \theta)$, such that $\varphi_{j} \nearrow \varphi$ a.e. and $\theta_{\varphi_{j}}$ is a Kähler current for each $j \geq 1$. This gives

$$
\beta_{v, \varphi_{j}, v}^{k} \leq \beta_{v, \varphi, v}^{k} .
$$

Let μ be the weak limit of a subsequence of $\left(\beta_{v, \varphi, v}^{k}\right)_{k}$. Then by Proposition 14.2.6,

$$
\theta_{P_{\theta, K}\left[\varphi_{j}\right]_{I}(v)}^{n} \leq \mu .
$$

By Proposition 14.1.3 and Theorem 2.3.1 we have that

$$
\theta_{P_{\theta, K}\left[\varphi_{j}\right]_{I}(v)}^{n} \nearrow \theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n} .
$$

Hence,

$$
\begin{equation*}
\theta_{P_{\theta, K}[\varphi]_{I}(v)}^{n} \leq \mu . \tag{14.33}
\end{equation*}
$$

A comparison of total masses using (14.18) and Theorem 7.3.1 gives that equality holds in (14.33). As μ is an arbitrary cluster limit of the weak compact sequence $\left(\beta_{v, \varphi, \mu}^{k}\right)_{k}$, we obtain (14.19).

Remark 14.2.1 The results in this chapter could also be reformulated as the large deviation principle of $\mathrm{f}_{\mathrm{Ber}}$ determinantal point process on X using the Gärtner-Ellis theorem exactly as in [Ber14]. We leave the details to the readers.

Comments

A brief history

Here we recall the origin of various results.
Chapter 1.
The global Josefson theorem Thegorem 1.1.5 was due to Vu [Vu19 9]. In the projective setting, it was due to Pinh-Sibony [15S06] and in the Kähler setting, it was established by Guedj-Zeriahi [[GZ05].
 a more general version for complex spaces, see Theorem B.2.2. We reproduced their arguments almost word by word for the convenience of the readers ${ }_{\text {BT }} 87$

The plurifine topology was introduced by Bedford-Taylor [BT87] based on Cartan's works gnthe fine topology. This area lacks a rigorous foundation until the appearance of [EIVIW06], which gave the first proof of Theoremm 1.3.2.

The strong openness ${ }_{\text {H1es }}$ first established by Guan-Zhou [GZ15]. A more elegant proof was due to Hiep [Hiel4].

The idea of TBercrem 1.4.3 first appeared in the ground-breaking work of Boucksom-Favre-Jonsson [BFJ08].

Kis78

The semicontinuity theorem was due to Siu [Siu74]
Chapter 2
The Monge-Ampère operators for bound plurisubharmonic functions were introduced by Bedferd-Taylor $[\mathrm{BTH}, \mathrm{B}$ GZ07 The non-pluripolar product is due to Bedford-Taylor [BT87], Guedj-Zeriahi [GZ07] and Boucksom-Eyssidieux-GuedjZeriahi [BEGZ10].

Chapter 3
RWN14
The notion of the P-envelope is duefo 9 Ross-Witt Nyström [RW1N14] based on the ideas of Rashkovskii-Sigurdsson [RS05].

The \mathcal{I}-enyelope was introduced by Darvas-Xia $\left.\frac{\mathrm{DX} 22}{[\mathrm{BFFO8}}{ }^{2}\right]$, inspired by the works of
 singularities was first formulated in the explicit way in [DX22] in 2020, although it
was already essentially known in Boucksom-Jonsson's work. In fact, they correspond exactly to the homogeneous non-Archimedean potentials assuming that the relevant masses do not vanish ${ }_{\text {Dem }}$ A less explicit equivalent formulation of \mathcal{I}-model potentials also appeared in [Jem 15]. A few months later, the same notion was rediscovered by Trusiani [Truz2].

Chapter 4
The notion of weak geodesics was studied in detail by Darvas $\left.{ }_{[D 17}^{[\mathrm{Dar}} 17\right]$ in the Kähler case.

The case of general big classes was partly handled in [DDNL18fullmad8NL18big However, the key fact that the geodesics between two full mass potentials have the correct limit at the end points does not seem to have been proved in any references. We give a proof in Proposition 4.2.1. We also extend the relevant results to the relative setting.

Previously, Proposition 4.2.2 and PropBsition 4.2.4 were only known in the Kähler case. The original treatment of Darvas in 1 [7ar 17 , Lemma 3.1] in the Kähler setting is slightly flawed. In the Kähler setting, [$\bar{\square}$ ar 17 , Lemma 3.1] can be fixed by requiring better regularity of u_{0} and u_{1}. In the big setting, the hidden difficulty becomes essential. This explains our long proof of Proposition 4.2.2.

Chapter 5
cGSZig toric framework was first written down by Coman-Guedj-Sahin-Zeriahi in [[OUSZ19].

The beautiful theorem Theorem 5.3.1 was first proved by Yi Yao, who did not publishthe result. Later on, a new proof was found by Botero-Burgos Gil-Holmes-de Jong [BBGFidj21]. We chose to present the approach of Yao, which integrates naturally with our framework.

Chapter 6
The notion of P-partial order is new, as well as most results in Section 6.1.

Theorem 6.2.4 is proved in $[\overline{X 1 a} 22 b]$. Theorem 6.2.6 and Theorem 6.2.5 appear to be new. These results appeared previously in the form of lecture notes.

Chapter 7
The notion of \mathcal{I}-good singularities was due to $\mathbb{D X 2 1}$ IV21]. The name \mathcal{I}-good was chosen in [$\left[\begin{array}{ll}1222 \\ 1 a & 2 b]\end{array}\right.$.

Theorem 7.1.1 and Theorem 7.3.1 are due to [JX21, $\overline{5 X} 22$].
There are some further examples of \mathcal{I}-good singularities provided by $[$ BBGHdJ21 21$]$ with applications in the theory of modular forms in [BBGHidJ22].

Chapter 8
DX24
The trace operator was introduced in $^{2} 2 \times 24$. $\left[=X^{2} 24\right]$. Here we present a different point of view. Theorem 8.3.1 was proved in [DX24].

The analytic Bertini theorem Theorem 84.1 was proved in $\frac{\text { XiaBer }}{[X 1 a 22 a]}$, based on the works of Matsumura-Fujino $[F / \bar{F} 21]$ and $[[F L j 23]$. A weaker result was established by Meng-Zhou [iVIZ23].

Chapter 9
 Darvas-Di Nezza-Lu [TVTVLFBa], [JXX21], [TZZ22] and [JXZ23]. The proofs in these references omit some non-trivial details when the underlying cohomology class is not ample. We give the full details.

Test curves in Definition 9.1.1 are called maximal test curves in the literature, a terminology which I do not like. I prefer to call the usual notion of test curves in the literature sub-test curves.

Results in Section 9.4 are easy generalizations of the results proved in $\frac{\text { Xia } 230 \mathrm{perations}}{[\mathrm{Xia2} 20]}$.
Chapter 10
The algebraic theory of partial Okounkov bodies was developed in $\left[\frac{\mid x i a 21}{[X i a z} 1\right]$. The transcendental Okounkov body was first defined by Deng [DEn $[7]$ as suggested by Demailly. The volume identity was proved in $\left[\nabla \mathrm{RWW} \mathrm{N}^{+} 23\right]$. The transcendental theory of partial Okounkov bodies is new. Results in Section 11.3 are also new.

Chapter 11
 intersection theory of nef b-divisors was introduced $\mathrm{b}_{12 \mathrm{DPP}} \mathrm{Pang}$-Favre $[\mathrm{TF} 22]$. The

 [BEAUTITJ21]. In 2023, another special case was rediscovered by Trusiani [TTUZ3].

Chapter 12

The whole chapter appears to be new. The study of toric pluripotential theory on big line bundles was made possible by the development of partial Okounkov bodies. The key result is Theorem 12.2.2.

Most results in this chapter resulted from discussions with Yi Yao.
Chapter 13
Xia230perations

We deliberately avoid talking about the non-Archimedean point of view, which is
 has not been constructed in written literature yet. This theory will be studied in the forthcoming thesis of Pietro Piccione.

Snecial casefof the results in this section have heen applied to study K-stability,
 correspondence between a class of I-model test curves with the maximal geodesic

Chapter 14
The special case of Theorem 14.2 .1 withoyt the pressfribed singularity φ was due to Berman-Boucksom-Witt Nyström, see [BE10], [BEWN11]. The general case is due to [DX21].

Open problems

We give a list of important open problem in this theory.

Conjecture 14.2.1 Let X be a connected compact Kähler manifold and Y be a submanifold. Fix a Kähler class α on X. For each Kähler current $\left.S \in \alpha\right|_{Y}$, we can find a Kähler current $T \in \alpha$ such that

$$
\operatorname{Tr}_{Y}(T) \sim_{I} S
$$

If we formally view Tr_{Y} as an analogue of the trace operator in the theory of Sobolev spaces, then this conjecture corresponds exactly to the Dirichlet problem.

Using Proposition 8.2.2, one could also reduce this conjecture to a strong version of the extension theorem Theorem 1.6.3.

Conjecture 14.2.2 Let X be a connected compact Kähler manifold and Y be a submanifold. Fix a Kähler class α on X. Consider Kähler currents $R \in \alpha,\left.S \in \alpha\right|_{Y}$ with analytic singularities such that $S \leq\left. R\right|_{Y}$. Assume in addition that S has gentle analytic singularities. Then there is a Kähler current $T \in \alpha$ with analytic singularities such that

$$
\operatorname{Tr}_{Y}(T) \sim_{I} S, \quad T \leq R
$$

This conjecture was proposed by Darvas for different purposes.
Conjecture 14.2.3 Let X be a connected smooth projective variety of dimension n. Assume that $\left(L_{i}, h_{i}\right)$ is a Hermitian big line bundle on X for each $i=1, \ldots, n$ with the h_{i} 's being I-good. Then

$$
\int_{X} c_{1}\left(L_{1}, h_{1}\right) \wedge \cdots \wedge c_{1}\left(L_{n}, h_{n}\right)=\sup _{v} \operatorname{vol}\left(\Delta_{v}\left(L_{1}, h_{1}\right), \ldots, \Delta_{v}\left(L_{n}, h_{n}\right)\right)
$$

where $v: \mathbb{C}(X)^{\times} \rightarrow \mathbb{Z}^{n}$ runs over all (surjective) valuation of rank n.
See $\begin{aligned} & \text { Sch14 } \\ & {[S \sin 93}\end{aligned}$, Section 5.1] for the notion of mixed volumes.
This conjecture seems reasonable in view of Corollary 10.2.3 and Corollary 10.2.2.
Even when h_{1}, \ldots, h_{n} have minimal singularities, this conjecture remains open:
Conjecture 14.2.4 Let X be a connected smooth projective variety of dimension n. Assume that L_{1}, \ldots, L_{n} are big line bundles on X. Then

$$
\left\langle L_{1}, \ldots, L_{n}\right\rangle=\sup _{v} \operatorname{vol}\left(\Delta_{v}\left(L_{1}\right), \ldots, \Delta_{v}\left(L_{n}\right)\right),
$$

where $v: \mathbb{C}(X)^{\times} \rightarrow \mathbb{Z}^{n}$ runs over all (surjective) valuation of rank n.
Here on the left-hand side, we are using the movable intersection theory $\left.{ }^{[8 D P P 13} 13\right]$.
Problem 14.2.1 Is it possible to extend the definition of the trace operator Tr_{Y} to the case where the ambient variety is only unibranch?

The difficulty lies in the lack of Demailly type regularization theorems.
Problem 14.2.2 What is the relation between the Duistermaat-Heckman measure in Section 13.3 and the definition in [Inoz2]?

Problem 14.2.3 Is there a natural definition of the transcendental Okounkov body of a closed positive $(1,1)$-current T with 0 -mass so that its dimension is equal to the numerical dimension of T ?
See $\frac{\text { Coan }}{\text { [CO14 }} 4$] for the definition of the numerical dimension of a current.

Appendix A Convex functions and convex bodies

We recall some basic facts about convex functions in this section. Our basic reference is $\mathbb{R} \mathrm{ROC7} 0]$. The results in this appendix can be applied to concave functions after considering their negatives.

A. 1 The notion of convex functions

Let N be a real vector space of finite dimension.
Definition A.1.1 Let $F: N \rightarrow[-\infty, \infty]$ be a function. The epigraph of F is defined as the following set

$$
\text { epi } F:=\{(n, r) \in N \times \mathbb{R}: r \geq F(n)\} .
$$

Definition A.1.2 A convex function on N is a function $F: N \rightarrow[-\infty, \infty]$ such that the epigraph epi F is a convex subset of $N \times \mathbb{R}$.

The effective domain of F is the set

$$
\operatorname{Dom} F:=\{n \in N: F(n)<\infty\} .
$$

A convex function F on N such that $\operatorname{Dom} F \neq \varnothing$ and $F(n) \neq-\infty$ for all $n \in N$ is said to be proper.

The set of convex functions on N is denoted by $\operatorname{Conv}(N)$. The subset set of proper convex functions is denoted by $\operatorname{Conv}^{\text {prop }}(N)$.

The following characterization of convex functions is well-known.
Lemma A.1.1 Let $F: N \rightarrow[-\infty, \infty]$. Then F is convex if and only if the following condition holds: suppose that $n, r \in N$ and $a, b \in \mathbb{R}$ such that $a>F(n), b>F(r)$, then for any $t \in(0,1)$, we have

$$
F(t n+(1-t) r)<t a+(1-t) b .
$$

See $\frac{\text { Roc }}{[\mathrm{ROCO}} 0$, Theorem 4.2] for the proof.
Example A.1.1 Let $A \subseteq N$ be a convex subset. Then the characteristic function $\chi_{A}: N \rightarrow\{0, \infty\}$ of A is defined by

$$
\chi_{A}(n):=\left\{\begin{aligned}
0, & n \in A ; \\
\infty, & n \notin A .
\end{aligned}\right.
$$

The function χ_{A} lies in $\operatorname{Conv}(N)$.
Example A.1.2 Let M be the dual vector space of N and $P \subseteq M$ be a convex subset. The support function $\operatorname{Supp}_{P} \in \operatorname{Conv}(N)$ of P is defined as follows:

$$
\operatorname{Supp}_{P}(n):=\sup \{\langle m, n\rangle: m \in P\}
$$

It is well-known that convexity is preserved by a number of natural operations. We recall a few to fix the notation.

Definition A.1.3 Let $F_{1}, \ldots, F_{m} \in$ Conv $^{\text {prop }}(N)\left(m \in \mathbb{Z}_{>0}\right)$. We define their infimal convolution $F_{1} \square \cdots \square F_{m} \in \operatorname{Conv}(N)$ as follows:

$$
F_{1} \square \cdots \square F_{m}(n):=\inf \left\{\sum_{i=1}^{m} F_{i}\left(n_{i}\right): n_{i} \in N, \sum_{i=1}^{m} n_{i}=n\right\} .
$$

 note that $F_{1} \square \cdots \square F_{m}$ is not always proper.

Proposition A.1.1 Let $\left\{F_{i}\right\}_{i \in I}$ be a non-empty family in $\operatorname{Conv}(N)$. Then $\sup _{i \in I} F_{i} \in$ Conv(N).
This follows from $\stackrel{\operatorname{Roc} 70}{[\operatorname{ROC} 70} 0$, Theorem 5.5]. In particular, this allows us to introduce
\qquad Definition A.1.4 Let $f: N \rightarrow[-\infty, \infty]$. The lower convex envelope of f is defined as

$$
\operatorname{CE} f:=\sup \{F \in \operatorname{Conv}(N): F \leq f\}
$$

It follows from Proposition A.1.1 that $\mathrm{CE} f \in \operatorname{Conv}(N)$.
Definition A.1.5 Given a non-empty family $\left\{F_{i}\right\}_{i \in I}$ in $\operatorname{Conv}(N)$, we define

$$
\bigwedge_{i \in I} F_{i}:=\operatorname{CE}\left(\inf _{i \in I} F_{i}\right) .
$$

When the family I is finite, say $I=\{1, \ldots, m\}$, we also write

$$
F_{1} \wedge \cdots \wedge F_{m}=\bigwedge_{i \in I} F_{i}
$$

Proposition A.1.2 Let $F_{1}, \ldots, F_{m} \in \operatorname{Conv}^{\mathrm{prop}}(N)$, then

$$
\begin{array}{r}
F_{1} \wedge \cdots \wedge F_{m}(x)=\inf \left\{\sum_{i=1}^{m} \lambda_{i} F_{i}\left(x_{i}\right): x_{i} \in \operatorname{Dom}\left(F_{i}\right)\right. \\
\left.\lambda_{i} \in[0,1], \sum_{i=1}^{m} \lambda_{i}=1, \sum_{i=1}^{m} \lambda_{i} x_{i}=x\right\}
\end{array}
$$

See $\frac{\operatorname{Roc} 70}{[R 0 c 70} 0$, Theorem 5.6] for the more general result.
Lemma A.1.2 Let $\left\{F_{i}\right\}_{i \in I}$ be a decreasing net in $\operatorname{Conv}(N)$. Then $\inf _{i \in I} F_{i} \in$ Conv (N).

Proof Write $F=\inf _{i \in I} F_{i}$. We shall apply the characterization in Lemma A.1.1. Take $n, r \in N, a, b \in \mathbb{R}$ such that $a>F(n), b>F(r)$ and $t \in(0,1)$. We need to show that

$$
\begin{equation*}
F(t n+(1-t) r)<t a+(1-t) b \tag{A.1}
\end{equation*}
$$

By definition, there exists $j \in I$ such that for any $i \geq I$ with $i \geq j$, we have

$$
a>F_{i}(n), \quad b>F_{i}(r) .
$$

It follows from Lemma A.1.1 that

$$
F_{i}(t n+(1-t) r)<t a+(1-t) b
$$

for any $i \geq j$. Since F_{i} is decreasing in i, we conclude (A.1).
Definition A.1.6 Let $F \in \operatorname{Conv}(N)$. The closure $\operatorname{cl} F \in \operatorname{Conv}(N)$ of F is defined as follows: if $F(n)=-\infty$ for some $n \in N$, then $\mathrm{cl} F:=-\infty$. Otherwise, we define $\mathrm{cl} F$ as the lower semicontinuity regularization fo F.

A convex function $F \in \operatorname{Conv}(N)$ is closed if $F=\mathrm{cl} F$. In other words, $F \in$ $\operatorname{Conv}(N)$ if one of the following conditions hold:
(1) $F \equiv-\infty$;
(2) $F \equiv \infty$;
(3) F is proper and lower semi-continuous.

Proposition A.1.3 Let $F \in \operatorname{Conv}(N)$ be a closed convex function. Then F is the supremum of all affine functions lying below F.
See $\begin{aligned} & \text { Roc70 } \\ & {[\mathrm{ROC} 0 \mathrm{C}} \\ & 0\end{aligned}$, Theorem 12.1].
Theorem A.1.1 Let $F \in \operatorname{Conv}^{\text {prop }}(N)$. Then $\mathrm{cl} F$ is a closed proper convex function. Moreover, cl F agrees with F except possibly on the relative boundary of $\operatorname{Dom} F$.
See $\frac{\text { Roc70 }}{[\mathrm{ROC} 70}$, Theorem 7.4].
Definition A.1.7 Given $F, F^{\prime} \in \operatorname{Conv}(N)$, we write $F \leq F^{\prime}$ if there is $C \in \mathbb{R}$ such that

$$
F \leq F^{\prime}+C
$$

We say $F \sim F^{\prime}$ if $F \leq F^{\prime}$ and $F^{\prime} \leq F$ both hold.

A. 2 Legendre transform

Let N be a real vector space of finite dimension and M be the dual vector space. The pairing $M \times N \rightarrow \mathbb{R}$ will be denoted by $\langle\bullet, \bullet\rangle$.
def:Legendregeneral
Definition A.2.1 Let $F \in \operatorname{Conv}(N)$ be a convex function. We define the Legendre transform of F as the function $F^{*} \in \operatorname{Conv}(M)$:

$$
F^{*}(m):=\sup _{n \in N}(\langle m, n\rangle-F(n))=\sup _{n \in \operatorname{ReIInt} \operatorname{Dom} F}(\langle m, n\rangle-F(n)) .
$$

The latter equality follows from $\frac{\operatorname{Roc} 70}{[\operatorname{ROC} 70} 0$, Corollary $1222.2 d$.
Recall the well-known Legendre-Fenchel duality $[\mathbb{R O C} 70$, Theorem 12.2].
Theorem A.2.1 Let $F \in \operatorname{Conv}(N)$. Then F^{*} is a closed convex function. The function F^{*} is proper if and only if F is.

Moreover, we have $(\mathrm{cl} F)^{*}=F^{*}$ and

$$
F^{* *}=\mathrm{cl} F
$$

Example A.2.1 Let $P \subseteq M$ be a closed convex subset. Then

$$
\operatorname{Supp}_{P}^{*}=\chi_{P}, \quad \chi_{P}^{*}=\operatorname{Supp}_{P}
$$

See $\begin{aligned} & \text { Roc70 } \\ & {[\text { ROC } 70, ~ T h e o r e m ~ 13.2] . ~}\end{aligned}$
Definition A.2.2 Let $F \in \operatorname{Conv}(N)$ and $n \in N$. An element $m \in M$ is a subgradient of F at n if

$$
\begin{equation*}
F\left(n^{\prime}\right) \geq F(n)+\left\langle n^{\prime}-n, m\right\rangle, \quad \forall n^{\prime} \in N . \tag{A.2}
\end{equation*}
$$

\{eq:subgrad\}
The set of subgradients of F at n is denoted by $\nabla F(n)$.
More generally, for any subset $E \subseteq N$, we write

$$
\nabla F(E)=\bigcup_{n \in E} \nabla F(n)
$$

Definition A.2.3 Given $F, F^{\prime} \in \operatorname{Conv}(N)$, we write $F \leq_{P} F^{\prime}$ if

$$
\overline{\nabla F(N)} \subseteq \overline{\nabla F^{\prime}(N)}
$$

We write $F \sim_{P} F^{\prime}$ if $F \leq_{P} F^{\prime}$ and $F^{\prime} \leq_{P} F$.
Theorem A.2.2 Suppose that $F \in \operatorname{Conv}^{\mathrm{prop}}(N)$. Then the following hold:
(1) for any $n \notin \operatorname{Dom} F, \nabla F(n)=\varnothing$;
(2) for any $n \in \operatorname{RelInt} \operatorname{Dom} F, \nabla F(n) \neq \varnothing$; Moreover, for any $n^{\prime} \in N$, we have

$$
\partial_{n^{\prime}} F(n)=\sup \left\{\left\langle n^{\prime}, m\right\rangle: m \in \nabla F(n)\right\} ;
$$

(3) for $n \in N$, the set $\nabla F(n)$ is bounded if and only if $n \in \operatorname{Int} \operatorname{Dom} F$.

For the proof, we refer to $\stackrel{R-20 c 70}{[R O C 70}$, Theorem 23.4].
Proposition A.2.1 Let $F \in \operatorname{Conv}^{\operatorname{prop}}(N)$. Then

$$
\nabla F(N) \subseteq \operatorname{Dom} F^{*}
$$

If moreover F is closed, we have

$$
\begin{equation*}
\text { RelInt Dom } F^{*} \subseteq \nabla F(N) \tag{A.3}
\end{equation*}
$$

\{eq:relintdomFstar\}
In particular, if F is a proper closed convex function on N, then

$$
\overline{\nabla F(N)}=\overline{\operatorname{Dom} F^{*}}
$$

Proof Suppose that $m \in \nabla F(n)$ for some $n \in N$, it follows that (A.2) holds. In particular,

$$
\left\langle m, n^{\prime}\right\rangle-F\left(n^{\prime}\right) \leq\langle m, n\rangle-F(n) .
$$

It follows that

$$
F^{*}(m) \leq\langle m, n\rangle-F(n)<\infty
$$

(A.3) is proved in $\frac{\operatorname{Roc} 70}{[\mathrm{ROC7} 0} 0$, Corollary 23.5.1]. For the last assertion, it suffices to observe that $\overline{\operatorname{ReIInt} \operatorname{Dom} F^{*}}=\overline{\operatorname{Dom} F^{*}}$.

Proposition A.2.2 Let $\left\{F_{i}\right\}_{i \in I}$ be a non-empty family in $\operatorname{Conv}^{\mathrm{prop}}(N)$. Then

$$
\left(\bigwedge_{i \in I} F_{i}\right)^{*}=\sup _{i \in I} F_{i}^{*}, \quad\left(\sup _{i \in I} \mathrm{cl} F_{i}\right)^{*}=\mathrm{cl} \bigwedge_{i \in I} F_{i}^{*} .
$$

If I is finite and $\overline{\operatorname{Dom} F_{i}}$ is independent of the choice of $i \in I$, then

$$
\left(\sup _{i \in I} F_{i}\right)^{*}=\bigwedge_{i \in I} F_{i}^{*}
$$

Recall that \wedge is defined in Definition A.1.5. See ${ }_{[T R O C 70}^{\operatorname{Roc} 70} 0$, Theorem 16.5] for the proof.
Proposition A.2.3 Let $F_{1}, \ldots, F_{r} \in \operatorname{Conv}^{\mathrm{prop}}(N)\left(r \in \mathbb{Z}_{>0}\right)$. Assume that

$$
\bigcap_{i=1}^{r} \operatorname{RelInt} \operatorname{Dom}\left(F_{i}\right) \neq \varnothing,
$$

then

$$
\left(\sum_{i=1}^{r} F_{i}\right)^{*}(m)=\inf \left\{\sum_{i=1}^{r} F_{i}^{*}\left(m_{i}\right): m_{1}, \ldots, m_{r} \in M, \sum_{i=1}^{r} m_{i}=m\right\} .
$$

Proposition A.2.4 Let $P \subseteq M$ be a convex body ${ }^{1}$ and $F \in \operatorname{Conv}^{\operatorname{prop}}(N)$. The following are equivalent:
(1) $F \leq \operatorname{Supp}_{P}$;
(2) $\operatorname{Dom} F=N$ and $\left.F^{*}\right|_{M \backslash P} \equiv \infty$;
(3) $\operatorname{Dom} F=N$ and $\nabla F(N) \subseteq P$.

Moreover, under these conditions,

$$
\begin{equation*}
F(n)-\operatorname{Supp}_{P}(n) \leq F(0), \quad \forall n \in N . \tag{A.4}
\end{equation*}
$$

Proof (1) \Longrightarrow (2). It is clear that $\operatorname{Dom} F=N$ since Dom $\operatorname{Supp}_{P}=N$. From $F \leq \operatorname{Supp}_{P}$ and Example A.2.1, we know that

$$
\chi_{P}=\operatorname{Supp}_{P}^{*} \leq F^{*}
$$

So ii follows.
$(2) \Longrightarrow(3)$. This follows from Proposition A.2.1.
(3) \Longrightarrow (1). Taken $n \in N$, we know that F is locally Lipschitz $\frac{\operatorname{Roc} 70}{[R 0 c 70}$, Theorem 10.4], so we can compute

$$
\begin{aligned}
& F(n)-F(0)=\left.\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t}\right|_{t=0} F(t n) \mathrm{d} t=\int_{0}^{1}\langle\nabla F(t n), n\rangle \mathrm{d} t \\
& \leq \int_{0}^{1} \operatorname{Supp}_{P}(n) \mathrm{d} t=\operatorname{Supp}_{P}(n)
\end{aligned}
$$

In particular, (A.4) also follows.

A. 3 Classes of convex functions

Let N be a real vector space of finite dimension and M be the dual vector space.
We shall fix a convex body $P \subseteq M$.
The following classes are introduced in ${ }_{[B / 213}^{[B 13]}$.
Definition A.3.1 We define the set $\mathcal{P}(N, P)$ as the set of proper convex functions $F \in \operatorname{Conv}(N)$ such that $F \leq \operatorname{Supp}_{P}$.

We define the set $\mathcal{E}^{\infty}(N, P)$ as the set of closed convex functions $F \in \operatorname{Conv}(N)$ such that $F \sim \operatorname{Supp}_{P}$.

We define the set $\mathcal{E}(N, P)$ as follows: suppose that $\operatorname{Int} P=\varnothing$, then $\mathcal{E}(N, P):=$ $\mathcal{P}(N, P)$; otherwise, let

$$
\mathcal{E}(N, P)=\{F \in \mathcal{P}(N, P): P=\overline{\nabla F(N)}\} .
$$

[^9]Observe that for any $F \in \mathcal{P}(N, P)$, we have $\operatorname{Dom} F=N$ and F is necessarily closed.
Proposition A.3.1 We have

$$
\mathcal{E}^{\infty}(N, P) \subseteq \mathcal{E}(N, P) \subseteq \mathcal{P}(N, P)
$$

Proof When Int $P=\varnothing$, the assertion is clear. We assume that $\operatorname{Int} P \neq \varnothing$. The second inclusion follows from definition. We only hand the first inequality. Take $F \in \mathcal{E}^{\infty}(N, P)$. By definition, $F \sim \operatorname{Supp}_{P}$ and hence $F^{*} \sim \chi_{P}$. It follows that $P=\operatorname{Dom} F^{*}$.

By Proposition A.2.4, we already know that

$$
\nabla F(N) \subseteq P=\operatorname{Dom} F^{*}
$$

On the other hand, by Proposition A.2.1, we have

$$
\text { Int } P \subseteq \nabla F(N) .
$$

So it follows that

$$
P=\overline{\nabla F(N)} .
$$

Proposition A.3.2 For any $F \in \mathcal{E}^{\infty}(N, P)$, we have $\left.F^{*}\right|_{M \backslash P} \equiv \infty$ and F^{*} is bounded on P.

Proof From $F \sim \operatorname{Supp}_{P}$, we take the Legendre transform to get $F^{*} \sim \operatorname{Supp}_{P}^{*}=\chi_{P}$, where we applied Example A.2.1.

Definition A.3.2 We endow the topology of pointwise convergence on $\mathcal{P}(N, P)$. Note that this topology coincides with the compact-open topology.

Proposition A.3.3 Let $F \in \mathcal{P}(N, P)$. Then there is a decreasing sequence $F_{j} \in$ $\mathcal{E}^{\infty}(N, P) \cap C^{\infty}(N)$ converging to F.
See ${ }^{\text {BB13 }}[\mathrm{BE} 13$, Lemma 2.2].
We observe that the point $0 \in N$ plays a special role since it does in the definition of the support function.

Proposition A.3.4 For any $F \in \operatorname{Conv}(N, P)$, we have

$$
\max _{N}\left(F-\operatorname{Supp}_{P}\right)=F(0) .
$$

Proof It follows from (A.4) that

$$
\sup _{N}\left(F-\operatorname{Supp}_{P}\right) \leq F(0) .
$$

The equality is clearly obtained at $0 \in N$.

A. 4 Monge-Ampère measures

Let N be a free Abelian group of finite rank (i.e. a lattice) and M be its dual lattice. There is a canonical Lebesgue type measure on $M_{\mathbb{R}}$, denoted by d vol, normalized so that the smallest cubes in M have volume 1 . Similarly, the canonical measure on $N_{\mathbb{R}}$ is normalized in the same way and is denoted by d vol as well.

We will write

$$
N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}, \quad M_{\mathbb{R}}=M \otimes_{\mathbb{Z}} \mathbb{R}
$$

Definition A.4.1 Let $F \in \operatorname{Conv}\left(N_{\mathbb{R}}\right)$, we define $\mathrm{MA}_{\mathbb{R}} F$ as the Borel measure on $N_{\mathbb{R}}$ given as follows: for each Borel measurable set $E \subseteq N_{\mathbb{R}}$, define

$$
\mathrm{MA}_{\mathbb{R}} F(E):=n!\int_{\nabla F(E)} \mathrm{d} \mathrm{vol} .
$$

Proposition A.4.1 Let $P \in M_{\mathbb{R}}$ be a convex body and $F \in \mathcal{P}\left(N_{\mathbb{R}}, P\right)$. Then $F \in$ $\mathcal{E}\left(N_{\mathbb{R}}, P\right)$ if and only if

$$
\begin{equation*}
\int_{M_{\mathbb{R}}} \mathrm{MA}_{\mathbb{R}} F=n!\operatorname{vol} P \tag{A.5}
\end{equation*}
$$

\{eq:cvxfullmass\}
Proof By definition of $\mathrm{MA}_{\mathbb{R}}$, (A.5) is equivalent to

$$
\operatorname{vol} \overline{\nabla F\left(N_{\mathbb{R}}\right)}=\operatorname{vol} P
$$

We first handle the case where Int $P \neq \varnothing$. By Proposition A.2.4, the latter is equivalent to

$$
\overline{\nabla F\left(N_{\mathbb{R}}\right)}=P
$$

Now assume that $\operatorname{Int} P=\varnothing$, then $\operatorname{vol} \overline{\nabla F(N)}=\operatorname{vol} P=0$ by Proposition A.2.4. The assertion is clear.

Theorem A.4.1 Let $F, F_{j} \in \mathcal{P}\left(N_{\mathbb{R}}, P\right)\left(j \in \mathbb{Z}_{>0}\right)$. Assume that $F_{j} \rightarrow F$, then $\mathrm{MA}_{\mathbb{R}}\left(F_{j}\right)$ converges to $\mathrm{MA}_{\mathbb{R}}(F)$ weakly.

There is a well-known comparison principle.
Theorem A.4.2 Let $F, F^{\prime} \in \mathcal{P}\left(N_{\mathbb{R}}, P\right)$. Assume that $F \leq F^{\prime}$, then

$$
\begin{aligned}
\overline{\nabla F\left(N_{\mathbb{R}}\right)} & \subseteq \overline{\nabla F^{\prime}\left(N_{\mathbb{R}}\right)} . \\
\int_{N_{\mathbb{R}}} \operatorname{MA}_{\mathbb{R}}(F) & \leq \int_{N_{\mathbb{R}}} \operatorname{MA}_{\mathbb{R}}\left(F^{\prime}\right) .
\end{aligned}
$$

See $\frac{\text { BB13 }}{[\text { BB13 }}$, Lemma 2.5].

A. 5 Separation lemmata

Lemma A.5.1 Let $\alpha, \beta_{1}, \ldots, \beta_{m} \in \mathbb{Z}^{n}$. Let Δ be the polytope generated by $\beta_{1}, \ldots, \beta_{m}$. Then the following are equivalent:
(1)

$$
\begin{equation*}
\left|z^{\alpha}\right|^{2}\left(\sum_{i=1}^{m}\left|z^{\beta_{i}}\right|^{2}\right)^{-1} \tag{A.6}
\end{equation*}
$$

$$
\text { \{eq:zalpha\} }
$$

is a bounded function on $\mathbb{C}^{* n}$.
(2) $\alpha \in \Delta$.

Proof (2) $\Longrightarrow(1)$. Write $\alpha=\sum_{i} t_{i} \beta_{i}$, where $t_{i} \in[0,1], \sum_{i} t_{i}=1$. Then

$$
\begin{array}{r}
\left|z^{\alpha}\right|^{2}\left(\sum_{i=1}^{m}\left|z^{\beta_{i}}\right|^{2}\right)^{-1}=\prod_{i}\left|z^{\beta_{i}}\right|^{2 t_{i}}\left(\sum_{i=1}^{m}\left|z^{\beta_{i}}\right|^{2}\right)^{-1} \\
\leq \prod_{i} \sum_{j}\left|z^{\beta_{j}}\right|^{2 t_{i}}\left(\sum_{i=1}^{m}\left|z^{\beta_{i}}\right|^{2}\right)^{-1} \leq 1
\end{array}
$$

(1) \Longrightarrow (2). Assume that $\alpha \notin \Delta$. Let H be a hyperplane that separates α and Δ. Say H is defined by $a_{1} x_{1}+\cdots+a_{n} x_{n}=C$. Set

$$
z(t):=\left(t^{a_{1}}, \ldots, t^{a_{n}}\right) .
$$

Then clearly (A.6) evaluated at $z(t)$ is not bounded.
Lemma A.5.2 Let $\beta_{1}, \ldots, \beta_{m} \in \mathbb{N}^{n}$ and $\beta \in \mathbb{R}^{n}$. Then the following are equivalent
(1) $\log \sum_{i=1}^{m} \mathrm{e}^{x \cdot \beta_{i}}-(x, \beta)$ is bounded from below.
(2) β is in the convex hull of the β_{i} 's.

Proof The proof follows the same pattern as Lemma A.5.1.

Appendix B Pluripotential theory on unibranch spaces

In this appendix, we extend the theory in the book to compact unibranch Kähler spaces.

B. 1 Complex spaces

A complex space is assumed to be reduced, Hausdorff and paracompact in the whole book.

Definition B.1.1 A prime divisor over an irreducible complex space Z is a connected smooth hypersurface $E \subseteq X^{\prime}$, where $X^{\prime} \rightarrow Z$ is a proper bimeromorphic morphism with X^{\prime} smooth. Such a morphism $X^{\prime} \rightarrow Z$ is also called a resolution of Z.

Two prime divisors $E_{1} \subseteq X_{1}^{\prime}$ and $E_{2} \subseteq X_{2}^{\prime}$ over Z are equivalent if there is a common resolution $X^{\prime \prime} \rightarrow X$ dominating both X_{1}^{\prime} and X_{2}^{\prime} such that the strict transforms of E_{1} and E_{2} coincide.

The set $Z^{\text {div }}$ is the set of pairs (c, E), where $c \in \mathbb{Q}_{>0}$ and E is an equivalence class of a prime divisor over Z. For simplicity, we will denote the pair (c, E) by $c \operatorname{ord}_{E}$, although one should not really think of this object as a valuation unless Z is projective and irreducible.
Note that a prime divisor on Z does not always define a prime divisor over Z if Z is singular.
Definition B.1.2 A complex space X is unibranch if for all $x \in X$, the local ring $O_{X, x}$ is unibranch.
It is shown in the arXiv version of $\frac{\text { Xia }}{[x i a 23 \mathrm{Mabuch}}{ }^{2}$ Remark 2.7] that when X is a projective variety, this notion coincides with the corresponding algebraic notion of unibranchness.
thm:Zariskimain
Theorem B.1.1 (Zariski's main theorem) Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism between complex spaces. Assume that X is unibranch, then π has connected fibers.

We refer to [Dem 85 , Proof of Théorème 1.7].

def:modif

thm:HironakaChow

Definition B.1.3 A modification of a compact complex space X is a finite composition of blow-ups with smooth centers.

Theorem B.1.2 (Hironaka's Chow lemma) Suppose that X is a compact complex space. Then every proper bimeromorphic morphism to X can be dominated by a modification.
This follows from the proof of $\stackrel{\text { Hir75 }}{[\mathrm{Hir} 75}$, Corollary 2].
thm:res
Theorem B.1.3 Let X be a compact complex space. Then there is a modification $\pi: Y \rightarrow X$ such that Y is smooth.
See $\begin{aligned} & \text { BM97, Wlo09 } \\ & {[B 17197, \text { WO09]. }}\end{aligned}$
cor:primerealization
Corollary B.1.1 Let X be a compact complex space and E be a prime divisor over X. Then there is a modification $\pi: Y \rightarrow X$ such that Y is smooth and E can be realized as a prime divisor on Y.

B. 2 Plurisubharmonic functions

Let X be a complex space.
Definition B.2.1 A function $\varphi: X \rightarrow[-\infty, \infty)$ is plurisubharmonic if
(1) φ is not identically $-\infty$ on any irreducible component of X, and
(2) for any $x \in X$, there is an open neighbourhood V of x in X, a domain $\Omega \subseteq \mathbb{C}^{N}$, a closed immersion $V \hookrightarrow \Omega$ and a plurisubharmonic function $\tilde{\varphi} \in \operatorname{PSH}(\Omega)$ such that $\left.\varphi\right|_{\Omega \cap V}=\left.\tilde{\varphi}\right|_{\Omega \cap V}$.
The set of plurisubharmonic functions on X is denoted by $\operatorname{PSH}(X)$.
Similarly, if θ is a smooth closed ${ }^{1}$ real $(1,1)$-form on X, then a function $\varphi: X \rightarrow$ $[-\infty, \infty)$ is θ-plurisubharmonic if for any $x \in X$, there is an open neighbourhood V of x in X, a domain $\Omega \subseteq \mathbb{C}^{N}$, a closed immersion $V \hookrightarrow \Omega$ and a smooth function g on Ω such that $\theta=\left.\left(\mathrm{dd}^{\mathrm{c}} g\right)\right|_{V \cap \Omega}$ and $g+\left.\varphi\right|_{V} \in \operatorname{PSH}(V)$.
thm:FN
Theorem B.2.1 (Fornaess-Narasimhan) Let $\varphi: X \rightarrow[-\infty, \infty)$ be a function. Assume that φ is not identically $-\infty$ on any irreducible component of X, then the following are equivalent:
(1) φ is psh;
(2) φ is usc and for any morphism $f: \Delta \rightarrow X$ from the open unit disk Δ in \mathbb{C} to X such that $f^{*} \varphi$ is not identically $-\infty$, the pull-back $f^{*} \varphi$ is psh.
If further more X is unibranch, then these conditions are equivalent to

[^10](3) $\varphi \in \operatorname{PSH}\left(X^{\text {Reg }}\right)$, locally bounded from above near $X^{\text {Sing }}$ and $\varphi=\varphi^{*}$.

See $\frac{\text { FN80 }}{\text { [FSTR } 80] ~ a n d ~} \frac{\text { Dem85 }}{[D e m} 85$, Section 1.8].
cor: PSH Corollary B.2.1 Let $\pi: Y \rightarrow X$ be a proper bimeromorphic morphism between compact Kähler spaces. Let θ be a smooth closed real $(1,1)$-form on X. Assume that X is unibranch, then the pull-back induces a bijection

$$
\pi^{*}: \operatorname{PSH}(X, \theta) \xrightarrow{\sim} \operatorname{PSH}\left(Y, \pi^{*} \theta\right)
$$

See $\frac{\text { Dem } 85}{[D e m} 85$, Théorème 1.7] for the details.
Theorem B.2.2 (Grauert-Remmert) Let X be a unibranch complex space and Z be an analytic subset in X and $\varphi \in \operatorname{PSH}(X \backslash Z)$. Then the function φ admits an extension to $\operatorname{PSH}(X)$ in the following two cases:
(1) The set Z has codimension at least 2 everywhere.
(2) The set Z has codimension at least 1 everywhere and is locally bounded from above on an open neighbourhood of Z.

In both cases, the extension is unique and is given by

$$
\begin{equation*}
\varphi(x)=\varlimsup_{X \backslash Z \ni y \rightarrow x} \varphi(y), \quad x \in X \tag{B.1}
\end{equation*}
$$

\{eq:GRextvarphi\}

Prgof The problem is local in natural. By the local description of complex spaces [GR84, Section 3.4], we may assume that there is a domain $\Omega \subseteq \mathbb{C}^{n}$, a finite s-sheet branched covering $\Phi: X \rightarrow \Omega$ with branched locus contained in a proper analytic subset $V \subseteq \Omega$. We may assume that X is connected, $n \geq 1$ and $Z \subseteq \Phi^{-1}(V)$.

We first prove the uniqueness in both cases. For this purpose, we may assume that $Z=\Phi^{-1}(V)$. Fix $z \in Z$, we can find a complex line L passing through $\Phi(z)$ such that $L \cap V \cap B=\{\Phi(z)\}$, where B is a small open ball centered at $\Phi(z)$. After shrinking Ω, we may choose one isomorphic copy L^{\prime} of $L \cap B \backslash\{z\}$ in an neighbourhood of z. Since φ restricts to a subharmonic function on $L^{\prime} \cap\{z\}$, it follows that the value of $\varphi(z)$ is uniquely determined.
(2) Let ψ be the function defined in (B.1). We claim that $\psi \in \operatorname{PSH}(X)$. Since ψ clear extends φ, so our assertion is proved.

Let $f: \Delta \rightarrow X$ be a morphism. Due to Theorem B.2.1, we only need to show that $f^{*} \psi$ is subharmonic. We may assume that f is non-constant, so that $\Phi \circ f$ has full rank outside a discrete subset $S^{\prime} \subseteq \Delta$.

Step 1. We show that after enlarging S^{\prime} to a larger discrete subset, $f^{*} \psi$ is subharmonic outside S^{\prime}. We may assume that $0 \notin S^{\prime}$ and it suffices to show that $f^{*} \psi$ is subharmonic near 0 outside a discrete subset.

For this purpose, after shrinking Δ, we may assume that $\Phi \circ f$ has full rank everywhere. After shrinking Ω and Δ, we may furthermore assume that
(1) $A=\Phi \circ f(\Delta)$ is an analytic subset of Ω of dimension 1 , and
(2) $f(0)$ is the only preimage of $\Phi(f(0))$ with respect to Φ.

Thanks to the first condition, we may then find a discrete subset $S^{\prime \prime} \subseteq A$ such that Φ restricts to an unbranched covering on $A \backslash S^{\prime \prime}$.

Now it would suffice to show that

$$
\begin{equation*}
\psi \in \operatorname{PSH}\left(\Phi^{-1}\left(A \backslash S^{\prime \prime}\right)\right) \tag{B.2}
\end{equation*}
$$

Let $x \in A \backslash S^{\prime \prime}$. After further shrinking Ω around x (and replacing X by the corresponding connected component), we may assume that each ${\underset{R}{R}}^{2} \mathrm{Finnt}^{2} A \backslash S^{\prime \prime}$ has exactly one preimage in X. By an elementary argument (see [GR56, Hilfssatz 6]), the fibral integration $\Phi_{*} \psi \in \operatorname{PSH}(\Omega)$ and (B.2) follows.

Step 2. We show that $f^{*} \psi$ is subharmonic near S^{\prime}. Let $z \in S^{\prime}$, it suffices to show that $f^{*} \psi$ is subharmonic in an open neighbourhood of z.

After shrinking Φ along $\Phi \circ f(z)$, we may assume that X is connected and $\Phi^{-1}(\Phi \circ f(z))$ consists only of $f(z)$. Let $\eta \in \operatorname{PSH}(\Omega)$ be the fibral integration of ψ along Φ. Then $f^{*} \Phi^{*} \eta \in \mathrm{SH}(\Delta)$ and

$$
\varlimsup_{w \rightarrow z} \frac{1}{s} f^{*} \Phi^{*} \eta(w)=f^{*} \psi(z)
$$

Assume that

$$
\varlimsup_{w \rightarrow z} f^{*} \varphi(w)<f^{*} \psi(z)
$$

then

$$
\varlimsup_{w \rightarrow z} \frac{1}{s} f^{*} \Phi^{*} \eta(w) \leq \frac{1}{s} \varlimsup_{w \rightarrow z} f^{*} \varphi(w)+\frac{s-1}{s} f^{*} \psi(z)<f^{*} \psi(z)
$$

which is a contradiction. It follows that

$$
f^{*} \psi=\left(f^{*} \psi\right)^{*} \in \mathrm{SH}(\Delta) .
$$

(1) If suffices to show that φ is locally bounded near Z. Suppose that this fails. Then by (2) we can find $z \in Z$ and $x_{i} \in X \backslash(Z \cup V)(i \geq 1)$ such that

$$
\lim _{i \rightarrow \infty} \varphi\left(x_{i}\right)=\infty
$$

Let L be a complex line passing through $\Phi(z)$ intersecting $(\Phi(Z) \cup V) \cap B$ only at $\Phi(z)$, where $B \Subset B^{\prime}$ are two small open balls centered at $\Phi(z)$. We can find a sequence of lines L_{i} passing through $\Phi\left(x_{i}\right)$ converging to L such that $L_{i} \cap\left(B^{\prime} \cap \Phi(Z)\right)=\varnothing$ while $L_{i} \cap\left(B^{\prime} \cap V\right)$ is discrete. The Φ restricts to a branched covering over $B^{\prime} \cap L_{i}$ for all $i \geq 1$. Adding a constant to φ, we may assume that $\left.\varphi\right|_{\Phi^{-1}(L \cap \partial B)}<0$. We can then find an open neighbourhood U of $\Phi^{-1}(L \cap \partial B)$ so that $\left.\varphi\right|_{U}<0$. For large i we have $\Phi^{-1}\left(L_{i} \cap \partial B\right) \subseteq U$, it follows from the maximum principle that $\varphi\left(x_{i}\right) \leq 0$, which is a contradiction.

B. 3 Extensions of the results in the smooth setting

Let X be an irreducible unibranch compact Kähler space of dimension n. Let θ be a closed real smooth $(1,1)$-form on X. We say the cohomology class $[\theta]$ is big if for any proper bimeromorphic morphism $\pi: Y \rightarrow X$ from a compact Kähler manifold Y, [$\pi^{*} \theta$] is big.

The non-pluripolar products can be defined exactly as in Chapter 2 and the results in that chapter holds mutadis mutandis.

The results in Chapter 3 can be also be easily extended. The definition of the P-envelope remains unchanged. As for the \mathcal{I}-envelope, we define

Definition B.3.1 Given $\varphi \in \operatorname{PSH}(X, \theta)$, we define $P_{\theta}[\varphi]_{I} \in \operatorname{PSH}(X, \theta)$ as the unique element with the following property: if $\pi: Y \rightarrow X$ is a proper bimeromorphic morphism from a compact Kähler manifold Y, then

$$
\pi^{*} P_{\theta}[\varphi]_{I}=P_{\pi^{*} \theta}\left[\pi^{*} \varphi\right]_{I}
$$

It follows from Corollary B.2.1 and Proposition 3.2.5 that $P_{\theta}[\varphi]_{I}$ is independent of the choice of π and is well-defined. The other results can be easily extended.

Chapter 4 and Chapter 6 can be extended without big changes. The only exception is Theorem 6.2.6, where we do not have the notion of multiplier ideal sheaves. So we do not know how to extend this theorem.

Chapter 7 can be extended execpt for Section 7.3 for the same reason as above.
The trace operator defined in Chapter 8 can be extended as long as Y is not contained in $X^{\text {Sing }}$ using the embedded resolution. In general, due to the lack of Demailly regularization, we do not know how to define the trace operator.

Chapter 9 can be extended easily.
Chapter 10 is easy to extend since the partial Okounkov bodies are bimeromorphically invariant in the sense of Theorem 10.3.2.

Chapter 11 is unchanged, since we always take projective limits with respect to all models in that section.

Chapter 13 can be extended except for the parts involving the trace operator.
Chapter 14 can be easily extended by considering a resolution.
I do not know how to extend the results in Chapter 5 and Chapter 12 to the singular setting.

Appendix C

Almost semigroups

chap:almostsg
We introduce and study almost semigroups. In particular, we will define the Okounkov bodies of almost semigroups.

C. 1 Convex bodies

Fix $n \in \mathbb{N}$.
Definition C.1.1 A convex body in \mathbb{R}^{n} is a non-empty compact convex set.
We allow a convex body to have empty interior.
We write \mathcal{K}_{n} for the set of convex bodies in \mathbb{R}^{n}.
Definition C.1.2 The Hausdorff metric between $K_{1}, K_{2} \in \mathcal{K}_{n}$ is given by

$$
d_{\text {Haus }}\left(K_{1}, K_{2}\right):=\max \left\{\sup _{x_{1} \in K_{1}} \inf _{x_{2} \in K_{2}}\left|x_{1}-x_{2}\right|, \sup _{x_{2} \in K_{2}} \inf _{x_{1} \in K_{1}}\left|x_{1}-x_{2}\right|\right\}
$$

It is well-known that the metric space $\left(\mathcal{K}_{n}, d_{\text {Haus }}\right)$ is complete. We will need the following fundamental theorem:

Theorem C.1.1 (Blaschke selection theorem) The metric space ($\mathcal{K}_{n}, d_{\text {Haus }}$) is locally compact.
We refer to $\begin{gathered}\text { Sch14 } \\ {[5 \operatorname{Sc} 93}\end{gathered}$, Theorem 1.8.7] for details.
Theorem C.1.2 The Lebesgue volume vol: $\mathcal{K}_{n} \rightarrow \mathbb{R}_{\geq 0}$ is continuous.
See $\begin{gathered}\mathrm{Sch} 14 \\ {[5 \operatorname{Sch} 93}\end{gathered}$, Theorem 1.8.20].
Theorem C.1.3 Let $K_{i}, K \in \mathcal{K}_{n}(i \in \mathbb{N})$. Then $K_{i} \xrightarrow{d_{\text {Haus }}} K$ if and only if the following conditions hold:
(1) each point $x \in K$ is the limit of a sequence $x_{i} \in K_{i}$, and
(2) the limit of any convergent sequence $\left(x_{i_{j}}\right)_{j \in \mathbb{N}}$ with $x_{i_{j}} \in K_{i_{j}}$ lies in K, where i_{j} is a strictly increasing sequence in $\mathbb{Z}_{>0}$.
See $\begin{aligned} & \text { SSh14 } \\ & {[5 \mathrm{~S} 19} \\ & \text { is }\end{aligned}$, Theorem 1.8.8].
lma:latcvb
Lemma C.1.1 Let $K \in \mathcal{K}_{n}$ be a convex body with positive volume and $K^{\prime} \in \mathcal{K}_{n}$. Assume that for some large enough $k \in \mathbb{Z}_{>0}$, K^{\prime} contains $K \cap\left(k^{-1} \mathbb{Z}\right)^{n}$, then $K^{\prime} \supseteq K^{n^{1 / 2} k^{-1}}$.

Proof Let $x \in K^{n^{1 / 2} k^{-1}}$, by assumption, the closed ball B with center x and radius $n^{1 / 2} k^{-1}$ is contained in K. Observe that x can be written as a convex combination of points in $B \cap\left(k^{-1} \mathbb{Z}\right)^{n}$, which are contained in K^{\prime} by assumption. It follows that $x \in K^{\prime}$.

Given a sequence of convex bodies $K_{i}(i \in \mathbb{N})$, we set

$$
\underline{\lim }_{i \rightarrow \infty} K_{i}=\overline{\bigcup_{i=0}^{\infty} \bigcap_{j \geq i} K_{j}}
$$

Suppose K is the limit of a subsequence of K_{i}, we have

$$
\begin{equation*}
\underline{\lim }_{i \rightarrow \infty} K_{i} \subseteq K \tag{C.1}
\end{equation*}
$$

\{eq:liminflimsup\}

This is a simple consequence of Theorem C.1.3.
Lemma C.1.2 Let $K \subseteq \mathbb{R}^{n}$ be a convex body. Let

$$
t_{\min }:=\min \left\{t \in \mathbb{R}:\left\{x_{1}=t\right\} \cap K \neq \varnothing\right\}, \quad t_{\max }:=\max \left\{t \in \mathbb{R}:\left\{x_{1}=t\right\} \cap K \neq \varnothing\right\} .
$$

Then for $t \in\left[t_{\min }, t_{\max }\right]$, the map

$$
t \mapsto\left\{x_{1}=t\right\} \cap K
$$

is continuous with respect to the Hausdorff metric.
Here x_{1} denotes the first coordinate in \mathbb{R}^{n}.
Proof We may assume that $t_{\min }<t_{\max }$ as otherwise there is nothing to prove.
For each $t \in\left[t_{\min }, t_{\max }\right]$, we write $K_{t}=\left\{x_{1}=t\right\} \cap K$. Let $t_{j} \rightarrow t$ be a convergent sequence in $\left[t_{\min }, t_{\max }\right.$], we want to show that $K_{t_{j}}$ converges to K_{t} with respect to the Hausdorff metric. Recall that this amounts to the following two assertions:
(1) For each convergent sequence $x_{j} \in K_{t_{j}}$ with limit x, we have $x \in K_{t}$;
(2) Given any $x \in K_{t}$, up to replacing t_{j} by a subsequence, we can find $x_{j} \in K_{t_{j}}$ converging to x.

The first assertion is obvious. Let us prove the second. Take $x=\left(t, x^{\prime}\right) \in K_{t}$. Up to replacing t_{j} by a subsequence and taking the symmetry into account, we may assume that $t_{j}>t$ for all t. In particular, $t<t_{\text {max }}$.

We can find a point $y=\left(y^{1}, y^{\prime}\right) \in K$ such that $y^{1}>t$ (for example, there is always such a point with $y^{1}=t_{\max }$). Replacing t_{j} by a subsequence, we may assume that $t_{j} \in\left(t, y^{1}\right)$ for all j. Then it suffices to take

$$
x_{j}=\frac{y^{1}-t_{j}}{y^{1}-t} x+\frac{t_{j}-t}{y^{1}-t} y .
$$

Lemma C.1.3 Let $D_{j} \subseteq \mathbb{R}^{n}(j \geq 1)$ be a decreasing sequence of convex sets. Assume that $\mathrm{vol} \bigcap_{j} D_{j}>0$, then

$$
\overline{\bigcap_{j=1}^{\infty} D_{j}}=\bigcap_{j=1}^{\infty} \overline{D_{j}} .
$$

Proof The \subseteq direction is clear. By convexity, it suffices to show that both sides have the same positive volume. As the boundary of convex sets has zero Lebesgue measure, it follows that the volumes of both sides are equal to $\lim _{j \rightarrow \infty} \operatorname{vol} D_{j}$.

Definition C.1.3 Let $K, K^{\prime} \in \mathcal{K}_{n}$, their Minkowski sum is given by

$$
K+K^{\prime}:=\left\{x+x^{\prime}: x \in K, x^{\prime} \in K^{\prime}\right\} .
$$

Proposition C.1.1 The Minkowski sum $\mathcal{K}_{n} \times \mathcal{K}_{n} \rightarrow \mathcal{K}_{n}$ is continuous.
See $\begin{gathered}\text { Sch14 } \\ {[S \operatorname{Sch} 93}\end{gathered}$, Page 139].
thm:BrunnMin
Theorem C.1.4 (Brunn-Minkowski) Let $K, K^{\prime} \in \mathcal{K}_{n}$, then for any $t \in(0,1)$, we have

$$
\operatorname{vol}\left((1-t) K^{\prime}+t K\right) \geq\left(\operatorname{vol} K^{\prime}\right)^{(1-t)}(\operatorname{vol} K)^{t}
$$

C. 2 The Okounkov bodies of almost semigroups

sec:clo
Fix an integer $n \geq 0$. Fix a closed convex cone $C \subseteq \mathbb{R}^{n} \times \mathbb{R}_{\geq 0}$ such that $C \cap\left\{x_{n+1}=\right.$ $0\}=\{0\}$. Here x_{n+1} is the last coordinate of \mathbb{R}^{n+1}.

C.2.1 Generalities on semigroups

Write $\hat{\mathcal{S}}(C)$ for the set of subsets of $C \cap \mathbb{Z}^{n+1}$ and $\mathcal{S}(C)$ for the set of sub-semigroups $S \subseteq C \cap \mathbb{Z}^{n+1}$. For each $k \in \mathbb{N}$ and $S \in \hat{\mathcal{S}}(C)$, we write

$$
S_{k}:=\left\{x \in \mathbb{Z}^{n}:(x, k) \in S\right\}
$$

Note that S_{k} is a finite set by our assumption on C.

We introduce a pseudometric on $\hat{\mathcal{S}}(C)$ as follows:

$$
d_{\mathrm{sg}}\left(S, S^{\prime}\right):=\varlimsup_{k \rightarrow \infty} k^{-n}\left(\left|S_{k}\right|+\left|S_{k}^{\prime}\right|-2\left|\left(S \cap S^{\prime}\right)_{k}\right|\right)
$$

Here $|\bullet|$ denotes the cardinality of a finite set.

1ma:dps

Lemma C.2.1 The above defined $d_{\text {sg }}$ is a pseudometric on $\hat{\mathcal{S}}(C)$.
Proof Only the triangle inequality needs to be argued. Take $S, S^{\prime}, S^{\prime \prime} \in \hat{\mathcal{S}}(C)$. We claim that for any $k \in \mathbb{N}$,

$$
\left|S_{k}\right|+\left|S_{k}^{\prime}\right|-2\left|S_{k} \cap S_{k}^{\prime}\right|+\left|S_{k}^{\prime \prime}\right|+\left|S_{k}^{\prime}\right|-2\left|S_{k}^{\prime \prime} \cap S_{k}^{\prime}\right| \geq\left|S_{k}\right|+\left|S_{k}^{\prime \prime}\right|-2\left|S_{k} \cap S_{k}^{\prime \prime}\right|
$$

From this the triangle inequality follows. To argue the claim, we rearrange it to the following form:

$$
\left|S_{k}^{\prime}\right|-\left|S_{k} \cap S_{k}^{\prime}\right| \geq\left|S_{k}^{\prime} \cap S_{k}^{\prime \prime}\right|-\left|S_{k} \cap S_{k}^{\prime \prime}\right|
$$

which is obvious.
Given $S, S^{\prime} \in \hat{\mathcal{S}}(C)$, we say S is equivalent to S^{\prime} and write $S \sim S^{\prime}$ if $d_{\mathrm{sg}}\left(S, S^{\prime}\right)=0$. This is an equivalence relation by Lemma C.2.1.
lma:dBil
Lemma C.2.2 Given $S, S^{\prime}, S^{\prime \prime} \in \hat{\mathcal{S}}(C)$, we have

$$
d_{\mathrm{sg}}\left(S \cap S^{\prime \prime}, S^{\prime} \cap S^{\prime \prime}\right) \leq d_{\mathrm{sg}}\left(S, S^{\prime}\right)
$$

In particular, if $S^{i}, S^{\prime i} \in \hat{\mathcal{S}}(C)(i \in \mathbb{N})$ and $S^{i} \rightarrow S$, $S^{\prime i} \rightarrow S^{\prime}$, then

$$
S^{i} \cap S^{\prime i} \rightarrow S \cap S^{\prime}
$$

Proof Observe that for any $k \in \mathbb{N}$,

$$
\left|S_{k} \cap S_{k}^{\prime \prime}\right|-\left|S_{k} \cap S_{k}^{\prime} \cap S_{k}^{\prime \prime}\right| \leq\left|S_{k}\right|-\left|S_{k} \cap S_{k}^{\prime}\right|
$$

The same holds if we interchange S with S^{\prime}. It follows that

$$
\left|S_{k} \cap S_{k}^{\prime \prime}\right|+\left|S_{k}^{\prime} \cap S_{k}^{\prime \prime}\right|-2\left|S_{k} \cap S_{k}^{\prime} \cap S_{k}^{\prime \prime}\right| \leq\left|S_{k}\right|+\left|S_{k}^{\prime}\right|-2\left|S_{k} \cap S_{k}^{\prime}\right|
$$

The first assertion follows.
Next we compute

$$
\begin{aligned}
d_{\mathrm{sg}}\left(S^{i} \cap S^{\prime i}, S \cap S^{\prime}\right) & \leq d_{\mathrm{sg}}\left(S^{i} \cap S^{\prime i}, S^{i} \cap S^{\prime}\right)+d_{\mathrm{sg}}\left(S^{i} \cap S^{\prime}, S \cap S^{\prime}\right) \\
& \leq d_{\mathrm{sg}}\left(S^{\prime i}, S^{\prime}\right)+d_{\mathrm{sg}}\left(S^{i}, S\right)
\end{aligned}
$$

and the second assertion follows.
The volume of $S \in \mathcal{S}(C)$ is defined as

$$
\operatorname{vol} S:=\lim _{k \rightarrow \infty}(k a)^{-n}\left|S_{k a}\right|=\varlimsup_{k \rightarrow \infty} k^{-n}\left|S_{k}\right|
$$

where a is a sufficiently divisible positive integer. The existence $\underset{k}{ } \rho f$ f the limit and its independence from a both follow from the more precise result $\left[K^{1} 12\right.$, Theorem 2].
lma:vollip
Lemma C.2.3 Let $S, S^{\prime} \in \mathcal{S}(C)$, then

$$
\left|\operatorname{vol} S-\operatorname{vol} S^{\prime}\right| \leq d_{\mathrm{sg}}\left(S, S^{\prime}\right)
$$

Proof By definition, we have

$$
d_{\mathrm{sg}}\left(S, S^{\prime}\right) \geq \operatorname{vol} S+\operatorname{vol} S^{\prime}-2 \operatorname{vol}\left(S \cap S^{\prime}\right)
$$

It follows that $\operatorname{vol} S-\operatorname{vol} S^{\prime} \leq d_{\mathrm{sg}}\left(S, S^{\prime}\right)$ and $\operatorname{vol} S^{\prime}-\operatorname{vol} S \leq d_{\mathrm{sg}}\left(S, S^{\prime}\right)$.
We define $\overline{\mathcal{S}}(C)$ as the closure of $\mathcal{S}(C)$ in $\hat{\mathcal{S}}(C)$ with respect to the topology defined by the pseudometric d. By Lemma C.2.3, vol: $\mathcal{S}(C) \rightarrow \mathbb{R}$ admits a unique 1-Lipschitz extension to

$$
\begin{equation*}
\operatorname{vol}: \overline{\mathcal{S}}(C) \rightarrow \mathbb{R} \tag{C.2}
\end{equation*}
$$

\{eq:volex\}
lma:volcompa
Lemma C.2.4 Suppose that $S, S^{\prime} \in \overline{\mathcal{S}}(C)$ and $S \subseteq S^{\prime}$. Then

$$
\operatorname{vol} S \leq \operatorname{vol} S^{\prime}
$$

Proof Take sequences $S^{j}, S^{\prime j}$ in $\mathcal{S}(C)$ such that $S^{j} \rightarrow S, S^{\prime j} \rightarrow S^{\prime}$. By Lemma C.2.2, after replacing S^{j} by $S^{j} \cap S^{\prime j}$, we may assume that $S^{j} \subseteq S^{\prime j}$ for each j. Then our assertion follows easily.

C.2.2 Okounkov bodies of semigroups

Given $S \in \hat{\mathcal{S}}(C)$, we will write $C(S) \subseteq C$ for the closed convex cone generated by $S \cup\{0\}$. Moreover, for each $k \in \mathbb{Z}_{>0}$, we define

$$
\Delta_{k}(S):=\operatorname{Conv}\left\{k^{-1} x \in \mathbb{R}^{n}: x \in S_{k}\right\} \subseteq \mathbb{R}^{n}
$$

Here Conv denotes the convex hull.
Definition C.2.1 Let $\mathcal{S}^{\prime}(C)$ be the subset of $\mathcal{S}(C)$ consisting of semigroups S such that S generates \mathbb{Z}^{n+1} (as an Abelian group).

Note that for any $S \in \mathcal{S}^{\prime}(C)$, the cone $C(S)$ has full dimension (i.e. the topological interior is non-empty). Given a full-dimensional subcone $C^{\prime} \subseteq C$, it is clear that $C^{\prime} \cap \mathbb{Z}^{n+1} \in \mathcal{S}^{\prime}(C)$.

This class behaves well under intersections:
Lemma C.2.5 Let $S, S^{\prime} \in \mathcal{S}^{\prime}(C)$. Assume that $\operatorname{vol}\left(S \cap S^{\prime}\right)>0$, then $S \cap S^{\prime} \in \mathcal{S}^{\prime}(C)$.
The lemma obviously fails if $\operatorname{vol}\left(S \cap S^{\prime}\right)=0$.

Proof We first observe that the cone $C(S) \cap C\left(S^{\prime}\right)$ has full dimension since otherwise $\operatorname{vol}\left(S \cap S^{\prime}\right)=0$. Take a full-dimensional subcone C^{\prime} in $C(S) \cap_{\mathbb{K} K}\left(S^{\prime}\right)$ such that C^{\prime} intersects the boundary of $C(S) \cap C\left(S^{\prime}\right)$ only at 0 . It follows from [KK12, Theorem 1] that there is an integer $N>0$ such that for any $x \in \mathbb{Z}^{n+1} \cap C^{\prime}$ with Euclidean norm no less than N lies in $S \cap S^{\prime}$. Therefore, $S \cap S^{\prime} \in \mathcal{S}^{\prime}(C)$.
${ }_{\text {KK12 }}^{\text {KKK12 }}$.
def:0kokk
Definition C.2.2 Given $S \in \mathcal{S}^{\prime}(C)$, its Okounkov body is defined as follows

$$
\Delta(S):=\left\{x \in \mathbb{R}^{n}:(x, 1) \in C(S)\right\}
$$

thm:HausOkoun
Theorem C.2.1 For each $S \in \mathcal{S}^{\prime}(C)$, we have

$$
\begin{equation*}
\operatorname{vol} S=\lim _{k \rightarrow \infty} k^{-n}\left|S_{k}\right|=\operatorname{vol} \Delta(S)>0 . \tag{C.3}
\end{equation*}
$$

Moreover, as $k \rightarrow \infty$,

$$
\begin{equation*}
\Delta_{k}(S) \xrightarrow{d_{\text {Haus }}} \Delta(S) . \tag{C.4}
\end{equation*}
$$

This is essentially groved in [WN14 14 , Lemma 4.8], which itself follows from a theorem
 see TKK^{12}, Theorem 2].
Proof The equalities (C.3) follow from the general theorem $\begin{aligned} & \mathbb{K K} 12 \\ & {[K K 12, ~ T h e o r e m ~ 2] . ~}\end{aligned}$
It remains to prove (C.4). By the argument of [W1V14, Lemma 4.8], for any compact set $K \subseteq \operatorname{Int} \Delta(S)$, there is $k_{0}>0$ such that for any $k \geq k_{0}, \alpha \in K \cap\left(k^{-1} \mathbb{Z}\right)^{n}$ implies that $\alpha \in \Delta_{k}(S)$.

In particular, taking $K=\Delta(S)^{\delta}$ for any $\delta>0$ and applying Lemma C.1.1, we find

$$
d_{\text {Haus }}\left(\Delta(S), \Delta_{k}(S)\right) \leq n^{1 / 2} k^{-1}+\delta
$$

when k is large enough. This implies (C.4).
Corollary C.2.1 Let $S, S^{\prime} \in \mathcal{S}^{\prime}(C)$. Assume that $\operatorname{vol}\left(S \cap S^{\prime}\right)>0$, then we have

$$
d_{\mathrm{sg}}\left(S, S^{\prime}\right)=\operatorname{vol}(S)+\operatorname{vol}\left(S^{\prime}\right)-2 \operatorname{vol}\left(S \cap S^{\prime}\right)
$$

Proof This is a direct consequence of Lemma C.2.5 and (C.3).

lma:regularizat

Lemma C.2.6 Given $S \in \mathcal{S}^{\prime}(C)$, we have $S \sim \operatorname{Reg}(S)$.
Recall that the regularization $\operatorname{Reg}(S)$ of S is defined as $C(S) \cap \mathbb{Z}^{n+1}$.
Proof Since S and $\operatorname{Reg}(S)$ have the same Okounkov body, we have vol $S=\operatorname{vol} \operatorname{Reg}(S)$ by Theorem C.2.1. By Corollary C.2.1 again,

$$
d_{\mathrm{sg}}(\operatorname{Reg}(S), S)=\operatorname{vol} \operatorname{Reg}(S)-\operatorname{vol} S=0 .
$$

Proof Observe that $\operatorname{vol}\left(S \cap S^{\prime}\right)>0$, as otherwise

$$
d_{\mathrm{sg}}\left(S, S^{\prime}\right) \geq \operatorname{vol} S+\operatorname{vol} S^{\prime}>0
$$

which is a contradiction.
It follows from Lemma C.2.5 that $S \cap S^{\prime} \in \mathcal{S}^{\prime}(C)$. It suffices to show that $\Delta(S)=$ $\Delta\left(S \cap S^{\prime}\right)$. In fact, suppose that this holds, since $\operatorname{vol} \Delta\left(S^{\prime}\right)=\operatorname{vol} S^{\prime}=\operatorname{vol} S=\operatorname{vol} \Delta(S)$, the inclusion $\Delta\left(S^{\prime}\right) \supseteq \Delta\left(S \cap S^{\prime}\right)=\Delta(S)$ is an equality.

By Lemma C.2.2, we can therefore replace S^{\prime} by $S \cap S^{\prime}$ and assume that $S \supseteq S^{\prime}$. Then clearly $\Delta(S) \supseteq \Delta\left(S^{\prime}\right)$. By (C.3),

$$
\operatorname{vol} \Delta(S)=\operatorname{vol} \Delta\left(S^{\prime}\right)>0
$$

Thus, $\Delta(S)=\Delta\left(S^{\prime}\right)$.
Lemma C.2.8 Suppose that $S^{i} \in \mathcal{S}^{\prime}(C)$ is a decreasing sequence such that

$$
\lim _{i \rightarrow \infty} \operatorname{vol} S^{i}>0
$$

Then there is $S \in \mathcal{S}^{\prime}(C)$ such that $S^{i} \rightarrow S$.
In general, one cannot simply take $S=\bigcap_{i} S^{i}$. For example, consider the sequence $S^{i}=S^{1} \cap\left\{x_{n+1} \geq i\right\}$.
Proof By Lemma C.2.6, we may replace S^{i} by its regularization and assume that $S^{i}=C\left(S^{i}\right) \cap \mathbb{Z}^{n+1}$. We define

$$
S=\left(\bigcap_{i=1}^{\infty} C\left(S^{i}\right)\right) \cap \mathbb{Z}^{n+1}
$$

Since $\bigcap_{i=1}^{\infty} C\left(S^{i}\right)$ is a full-dimensional cone by assumption, we have $S \in \mathcal{S}^{\prime}(C)$. By Corollary C.2.1 and Theorem C.2.1, we can compute the distance

$$
d_{\mathrm{sg}}\left(S, S^{i}\right)=\operatorname{vol} S^{i}-\operatorname{vol} S=\operatorname{vol} \Delta\left(S^{i}\right)-\operatorname{vol} \Delta(S)
$$

which tends to 0 by construction.

C.2.3 Okounkov bodies of almost semigroups

subsec:Okobalmosg
Definition C.2.3 We define $\overline{\mathcal{S}}^{\prime}(C)$ with positive volume. An element in ${\overline{\mathcal{S}^{\prime}(C)}}_{>0}$ is called an almost semigroup in C.

Recall that the volume here is defined in (C.2).
Our goal is to prove the following theorem:

Theorem C.2.2 The Okounkov body map $\Delta: \mathcal{S}^{\prime}(C) \rightarrow \mathcal{K}_{n}$ as defined in Definition C.2.2 admits a unique continuous extension

$$
\begin{equation*}
\Delta:{\overline{\mathcal{S}^{\prime}(C)}}_{>0} \rightarrow \mathcal{K}_{n} \tag{C.5}
\end{equation*}
$$

Moreover, for any $S \in{\overline{\mathcal{S}^{\prime}(C)}}_{>0}$, we have

$$
\begin{equation*}
\operatorname{vol} S=\operatorname{vol} \Delta(S) \tag{C.6}
\end{equation*}
$$

\{eq:volWfinal\}
Proof The uniqueness of the extension is clear as long as it exists. Moreover, (C.6) follows easily from Theorem C.2.1 and Theorem C.1.2 by continuity. It remains to argue the existence of the continuous extension. We first construct an extension and prove its continuity.

Step 1. We construct the desired map (C.5). Let $S \in{\overline{\mathcal{S}^{\prime}(C)}}_{>0}$. We wish to construct a convex body $\Delta(S) \in \mathcal{K}_{n}$.

Let $S^{i} \in \mathcal{S}^{\prime}(C)$ be a sequence that converges to S such that

$$
d_{\mathrm{sg}}\left(S^{i}, S^{i+1}\right) \leq 2^{-i}
$$

For each $i, j \geq 0$, we introduce

$$
S^{i, j}=S^{i} \cap S^{i+1} \cdots \cap S^{i+j}
$$

Then by Lemma C.2.2,

$$
d_{\mathrm{sg}}\left(S^{i, j}, S^{i, j+1}\right) \leq 2^{-i-j}
$$

Take $i_{0}>0$ large enough so that for $i \geq i_{0}, \operatorname{vol} S^{i}>2^{-1} \operatorname{vol} S$ and $2^{2-i}<\operatorname{vol} S$ and hence

$$
\operatorname{vol} S^{i}-\operatorname{vol} S^{i, j} \leq d_{\mathrm{sg}}\left(S^{i, 0}, S^{i, 1}\right)+d_{\mathrm{sg}}\left(S^{i, 1}, S^{i, 2}\right)+\cdots+d_{\mathrm{sg}}\left(S^{i, j-1}, S^{i, j}\right) \leq 2^{1-i}
$$

It follows that $\operatorname{vol} S^{i, j}>2^{-1} \operatorname{vol} S-2^{1-i}>0$ whenever $i \geq i_{0}$. In particular, by Lemma C.2.5, $S^{i, j} \in \mathcal{S}^{\prime}(C)$ for $i \geq i_{0}$.

By Lemma C.2.8, for $i \geq i_{0}$, there exists $T^{i} \in \mathcal{S}^{\prime}(C)$ such that $S^{i, j} \rightarrow T^{i}$ as $j \rightarrow \infty$. Moreover,

$$
d_{\mathrm{sg}}\left(T^{i}, S\right)=\lim _{j \rightarrow \infty} d_{\mathrm{sg}}\left(S^{i, j}, S\right) \leq \lim _{j \rightarrow \infty} d_{\mathrm{sg}}\left(S^{i, j}, S^{i}\right)+d_{\mathrm{sg}}\left(S^{i}, S\right) \leq 2^{1-i}+d_{\mathrm{sg}}\left(S^{i}, S\right)
$$

Therefore, $T^{i} \rightarrow S$. We then define

$$
\Delta(S):=\overline{\bigcup_{i=i_{0}}^{\infty} \Delta\left(T^{i}\right)} .
$$

In other words, we have defined

$$
\Delta(S):=\underline{\lim }_{i \rightarrow \infty} \Delta\left(S^{i}\right)
$$

This is an honest limit: if Δ is the limit of a subsequence of $\Delta\left(S^{i}\right)$, then $\Delta(S) \subseteq \Delta$ by (C.1). Comparing the volumes, we find that equality holds. So by Theorem C.1.1,

$$
\begin{equation*}
\Delta(S)=\lim _{i \rightarrow \infty} \Delta\left(S^{i}\right) \tag{C.7}
\end{equation*}
$$

Next we claim that $\Delta(S)$ as defined above does not depend on the choice of the sequence S^{i}. In fact, suppose that $S^{\prime i} \in \mathcal{S}^{\prime}(C)$ is another sequence satisfying the same conditions as S^{i}. The same holds for $R^{i}:=S^{i+1} \cap S^{\prime i+1}$. It follows that

$$
\lim _{i \rightarrow \infty} \Delta\left(R^{i}\right) \subseteq \lim _{i \rightarrow \infty} \Delta\left(S^{i}\right)
$$

Comparing the volumes, we find that equality holds. The same is true with $S^{\prime i}$ in place of S^{i}. So we conclude that $\Delta(S)$ as in (C.7) does not depend on the choices we made.

Step 2. It remains to prove the continuity of Δ defined in Step 1. Suppose that $S^{i} \in{\overline{\mathcal{S}^{\prime}(C)}}_{>0}$ is a sequence with limit $S \in{\overline{\mathcal{S}^{\prime}(C)}}_{>0}$. We want to show that

$$
\begin{equation*}
\Delta\left(S^{i}\right) \xrightarrow{d_{\text {Haus }}} \Delta(S) . \tag{C.8}
\end{equation*}
$$

$$
\begin{array}{|l|}
\hline \text { \{eq:temp5\} } \\
\hline
\end{array}
$$

We first reduce to the case where $S^{i} \in \mathcal{S}^{\prime}(C)$. By (C.7), for each i, we can choose $T^{i} \in \mathcal{S}^{\prime}(C)$ such that $d_{\mathrm{sg}}\left(S^{i}, T^{i}\right)<2^{-i}$ and $d_{\text {Haus }}\left(\Delta\left(S^{i}\right), \Delta\left(T^{i}\right)\right)<2^{-i}$. If we have shown $\Delta\left(T^{i}\right) \xrightarrow{d_{\text {Haus }}} \Delta(S)$, then (C.8) follows immediately.

Next we reduce to the case where $d_{\mathrm{sg}}\left(S^{i}, S^{i+1}\right) \leq 2^{-i}$. In fact, thanks to Theorem C.1.1, in order to prove (C.8), it suffices to show that each subsequence of $\Delta\left(S^{i}\right)$ admits a subsequence that converges to $\Delta(S)$. Hence, we easily reduce to the required case.

After these reductions, (C.8) is nothing but (C.7).
Remark C.2.1 As the readers can easily verify from the proof, for any $S \in{\overline{\mathcal{S}^{\prime}(C)}}_{>0}$, there is $S^{\prime} \in \mathcal{S}^{\prime}(C)$ such that $S \sim S^{\prime}$.

Corollary C.2.2 Suppose that $S, S^{\prime} \in{\overline{\mathcal{S}^{\prime}(C)}}_{>0}$ with $S \subseteq S^{\prime}$, then

$$
\begin{equation*}
\Delta(S) \subseteq \Delta\left(S^{\prime}\right) \tag{C.9}
\end{equation*}
$$

Proof Let $S^{j}, S^{\prime j} \in \mathcal{S}^{\prime}(C)$ be elements such that $S^{j} \rightarrow S, S^{\prime j} \rightarrow S^{\prime}$. Then it follows from Lemma C.2.2 that $S^{j} \cap S^{\prime j} \rightarrow S$. Since vol is continuous, for large $j, S^{j} \cap S^{\prime j}$ has positive volume and hence lies in $\mathcal{S}^{\prime}(C)$ by Lemma C.2.5. We may therefore replace S^{j} by $S^{j} \cap S^{\prime j}$ and assume that $S^{j} \subseteq S^{\prime j}$. Hence, (C.9) follows from the continuity of Δ proved in Theorem C.2.2.

Remark C.2.2 As the readers can easily verify, the construction of Δ is independent of the choice of C in the following sense: Suppose that C^{\prime} is another cone satisfying the same assumptions as C and $C^{\prime} \supseteq C$, then the Okounkov body map $\Delta:{\overline{\mathcal{S}^{\prime}\left(C^{\prime}\right)}}_{>0} \rightarrow \mathcal{K}_{n}$ is an extension of the corresponding map (C.5). We will constantly use this fact without further explanations.

Index

Symbols	
$B_{v, \varphi, v}^{k} \quad 228$	
$E_{\theta}^{\boldsymbol{\phi}} 42$	
$E_{\theta, K}[\varphi](v)$](v) 217
$E_{\theta, K}[\varphi]_{I}(v) 217$	
$E_{\theta} 42$	
$F_{\varphi} 196$	
$P_{\theta+\omega^{\prime}}[\bullet]_{I} \quad 205$	$]_{I} \quad 205$
$P_{\theta+\omega}[\bullet]_{I} 207$	
$P_{\theta, K}[\varphi](v) 217$	
$P_{\theta}[\Gamma]_{I} 134$	134
$P_{\theta}[\varphi] 36$	
$P_{\theta}[\varphi]_{I} 45$	
$V_{\boldsymbol{\theta}} \quad 31$	
Y. 145	
BM (K, v) 227	
$\operatorname{Bir}(\boldsymbol{X}) 183$	
DH($\Delta_{\text {• }}$) 178	
DH(Г) 214	
$\Delta(\omega, \varphi) \quad 65$	
$\Delta(\theta, \varphi) \quad 196$	
$\Delta_{k}(\theta, \varphi) \quad 150$	
$\Delta_{Y_{\bullet}}(T) 164$	
$\Delta_{Y \cdot}(\alpha) \quad 163$	
$\Delta_{v}(L) \quad 152$	
$\Delta_{\nu}(L, h) \quad 153$	
$\Delta_{k, T}(L) \quad 151$	
$\Delta_{k, T}(\boldsymbol{\theta}, \varphi) 151$	
$\Gamma(\theta, \varphi) \quad 150$	
$\Gamma^{\infty}(\theta, \varphi) \quad 15$	
$\Gamma_{\text {max }} 206$	
$\operatorname{PSH}(X) \quad 6$	6
$\operatorname{PSH}(X, \theta) \quad 19$	
$\operatorname{PSH}(X, \theta ; \phi)$	$\boldsymbol{\theta} ; \boldsymbol{\phi}) 41$
$\operatorname{PSH}(\Omega) \quad 4$	4
$\mathrm{PSH}^{\mathrm{NA}}(X, \theta)$	$X, \theta) 205$

```
\(\operatorname{PSH}^{\mathrm{NA}}(X, \theta)_{>0} \quad 134\)
\(\operatorname{PSH}^{\mathrm{NA}}(X, \theta ; \phi) \quad 134\)
\(\mathrm{PSH}_{\text {tor }}(X, \omega) 63\)
\(\operatorname{QPSH}(X) 19\)
\(\operatorname{Res}_{Y} \mathcal{I} 19\)
\(\mathrm{SH}(\Omega) \quad 4\)
Sing \(T 186\)
Sing \(_{X} T 186\)
\(\mathrm{TC}(X, \theta)_{>0} \quad 125\)
\(\mathrm{TC}(X, \theta ; \phi) \quad 125\)
TC( \(\Delta\) ) 174
\(\mathrm{TC}^{1}(X, \theta ; \phi) \quad 127\)
\(\mathrm{TC}^{1}(\Delta) \quad 174\)
\(\operatorname{TC}^{\infty}(X, \theta ; \phi) \quad 127\)
\(\mathrm{TC}^{\infty}(\Delta) \quad 174\)
\(\operatorname{Tr}_{Y}(T) \quad 108\)
\(\operatorname{Tr}_{Y}(\varphi) \quad 108\)
Trop 62
\(\beta_{v, \varphi, v}^{k} \quad 228\)
\(\operatorname{cor}\left(Y_{\bullet}, \pi\right) \quad 148\)
\(\mathrm{dd}^{\mathrm{c}} \varphi_{1} \wedge \cdots \wedge \mathrm{dd}^{\mathrm{c}} \varphi_{p} \quad 28\)
\(\ell \vee \ell^{\prime} \quad 58\)
\(\mathbb{D}(T) \quad 186\)
E 57
\(\mathbf{E}\left(\Delta_{\bullet}\right) 174\)
\(\mathbf{E}^{\boldsymbol{\phi}} \quad 56,127\)
\(\mathcal{E}(X, \theta ; \phi) \quad 41\)
\(\mathcal{E}^{1}(X, \theta ; \phi) \quad 41\)
\(\mathcal{E}^{\infty}(X, \theta ; \phi) \quad 41\)
\(\mathcal{E}_{[\varphi], K}^{\theta} \quad 223\)
\(\mathcal{I}(\varphi) \quad 17\)
\(\mathcal{I}_{\infty}(\varphi) \quad 22\)
\(\mathcal{L}_{k, \varphi} \quad 229\)
\(\mathcal{R}(X, \theta) \quad 56\)
\(\mathcal{R}(X, \theta ; \phi) 56\)
\(\mathcal{R}^{1}(X, \theta) \quad 56\)
\(\mathcal{R}^{1}(X, \theta ; \phi) \quad 56\)
```

$\mathcal{R}^{\infty}(X, \theta) \quad 56$
$\mathcal{R}^{\infty}(X, \theta ; \phi) \quad 56$
$\mathcal{Z}_{+}(X) \quad 24$
$\mathcal{Z}_{+}(X, \alpha) \quad 24$
$\nu(\varphi, E) \quad 17$
$\nu(\varphi, F) \quad 17$
$\nu(\varphi, x) \quad 15$
$v_{Y_{0}} \quad 145$
$v_{Y_{\boldsymbol{\bullet}}}(T) \quad 146$
$\sim_{I} \quad 45$
$\varphi \wedge \psi \quad 35$
$\varphi \leq \psi \quad 19$
$\varphi \leq_{P} \psi \quad 73$
$\varphi \leq_{I} \psi \quad 76$
$\varphi \sim \psi \quad 19$
vol Г 207
$\operatorname{vol} \mathbb{D} 185$
$\operatorname{vol} \theta_{\varphi} \quad 47$
$\operatorname{vol}(\theta, \varphi) \quad 46$
$d_{S} \quad 80$

A

admissible flag 145
analytic singularities 20

B

Bedford-Taylor product 28
Bernstein-Markov 227
big Cartier b-divisor 184
big class 24
birational model 183
bounded geodesic ray 56
bounded Okounkov test curve 174
bounded test curve 127
bounded test function 175

C

Cartier b-divisor 183
co-pluripolar set 6
complexification 51

D

Duistermaat-Heckman measure 178, 214

F

finite energy 42
full mass 42

G
generic Lelong number 17
gentle analytic singularities 22
geodesic 53
geodesic ray 56
geodesic ray with finite energy 56
H
Hermitian big line bundle 103
Hermitian form 24
Hermitian line bundle 25
Hermitian metric 25
Hermitian pseudoeffective line bundle 103

I

I-envelope 45, 134
I-equivalent 45
I-good 98
I-model potential 45
I-model test curve 134
I-more singular 76
inverse Legendre transform 175
K
Kähler currents 24
L
Legendre transform 128, 175
Lelong number 15
log singularities 21
M
minimal singularities 42
Minkowski sum 259
model potential 37
Monge-Ampère energy 42
multiplier ideal sheaf 17
N
neat analytic singularities 20
nef Cartier b-divisor 184
nef Weil b-divisor 184
Newton body 65, 196
non-pluripolar 6
non-pluripolar product 28,30
0
Okounkov body 152, 163
Okounkov test curve 174
Okounkov test curve with finite energy 174

P

P-envelope 36
P-more singular 73
P-singularity type 73
partial Bergman kernels 227
partial Bergman measures 228
partial Donaldson functional 229
partial equilibrium energy 223
partial Okounkov body 153, 164
plurifine topology 11,14
pluripolar set 6
plurisubharmonic function 4,6
plurisubharmonic metric 25
polar locus 24
positive currents 23
pseudo-effective class 24
pseudo-effective Weil b-divisor 184

Q

quasi-equisingular approximation 22
quasi-plurisubharmonic function 19

R

radial Monge-Ampère energy 56
relative finite energy 41
relative full mass 41
relative I-envelope 217
relative minimal singularities 41
relative P-envelope 217
restriction ideal 19
rooftop operator 35
S
singular Hermitian form 25
singularity b-divisor 186
singularity divisor 185
smooth flag 146
subgeodesic 51
subharmonic function 3
T
test curve 125
test curve with finite energy 127
test function 175
test function with finite energy 175
think subset 11
trace operator 108

V
valuation 146
volume 46,185, 207

W
weighted subset 227
Weil b-divisor 183

References

BB10. Robert Berman and Sébastien Boucksom. Growth of balls of holomorphic sections and energy at equilibrium. Invent. Math., 181(2):337-394, 2010.
BB13. Robert J. Berman and Bo Berndtsson. Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties. Ann. Fac. Sci. Toulouse Math. (6), 22(4):649-711, 2013.

BBGHdJ21. A. Botero, J. I. Burgos Gil, D. Holmes, and R. de Jong. Chern-Weil and HilbertSamuel formulae for singular hermitian line bundles, 2021.
BBGHdJ22. A. Botero, J. I. Burgos Gil, D. Holmes, and R. de Jong. Rings of Siegel-Jacobi forms of bounded relative index are not finitely generated, 2022.
BBJ21. Robert J. Berman, Sébastien Boucksom, and Mattias Jonsson. A variational approach to the Yau-Tian-Donaldson conjecture. J. Amer. Math. Soc., 34(3):605-652, 2021.
BBWN11. Robert Berman, Sébastien Boucksom, and David Witt Nyström. Fekete points and convergence towards equilibrium measures on complex manifolds. Acta Math., 207(1):1-27, 2011.
BDPP13. Sébastien Boucksom, Jean-Pierre Demailly, Mihai Păun, and Thomas Peternell. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom., 22(2):201-248, 2013.
BEGZ10. Sébastien Boucksom, Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi. MongeAmpère equations in big cohomology classes. Acta Math., 205(2):199-262, 2010.
Ber09. Robert J. Berman. Bergman kernels and equilibrium measures for line bundles over projective manifolds. Amer. J. Math., 131(5):1485-1524, 2009.
Ber14. Robert J. Berman. Determinantal point processes and fermions on complex manifolds: large deviations and bosonization. Comm. Math. Phys., 327(1):1-47, 2014.
BFJ08. Sébastien Boucksom, Charles Favre, and Mattias Jonsson. Valuations and plurisubharmonic singularities. Publ. Res. Inst. Math. Sci., 44(2):449-494, 2008.
BFJ09. Sébastien Boucksom, Charles Favre, and Mattias Jonsson. Differentiability of volumes of divisors and a problem of Teissier. J. Algebraic Geom., 18(2):279-308, 2009.
BGPS14. José Ignacio Burgos Gil, Patrice Philippon, and Martín Sombra. Arithmetic geometry of toric varieties. Metrics, measures and heights. Astérisque, pages vi+222, 2014.
BM97. Edward Bierstone and Pierre D. Milman. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math., 128(2):207302, 1997.
Bon98. Laurent Bonavero. Inégalités de morse holomorphes singulières. J. Geom. Anal., 8(3):409-425, 1998.
Bou02a. S. Boucksom. Cônes positifs des variétés complexes compactes. PhD thesis, Université Joseph-Fourier-Grenoble I, 2002.
Bou02b. Sébastien Boucksom. On the volume of a line bundle. Internat. J. Math., 13(10):10431063, 2002.

BT76 BT82

Bou17. Sébastien Boucksom. Singularities of plurisubharmonic functions and multiplier ideals. http://sebastien. boucksom. perso.math.cnrs.fr/notes/L2.pdf, 2017.
BT76. Eric Bedford and B. A. Taylor. The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math., 37(1):1-44, 1976.
BT82. Eric Bedford and B. A. Taylor. A new capacity for plurisubharmonic functions. Acta Math., 149(1-2):1-40, 1982.
BT87. Eric Bedford and B. A. Taylor. Fine topology, Šilov boundary, and $\left(d d^{c}\right)^{n}$. J. Funct. Anal., 72(2):225-251, 1987.
Cao14. Junyan Cao. Numerical dimension and a Kawamata-Viehweg-Nadel-type vanishing theorem on compact Kähler manifolds. Compos. Math., 150(11):1869-1902, 2014.
Car83. Lennart Carleson. Selected problems on exceptional sets. In Selected reprints, Wadsworth Math. Ser., pages iv+100. Wadsworth, Belmont, CA, 1983.
CDG03. David M. J. Calderbank, Liana David, and Paul Gauduchon. The Guillemin formula and Kähler metrics on toric symplectic manifolds. J. Symplectic Geom., 1(4):767-784, 2003.

CDM17. JunYan Cao, Jean-Pierre Demailly, and Shin-ichi Matsumura. A general extension theorem for cohomology classes on non reduced analytic subspaces. Sci. China Math., 60(6):949-962, 2017.
CFK^{+}17. Ciro Ciliberto, Michal Farnik, Alex Küronya, Victor Lozovanu, Joaquim Roé, and Constantin Shramov. Newton-Okounkov bodies sprouting on the valuative tree. Rend. Circ. Mat. Palermo (2), 66(2):161-194, 2017.
CGSZ19. Dan Coman, Vincent Guedj, Sibel Sahin, and Ahmed Zeriahi. Toric pluripotential theory. Ann. Polon. Math., 123(1):215-242, 2019.
CLS11. David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties, volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011.

CPW17. Sung Rak Choi, Jinhyung Park, and Joonyeong Won. Okounkov bodies associated to pseudoeffective divisors II. Taiwanese J. Math., 21(3):601-620, 2017.
Dar17. Tamás Darvas. Weak geodesic rays in the space of Kähler potentials and the class $\mathcal{E}(X, \omega)$. J. Inst. Math. Jussieu, 16(4):837-858, 2017.
DDNL18a. Tamás Darvas, Eleonora Di Nezza, and Chinh H. Lu. L^{1} metric geometry of big cohomology classes. Ann. Inst. Fourier (Grenoble), 68(7):3053-3086, 2018.
DDNL18b. Tamás Darvas, Eleonora Di Nezza, and Chinh H. Lu. Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity. Anal. PDE, 11(8):2049-2087, 2018.
DDNL18c. Tamás Darvas, Eleonora Di Nezza, and Chinh H. Lu. On the singularity type of full mass currents in big cohomology classes. Compos. Math., 154(2):380-409, 2018.
DDNL21a. Tamás Darvas, Eleonora Di Nezza, and Chinh H. Lu. Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity. Math. Ann., 379(1-2):95-132, 2021.
DDNL21b. Tamás Darvas, Eleonora Di Nezza, and Hoang-Chinh Lu. The metric geometry of singularity types. J. Reine Angew. Math., 771:137-170, 2021.
DDNL23. Tamás Darvas, Eleonora Di Nezza, and Chinh H. Lu. Relative pluripotential theory on compact kähler manifolds, 2023.
Dem85. Jean-Pierre Demailly. Mesures de Monge-Ampère et caractérisation géométrique des variétés algébriques affines. Mém. Soc. Math. France (N.S.), page 124, 1985.
Dem12a. Jean-Pierre Demailly. Analytic methods in algebraic geometry, volume 1 of Surveys of Modern Mathematics. International Press, Somerville, MA; Higher Education Press, Beijing, 2012.
Dem12b. Jean-Pierre Demailly. Complex analytic and differential geometry, 2012. Available on
Dem15. Jean-Pierre Demailly. On the cohomology of pseudoeffective line bundles. In Complex geometry and dynamics, volume 10 of Abel Symp., pages 51-99. Springer, Cham, 2015.

Den17. Ya Deng. Transcendental Morse inequality and generalized Okounkov bodies. Algebr. Geom., 4(2):177-202, 2017.
DF22. Nguyen-Bac Dang and Charles Favre. Intersection theory of nef b-divisor classes. Compos. Math., 158(7):1563-1594, 2022.
DG65. Jean Dieudonné and Alexendre Grothendieck. Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Seconde partie, volume 24. Institut des hautes études scientifiques, 1965.
DNT21. Eleonora Di Nezza and Stefano Trapani. Monge-Ampère measures on contact sets. Math. Res. Lett., 28(5):1337-1352, 2021.
DPS01. Jean-Pierre Demailly, Thomas Peternell, and Michael Schneider. Pseudo-effective line bundles on compact Kähler manifolds. Internat. J. Math., 12(6):689-741, 2001.
DR22. Ruadhai Dervan and Rémi Reboulet. Ding stability and Kähler-Einstein metrics on manifolds with big anticanonical class, 2022.
DRWN $^{+}$23. Tamás Darvas, Rémi Reboulet, David Witt Nyström, Mingchen Xia, and Kewei Zhang. Transcendental okounkov bodies, 2023.
DS06. Tien-Cuong Dinh and Nessim Sibony. Distribution des valeurs de transformations méromorphes et applications. Comment. Math. Helv., 81(1):221-258, 2006.
DX21. Tamás Darvas and Mingchen Xia. The volume of pseudoeffective line bundles and partial equilibrium. Geometry \& Topology (to appear), 2021.
DX22. Tamás Darvas and Mingchen Xia. The closures of test configurations and algebraic singularity types. Adv. Math., 397:Paper No. 108198, 56, 2022.
DX24. Tamás Darvas and Mingchen Xia. The trace operator of quasi-plurisubharmonic functions on compact Kähler manifolds, 2024.
DXZ23. Tamás Darvs, Mingchen Xia, and Kewei Zhang. A transcendental approach to non-Archimedean metrics of pseudoeffective classes. Commentarii Mathematici Helvetici(to appear), 2023.
DZ22. T. Darvas and K. Zhang. Twisted kähler-einstein metrics in big classes, 2022.
ELM^{+}05. Lawrence Ein, Robert Lazarsfeld, Mircea Mustaţǎ, Michael Nakamaye, and Mihnea Popa. Asymptotic invariants of line bundles. Pure Appl. Math. Q., 1(2):379-403, 2005.

EMW06. Said El Marzguioui and Jan Wiegerinck. The pluri-fine topology is locally connected. Potential Anal., 25(3):283-288, 2006.
Fig17. Alessio Figalli. The Monge-Ampère equation and its applications. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2017.
Fin22. Siarhei Finski. On the metric structure of section ring, 2022.
FK18. Kazuhiro Fujiwara and Fumiharu Kato. Foundations of rigid geometry. I. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2018.
FM21. Osamu Fujino and Shin-ichi Matsumura. Injectivity theorem for pseudo-effective line bundles and its applications. Trans. Amer. Math. Soc. Ser. B, 8:849-884, 2021.
FsN80. John Erik Fornæ ss and Raghavan Narasimhan. The Levi problem on complex spaces with singularities. Math. Ann., 248(1):47-72, 1980.
Fuj23. Osamu Fujino. Relative Bertini type theorem for multiplier ideal sheaves. Osaka J. Math., 60(1):207-226, 2023.
GH14. P. Griffiths and J. Harris. Principles of algebraic geometry. John Wiley \& Sons, 2014.
GK20. Patrick Graf and Tim Kirschner. Finite quotients of three-dimensional complex tori. Ann. Inst. Fourier (Grenoble), 70(2):881-914, 2020.
GR56. Hans Grauert and Reinhold Remmert. Plurisubharmonische Funktionen in komplexen Räumen. Math. Z., 65:175-194, 1956.
GR84. Hans Grauert and Reinhold Remmert. Coherent analytic sheaves, volume 265 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1984.
Gro60. Alexander Grothendieck. Techniques de construction en géométrie analytique. VI. étude locale des morphismes: germes d'espaces analytiques, platitude, morphismes simples. Séminaire Henri Cartan, 13(1):1-13, 1960.

Gui94	Gui94.	Victor Guillemin. Kaehler structures on toric varieties. J. Differential Geom., 40(2):285-309, 1994.
GZ05	GZ05.	Vincent Guedj and Ahmed Zeriahi. Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal., 15(4):607-639, 2005.
GZ07	GZ07.	Vincent Guedj and Ahmed Zeriahi. The weighted Monge-Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal., 250(2):442-482, 2007.
GZ15	GZ15.	Qi'an Guan and Xiangyu Zhou. Effectiveness of Demailly's strong openness conjecture and related problems. Invent. Math., 202(2):635-676, 2015.
GZ17	GZ17.	Vincent Guedj and Ahmed Zeriahi. Degenerate complex Monge-Ampère equations, volume 26 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2017.
Har	Har77	Robin Hartshorne. Algebraic geometry, volume No. 52 of Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1977.
Hiep14	Hie14.	Pham Hoang Hiep. The weighted log canonical threshold. C. R. Math. Acad. Sci. Paris, 352(4):283-288, 2014.
Hir75	Hir75.	Heisuke Hironaka. Flattening theorem in complex-analytic geometry. Amer. J. Math., 97:503-547, 1975.
His12	His 12.	Tomoyuki Hisamoto. Restricted Bergman kernel asymptotics. Trans. Amer. Math. Soc., 364(7):3585-3607, 2012.
HK76	HK76.	W. K. Hayman and P. B. Kennedy. Subharmonic functions. Vol. I, volume No. 9 of London Mathematical Society Monographs. Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976.
HPS18	HPS18.	C. Hacon, M. Popa, and C. Schnell. Algebraic fiber spaces over abelian varieties: around a recent theorem by Cao and Păun. In Local and global methods in algebraic geometry, volume 712 of Contemp. Math., pages 143-195. Amer. Math. Soc., [Providence], RI, 2018.
Ino22	Ino22.	Eiji Inoue. Entropies in μ-framework of canonical metrics and K-stability, II Non-archimedean aspect: non-archimedean μ-entropy and $\mu \mathrm{K}$-semistability, 2022.
Jow10	Jow10.	Shin-Yao Jow. Okounkov bodies and restricted volumes along very general curves. Adv. Math., 223(4):1356-1371, 2010.
Kho92	Kho92.	A. G. Khovanskii. The Newton polytope, the Hilbert polynomial and sums of finite sets. Funktsional. Anal. i Prilozhen., 26(4):57-63, 96, 1992.
Kim15	Kim15.	Dano Kim. Equivalence of plurisubharmonic singularities and Siu-type metrics. Monatsh. Math., 178(1):85-95, 2015.
Kis78	Kis78.	Christer O. Kiselman. The partial Legendre transformation for plurisubharmonic functions. Invent. Math., 49(2):137-148, 1978.
KK12	KK12.	Kiumars Kaveh and A. G. Khovanskii. Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory. Ann. of Math. (2), 176(2):925978, 2012.
LM09	LM09.	Robert Lazarsfeld and Mircea Mustață. Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. (4), 42(5):783-835, 2009.
Mat89	Mat89.	Hideyuki Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1989. Translated from the Japanese by M. Reid.
MM07	MM07.	Xiaonan Ma and George Marinescu. Holomorphic Morse inequalities and Bergman kernels, volume 254 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2007.
MZ23	MZ23.	Xiankui Meng and Xiangyu Zhou. On the restriction formula. J. Geom. Anal., 33(12):Paper No. 369, 30, 2023.
PT18	PT18.	Mihai Păun and Shigeharu Takayama. Positivity of twisted relative pluricanonical bundles and their direct images. J. Algebraic Geom., 27(2):211-272, 2018.
Rau15	Rau15.	Hossein Raufi. Singular hermitian metrics on holomorphic vector bundles. Ark. Mat., 53(2):359-382, 2015.
Roc70	Roc70.	R. Tyrrell Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J., 1970.

[^0]: ${ }^{1}$ We remind the readers that the statement of $[G G Z 17$, Proposition 1.44$]$ is flawed.

[^1]: ${ }^{3}$ In [Dem12 2 a, Proposition 14.3], Demailly used the highly non-standard notation $f^{*} \mathcal{I}(\varphi)$ to denote the image of $f^{*} \mathcal{I}(\varphi) \rightarrow O_{X}$.

[^2]: ${ }^{1}$ In the literature, some people use $\operatorname{PSH}(X) \cap L_{\text {loc }}^{\infty}(X)$ to denote such functions, which is an abuse of notation. It is legitimate thanks to the rigidity Theorem 1.1.3.

[^3]: ${ }^{1}$ In these references, they took $\phi=V_{\theta}$, but the proof of the general case is almost identical.

[^4]: ${ }^{1}$ Recall that smooth means that for every vertex $v \in P$, if we take the first lattice point w_{E} apart from v asone transverses each edge E of P containing v from v, then $\left\{w_{E}-v\right\}_{E}$ forms a basis of M. See [CLST1, Definition 2.4.2]. We also say P is a Delzant polytope in this case.

[^5]: ${ }^{1}$ Two valuations v, v^{\prime} with value in \mathbb{Z}^{n} are equivalent if one can find a matrix G of the form $\mathrm{I}+N$, where N is strictly upper triangular with integral entries, such that $v^{\prime}=v G$.

[^6]: ${ }^{2}$ The mistake with this paper happens in the proof of Theorem 3.6, the second paragraph, where the authors asserted that it is easy to check that $\Delta_{Y_{n-k}}(D) \subseteq \Delta_{Y_{\bullet}}(D)$.

[^7]: \qquad

[^8]: \{eq:PItransPSHNApositive\}

[^9]: ${ }^{1}$ Here a convex body refers to a non-empty closed convex subset, not necessarily having non-empty interior.

[^10]: ${ }^{1}$ Here closed means that locally θ is defined by a closed form under a local embedding.

