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Preface

This book is an expanded version of my lecture notes at the Institute for Advanced
Study in Mathematics (IASM) at Zhejiang university. My initial goal was to write a
self-contained reference for the participants of the lectures. But I soon realized that
many results have never been rigorously proved in any literature. When trying to fix
these loose ends, the length of the notes becomes uncontrollable, eventually leading
to the current book.

In this book, I would like to present my point of view towards the global
pluripotential theories. There are three different but interrelated theories which
deserve this name. They are

(1) the pluripotential theory on compact Kéhler manifolds,

(2) the pluripotential theory on the Berkovich analytification of projective varieties,
and

(3) the toric pluripotential theory on toric varieties.

We will begin by explaining the picture in the first case. Let us fix a compact
Kihler manifold X. The central objects are the quasi-plurisubharmonic functions on
X.

We are mostly interested in the singularities of such functions, that is, the places
where a quasi-plurisubharmonic function ¢ tends to —co and how it tends to —co.

Singularities occur naturally in mathematics. In geometric applications, X should
be regarded as the compactified moduli space of certain geometric objects. A Zariski
open subset U C X would parametrize smooth objects. The natural metric on
the associated polarizing line bundle is usually smooth only on U, not on X. In
case we have suitable positivities, the classical Grauert—Remmert extension theorem
(Theorem B.2.2) allows us to extend the metric outside U, but at the cost of introducing
singularities.

The classification of singularities is a huge project. Locally near the singularities
we know that quasi-plurisubharmonic functions present very complicated behaviours.
There are many local invariants associated with the singularities. The most notable
ones are the Lelong numbers and the multiplier ideal sheaves. These invariants only
reflect the rough behaviour of a quasi-plurisubharmonic function. As an example,
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a quasi-plurisubharmonic function with log-log singularities have the same local
invariants as a bounded one.

The situation changes drastically in the global setting, namely on compact
manifolds. In the global setting, there are three different ways to classify quasi-
plurisubharmonic functions according to their singularities:

(1) The singularity type characterizing the singularities up to a bounded term.
(2) The P-singularity type associated with global masses.
(3) The I -singularity type associated with all non-Archimedean data.

The classification becomes rougher and rougher as we go downward. In the first case,
we say two quasi-plurisubharmonic functions have the same singularity type if their
difference lies in L®. The corresponding equivalence class gives us essentially the
finest information of the singularities we can expect. The other two relations are more
delicate, we will study them in detail in Chapter 6.

A natural idea to study the singularities would consist of the following steps:

(1) Classify the 7 -singularity types.
(2) Classify the P-singularity types within a given 7 -singularity class.
(3) Classify the singularity types within a given P-equivalence class.

The Step 3 is well-studied in the literature in the last decade under the name of
pluripotential theory with prescribed singularities. There are numerous excellent
results in this direction. In some sense, this step is already well-understood.

We will give a complete answer to Step 1 in Chapter 7, where we show that
7 -singularity types can be described very explicitly.

It remains to consider Step 2. This is not an easy task. It is easy to construct examples
where a given 7 -equivalence class consists of a huge amount of P-equivalence classes.

On the other hand, by contrast, in the toric pluripotential theory and non-
Archimedean pluripotential theory, Step 2 is essentially trivial: An 7 -equivalence class
consists of a single P-equivalence class. In the toric situation, an J or P-equivalence
class is simply a sub-convex body of the Newton body, while in the non-Archimedean
situation, an J or P-equivalence class is a homogeneous plurisubharmonic metric.

This apparent anomaly and numerous examples show that in the pluripotential
theory on compact Kéhler manifolds, certain singularities are pathological. Within
each 7 -equivalence, we could pick up a canonical P-equivalence class, the quasi-
plurisubharmonic functions in which are said to be 7 -good. We will study the theory
of 7 -good singularities in Chapter 7. As we will see later on, almost all (if not all)
singularities occurring naturally are 7 -good.

My personal impression is that we are in a situation quite similar to the familiar one
in real analysis. There are many non-measurable functions, but in real life, unless you
construct a pathological function by force, you only encounter measurable functions.
Similarly, although there exist many non-7-good singularities, you would never
encounter them in reality!

Having established this general principle, we could content ourselves in the
framework of 7 -good singularities. Then Step 2 is essentially solved, and we have a
pretty good understanding of the classification of singularities.
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Of course, this classification is a bit abstract. To put it into use, we will introduce
two general techniques allowing us to make induction on dim X. For a prime divisor
Y in general position, we have the so-called analytic Bertini theorem relating quasi-
plurisubharmonic functions on X and on Y. For a non-generic Y, we have the technique
of trace operators. These techniques will be explained in Chapter 8.

In the toric situation, these constructions and methods are quite straightforward
and are likely known to experts before I entered this field, see Chapter 5 for the toric
pluripotential theory on ample line bundles.

The corresponding toric pluripotential theory on big line bundles has never been
written down in the literature. We will develop the theory of partial Okounkov bodies
in Chapter 10 and the general toric pluripotential theory will be developed as an
application in Chapter 12.

Finally, we give applications to non-Archimedean pluripotential theory in Chap-
ter 13 based on the theory of test curves developed in Chapter 9. We also prove the
convergence of the partial Bergman kernels in Chapter 14.

The readers are 7supposed to be familiar with the basic pluripotential theory.
The excellent book [[GZ717] is more than enough.

Minghen Xia
in Hangzhou, March 2024
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Conventions

In the whole book we adopt the following conventions:

* A complex space is always assumed to be reduced, paracompact and Hausdorff.

* A modification of a complex space X is proper bimeromorphic morphism
;Y — X that is obtained from a finite composition of blow-ups with smooth
centers.

* A subnet of a net refers to a cofinal subnet.

* A domain in C" refers to a connected open subset.

* A complex manifold is assumed to be paracompact.

* A submanifold of a complex manifold means a complex submanifold.

* A neighbourhood is not necessarily open.

* The set N of natural numbers includes 0.

We will use the following notations throughout the book:

e If I is a non-empty set, then Fin(/) denote the net of finite non-empty subsets of
I, ordered by inclusion.
* dd® means (27)~!i00.

Xvii






Part I
Preliminaries



In the first two chapters Chapter 1 and Chapter 2 of this part, we recall a few
preliminaries about the notion of plurisubharmonic functions and the non-pluripolar
products of plurisubharmonic functions.

All materials in these chapters are standard and are well-documented in other
textbooks, so we \Tr}lllye rather sketchy. The readers are encouraged to consult the
excellent textbook [GZ17].

In Chapter 3, we develop the techniques of envelope operators. All results in this
section are known and are written in various articles.

In Chapter 4, we develop the theory of geodesics in the space of quasi-
plurisubharmonic functions. Most results in this chapter are known to different
degrees, but not in the fully general form as we present. Most proofs are similar to
the known proofs in the literature, but the presence of singularities requires a very
careful treatment.

In Chapter 5, we recall the basic results about the toric pluripotential theory on
ample line bundles, which will be generalized to big line bundles in Chapter 12.

Experienced readers may safely skip the whole part.



Chapter 1
Plurisubharmonic functions

In this chapter, we recall the notion of plurisubharmonic functions and a few basic
properties of these functions. The main purpose is to fix the notations for later
chapters, so we refer to the literature for most proofs.

We give some details about the plurifine topology in Section 1.3, since the related
proofs are scattered in a number of articles.

In the literature related to multiplier ideal sheaves and Lelong numbers, there are
several different conventions about their normalizations. The readers could find more
about the conventions that we adopt in the whole book in Section 1.4.

1.1 The definition of plurisubharmonic functions

In this section, we recall the notion of plurisubharmonic functions. We will also take
care of the 0-dimensional case, which makes a number of induction arguments easier
to carry out. None of our references treats the O-dimensional case, but the readers
can easily verify that the results in this section hold in this exceptional case.

1.1.1 The 1-dimensional case

Let Q be a domain (a connected open subset) in C.

Definition 1.1.1 A subharmonic function on Q is a function ¢: Q — [—0c0, )
satisfying the following three conditions:

(1) ¢ % —oo;

(2) ¢ is upper semi-continuous;

(3) ¢ satisfies the sub-mean value inequality: For any a € Q and r > 0 such that
Bi(a,r) € Q, we have
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1 2r )
p(a) < E/o o(a +re'?) do.

We will denote the set of subharmonic functions on Q as SH(Q).

Here B/ (a, r) denotes the open ball with center a and radius r. See (1.1).

In fact, for each a € Q, in (3), it suffices to require the sub-mean value inequality
for all small enough r > 0.

Intuitively, at a specific point a € Q, the Condition (2) gives a lower bound of the
value of ¢(a) using the nearby values of ¢, while the Condition (3) gives an upper
bound. This intuition leads to the following rigidity theorem:

Theorem 1.1.1 Let ¢: Q — [—o00, o) be a measurable function. Then the following
are equivalent:

(1) @ is locally integrable and Agp > 0.
(2) ¢ coincides almost everywhere with a subharmonic function ¥ on Q.

Moreover, the subharmonic function  is unique.

Here in condition 1, Ay is the Laplacian in the sense of currents. This is a special
case of Theorem 1.1.2 below.
This theorem gives a very useful way to construct subharmonic functions.

1.1.2 The higher dimensional case

We will fix n € N and a domain € (a connected open subset) in C".

Definition 1.1.2 When n > 1, a plurisubharmonic function on Q is a function
¢: Q — [—o0, 00) satisfying the following three conditions:

(1) ¢ # —oo;

(2) ¢ is upper semi-continuous;

(3) for any complex line L € C" and any connected component U of L N Q, the
restriction ¢|y is either subharmonic of constantly —oo.

When n = 0, the only domain Q is the singleton. A plurisubharmonic function on
Q is a real-valued function on Q.
The set of plurisubharmonic functions on Q is denoted by PSH(Q).

A plurisubharmonic function is also called a psh function for short.
Example 1.1.1 When n = 0, we have a canonical bijection PSH(Q) = R.
Example 1.1.2 When n = 1, we have PSH(Q) = SH(Q).

Similar to Theorem 1.1.1, we have a rigidity theorem for plurisubharmonic
functions as well.
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Theorem 1.1.2 Let ¢: Q — [—o0, ) be a measurable function. Then the following
are equivalent:

(1) ¢ is locally integrable and dd®¢ > 0;
(2) ¢ coincides almost everywhere with a plurisubharmonic function  on Q.

Moreover, the plurisubharmonic function  is unique.
Here the operator dd® is normalized so that
dde = 109
2r

GZ17
For the proof, we refer to k‘_' , Proposition 1.43].
Plurisubharmonic functions have nice functorialities:

Proposition 1.1.1 Ler n’ € N and Q' € C" be a domain. Given any holomorphic
map f: Q — Q' and any ¢ € PSH(Q') exactly one of the following cases occurs:

(1) f*p = —co;
(2) f*¢ € PSH(Q).

GZ17
We refer to L['"" , Proposition 1.44] for the proof!.
Foreachn € N, a € C"* and r > 0, we write

B,(a,r)={z€C":|z—a| <r}. (1.1)

Proposition 1.1.2 Let ¢ € PSH(B,,(a, rg)) for some ro > 0. Then the function

(—co,logrg) = R, logr— sup ¢
B, (a,r)

is convex and increasing.

Boul7
See L["_ , Corollary 2.4].

Proposition 1.1.3 Let a < b be two real numbers. Let f: (a,b) — [—co, ) be a
function. Define

g:{zeC:e? <zl <e™9} = [~00,00), 2z f(=loglz]).
Suppose that g is harmonic, then f is convex. In particular, f takes real values only.

HK76
See L['"" , Theorem 2.12] for a more general result.

GZ17

1 We remind the readers that the statement of [GZT7, Proposition 1.44] is flawed.
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1.1.3 The manifold case

Let X be a complex manifold. In the whole book, complex manifolds are assumed to
be paracompact, namely all connected components have countable bases.

Definition 1.1.3 A plurisubharmonic function on X is a function ¢: X — [—00, c0)
such that for any x € X, there exists an open neighbourhood U of x in X, an
integer n € N, a domain Q € C" and a biholomorphic map F: Q — U such that
F*(¢ly) € PSH(Q).

The set of plurisubharmonic functions on X is denoted by PSH(X).

Example 1.1.3 When X is a domain in C", the notions of plurisubharmonic functions
in Definition 1.1.3 and in Definition 1.1.2 coincide.

Example 1.1.4 Write {X;};cy for the set of connected components of X. Then we
have a natural bijection
PSH(X) = 1_[ PSH(X;).
iel

Here the product is in the category of sets. In particular, if X = @, then PSH(X) = 2.

This example allows us to reduce to the case of connected manifolds when studying
general plurisubharmonic functions.

Proposition 1.1.4 Let Y be another complex manifold and f: Y — X be a holomor-
phic map. Then for any ¢ € PSH(X), exactly one of the following cases occurs:

(1) f* is identically —co on some connected component of Y ;
(2) f*p € PSH(Y).

This proposition follows easily from Proposition 1.1.1. We leave the details to the
readers.
Theorem 1.1.2 implies immediately the general form of the rigidity theorem:

Theorem 1.1.3 Let ¢p: X — [—o0, 00) be a measurable function. Then the following
are equivalent:

(1) ¢ is locally integrable and dd®¢ > 0;
(2) ¢ coincides almost everywhere with a plurisubharmonic function  on X.

Moreover, the plurisubharmonic function  is unique.

Definition 1.1.4 A subset E C X is pluripolar if for any x € X, there is an open
neighbourhood U of x in X and a function ¥ € PSH(U) such that

YlEnU = —00.

A subset E C X is non-pluripolar if E is not pluripolar.
A subset F C X is co-pluripolar if X \ F is pluripolar.
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Theorem 1.1.4 (Josefson’s theorem) Let E C C" be a pluripolar set. Then there is
¢ € PSH(C") such that ¢|g = —co.

GZ17
See L[“—' , Corollary 4.41] for the proof of a more general result.
There is also a global version of Josefson’s theorem:

Theorem 1.1.5 Assume that X is a compact complex manifold and E C X is
a pluripolar set. Then there is a quasi-plurisubharmonic function ¢ on X with

¢|E = —co.
Vul9
For a proof, see L[“_' ].

Proposition 1.1.5 Let (E;);cz., be a sequence of pluripolar sets in X. Then

E = OEi

is pluripolar.

Proof The problem is local, so we may assume that X C C" is a domain. In this case,
by Theorem 1.1.4 for each i € Z.( we can choose ¢; € PSH(C") such that

lﬁi|Ei = —0o, lﬁi < O

for all i > 0. After shrinking X, we may guarantee that ;|x € L'(X) forall i > 0.
After rescaling, we may also assume that [|y;[[11(x) < 1 for alli > 0.

We then define
v=)2"ilx.
i=1
Then ¢ € PSH(X) according to Proposition 1.2.1 below and ¢ |g = —co. O

1.2 Properties of plurisubharmonic functions

In this section, we explore the basic properties of plurisubharmonic functions.
Let X be a complex manifold.

Proposition 1.2.1

(1) Assume that (¢;)icy is a non-empty family in PSH(X) that is locally uniformly
bounded from above. Then sup*; ¢; € PSH(X).

(2) Assume that (¢;)ieq is a decreasing net in PSH(X) such that lim;cj ¢; is not
identically —oo on each connected component of X, then lim;c; ¢; € PSH(X).

Here sup* denotes the upper semicontinuous regularization of the supremum. When
1 is a finite family, observe that
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sup* ¢; = sup ;.

iel iel
When I ={1,...,m}, we write

w1V Voy = Sup@;.

iel
GZ17 . .
We refer to k’"" , Proposition 1.28, Proposition 1.40]2.

Proposition 1.2.2 (Choquet’s lemma) Assume that X has countably many connected
components. Assume that (¢;)ic; is a non-empty family in PSH(X) that is locally
uniformly bounded from above. There exists a countable subset J C I such that

sup* ¢; = sup* ;.

iel jeJ
Proof We may assume that X is connected. Since by our convention, the complex
manifold X is paracompact, it can be covered by countably many open balls, so we
cap.gasily reduce to the case where X is an open ball. In this case, the result is proved
in [GZ17, Lemma 4.31]. |

Proposition 1.2.3 Let (¢;);c; be a non-empty family in PSH(X) that is locally
uniformly bounded from above. Then the set

{x € X :sup¢; < sup* goi}

iel iel
is pluripolar.
GZ17
See L[“_' , Corollary 4.28].
Proposition 1.2.4 Let ¢ € PSH(X), then for any p > 1, ¢ € L (X).
GZ17
See L["—' , Theorem 1.46, Theorem 1.48].

Proposition 1.2.5 Suppose that ¢, € PSH(X). Assume that there is a dense subset
E C X such that 9| < Y|, then ¢ < .

Proof The problem is local, so we may assume that X is a domain in C".

We may assume that ¢|g = |g after replacing ¢ by ¢ V ¢. Then we need to show
that ¢ = . G717

It follows from k‘_' , Theorem 4.20] that this holds outside a pluripolar set
Y € X. In particular, ¢ = ¢ almost everywhere. It follows from the uniqueness
statement in Theorem 1.1.3 that ¢ = . O

Theorem 1.2.1 (Grauert-Remmert) Let Z be an analytic subset in X and ¢ €
PSH(X \ Z). Then the function ¢ admits an extension to PSH(X) in the following
two cases:

17
2In[GZT , Proposition 1.28], the second part is only stated for sequences, the net version is obvious
using the sub-mean value inequality.
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(1) The set Z has codimension at least 2 everywhere.
(2) The set Z has codimension at least 1 everywhere and is locally bounded from
above on an open neighbourhood of Z.

In both cases, the extension is unique.

Proof The extension is unique thanks to Proposition 1.2.5.

(2) Thanks to the uniqueness of the extension, the problem is local, so we may
assume that X is a domain in C" with n > 0 and there is a non-zero holomorphic
function f vanishing identically on Z. For each € > 0, we claim that the function ¢,
defined by

o(x) +elog|f(X)>, xeX\Z;
Pelx) =
-0, X€Z

is plurisubharmonic on X. By Definition 1.1.2, it suffices to verify the case n = 1. In
this case, we may assume that Z = {0}, It is clear that ¢ € SH(X \ Z). It suffices to
verify the sub-mean value inequality at O, which is immediate.

Next observe that the sequence ¢, is increasing as € \, 0 and ¢, is lo-
cally uniformly bounded from above. It follows from Proposition 1.2.1 that
@ = sup* ..o ¢e € PSH(X). Moreover, ¢ clearly extends ¢.

(1) It suffices to verify that ¢ is locally bounded from above near each point of Z.
The problem is local, so we may assume that X is a domain in C" with n > 2.

Assume that our assertion fails. Take z € Z so that there exists a sequence (x;); in
X \ Z such that

lim ¢(x;) = co.
Jj—®

Since Z has codimension at least 2, we could take a complex line L passing through
z and intersects Z only on a discrete set. After shrinking X, we may assume that

LNZ={z}.

Take an open ball B,,(z,r) € X. After adding a constant to ¢, we may guarantee that
¢ <0on LNAdB,(z,r). Since ¢ is upper semi-continuous, we could find an open
neighbourhood U of L N §B,(z, r) such that

(,D|U < 0.

For each j > 1, take a complex line L; passing through x; such that L; — L as
Jj — oo. Here the convergence is in the obvious sense. Then for large enough j, we
know have

Lj ﬂ@Bn(Z,r) cUu.

It follows from the sub-mean value inequality that ¢(x;) < O for large enough j,
which is a contradiction. O

Lemma 1.2.1 Let ¢ € PSH((A")") be an (S")"-invariant plurisubharmonic function.
Then ¢ is finite everywhere.
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K76
Proof 1t clearly suffices to handle the case n = 1. In this case, by F"" , Theo-
rem 2.12], the map
1
logr +— / o(rexp(27if)) dd = ¢(r)
0
is a convex function of logr. So the set {r € (0, 1) : ¢(r) = —oo} is convex. But ¢

is almost everywhere finite by Proposition 1.2.4. Since ¢ is S!-invariant, ¢| (0,1) 18
almost everywhere finite. It follows from the convexity that it is everywhere finite.O

Toc

1
Corollary 1.2.1 Let (¢)jez., be a sequence in PSH(X) such that ¢; —> ¢ €
PSH(X). Then the set

{x €X:plx)# En goj(x)}
is pluripolar.

Proof We ﬁr&l’z&)Pserve that (¢;); is locally uniformly bounded from above. This
follows from [GZ17, Exercise 1.20].
For each j > 1, let
Y j = sup* gi.
k>j
Then ; € PSH(X) by Proposition 1.2.1. Moreover, (¢); is a decreasing sequence
and y; > @; for all j. So by Proposition 1.2.1 again, ¢ := inf; ¢; € PSH(X). On
the other hand, by Proposition 1.2.3, there is a pluripolar set Z C X such that for any

—_ Ll
x € X\ Z, we have y(x) = lim; ¢;(x). Since ¢; SELN p,wecanfindasetY C X
with zero Lebesgue measure such that ¢;(x) — ¢(x) forallx € X \ 7.
In particular, for any x € X \ (Y U Z), we have

Y (x) = o(x).

But thanks to Proposition 1.2.5, the equality holds everywhere. Therefore, for all
xeX\Z, o
p(x) = lim ¢;(x).

Proposition 1.2.6 (Kiselman’s principle) Ler Q € C" x C" be a pseudoconvex
domain. Assume that for each 7 € C™, the set
Q. ={weC":(z,w) € Q}

has the form E +iR", where E C R" is a subset. Let ¢ € PSH(Q), assume that ¢ is
independent of the imaginary part of the variable in C". Let Q' be the projection of
Q to C™. Define . Q' — [—o0, ) as follows:

v(z) = wl.?sg o(z,w).
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Then either yy = —oco or y € PSH(Q').

DemBook
See [Dem12b, Theorem 7.5].

1.3 Plurifine topology
1.3.1 Plurifine topology on domains

Let Q C C" (n € N) be a domain.

Definition 1.3.1 The plurifine topology on Q is the weakest topology making all
R-valued plurisubharmonic functions on € continuous.

We want to distinguish the Euclidean topology from the plurifine topology. In the
whole book, topological notions without adjectives refer to those with respect to the
Euclidean topology. We include the symbol ¥ in order to denote those with respect
to the plurifine topology. For example, we will say ¥ -open subset, # -neighbourhood,
¥ -closure, etc. The ¥ -closure of a set £ C Q will be denoted by ET . We remind the
readers that in the whole book, we follow Bourbaki’s convention, a neighbourhood is
not necessarily open. Similarly, an ¥ -neighbourhood is not necessarily ¥ -open.

A priori, we should include Q into the notations as well, but as we will see shortly
in Corollary 1.3.1, this is usually unnecessary.

Proposition 1.3.1 The plurifine topology is finer than the Euclidean topology.

Proof 1t suffices to show that the unit ball {z € C" : |z| < 1} is F-open. This follows
from the observation that this set can be written as

{y < 0} with ¢ (z) = (log|z]) Vv (-1).

Definition 1.3.2 A subset E C Q is thin at x € € if one of the following conditions
holds:

(Hx¢E;
(2) x € E and there is an open neighbourhood U C Q of x and ¢ € PSH(U) such

that _
lim o(y) < ¢(x).
y—x,yeE

We say E is thin if it is thin at all x € Q.

In the second case, the function ¢ can be very much improved.

Proposition 1.3.2 (Bedford-Taylor) Consider a set E C Q and x € E. Assume that
E is thin at x, then there is ¢ € PSH(C") satisfying the following properties:

(1) ¢ is locally bounded outside a neighbourhood of x;
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(2) p(x) > —o0;
3 hmy—)x,yeE @(y) = —co.

Proof By definition, there is an open neighbourhood U C Q of x and ¢ € PSH(U)
such that

im  y(y) < ¢(x).
y—x,yeE

Without loss of generality, we may assume that x = 0, U is the unit ball in C", ¢y < 0
and ¥|yne < —1, while ¢ (0) = - > —1.

As ¢ is upper semicontinuous, we may choose ¢; > 0 for all large enough j € Z
such that /(y) < —n +27/~! when y € C" satisfies |y| < 0. Now we let

—j-1 )
—log |z|) vV (p(z)+277), if|z] <4/,
, (10g|5j| ( ) !
@j(2) = -

log|z|, iflz] =6;.
log |4, !

Then ¢; € PSH(C") and ¢;(0) = 27/. It suffices to take ¢ = 3 ; ;.

Theorem 1.3.1 (Cartan) Consider x € Q and a set E C Q. Assume that x € E.
Then the following are equivalent:

(1) E is an F -neighbourhood of x;
(2) Q\ E is thin at x.

Proof (2) = (1). We may assume that x € m Otherwise, our assertion follows
from Proposition 1.3.1.

By Proposition 1.3.2, there is ¢ € PSH(C") and an open neighbourhood U C Q
of x such that

p(x) > sup p(y) = 4.
yeUN(Q\E)
Let F={y € Q:¢(y) >A}. Thenx € F and F is F-open. Moreover, UNF C E.
By Proposition 1.3.1, we conclude (1).
(1) = (2). We may always replace E by smaller ¥ -neighbourhoods of x. In
particular, we may assume that £ has the following form

{yeU:oi(y)>A1,....0m(y) > Am},

where U C Q is an open neighbourhood of x, ¢y, . . ., ¢, are R-valued psh functions
onQandAdy,...,4,, €R. Since a finite union of thin sets is still thin, we may assume
that m = 1. In this case, Q \ E is clearly thin at x. |

Theorem 1.3.2 A basis of the plurifine topology on Q is given by sets of the following
form:

{x eU: ¢(x) >0}, (1.2)
where U C Q is an open subset and ¢ € PSH(U).
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Proof We first show that sets of the form (1.2) are F-open. By Theorem 1.3.1, it
suffices to show its complement in £ is thin at x, which is obvious.

Now consider x € Q and an ¥ -open neighbourhood V C Q of x. We want to find
a set of the form (1.2) contained in V and containing x.

Write E = Q\V.Incase x € IntV, there is nothing to prove. So we may assume that
x € E. By Theorem 1.3.1, E is thin at x. By definition, there is an open neighbourhood
U € Qof x and ¢ € PSH(U) such that

lim :

o #O) < p(x)
We may assume that ¢|gny < 0 < ¢(x), Then the set {y € U : ¢(y) > 0} suffices
for our purpose. O

Corollary 1.3.1 Let Q; C Qp € C" be two non-empty open subsets. Then the
plurifine topology on Q is the same as the subspace topology induced from the
plurifine topology on €.

Corollary 1.3.2 Let L be an affine subspace of C", then the plurifine topology on L
is the same as the subspace topology induced from the plurifine topology on C".

Proof We may assume that L = C* x {0} for some k < n. We write the coordinate z
on C" as (z/,7"") with z € C*K and 7/ € C"k.

Consider an F-open set U € C" and x = (x’,0) € U N L. We want to show
that U N L (identified with a subset of C¥) is an ¥ -neighbourhood of x’ in L. By
Theorem 1.3.2, we may assume that there are open subsets U’ C C¥ containing x’
and U” C C" ¥ containing 0 together with a psh function ¢ on U’ x U”’ such that

xe{(Z,7)eU xU" :y(,7”) >0} CcQ.

It follows that
X e{ el y(,00>0 CUNL.

Conversely, if U € C* is an #-open subset, we claim that U x C"~* is F-open in C".
In fact, suppose that (x’,x”) € U x C"~%. By Theorem 1.3.1, we can find an open
neighbourhood V C C* of x” and a psh function ¢ on U such that

x'e{yeU:o(y)>0}CU.
We define ¢/ (7’, 7"") == ¢(z’). Then
(x",x") e{y e UxC": y(y) >0} cUxC" k.
Corollary 1.3.3 Let Q C C" be an F -open subset and x € Q. Then x has a compact
F -neighbourhood contained in Q.

Proof By Theorem 1.3.2, we may assume that there is a locally compact open set
U C C" and a psh function ¢ on U such that Q = {y € U : ¢(y) > 0}.
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Take a compact neighbourhood K of x in U. Now {y € K : ¢(y) = ¢(x)/2}isa
compact  -neighbourhood of x contained in Q. O

Corollary 1.3.4 Ler Q € C", Q' C C" be two domains and F: Q' — Q be a
surjective holomorphic map. Then F is F -continuous.

Proof 1t suffices to show that the inverse image F~!(U) of each ¥ -open subset
U C Qis F-open. By Theorem 1.3.2, after possibly shrinking €2 and Q’, we may
assume that U has the form {x € Q : ¥(x) > 0}, where ¢ € PSH(Q). Since
F*y € PSH(Q') by Proposition 1.1.4, we find that

FHU)={yeQ : F'y(y) > 0}

is ¥ -open. O

1.3.2 Plurifine topology on manifolds

Let X be a complex manifold.

Definition 1.3.3 The plurifine topology on X is the topology with a basis consisting
of sets of the form F~!(V), where U C X is an open subset and F: U — Qs a
biholomorphic morphism with Q € C”" is a domain for some n € Nand V € Q is
¥ -open.

It follows from Corollary 1.3.4 that the plurifine topologies on domains defined in
Definition 1.3.3 and in Definition 1.3.1 coincide.
We refer to Definition 1.5.1 for the notion of quasi-plurisubharmonic functions.

Proposition 1.3.3 Let ¢ € QPSH(X), then ¢|{p1-w) is F -continuous.

Proof The problem is local, so we may assume that X C C” is a domain and
¢ =y + g, where ¥ € PSH(X) and g € C*(X) and |g| < C for some C > 0. Take
an open interval (a, b) C R, it suffices to show that

U={xeX:a<pkx)<bt={xeX:a—gk)<vx)<b-gx)}
is F-open. Take x € U, we can find an open neighbourhood V of x in U such that

sup (a — g(y)) <y (x) < inf (b -g(y)).
yev yev

Therefore,

z€Visup(a—g(y) <y(z) < inf (b - g(y))}
yev yev

is an ¥ -open neighbourhood of z in U. We conclude that U is ¥ -open. O
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Lemma 1.3.1 Let Z C X be a pluripolar subset. Then

Proof The problem is local, so we may assume that X is a domain in C" and
Z = {p = —oo} for some ¢ € PSH(X). We need to show that {¢ > —co} is F-dense.

Let x € X be a point with ¢(x) = —co and U C X be an ¥ -open neighbourhood
of x in X. We need to show that U N {¢ > —oo} # @.

Thanks to Theorem 1.3.2, after shrinking U, we may assume that there is ¢ €
PSH(X) such that U = {i > 0}. Observe that U is not a pluripolar set: otherwise,
¥ < 0 almost everywhere hence everywhere by Proposition 1.2.5. So ¢|y # —co. We
conclude. O

Corollary 1.3.5 Let ¢,y € QPSH(X). Set
W = {x € X : min{e(x), ¥ (x)} = —oo}
Then for any pluripolar set Z C X, we have

;tlvlz(so -¥) = X\S%Z(so -¥), }y\lgv(so -y)= X\iv%fuz("" - ).

Proof This is an immediate consequence of Lemma 1.3.1 and Proposition 1.3.3. O

1.4 Lelong numbers and multiplier ideal sheaves

Let X be a complex manifold.

Definition 1.4.1 Let ¢ € PSH(X) and x € X. The Lelong number v(p, x) of ¢ at x
is defined as follows: take an open neighbourhood U of x in X and a biholomorphic
map F: U — Q, where Q is a domain in C". Then we define

v(@.x) = sup{y € Ryo: lu(F~'(y)) < ylogly - F(x)I>+O(1) as y > F(x)}.
(1.3)

Observe that v(¢, x) does not depend on the choices of U and F. Furthermore, it
follows from Proposition 1.4.1 below that the supremum in (1.3) is a maximum.

Remark 1.4.1 Our definition of the Lelong number is not standard. It differs from the
standard definition by a factor of 2.

Proposition 1.4.1 Let ¢ € PSH(B,(0, 1)). Then

SUpPg, (0. @
v(,0) = lim 2800 ¥

r—0+  logr? € 10.). 14
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Proof 1t follows from Proposition 1.1.2 that the limit in (1.4) exists and is finite. We
shall denote the limit by v’ (¢, 0) for the time being.
We first observe that by Proposition 1.1.2,

@(x) <V (p,0)log x|+ sup ¢ (1.5)
B, (0,1)

when x € B, (0, 1). In particular, v(¢,x) = v'(p,0).

In order to argue the reverse inequality, we may assume that v(¢, x) > 0.

Next observe that by (1.3), for each small enough € > 0, we can find rg € (0, 1)
and C > 0 so that for all x € B, (0, rg), we have

o(x) < (v(g,0) - €) log |x|* + C.
It follows that v/ (¢, 0) > v(¢,0) — €. Letting € — 0+, we conclude. O

We recall Siu’s semicontinuity theorem.

Theorem 1.4.1 Let ¢ € PSH(X), then the map X > x +— v(¢,Xx) is upper semi-
continuous with respect to the Zariski topology.

eml2
For an elegant proof we refer to F-— , Theorem 2.10].

Proposition 1.4.2 Let ¢,y € PSH(X), 1 € R and x € X, then

v(e Vi, x) =min{v(¢,x),v(¥,x)},
v(e+y,x) =v(p,x) +v(¥,x),
v(dp,x) =Av(p, x).

Proof All properties are local, so we may assume that X = B,,(0, 1) for some n € N.
All properties follow directly from Proposition 1.4.1. O

Corollary 1.4.1 Let (¢;)ics be a non-empty family in PSH(X) uniformly bounded
from above and x € X, then

v (sup* (p,-,x) =inf v(¢;, x).
iel iel
Proof We observe that the < inequality. It remains to argue the reverse inequality.
It follows from Proposition 1.2.2 that we may assume that / is countable. When [ is
finite, this is already proved in Proposition 1.4.2. Otherwise, we may further assume
that / = Z.. Thanks to Proposition 1.4.2, we may further assume that (¢;);ez_, is
an increasing sequence. Furthermore, since the problem is local, we may assume that
X = B,(0, 1) for some n € N. In this case, by (1.5), we have

@i(x) < v(g:,0)log|x|* +C

for all x € B,(0,1) and all i > 1 and C is a constant independent of i. In particular,
thanks to Proposition 1.2.3, for almost all x € B, (0, 1), we have



1.4. LELONG NUMBERS AND MULTIPLIER IDEAL SHEAVES 17
¢(x) < lim v(g;,0) log |x|* + C.
[—o00
Thanks of Proposition 1.2.5, the same holds for all x and hence

y(sup* @i, ) = lim v(g;,x).
i€Z- i—o0

We conclude. O

Definition 1.4.2 Let F C X be a non-empty analytic subset. Then we define the
generic Lelong number of ¢ along F as

v(p, F) = minv(g,x).
x€eF

Note that the minimum is obtained by Theorem 1.4.1.

Definition 1.4.3 Let ¢ € PSH(X). Let E be a prime divisor over X (see Defini-
tion B.1.1). Take a proper bimeromorphic morphism n: ¥ — X from a complex
manifold Y such that E is a prime divisor on Y, then we define the generic Lelong
number of ¢ along E as

v(p,E) = v(n*g,E).

It follows from Theorem 1.4.1 that v(¢, E) does not depend on the choice of 7.

Definition 1.4.4 Let ¢ € PSH(X), the multiplier ideal sheaf I () of ¢ is by
definition the ideal sheaf given by

L(U.Z(9) = {f € Ox(U) : |/ exp(=p) € Lj, (U)}
for any open subset U C X.

Remark 1.4.2 This definition is different from a few standard references, where instead
of exp(—¢), they use exp(—2¢). The conventions adopted in the current book is the
most convenient one as far as the author knows. It simplifies a number of formulae.

Proposition 1.4.3 (Nadel) Let ¢ € PSH(X). Then I () is coherent.
Dem12 .
See L["_ , Proposition 5.7].

Theorem 1.4.2 Let ¢,y € PSH(X), then

T(p+y) cI(p)-I().
Dem12

See [T , Theorem 14.2].
The two invariants are related by the following simple result:

Proposition 1.4.4 Let ¢ € PSH(X) and E be a prime divisor over X. Then

1
v(g,E) = lim - ordg I (ke).
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DX21
See [DX21, Proposition 2.14]. We remind the readers that this particular form of the

formula is compatible with our conventions of v and 7.
Also observe the following simple lemma:

Lemma 1.4.1 Let x € X and ¢ € PSH(X). Let n: Y — X be the blow-up of X at x
with exceptional divisor E. Then

v(g,x) =v(p, E),

Bou02 .
See L["_' , Corollaire 1.1.8].
Conversely, the information of the generic Lelong numbers determines the multi-
plier ideal sheaves:

Theorem 1.4.3 Let ¢ € PSH(X). Let x € X and f € Ox . Then the following are
equivalent:

(D) fel (@)
(2) there exists € > 0 such that for any prime divisor E over X such that x is
contained in the center of E on X, we have

ordg(f) =2 (1 +€e)v(p, E) — %AX(E).

Boul?
Here Ax denotes the log discrepancy. We refer to L['Qu_ , Corollary 10.18] for the
proof and the precise definition of Ax.

Theorem 1.4.4 (Guan-Zhou) Let ¢,y; € PSH(X) (j € Zso) such that  is an
increasing sequence converging to ¢ almost everywhere. Then for any x € X, the
germs satisfy

T(Wj)x =1 (o)«

when j is large enough.
GZ15, Hiepld

See N ] for the proof.

Proposition 1.4.5 Let n: Y — X be a smooth morphism between complex manifolds.
Assume that ¢ € PSH(X), then

I(n*¢)=n"1(yp).

Proof 1t follows from FH% , Théoreme 3.10] that locally 7 can be written as the
composition of an étale morphism and a projection. It suffices to handle the two cases
separately.

Recall that in the complex analytic setting, an étale morphism is locally biholo-
morphic, so there is nothing to prove in this case.

Next, assume that ¥ = X X U, where U C C" is a domain and 7 is the natural
projection. It follows from Fubini’s theorem that

I(n*p) C I (p).
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eml2

The reverse inequality is proved in % , Proposition 14.3]3. O

Definition 1.4.5 Given a coherent ideal sheaf 7 on X, the restriction Resy I is the
inverse image ideal sheaf given by

Resy I =1 /(1 N 1y), (1.6)
where Jy is the ideal sheaf defining Y.

In the literature, it is common to denote this sheaf by the misleading notation 1 |y.
There is a natural morphism

iyl =I/(T -1Iy) > Resy I, (1.7)
where iy : Y — X is the inclusion.

Theorem 1.4.5 (Ohsawa-Takegoshi) LetY be a submanifold of X and ¢ € PSH(X).
Assume that ¢|y # —oo, then

I(ply) S Resy I (¢).

Dem12
See [Dem2a, Theorem 14.1].

1.5 Quasi-plurisubharmonic functions

In practice, it is important to consider a variant of plurisubharmonic functions. We
will fix a complex manifold X together with a closed real smooth (1, 1)-form 6 on X.

Definition 1.5.1 A 0-plurisubharmonic function on X is a function ¢: X — [—c0, o)
such that for each x € X and each open neighbourhood U of x in X satisfying the
condition that # = dd°g for some smooth function g on U, we have g+ ¢|y € PSH(U).
The set of 6-psh functions on X is denoted by PSH(X, 0).

A quasi-plurisubharmonic function on X is a function ¢: X — [—0c0, ) such
that there exists a smooth closed real (1, 1)-form 6’ on X such that ¢ € PSH(X, 6’).
The set of quasi-plurisubharmonic functions on X is denoted by QPSH(X).

There is a natural non-strict partial order on QPSH(X) defined as follows:

Definition 1.5.2 Assume that X is compact. Given ¢, ¥ € QPSH(X), we say that ¢
is more singular than ¢ and write ¢ < ¢ if there is C € R such that ¢ < ¢ + C. We
also say ¥ is less singular than ¢ and write ¢ < ¢.

Incase ¢ < ¢ and ¥ < ¢, we say ¢ and ¢ has the same singularity types. We
write ¢ ~ ¥ in this case.

emIZ
3In [fD’i' , Proposition 14.3], Demailly used the highly non-standard notation f*7 (¢) to denote

the image of f*7 (¢) — Ox.
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Remark 1.5.1 The proceeding results concerning plurisubharmonic functions can be
extended mutatis mutandis to quasi-plurisubharmonic functions. We will apply these
extensions without further explanations.

Proposition 1.5.1 Assume that X is compact. Let 0 be a closed real smooth (1, 1)-form
on X. Then for any a,b € R, a < b, the set
{go € PSH(X,0) : supy € [a, b]}
X
is compact with respect to the L'-topology. Moreover, ¢ supy ¢ is L'-continuous
for ¢ € PSH(X, 0).
. . . G217 . .
This is an immediate consequence of L["_' , Proposition 8.5, Exercise 1.20].

Proposition 1.5.2 Assume that X is compact. Let 0 be a closed real smooth (1, 1)-form
on X and E be a prime divisor over E. Then

sup{v(p,E) : ¢ € PSH(X, 6)} < 0.

Proof 1t follows from the proof of Corollary 1.4.1 that v(e, E) is upper semi-
continuous with respect to the L'-topology on PSH(X, 6). Thus, the desired upper
bound follows from Proposition 1.5.1. O

Proposition 1.5.3 Let n: Y — X be a proper bimeromorphic morphism from a
compact Kihler manifold Y. Let 6 be a closed real smooth (1, 1)-form on X. Then
the pull-back gives a bijection

7*: PSH(X,6) — PSH(Y, 7*6).

This follows from a more general result Theorem B.1.1.

1.6 Analytic singularities

Definition 1.6.1 We say ¢ € QPSH(X) has analytic singularities if for each x € X,
we can find an open neighbourhood U of x such that ¢|y has the form:

clog(Ifil*+---+|fnI*) + R, (1.8)

where fi, ..., fy are holomorphic functions on U, ¢ € Q-¢ and R is a bounded
function on U.
When R can be taken to be smooth, we say ¢ has neat analytic singularities.
Suppose that there is a coherent ideal 7 € Ox on X such that we can choose U so
that the fi, ..., fy can be chosen as the generators of I'(U, ') and c is independent
of the choice of U, we say ¢ has analytic singularities of type (¢, I).
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Each potential with an%]é/&&ﬁ singul g%igazgas a type. The type is not uniquely
determined. We refer to [Bou02a] an(alﬂr 3ouu2b] for the details.

Proposition 1.6.1 Let ¢,y € QPSH(X) be potentials with analytic singularities,
then so are 1@ (A1 € Q=q), ¢ + ¥ and ¢ V .

eml5

D
Proof The Ay assertion is trivial. The V assertion is proved in k , Proposi-
tion 4.1.8]. The addition assertion is easy and is left to the readers. O

Definition 1.6.2 Let D be an effective Q-divisor on X. We say ¢ € QPSH(X) has
log singularities (along D) on X if for each x € X, there is an open neighbourhood U
of x such that

(1) D|y has finitely many irreducible components and can be written as

N

Dly = ZaiDi

i=1

with D; being prime divisors on D, a; € Q- and there is a holomorphic function
s; on U defining D;, and
(2) we have
¢lu=ai Y loglsil® +R, (1.9)
i

where R is a bounded function on U.
By Proposition 1.6.1, ¢ has analytic singularities.

Lemma 1.6.1 Suppose that 6 is a closed smooth real (1, 1)-form on X, a compact
Kdhler manifold and ¢ € PSH(X, 0). Suppose that ¢ has log singularities along an
effective Q-divisor D on X. Then the cohomology class [0] — [ D] is nef.

Moreover, if in addition 0, is a Kdhler current, then the cohomology class
[6] — [D] is ample.

Proof The first assertion follows immediately from the fact that R in (1.9) has
bounded coefficients.
The second assertion follows immediately from the first. O

The following proposition follows immediate from the definitions:

Proposition 1.6.2 Let n: Y — X be a proper bimeromorphic morphism from a
complex manifold Y. Suppose that ¢ € QPSH(X) has analytic singularities (resp. has
log singularities along an effective Q-divisor D). Then n* ¢ has analytic singularities
(resp. has log singularities along 7w* D).

Theorem 1.6.1 Assume that X is compact. Suppose that ¢ € QPSH(X) has ana-
lytic singularities. Then there is a modification n: Y — X such that n*¢ has log
singularities.

MMO7
For a proof, we refer to the arguments on L["“ , Page 104].
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Definition 1.6.3 Let X be a compact Kéhler manifold and 8 be a closed real smooth
(1,1)-form on X. Consider ¢ € PSH(X, 0). A sequence (¢;) jez., in QPSH(X) is
quasi-equisingular approximation of ¢ if

(1) ¢; has analytic singularities for each j;

(2) ¢; is decreasing with limit ¢;

(3) there is a decreasing sequence €; > 0 with limit 0 and a Kéhler form w on X
such that ¢; € PSH(X, 0 + €;w);

(4) for each A’ > A > 0, there is j > 0 such that

I (X)) CI(Agp).
We also say 6, is a quasi-equisingular approximation of €.

Definition 1.6.4 Let 7 C Ox be an analytic coherent ideal sheaf and ¢ € Qs¢. A
function ¢ € QPSH(X) is said to have gentle analytic singularities (of type (c, 1)) if

(1) ¢ has analytic singularities of type (c, 7 );

(2) e®/¢: X — Ry is a smooth function;

(3) there is a proper bimeromorphic morphism 7: X — X from a Kihler manifold
X and an effective Z-divisor D on X such that one can write 7*¢ locally as

' = clog|g|* + h,
where g is a local equation of the divisor D and / is smooth.

Theorem 1.6.2 Let X be a compact Kdhler manifold and 0 be a closed real smooth
(1, 1)-form on X. Then any ¢ € PSH(X, 0) admits a quasi-equisingular approxima-
tion (@;) jez.-
Moreover, we can guarantee that ¢; has gentle analytic singularities of type
(27,12 ¢)).
DPSO1
We refer to L[' """ ] for the proof.

Quasi-equisingular approximations are essentially unique in the following sense:

Proposition 1.6.3 Let X be a compact Kdhler manifold and 0 be a closed real
smooth (1, 1)-form on X. Consider ¢ € PSH(X, 6). Let (¢;); and (;); be two
quasi-equisingular approximations of ¢. Then for any € > 0 and any j > 0, we can
find ko > 0 such that for any k > ko, we have

Y 2 (1-€)p;.
Deml5
See k" , Corollary 4.1.7].

Definition 1.6.5 Assume that X is compact. Let ¢ € QPSH(X) be a potential with
analytic singularities. Then we define Z.,(¢) as the ideal sheaf consisting of germs f
of holomorphic functions such that | f|?> exp(—¢) is locally bounded.

Lemma 1.6.2 Assume that X is compact. Let ¢ € QPSH(X) be a potential with
analytic singularities. The sheaf I.,(¢) is a coherent sheaf.
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Proof By Theorem 1.6.1, we may find a modification 7: ¥ — X such that 7*¢ has
log singularities. Observe that

Io(p) = I (n"p),

so we may replace X and ¢ by Y and 7" ¢ and assume that ¢ has log singularities
along an effective Q-divisor D. We decompose D into its irreducible components:

N
D = ZaiDi.

i=1

In this case, observe that

N
Io(¢) = O(= ) ([a1Dy)
i=1

is clearly coherent. O

Lemma 1.6.3 Assume that X is compact. Let ¢ € QPSH(X) be a potential with
analytic singularities. Then for any € > 0, we can find ko > 0 such that for each
k > kg, we have

T(k(1+e€)p) C Io(ky).

Deml15 .
See L["_ , Proposition 4.1.6].

Theorem 1.6.3 Let X be a connected compact Kdihler manifold and Y C X be a
connected submanifold. Take a Kdihler form w on X and ¢ € PSH(Y, w|y) such that
wly +ddy is a Kdhler current and that e¥ is a Holder continuous function on V.
Then there exists ¢ € PSH(X, w) satisfying

M ely =¢;
(2) wg is a Kihler current.

In addition, if ¢ has analytic singularities, then so does §.

DRWNXZ
See [DRW] , Theorem 6.1].

1.7 The space of currents

Let X be a connected compact Kihler manifold of dimension n and € H"! (X, R).

Definition 1.7.1 Let Y be a complex manifold and m € N. We say an (m, m)-current
T on'Y is positive if either m > n or for any smooth (1, 0)-forms B1,..., Bu—m on X,
the measure

T/\iﬂl /\E/\"'/\iﬁn—m/\ﬁn—m

is positive.
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Definition 1.7.2 We say « is pseudo-effective if there is a closed positive (1, 1)-current
in .

We say « is big if there is a closed positive (1, 1)-current 7' in @ dominating a
Kahler form. Such currents are called Kdhler currents.

Definition 1.7.3 We introduce the following notations:

(1) Z.(X) denotes the space of closed positive (1, 1)-currents on X;
(2) given a pseudo-effective (1, 1)-class @ on X, we write Z.(X, ) for the set of
T € Z,(X) such that [T] = «a;

Given T, T’ € Z.(X), we write T < T’ and say T is more singular than T’ if
when we write T = 6 + dd e, T’ = ¢’ + dd°¢’, we have ¢ < ¢’. We write T ~ T” if
T <T and T’ < T. In this case, we say T and 7’ have the same singularity type.

Remark 1.7.1 Observe that
Z(X)/~= QPSH(X)/~

canonically. The correspondence sends the class of a closed positive current 6, =
0 + dd®yp to the class of ¢.

We will adopt the following convention: whenever we have a notion for quasi-
plurisubharmonic functions which depends only on the singularity type, we use the
same notation and the same definition for closed positive (1, 1)-currents.

Definition 1.7.4 Given T € Z,(X). We represent T as 6 + dd°p for some closed
smooth real (1, 1)-form 6 on X and ¢ € PSH(X, ), then the polar locus of T is
defined as the set {¢p = —oco}.

It is clear that the polar locus of T is independent of the choices of 6 and ¢.

Lemma 1.7.1 (Siu’s decomposition) Let E be a prime divisor on X. Then for any
closed positive (1,1)-current T on X, the difference T — v(T,E)[E] is a closed
positive (1, 1)-current.

GH14
Here [E] is the current of integration a e(r)n(ii?ted with E. See L['"" , Page 386,
Example 1] for the definition of [E]. See F‘_ , Lemma 2.17] for the proof.

1.8 Plurisubharmonic metrics on line bundles

A natural source of quasi-plurisubharmonic functions is the metrics on line bundles.
Let X be a connected compact Kihler manifold and L be a holomorphic line
bundle on X. Usually, we do not distinguish L from the associated invertible sheaf

Ox(L).

Definition 1.8.1 Let V be a 1-dimensional complex linear space. A Hermitian form
honVisamap h: VXV — C such that
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(1) h is C-linear in the second variable and conjugate linear in the first, and
2)

[v[? = h(v,v) € Rsg
for each v € V' \ {0}.

We usually identify & with the quadratic form V — R sending v to |v|fl.
The singular Hermitian form on V is the map V — {0, oo} sending 0 to 0 and
other elements to oco.

We write [v|, = 4/Iv[7.

Definition 1.8.2 A Hermitian metric h on L is a family of Hermitian forms (/) ex,
such that

(1) for each x € X, h, is a Hermitian form on L,, and
(2) for each local section s of Ox(L), the map x +— [s(x)|n, is smooth.

The pair (L, k) is called a Hermitian line bundle. We shall write dd°k = ¢ (L, h) for
the first Chern form of %, normalized so that

[ei(L, h)] = c1(L).
The map x — |s(x)|p, will be denoted by |s|.

Proposition 1.8.1 (Lelong-Poincaré) Ler s € H(X, L) be non-zero and h be a
Hermitian metric on L. Then

c1(L, h) +ddlog |s|? = [Z(s)],

where Z(s) is the prime divisor defined by s and [ e] denote the associated current of
integration.

Dem12
See L["_ ,(3.1D)].

Definition 1.8.3 A plurisubharmonic metric h on L is a family (A, )y such that

(1) for each x € X, hy is either a Hermitian form on L, or the singular Hermitian
form, and

(2) there is a Hermitian metric sy on L and ¢ € PSH(X, c¢;(L, hg)) such that for
each x € X and each v € L,, we have

) 0,if v =0;
v = 1.10
VI, |v|%l(]xe_‘ﬁ(x), if v#0. (1.10)

The (first) Chern current of h is by definition

dd®h = C1 (L, ]’l) =C (L, /’lo) + ddcgo.
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We shall write the plurisubharmonic metric defined by (1.10) as #exp(—¢). As the
readers can easily verify, our conventions guarantee that ¢1 (L, &) does not depend on
the choice of hy.

Remark 1.8.1 In the literature, some people prefer the convention that in (1.10),
neither side has the square.

We shall need the following Ohsawa—Takegoshi type extension theorem.

Theorem 1.8.1 Assume that L is big and T is a holomorphic line bundle on X.
Fix a Hermitian metric v on T. Take a Kdhler form w on X. Let Y C X be a
connected submanifold of dimension m. Suppose that ¢ € PSH(X, 6 — Sw) for some
6 > 0and ¢|ly # —co. Then there exists ko(8,r) > 0 such that for all k > ko and
se H(Y, T®L|f, ® I (koly)), there exists an extension § € H*(X, T ® LX® I (ky))
such that

/X(hk ®r)(5,5e ¢ w" < ny(hk ®71)(s,s)e e |,

where C > 0 is an absolute constant, independent of the data (g, s, k).

L. . Hisl2
This is a special case of L["_' , Theorem 1.4].

Proposition 1.8.2 Let (L, h) be a Hermitian line bundle on X and set 0 = c1(L, h).
Let (T, hr) be a Hermitian line bundle on X. Assume that ¢ € PSH(X,0) is a
potential with analytic singularities such that 0, is a Kdhler current. Fix a Kdhler
form w on X. For each k > 1, we let

1
or = —log sup 1% ® hr (s, s). (1.11)
k seHO(X,LkeT)
fx he®@hr(s,s)e ¢ wn<1

Then for any k > 0,
Y = K 2 agy,

where ay, € (0, 1) is an increasing sequence with limit 1.

DX21
Note that when k is large enough, ¢, € PSH(X, 8). We refer to L[““‘ , Remark 2.9]
for the proof.



Chapter 2
Non-pluripolar products

Let X be a complex manifold and ¢1, . . ., ¢, € PSH(X) (p € N). When the functions
@1, ..., ¢p are all smooth, there is an obvious definition of a current
ddgi A -+ AddSe, 2.1

by the usual differential calculus. It is of interest to extend this construction to the
case where the ¢;’s have worse regularities.

There are a number of different approaches to this problem. In this book, we will
choose the so-called non-pluripolar theory due to Bedford—Taylor, Guedj—Zeriahi and
Boucksom-Eyssidieux—Guedj—Zeriahi. The reason is that the non-pluripolar theory
is the only known theory satisfying the following two features: it is defined for all psh
singularities (at least in the global setting) and it satisfies a monotonicity theorem.

We will recall the Bedford—Taylor theory in Section 2.1 and the non-pluripolar
theory in Section 2.2.

Some key properties of the non-pluripolar products are recalled in Section 2.3.

2.1 Bedford-Taylor theory

Let X be a complex manifold and ¢1, . .., ¢, € PSH(X) (p € N) be locally bounded
plurisubharmonic functions on X!. In this case, there is a canonical definition of the
Monge—Ampere type product (2.1).

Definition 2.1.1 We define the closed positive (p, p)-current (2.1) on X as follows:
we make an induction on p > 0. When p = 0, we define (2.1) as the (0, 0)-current
[X]. When p > 0, we let

dd¢1 A -+ Add°g), = dd° (1 dd°pa A -+ Add°g),)

! In the literature, some people use PSH(X) N L> (X) to denote such functions, which is an abuse
of notation. It is legitimate thanks to the rigidity Theorem 1.1.3.

27



28 CHAPTER 2. NON-PLURIPOLAR PRODUCTS
We call (2.1) the Bedford—Taylor product .

Proposition 2.1.1 The product dd°¢; A - - - Add®¢,, is a closed positive (p, p)-current
on X. Moreover, the product is symmetric in the ¢;’s.

GZ17 .
See L[“—' , Proposition 3.3, Corollary 3.12].
The Bedford—Taylor theory has many satisfactory properties.

Theorem 2.1.1 Let ((,0{ )j be decreasing sequences (resp. increasing sequences) of
locally bounded psh functions on X converging (resp. converging a.e.) to locally
bounded psh function ¢;, wherei =1, ..., p. Then

@l ddeg] A Addop), = goddSpy A<+ Addg),
as j — oo. In particular, if gpg is the constant sequence 1, we have
dd®e! A -+ Addop), — ddp; A+ AddCg,.

Here the notat'gglf denotes the weak-* convergence of currents.
We refer to [GZ17, Theorem 3.18, Theorem 3.23] for the proofs.

2.2 The non-pluripolar products
BEGZ10

The proof of all results in this section can be found in [BEGZ.10].
Let X be a connected complex manifold of dimension n.

Definition 2.2.1 Let ¢y, ..., ¢, € PSH(X). We set
)4
Oy = ﬂ{%- > -k}, k€Zs.
Jj=1

We say that dd°¢; A -+ A dd°gp), is well-defined if for each open subset U C X
admitting a Kihler form w on U, for each compact subset K C U, we have

p
sup/ dd®(¢; V (=k)) || Aw"™P < co. (2.2)
k20 JKNOx \ j_ "

In this case, we define the non-pluripolar product dd°p; A --- A dd°¢), by
p
Lo, dd°¢ A+ Addgp = 1o, /\ dd° (¢, v (-k)) 2.3)

J=1

on {J;» Ok and make a zero-extension to X.
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Proposition 2.2.1 Let ¢1, . .., ¢, € PSH(X).

(1) The product ddp A- - - Add® ¢, is local with respect to the plurifine topology in the
following sense: Let O C X be a plurifine open subset and 1, . . ., , € PSH(X).
Assume that

eilo=vjlo, j=1,....p,
and that

p p
/\ dd°p; and /\ dd°y;
j=1 j=1
are both well-defined, then

p
/\ dd°g;
j=1

If furthermore O is open in the usual topology, then the product

p
A\ ddejlo
J=1

p
= /\ddC(//j . (2.4)
j:l o

o

on O is well-defined and

P 4
/\ddc¢j = /\ddc¢j|0. 2.5)
j=1 o J7!

Let U be an open covering of X. Then ddpy A - - - Add° g, is well-defined if and
only if each of the following product is well-defined

p
/\dd°¢j|U, Ue.
j=1

(2) The current dd°@; A - - - A dd°p,, and the fact that it is well-defined depend only
p

on the currents dd°g;, not on specific ¢;.

(3) When ¢, ...,¢, € L (X), the product dd°¢1 A --- A dd¢,, is well-defined

14 loc p

and is equal to the Bedford-Taylor product.

(4) Assume that dd°@1 A - - - A ddCg,, is well-defined, then dd°p A - - - A ddp), puts
not mass on pluripolar sets.

(5) Assume that dd°gy A --- A dd°g,, is well-defined, then /\;’=l ddp; is a closed
positive (p, p)-current on X.

(6) The product is multilinear: Let | € PSH(X), then

P P 14
dd (@1 + 1) A /\ dd®e; = dd°g; A /\ dde; +ddy; A /\ dd°p; (2.6)
j=2 j=2 j=2
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in the sense that left-hand side is well-defined if and only if both terms on
right-hand side are well-defined, and the equality holds in that case.

Definition 2.2.2 Let 71, . .., T}, be closed positive (1, 1)-currents on X. We say that
Ti A --- AT, is well-defined if there exists an open covering U of X, such that on
each U € U, we can find gasj € PSH(U) (j =1,..., p) such that

ddcgoj.j:Tj, j=1,...,p

and such that ddcgoﬁl A A ddcgog is well-defined. In this case, we define the
non-pluripolar product Ty A --- AT, as the closed positive (p, p)-current on X
defined by

(Ti A=~ ATp) lu =dde] A--- AddY, Ued. 2.7)
Proposition 2.2.1 can be formulated in terms of currents without any difficulty.

Proposition 2.2.2 Let X be a compact Kdhler manifold and Ty, . .., T, are closed
positive (1, 1)-currents on X. Then Ty A - - - AT, is well-defined.

This proposition explains why we usually work in the setting of compact Kéhler
manifolds.

2.3 Properties of non-pluripolar products

Let X be a connected compact Kahler manifold of dimension »n and 6, 6y, ..., 6, be
closed real smooth (1, 1)-forms on X.
We write
PSH(X, 0)-¢ = {(p € PSH(X,0) : / 9{; > 0} . (2.8)
X

The non-pluripolar product 6, is well-defined thanks to Proposition 2.2.2.

Remark 2.3.1 Suppose that X is a connected complex manifold of dimension 0, namely,
X is a single point. In this case, by definition, the non-pluripolar product 6, is given
by the current of integration at the unique point. So PSH(X, 8).¢9 = PSH(X,6) =R
in this case and /X 6, =1 for all ¢ € PSH(X, ).

Proposition 2.3.1 Let n: Y — X be a proper bimeromorphic morphism from a
Kdhler manifold Y and ¢; € PSH(X, 0;) fori =1,...,n. Then

/71*01’,,*‘/,] A AT O =/0w1 Ao A, -
Y X

Proof This follows immediately from Proposition 2.2.1 (1) and (4). ]
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We shall write
Vo =sup {¢ € PSH(X,0) : ¢ < 0}. (2.9)

It follows from Proposition 1.2.1 that Vg € PSH(X, 0) if PSH(X, 0) # @.

Theorem 2.3.1 (Semicontinuity theorem) Let ¢;, <p§ € PSH(X,0;) (k € Zso,
j=1,...,n). Let y > 0be abounded function such that there are 11,1, € QPSH(X)
withn + y = na.

Assume thatforany j = 1,...,nandi =1,...,m, as k — oo, either ga’? decreases
to ¢ € PSH(X, 0) or increases to ¢; € PSH(X, 0) almost everywhere. Then for any
open set U C X, we have

lim X0, (pk/\~~~/\9n‘pk2/)(91,4,1/\--4\9,,,%. (2.10)
k—oo JU e o U

DDNL 18mono
See [DDNL 130, Theorem 2.3].

Theorem 2.3.2 (Monotonicity theorem) Let ¢;,y; € PSH(X,6;)for j=1,...,n.
Assume that ¢ > s for every j, then

/ 01,00 A+ Ong, 2 / Oy A Ony,-
X X
DDNL 18mono

See [DDNT- 150, Theorem 1.1].
As a corollary, we obtain that

Corollary 2.3.1 Fix a directed set 1. For each j = 1, ... ,n, take an increasing net
(¢j~)ie] in PSH(X, 0), uniformly bounded from above. Set

@ = sup* 903
il
Then
liien}/Xg]"/’f Ao N, i = </Xel’<pl A Nbp g, (2.11)

Proof We may assume that / is infinite as there is nothing to prove otherwise.
Thanks to Theorem 2.3.2, we already know the < inequality in (2.11). We prove
the reverse inequality. When I = Z. as directed sets, the reverse inequality follows
from Theorem 2.3.1. In general, by Choquet’s lemma Proposition 1.2.2, we can find
a countable infinite subset R C [ such that

sup* ¢ = sup* ¢’

reR iel
forall j =1,...,n. We fix a bijection R = Z.¢. Forany j = 1,...,n, we will then
denote elements ¢; (r € R) by <pjl., (p?, .... We shall write

w;l:(p;\/\/(p;l

for each a € Z-.
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It follows from the fact that 7 is a directed set and Theorem 2.3.2 that

lim [ 6; i A--- A0 ,>hm/91,¢7/\~~-/\9n,¢3.
x X

iel > Pn a—o

From the special case mentioned above, we know that the right-hand side is exactly
the right-hand side of (2.11), so we conclude. m]

Lemma 2.3.1 Let ¢, € PSH(X, 0), ¢ < ¥ and fX 6y, > 0. Then for any

/‘ o" 1/n
X
/XG") ’

2.12)

ael(/X

there is n € PSH(X, 0)~¢ such that
a‘p+(1-a Ny <.

The fraction in (2.12) is understood as oo if fx 03 = fx ¢/ In particular, thanks to
Theorem 2.3.2, the interval (2.12) is non-empty.
We write

Pg(ap + (1 — a)y) =sup* {n ePSH(X,0) :a 'n+(1-a My < <p}

(2.13)
€PSH(X, 6).

Remark 2.3.2 The notation P g (ap+(1—a)y) might lead to some potential confusions.
But the author cannot come up with a better notation.
Observe that

a'Polap+ (1 —a)y)+(1—a My < . (2.14)

In fact, this equation holds outside a pluripolar set by Proposition 1.2.3, hence it
holds everywhere by Proposition 1.2.5.

Proof Witho‘FDlI&ss gef ggnerahty, we may assume that ¢ < i < 0.

We refer to [DDINCZTD , Lemma 4.3] for the proof of the existence of € PSH(X, 6)
satisfying the given inequality. Next we argue that Py (ap+ (1 —a)y) € PSH(X, 0)+o.
Choose

%

liatal )

It follows from (2.13) that

—4,. (2.15)

Potag+(1-a)) 2 LPy(ae+(1-aw)+ &

Therefore, by Theorem 2.3.2, we have
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n ((1’ - a)n n
/XgPe(uw(l—a)w) 2 Tgm Xew > 0.

Corollary 2.3.2 Let ¢,y € PSH(X, 6)-0, ¢ < ¢ Assume that [, 67, = [, 6%} Then
forany € € (0, 1), there is n € PSH(X, 6) such that

M) [ 0= [ 0%
@)
en+(1-€e My <o.
Proof Thanks to (2.15) and Theorem 2.3.2, for each a’ > €1, we have

(@ —ehHY"
/9;’7 > ( " 04
X X

n=Po(e o+ (1-€e)y).

Letting a’ — oo, we conclude that

6"2/9”.
L’] X‘P

On the other hand, since < i, we find that

9"3/9”:/9".
‘/X‘I7 Xl// X‘)‘7
[ay= [ e

Lemma 2.3.2 For any ¢ € PSH(X, 0)~, there is y € PSH(X, 0) such that

where

Hence,

(1) 8y is a Kihler current, and
@y <o

In particular, there is an increasing sequence (¢;); in PSH(X, 0) converging almost
everywhere to ¢ such that 6 ,, is a Kdhler current for all i > 1.

Proof Using Lemma 2.3.1, we can find € > 0 and y € PSH(X, 6) such that

€

1
Vo + ——v < .
T+e ? y=¢

1+¢€

BEGZ10
We observe that the cohomology class [6] is big as a consequence of [BEGZ10,

Proposition 1.22]. Therefore, we can take € PSH(X, 6) such that ,, is a Kéhler
current and 7 < 0. Then we may take
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For the latter claim, it suffices to take

pi=(1-(+D) e+ +1)7 "y

Lemma 2.3.3 Let L be a holomorphic line bundle on X with 0 € c1(L). Assume that
¢ € PSH(X, 0)~, then there exists ko > 0 such that for each k > ko, we have

HY(X, LF @ T (kg)) # 0.

Proof By Lemma 2.3.2, we 1y further assume that 6, is a Kihler current. In this
case, the result follows from [Dem 24, Theorem 13.21]. 0O

Theorem 2.3.3 Let ¢, ¢; € PSH(X, 0). Then the map

[0,1] BtHlog/XH;’W(l_tWO

is concave.
DDNL191og

See L["““'_" ] for the proof.

Remark 2.3.3 Here and in the sequel, when we write expressions like t¢ + (1 — 1)y

for ¢, ¥ € QPSH(X), we will follow the convention that when ¢ = 0, the value is ¢

and when ¢ = 1, the value is ¢.



Chapter 3
The envelope operators

In this chapter, we study two envelope operators lying at the heart of the whole theory.
The first envelope, called the P-envelope, is defined using the non-pluripolar masses,
while the second, called the 7 -envelope, is defined using the multiplier ideal sheaves.
The corresponding theories are developed in Section 3.1 and Section 3.2 respectively.
Later on in Chapter 6, we will develop corresponding P and 7 -partial orders
associated with these envelopes, allowing us to compare the singularities.

3.1 The P-envelope

In this section, X will denote a connected compact Kéhler manifold of dimension 7.

3.1.1 Rooftop operator and the definition of the P-envelope

We will fix a smooth closed real (1, 1)-form 6 on X.

Definition 3.1.1 Given ¢, ¢ € PSH(X, ), we define their rooftop operator as follows:

oAy =sup{n € PSH(X,0) :n < ¢,n < ¢}.

When we want to be more specific, we could also write ¢ Ay . Suppose that ¢ A
is not identically —oo, then we have ¢ A ¢ € PSH(X, 6) by Proposition 1.2.1.

Lemma 3.1.1 Let ¢,y € PSH(X, 0). Assume that ¢ Ay € PSH(X, 0). Then

Oony < Lionp=¢) 0 + Lipny=y}0y-
DDNL 18mono

See [N 150, Lemma 3.7] for the proof.

35
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We recall that the relations < and ~ are introduced in Definition 1.5.2.

Definition 3.1.2 Given ¢ € PSH(X, 0), we define its P-envelope as follows:

Pyl¢] = sup*{¢ € PSH(X,0) : ¢y <0, < ¢}. (3.1)

Observe that by Proposition 1.2.1, we have Py[¢] € PSH(X, 6). Moreover, the
definition can be equivalently described as

Pyl¢] = sup* (¢ + C) A Vy. (3.2)
CEZ>0

Recall that Vy is introduced in (2.9). Observe that forany C € R, we have (¢+C)AVy €
PSH(X, 6) and
((p + C) AVg ~ ©.

Proposition 3.1.1 Let 8’ = 0 + dd°g for some g € C®(X). Then for any ¢ €
PSH(X, 0), we have ¢ — g € PSH(X, 6’) and

Pole] ~ Po[¢'].
Proof By symmetry, it suffices to show that

Pole] < Py [¢'].
We may assume that g > 0. Then for any ¢ € PSH(X, 6) with ¢y < ¢ and ¢ < 0, we
sety’ =y —g € PSH(X,0"). Then ¢y’ < ¢’ and ¥’ < 0,0y’ < Py [¢’]. Since ¢

is arbitrary, it follows that

Pole] —g < Po[¢'].
The P-envelope preserves the non-pluripolar masses:

Proposition 3.1.2 Suppose that 0y, . . ., 6, be smooth closed real (1, 1)-forms on X.
Let p; € PSH(X, 6;) foreachi=1,...,n. Then

/ 91,P01 o] Ao AOn Py, [@n] = / 01,00 N+ Nbn,g,. (3.3)
X X
Proof Foreach C € Z.gandeachi=1,...,n, we have
(pi +C) A Vg, ~ ¢;.
It follows from Theorem 2.3.2 that
/ 01,(90]+C)/\V9] ANRIRVA Gn,(‘pn+C)AVgn = / Hl,cpl ANREA an,(pn'
X X

So (3.3) follows from (3.2) and Corollary 2.3.1. m]
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Conversely, Proposition 3.1.2 characterizes the P-envelope:

Theorem 3.1.1 Assume that ¢ € PSH(X, 0)~, then

Py le] = sup {zﬁ € PSH(X,0) : ¢ <0,¢ < lﬁ,/ 9$ = / 93} (3.4)
X X
In particular, in this case,

P [Pole]l] = Pole]. (3.5)
DDNLsurv

We refer to , Theorem 3.14] for the proof. In general, we do not know if
(3.5) holds when fX , > 0. We expect it to be wrong. According to our general
philosophy, the P-envelope operator is the correct object only when the non-pluripolar
mass is positive. We will avoid using the degenerate case in the whole book.

Definition 3.1.3 If ¢ = Py[¢] and /X 0y, > 0, we say ¢ is a model potential.

We remind the readers that the notion of model potentials depends heavily on the
choice of 6. When there is a risk of confusion, we also say ¢ is a model potential in
PSH(X, 0).

Remark 3.1.1 Definition 3.1.3 is different from the common definition in the literature:
We impose the extra condition fX 6, > 0. The author believes that this is the only
case where this notion is natural. We sometimes emphasize this point by saying
¢ € PSH(X, 0)-¢ is a model potential.

There are plenty of model potentials:

Corollary 3.1.1 Let ¢ € PSH(X, )+, then Pg|[¢] is a model potential in PSH(X, 0).

Moreover,
n — gn .
‘/X Polo] ‘/X ¥

Proof This follows immediately from Theorem 3.1.1 and Proposition 3.1.2. O

Proposition 3.1.3 Assume that ¢, € PSH(X, 0) and

6"+/9">/9" .
‘/Xw Xw vaw

Proof Without loss of generality, we may assume that ¢, < 0. Take

Then ¢ Ay € PSH(X, 6).

n=Pol(1-€)pVy+eVy]

for some small enough € > 0, we may guarantee that

9"+/9”>/0", eV <n.
/x"J x VT x T
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This is a consequence of Corollary 3.1.1.
Take C > 0 large enough, so that

6”+/ 0" >/9”.
/{¢>U—C} ¢ {y>n-C} v x

This is possible thanks to Proposition 2.2.1(4). Fix C’ > C. Using Proposition 2.2.1(1),
we can rewrite this equation as

n n n
/{Wnc}gsovm—c') +/{w>77C}9‘”V(”‘C') > /X"n-

yor = (eVn-CNHAWV@H-C)).

Write

Then observe that
1nf Yo =@ AY.

Cl
Assume by contradiction that ¢ A ¥ = —co, then we have
lim supycr = —o0.
C'—o0o x

Observe that for each C’ > C,

supycr = sup (ycr —n)
X {n#—co}

since 77 is a model potential. It follows that

lim sup (yc —n) = —oco. (3.6)

C’'—>c0 {n#—co}

For each C’ > C, we compute

or ., s/ 0" , +/ 0
-/{ch<n—C} 7 Jgvin-cnsn-cy £ T Jyvim-cngn-cy V)

) / o — / / o
{¢>n-C} % wen-cy

< [ 6",

i

where the first line follows from Lemma 3.1.1. Using (3.6), we can take C’ large
enough so that yc» < n — C. Then we find

n n
«/X 97C’ -/X 977’

which contradicts Theorem 2.3.2. O
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3.1.2 Properties of the P-envelope

Let 6, 61, 8, be smooth closed real (1, 1)-forms on X.

Proposition 3.1.4 Let 7: Y — X be a proper bimeromorphic morphism from a
Kihler manifold Y to X. Then for any ¢ € PSH(X, 6), we have

Prg[n"@] =n"Pgle].

In particular, a potential ¢ € PSH(X,0)s is model if and only if n*¢p €
PSH(Y, 7n*0)~¢ is model.

Proof This follows immediately from Proposition 1.5.3. O

We have the following concavity property of the P-envelope.
Proposition 3.1.5
(1) Suppose that ¢ € PSH(X, 0) and A € Ry, then

Pag[dp] = APg[g].
(2) Suppose that ¢ € PSH(X, 0) and ¢, € PSH(X, 0;), then

Poro, @1 +@2] 2 Po, [01] + Po, [02].

Proof (1) This is obvious by definition.
(2) Suppose that ¢y, € PSH(X, ;) and ¢, € PSH(X, 6,) satisfy

Ui <0, Yi <2

fori =1,2. Then
U1+Y2 20, Y1+ <01+ @

It follows from (3.1) that
Y1+ 42 < Pogler + @]

Since ¥1 and ¥, are arbitrary, we conclude. O

Proposition 3.1.6 Let ¢,y € PSH(X, 0). Assume that

¢ =Polel, ¥ =Pole]l, @AY Z —c0.

Then
Polo Ayl =@ Ay 3.7

Proof Observe that we obviously have

Polo ANy < Polel =@, Pole Ay] < Poly] = 4.

So the < direction in (3.7) holds. The reverse direction is trivial. m]
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Theorem 3.1.2 Let ¢ € PSH(X, 6). Then

Obate) < Lipole1=010".

IDDNL 18mono
See L["""'_"", Theorem 3.8] for the proof.

Theorem 3.1.3 Assume that ¢,y € PSH(X, 0) and ¢ Ay € PSH(X, 0). Then

9"+/0"3/9" +/0" . (3.8)
[(w Xw vaw wa

DDNLmetric

We refer to , Theorem 5.4] for the proof.

Proposition 3.1.7 Let () jer be a decreasing net of potentials in PSH(X, 6) satis-
fying Pole;]l = ¢j foreach j € I and ¢ = inf; p; # —oco. Then Pg[¢] = ¢.

Proof 1t follows from Proposition 1.2.1 that ¢ € PSH(X, 6). Therefore, for each
jel,

¢ < Pole] < Poleyj] = ¢;.
Therefore, ¢ = Pg[¢]. O

Proposition 3.1.8 Let (¢;) jc; be a decreasing net in Ry with limit 0. Take a Kéhler
form w on X. Consider a decreasing net ¢; € PSH(X, 6 + €;w) (j € I) satisfying

P9+ejw[‘;0j] = ()0] (39)

with pointwise limit ¢ # —co. Then

lj_ig}‘/x(9+ejw)$j =/XHZ. (3.10)

Moreover, if/x 0y > 0, then for any prime divisor E over X, we have

limv(¢;, E) = v(g, E). (3.11)
JE
Proof Observe that ¢ € PSH(X, 8). By Theorem 2.3.2, we have

lim [ (0+¢€;w).. > lim (9+e-w)"=/9”.
Jer Jx e Jer Jx e x ¢

We now argue the reverse inequality.
Fix jo € I, we have



3.1. THE P-ENVELOPE 41

11m/(9+eju))gj =hén ; (9+eja))zj
@j=
<l 0 "
= el {«P,:o( e,

where in the first line we used (2 D%]\Iﬁtlnlgt"llj%lgorem 3.1.2, and in the last 1i N lglra‘ye
used the fact that ¢; N\, ¢ and [DDNTZTDH, Proposition 4.6] (see also %““"_'
Lemma 2.11]). Taking limit with respect to jo, we arrive at the desired conclusion:

E/(9+E~w)"_ < lim 0 +e€;,w) :/ 0" S/Q”.
it T T Sy T Sy P Ux®

This finishes the proof of (3.10).

It remains to argue (3.11). By Lemma 2.3.1 and (3.10), for any € € (0, 1) and j
big enough there exists y; € PSH(X, 6 + €;w) such that (1 — €)¢; + €y; < ¢. This
implies that for j big enough we have

b}

(A-e)v(ej,E)+ev(y;,E) 2 v(p,E) 2 v(p;, E).

On the other hand, the Lelong numbers v(i ;, E) admit an upper bound for various
by Proposition 1.5.2. So taking limit with respect to j, we conclude (3.11). O

Corollary 3.1.2 Let (@) jer be a decreasing net of potentials in PSH(X, 0) with
pointwise limit ¢ € PSH(X, 0)~¢. Then

Pgle] = inf Po[y;].
Jjel
Proof We may assume that / is infinite since otherwise, there is nothing to prove.

Letn = inf;e; Pg[¢:]. We clearly have 0 > > Pg[e].
By Proposition 3.1.8, we have

. n __ n
ll_1enll X9¢i—/)(0¢>0.

So by Lemma 2.3.1, we can find a decreasing net ¢; \, 0 (i € I) with ¢; € (0, 1) and
Y; € PSH(X, 6) such that for all i € I,

(I-e)pi+teyi <o, ¥i<g
By Proposition 3.1.5, we have

n+€Polyi] <(1-€)n+e€Polyi] < (1—€)Pgleil +€Poltvi]l < Polel.
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Observe that the L'-norms of Py [y;] (with respect to a fixed volume form) are
uniformly bounded by Proposition 1.5.1. Taking limit with respect to i € I, we
conclude that < Pg[¢] almost everywhere by Proposition 1.2.5. O

Remark 3.1.2 The arguments like the last sentence in the proof of Corollary 3.1.2 is
very common. We will usually omit the details.

Corollary 3.1.3 Let ¢ € PSH(X, 0)s be a model potential. Let w be a Kiihler form
on X. Then

¢ = inf P6+ew[‘;0]-
e>0

Proof Clearly, we have the < direction and the right-hand side is non-positive. So by
Theorem 3.1.1, it suffices to show that they have the same mass, which follows from
Proposition 3.1.8. O

Proposition 3.1.9 Let (¢;)ic; be an increasing net of potentials in PSH(X, 6)~¢
uniformly bounded from above. Let ¢ = sup*;.; ¢;. Then

sup* Pg ;] = Pol¢].

iel
In particular, if ; is model for all i € I, then so is .

Proof We may assume that / is infinite since otherwise, there is nothing to prove.
We write

n = sup* Pg[e;].

iel
Then it is clear that n < Py[¢].
By Corollary 2.3.1, we have

li no= n .
iIEIIII/XQ% ‘/}.(9¢>0

So by Lemma 2.3.1, we can find a decreasing net €; \, 0 (i € I) with € € (0, 1) and
W; € PSH(X,0) (i € I) such that for all i € I,

(1-€e)o+eyi < ¢
By Proposition 3.1.5, we have

Polel +€Polyi] < (1 —€)Pgle] +€Polyi] <n.

Taking limit with respect to i, we conclude that Py[¢] < 1 (c.f. Remark 3.1.2). O

3.1.3 Relative full mass classes

Let 0 be a smooth closed real (1, 1)-form on X representing a big cohomology class.
Fix a model potential ¢ € PSH(X, 0)~o.
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Definition 3.1.4 We define
PSH(X, 0;¢) := {n € PSH(X,0) : 1 < ¢},
E7(X,0:¢) ={n e PSH(X,0) : n ~ ¢},
E(X,0;¢) = {r} € PSH(X, 0; ¢) : / 0y, = / 9;’,}
X X
&'(X,0:9) = {n €&(X.0:9): / lp —nl o7, < 00}.
X
Potentials in the last three classes are said to have relatively minimal singularities,
full mass and finite energy relative to ¢ respectively.

We have the following inclusions:
E¥(X.0:¢) C E'(X,6;4) C E(X.0:¢) CPSH(X,0:¢).  (3.12)
The only non-trivial part is the first inclusion, which follows from Theorem 2.3.2.

Remark 3.1.3 Note that this integral

/|¢—n|9§’7
X

is defined: The locus where ¢ — 7 is undefined is a pluripolar set, while the product
¢, puts no mass on pluripolar sets (Proposition 2.2.1).
Similar remarks apply when we talk about similar integrals in the sequel.

When ¢ = Vy, we usually write
ET(X,0;Vy) =€7(X, 0),
E(X,0,Vg) =E(X, 0),
E'(X,0;Vy) =E' (X, 0).

Potentials in the three classes are said to have minimal singularities, full mass and
finite energy respectively. The relation (3.12) can be written as

EX(X,0;Vy) C EN(X,0;Vy) C E(X,0;Vp)

in this case.
The P-envelope can be used to characterize the full mass classes:

Proposition 3.1.10 Let ¢ € PSH(X, 6). Then the following are equivalent:

(1) p € E(X,0;9);
(2) Pole] = ¢.
Proof (2) = (1). This follows from Proposition 3.1.2.
(1) = (2). Note that ¢ is a candidate of Py[¢] asin (3.4). So Pg[p] =¢. O
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In order to handle the finite energy classes, it is convenient to introduce the
following quantity:

Definition 3.1.5 We define the Monge—Ampére energy E Z)’: E%(X,0;¢) — R as
follows

¢ — 1 N ] n—j
EZ(¢) ._m;£(¢—¢)a;Ae¢1. (3.13)

More generally, we extend E (f to a functional £ g’ : PSH(X, 0; ¢) — [—o0, ) as
follows

E¢(¢) = inf{Eg’(w) Y€ EV(X,0:0), 0 < .,z,} . (3.14)
We write Eg instead of E g when ¢ = V.

Proposition 3.1.11 Ler ¢ € PSH(X, 0; ¢). The following are equivalent:

(1) ¢ € 8'(X,0:0);
(2) Ef () > —co.

When the conditions are satisfied, (3.13) holds.
Given ¢,y € E'(X, 0; ¢), we have the following cocycle equality

1 < S
E(‘;’(W)—Eﬁ(go)=mZ/X(w—tp)e{pA%f. (3.15)
Jj=0
BEGZ10 . DNL18big »
See [BEGZ10, Proposition 2.11] and [DDIN-T54a, Proposition 2.5] for the proofs.!

Proposition 3.1.12 Assume that ¢, € E(X, 0; ¢) (resp. E' (X, 0; ¢), EX(X, 0; 9)),
then sois @ A .

Proof The case of E%(X, 0; ¢) is trivial.
We consider the case &(X, 0; ¢). It follows from Proposition 3.1.3 that ¢ A Y €
PSH(X, 6). By Theorem 3.1.3, we have

0" 2/0”.
-/X PAY x 4

By Theorem 2.3.2, equality holds. By Theorem 3.1.1, we conclude that

Polo Ay] = o.

. . . ia23Mabuchi .
Finally, the case 81(X ,0; ¢) is proved in [XiaZ3a, Theorem 4.13] (the arXiv

version). ]

Proposition 3.1.13 Let ¢,y € PSH(X, 0) be potentials such that y < ¢ and ¢ < .
Assume that ¢ € E(X, 0; ¢) (resp. E'(X, 0; ¢), E°(X, 0; ¢)), then so is .

! In these references, they took ¢ = Vy, but the proof of the general case is almost identical.
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Proof The case (X, 0;¢) is trivial. The ca ié% ébed (gﬁ)l follows from Theo-
rem 2.3.2. The case &!(X,0;¢) follows from [Xia5a, Proposition 4.5] (arXiv
version). ]

Proposition 3.1.14 Let (¢;);c; be a uniformly bounded from above non-empty family
in &(X, 0 ¢) (resp. E'(X, 0 ¢), E*(X, 0 8)), then so is sup*; ;.

Proof 1t suffices to handle the case where ¢; € E(X, 6; ¢) foralli € I. The remaining
two cases follow from Proposition 3.1.13.

Step 1. We first assume that [/ is finite. In this case, we can easily further reduce
to the case where 7 = {0, 1}. Assume that ¢g, ¢| € E(X, 0; ¢). Observe that ¢y < ¢
and ¢ < ¢, hence g V ¢1 < ¢. On the other hand, by Theorem 2.3.2, ¢ V ¢; and
¢ have the same mass.

Step 2. We come back to the case where [ is infinite.

By Proposition 1.2.2, we may assume that I = Z as an ordered set. Moreover, by
Step 1, we may assume that the sequence (¢;); is increasing. Furthermore, we may
assume that ¢; < 0 for all i. Then we know that ¢; < ¢. Therefore, sup*; ¢; < ¢. But
they have the same mass as a consequence of Corollary 2.3.1. So we conclude using
Theorem 3.1.1. O

Proposition 3.1.15 Let ¢, € E(X, 0; ¢). Then

sup*(¢ +C) ANy = ¢
Cc>0

Proof Since for each C > 0,
(P AY+C)AY < (p+C)AY <,

we may replace ¢ by ¢ Ay BBD}‘LFBrIﬁ)cpn%sition 3.1.12) and assume that ¢ < ¢. In this
case, the result is proved in k““"‘"“, Theorem 3.8, Corollary 3.11]. ]

3.2 The 7-envelope

From the algebraic point of view, a more natural envelope operator is given by the
I -envelope.

In this section, X will denote a connected compact Kihler manifold of dimension
n.

3.2.1 Z-equivalence

Proposition 3.2.1 Given ¢, € QPSH(X), the following are equivalent:

(1) For any k € Z~, we have
I (kp) = I(ky);
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(2) for any A € R, we have
I (dp) = T (W);

(3) for any modification n: Y — X and any y € Y, we have
v(r'e,y) = v(m'y,y);

(4) for any proper bimeromorphic morphism n: Y — X from a Kihler manifold
and any y € Y, we have

v(m'e,y) = v(m'y,y);
(5) for any prime divisor E over X, we have
v(e.E) =v(y, E).

See Definition B.1.1 for the definition of prime divisors over X. We remind the
readers that in the whole book, a modification of a compact complex space means
a finite composition of blow-ups with smooth centers. This terminology is highly
non-standard.

Proof (4) < (5). This follows from Lemma 1.4.1.
(3) & (5). This follows from Corollary B.1.1.
(1) = (5). This follows from Proposition 1.4.4.
(5) = (2). This follows from Theorem 1.4.3.
(2) = (1). This is trivial. O

Definition 3.2.1 Given ¢,y € QPSH(X), we say they are 1 -equivalent and write
¢ ~1 Y if the equivalent conditions in Proposition 3.2.1 are satisfied.

Proposition 3.2.2 Let n: Y — X be a proper bimeromorphic morphism from a
Kdhler manifold Y to X. Then for ¢, € QPSH(X), we the following are equivalent:

Do~y
) mio ~r Y.

Proof (1) = (2). This follows from Proposition 3.2.1(4).
(2) = (1). This follows from the simple fact that

I (kg) =7y (wy;x ® I (kn*p)), I(ky)=rn.(wy;x®I(kr*y)).
Proposition 3.2.3 Let ¢, ¢’, ¥, ¢’ € QPSH(X) and A > 0. Assume that ¢ ~5 ¥ and
¢ ~7 Y, then

eV ~rUNVYL o+ ~r Y Ap~r Y.

Similarly, if (¢i)icr, (Wi)ier are two non-empty uniformly bounded from above
families in PSH(X, 0) for some closed smooth real (1,1)-form 6 on X such that
wi ~7 Wi foralli € I, then
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sup* @; ~1 sup* ;.
iel iel

Proof This follows from Proposition 1.4.2 and Corollary 1.4.1. O

3.2.2 The definition of the 7-envelope

We will fix a smooth closed real (1, 1)-form 6 on X.

Definition 3.2.2 Given ¢ € PSH(X, 0), we define its 7 -envelope as follows:
Polpls = sup*{y € PSH(X.0) : ¢ < 0.4 ~7 @}. (3.16)

If ¢ = Pg[] 7, we say ¢ is an 1 -model potential (in PSH(X, 0)).

Note that by Proposition 1.2.1, Py[¢] 7 € PSH(X, 6).

Proposition 3.2.4 Let 0’ = 6 + dd°g for some g € C®(X). Then for any ¢ €
PSH(X, 0), we have ¢ — g € PSH(X, 6’) and

Polelr ~Pol¢']r.
The proof is similar to that of Proposition 3.1.1, so we omit it.

Proposition 3.2.5 Let n: Y — X be a proper bimeromorphic morphism from a
connected Kdihler manifold Y to X. Then for ¢ € PSH(X, 0), we have

Prgln“plr =n"Polels.
Proof The proof is similar to that of Proposition 3.1.4 in view of Proposition 3.2.2.0

Proposition 3.2.6 Let ¢ € PSH(X, 0), then

o ~1 Polels.

In particular,
Po [Polelrlr = Polelr

and the upper semicontinuous regularization in (3.16) is not necessary.
Proof In view of Proposition 3.2.1, it suffices to show that for k € Z(, we have
I (kp) =1(kPolelr). (3.17)

By Proposition 1.2.2, we can find ¢; € PSH(X,0) (i € Z~0) such that y; < 0,
Wi ~1 ¢foralli > 1and
sup*¥; = Polelr.

i>0
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By Proposition 3.2.3, we may replace ¢; by ¢; V --- V §; and assume that the
sequence i; is increasing. In this case, it follows from the strong openness theorem
Theorem 1.4.4 that for each k € Z-(, we have

I(kg) = I(kyj) =1 (kPolelr)
for j large enough. O

Definition 3.2.3 Let ¢ € PSH(X, 0), we define the volume vol(8, ¢) as

vol(8, ¢) = /x (6+dd°Pgle] )" .

Proposition 3.2.7 Let 8’ = 0 + dd°g for some g € C®(X). Then for any ¢ €
PSH(X, 0), we have ¢ — g € PSH(X, 6’) and

vol(8, ¢) = vol(8’, ¢’).
Proof This follows immediately from Proposition 3.2.4 and Theorem 2.3.2. O
In view of Proposition 3.2.7, we could write

vol 8, = vol(8, ¢). (3.18)

The 7 -envelope and the P-envelope are related in a simple manner.

Proposition 3.2.8 Let ¢ € PSH(X, 0), then

Polel < Polelr, ¢ ~1 Polel.
Proof 1t suffices to show that ¢ ~; Pg[¢]. Namely, for each k € Z.(, we have

I(kp) =1 (kPg[e]). (3.19)

It follows from (3.2) and the strong openness theorem Theorem 1.4.4 that

I (kPolg]) = I (kg +C) AkVg)
when C is large enough. Since (k¢ + C) A kVg ~ k¢, we have

I ((ke+C) ANkVy) =1 (ko)

and (3.19) follows. O
Corollary 3.2.1 Let ¢ € PSH(X, 0), then

6" < volf,.
% < e,
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Proof This follows from Proposition 3.2.8, Theorem 2.3.2 and Proposition 3.1.2. O

We note the following special case:
Proposition 3.2.9 Let ¢ € PSH(X, 0). Assume that ¢ has analytic singularities, then
¢~ Pole]l ~p Polelr.
Proof In view of Proposition 3.2.8, it suffices to show that
Polelr < ¢. (3.20)

By Proposition 3.2.5 and Theorem 1.6.1, we may assume that ¢ has log singularities
along an effective Q-divisor D. By rescaling using Proposition 3.2.10, we may
assume that D is a divisor. Take quasi-equisingular approximations (7;); and (¢;);
of Pg[¢]r and of ¢ respectively. Recall that by Theorem 1.6.2, we can guarantee
that ; and ¢, both have the singularity type (277, 7 (2/¢)) and hence n7; ~ ¢, for
all j > 1. On the other hand, it is clear that ¢; ~ ¢ for all j > 1. So (3.20) follows.O

3.2.3 Properties of the 7-envelope

Let 6, 01, 8, be smooth closed real (1, 1)-forms on X.
We have the following concavity property of the 7 -envelope.

Proposition 3.2.10
(1) Suppose that ¢ € PSH(X, 0) and A € Ry, then

Pagldplr = APgle] 1.
(2) Suppose that ¢ € PSH(X, 01) and ¢, € PSH(X, 0;), then
Poro,[¢1+@2]1 2 Po (@1l + Po, 2] 1.
(3) Suppose that ¢ € PSH(X, 01) and ¢, € PSH(X, 6;), then
Povo,[@1+ @2l ~1 Po[¢1]r + Po,[¢2] 1.
(4) Suppose that ¢, 2 € PSH(X, 0), then

Polo1 V@2l ~1 Poletlr vV Polea]s.

Proof (1) This is obvious by definition.
(2) Suppose that y; € PSH(X, 6;) and ¢, € PSH(X, 6,) satisfy

Ui <0, Yi~1r o

fori = 1, 2. Then thanks to Proposition 3.2.3,
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Y1+ 20, Y+ ~1 o1+ @2,

It follows that
Y1+ Y2 < Povg o1 + @2l 1.

Since ¥1 and ¥, are arbitrary, we conclude.
(3) This follows easily from Proposition 3.2.6 and Proposition 3.2.3.
(4) The proof is similar to that of (3). We omit the details. m]

Lemma 3.2.1 Let ¢, € QPSH(X). Assume that ¢ <, then

Pololr < Poly]r.

Proof 1t suffices to observe that Pg[¢]r V ¥ ~1 ¢ as a consequence of Proposi-
tion 1.4.2 and Proposition 3.2.6. O

Proposition 3.2.11 Consider a decreasing net (¢;)ic; of model potentials in
PSH(X, 0)~¢. Suppose that ¢ = inf;c; ¢; £ —c0 and fx 0y > 0. Then

inf Pg[@;]7 = Polelr.
iel

Proof Letn = inf;c; Pg[¢;]r. We clearly have n > Pgy[¢]r as a consequence of
Lemma 3.2.1.
By Proposition 3.1.8, we have

. n __ n
1i1€1111‘/)(0¢[—/)(0¢>0.

So by Lemma 2.3.1, we can find a decreasing net ¢; \, 0 (i € I) with ¢; € (0, 1) and
W; € PSH(X, 0) such that for all i € I,

(I-e)pi+ey: < ¢
By Proposition 3.2.10, we have
(I-e)n+ePolyilr < (1—€)Polpilr +€Polyilr < Polelr.
Taking limit with respect to i, we conclude that n < Pgy[¢] s (c.f. Remark 3.1.2). O

Proposition 3.2.12 Ler (¢;);e; be an increasing net in PSH(X, 0)~¢ uniformly
bounded from above. Let ¢ = sup*;.; ¢;. Then

sup* Po[pilr = Pol¢] 1.
i€l
Proof Let n = sup*;.; Polyi]lr. Then n < Pg[ep]sr as a consequence of

Lemma 3.2.1.
By Corollary 2.3.1, we have
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li no= n .
ilerlll‘/X9¢i ‘/}(9¢>0

So by Lemma 2.3.1, we can find a decreasing net €; \, 0 (i € ) with ¢; € (0, 1) and
W; € PSH(X, 0) such that for all i € I,

(1-€&)p+ey < ¢
By Proposition 3.2.10, we have
Polelr +€Poléilr < (1 -€)Polelr +€Pol¥ilr < Poleilr <n.
Taking limit with respect to i, we conclude that n > Pg[¢] s (c.f. Remark 3.1.2). O

Remark 3.2.1 One could also define the following interpolation between the 7 -
envelope and the P-envelope: Suppose ¢ € PSH(X, 6)~¢, k € {0, ...,n}. Then we
let

L , Jx g
P@,] [Qp] = Sup>k {l// (S PSH(X,G) : l// < O,QD < d/,‘/x‘gw A QPH[([J]]

— J n—j
= /ng A ePa[w]z} :
Based on the techniques developed in Chapter 6, one could show that Py _;[e] is a

projection operator. When j = 0, this operator reduces to the P-envelope, while when
J = n, this operator reduces to the 7 -envelope.






Chapter 4
Geodesic rays in the space of potentials

In this chapter, we study subgeodesics and geodesics in the space of quasi-
plurisubharmonic functions. Unlike what one usually finds in the literature, here we
are carrying out the constructions in the space of Kdhler potentials with prescribed
singularities. The usual regularization techniques break down in this setup.

The results in Section 4.2 seem to be new, although they have been applied without
proofs in the literature.

4.1 Subgeodesics

Let X be a connected compact Kihler manifold of dimension » and 6 be a smooth
closed real (1, 1)-form on X representing a big cohomology class.

Definition 4.1.1 Let us fix ¢, ¢; € PSH(X, 0). A subgeodesic from ¢ to ¢ is a
family (¢;);e(0,1) in PSH(X, 6) such that

(1) if we define
O: Xx{zeC:e ' <z <1} > [-00,00), (x,2) = @_log |z (%),

then @ is p}6-psh, where p;: X x {z € C: e”! < |z] < 1} — X is the natural
projection;

(2) when t — 0+ (resp. to 1-), ¢, converges to ¢ (resp. ¢1) with respect to the
L'-topology.

We also say (¢;);¢[0,1] iS a subgeodesic.
We say @ is the complexification of the subgeodesic (¢;);.

When we do not want to specify ¢o and ¢, we shall say (¢;);¢(0,1) is a subgeodesic.
In general, there are no subgeodesics from ¢q to ¢;.

Proposition 4.1.1 Let ¢g, 1 € PSH(X, 0) and (¢;):e(0,1) be a subgeodesic from ¢g
to ¢1. Then for each x € X, [0,1] 3t — ¢;(x) is a convex function.

53
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Proof For each x € X, the map
{zeC:e <zl <1} > [-o0,00), z+> B(x,2)

is either subharmonic or constantly —co, as follows from Definition 4.1.1 (1) and
Proposition 1.1.4. In the latter case, the convexity of [0, 1] 3 # > ¢, (x) is trivial. In
the former case, the convexity on the interval (0, 1) follows from Proposition 1.1.3.
In order to verify the convexity at the boundary, let us fix s € (0, 1). We need to

show that
@5 (x) < s51(x) + (1 = 5)go(x) (4.1)

for all x € X. Thanks to Proposition 1.2.5, it suffices to prove this for almost all x.
Take a set Z C X with zero Lebesgue measure such that for all x € X \ Z, we have

(1) ¢;(x) # —coforallz € [0,1] N Q;
(2) QD;(X) - ‘PO(X) ast — 0+ and Sot(x) — (pl(x) ast — 1—.

For all such x, the convexity of ¢ guarantees that ¢, (x) # —oo for all 7 € [0, 1] and
t — ¢;(x) is convex for ¢ € [0, 1]. In particular, (4.1) holds. m]

Proposition 4.1.2 Let (906)1'6 I (go‘i)ie 1 be two non-empty uniformly bounded from
above families in PSH(X, ). Let (¢%),e(0.1) be subgeodesics from 906 to goli for each

i €1 Then
(Sup* 905)
iel te(0,1)

is a subgeodesic from sup*; 906 to sup*; go’i.

Proof We may assume that <p6, go‘i < 0 for all i € I. Then it follows that ¢! < 0 for
allt € (0,1) and all i € I by Proposition 4.1.1.

We define

o = s.u;I)* ¢, € 8(X,0;9)
1€

for all ¢ € [0, 1]. Observe that [0, 1] > ¢t + ¢, is convex by the same argument
leading to (4.1).

Let (¥1):e(0,1) be the subgeodesic whose complexification @, corresponds to
sup*; @i, where @ is the complexification of (¢})re(o,1)- Then clearly, ¢, < ¢,
for each ¢ € (0, 1). On the other hand, by Proposition 1.2.3,

Y, = sup goﬁ = ¢; almost everywhere
iel
for almost all ¢ € (0, 1). Therefore, using Proposition 1.2.5, we find ¢, = ¢, for

almost all ¢ € (0, 1). Since both functions are convex in ¢, we conclude that ¥, = ¢,
forall ¢t € (0, 1).

1 1
It remains to argue that ¢, L, o as t — 0+ and ¢, L, @1 ast — 1-. By
symmetry, it suffices to argue the former. In fact, we know that for any ¢ € (0, 1) and
any j €1, )
¢l <@ <tor+(1-1)g,
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where the latter inequality follows from Proposition 4.1.1. Letting # — 0+ and then
taking limit with respect to j, we conclude. O

4.2 Geodesics in the space of potentials

Let X be a connected compact Kihler manifold of dimension » and 6 be a smooth
closed real (1,1)-form on X representing a big cohomology class. Fix a model
potential ¢ € PSH(X, ). See Definition 3.1.3 for the definition.

Definition 4.2.1 Let ¢o, ¢1 € E(X, 6; ¢). The geodesic (¢;):e(0,1) from ¢ to ¢ is
a family of potentials ¢, € PSH(X, ) such that

o = sup*{n; : (n5)s is a subgeodesic from ¥ to Yy,
Yo, 1 € PSH(X, 0), o < ¢o,¥1 < 91} .

We refer to Section 3.1.3 for the definition of E(X, 6; ¢).

4.2)

Definition 4.2.2 Let (¢;)/e[a,p] (a,b €R, a < b) be acurve in E(X, 6; ¢). We say
(¢1)iela,b) is a geodesic if the curve (@;(b—a)+a)re(0,1) 18 a geodesic from ¢, to ;.
We also say (¢;)se[a,5] 1s a geodesic in E(X, 6; ¢) from ¢, to ¢p.

Proposition 4.2.1 Given ¢, ¢1 € E(X, 6; ¢), the geodesic (¢;);e(0,1) from @o to @1
is a subgeodesic from g to ¢ and ¢, € E(X, 6; @) for eacht € (0,1).

Moreover, for any 0 < a < b < 1, the restriction (¢;);e[a,p) iS a geodesic.

If furthermore @o, 1 € E'(X,0;¢) (resp. E°(X, 0;9)), then ¢, € E' (X, 0; p)
(resp. E°(X, 0;¢)) forallt € (0,1).

Proof Without loss of generality, we may assume that ¢g, ¢; < ¢. It follows from
Proposition 4.1.1 that ¢, < ¢ for all t € (0, 1). In fact, we have the stronger estimate

or <ter+ (1 —1t)po, te(0,1). 4.3)

We first observe that when g, 1 € E(X, 6; @), s0is oAy, see Proposition 3.1.12.
In particular, the constant subgeodesic ¢ — ¢ A ¢ is a candidate in (4.2). So

¢r 2o A1, 1€(0,1). (4.4)

By Proposition 4.1.2, (¢;):e(0,1) is a subgeodesic. It follows from Proposition 3.1.13
that ¢, € E(X,0; ¢) forall ¢t € (0, 1).

L! .
Next, we show that as + — 0+, we have ¢; — ¢g. The corresponding result at
t = 11is similar.
We first argue the special case where ¢g < ¢;. Take a constant C > 0 such that

vo—C < ¢r1.
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Then (@o — Ct),¢(0,1) is clearly a candidate in (4.2). Therefore, for all # € (0, 1),

o — Ct < ¢ <11 + (1 = 1)o. (4.5)

1
It follows that ¢, L, o as t — 0+.
Let us come back to the general case. By (4.3), we know that for all ¢ € (0, 1),

sup ¢; < (sup o) V (sup ¢1)
X X X

On the other hand, supy ¢; > supy ¢o A ¢;. It follows from Proposition 1.5.1 that
{gs : t € (0,1)} is a relatively compact subset of PSH(X, 6) with respect to the
L!-topology.

Let ¢ be an L'-cluster point of ¢; as ¢ \, 0, it suffices to show that i = ¢.

For each M € N, we write

oM = o A (@1 + M).

Observe that <pé” € (X, 6; ¢) by Proposition 3.1.12. Let (¢M),¢(0.1) be the geodesic
from 903’1 to 1. Then it is clear that ¢ < ¢, for all t € (0, 1). Therefore,

W 2o A (1 +M)

almost everywhere hence everywhere by Proposition 1.2.5. On the other hand, by
(4.3), ¥ < pp. So it suffices to show that

L]
wo A (@1 + M) — ¢

as M — oo. This is shown in Proposition 3.1.15.

Next, take 0 < a < b < 1. We want to show that the restriction (¢;);e[q4,p] 1S the
geodesic from ¢, to ¢;,. We may assume that a < b. The argument is the standard
balayage argument.

Let (Y)re(a,b) be the (reparameterized) geodesic from ¢, to ¢. It is easy to see
that the curve (77;)s¢(o, ézdﬁﬁned by n; =y, for t € (a, b) and 5, = ¢; otherwise is a
candidate in (4.2). SeelL[' , Proposition 1.30]. So we conclude that n; = ¢; = ¥,
fort € (a, b).

Finally, assume furthermore that ¢g, @1 € &' (X, 6; ¢) (resp. E° (X, ; ¢)). Thanks
to (4.4), Proposition 3.1.12 and Proposition 3.1.13, we find ¢, € E'(X, 6; ¢) (resp.
EX(X,0;¢)) forallt € (0,1). O

Proposition 4.2.2 Let @1, 09 € E(X,0;¢) with ¢ = @o. Let (¢1)ie0,1) be the
geodesic from ¢g to ¢1. Then

t sup (¢1—¢o)= sup (¢~ ¢o) (4.6)
{po#—00} {po#—00}

forallt € (0,1].
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Proof After replacing ¢, by ¢, — C’t for some large enough C’ > 0, we may assume
that ¢; < ¢o. It follows that ¢ < ¢, < Oforall¢ € [0, 1]. Similarly, [0,1] 3 7 — ¢,
is decreasing.

Let

C= sup (¢1—¢o).
{p1#—co}

Then by Proposition 1.2.5, we have
@1 <o+ C.
So ¢; — C(1 —1) is a candidate in (4.2) and hence

o1 —C(l—-1t)<¢,, te(0,1). 4.7)

1

By Proposition 4.2.1, we have ¢, LN @1 ast — 1-. Since ¢; is decreasing in
t € (0, 1). It follows that ¢ = inf;e(0,1) ;. Therefore, we can find a pluripolar set
Z C X such that ¢;(x) — ¢1(x) > —c0ast — 1-forallx € X \ Z.

Similarly, since o = sup*;¢ g 1) ¢ after enlarging Z, we may also guarantee that
0 (x) = @o(x) > —c0 ast — 0+ for all x € X \ Z by Proposition 1.2.3.

For any such x € X \ Z, the function ¢ — ¢, (x) is a real-valued continuous convex
function on [0, 1]. Hence,

P10 = i) _

-1t c

1
d |
010 - go(x) = / gy dr < lim
0 1 t—1-

where the second inequality follows from (4.7).
Fix an arbitrary pluripolar set Z’ 2 Z. Taking supremum, we find that

sup @1(x) —@o(x) = sup  @1(x) = po(x)
xeX\z’ xeX,p1(x)#—00
o tm B )
xeX\Z' t—1- l-1

Here we have applied Corollary 1.3.5.
Fix s € (0, 1). The same argument shows that after enlarging Z’, we may guarantee
that

1) — () _ sp L=

sup (@1 —¢o) = sup lim (4.8)
{1 £—00} xeX\Z' 1—1- -1 (12—} 1—8
On the other hand,

‘)Ds_‘PO_,f_(l_s) sup ‘Pi_‘%’s.
-

sup (@1 —¢o) <s sup
{p1#~00} {p1#~00} § {p1#—00}

Together with (4.8), we find that
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— %0
sup (@1 —¢o) < sup A 4
{p1#—-co0} {p1#—c0} S
Using the convexity, we find that equality holds,
Ys — ¥o
sup ——— = sup (g1 = ¢o).
{e1#—co} § {e1#—co}
Using Corollary 1.3.5, we conclude (4.6). O

With an almost identical proof, we find

Proposition 4.2.3 Let @1, oo € E%(X, 0; ¢). Let (¢1):e(0,1) be the geodesic from ¢q
to ¢1. Then

t inf (¢1—¢o) = inf (¢;— o)
{¢#-0} {¢#-o0}

forallt € (0,1].

Definition 4.2.3 Let £ = (¢{;);>0 be a curve in E(X, 6; ¢). We say ¢ is a geodesic ray
in (X, 0; ¢) emanating from ¢y if for each 0 < a < b, the restriction (¢;);e[q,p] 1S @
geodesic.

The set of geodesic rays in E(X, 0; ¢) emanating from ¢ is denoted by R(X, 6; ¢).

We say a geodesic ray £ € R(X, 6; ¢) has finite energy if ¢, € E' (X, 6; ¢) for all
t > 0. The set of geodesic rays with finite energy is denoted by R! (X, 6; ¢).

We say a geodesic ray £ € R(X, 0; ¢) is bounded if £, € E*(X, 0; ¢) for all t > 0.
The set of bounded geodesic rays is denoted by R* (X, 6; ¢).

Given ¢, € R(X, 0; ¢), we write £ < £ if {; < £/ foreacht > 0.

When ¢ =V, we usually omit it from the notations and write R(X, 8), R' (X, 6)
and R*(X, 6),

Proposition 4.2.4 Let € € R(X, 6; ¢). Then there is a constant C > 0 such that

supl; < Ct, t=>0.
X

In fact, more precisely, we have
6 < ¢+ Ct.
Proof Let Z = {¢ = —oo}. It follows from Proposition 4.2.2 that

b <p+tsup(ly—¢), t=0.
X\Z
Since {; € E(X, 0; ¢), we have {; < ¢ + C for some constant C and our conclusion
follows. o

Definition 4.2.4 We define the radial Monge—Ampére energy E?: R1(X,0;¢) — R
as follows:
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__E%¢
E?(() = lim -2 (&)
t—o00
When ¢ = Vy, we write E instead of EVe,
Thanks to Proposition 4.2.2, E¢(£) < co.

Definition 4.2.5 Let ¢,y € (X, 0; ¢), we define
di(p.¥) = EJ(9) +EJ () = 2EJ (9 A ).
In particular, if ¢ < i, we have

di(p.9) = EJ(¥) ~ EJ(¢). (4.9)
Theorem 4.2.1 The function d; defined in Definition 4.2.5 is a complete metric on
g'(X,6; ).
The function E‘g : E1(X, 0; ¢) — R is continuous with respect to d;.
Moreover, given a decreasing (resp. increasing) sequence (¢ ;) jez., in (X, 0;¢)
d
converging (resp. converging almost everywhere) to ¢ € E'(X, 0; ¢), then ¢, = .
DNL18big

ee , Theorem 1.1, Proposition 2.9, Proposition 2.7]. The readers should
have no difficulty in generalizing all arguments to the current setting.

Theorem 4.2.2 Let ¢, yr, 17 € E' (X, 0; ¢). Then

di(e v,y vn) <di(e ).

Xia23Mabuchi | = . . .
See 54, Proposition 4.12] (Proposition 6.8 in the arXiv version).
Next we recall a few particular properties when ¢ = Vy.

Proposition 4.2.5 Let (¢;);e[a,b] be a geodesic in EN(X,0), thent — Eqg(p,) isa
linear function of t € [a, b].

We expect that t — E Z)’(%) is linear in general. The author does not know how to

prove this.

. DNL18fullmass
Proof This follows from [DDINT13 'C, Theorem 3.12]. O

Proposition 4.2.6 Let ¢, ¢’ € RY(X,0) and £ < . Then
di (¢, ") =E(") - E(0). (4.10)
Proof This is a direct consequence of (4.9). O
Proposition 4.2.7 Let £, ' € R'(X, ). Then the map
t—di(,1))

Is convex.
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DDNLmetric . . .
See [DDINLCZ1D, Proposition 2.10] for the proof. In particular, we can introduce

Definition 4.2.6 Let £, £’ € R'(X, 0). We define
’ : 1 ’
(L) = Jim —di (6, 6)).

Theorem 4.2.3 The function d, defined in Definition 4.2.6 is a metric and
(R (X, 0),d,) is a complete metric space.

%DN_L_@';Lr_iC

See 5, Theorem 2.14] for the proof.

Proposition 4.2.8 Let (¢6)ie I (go’i)ie 1 be two uniformly bounded from above increas-
ing nets in 8% (X, 0). Let (¢!),e(0.1) be the geodesic from <pf) to gp’i foreachi € I.
Then
(sup* soi)
iel 1€(0,1)

is the geodesic from sup*; gaf) fo sup*; %.
Proof By Proposition 1.2.2 and Proposition 4.1 Ve gy assume that / is count-

able. In this case, the assertion follows from [DDINLCTSC, Proposition 3.3] and
Theorem 2.1.1. m]

Next we recall that V operator at the level of geodesic rays.

Definition 4.2.7 Let £, ¢’ € R(X, 0). We define £ V ¢’ as the minimal ray in R(X, 6)
lying above both £ and ¢’.

Proposition 4.2.9 Given €, € R(X,60). Then £ vV ' € R(X, 0) exists. Moreover, if
£, ¢ € Rl (X,0), then so is { V £ and

1
E(CV{) = lim ~Eq(6 v (). @.11)

Furthermore, if both ,{' € R®(X,0), then sois €V {'.

Proof Foreacht > 0, let (£;")se(0,) be the geodesic from Vi to ¢, V €;. Then clearly,
for each fixed s > 0, £/’ is increasing in ¢ € [s, 0). Moreover, Proposition 4.2.4
guarantees that (supy ¢'"), is bounded from above for a fixed s. Let (£ V ') =
sup*,5 ¢ €;''. Then Proposition 4.2.8 guarantees that £ v ¢’ is a geodesic ray. It is clear
that this ray is minimal among all rays dominating ¢ and ¢’.

Assume that £, ¢’ € R'(X,6), it follows from Proposition 3.1.13 that £ v ¢’ €
R(X, 6). Next we compute its energy:

1
E(¢ Vf') =Eyg(tvV f,)l = lim Eg(filt) = ?Eg(fl \% f;),
t—o0

where we applied Proposition 4.2.5 and Theorem 4.2.1.
The last assertion is trivial. O
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Lemma 4.2.1 For any £,{’ € R'(X, ), we have
di(6, ) <di(6, v Yy+d (L, eV L) < Cpdi (L, 1), (4.12)
where C,, = 3(n + 1)2™2.
Proof The first inequality is trivial. As for the second, we estimate
di(L,ev ) =E(V{)-E(0)

=tli_)1¥>1o %E(é’t v ) —E(¢)

=t1i_)r£1o ;dl(& v, L),
where one the first line, we applied Proposition 4.2.6, on the second line, we used
(4.11), the first and the third lines follow from Proposition 4.2.6. In all, we find

di(6, vy +d (', v < tli_)rg% (di(l Vv 6, 6)+di (6 Vv E,L)).

%DN_I—_l_ZEEi_Q
By , Theorem 3.7],

di(b V€. 6) +dy (6 V€, L) <3(n+1)2"2d (6, L)).

Now (4.12) follows. m]

Example 4.2.1 Let ¢ € PSH(X, 6). Foreach C > 0, let (ff’c),e[o,c] be the geodesic

from Vg to (Vg —C) V ¢. Foreach t > 0, the potential [,‘p’c isincreasing in C € [t, 00).
We let
¢ = sup* £7°C. (4.13)
Czt

Then £¥ € R*(X, 0) and
1 <& . .
B = 3 [ohnery - [at,). 4.14)
< \Ux X

Proof We first show that for each fixed ¢t > 0, ft‘p Cis increasing in C > t.
To see this, choose t < C; < C,. We need to show that

gf,cl < gt‘ﬁsCZ.
Since both sides are geodesics for ¢ € [0, C1], it suffices to show that

(Vo-C1) Vg < 5. (4.15)

Then ((Vo = 1) V ¢):e(0,c,] 18 a subgeodesic from Vg to (Vg — C2) V ¢ by Propo-
sition 4.1.2. At = 0 and ¢ = C}, it is dominated by the geodesic €f’c2, hence by
(4.2.1), we conclude that the same holds at t = Cy, which is exactly (4.15).
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From Proposition 4.1.1, we know that for any C > ¢ > 0, we have
€ <t((Vog-C) V) +(1-1)Vy <0.

Soin (4.13), f;p € PSH(X, 6) for any ¢ > 0. Also observe that by Proposition 4.2.1,
we have ¢ € %(X,0) for all + > 0. It follows from Proposition 4.2.8 that
2 e RY(X,0).

It remains to compute the energy of £%.

We first fix C > ¢ > 0 and compute

t
Eg(tf) = GEe (Vo= C) V g).
Letting C — oo and applying Theorem 4.2.1, we find that
. t
Eo(tf) = Jim ZEq (Vo=C) V).

It follows that 1
E(f¥) = lim —F Vo —C) V ®) .
( ) Cl C 0 (( 4 ) )

Using the definition of Ey, it suffices to show that for each j =0, ..., n, we have
. Vo-C)Ve-Vy _; nj i oan—j n
c@&L C Ovy-cyve Nv, = Xew Ay, - XQVH' (4.16)

For this purpose, for each C > 0, we decompose X as {¢ > Vy—C}and {¢ < Vy—C}.

We have Vo) ,
o~ v v~ Ve J n—j
/{w>V9C} C Q(VH—CW«p A 9Ve
L V9 J n-j
= —O0, N0, 7.
‘/{¢>VQC} C ¢ Vo
On the other hand,
Vo-C)Veo-Vq nj
«/{tpng—C} C G(VH—C)\/tp A evg

=- g’ AOT
[¢5V9—C} (Vo-C)ve Vo

_ YN
_—/9’;9+/ o, A0y
X {¢>Vy-C}

Observe that for C > 0, the functions 1,5v,-c}C ~I(p = Vy) is defined almost
everywhere and is bounded. When C — oo, these functions converge to 0 almost
everywhere. Therefore, (4.16) follows. O



Chapter 5
Toric pluripotential theory on ample line bundles

In this chapter, we briefly recall the toric pluripotential theory relative to an ample
line bundle. The general case of big line bundles will be handled in Chapter 12 after
developing the powerful machinery of partial Okounkov bodies in Chapter 10. The
main new result is Theorem 5.3.1 computing the L?-sections of a Hermitian big line
bundle in the toric setting.

5.1 Toric setup

Let T be a complex torus of dimension n and 7. c T'(C) denotes the corresponding
compact torus. Write M for its character lattice, which is a free Abelian group of
rank n. Similarly, let N be cocharacter lattice of 7. Let P € Mr = M ®z R be a
full-dimensional smooth! lattice polytope.

Let X be the normal fan of P. The notation X(1) denotes the set of rays in X. For
each p € (1), let u, € N denote the ray generator of p, namely the first non-zero
element in N N p. We write

P= {m € Mg : (m,u,) > —a, forall p € 2(1)}.

Let Suppp: Nr — R denote the support function of P. Recall that the support
function (Example A.1.2) of P is defined as

Suppp(n) = max {(m,n) : m € P}.
S11

CL
Our convention differs from L[" , Proposition 4.2.14] by a minus sign.
Let X = X5 be the smooth projective toric variety corresponding to X. There is a
canonical embedding 7 C X as a dense Zariski open subset. Let D be the Cartier

! Recall that smooth means that for every vertex v € P, if we take the first lattice point wg apart
from v 08¢ {ransverses each edge E of P containing v from v, then {wg — v} g forms a basis of
M. SeeaF , Definition 2.4.2]. We also say P is a Delzant polytope in this case.

63



64 CHAPTER 5. TORIC PLURIPOTENTIAL THEORY ON AMPLE LINE BUNDLES

D= > a,D,,

pEZ(1)
where D, is the toric prime divisor defined by p under the orbit—cone correspondence.
Let L be the toric line bundle induced by P, namely [ 1()X(Dp). Since P has full
dimension, L* is very ample for each k > n — 1 by L['"_" , Corollary 2.2.19], we
actually know that L is ample.
We will choose the base e for the logarithm map

divisor on X defined by P:

C* >R, z+ loglzl’

This choice will be fixed throughout the whole section. Since we have a canonical
identification T(C) = N ®z C*, we obtain an identification T(C) /T, = Ng. This
gives a tropicalization map

Trop: T(C) — Ng. (5.1)

5.2 Toric plurisubharmonic functions

We continue to use the notations of Section 5.1.

Lemma 5.2.1 Let F: Ng — [—o0, 0] be a function. Then the following are equiva-
lent:

(1) F is convex and takes values in R, and
(2) Trop* F is plurisubharmonic on T (C).

Proof We may choose an identification N = Z" so that we have an identification
T(C) = C*. Then Trop is identified with the map

Trop: C" - R", (z1,...,2n) & (10g|11|2, ...,log |Zn|2) .

(1) = (2). Let F € C*(R"™") N Conv(R") be a decreasing sequence with limit
F (see Proposition A.3.3). It follows from a straightforward computation that

. n
dd® Trop™ Fx(z1,...,20) = i Z 0ijF (log lz1]%, ..., log Iznlz) Z{lz_j_ldzi/\dz_j.
i,j=1

(5.2)
So Trop* Fy, is plurisubharmonic. It follows from Proposition 1.2.1 that Trop™ F is

plurisubharmonic.
(2) = (1). It follows from Lemma 1.2.1 that F is finite. Moreover, take a radial
mollifier, we may find a decreasing sequence ¢y of smooth psh functions on C*" with
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limit Trop* F. Write ¢, = Trop* F for some function Fy : R" — R, it follows from
(5.2) that Fy is convex for all k. Therefore, F is convex by Lemma A.1.2. O

Let Go: Mgr — (—o0, 0] be defined as

1 Z ((m, uy) + ap) log ((m, u,) + ap) ,ifmeP,

Go(m) =12, &0 (5.3)

oo, otherwise.
This is a closed proper convex function and Gy ~ yp. Let

Fy =G} € &°(Ng, P). (5.4)
uig94, CDGO3

G
By Guillemin’s theorem L[' X ], dd® Trop* Fy can be extended to a unique
Kihler form w in ¢ (L).
Let PSH;o (X, w) denote the set of T,.-invariant w-psh functions.

Theorem 5.2.1 There is a canonical bijection between the following three sets:

(1) The set of ¢ € PSHyor (X, w),

(2) the set P (Ng, P) in Definition A.3. 1, namely, the set of convex functions F : Ng —
R satisfying F < Suppp, and

(3) the set of closed proper convex functions G € Conv(MR) satisfying

Glmz\p = 0.

Proof The bijection between (2) and (3) is the classical Legendre duality. Given F
as in (2), we construct G = F™*, see Proposition A.2.4.

The map from (1) to (2) is given as follows: given ¢ € PSH¢ (X, w), since ¢ is
T.-invariant, we can find f: Ng — [—0c0, c0) such that

¢lr(c) = Trop™ f.

We then define F = f + Fy. By Lemma 5.2.1, F(n) is finite for any n € Ny and F is
convex. Moreover, F' < Suppp since this holds for Fy.
Conversely, given a map F € P (N, P), then

Trop*(F — Fy) € PSH(T(C), w|r(c))-

It follows from Theorem 1.2.1 that this function can be extended uniquely to an w-psh
function on X. The uniqueness of the extension guarantees its 7.-invariance.
The two maps are clearly inverse to each other. O

Given ¢ € PSHio (X, w), we will write F, » and G, for the convex functions given
by Theorem 5.2.1.

Proposition 5.2.1 Given ¢, € PSH (X, w). The following are equivalent:
e =y,
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(2) Fp < Fy, and
3) Gy = Gy.

In particular, ¢ € £*(X, 0) if and only if F, € E%(Ng, P).
Proposition 5.2.2 Given ¢ € PSHy, (X, w) and C € R. We have
Fprc=Fy+C, Guc=G,—C.

Both results follow immediately from the constructions of F and G. We leave the
details to the readers.

Proposition 5.2.3 Given ¢, € PSHy (X, w), then ¢ Ay € PSHyo (X, w) and
F(p/\l/lecp/\Flll’ G¢A¢=G¢VG¢~

Proof 1t is clear that ¢ Ay € PSH (X, w). The claim for G is obvious and the
claim for F follows from Proposition A.2.2. O

Proposition 5.2.4 Let {¢; }ics be a family in PSHy (X, w) uniformly bounded from
above. Then sup*;c; ¢; € PSHior (X, w) and

Fsupt, oy @i = Su? Fo, GS“P*.’y ¢ =cl /\ Gy
ie

iel

Moreover, if I is finite, then

Gmaxier ¢i = /\ Gy

iel

Similarly, if {@;}icy is a decreasing net in PSHy (X, w) such that inf;c; ¢; # —oo,
then inf;c; ¢; € PSHior (X, w) and

Finfie o = inf Fy,,  Ginfie; o =5Up Gy, .
iel iel
Proof In both cases, the statement for F is clear. The corresponding statement for G
is obtained via Proposition A.2.2. O
Proposition 5.2.5 Let ¢ € PSHo (X, w), then
Trop, (wlr(c) + dd°¢lr(c))" = MAR(F,). (5.5)

In particular,

‘/‘U’; = MAg(F,) = n!vol{G, < oo}
X Ne

/a)" =n!vol P.
X

and
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Proof We first prove (5.5). By Proposition A.3.3, we can find a decreasing sequence
of smooth convex functions F; on Ng with limit F,. We write F; = F,. for some
¢j € PSHir(X, w). By Theorem 2.1.1 and Theorem A 4.1, we may reduce to the case
where F,, is smooth. Then it suffices to carry out the straightforward computation
using (5‘2). O

5.3 Toric pluripotential theory

Let us begin by consider the P-envelope.

Definition 5.3.1 Let ¢ € PSHy; (X, w). We define its Newton body as

Alw,p) ={G, <o} CP.

By Proposition A.2.1, we have
Alw, @) = VF,(Ng).
Proposition 5.3.1 Let ¢ € PSHo (X, w). Then P, ¢] € PSHyo (X, w) and

G () = {Go(x), ifx € A.(w, 0); 56

oo, otherwise.
Proof By (3.2), we have

Pule] =sup* ((¢+C) A D).
CeR

It follows from Proposition 5.2.2, Proposition 5.2.3 and Proposition 5.2.4 that
P, [¢] € PSHio: (X, w). Moreover, by the same propositions, we have

Gr,lp1 = jinf (GoV (G, - C)),

which is clearly equal to the right-hand side of (5.6).

Next we prove a result of Yi Yao claiming that in the toric setting, all potentials
are J-good.

Theorem 5.3.1 Let ¢ € PSH: (X, w), then
(X, L®I(p)=4#(Aw,o)NM).

Proof 1tis well-known that H 3 1l1) can be identified with the vector space generated
by y™ forallm € PN M, see [CLS1 1, Proposition 4.3.3]. We will show that
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HX.Lel(g)= P ™ (5.7)
meA(w,p)NM

It is convenient to use explicit coordinates. We will identify N with Z" after choosing
a basis. In this way, we get an identification M = Z" and T(C) = C*". In this case,
we have
xX"(z) =7"

with the multi-index notation.

Observe that H(X, L ® T (¢)) is a C*"-invariant subspace of H(X, L), it follows
that HO(X, L ® I (¢)) is the direct sum of suitable y™’s.

We first show that y™ € HO(X, L ® I (¢)) for each m € A(w, ¢) N M. We need
to show that

/ P exp(=Polp]) " < co.
C*n

Using Proposition 5.3.1 and Proposition 5.2.5, we find that the latter holds if and only
if

/R exp ((m.m) — SupDA ) (1)) MA(Fo) (1) < e,
which is obvious since
(m,n) = Suppy (g, 4 (1) < 0.

Next we show that for any m € M N (P \ A(w, ¢)), the function y" does not lie
in HY(X, L ® T (¢)). Again, this means

[ exp (n.m = Suppi () MAS (F) 1) = o

By change of variables, this is equivalent to

[ exp ((m.9Go()) = Supp ) (VG0 (') d” = o
P
Since m does not lie in A(w, ¢), we can find ny € R” such that

(m,no) = Suppy (4, 4) (10) > 0.

In particular, there are closed convex cones C’ C C containing ng in their interiors
such that there exists € > 0 such that

<man> - SuppA(w,<p) (Vl) 2 E|I’l|

for all n € C and C’ intersects the boundary of C only at 0.
Thus, it would suffice to prove

/ exp (e|VGo(m")|) dm’ = 0. (5.8)
PN{VGycC}
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For each p € (1), we write
rp(m’) =log ((m’,up) +a,) +1, m’ €eR".

It follows from (5.3) that

VGo(m') = % Z rp(m”)up,.
peX(1)
Take a cone o in X such that ng € —Rellnto. Let py, ..., p, be the rays of o. We
may find rays pa41,...,pn € Z(1) such thatu,, ..., u,, form a basis of R".

A subset of PN {VG( C C} is given by those m’ € P such that for all p € (1)
different from p1, . . ., pa, the function r,, (m”) is uniformly bounded, while m’ is close
enough to the faces corresponding to the rays pi,. .., p, and 2.7, rp, (m")u,, € C'.
Replace the domain of integration in (5.8) to this region and the variable m’ to
rp,(m'), ..., rp, (m’), we find that the Jacobian is a polynomial in r,, . . ., 75, , While
the integrand diverges exponentially. We conclude. O

Corollary 5.3.1 Let ¢ € PSH (X, w), then
. nloy k
khm ﬁh (X,L* ® I(ky)) =n!volA(w, ¢).
We interpret the full mass potentials studied in Section 3.1.3 in the toric setting.
We have the following straightforward observation in the full mass case.

Proposition 5.3.2 Let ¢ € PSHy (X, w). Then the following are equivalent:

(1) ¢ € E7(X,w);
(2) Fp ~ Fo;
3) G, ~ Go.

Proposition 5.3.3 Let ¢ € PSHy (X, w). Then the following are equivalent:

(1) ¢ € E(X, w);
(2) F, € E(Ng, P);
(3) DomG,, = P.

Proof (1) < (3). By Proposition 5.2.5

/ wy = / (wlr(c) +dd°¢|7(c))" = n!volDom G, /w” =n!vol P.
b'e T(C) X

Therefore, (1) and (3) are equivalent.
(2) &< (3). This follows from Proposition A.2.1. m]

Proposition 5.3.4 Let ¢ € PSH (X, w), then

Ew(go):n!/P(Go—Gw) dvol.
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Proof H;suffices to consider the case where ¢ is bounded. In this case, one could
apply k““ , Proposition 2.9]. O

Corollary 5.3.2 Let ¢ € PSHy (X, w). Then the following are equivalent:

(1) p e (X, w);
() F, € EY(Nz, P);
(3) G, € L'(P).

Definition 5.3.2 We define
Emr (X, w) =E% (X, w) N PSH (X, w),

EL(X,w) =81 (X, w) N PSHo (X, w),
8tor(X, w) =8(X’ w) n PSHtor(X9 w)'

Corollary 5.3.3 Let ¢, € &' (X, w), then

tor

di(p.0) = —n!/ (G 4Gy =2G 0y dvol.
P

Proposition 5.3.5 Let ¢, ¢| € 8t10r(X, w). The geodesic (¢;)ie(0,1) from @o to @1

satisfies the following: for each t € (0,1), ¢, € &L (X, w) and

tor
Gy, =(1-10)Gy, +1Gy,.
This will be proved more generally in Corollary 12.3.2.

Definition 5.3.3 We define
Rigr(X,w) = {€ € R'(X, ) : € € PSHr(X,w) forall > 0} .

Corollary 5.3.4 Let £ € R\ (X, w). Then there is an integrable convex function

tor

G’ € Conv(Ng) with Dom G’ = P such that
G[t =Go+ tG’
forallt > 0.

We could also make Example 4.2.1 concrete.

Proposition 5.3.6 Suppose that ¢ € PSHy (X, w). Then the ray ¥ defined in
Example 4.2.1 satisfies:

th =Go+tfe, fe(x)= min A
A€[0,1]
x1€P,xpeA(w,p)
/lx1+(1—/l)x0=x

foranyt > 0and x € M.
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Proof Recall that for each C > 0, we defined (¢ ’C), as the geodesic from 0 to
—C V ¢. By Proposition 5.2.2, Proposition 5.2.4, we have G_cv, = (Go+ C) A G .
So by Proposition 5.3.5, we have

t

C-t
G{,;p‘c = E ((GO +C) A G‘p) + Go

for each r € [0, C].
Recall that for all £ > 0,
{; = sup* {’;’”’C.
C>t

It follows from Proposition 5.2.4 that

t C—-t
=clinf — A —Go.
th C ngt C ((G0+C) G¢)+ C Gy

Since the infimum is clearly linear, the closure operation is not needed and Gy, is
linear in ¢. So it suffices to compute the slope f:

.1 1
f[ = éﬂj(;E ((Go +C) A G¢) - EGO

We compute this limit using Proposition A.1.2: for x € Mg, we compute the slope as
follows

. . Go(x1) 1-2 Go(x)
= inf £ 2 ) =2 -
=ty (S )+ o - 2

X1,X0€Mp
Axj+(1-2)xp=x
. . G()(X]) 1-4 G()(x)
= f fAl——=+1 - _
,15%,1) glo/l( c T ¢ G (x0) C
X1,X0 €Mz

Ax+(1-2) xp=x
= min A.
A€[0,1]
x1€P,xpeA(w,p)
Ax +(1 —/l)x():x






Part 11
The theory of 7-good singularities



This part is the technical core of the whole book. We will develop the theory of
7 -good singularities.

We first develop some general techniques to compare the singularities in Chapter 6:
The P-partial order, the J -partial order and the dg-pseudometric.

The P-partial order seems to be new. Some basic properties of the dg-pseudometric
have never appeared in the literature either.

Then in Chapter 7, we introduce the notion of 7 -good singularities and characterize
7 -good singularities in different ways. In the algebraic situation, we establish the
asymptotic Riemann—Roch formula.

In Chapter 8, we will develop two key techniques in the inductive study of
singularities: The trace operator and the analytic Bertini theorem. Roughly speaking,
the latter tells us the behaviour of a quasi-plurisubharmonic function along a general
divisor, while the former handles the case of special divisors. We will establish a
relative version of the asymptotic Riemann—Roch formula in the algebraic situation.

In Chapter 9, we develop the theory of test curves. These are curves of model
potentials. The key technique is the Ross—Witt Nystrom correspondence, which
relates test curves with geodesic rays. The complete proof of the most general form
of this correspondence has never appeared in the literature, so we will give the full
details.

In Chapter 10, we develop the theory of partial Okounkov bodies, in both algebraic
and transcendental setting. The partial Okounkov bodies can be regarded as non-toric
extensions of the Newton bodies. It turns out that even in the toric setting, our
techniques give non-trivial new results.

In Chapter 11, we develop the theory of b-divisors in the algebraic setting. We
formulate the general form of the Chern—Weil formula in terms of b-divisors. We
also relate the theory of partial Okounkov bodies to b-divisors.



Chapter 6
Comparison of singularities

In this chapter, we study several ways of comparing the singularities of quasi-
plurisubharmonic functions. In Section 6.1, we will introduce the P and 7 -partial
orders, closely related to the P and 7 -equivalence relations introduced in Chapter 3.

In Section 6.2, we introduce and study the ds-pseudometric characterizing the
differences between singularities. We will prove that a number of continuity results
with respect to ds.

6.1 The P and 7-partial orders

Let X be a connected compact Kéhler manifold of dimension 7.

Recall that we have defined a (non-strict) partial order on QPSH(X) in Defini-
tion 1.5.2 to compare the singularity types of quasi-plurisubharmonic functions. The
problem with this partial order is that it is too fine. In general, for our interest, it is
helpful to consider rougher relations.

6.1.1 The definitions of the partial orders

Recall that the P-envelope is defined in Definition 3.1.2.

Definition 6.1.1 Let ¢,y € QPSH(X), we say ¢ is P-more singular than  and
write ¢ <p ¢ if for some closed smooth real (1, 1)-form 6 on X such that ¢,y €
PSH(X, 6)~¢, we have

Pole] < Poly].

Suppose that ¢ <p ¥ and ¢ <p ¢, we shall write ¢ ~p i and say ¢ and ¢ have the
same P-singularity type.

This definition is independent of the choice of 6:

75
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Lemma 6.1.1 Let ¢,y € PSH(X, 0)~¢. For any Kéihler form w on X, the following
are equivalent:

(1) Polel < Polyl;
(2) P9+a) [90] < P9+a) [lvb]

In particular, <p defines a non-strict partial order on QPSH(X).

Proof (1) implies (2). Observe that

Pole] < Porwlel, ¢ =< Pole].

It follows from Theorem 3.1.1 that

Porol@]l = Porw[Pole]]. (6.1)

A similar formula holds for r. So we see that (2) holds.

(2) implies (1). By (6.1), we may assume that ¢ and ¢ are both model potentials
in PSH(X, 6)-o.

Observe that ¢ V ¢ < Pgi, [¢]. It follows that Pgy,[¢ V ¥] < Pgiw[¥]. The
reverse inequality is trivial, so

P6+w[90v¢] =P9+u)[w]~

From the direction we have proved, for any C > 1,

Porcwle V] = Posrculy].

So by Proposition 3.1.2,

/(0+Cw+dd¢(¢pv¢/))"=/(6+Cw+dd“w)”.
X X

Since both sides are polynomials in C, the equality extends to C = 0, namely,

o" =/9”.
/Xw\/l/f X¢f

In particular, ¢ V¢ < Pg[¥] = ¢ by (3.4). So (1) follows. O
As a first example of P-equivalence, we have:

Example 6.1.1 Let 0 be a closed smooth real (1, 1)-form on X and ¢ € PSH(X, 0)~,
then

¢ ~p Pole].

This follows immediately from Theorem 3.1.1.

Proposition 6.1.1 Let ¢,y € PSH(X, 0) and ¢ < . Then the following are equiva-
lent:

M e~py;
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(2) foreach j =0,...,n, we have
J n-j _ J n—j
/X%AGVG _/XH”’AQVH' (6.2)

Assume furthermore that ¢, € PSH(X, 0)~¢, then these conditions are equivalent
to the following:

(3) We have

Recall that Vy is introduced in (2.9).

Proof We first prove the equivalence between (1) and (3) when ¢, € PSH(X, 0)0.
(1) = (3). Assume that ¢ ~p . By Definition 6.1.1, we have

Polel = Poly].

So (3) follows from Proposition 3.1.2.
(3) = (1). It follows from Theorem 3.1.1 that Py[¢] = Pg[i], so (1) follows.
Let us come back to the general case.
(1) = (2).Fix j € {0,...,n}, we argue (6.2).
Take a Kihler form w on X. By Definition 6.1.1, for each € > 0, we have

P6’+Ew[90] = P0+ew[¢’]'

It follows from Proposition 3.1.2 that
/X (0+ew+ddy) A6y = /X (0+ €w +ddPosen[w]) A0y 7
_ /X (0 + €w+dd Py e [¢]) A O
= /x (6 + ew + dd°)’ A Gr‘l,;j.

Since the two extremes are both polynomials in €, we conclude that the same holds
when € = 0, that is, (6.2) holds.
(2) = (1). Assume (6.2) holds for all j =0, ...,n. Foreacht € (0, 1), we have

Lg?¢+(1—z)vg :/Xe:lw(l—z)vg

by the binomial expansion. By the implication (3) = (1), we have
to+ (1 =1)Vg ~pth + (1 —1)Vy

for each t € (0, 1).
Fix a Kéhler form w on X. From the implication (1) = (3), we have
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L(9+w)?¢+(l—t)Vg :L(9+w)?w+(l—t)V9'

Since both sides are polynomials in ¢, the same holds when ¢ = 1. From the implication
(3) = (1) again, we have ¢ ~p V. o

Proposition 6.1.2 Given ¢,y € QPSH(X), the following are equivalent:

(1) For any k € Z~, we have
I(ke) C I(ky);

(2) for any A € R, we have
I (dp) € I (W);

(3) for any modification n: Y — X and any y € Y, we have
v(r'e,y) 2 v(z"y, y);

(4) for any proper bimeromorphic morphism n: Y — X from a Kihler manifold
and any y € Y, we have

v(m'e,y) 2 v(n'y, y);

(5) for any prime divisor E over X, we have

v(g,E) 2 v(y, E).
Proof The proof is almost identical to that of Proposition 3.2.1, we omit the details.O

Definition 6.1.2 Let ¢,y € QPSH(X), we say ¢ is I -more singular than  and write
¢ =<y y if the equivalent conditions in Proposition 6.1.2 are satisfied.

It is clear that <7 is a non-strict partial order on QPSH(X).
Note that ¢ <y ¢ and ¢ <7 ¢ both hold if and only if ¢ ~; ¢ in the sense of
Definition 3.2.1.

Lemma 6.1.2 Let ¢, € QPSH(X). Then the following are equivalent:

(1) ¢ <p ¥ (resp. ¢ <1 ¥);
Q) oV ~py(resp. oV ~1 ).

Proof Take a closed real smooth (1, 1)-form 8 on X such that ¢, € PSH(X, 6)~¢.
We only prove the P case, the I case is similar.

(2) = (1). By (2) and Example 6.1.1, Pg[p V ¥] = Pgly] ~p . But
¢ < Pgle V], so (1) follows.

(1) = (2). We may assume that ¢, ¢ are both model in PSH(X, 6) as

Polo V] =Pg[Pole] vV Paly]].

Then ¢ < ¢ and (2) follows. O
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Corollary 6.1.1 Let ¢,y € QPSH(X). Assume that ¢ <p s, then ¢ <7 .
Proof This follows from Lemma 6.1.2 and Proposition 3.2.8. O

Corollary 6.1.2 Assume that ¢ € PSH(X, 0)~, then
Polg] =sup{y € PSH(X,0) : < 0,4 ~p ¢}
=sup{y € PSH(X,0) : ¥ <0,y <p ¢}.

Proof Note that ¢ ~p ¢ implies that y € PSH(X, 8)~¢ by Proposition 6.1.4. We
observe that

sup{¢ € PSH(X,0) : ¥ <0,y ~p ¢}
=sup{y € PSH(X,0) : < 0,0 <, ~p ¢}

by Lemma 6.1.2. So the first equality is a direct consequence of Proposition 6.1.1
and Theorem 3.1.1.

Next we prove the second equality. We only need to show that for any ¢ €
PSH(X, 0) withyy < 0and ¢ <p ¢, we have iy < Py[¢p].

By Lemma 6.1.2 and Example 6.1.1, we know that Py[¢] V ¢ ~p ¢ and
Pole] V¢ < 0. It follows from the first equality that < Py[¢]. O

Similarly, we have

Corollary 6.1.3 Assume that ¢ € PSH(X, 0), then

PG[QO]I =Sup{l// EPSH(X’H) Y < O’QII =7 ‘70}

Proposition 6.1.3 Suppose that ¢, € QPSH(X) and 6 is a closed real smooth
(1, 1)-form on X such that ¢, € PSH(X, 0). Then the following are equivalent:

D) e =ry;
(2) Polelr < Polvls.

Proof (1) = (2). This follows immediately from Corollary 6.1.3.
(2) = (1). This follows from Proposition 3.2.6. O

6.1.2 Properties of the partial orders

Now we state a more natural version of the monotonicity theorem Theorem 2.3.2.

Proposition 6.1.4 Let 01, . .., 0, be closed real smooth (1, 1)-forms on X. Let ¢;, ¢r; €
PSH(X, 0;) fori =1,...,n. Assume that ¢; <p Y; for each i. Then

/‘gkpl/\“'/\etpnS/‘HI/IIA"'AGCML'
X X
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Proof Fix a Kahler form w on X. Foreachi =1,...,n, since ¢; <p ¥;, we have

P6’+ew[§0i] < P9+sw[wi]

for all € > 0. Therefore, by Proposition 3.1.2 and Theorem 2.3.2, we have

/(9+Eu))(pl/\-~/\(9+ew)¢n S/(9+ea))¢,]/\~~/\(9+ew)¢n.
X X

Since both sides are polynomials in €, we find that the same holds at € = 0, which is
the desired inequality. O

Proposition 6.1.5 Let ¢, ¥, ¢’, ' € QPSH(X). Assume that

e=py, ¢ =py.

Then
o+¢ <py+y.

The same holds with <1 in place of <p.

Proof Take a Kihler form w on X such that ¢, ¥, ¢’, ¥’ € PSH(X, w)s¢. The
statement for <7 is a simple consequence of Proposition 1.4.2. We only need to
handle the case of <p.

Step 1. We first show that

Pw[‘p] +Pw[‘pl] ~P 90+90,~

In fact, we clearly have

Pulel +Pule'l = o+¢'.

So by Proposition 6.1.1, it suffices to show that they have the same volume. We
compute

Qw +dd°P,[¢] +dd°P, [’ D"

n
J

:Z(rf)/w{/.,/\wn,_j

S\l Jx ¢

=/(2w+s0+90’)",
X

where we applied Proposition 3.1.2 on the third line.
Step 2. By Step 1, we may assume that ¢, ¥, ¢’, ¢’ are all model potentials. So
¢ < and ¢’ < y’. Our assertion follows. O

X
:Zn:( )/ (@ +dd°Py[¢]) A (w+dd°P,[¢'])" ™
=0 X
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Proposition 6.1.6 Let (¢;);cs, (Yi)ier be uniformly bounded from above non-empty
families in QPSH(X). Assume that there exists a closed smooth real (1, 1)-form 0
such that ¢;,y; € PSH(X, 0) and ¢; <p ¥; foralli € I. Then

% 5
sup “@; <p sup y;.
iel iel

The same holds with <1 in place of <p.

Proof By increasing 6, we may assume that ¢;,; € PSH(X, 8)~¢ for alli € I. The
statement for <7 is a simple consequence of Corollary 1.4.1, we only have to consider
the statement for <p.

Step 1. We first handle the case where [ is a directed set and (¢;);c; and (¥;)ies
are increasing nets.

In this case, our assertion follows simply from Proposition 3.1.9.

Step 2. We handle the case where [ is finite. We may assume that 7 = {0, 1}. It
suffices to show that

Polwol V Pale1] ~p wo V 1.

For this purpose, it suffices to prove the following:

Polgol V@1 ~p o V 1.

The > p direction is obvious. So thanks to Proposition 6.1.1, it suffices to argue that
they have the same mass. We may assume that ¢y < 0. Thanks to Lemma 2.3.1, for
each € € (0, 1), we can find n. € PSH(X, 0)-¢ such that

(1-€)Palpol +€ne < w0, Me < 9o < Pyleol.
In particular,
(1—¢€) (Palwol V1) +ene <oV er.
It follows from Theorem 2.3.2 that

(1 _E)n/Xg';’a[wo]Vw < /Xert/l’0\/s01'

Letting € — 0+ and using Theorem 2.3.2 again, we conclude that

0 = / 0"
P \ PoVer®
[( ol eolVer x
Our assertion is proved.

Step 3. The general case can be reduced to the two cases handled in Step 1 and
Step 2. More precisely, by Proposition 1.2.2, we could find a countable subset J C
such that

sup® ¢; = sup*¢;, sup*y; = sup*y;.
jeJ iel iel iel
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We may replace I by J and assume that  is countable. We may assume that 7 is
infinite, as otherwise, we could apply Step 2 directly. So let us assume that J = Z..
In this case, by Step 2 again, we may assume that both (¢;); and (i;); are increasing,
which is the situation of Step 1.

Proposition 6.1.7 Let ¢, ¥, ¢’, ' € PSH(X, )¢ for some closed smooth real (1, 1)-
form on X. Assume that

e~p¢, Y~py’

and
¢ ANy’ € PSH(X, 6)so.
Then
@ Ay € PSH(X, 0)-0
and

oAy ~p @ NY.

Proof Without loss of generality, we may assume that ¢y = i’. Replacing ¢’ by
Py [¢’], we may also assume that ¢ < ¢’.
Using Corollary 2.3.2, for each € € (0, 1), we can find n € PSH(X, ) such that

/9':,=/eg, n+(l—e¢ ¢ n<y.
X X

0"+/9”, >/9"/,
/Xn N ¢

by Proposition 3.1.3, we find n A ¢ € PSH(X, 6). Now observe that

Since

eMAY)+(1—e)(¢' Ap) <Ay

By Theorem 2.3.2, we find that

(1—6)"/9' S/@" .
X‘/’/\l// X<p/\zp

Letting € — 0+ and applying Theorem 2.3.2, we find that

/6¢’Aw=/9¢A¢'
X X

We conclude by Proposition 6.1.1.
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6.2 The dgs-pseudometric

Let X be a connected compact Kéhler manifold of dimension n and 8 be a closed
real smooth (1, 1)-form on X representing a big cohomology class. The goal of this
section is to study a pseudometric on the space PSH(X, 6).

6.2.1 The definition of the dg-pseudometric

Recall that for any ¢ € PSH(X, 6), the geodesic ray ¢ € R!(X, ) is defined in
Example 4.2.1.

Definition 6.2.1 For ¢,y € PSH(X, 6), we define

dS(SD’ l,b) = dl (f‘p’ glﬁ)
When we want to be more specific, we write ds ¢ instead of d.
The d; distance of geodesic rays is defined in Definition 4.2.6.

Proposition 6.2.1 The function ds defined in Definition 6.2.1 is a pseudometric on
PSH(X, 6).

Proof This follows immediately from Theorem 4.2.3. O

When studying a pseudometric, the first thing is to understand when the distance
between two elements vanishes.
We first prove a preparation:

Lemma 6.2.1 Let ¢, € PSH(X, 0). Then

dS(‘)O’ l//) < dS(QD’ ¥ 4 l//) + dS(W? ® \ W) < CndS(QO? ‘//),
where C, = 3(n + 1)2"*2.

Proof Observe that
AAEAIEY AL (6.3)

In fact, it is clear that
8 <PV, Y <oV,

so the < direction in (6.3) holds.
Conversely, if ¢/ € RY(X,0) and ¢’ > £# v £¥, then for each t > 0,

G2((Vo—)Ve)V(Ve-t) V)= (Vo —1) V(e V).

It follows that ¢’ > ¢¢VY.
So our assertion follows from Lemma 4.2.1. |
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Proposition 6.2.2 Let ¢, € PSH(X, 0). Then the following are equivalent:

D e~py;
(2) ds(e,¢) =0.

In particular, ds(, Pg[¢]) = 0 for all ¢ € PSH(X, 0)+0.

Proof By Lemma 6.1.2, we have ¢ ~p ¢ ifand only if ¢ ~p ¢ Vi and ¥ ~p ¢ V .
By Lemma 6.2.1, ds(¢,y) = 0if and only if ds(¢, ¢ Vi) = 0and ds (¢, ¢ V) = 0.
So it suffices to prove the assertion when ¢ < . Assuming this, by Proposition 4.2.6
we have that 2 holds if and only if

E(f%) = E(),

But using (4.14), this holds if and only if

n

n
j n-j _ J n—j
ZO/X%AQVH _Z‘)/X@w/\ew :
J= J=

But by Theorem 2.3.2, this holds if and only if forall j =0,...,n,

ing=i= [ gl pgni
/Xega/\avﬁ —‘/)(Qw/\eve,

which is equivalent to 1 by Proposition 6.1.1. O

Lemma 6.2.2 Suppose that ¢, € PSH(X, 0) and ¢ <p ¥, then

_ 13 i\ i o gn=i
ds(p.¥) = — Z([(G¢A9Ve —/)(9¢A9V6 .
=0
Proof This follows trivially from (4.14). m]

Corollary 6.2.1 Suppose that ¢, ¥, n € PSH(X, 0) and ¢ <p ¥ <p n. Then

ds(e,n) > ds(e.¥), ds(e,nm) > ds(¥,mn).
Proof This is an immediate consequence of Lemma 6.2.2 and Proposition 6.1.4. O

Corollary 6.2.2 For any ¢,y € PSH(X, 0), we have

n
ds(p,¥) < (2/91' /\9"*1'_/31' Agnfj_/gj Aenj)
;o x Ve e Ve (6.4)
<Cnds(p,¥),
where C, = 3(n + 1)2"*2,

In particular, if (¢i)ics is a net in PSH(X, 0) with ds-limit ¢, then for each
j=0,...,n
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: J n-j _ J n-j _ J n—j
1i1enll XG%. NGOy, _./XH‘F NGOy, _/Xe%_w/\evg
Proof The estimates (6.4) follows from the combination of Lemma 6.2.2 and
Lemma 6.2.1.

The last assertion follows from (6.4) and Theorem 2.3.2. |

Corollary 6.2.3 Suppose that ; € PSH(X, 0) (i € I) be an increasing net, uniformly

bounded from above. Then
d *
©¥i =, sup ;.
jel

Proof Write ¢ = sup* ;; ;. Recall that by Proposition 1.2.1, ¢ € PSH(X, 6). By
Lemma 6.2.2, it suffices to show that for each k = 0, .. ., n, we have

lim [ 65 A@ k= [ ok Agr k.

jEI X PLj VG X ¥ VB

The latter follows from Corollary 2.3.1. O
By constrast, for decreasing nets, the situation is different:

Corollary 6.2.4 Suppose that ¢; € PSH(X, 0) is a decreasing net such that ¢ =
inf;c; ¢; £ —o0. Then the following are equivalent:

(1) We have
ds
i — @5
(2) for each k =0, ...,n, we have
- k -k k -k
ljlgll XHW /\9"1,9 = ‘/XH‘/, /\0"’,6 . (6.5)

If we assume furthermore that fX 0 > 0, then the above conditions are equivalent to
the following:

(3) We have
s n __ n
ljlgll XH%_ - ‘/XQLP'

In the latter case, we also have
Pgle] =inf Pg[p;]. (6.6)
Jjel

Proof Recall that by Proposition 1.2.1, ¢ € PSH(X, 6).
(1) & (2). This follows immediately from Lemma 6.2.2.
(2) = (3). This is trivial.
(3) = (2). Let (b),es be a net converging to co such that
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on 1/n
bje 1, ( /X Ll n) .
S0, = [0

By Lemma 2.3.1, for each j € I, we can find n; € PSH(X, 6) such that

bi'ni+(1-b7"e; < ¢.

It follows from Theorem 2.3.2 that for any k =0, .. ., n,

k —k —1\k k —k
/Xe(p/\e"’,g >(1-b5") /x%-’/\%‘* .

Taking the limit, we conclude the < direction in (6.5). The > direction follows from
Theorem 2.3.2.

Finally, we argue (6.6).

Lety; = Pg[¢;]. It follows from Corollary 3.1.1 that ¢ ; is a model potential. Let

Y =inf ;.

jel

It follows from Proposition 3.1.2 and Proposition 3.1.8 that

n n n __ n
/X% = ljlérll 9% = 1]151 0y, = /XH‘/,.
By Proposition 3.1.7, ¢ is a model potential. So by Proposition 6.1.1, we have ¢ ~p ¢

and hence y = Py[¢] by Corollary 6.1.2. O

Having understood the increasing and decreasing cases, we shall handle more
general convergent sequences. In fact, since dg is a pseudometric, the topology is
completely determined by convergent sequences, so we do not need to consider nets
in general.

d
Proposition 6.2.3 Let ¢;, ¢ € PSH(X,0) (j > 1), ¢; =, . Assume that there is

0 > 0 such that
0r >, /9” >0
‘/X Pj X ¥

for all j and the ¢;’s and ¢ are all model potentials. Then up to replacing (¢;); by
a subsequence, there is a decreasing sequence y ; € PSH(X, 0) and an increasing
sequence n; € PSH(X, 0) such that

ds ds
Dy —en — ¢
Q) yj=¢; =2njforall j.

In fact, for any j > 1, we will take

nj=inf ;i A@ji Ao A@jsk,  Wj=sup .
keN k>j
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Proof We are free to replace (¢;); by a subsequence. So we may assume that
2772

) < m, (6.7)

_2'
ds(¢j.@in) <Cy”,  ds(e, ¢;

where C,, is the constant in Corollary 6.2.2.
Step 1. We handle the i ;’s. For each j > 1 and k > 1, by Corollary 6.2.2 we have

ds(@j, @i V@it V-V @ik) SCpds(@j, @js1 V-V @jik)
<Crds(@j, @j+1) + Crds(@js1, @js1 V- -V @jk).
By iteration, we find

J+k—1

1—y
ds(¢js 0 V@i VooV o) < ) Cit T ds (g, par)
a=j
J+k—1 1-2j
_ C

< Z CZH erIZa:n—.

—1

a:j I_Cn

Using Corollary 6.2.3, we have

ds
@iV @iV Vi — Y

as k — oo and hence when j > jp for some jy, we have

cl-2i 1
ds(pi ;) < —=2 < - 6.8
s(ei ) 1-C;' = (n+1)C,224 ©5)
ds
We conclude that i/ ; — ¢.
Moreover, we observe that
¢ = il}f Poly;] (6.9)

by Corollary 6.2.4.
Step 2. We consider the 7;’s.
Foreach j > 1 and k > 0, we let

77? =N NPk

Using the assumption (6.7) and Corollary 6.2.2, we have

o= [
X X

Similarly, using (6.8), we have

<27/,
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9",—/9"
‘/);lpj X‘P

Step 2.1. Take j; so that for j > j;, 237/ < §. We claim that for a fixed j > jo V ji,
for any k € N, we have nf. € PSH(X, #) and

k
0, « z/e".— Qa2
'/); 1; X Pj ;)

We argue by induction on k > 0. The case k = 0 follows from Theorem 2.3.2.
When k > 0, assume that the case k — 1 is known. Then

k-1
n n no_ 2—-j-a n _n2-j-k
n _ »3-j n n
= /);Qtﬁj 2 +ngj+k-1 >[(9%f+k-1'

It follows from Proposition 3.1.3 that 77? € PSH(X, 0). By Theorem 3.1.3, we deduce

that
n n < n n
J Y R ey K

Our claim therefore follows.
Step 2.2. It follows from Proposition 3.1.6 that

<27/,

Poln}1=n;.

By Proposition 3.1.8, we have

o 0= J 5

By Step 1, for large enough j, we have

n n _ ~3-j
/XH,,J,Z/XH%, 277 > 0.

Let = sup*; 1/. Observe that we also have

n n
/Xeﬂj S/XG%'

by Theorem 2.3.2. It follows that

Gj’zlim‘/é’",zlim/@”,:/en.
/X 7 ]—)oo X ‘pJ ]—)oo X wj X ¥
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Since 7; < ¢; < ¢; < 0, we also have that ; < Py[y;]. Therefore, by Corol-
lary 6.2.4, we also have 1 < ¢. It follows from Proposition 6.1.1 that 7 ~p ¢. By

. d
Corollary 6.2.3 and Proposition 6.2.2, we have 1/ =, ®. O

Corollary 6.2.5 Let (¢;) jer be a net in PSH(X, 0). Assume that there is § > 0 such
that /X 9’;}_ > o forall j € 1. Then (¢;))jer has a ds-convergent subnet.
If moreover (¢;) ey is decreasing, then (¢;) iy itslef is convergent.

Proof Since the space of ¢ € PSH(X, 0) with /x ¢, > ¢ is a pseudometric space,
its completeness can be characterized using sequences instead of nets. So we may
assume that (¢;);e; is a sequence.

Replacing ¢; by a subsequence, we may assume that (6.7) holds. By the proof of
Proposition 6.2.3 Step 1, we may assume that ¢; is a decreasing sequence. In this
case, by Proposition 6.2.2 and Corollary 6.1.2, we may assume that each ¢; is a
model potential. Then ¢; converges by Corollary 6.2.4 and Proposition 3.1.8.

On the other hand, if (¢;) < is decreasing, then it is convergent by Corollary 6.2.4
and Proposition 3.1.8. O

Lemma 6.2.3 There is a constant C > 0 such that for any ¢ € PSH(X, 0) satisfying
that 8, is a Kdihler current, we have

ds,o((1-€)p, ) < Ce
for € > 0 such that (1 — €)¢ € PSH(X, 0).

Proof By Lemma 6.2.2, we can compute

AN j n-j A g
dsal1 =000 =y 3 ( [0l ne) - [ ohny,
7=0

1 & o . . .
= 1- ~’9’/\9"’—/61/\9”’
n+1 jZ::O (./;;( €0y 1Oy, x OV
n j-1 j ) ' )
+ (k)(l —e)kel—k/Xef—k DN
=0 k=0
Both terms are of the order of O(e€). O

6.2.2 Convergence theorems

Lemma 6.2.4 Let (¢;)ic; be a net in PSH(X, 0) and ¢ € PSH(X, 0). Assume that
d
@i —> @. Then for any t € (0,1],

d.
(1=1)gi +1Vg = (1 =)@ + V.
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Proof Fixt € (0, 1], we write
i ==0Dpi+tVyg, @©r=(1-0)p+1tVy

for any i € 1. By Corollary 6.2.2, it suffices to show that for each j =0, ..., n,

J n—j J n—j J n—j
Z/XG%_JV% NGOy " = /Xé"m Ay " — /XQ% NGy " — 0. (6.10)
Observe that
@i Veor=(1-1)(pVe)+tVy.
So after binary expansion, (6.10) follows from Corollary 6.2.2. O

Similarly,
Lemma 6.2.5 Let ¢ € PSH(X, 0). For eacht € (0,1), let ¢, = (1 —t)@ +tVy. Then

ds
$Yr — @
ast — 0+
Proof By Lemma 6.2.2, we need to show that for each j = 1,...,n, we have

i VN Lt A Y RN
Jlim Xe(pt/\evg _L9¢AHV9 :

For this purpose, we compute

J n—j J n—j
/XH% A by, —l{%/\@w
J-1 j
:Z (l,)(l =)0, Ay
i=0
As t — 0+, the right-hand side clearly tends to 0. O

The following convergent theorem lies at the heart of the whole theory.

Theorem 6.2.1 Let 0y, . . ., 0,, be smooth closed real (1, 1)-forms on X representing
big cohomology classes. Suppose that (goj‘.)kel arenetsinPSH(X,0;) forj=1,...,n

d
and ¢y, . ..,p, € PSH(X, 6). We assume thattp;? =, @jforeach j=1,...,n Then

1/(1211 XQI’W{‘A"'AQ"%:/XHW'A"'Ag"v“’"' (6.11)

Proof Since ds is a pseudometric, in order to establish the continuity of mixed
masses, it suffices to consider sequences instead of nets. So we may assume that
I = Z+ as ordered sets.
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Step 1. We reduce to the case where gof., ¢; all have positive masses and there is a
constant ¢ > 0, such that for all j and &,

/0’.‘ > 0.
x ¥

Take ¢ € (0,1). By Lemma 6.2.4, we have

d
(1= 1)k +1Vy, = (1= 1) +1Vy,

for each j. Assume that we have proved the special case of the theorem, we have

22} « 91,(1—t)(,0{(+tV91 ARBRRA 9n,(1—t)<p§+tvgn

:/ 01,(1—t)¢1+tV91 AR /\gn,(l—t)%ﬁtven'
X

Since both sides are polynomials in ¢, it follows that the same holds at # = 0. From
this, (6.11) follows.

Step 2. Next we may assume that (,of, ¢ are model potentials by Proposition 6.2.2
and Corollary 3.1.1.

It suffices to prove that any subsequence of fX o, Pk At A 0,k has a converging

subsequence with limit /XHWJI A -+ A By 4, Thus, by Proposition 6.2.3 and
Theorem 2.3.2, we may assume that for each fixed i, ‘p{.‘ is either increasing or
decreasing. We may assume that for i < io, the sequence is decreasing and for i > iy,
the sequence is increasing.

Recall that in (6.11) the > inequality always holds by Theorem 2.3.2, it suffices to
prove

ggxﬂwAmA%ﬁSL&MAmA%%. (6.12)

By Theorem 2.3.2 in order to prove (6.12), we may assume that for j > i, the
sequences gpj‘. are constant. Thus, we are reduced to the case where for all 7, gof.‘ are
decreasing.

In this case, for each i we may take an increasing sequence bf > 1, tending to oo,

such that
k\n n kyn _ n
(b%) /Xei,w,_ > (b 1)/}(91,,#.

Let glrl(‘ be the maximal 8;-psh function such that

BY gk + (1= D) ok < i,

whose existence is guaranteed by Lemma 2.3.1.
Then by Theorem 2.3.2 again,
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n

n(l—(bf)_l)/glw/\"'/\9n,¢:; s/xewl Ao A g

i=1 X

Letting k — oo, we conclude (6.12). |

Corollary 6.2.6 Suppose that (¢;)icy is a net in PSH(X, 0) and ¢ € PSH(X, ).
Then the following are equivalent:

ds
(D) ¢i — ¢;
de
() ¢i V¢ —> g and

: J n-j _ J n-j
lilenll‘/xﬁw /\QV(, —/XH‘/7 /\GVQ (6.13)
foreach j =0,...,n.

The corollary allows us to reduce a number of convergence problems related to dg to
the case ¢; > ¢, which is much easier to handle by Lemma 6.2.2. This is the most
handy way of establishing ds-convergence in practice.

Proof (1) = (2).¢; Ve d—s> ¢ follows from Corollary 6.2.2. While (6.13) follows
from Theorem 6.2.1.
(2) = (1). By (6.4), we need to show that for each j =0, ..., n, we have

j ni_ [ gi ngr=i_ [ gl ngri
2/XQW¢A9V9 /Xewx\evg /Xe%/\eve - 0.

This follows from Theorem 6.2.1 and (6.13). ]

Corollary 6.2.7 Let (¢;)ic; be a net in PSH(X, 0) and ¢ € PSH(X, 6). Let w be a
Kdhler form on X. Then the following are equivalent:

ds.e
(D) i — ¢;

ds,o+w
@) pi — ¢

. . . . . d
In particular, there is no risk when we simply write ¢; = ®.

Proof (1) = (2). It suffices to show that for each j =0, ..., n, we have
2 /X(e + W)y AO+w) T - /X(e +w)), A (O +w)y !
- /X(e +w), A +w)y ) =0,
Note that this quantity is a linear combination of terms of the following form:

Vorw

2‘/)(9{”\/(/J AW A (6’+w)r",9—fw _‘/ngpi Al A (9+a))n_j

_ r j-r n-j
‘/Xﬁ‘p AW ™" A (9+w)ve+w,
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d
where r =0, ..., j. By Theorem 6.2.1, it suffices to show that ¢ V ¢; = . But this
follows from Corollary 6.2.6.
(2) = (1). From the direction we already proved, for each C > 1, we have that

ds,e+Cw
i —— .

By Theorem 6.2.1, it follows that
lim /X (0+Cw)l, A0y = /X (0+Cw)l, A0y
forall j =0,...,n. It follows that
lim | 05, Aoy = /X 0, A0y (6.14)
By Corollary 6.2.6, it remains to show that ¢; V ¢ ﬁ ¢. By Corollary 6.2.6 again,

d +w . .
we know that ¢; V ¢ S, ¢. So it suffices to apply (6.14) to ¢; V ¢ instead of ¢;,
and we conclude by Lemma 6.2.2. O

We sometimes need a slightly more general form.

Corollary 6.2.8 Let (¢;) jer, () jer be nets in PSH(X, 6). Consider a Kéhler form
w on X. Then the following are equivalent:

(1) ds,o(@i, i) — 0;
(2) ds,o+w (i i) — 0.

In particular, we can write ds (¢;, ;) — 0 without ambiguity.

Proof The proof is similar to that of Corollary 6.2.7, which is therefore left to the
readers. O

We have the following sandwich criterion:

Corollary 6.2.9 Let (¢;)icr, (Wi)icr, (7i)ier be three nets in PSH(X,0) and ¢ €
PSH(X, 0). Assume that

(1) ¥ <p @i <p n; foreachi € I;
d d
@0 = ¢ ¥ — ¢

d
Then ¢; = ®.

Proof By Corollary 6.2.7, we may replace 6 by 6 + w, where w is a Kihler form
on X. In particular, we may assume that ¢;, ¥;,n; € PSH(X, )¢ forall i € 1. By
Proposition 6.2.2, we may assume that ¢;, ;, i7; are model potentials for all i € I and
hence ¢; < ¢; < n; foralli € 1.

It follows from Theorem 2.3.2 that for each k =0, . . ., n, we have
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0% /\0"_k</9k /\9"—"</9’< Nl
i Vi = i Vi = i Vi
/X ¥ (] x @ () x n (]

for all i € I. By Theorem 6.2.1, the limits of the both ends are [, 6% A 67 as
Jj — oo. It follows that

lim/XGf;i N =/X9§,/\ec;k. (6.15)

iel

d
By Corollary 6.2.6, it remains to prove that ¢; V ¢ =, ¢. By Corollary 6.2.6, up to
replacing ¥; (resp. ¢;, ;) by ¥; V ¢ (resp. ¢; V ¢, n; V ¢), we may assume from the

d
beginning that y;, ¢;,17; > ¢. Now ¢; = ¢ by (6.15) and Lemma 6.2.2. O

de
Proposition 6.2.4 Let (¢;)ic1, (Y:)icr be nets in PSH(X, 6) such that ¢; —> ¢ €

d
PSH(X, 6) and y; —> ¥ € PSH(X, 0). Assume that ¢; <p Y; for alli € I. Then
¢ =py.

Proof 1t follows from Proposition 6.2.5 that
ds
YiVii — eV

By Lemma6.1.2, we have ¢; Viy; ~p y; foralli € I.In particular, by Proposition 6.2.2,

@i Vi =, .
By Proposition 6.2.2 again, ¢ V ¥ ~p ¢ and hence ¢ <p ¢ by Lemma 6.1.2. O
Lemma 6.2.6 Let ¢, y,n € PSH(X, 0), then
ds(e Vv, g vn) < Cuds(e. ), (6.16)
where C,, = 3(n + 1)2+2.

Proof According to Corollary 6.2.2, we may assume that ¢ < .
We will show that foreach C >t > 0,

di(ef"C, 670y < dy (60°,606). (6.17)
When C — oo, by Corollary 2.3.1 and Theorem 4.2.1, it follows that
di (67776 < di(£f . )),

which implies (6.16).
It remains to argue (6.17). As ¢ < ¢, we know that

t t
di(tf,6]) = i (g 62), (€ 6" = S (T 8.
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It suffices to handle the case t = C, namely,
dilevnV (Vg=C)yvnV (Vg-C)) <di(¢V (Vg —C), ¢V (Vg - C)).
This is a consequence of Theorem 4.2.2. O
d
Proposition 6.2.5 Let (¢;)icy (resp. (W;)icr) be a net in PSH(X, 0) such that o; =,
de
¢ € PSH(X, 0) (resp. ¢; —> € PSH(X, 0)). Then
ds

piVipi — o V.

Proof We compute

ds(@i Vi, o V) <ds(@i Vi, 0 V) +ds(oi Vi, o V)
<Cp (ds(Wi,¥) +ds(¢i, @),

where the second inequality follows from Lemma 6.2.6. The right-hand side converges
to 0 by our hypothesis. O

Theorem 6.2.2 Let 01, 0, be smooth real closed (1, 1)-forms on X representing big
cohomology classes. Suppose that (¢;)icy (resp. (Y;)icr) be anet in PSH(X, 0;) (resp.
PSH(X, 6;)) and ¢ € PSH(X, 6,) (resp. € PSH(X, 6,)). Consider the following
three conditions:

) ¢,~§>¢;
mmi@
() gi+ i —> @+,

Then any two of these conditions imply the third.

Proof By Corollary 6.2.7, we may assume that 6, 6, are both Kihler forms. We
denote them by w1, w; instead. Let w = w1 + w>.
(D+(2) = (3). It suffices to show that foreachr =0, ...,n,

r n—-r r n—r r n—r
2‘/);w(‘Pj+¢_i)V(<P+'/’) AT l(w¢j+¢j AL /waw AWt = 0.

Observe that for each j € 1,
(pj+¥)V(e+y) <@ Ve+y; V.

Thus, it suffices to show that

r r n-—r r n—r
2‘/Xa)‘pjv¢+wjvw/\a)—/xa)%+wj/\a) _/waw/\w — 0.

The left-hand side is a linear combination of
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a r—a n—-r a r—a n—-r a r—a n—-r
2/}(w1’¢jv¢/\w2’%v¢/\w —‘/}(wl’¢jAw2’¢jAw _/X“)l,tp/\wZ,w AW

witha =0,...,r. Observe that ¢; V ¢ d—S> pandy; Vi d—5> ¥ by Corollary 6.2.2,
each term tends to O by Theorem 6.2.1.

(2)+(3) = (1). This is similar.

(H+@3) = (2). For each C > 1, from the direction we already proved,

ds
Coi+yi — Co+y.

By Theorem 6.2.1, foreach j =0, ...,n,

1_1151/ (Cwy +wa +dd°(Cy; + i) A W;_j
2SS X

=‘/X(C<u1 +wy +dd°(Co + )’ /\cu;l_j.

It follows that
lim X(uiwi ANwy ! = /Xwé’w Awy . (6.18)

iel
Therefore, 2 follows if i; > ¢ for each i by Lemma 6.2.2.
Next we prove the general case. By the direction that we already proved, we know

d
that ¢; + ¢ = ¢ + . By Proposition 6.2.5, we have that
ds
PtV — o+

d
It follows from the special case above that ; V = . It follows from (6.18) and
Corollary 6.2.6 that (2) holds. O

Theorem 6.2.3 The map
Pgle]r: PSH(X, 6)>0 — PSH(X, 0)0

is continuous with respect to ds.

d
Proof Let (¢i)icz., be a sequence in PSH(X,6).o such that ¢; = ¢ €
PSH(X, 0)-. We want to show that

Pleilr =5, Plolr. (6.19)

We may assume that the ¢;’s and ¢ are all model potentials by Proposition 6.2.2.
By Proposition 6.2.3 and Corollary 6.2.9, we may assume that (¢;); is either

increasing or decreasing. The two cases are handled by Proposition 3.2.12 and

Proposition 3.2.11 respectively. O
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6.2.3 Continuity of invariants

d
Theorem 6.2.4 Let (¢;) je1 be anet in PSH(X, 6) and ¢; = ¢ € PSH(X, 0). Then
for any prime divisor E over X, we have

limv(¢;, E) = v(p. E). (6.20)
JE

Proof First observe that since ds is a pseudometric, it suffices to prove (6.20) when
I = Z as partially ordered sets.

By Corollary 6.2.7, we may assume that the masses of ¢; and of ¢ are bounded
from below by a positive constant.

By Theorem 6.2.3, we may assume that ¢; and ¢ are both 7-model. When proving
(6.20), we are free to pass to subsequences.

By Proposition 6.2.3, we may assume that the sequence (g;) is either increasing
or decreasing. In the increasing case, there is nothing to prove. In the decreasing case,
(6.20) follows from Proposition 3.1.8. O

Theorem 6.2.5 Let () jes be a net in PSH(X, 6) and ¢ € PSH(X, 6)-9. Assume
d
that ¢ =, ¢ € PSH(X, 0), then

volfy,, — vol . (6.21)

Recall the volume is defined in Definition 3.2.3.

Proof 1t follows from Theorem 6.2.1 that

We may therefore assume that /x 9’([’,1_ > 0 for all j € 1. Then by Theorem 6.2.3, we
have

d
Poleilr = Polelr.
Therefore, (6.21) follows from Theorem 6.2.1. O

d
Theorem 6.2.6 Let ¢;, ¢ € PSH(X, 0) (j € Z>o). Assume that ¢; = @. Then for
each A’ > A > 0, there is jo > 0 so that for j > jo,

I(Ap;) CI(Agp). (6.22)

Proof Fix A’ > 2 > 0, we want to find jo > 0 so that for j > jo, (6.22) holds.

Step 1. We first assume that ¢ has analytic singularities.

Let 7 : Y — X be alog resolution of ¢ and let E, ..., En be all prime divisors
of the singular part of ¢ on Y. Recall that a local holomorphic function f lies in the
right-hand side of (6.22) if and only if
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1
ordg, (f) > Aordg, (¢) — EAX(Ei) (6.23)

whenever they make sense. Here Ax denotes the log discrepancy. Similarly, f lies in
the left-hand side of (6.22) implies that there is € > 0 so that

ord, () = (1+ O ord, () = 3 Ax(Er).

As Lelong numbers are continuous with respect to ds by Theorem 6.2.4, we can find
Jo > 0o that when j > jo, A’ ordg, (¢;) > Aordg, () for all i. In particular, (6.23)
follows.

Step 2. We handle the general case.

By Corollary 6.2.7, we are free to increase 6 and assume that 6, is a Kéhler
current.

Take a quasi-equisingular approximation (¥ ) of ¢. The existence is guaranteed
by Theorem 1.6.2. Take A”” € (4, 1”), then by definition, we can find k > 0 so that

T(X"i) € I(A9).

d
Observe that ¢; V ¢ =, Yk as j — oo by Proposition 6.2.5. By Step 1, we can find
Jo > 0 so that for j > jj,

T (X (@; Vi) S I(A"Yy).

It follows that for j > j,
I(Ag;) CI(Agp).



Chapter 7
Z-good singularities

In this chapter, we study the key notion in the whole theory: the 7-good singularities.
We will give several useful characterizations of 7 -good singularities. The key result is
the asymptotic Riemann—Roch formula for Hermitian big line bundles Theorem 7.3.1.

7.1 The notion of 7-good singularities

Let X be a connected compact Kihler manifold of dimension #.

Theorem 7.1.1 Let 0 be a closed real smooth (1, 1)-form on X representing a big
cohomology class. Let ¢ € PSH(X, 6)~¢. Then the following are equivalent:
(1) There exists a sequence (¢;); in PSH(X, 0) with analytic singularities such that
d
0] = ¢.
(2) We have

‘/9"; =volf,. (7.1)
X

(3) We have
Pole]l = Polelr.

In (1), we could in addition require that each Oy, isa Kdhler current.
Moreover, if 0, is a Kihler current, the sequence in (1) can be taken as any
quasi-equisingular approximation of ¢ in PSH(X, ).

Proof (1) = (2). By Theorem 6.2.1, we may assume that /X 9;’,[ > (O forall j. It
follows from Proposition 3.2.9 that '

/ HZ,J_ =vol6f,,
X

for any j > 1. Using Theorem 6.2.5 and Theorem 6.2.1, we conclude (7.1).
(2) & (3). This follows from Theorem 3.1.1.

99
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(3) = (1). Note that the condition in (1) characterizes the closure of analytic
singularities in PSH(X, 6).
Step 1. We first reduce to the case where 6, is a Kihler current.
By Lemma 2.3.2, we can find ¢ € PSH(X, 6) so that 8, is a Kahler current and
¥ < ¢. We let
vi=1-j e+

foreach j € Zso. Then (), is an increasing sequence converging almost everywhere
to ¢. Then

Poly;lr %, Polelr = Pole]

by Proposition 3.2.12, Corollary 6.2.3. So it suffices to show that Py [y ;] r lies in the
closure of analytic singularities.

Step 2. We assume that 6, is a Kéhler current. We show that Pg[¢] 7 lies in the
closure of analytic singularities.

Let (¢;); be a quasi-equisingular approximation of ¢ in PSH(X, #). We will show

d
that 9; —> Pg[¢] 7. Let

v = jg%{ol’a[st’j]-

We know that ¢; s, ¥ by Proposition 6.2.2, Proposition 3.1.8 and Corollary 6.2.4.
Moreover, observe that ¢ is 7-model by Proposition 3.2.11 and Example 7.1.1.
So it suffices to show that ¢ ~7 .
It is clear that > ¢. Conversely, it remains to argue that Y <r ¢. For this
purpose, take 4 > 0, we need to show that

I () € I(g).

By the strong openness Theorem 1.4.4, we may take A’ > A suchthat 7 (Ay) = I ('y),
then it follows from the definition of the quasi-equisingular approximation that

T('y) c T (X)) € I(Ap)
for large enough j. Our assertion follows. O

Definition 7.1.1 We say a potential ¢ € QPSH(X) is 7 -good if for some smooth
closed real (1, 1)-form on X such that ¢ € PSH(X, )¢, we have

Pole]l = Polelr. (7.2)

An immediate question is to verify that this definition is in dependent of the choice
of 6.

Lemma 7.1.1 Let ¢ € PSH(X, 0)~ for some smooth closed real (1, 1)-form 6 on X.
Take a Kdhler form w on X. Then the following are equivalent:

(1) Pgle] = Polelrs
(2) Porwlel = Pole +w] 7.
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Proof (1) = (2). By Theorem 7.1.1, we can find ¢; € PSH(X, 6) with analytic

ds ds,o+0
singularities such that ¢; = ¢. By Corollary 6.2.7, we have ¢; o, ®.

Therefore, by Theorem 7.1.1 again, 2 holds.
(2) = (1). Suppose that (1) fails, so that

/(9+dd°go)" < /(9+dd°P9[<p]I)".
X X

It follows that

—i

/X(9+w+dd°<p)n=2(?)/X%Awn_i
DY

=/(9+U)+dch9[<p]j)n
X

P9[<P]I

< /(9 + w +dch9+w [QD]])n.
X

So (2) fails as well. m]

Corollary 7.1.1 Let 6 be a closed real smooth (1, 1)-form on X representing a big
cohomology class. Let (¢}) jer be a net of I-good potentials in PSH(X, 0) such that

d
©j =, . Then ¢ is I -good.

Proof By Corollary 6.2.7, we may assume that ¢, ¢ € PSH(X, 6)>o forall j € 1. It
follows from Theorem 7.1.1 that

no _
‘/XH%_ =vol 8,

for all j € I. Taking limit with respect to j with the help of Theorem 6.2.5 and
Theorem 6.2.1, we conclude that
0" =vol,.
%=

Therefore, by Theorem 7.1.1 again, we find that ¢ is 7-good. O

Example 7.1.1 Assume that ¢ € QPSH(X) has analytic singularities. Then ¢ is
7 -good. This is proved in Proposition 3.2.9.

Example 7.1.2 Assume that ¢ € PSH(X, 8)-¢ is an J-model potential for some
closed real smooth (1, 1)-form 6 on X. Then ¢ is 7-good.

Corollary 7.1.2 Let ¢ € PSH(X, 0)0 and (€;); be a decreasing sequence in Rxq
with limit 0. Fix a Kdihler form w on X. Consider a decreasing sequence ¢; €
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PSH(X, 6 + €;w) of potentials with analytic singularities for each j > 1. Assume
that ¢ = inf; ¢ ;. Then the following are equivalent:

d
(1) ¢; = Pylelr, and
(2) (¢j); is a quasi-equisingular approximation of .

Proof By Corollary 6.2.7 and Example 7.1.2, we may replace 6 by 6 + Cw for some
large constant C > 0 and assume that ¢, ¢; € PSH(X,6 — w) forall j > 1.

(2) = (1). This is already proved in the proof of Theorem 7.1.1.

(1) = (2). This follows from Theorem 6.2.6. O

Example 7.1.3 Let X = P' and w be the Fubini-Study metric. Let K C P' be a polar
Cantor sets carrying an atom free probability measure u supported on K (see L[“_'
Page 31]). Write u = w + Ay for some ¢ € SH(X, w). Since yu is atom free, we know
that all Lelong numbers of ¢ are 0. On the other hand, ¢ has 0 non-pluripolar mass
since K is pluripolar. In particular, c¢ for ¢ € (0, 1) is not 7 -good.

s

7.2 Properties of 7-good singularities

Let X be a connected compact Kéhler manifold.

Proposition 7.2.1 Let ¢, € QPSH(X) be I-good and A > 0. Then the following
potentials are all T -good.

D o+
2 eVy;
3) A¢.

Proof Take a closed real smooth (1, 1)-form 6 on X such that ¢, € PSH(X, ).
It follows from Theorem 7.1.1 that there are sequences ¢}, ; in PSH(X, 6) with

d d
analytic singularities such that ¢; =, p and ¢ ; = /8
By Theorem 6.2.2, Proposition 6.2.5, we have
ds ds
it — e+, @iV — VY.
On the other hand, it is clear that

ds
Apj — Ap.

Therefore, our assertions follow from Theorem 7.1.1. O

Proposition 7.2.2 Let {¢;} jc; be a non-empty family of I -good potentials. Assume
that the family is uniformly bounded from above and there exists a closed real smooth
(1,1)-form 6 on X such that ¢; € PSH(X,0) for all j € I. Then sup*;c; ¢; is
T-good. .
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Proof Without loss of generality, we may assume that ¢; € PSH(X, 6).¢ for all
Jj el

When [ is finite, this result follows from Proposition 7.2.1. When [ is infinite, we

may assume that I = Z- o by Proposition 1.2.2. By Proposition 7.2.1, we may assume
that the sequence (¢;); is increasing. In this case, as shown in Corollary 6.2.3,

ds s
@j — Sup” @;i.
1€Z~

Therefore, sup™;c7_, i is Z-good by Theorem 7.1.1. O

d
Theorem 7.2.1 Let (¢,) jer be a net in PSH(X, 6) such that p; = ¢ € PSH(X, 6).
Assume that ¢ is I -good, then we have

vol8,, — vold,. (7.3)

Proof Fix a Kahler form w on X. Then for any € > 0, we have
vol(6 + ew) =/ (0+ew+ddPosew 0] )"
X
=/ (6 +€ew+ddp)".

X

On the other hand,
/ (0 +ew+ddPorewle] )" = / (6 +ew+dd°Pgle] )"
X X

> /X (0 +ddPalpl )"
0”

>/
= 0
X

vol(0 + ew), — vol B, s/(6+ew+dd°<p)”—'/ez.
X b%

Therefore,

The difference can be controled by a polynomial in € without constant term independent
of the choice of ¢. We have a similar estimate for ¢ ; as well. So our assertion follows
from Theorem 6.2.5. O

Proposition 7.2.3 Let ¢, € PSH(X, 0)~¢. Then

(1) we have
lin(} vol(8, (1 — €)¢ + ey) = vol(0, ).
e—0+

(2) Let w be a Kdhler form on X, then
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volf, = E]LII(}+ vol(8 + ew) .
(3) Consider a prime divisor E on X. Then
vol@, = vol(8, — v(p, E)[E]).

Proof (1) We need to show that

lim (0+dd°Py[(1 —€)p+ey]r)" = ‘/X (6 +dd°Pyle]r)".

e—0+ X

By Proposition 3.2.10, for any € € (0, 1),

(I1-e)e+ey ~7 (1-€)Pololr +ePylyl]r.

In particular, we may replace ¢ and ¥ by Pgy[¢] s and Pg[y] s respectively. By
Proposition 7.2.1, it remains to show that

jE{L/X(@*ddc((]‘f)%"*f‘/’)) =‘/X(9+ddct,0) ,

which is obvious.
(2) For each € > 0,

vol(6 + ew),, 2/ (0 +€w+ddPorewlel )"
X
:[((0+Ew+ddCPg+Ew [Polel,])"

:./x (0 + ew +dd°Pgle],)",

where the third equality follows from Example 7.1.2. Letting € — 0+, we conclude.
(3) By (2), we may assume that 6, is a Kéhler current. Take a quasi-equisingular
approximation (S;); of 6, — v(¢, E)[E]. By Theorem 6.2.2,

d.
S;+v(p, E)[E] = 6.

For each j > 1, the currents S; + v(¢, E)[E] and S; are 7-good as follows from
Proposition 7.2.1, we have

vol(Sj+v(<,0,E)[E])=‘/X(Sj+v(go,E)[E])"=/XS;?=v01Sj.

Letting j — oo, we conclude by Theorem 6.2.6. O
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7.3 The volume of Hermitian big line bundles

Let X be a connected compact Kihler manifold of dimension #.

Definition 7.3.1 A Hermitian pseudoeffective line bundle (L, h) on X consists of a
pseudoeffective line bundle L on X together with a plurisubharmonic metric / on L.

A Hermitian big line bundle (L, h) on X is a big line bundle L on X together with
a plurisubharmonic metric /2 on L such that vol(dd®h) > 0.

MMO7
When X admits a big line bundle, it is necessarily projective. See L["“ , Theo-
rem 2.2.26].

Theorem 7.3.1 Let (L, h) be a Hermitian big line bundle and T be a holomorphic
line bundle on X. We have

n!
Jim ﬁhO(X, T ® L* ® T(h*)) = vol(dd°h). (7.4)

In particular, the limit exists.

Remark 7.3.1 This theorem also holds for a general Hermitian pseudoeffective line
bundle. The proof is more invol%%gllgg\/e woul ]ﬁx{e to apply the singular holomorphic
Morse inequality of Bonavero [BonY8]. See [[DX21, Theorem 1.1].

For the proof, let us fix a smooth Hermitian metric Ao on L with 6 = ¢ (L, hg).
We identify & with hg exp(—¢) for some ¢ € PSH(X, 0).
We first handle the case where ¢ has analytic singularities.

Proposition 7.3.1 Under the assumptions of Theorem 7.3.1, assume furthermore that
¢ has analytic singularities, then (7.4) holds.

Proof Step 1. Reduce to the case of log singularities.
Let 7: Y — X be a modification such that 7*¢ has log singularities. In this case,
for each k € Z-(, we have

(X, T ® L* ® I(kh)) = h°(Y,Ky/x ® n°T ® n*L* ® I (kn*h)).
By Proposition 3.2.5, we have
vol(dd®h) = vol(ddSn*h).

Therefore, it suffices to argue (7.4) with Ky;x ® n*T, n*L and n*h in place of T', L
and h.

Step 2. Assume that D has log singularities along an effective Q-divisor D, we
decompose D into irreducible components, say

N
D = ZaiDi.

i=1
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In this case, we can easily compute

N
I(ky) =0x (— LkaiJDi)
im1

for each k € Z.. Observe that L — D is nef (see Lemma 1.6.1), so we could apply
the asymptotic Riemann—Roch theorem to conclude that

N
- ZtkaiJDi)) =(L-D)"

i=1

|
lim 200 | X.T® LK ® Ox

k—oco k™

Observe that by Proposition 1.8.1,
0, =[D]+T,

where T is a closed positive (1, 1)-current with bounded potential. Therefore,

(L—D)”:/)(T”:/XQ';.

By Example 7.1.1, we know that the right-hand side is exactly vol 6. O

Proof (Proof of Theorem 7.3.1) Step 1. We first handle the case where 6, is a
Kihler current. Fix a Kihler form w > 6 on X such that 6, > 26w for some
6€(0,1).

Let (¢;); be a quasi-equisingular approximation of ¢ in PSH(X, ). We may
assume that 6, > dw for all j. From Proposition 7.3.1, we know that for each j > 1,

— n! n!
Jim k—nhO(X,T®Lk ® I (kg)) < lim k—nhO(X,T®Lk ® I (kgj)) = volf,,.

It follows from Theorem 7.1.1 and Theorem 6.2.5 that the right-hand side converges
to vol 8, as j — oo. Therefore,

- |
Tim %hO(X,T ® L* ® I (kg)) < vol 0.

Conversely, fix an integer N > 6!, From Theorem 7.1.1 and Theorem 6.2.1, we

know that
: n —_ n
]1%L9¢j - ‘/);HPH[QO]I >0. (7.5)

Therefore, by Lemma 2.3.1, we can find jo > O such that for j > jjo, there is
¥ € PSH(X, 6)~0 with

(1-N"Ne; + N~y < Pgle]r. (7.6)
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For each k > 0, we write k = k’N —r, where k¥’ €e Nandr € {0,1,...,N—1}. Then
we compute for j > jo and large enough k that

(X, T® LF ® I (ky))
> (X, T® L™ & LK'N @ I(k'Ng))
> 10 (x, TQL" LN oI (k'(y+(N- l)w)))

>0 (X,T®L" LN @ KN-D g (k’Ngaj)),

where the third line follows from (7.6), the fourth line can be argued as follows: for
large enough k, there is a non-zero section s € H(X, LX ® T (k")) by Lemma 2.3.3;
It follows from Lemma 1.6.3 that for large enough &,

T (K'Ngj) € I (K' (N - 1)g,) .
It follows that multiplication by s gives an injective map
H (X.TeL" e XM Ve (KNg))) —
H? (X, TOL" LN @1 (K'y+k'(N - 1)%’)) .

Next observe that
(N - 1)9+Nddc(,ﬂj > 0.

So Proposition 7.3.1 is applicable. We let k — oo to conclude that

lim 2%(X, T ® L* ® T (k¢)) > —
Pament nl-N—"

=% /X ((1=N"He +ddg,)".

Letting j — oo and then N — oo and using (7.5), we find that

/ ((N =18+ Ndd®¢;)"
X

. 0 k n
lim A" (X, T® L ®I(k<p))2/X9p9[¢]z~

k—o0

Step 2. We handle the general case. We may assume that ¢ is 7 -model.

Take an ample line bundle A on X and a Kéhler form w in ¢ (A). Then for any fixed
N € Zs, we apply Step 1 to L™ ® A in place of Land T ® L withi =0,...,N — 1
in place of T, we have

- ! n
Jim %hO(X,T@;Lk@f(kga))s/(N-1w+e+dd°P9+N,lw[<p]I) .
—00 X

On the other hand, since ¢ is 7-good by Example 7.1.2, we have
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Poin-1olelr = Poin-1,10].

It follows from Proposition 3.1.2 that
— nl g k 1 "
Jim ZR(X.To L @ I(ke)) < / (9+N‘ w+dd°go) .
—00 X
Letting N — oo, we conclude
— !
lim = h%(X,T® LK ® I (kg)) < / 0.
k—oo k™ X ¥

It remains to argue the reverse inequality.
Choose € PSH(X, 6) such that 6, is a Kihler current and ¢ < ¢. The existence
of ¢ is guaranteed by Lemma 2.3.2. Then for any ¢ € (0, 1), we set

or=(1-p+ty.

It follows again from Step 1 that

n! n!
lim k—nho(x,T ® LF® I'(ky)) > Jim k—nhO(X,T®Lk ® I (kg;)) = vol b, .

k—o0

d
On the other hand, by Corollary 6.2.3, we have ¢, = ¢ as t — 0+. It follows from
Theorem 6.2.5 that

li 16, = volf,.
Ji, ol B = o1,

So we find |
lim %hO(X,T ® L* ® I (kg)) > vol 0.

k—o0

Example 7.3.1 If X is a toric smooth projective variety and 6 is invariant under the
action of the compact torus. Suppose that ¢ € PSH(X, 6)~ is also invariant under
the action of the compact torus, then ¢ is 7-good.

Proof Thanks to Lemma 7.1.1, we may assume that 6 € ¢;(L) for some toric
invariant ample line bundle L. In this case, the result follows from Theorem 7.1.1,
Theorem 7.3.1 and Theorem 5.3.1. O

Corollary 7.3.1 We have
. n! 0 k n
klgrgo ﬁh (X,L%) = XGVH. (7.7

This common quantity is the volume of L, usually denoted by vol L.



Chapter 8
The trace operator

In this chapter, we develop the theory of trace operators and prove the analytic
Bertini theorem. These techniques allow us to make induction on the dimension while
studying the singularities.

8.1 The definition of the trace operator

Let X be a connected compact Kihler manifold and ¥ € X be an irreducible analytic
subset. Tlle trace operator gives a way to restrict a gﬁﬁi@—plurisubharmonic functior}
on X to Y, the normalization of Y. It follows from [GR20, Proposition 3.5] that ¥
is a normal Kahler space. We refer to Appendix B for the pluripotential theory on
unibranch Kihler spaces.

For later applications, we need this generality even if initially we are only interested
in the smooth case.

We first observe that given ¢ € QPSH(X) with analytic singularities such that
v(p,Y) =0, then p|y # —oco. This observation will be crucial in the sequel.

Proposition 8.1.1 Let ¢ € QPSH(X). Consider a smooth closed real (1, 1)-form on
X and ¢ € PSH(X, 0) such that v(¢,Y) = 0. Let (¢;);, (¥;); be quasi-equisingular
approximations of ¢. Then

lim ds (gily. yily) = 0. (8.1)

The meaning of (8.1) is explained in Corollary 6.2.8.

Proof Take a Kihler form w on X. By Corollary 6.2.8, we may assume that
©, pi,¥; € PSH(X,0 — w) for all i > 1. Replacing ¢ by Pg[¢] 7, we may assume
that ¢ is 7-good. It follows from Corollary 7.1.2 and Proposition 6.2.5 that we can
assume ¢; < y; foralli > 1.

Take a decreasing sequence (¢;); in Rso with limit O such that (1 —€;)¢p; €
PSH(X, 0). We first observe that

109
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,ILIEO ds(gily, (1 - €)pily) = 0.

This is a consequence of Lemma 6.2.3.
Next by Proposition 1.6.3, we could find a subsequence (¢}, );ez., of (¥;); such
that for eachi > 1,
Yj; <Y < (1-€)¢i.

Therefore, (8.1) follows from Corollary 6.2.1. O

Definition 8.1.1 Let ¢ € QPSH(X) such that v(¢,Y) = 0. We say a potential
Y € QPSH(Y) is a trace operator of ¢ along Y if there is a smooth closed real
(1, 1)-form 6 on X such that ¢ € PSH(X, 6) and a quasi-equisingular approximation
(¢;); of ¢ such that

vily 5, . (8.2)

By Corollary 6.2.5, the trace operator is always defined. Observe that by Propo-
sition 8.1.1, the condition (8.2) is independent of the choice of (¢;);. It is also
independent of the choice of 8 by Corollary 6.2.7.

Proposition 8.1.2 Let ¢ € QPSH(X) such that v(p,Y) = 0. Suppose that  and '
are trace operators of ¢ along Y. Then  and ' are I -good and y ~p V'.

Proof That s and " are T -good follows from Theorem 7.1.1. The fact that y ~p '
follows from Proposition 8.1.1 and Proposition 6.2.2. O

Definition 8.1.2 Let ¢ € QPSH(X) such that v(¢,Y) = 0. We write Try (¢) for any
trace operator of ¢ along Y.

Given a closed smooth real (1, 1)-form 6 on X. When Try (¢) can be chosen to lie
in PSH(Y, 0y)>0, we write

Tr) (@) = Pgy, [Try(¢)] = Py, [Try (@)1 .

The trace operator Try (¢) is therefore well-defined only up to P-equivalence by
Proposition 8.1.2.

Remark 8.1.1 As in Remark 1.7.1, the trace operator could also be applied to
closed positive (1, 1)-currents on X. If T € Z,.(X, @) (see Definition 1.7.3) and
B € H1(Y,R), then we write

T (T)

for any closed positive (1, 1)-current in B representing Try (7)) when v(7,Y) = 0.

Proposition 8.1.3 Ler ¢ € QPSH(X) such that v(p,Y) = 0. Assume that |y # —oo.
Then

ely <p Try (¢).
Proof Take a Kihler form w such that w, is a Kdhler current. Let (¢;); be a

quasi-equisingular approximation of ¢ in PSH(X, w). We may assume that ¢; < 0
forall j > 1.
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Then
¢ily < Poi, [¢;l7] (8.3)
forall j > 1.
Thanks to Corollary 6.2.4,
Try (¢) ~p }I;fl Poi, [ejl7]. (8.4)
Letting j — oo in (8.3), we conclude our assertion. O

Example 8.1.1 Let ¢ € QPSH(X) such that v(¢,Y) = 0. Assume that ¢ has analytic
singularities, then
Try (¢) ~p ¢ly.

Example 8.1.2 Let ¢ € QPSH(X). Take a closed real smooth (1, 1)-form 6 on X
such that ¢ € PSH(X, 6)~9, then

Trx(¢) ~p Polelr. Trg(e) = Polelr.
In particular, the trace operator can be regarded as a generalization of the 7 -envelope.

Example 8.1.3 Assume that ¢ € PSH(X, 0) for some closed smooth real (1, 1)-form
6 on X and

lim / (9|Y +ewly +dd° Tr;)““’(tp))m >0 (8.5)
eNO0 Jy

for any arbitrary choice of a Kéhler form w on X. Then it follows from Proposition 3.1.8
that Trg(go) is defined, and its mass is exact the above limit.
In particular, if 6, is a Kahler current, Trg(go) is always defined.

Remark 8.1.2 The trace operator allows us to introduce the following extension of
the moving Seshadri constant: Let 7 € Z,(X, @) and x € X, we define

1
dim V/

e(T,x) = inf

aly
vol Tr,, V' T
Vax

mult, V

where vol Tr‘(flv T =0if Tr‘(flv T is not defined. Here V runs over all positive-
dimensional closed irreducible analytic subsets of X containing x.
These moving Seshadri constants seem to be new.

8.2 Properties of the trace operator

Let X be a connected compact Kihler manifold and ¥ € X be an irreducible analytic
subset.
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Proposition 8.2.1 Let ¢,y € QPSH(X), A > 0. Assume that v(p,Y) =v(y,Y) = 0.
Then we have the following:

(1) Suppose that ¢ <y ¥, then Try (¢) <p Try (¥).

(2) We have
Try (¢ + ) ~p Try (¢) + Try ().
(3) We have
Try (1¢) ~p A Try ().
(4) We have

Try (¢ V) ~p Try (@) V Try (¢).

Proof Take a closed smooth real (1, 1)-form 6 on X such that 8, 6,, are both Kihler
currents. Let (¢;); and (), be quasi-equisingular approximations of ¢ and y in
PSH(X, 0) respectively.

(1) By Corollary 7.1.2 and Proposition 6.2.5, we may assume that ¢; < i ; for all
Jj- Then our assertion follows from Proposition 6.2.4.

d
(2) It follows from Theorem 6.2.2 that ¢ + ¢ ; =, Polelr + Pgl¥] 1. However,
by Proposition 3.2.10 and Proposition 7.2.1, we have

Polelr + Pol¥lr ~p Pole +¥]1.

Therefore, by Proposition 6.2.2, Corollary 7.1.2 and Proposition 1.6.1, ¢; + ¢ is a
quasi-equisingular approximation of ¢ + . We conclude using Theorem 6.2.2.

(3) Let (4,); be an increasing sequence of positive rational numbers with limit
A. Then (4;¢;); is a quasi-equisingular approximation of ¢. Our assertion follows
Lemma 6.2.3.

(4) By Proposition 6.2.5, we have

d
@j Vj = Palglr vV Poly]r.
By Proposition 3.2.10 and Proposition 7.2.1, we have
Polelr vV Polylr ~p Pole Vylr.

Therefore, our assertion follows exactly as in the proof of (2). O

Proposition 8.2.2 Let (¢;) jer be a decreasing net in QPSH(X). Assume that there
exists a closed real smooth (1, 1)-form 6 such that ¢; € PSH(X, 6) for each j € 1.

Assume that ¢ s, ¢ € QPSH(X) and v(¢,Y) = 0. Then
ds
Try (¢;) — Try (¢).

Proof By Corollary 6.2.7, we may assume that there is a Kihler form w on X such
that ¢, ¢; € PSH(X, 6 — w) for all j € I. Note that for each j > 1,

Try (¢j+1) <p Try(¢;).
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It follows from Proposition 8.2.1 and Corollary 6.2.5 that there exists € PSH(Y, 6]y)

d
such that Try (¢;) = .
For each j, we take a quasi-equisingular approximation (go;f)k in PSH(X, 0) of
¢;. Using Theorem 1.6.2, we may guarantee that

k k
Pjr1 = ¥

for each j, k > 1. In particular, (t,o§) ;j is a quasi-equisingular approximation of ¢. By
Proposition 6.2.4, we have ¢ <p Try (¢).

Conversely, by Proposition 8.2.1, Try(¢;) >p Try(¢p). It follows again from
Proposition 6.2.4 that Try (¢) <p . O

Example 8.2.1 The trace operator is not continuous along increasing sequences. Let us
consider the case X = P? with coordinates (z1, z2). Let wgs denote the Fubini—Study
metric. The subvariety ¥ = P! is defined by z» = 0. Consider an increasing sequence
(¢;); in PSH(X, wrs), whose potentials near (0, 0) are given by

log |21 2 v (k" log |22%) + O(1).
The pointwise restriction of these potentials to Y are given locally by
log |z1|* + O(1).

On the other hand, locally
log|zi|* v (k_l log |Z2|2) -0

almost everywhere as k — oo. So the trace operator is not continuous along the
sequence (¢;);.

Lemma 8.2.1 Let n: Z — X be a proper bimeromorphic morphism with Z being a
connected Kdhler manifold. Assume that W (resp. Y ) be analytic subsets in Z (resp.
X) of codimension 1 such that the restriction I1: W — Y of n is defined and is
bimeromorphic, so that we have the following commutative diagram

W—osW—>7Z

bk

Yy —— YV ——> X.
Then for any ¢ € QPSH(X) with v(p,Y) = 0, we have
" Try (@) ~p Trw (7" ¢). (8.6)

Proof We first observe that by Zariski’s main theorem, v(7*¢, W) = 0. So the
right-hand side of (8.6) makes sense.
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Step 1. Assume that 7" has analytic singularities. It suffices to apply Example 8.1.1
to reformulate (8.6) as

" (¢ly) ~p (7*0) |-

In fact, the strict equality holds, which is nothing but the functoriality of pullbacks.
Step 2. Next we handle the general case. Up to replacing 8 by 6 + w for some
Kéhler form w on X, we may assume that 7 is a Kéhler current. Take a quasi-
equisingular approximation (¢;); of ¢ in PSH(X, 6). By Corollary 7.1.2, (n*¢;); is
a quasi-equisingular approximation of 7*¢. From Step 1, we know that for each j,

IT* Try (¢;) ~p Trw (7" ;).

Letting j — oo, we conclude (8.6) using Proposition 8.2.2. O

Proposition 8.2.3 Let ¢ € QPSH(X) with v(¢,Y) = 0. Assume that Y is smooth.
Then for any A > 0, we have

T (ATry(¢)) € Resy I (Ag). (8.7)

Proof Take a Kahler form w on X such that w,, is a Kihler current.
Let (¢;); be a quasi-equisingular approximation of ¢ in PSH(X, w).
By definition, for each j > 1, we get that

Try (¢) <p @jly-
For any 2’ > A > 0, we can find j > 0 so that
I(Xg)) € I(Ag).
By Theorem 1.4.5, we have
I (A Try(¢)) € IT(Xpjly) S Resy I(A'¢j) C Resy I(1¢p).

Thanks to Theorem 1.4.4, we conclude (8.7). O

Lastly, we turn our attention to global sections. For this we will need the following
global Ohsawa—Takegoshi extension theorem for the trace operator:

Theorem 8.2.1 Let L be a big line bundle on X and 0 is a closed real smooth
(1,1)-form on X representing c1(L). Suppose that ¢ € PSH(X,0) and 6, is a
Kdhler current. Assume that v(¢,Y) = 0. Let T be a holomorphic line bundle on X.
Then there exists ko such that for all k > ko and s € H*(Y,T|y ® Lllf, ®71(k Trg(go))),
there exists an extension § € H*(X, T ® L* ® I (ky)).

It is of interest to know if one could control the L2-norm of § in the above result.

Proof Fix a Kihler form w on X. We may assume that Y # X and that 6, > 30w for
some § > 0. Let (¢;); be the decreasing quasi-equisingular approximation of ¢ in
PSH(X, 6). We can assume that 6,, > 26w for all j > 1. Also, there exists € > 0
such that 6(1+¢),; > 6w for any € € (0, €v). Take kg = ko(6) as in Theorem 1.8.1.
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We fix k > kgand s € H'(Y, T|y ® Llf, I (k Tr;)((p))). By Theorem 1.4.4, there
exists € € (0, €) such that s € HO(Y,T|y ® LIf ® I (k(1+¢€) Tr) (¢))).

Since Try (¢) < ¢;ly, we obtain that s € H'(Y,T|y ® L|¥ ® T (k(1 + €)¢jly)).
Due to Theorem 1.8.1 there exists §; € H(X,T ® L* ® T (k(1 + €)¢;)) such that
Sily = s, forall j.

But by definition of quasi-equisingular approximation, we obtain that for high
enough j the inclusion 7 (k(1 + €)¢;) € I (k¢p) holds. As aresult, §; € HY (X, T®
L* ® T (ky)) for high enough j, finishing the argument. O

8.3 Restricted volumes

Let X be a connected projective manifold of dimension n and Y C be a connected
submanifold of dimension m. Consider a big line bundle L on X, a Hermitian metric
hoon L with 6 = ¢1(L, hg). Let A be a very ample line bundle on X. Take a Hermitian
metric h4 on A such that w = dd°h4 is a Kéhler form.

Using the trace operator, one could prove the following generalization of Theo-
rem 7.3.1.

Theorem 8.3.1 Let h be a singular plurisubharmonic metric on Lwith v(dd*h,Y) = 0.
Assume that

tim (Tr;““”“‘"(cl(L, h)))m > 0. (8.8)

Then for any holomorphic line bundle T on X we have that
e (Lly) m_ombg Kk k
(Try (ci(L, h))) = lim (Y, Tly ® LIX ® Resy (I (h ))) . (89)
Y —00

Recall that Resy is defined in Definition 1.4.5. Observe that by Example 8.1.3, (8.8)
implies that TrS! “) (¢, (L, b)) is defined. So (8.9) is defined.

We will identify i with ¢ € PSH(X, 6) as in (1.10).

We only need to consider the case Y # X, since otherwise, the result is proved in
Theorem 7.3.1. We will always assume Y # X in the sequel.

Lemma 8.3.1 There is Yy € QPSH(X) with neat analytic singularities such that
{Yy = —o0} =Y and in an open neighbourhood of Y, we have

Yy (x) =2(n —m)logdist(x,Y) (8.10)
for some Riemannian distance function dist(-,Y).

See De@%@'gn 1.6.1 for the definition of neat analytic singularities.
See [Fin22, Lemma 2.3] for the proof.

Lemma 8.3.2 The multiplier ideal sheaf of Wy can be calculated as
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I(Yy) =1y. (8.11)

Moreover, given'y € Y and € > 0, for any germ f € Iy , we have

/ If19e™" w" < e, (8.12)
U

where U is an open neighbourhood of y in X.

In other words, ¥y has log canonical singularities.

Proof Since Yy is locally bounded away from Y, it suffices to prove (8.11) along Y.
Fix y € Y, and we will verify (8.11) germ-wise at y.

Take an open neighbourhood U C X of y and a biholomorphicmap F': U — VXW,
where V is an open neighbourhood of y in Y and W is a connected open subset in
C"™ containing 0, such that F(Y N U) =V x {0}. For any x € U, write xy, xy for
the two components of F(x) in V and W respectively. We denote the coordinates in
C"™aswi,...,Wn_m-

Due to (8.10), after possibly shrinking U, we may assume that

exp(—yy () = [xw[*™ 2" + O(1)

foranyx e U \Y.
Given f € Iy y, after shrinking U, we may assume that there exists g1, ..., gn-m €
HO(V x W, Oy xw) such that
n—-m
f= Z wigi.
i=1

In order to verify f € I (yy)y, it suffices to show w;g; € T ((Z'" |wi|2)m‘")F(y),
which follows from Fubini’s theorem. The proof of (8.12) is similar.

Conversely, take f € I (¥y), the similar application of Fubini’s theore C%gows
that after possible shrinking U, we have f|y = 0. By Riickert’s Nullstellensatrzrl["' ,
Page 67], it follows that f € Jy. O

Lemma 8.3.3 Assume that ¢ has analytic singularity type and 0, is a Kdhler current.
Suppose that ¢ly # —oco. Then

|
/(9|y +ddColy)™ = klim ]'("—m dime {sly : s e HY(X, T ® L* ® T (k¢))}. (8.13)
Y —00

Recall that 7, is defined in Definition 1.6.5.

Proof Suppose that € € (0, 1) is small enough so that (1 — €)u € PSH(X, 6).
Using Theorem 7.3.1 we can start to write the following sequence of inequalities:
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1
EiéwW+d&mwm

1
= lim k—th(Y,T|Y ® LIy ® I (kely))

k—o0

N
< lim T dim {s|y s e H' (X, T ® L¥ ®I(kt,0))} by Theorem 1.8.1

k—o0

— 1
< lim — dim {sly : s e H(X,T ® L* ® T (k¢))}

k—oco k™M

— 1
< Jim - dim {sly : s e H'(X, T ® L* ® I.o((1 = €)ky))} by Lemma 1.6.3

k—o0

— 1
< lim — dimc {s € H(Y, Tly ® L|}) : log h* (5, 5) < (1 - €)kgply}

k—oo k™M

—
< Tim —#° (Y,T|Y®L|§ ® I ((1 —e)ktply))

k—oo k™

1
= / (6ly + (1 - €)dd°¢|y)™ by Theorem 7.3.1.
Uy

Letting € — 0, (8.13) follows from multi-linearity of the non-pluripolar product. O

Proposition 8.3.1 In the setting of Theorem 8.3.1, assume that dd°h is a Kdihler
current. Then (8.9) holds.

Proof Let (¢;); a quasi-equisingular approximation of ¢ in PSH(X,#). After
possibly replacing (¢;); by a subsequence, there exists €y € (0,1) N Q such that
O(1-e)2g; and 0(1-¢), are also Kahler currents for any € € (0, €).

We claim that for any j > 1 and k € N, we have

To((1 = ©)kg;) N I (Yy) € I((1 - €)*kg; +y). (8.14)

Take x € X, and it suffices to argue (8.14) along the germ of x. Since ¥y is
locally bounded outside Y, we may assume that x € Y. Recall that by Lemma 8.3.2,
I(yy)=1Iy.

Let f € 7o((1 = €)k@;)x N T (Yy)x. Then there is an open neighbourhood U of

x in X such that |f|2(1_5>e_k(1_5)2‘ﬁf < Choldson U\ {¢; = —co} for some C > 0,
hence

/ |f|267k(176)24pj7(/1y " :/ |f|2(l*€)efk(lfe)zapjlleeefwy "
U U
SC/ |17 " < oo,
U

where the last inequality follows from Lemma 8.3.2. We have proved the claim (8.14).
Next we consider the following composition morphism of coherent sheaves on Y:

T((1-e)’ke;) . I((1-e)ke;)
Io((1-eke)) NIy  I((1-€)2ke;+yy)

Resy 7o ((1 — €)kepj) — (8.15)
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Here we have identified the coherent Ox-modules supported on Y with coherent
Oy-modules. Note that the target of (8.15) is also supported on Y as ¢y is locally
bounded outside Y. We denote the coherent Oy-module whose pushforward to X

T((1-€)’ke;)
T=okg+om) O L
In (8.15), the first map is the inclusion and the second one is the obvious projection

induced by (8.14). Although in general the second map fails to be injective, we
observe that the composition is still injective as 7 ((1 — €)%k¢ i+y) €T (Yy) =Iy.
Therefore, for any k € N, we have an injective morphism of coherent Oy-modules:

gives

LIX®Tly ® Resy I, ((1 — €)kg;) < LIk & Ty ® I ;. (8.16)

Using Theorem 7.3.1 we can start the following inequalities:
1 cm.0 mn
— | (ol +de° T ()
m! Y
1
= lim k—th(Y, Tly ® L|Y ® T (kTrd(¢))) by Theorem 7.3.1

1
< lim k—th(Y, Tly ® L|¥ ® Resy (I (kg))) by Theorem 1.4.5

k—o0

— 1
< Jim k—th(Y, Tly ® L|¥ ® Resy (I (kg)))
— 1
< lim k—th(Y, Tly ® LIX ® T (k¢j)ly)
— 1
< lim k—th(Y, Tly ® LI¥ ® Io((1 - €)kg;)ly) by Lemma 1.6.3

— 1
< lim k—th(Y,le ® LIy ® I ;) by (8.16)

— 1 : . 0 k
Sklgrolok—mdlmc{ﬂy.seH X,T@L ®

I((1-e’ky))
T((1-e)%kp; +yy)

— 1

= lim = dimc {sly :s e HU(X, T® L*® T ((1-€)*ky;))} (see below)
1 2 34C mn

- (9|Y +(1 - e)2dd ¢,|Y) by Lemma 8.3.3,
m' Y

CDM17
where in the penultimate line we used k"‘“ , Theorem 1.1(6)] for g = 0. Letting
€ — oo and then j — co the result follows. O

Proof (Proof of Theorem 8.3.1) Using Proposition 8.2.3 and Theorem 7.3.1 we
obtain that
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e )" = i M0 k 0
(6ly +ad T (o))" = lim TR0, Tly © LI © T (K Tef ()
Y —00

.oml g X
< lim k—mh (Y. Ty ® L|y ® Resy (I (ky))).

k—o0

Now we address the other direction in (8.9). Let ¢ € H°(X, A) be a section that
does not vanish identically on Y. Such ¢ exists since A is very ample.

We fix kg € N. For any k > 0, we have that k = gko + r with ¢, € N and
r €{0,...,ko— 1}. Also, we have an injective linear map

L H®d
RO, Tly ® LI ® T (kgly) —— B (¥, Tly ® LI ® Al © T(kely))
Therefore,

— |
fim 2k (v, Tly ® LI @ T (kely)

k—oo kM
- |
< Jim %ho (Y,le oLk o Alle ]'(kt,oly))

1 — m!
= Tim Zoh (Y,le o LI e Al g LI ®I(k<p|y))

0 47 q

1

kg’

-1 m
:/(9|y+k6]w|y+ddCTr$+k° w((p))
Y

1 o)
:/(0|y+k6 wly +dd°Tif ()"
Y

- !
<— lim 240 (Y,T|y oLl e Al g LI, ®I(koqgo|y))
q— g

where in the fourth line we have used that kgg < k and in the last line we have used
Proposition 8.3.1 for the big line bundle L ® A, the Kihler current ko6, —dd® log g =
ko6, + w, and twisting bundle T ® L". Letting kg — co, we conclude that

m

— | m
lim =4 (Y,T|Y®L|§®J(k<p|y)) s/y(e|y+dd°Tr§(¢)) .

k—o0

Theorem 8.3.2 Let ¢ € PSH(X, 0) such that v(¢,Y) = 0. Assume that 6 , is a Kihler
current. Then

m !
/(9|Y+ddCTr;’(¢)) = lim %dimc {sly : s e HO(X.T ® L¥ ® T (ko))} .
Y —00

Proof This is a consequence of Theorem 7.3.1, Theorem 8.2.1 and Theorem 8.3.1:
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e = 1 M0 k 0
s (6ly +da ) (o))" = lim TR0, Tly ® LI © T (K Tef ()

|
< lim % dime {sly : s € H(X, T ® L* ® T (k¢))}

- |

< lim %dim@ {sly : s e HO(X, T ® L* ® T (kg))}
L om!og k

< lim ZoR(Y. Tly ® LI} @ T(ke)ly)

/Y (9|Y +dde Tr§(<p))m .

Remark )%Zél One could also show that when (8.8) fails, the right-hand side of (8.9)
is 0. See [DX24].

8.4 Analytic Bertini theorems

Let X be a connected projective manifold of dimension n > 1.
The analytic Bertini theorem handles the restriction along a generic subvariety.

Theorem 8.4.1 Let ¢ € QPSH(X). Let p: X — PN be a morphism (N > 1). Define
G ={H € |Opn(1)| : H := HN X is smooth and 7 (¢|g) = Resy (I (¢))}.

Then G C |Opn (1)] is co-pluripolar.

Recall that co-pluripolar sets are defined in Definition 1.1.4. We adopt the convention

that 7 (—o0) = 0.

Remark 8.4.1 Here and in the sequel, we slightly abuse the notation by writing H N X
for p~! H, the scheme-theoretic inverse image of H. In other words, HNX := Hxpn X.
By definition, any H € |Opn (1)| such that p~'H = 0 lies in G.

Proof Take an ample line bundle L with a smooth Hermitian metric 4 such that
c1(L,h) +ddp > 0, where ¢ (L, h) is the first Chern form of (L, k), namely the
curvature form of 4. We introduce A := |Opn~ (1)] to simplify our notations.

Step 1. We prove that the following set is co-pluripolar:

GrL = {H € A: Hn X issmooth and H® (H N X, wrnx ® Llgnx ® I (¢lanx)) =
H® (H N X, wnnx ® Llgnx ® Respnx (Z(9)} .

Here wgnx denotes the dualizing sheaf of H N X.
Let U € A X X be the closed subvariety whose C-points correspond to pairs

(H,x) € Ax X with p(x) € H. Let 71 : U — A be the natural projection. We may
assume that 71 is surjective, as otherwise there is nothing to prove.
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Observe that U is a local complete intersection scheme by Krulls Haupti%ﬁc%lggtz
and a fortiori a Cohen—Macaulay scheme. It follows from miracle flatness [IVIat39,
Theorem 23.1] that the natural projection 7, : U — X is flat. As the fibers of 7, over
closed points of X are isomorphic to PN-1 it follows that 75 is smooth. Thus, U is
smooth as well. Moreover, observe that

I(n3p) =m51(p) (8.17)

by Proposition 1.4.5.

In the following, we will construct pluripolar sets X; C ¥, C X3 C ¥4 C A such
that the behaviour of 7 is improved successively on the complement of ;.

Step 1.1. The usual Bertini theorem shows that there is a proper Zariski closed set
%1 € A such that r; has smooth fibres outside ;. E%Eﬂ%i_rkg X1, we could guarantee
that 71y and 7 (75¢) are both flat outside X;. See [DT05; Théoreme 6.9.1]. Then
after further enlarging Z; so that H avoids all associated points of Ox /7 (¢), for all
H e A\ X;. Let 1 g denote the fibre of 71y at H and write i : 7y g — U for the
inclusion morphism. We arrive at

Resz, , (L (m5¢)) =iyI (n50)

forall He A\ Z;.!
Step 1.2. By Grauert’s coherence theorem,

F' = R'ry. (wya ® ML ® I (m5))

is coherent for all i. Here wy, 4 denotes the relative dualizing sheaf of the morphism
U — A. Thus, there is a proper Zariski closed set X, € A such that

(1) % 2%
(2) The F%’s are locally free outside X,.

We write 7 = 7°. By cohomology and base change FéE , Theorem II1.12.11], for
any H € A\ X, the fibre 7| of ¥ is given by

Flg =H° (71,8, WU/l 7y ® T3 L1, ® Resq, , (X (75¢))) .

Step 1.3. 1 }%rflgﬁr to proceed, we need to make use of the Hodge metri%&%on

¥ defined in [FIPS ]. We briefly recall its definition in our setting. By [HFPS ,
Section 22], we can find a proper Zariski closed set X3 C A such that
(1) Z3 2 X,

(2) my is smooth outside X3,
(3) both F and 7y, (wy/a ® n;L) /F are locally free outside X3, and
(4) foreachi,

Riﬂ'l* (wU/A ® ﬂ';L)

is locally free outside X3.

iaBer

X
1 This subtle point was overlooked in the proof of
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Then forany H € A\ Z3,

HY(H N X, wnnx ® Llanx ® 7 (¢lunx)) € Fla € HY(H N X, wrnx ® Llanx).

HPS18
See [APS18, Lemma 22.1].

Now we can give the definition of the Hodge metric on A\ Z3. Givenany H € A\ X3,
any @ € ¥ |y, the Hodge metric is defined as

hy(a, @) ::/ |a/|fle“" € [0, o0].
XNH

Observe that ¢y (@, @) < coifandonlyifa € HH(J-SI&X WHN @118|H0X®I(¢|an)).
Moreover, hoq(a, @) > Oif a # 0. Itis showni 1n """ ](c. f)%"“" , Theorem 3.3.5])
that A4, is indeed a singular Hermitian metric, and it extends to a positive metric on
7.

Step 1.4. The determinant det h¢, is singular at all H € A \ X3 such that

HY(H N X, wpnx ® Llpnx ® I (¢lunx)) # Flu.

As the map  is smooth, we have 737 (¢) = I (n5¢) by Proposition 1.4.5. Under
the identification 1 gy = H N X, we have

Resq, ,, (137 (¢)) = Resunx (7 () .

Thus, we have the following inclusions:

H(H N X, wpnx ® Llanx © I (¢lnx))
CH(H N X, whnx ® Llanx ® Respnx (I (¢))),

the right-hand side being ¥ |g.
Recall that the first inclusion follows from Theorem 1.4.5. Hence, det hqy is
singular at all H € |Opn~ (1)] \ 23 such that

HY(H N X, wnnx ® Llunx ® I (¢lnx))
#H(H N X, wrnx ® Llanx ® Respnx (7 (¢))).

Let X4 be t 10n of Y5 and the set 0@19&]18“]0}1 H. Since the Hodge metric hg¢
is positive ([P e?rgre 3 3.5] and [FPS , Th gm 21.1]), its determinant
det hqy is also posmve , Proposition 1.3] and [FIPS , Proposition 25.1]), it
follows that %4 is pluripolar. As a consequence, Gy, is co-pluripolar.

Step 2.

Fix an ample invertible sheaf S on X. The same result holds with L ® S®¢ in place

of L. Thus, the set
= m QL®S®“
a=0
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is co-pluripolar. For each H € W such that X N H is smooth and 7 (¢|xng) #
Respnx (L (¢)), let K be the following cokernel:

0 — I (¢lxnH) — Resunx(Z (@) —» K — 0.
By Serre vanishing theorem, taking a large enough, we may guarantee that

H' (X NH,wxon ® (L® S*)|xan ® I (¢lxnm)) =0

and
HY(X N H, wxnm ® (L ® 5% |xnn ® K) # 0.
Then
HY(X N H, wxnn ® (L $*)|xnm © T (¢lxnm)) #
HY(X N H, wxnm ® (L ® S®)|xnu ® Respnx (7 (¢))).
Thus, H ¢ A. We conclude that G is co-pluripolar. O

In the sequel of this section, we fix a base-point free linear system A on X.

Corollary 8.4.1 Let ¢ € QPSH(X). Then there is a co-pluripolar subset N’ € A
such that ¢|g # —oo for any H € A'.

Proof This follows immediately from Theorem 8.4.1. O

Corollary 8.4.2 Assume thatn > 2. Let ¢ € QPSH(X). Then there is a co-pluripolar
set ' C A such that any H € A’ is connected and smooth, v(@, H) = 0 and we have

Tra(¢) ~1 ¢lu.

The assumption n > 2 is only to guarantee that a general element H € A is connected,
since we developed most of our theories only in this case.

Proof First observe that the set {x € X : v(¢,x) > 0} is a countable union of proper
analytic subsets by Theorem 1.4.1. It follows that a very general element in A is not
contained in this set.

Fix an ample line bundle L so that there is a smooth psh metric A7 such that
¢1(L,hr) + dd°¢ is a Kihler current. Thanks to Theorem 8.4.1, we can find a
co-pluripolar set A’ C A such that each H € A’ satisfies the following:

(1) H is smooth;
(2) v(e,H) =0;
(3) I (kyg|lg) =Resy (L (¢)) forall k > 0.

It follows from Theorem 8.3.1 and Theorem 7.3.1 that
cm.c1(L,hr) n-l c n—1
| (el + e T )) = [ (erLohnln + ddel)

Since ¢|y =< Try(¢) by Proposition 8.1.3, our assertion follows. O
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Lemma 8.4.1 Assume that n > 2. Let T be a closed positive (1, 1)-current on X

with /X T" > 0. Then there is a co-pluripolar set N’ C A such that any H € N’ is
connected and smooth, T |y is well-defined and satisfies

/ TI% ' > 0.
H

Proof Write T = 6, for some smooth closed real (1,1)-form 6 on X and ¢ €
PSH(X, 6)-0. Thanks to Lemma 2.3.2, we can find ¢ € PSH(X, 6) such that 8, is a
Kihler current and ¢ < ¢. By Corollary 8.4.1, we can find a co-pluripolar set A” € A
such that each H € A’ satisfies:

(1) H is smooth and connected;
(2) the restriction ¥|g is not identically —oo.

Therefore, /|y < ¢|g are two potentials in PSH(H, 0|y) for any H € A’. Our
assertion follows from Theorem 2.3.2. O

Corollary 8.4.3 Assume that n > 2. Let T be a closed positive (1, 1)-current on X
with volT > Q. Then there is a co-pluripolar set N’ C A such that any H € N is
connected and smooth, and Trg] I (T) is well-defined.

Proof This follows from Example 8.1.3, Corollary 8.4.2 and Lemma 8.4.1. O

Proposition 8.4.1 Assume that n > 2. Let ¢,y € QPSH(X). Assume that ¢ <p .
Then there is a co-pluripolar set N’ C A such that any H € A’ is connected and
smooth, and |y <p ¥|g.

Proof Thanks to Lemma 6.1.2, we may replace ¢ by ¢ V ¢ and assume that ¢ ~p .
It suffices to show that |y ~ ¥|g.

Take a smooth closed real (1, 1)-form 6 on X so that ¢, € PSH(X, 6)-. It
suffices to compare ¢ and ¢ with Py[¢], so without loss of generality, we may
assume that ¢ is a model potential in PSH(X, 6)~¢. Up to adding a constant to ¢,
we may then assume that ¢ < . It follows from Lemma 2.3.1 that we can find a
sequence (17;); in PSH(X, 8)-¢ such that

Jny+ (1 —j‘l) U<y

for all j > 2. By Corollary 8.4.1, Lemma 8.4.1, we can find a co-pluripolar set
A’ € Asuch thatany H € A’ satisfies:

(1) H is smooth and connected;
(2) njlg € PSH(H, 0|y)>o forall j > 2 and y|y € PSH(H, 0|y )>o0.

Therefore, taking Proposition 3.1.5 into account, we arrive at

™ Pormilul + (1= 77") Pot [wl] < Poy, [¢ln]

for all j > 2. Letting j — oo, we conclude that
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Py [¥|u] £ Poy [@lu]
and hence |y <p ¢|H. O

Lemma 8.4.2 Assume that n > 2. Let 6 be a closed smooth (1, 1)-form on X repre-
senting a big cohomology class and (¢;); be a decreasing sequence in PSH(X, 0).

d
Assume that ¢ € PSH(X, 0) and ¢; =, @. Then there is a co-pluripolar set N’ € A
such that any H € A’ is connected and smooth, ¢ j|g # —oo forall j > 1, ¢|g % —oo,

and
d

¢iln — ¢lu.

Proof By Corollary 6.2.7, we may assume that ¢ € PSH(X, 8)-¢. Using Lemma2.3.1,
we could find a decreasing sequence (€;); in (0, 1) with limit 0 and; € PSH(X, 6)¢
such thatn; < ¢; and

€;1; + (1 - éj)QOj < .

By Corollary 8.4.1, Lemma 8.4.1, we can find a co-pluripolar set A’ C A such that
any H € A’ satisfies:

(1) H is smooth and connected;
2) T]le € PSH(H, 9|H)>0 for all j>1land (le € PSH(H,9|H)>0.

Therefore, taking Proposition 3.1.5 into account, we arrive at

€iPoly [jlul + (1 - €) Poyy [@jlul < Py lelul.

Letting j — oo, we get
,-li_>n3<, Poiylejlul < Py, lelul.

By Theorem 2.3.2 and Proposition 3.1.8, we conclude that

lim [ (01 +dde, )" = / (Ol +dd | )™
H H

j—oo

d
Therefore, using Corollary 6.2.4, we conclude that ¢ |y = ©olH. O

Corollary 8.4.4 Assume that n > 2. Let ¢ € QPSH(X) be an I -good potential. Then
there is a co-pluripolar set A’ C A such that any H € N\’ satisfies:

(1) H is connected and smooth;
(2) ¢|lg € PSH(X, 0|g) is I -good;
(3) v(g,H) =0;

@ Trw ¢ ~p ¢ln-

Furthermore, if 6 is a closed smooth real (1, 1)-form on X such that ¢ € PSH(X, 6)~,
then we could further guarantee that Try () has a representative Try () €
PSH(H, 0|y)>o forall H € \'.



126 CHAPTER 8. THE TRACE OPERATOR

Proof This is a consequence of Lemma 8.4.2, Theorem 7.1.1, Corollary 8.4.2 and
Corollary 8.4.3. O



Chapter 9
Test curves

In this chapter, we develop the theory of test curves. Roughly speaking, a test curve
is a concave curve of model potentials. In Section 9.2, we will prove the Ross—Witt
Nystrom correspondence, through which the test curves are related to geodesic rays in
the space of quasi-plurisubharmonic functions. In Section 9.4, we define operations
on test curves, anticipating applications in non-Archimedean pluripotential theory in
Chapter 13.

9.1 The notion of test curves

Let X be a connected compact Kihler manifold of dimension » and 6 be a smooth
closed real (1, 1)-form on X representing a big cohomology class.

Definition 9.1.1 A fest curve I' in PSH(X, ) consists of a real number I';,,x together
with a map (—co, I'ax) — PSH(X, 6) denoted by 7 — I'; satisfying the following
conditions:

(1) The map 7 +— I'; is concave and decreasing;
(2) each I'; is a model potential;
(3) the potential
I' o = sup* I'; 9.1
T<I'max

satisfies
/ (0 +dd°T_.,)" > 0.
X

Let ¢ € PSH(X, 6)~¢ be a model potential. The set of test curves I with I'_, = ¢ is
denoted by TC(X, 6; ¢).

The union of all TC(X, 6; ¢)’s for various model potentials ¢ € PSH(X, 6)~¢ is
denoted by TC(X, 6)-.

By (2), supy 'y = 0 for each 7 < I'max. So I'_os € PSH(X, 6) by Proposition 1.2.1.
Moreover, I'_ is a model potential by Proposition 3.1.9.

127
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Remark 9.1.1 Sometimes it is convenient to extend I'; to 7 > I',.x as well. This can
be done as follows: for 7 > I'ax, we set I'; = —oo. For 7 = ['jax, we set

I, = inf T, € PSH(X,6).

7/ <I'max

We will always make this extension in the sequel.

Recall that according to our general principle, we only talk about model potentials
when a potential has positive mass. Fortunately, this principle is not violated in the
above definition, as shown below:

Lemma 9.1.1 Assume that ' € TC(X, 0)sq. Then for each T < 'y, we have

/ (0 +dd°T,)" > 0. 9.2)
X

Proof Fix T € (=00, I'pax)-
By assumption, I"_. has positive mass. By Corollary 2.3.1, we have

/01'1700 = lim or .
X To-o Jy T

In particular, for a sufficiently small 7y < 7, we have

n
/ngfo > 0.

Now take 7/ € (1,Imax) and ¢ € (0, 1) so that
7=(1-0)7"+1t70.
From the concavity of I', we find that

I'r > (1= +1tI,.

n n n n
/gn = / 9(1—t)l",:+tl"-,0 21 ‘/91“70 >0
b% b% b%

and (9.2) follows. |
Proposition 9.1.1 Let I' € TC(X, 0)~¢. Then the map

By Theorem 2.3.2,

[-00,Tmax) = R, 7 IOg/ 0?‘7
X

is concave and continuous.

Proof The concavity of this function follows from Theorem 2.3.3 and Theorem 2.3.2.
The continuity at —co is a consequence of Corollary 2.3.1. O
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Definition 9.1.2 Let ¢ € PSH(X, 0)-( be a model potential.
Atest curve I' € TC(X, 6; ¢) is said to be bounded if for T small enough, I'; = ¢.
The subset of bounded test curves is denoted by TC™ (X, 6; ¢). In this case, we write

Tmin = {7 € R: Ty = ¢}.

Atest curve I' € TC(X, 6; ¢) is said to have finite energy if

qux
E*(I) = rmax/e)g,Jr/ (/ agf—/eg) dr > —oo. (9.3)
X —o0 X X

The subset of test curves with finite energy is denoted by TC! (X, 6; ¢).

We first observe that the notion of test curves does not really depend on the choice
of 8 within its cohomology class.

Proposition 9.1.2 Let 8’ be another smooth closed real (1, 1)-form on X representing
the same cohomology class as 0. Let ¢ € PSH(X, 0)~¢ be a model potential. Let
¢’ € PSH(X, 6")~¢ be the unique model potential satisfying ¢ ~ ¢’.

Then there is a canonical bijection

TC(X,6;¢) — TC(X,6';¢").
This bijection induces the following bijections:
TC'(X,0:¢) — TC'(X,0";¢"), TC*(X,0;¢) — TC(X,6;¢").

These bijections satisfy the obvious cocycle conditions.

Proof Choose g € C*(X) such that 8’ = 6 + dd°g. Given any I" € TC(X, 0; ¢), we
observe that I : (—o0, I'max) — PSH(X, 0’) defined as

T Py [ — gl

lies in TC(X, 8"; ¢”). Moreover, the choice of g is irrelevant since for any other choice
of g, say g’, we have
Ir-g~T;-g.

All assertions follow directly from the definition. O

Proposition 9.1.3 Let n: Y — X be a proper bimeromorphic morphism from a
compact Kdihler manifold. Then the pointwise pull-back induces a bijection

7*: TC(X, 0; ¢) — TC(Y, n"0; 1% p).

Proof This follows immediately from Proposition 3.1.4. O

Proposition 9.1.4 Let T be a test curve in PSH(X, ). For each x € X, the map
R 3 7+ ' (x) is a closed concave function. Moreover, the map is proper as long as
l—‘l—‘max ('x) i —00.
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The notion of closedness is recalled in Definition A.1.6.

Proof We argue the closedness. Fix x € X. Assume that I';(x) # —co for some
7 € R. We only need to argue the upper-semicontinuity of 7 +— I';(x). The upper
semi-continuity is clear at T > I'yax, S0 we are reduced to prove the following:

I'; = inf Ty 9.4)
T'<T
for any 7 < I'ax. Take 7”7 € (7, I'max ). Outside the polar locus of I'~, we know that
(9.4) holds by continuity. So (9.4) holds everywhere by Proposition 1.2.5.
The final assertion is trivial. O

Definition 9.1.3 Let I € TC(X, 6)~¢ and w be a smooth closed real positive (1, 1)-
form. Then we define Py, [I"] € TC(X, 0 + w)s( as follows:

(1) Define
Poio[Tmax = Dmaxs

(2) for each 7 < I'\x, define

Poro [F]T =Pyio [F‘r]~

It follows form Proposition 3.1.5 that Py, ['] € TC(X, 6 + w)so.

9.2 Ross—Witt Nystrom correspondence

Let X be a connected compact Kihler manifold of dimension » and 6 be a smooth
closed real (1,1)-form on X representing a big cohomology class. Fix a model
potential ¢ € PSH(X, 0)-.

Proposition 9.1.4 allows us to talk about the Legendre transforms in the expected
way.

The general definition of the Legendre transform Definition A.2.1 can be translated
as follows:

Definition 9.2.1 Let I' € TC(X,0;¢). We define its Legendre transform as
I'*: [0,00) — PSH(X, 6) given by

I =sup(tt+T;). 9.5)

TeR

Remark 9.2.1 Here we do not talk about the case t < 0 because its behaviour is pretty
trivial: take x € X, if I'; (x) = —oo for all 7, then I'; = —co; otherwise, I’} = co.

As we will see later on, the information about ¢ > 0 suffices to characterize I".
We have made a non-trivial claim that I'; € PSH(X, 6) for all # > 0. Let us prove
this.
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Lemma 9.2.1 Let " € TC(X, 0; ¢). Then I'y € PSH(X, 6) forallt > 0. In fact, I is
upper semicontinuous as a function of X x (0, o).

Proof We first observe that for each x € X, we have
I} (x) < tTmax < 0.
Let R ={a+ib € C: a > 0}. We consider
F:XXR — [-00,00), (x,a+ib) - I'}(x).

Let 7: X X R — X be the natural projection. Observe that the upper semicontinuous
envelope G of F is 7*6-psh by Proposition 1.2.1. It suffices to show that F = G. We
let

E ={(x,z) e XXR:F(x,2) <G(x,2)}.

We want to argue that £ = @. Clearly, E can be written as B X iR for some set
B € X x (0, 0). Since E is a pluripolar set by Proposition 1.2.3, it has zero Lebesgue
measure. Hence, B has zero Lebesgue measure. For each x € X, write

By, ={t €(0,) : (t,x) € B}.

By Fubini theorem, B, has zero 1-dimensional Lebesgue measure for all x € X \ Z,
where Z C X is a subset of measure 0. We may assume that Z 2 {I"_., = 0} so that
forx € X\ Z,Ty(x) # —co forall > 0.

Forany x € X \ Z, both t — F(x,t) and G (x, t) are convex functions with values
in R on (0, 00). They agree almost everywhere, hence everywhere by their continuity.
It follows that for x € X \ Z, we have B, = 0.

By Theorem A.2.1, for any x € X, we have

FT('X) :}Eg(F(t7x)_tT)’ T <Fmax-

On the other hand, let

X< (x) = ing(G(t,x) —t1), T <Imax€X.
>

By Kiselman’s principle Proposition 1.2.6, y; € PSH(X, 6). Buton X \ Z, we already
know thatI'; = y, for all 7 < I'ax. By Proposition 1.2.5, they are equal everywhere.
By Theorem A.2.1 again, we find that F = G. O

Lemma 9.2.2 Let T" € TC(X, 0; ¢), then

sup Iy = T'max
X

forallt > 0.
In particular, t — T’} — tT'max is a decreasing function int > 0.

Proof Choose x € X such that I'r,_(x) = 0. Then
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F: (x) = tI'max
by definition. On the other hand, since I'; < 0 for all 7 < I'iax, wWe have

supT} < Tiax-
X

Lemma 9.2.3 Given I" € TC(X, 0; ¢), we have T'* € R(X, 0; ¢).

Proof 1t follows from Lemma 9.2.1, (9.5) and Proposition 1.2.1 that I'* is a sub-
geodesic (in the sense that for each 0 < a < b, the restriction (I'});e(q,p) is @
subgeodesic from Iy to I').

First observe that as t — 0+, we have

L. (9.6)

To see this, first observe that by (9.5), for any fixed + > 0 and any x € X with
¢(x) # —oo, we have
[ (x) < tTmax + ¢(x).

By Proposition 1.2.5, the same holds everywhere. Therefore, any L'-cluster point ¢
of I'} as t — 0 satisfies < ¢. On the other hand, for any fixed T < I'nax, by (9.5),
we have

I >0 +17

for any t > 0. So ¢ > I'; almost everywhere and hence everywhere by Proposi-
tion 1.2.5. It follows that ¢ > ¢. Therefore, ¢ = ¢. On the other hand, from the
above estimates and Proposition 1.5.1 that (I'/);¢(o,1) is a relative compact subset in
PSH(X, #) with respect to the L'-topology. We therefore conclude (9.6).

Assume that I'* is not a geodesic ray. Then we can find 0 < a < b such that
(I7)te(a,p) differs from the geodesic (17):e(a,b) from I’ to T';. We consider the
subgeodesic (¢; )0 given by ¢; =1, fort € (a, b) and {; = I'; otherwise. Consider
the Legendre transform

I =inf(4 —t1), Te€R
t>0

Then I, > T"; and I, € PSH(X, 8) U {—o0} by Proposition 1.2.6 for all 7 € R.
We claim that
I <T:+(b-a)(Thax — 1), TER.

Observe that I, = —co when 7 > I'max by Lemma 9.2.2. So it suffices to consider
T < I'max. In this case, we compute

inf (¢ —t7) <T) —b1 < (b—a)(T'max — inf (T} —171),
el[g,b]( t T) =1, T_( a)( max T) zel[rcll,b]( t T)

t

where we applied Lemma 9.2.2. In particular, for any 7 < I'nax, we have

I <T,.
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On the other hand, by definition of I'7, we clearly have I, < O for all 7 < I'pax-
It follows from the fact that I'; is a model potential that I'; = I} for all 7 < I'pax.
Therefore, by Theorem A.2.1, we have I'} = ¢/ forall > 0, which is a contradiction.O0

Theorem 9.2.1 The Legendre transform in Definition 9.2.1 is a bijection
TC(X,0;¢) — R(X, 6; $).
Moreover, this bijection restricts to the following bijections:
TCH(X,6;¢) - R (X,60;¢), TC®(X,0;¢) — R™(X,6;¢).
Forany T € TC'(X, 6; ¢), we have
E?(I') = E¢(I™). 9.7)

Proof 1t follows from Lemma 9.2.3 that the forward map is well-defined.
The inverse map is of course also given by the Legendre transform: given
{ € R(X,0;¢), its Legendre transform is given by

¢ =inf({ —t1), T€ER. (9.8)
>0

By Proposition 4.2.4, there is a constant C > 0 such that {; < Ct.

Note that it follows from Proposition 1.2.6 that £; € PSH(X, 6) U {—co} for all
T eR.

We need to argue for any 7 € R such that {7 # —oco, we have Py[{;] = {;. Fix
such 7 and some C > 0. It suffices to show that

(C:+C) A <L (9.9)

For this purpose, let us consider the following geodesics: forany M > Oandz € [0, 1],
let
oM =ty —tMr, M= (i+C)Ap-Ct.

It is clear that at + = 0, 1, we have K,Z’M < f,l’M. Hence, the same holds for all
t € [0, 1]. In particular, for any fixed s € [0, 1], we have

e+ C)Np—Cs < by — sM.

Take infimum with respect to M > 1 and then the supremum with respect to s, we
conclude (9.9).

The two operations are inverse to each other thanks to Theorem A.2.1.

Next we consider the bounded situation. Suppose that I' € TC® (X, 6; ¢). Take
79 € RsothatI'; = ¢ for all 7 < 7. It follows from that

IV >¢+110

for all # > 0. Therefore, I'; ~ ¢ for all # > 0 and hence I'* € R (X, 6; ¢).
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Conversely, suppose that £ € R* (X, 6; ¢). Thanks to Proposition 4.2.3, there is a
constant C > 0 such that
f[ 2 (b - Ct

Therefore, according to (9.8), we have
Ci>inf¢p—(C+1)t=¢
t>0

if T < —C. Therefore, ¢; = ¢ forall T < -C.

Finally, it remains to handle (9.7). Take I" € TC* (X, 0; ¢). We may assume that
I'max = O after a translation.

For N € Z.o, M € Z, we introduce the following:

PN = max (Cyon +1k/2V) € E¥(X,6:0), 1> 0.
€
k<M

Moreover, we now argue that

r n ¢ e NM+y ¢ e NMy _ L n
N /XGF(M+1)/2N <E, (I, ) E, Iy ) < N ‘/);QFM/ZN. (9.10)
Indeed, for elementary reasons:

#*, N, M+1 *,N,M #,N,M+1 *,N,M
J (et ) g <EN) — E )
X t

#*,N,M+1 s, N ,M n
< /x (r; =M 0

t

©.11)

Clearly [7NV-M*! > 17%N-M "45d using 7-concavity, we notice that

U, = {r,*’N’M“ VM 0} = {Catanyjov + 27Nt = Tygon > 0}
Moreover, on U; we have

N M =T o+t M+ 12N, TPNM =Ty o + 1M /2N,

We also note that U, is an open set in the plurifine topology, implying that

F | :9}1* N,M+1 | ’
(12N We 70N> U;

IQM/ZN |U, :0;:,N,M iU, .

n n —
Recall that 9FM/2N and 9F(M+l)/2N are supported on the sets {I'y;ov = 0} and

{T(am+1y/2v = 0} respectively, see Theorem 3.1.2. Since {I"(pz41)/ov = 0} € U, and
{T(am+1y/2v = 0} © {Tpg/ov = 0}, applying the above to (9.11), we arrive at (9.10).
Fixing N, let M = | 2N Tyin]. Then repeated application of (9.10) yields
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r n ¢ N0\ _ ¢ e N,M r n
> 3w /X o o SEQONO—EJENY) < S oo /X o -

M+1<j<0 M<j<-1
Since M < 2N Tin, we have that
N M =Ty on +tM)2N = ¢+ 1M /27,

we can continue to write

0 -1
t t
O —/9")SE9(F*’N’O)S > —(/9" —/9").
j=M+1 2N (</}; Fj/2N X ¢ ¢ ! j:M 2N X FJ/ZN X ¢

We now notice that we have Riemann sums on both the left and right of the above
inequality. Using Proposition 9.1.1, it is possible to let N — oo and obtain

ES(I}) = (E?(I)

So (9.7) follows as desired. Note that we have furthermore shown that ¢ — E g Ty
is linear.

Finally, let us come back to the general case. Let I' € TC(X, 6; ¢). Again, we may
assume that ', = 0. For each € > 0, we introduce I'® € TC™ (X, 0; ¢) as follows:

(1) LetI§, =0, and
(2) foreach T < 0, we set

TS =Py[(1+er) VO)Tr+ (1= (1+€7) VO0)) o).

It follows from Corollary 3.1.2 that for each T < 0, the sequence I'S is a decreasing
sequence with limit I"; as € \, 0. Therefore, by Proposition 3.1.8, we have

lim (0+ddcrf)":/(0+ddcrf)"
e—0+ X X

for all 7 < 0. Hence, by the monotone convergence theorem, we find
E?(I') = lim E?(I'¢) = lim E¢(I"¢"). 9.12)
e—0+ e—0+
Furthermore, according to Proposition A.2.2, we have

Fi=inf
forallz > 0.
Now suppose that I' € TC' (X, 8; ¢). Then it follows from Theorem 4.2.1 that for
eacht > 0,
EJ(T}) = Eliﬁr&E(‘f(I“f’*) = E? (D).

Hence, ' € 81(X, 6; 0).
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Conversely, suppose that IT'* € &!(X,6;¢). Then (9.12) implies that ' €
TC' (X, 0; ¢). O

As an immediate consequence of the proof, we have

Corollary 9.2.1 Let £ € R' (X, 0; ¢), then [0,00) 5 1 Eg’ (¢;) is linear.
Corollary 9.2.2 Let £ € R(X, 0; ¢). Then supy €; = {5 1.

Proof This follows from Lemma 9.2.2 and Theorem 9.2.1. O

9.3 7-model test curves

Let X be a connected compact Kihler manifold of dimension n and 6 be a smooth
closed real (1,1)-form on X representing a big cohomology class. Fix a model
potential ¢ € PSH(X, 60).

Definition 9.3.1 A test curve I' € TC(X, 6; ¢) is I -model if for any T < [y, the
potential I'; is 7-model.
The subset of 7-model test curves in TC(X, 8; ¢) is denoted by PSHNA(X ,0,0).
The set of 7-model test curves in PSH(X, #) for any model potential ¢ €
PSH(X, 6)-0 is denoted by PSHN (X, 6)~.

Proposition 9.3.1 Let T € PSHNA(X ,0)=0. Then T'_, is an I -model potential.
Proof This follows from Proposition 3.2.12. O

Proposition 9.3.2 Let 0’ be another smooth closed real (1, 1)-form on X representing
the same cohomology class as 6. Then there is a canonical bijection

PSH™ (X, 6)-9 — PSHY (X, 6)-0.
This bijection satisfies the obvious cocycle condition.
Proof This is an immediate consequence of Proposition 9.1.2 and Example 7.1.2.0

Proposition 9.3.3 Let 7: Y — X be a proper bimeromorphic morphism from a
compact Kdihler manifold. Then the pointwise pull-back induces a bijection

7*: PSHYA(X, 0; ¢) — PSHNA(Y, 7°0; 7 ¢).
Proof This is an immediate consequence of Proposition 9.1.3 and Proposition 3.2.5.0

Definition 9.3.2 Given I € TC(X, 0; ¢), we define its 7 -envelope Py[I'] ; as the
map (—o0, [ax) — PSH(X, 6) given by

T'_’PQ[FT]I'
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Proposition 9.3.4 Let I" € TC(X, 0; ¢), then
Py[T]; € PSHY(X, 65 P[] 7).
More generally, for any closed real smooth positive (1, 1)-form w on X, we have
P+ [Tl € PSHA(X, 0 + w; Poso[]1)-

Proof The only non-trivial point is to show that

sup* Po[['z]r = Pol#lr, sup* Porwllz]r = Porwld]s.

T<I'max T<I'max

This follows from Proposition 3.2.12. O

9.4 Operations on test curves

Let X be a connected compact Kédhler manifold of dimension n and 6, 6’, 60" be
smooth closed real (1, 1)-forms on X representing big cohomology classes.

Definition 9.4.1 Given I', IV € TC(X, 8)-¢, we say I' < I'” if for all I'max < Tax
and for all 7 < I'jhax, We have
I, <T.. (9.13)

Observe that (9.13) actually holds for all T € R. It is easy to verify that for all <
defines a partial order on TC(X, ).

Lemma 9.4.1 Let I',T” € TC(X,0)s9 and w be a closed real smooth positive
(1, 1)-form on X. Then the following are equivalent:

(WL <T’;
(2) Posw [F] =Pyio [F/]

Proof 1t suffices to observe that we could rewrite (9.13) as
I'; <p F.’r,
since both potentials are model. O

Definition 9.4.2 LetI" € TC(X, 0)~¢ andI"" € TC(X, 0")¢, then we define '+ €
TC(X, 0+ 0’)-¢ as follows:
(1) we set

(F + l—V)max = 1—‘max + T

max?

(2) for any 7 < (I" + I'")ax, We define

(T+T"); = Py

sup (I'y + F’T_,)] : 9.14)
teR
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Lemma 9.4.2 Let I € TC(X, 6)>9 and I" € TC(X, 6")~0, then for any v < (I' +
I )max, We have

sup (I'; +T%_,) € PSH(X, 6).
teR

This potential is T-good if " € PSHNA(X, 0)so and I € PSHNA(X, 0’)s0.

In particular, (9.14) in Definition 9.4.2 makes sense.

Proof Let
ne=sup ([, +I%_,) = sup (L +17_,)

teR 1 <Tmax, T—1 <I'nax

for all T € R. Set
Z={xeX:Tw(x)=-corI”(x)=—co}.
It follows from Proposition A.2.3 that for any x € X \ Z, we have
7 () = T () + T (x)

for all # > 0. The same trivially holds when x € Z, so the equation holds everywhere.
In particular, by Theorem A.2.1 and Proposition 1.2.6, we have

ne =" +T"); € PSH(X,0+0") U {—oo}.

Next, assume that I" and T” are 7 -model. We need to argue that so is I" + T"". Fix
T < I'max + I'ax- Then for each # € R such that r < I'pax and 7 — 1 < I, we
know that I'; € PSH(X, 6)-0 and I"._, € PSH(X, 6")-0 by Lemma 9.1.1. It follows
from Example 7.1.2 that I'; and I'7,_, are both 7-good, hence so is I', + I',_, €
PSH(X, 6 + 6")~¢ by Proposition 7.2.1. Therefore, 1, is 7 -good by Proposition 7.2.2.
Therefore, I' + I'” is 7-model. O

Proposition 9.4.1 Let I' € TC(X,0)sg and T" € TC(X, 0 )so, then T' + I €
TC(X, 6 + 0’)~g. Moreover,

(T+T") 00 = Porgr [Too + T, . (9.15)

When T' € PSHYA(X,0)-0 and I" € PSHYA(X,0")so, we have T + I €
PSHNA (X, 6 + 6)+.
The operation + is commutative and associative.

Proof 1t follows immediately from Lemma 9.4.2 that T+ I € TC(X, 6 + 0")s¢, and
it lies in PSHNA(X, 0 + 6)~0 if I’ € PSHYNA(X, )5 and " € PSHYNA (X, 6')0.
We argue (9.15). By definition, for any small enough 7, we have

(T+T") oo =2 (C+T)2r zp T+ 10,
Letting T — —oo and applying Proposition 6.2.4 and Theorem 6.2.2, we find that

TH+T) e =p T+ T .
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On the other hand, for each small enough 7, we have

(C+T")e ~psup (D +T%_,) <p T +T7
teR

by Proposition 6.1.5 and Proposition 6.2.4. We apply Proposition 6.2.4 again, we
conclude that
T+T") e 2p T+ T .

So (9.15) follows.
Finally, let us show that + is commutative and associative. Commutativity is
obvious. Let I'" € TC(X, 6”")>¢. Then we want to show that

T+T)+T" =T+ +T7).
First observe that
(C+I) 4T ) gy = T+ (T +T7)) o -
Fix 7 less than this common value. We observe that
(C+T) +T7),
=Pg [sup (T +T"), +T7_,)

1 eR

~psup (T+T7"), +T7_, )
t1eR

/ 17
~p sup ([, +T7 _, +T7 ),
t1,heR

where in the last line, we applied Proposition 6.2.4 and Proposition 6.1.5. Similarly,
for (I'+ (I + ")) ., we get the same expression. The associativity follows. O

Lemma 9.4.3 LetT" € TC(X, 0)so andI” € TC(X, 0", then for any closed smooth
positive (1, 1)-forms w and @’ on X, we have

Porwrorawr [T +T7] = Poso[T] + Poraor [T].
Proof Observe that
Porwror+o [T+ T lmax = (Po+w[T] + Porsw [TDmax = Timax + Tinax-
Take 7 € R less than this common value, we need to verify that
(C+T") 7 ~p (Porw T+ Pysw [T]),
By definition, this means that

sup (Cy +T7_;) ~p sup (Poso [Tv] + Porvar [T5]) -
teR teR
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This is a consequence of Proposition 6.1.5 and Proposition 6.1.6. O

Definition 9.4.3 Let I' € TC(X, 0)~¢ and C € R, we define I' + C € TC(X, 6)~¢ as
follows:

(1) We set
(F + C)max = Tinax + C;

(2) for any 7 < (I" + C)max, We set
I'y =T;_c.
It is obvious that if I" € PSHNA(X, 0)>0, thensois "+ C.

Proposition 9.4.2 Let I" € TC(X, 0)s0, I' € TC(X,0")~9 and C,C’ € R, then

T+ +C=T+I"+C)=T+C)+I;
QTr+(C+C)=(T+C)+C".

Proof (1) We first observe that
T+ F,) + C)max =+ (F, + C))max =(('+C)+ I—‘,)rn.ax = I'max + Fr,nax +C.

Take any 7 € R less than this common value. We compute

(T+T7) +C), =(T+T") ¢ = Pasor |sup (T +T_c._,)

teR

i

(C+(I" +C))y =Pose [sup (T + (I + C)r—y)
LzeR

= Pg.o [sup T+ )|
teR

(T+C)+T"), =Pg+e |sup ((F +C)cr + F;—C—t)
L1eR

=Pg.o sup (Ft+r;_c_t) .
LzeR

(2) Observe that
TH+(C+Cmax = (T +C) + CNpax = Tinax + C+ C”.
For any 7 € R less than this value, we have

(C+(C+C))y=Trcocr = (T+0)+C),.

Definition 9.4.4 Let I',T” € TC(X, 0)~¢. We define ' VI € TC(X, 6)~¢ as follows:

(1) We set
(F \ 1—‘/)max = I_‘max \ Fr,naxa

and
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(2) for any 7 < (I" V I'')jax, We define
(TVT), == Py [CE (p T,V r,;)] . (9.16)

Recall that the upper convex hull CE is defined in Definition A.1.4. Trivially, we have
rviy>TandT'VI' >T".

Lemma 9.4.4 Let I',T” € TC(X, 0)>0. Then for any T < I'max V [y, We have
CE (p T,V r;) € PSH(X, 0).
T

This potential is T -good if T',T” € PSHNA(X, 0)>0.
In particular, (9.16) in Definition 9.4.4 makes sense.

Proof To simply the notations, we write
W, =CE (p T,V r;,)T
for all 7 € R. Thanks to Proposition A.2.2, we have
g (x) =T} (x) VI7(x) (9.17)

forall > 0 as long as I'; (x) # —oo and ' (x) # —oo for some 7 € R. Otherwise,
assume that x € X is such that I'y = —oo for all 7 € R, then by definition,
Y- (x) =I"%(x) for all T € R. Therefore, I’y (x) = —co for all # > 0 and hence (9.17)
continues to hold. Therefore, we have shown that

Yl =T7 vIJ* € PSH(X,0).

It follows from Proposition 4.1.2 that (/7 )/e[a,»] is a subgeodesic for any 0 < a < b.
Next we observe that i, is closed by definition. So it follows from Proposition A.2.2
and Proposition 1.2.6 that

Ur = (W2); € PSH(X,0) U {~co}.

Due to Proposition 9.1.4 and Proposition A.1.2, there is a pluripolar set Z € X
such that for x € X \ Z, we have

W (x) = sup {/lrp(x) + (1= DT (x) : A€ (0,1),p,p" € R, Ap+ (1 = )p’ = T}
for all 7 < I'max V I It follows from Proposition 1.2.5 that
W = sup* {Arp (1= DT 1 A€ (0,1),p,0" €R,Ap+ (1= A)p’ = T} (9.18)
for all 7 < I'max V Thax-

It follows from (9.18) that ¢, is J-good if I',T” € PSHNA (X, 0)~, thanks to
Proposition 7.2.1 and Proposition 7.2.2. O
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Corollary 9.4.1 Let I', T € TC(X, 0)~g. ThenT"' VI’ € TC(X, 6)~¢ and
(TVI)w=Py [TeVI.]. (9.19)

IfT,T” € PSHYA(X, 0)50, then T v T” € PSHYA(X, ).
For eachT” € TC(X,0)sg and eachT” > T andT"”" > T, we have T’ > TV I".
Moreover, the operation V is associative and commutative.

Proof 1t follows immediately from Lemma 9.4.4 that T vV I € TC(X, 6)¢, and it
lies in PSHNA (X, 6)-¢ if I, TV € PSHYA (X, 6)+0.

The argument of (9.19) is very similar to that of (9.15), which we leave to the
readers.

Take I'” as in the statement of the proposition. First observe that

[rax = Tmax V Tiax = (TV T ) max-
Take 7 < (" V I )ax, We argue that

I’ >@vr),.
By the concavity of I'”, this is equivalent to

r’>T,vI.

Therefore,
I">rvr.

The commutativity and associativity of V are trivial. O

Lemma 9.4.5 Let T', T € TC(X, 6)~9 and w be a closed smooth positive (1, 1)-form
on X. Then
Posow [T VI = Poro [TV Poso [T7].

Proof We first observe that
(Posw [TV I Dinax = (Po+w[T]V Porw [T Dimax = Tmax V Tiyag.-
Let 7 € R be less than this common value. We need to show that
(CVT)z ~p (Pgso[T] V Poso[T']) 7 -
We need the formula (9.18) proved in the proof of Lemma 9.4.4:
(T V), = sup* {Arp + (1=, A€ (0,1),p.p" €R,Ap+ (1= )p’ = T} .

A similar result holds with Pg,,[I'] and Pg4., [I7] in place of I" and I'". So our
assertion is a direct consequence of Proposition 6.1.5 and Proposition 6.1.6. O

Definition 9.4.5 Let (I'");<; be an increasing net in TC(X, #)~(. Assume that
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sup Ty < 00 (9.20)

iel
Then we define sup* ., I'" € TC(X, ) as follows:
(1) We set

iel iel

(sup* r ) =supl?
max

(2) for any 7 < sup;¢; Il we let

(sup* Fi) = sup* ',
iel T iel
Proposition 9.4.3 Let (T');e; be an increasing net in TC(X, 0)sq satisfying (9.20).
Then sup*.; I'" as defined in Definition 9.4.5 lies in sup*_; I € TC(X, 8)=o. More-
over, if T € PSHNA(X, 0)so for all i € I, then sup*; I lies in PSHNA(X, 0)sq as
well.

Moreover, we have

(sup* r ) =sup* I . (9.21)
iel —c0 iel

Proof The first assertion follows easily from Proposition 3.1.9, while the second
follows from Proposition 3.2.12.

It remains to argue (9.21). Without loss of generality, we may assume that /

contains a minimal element ig.
By Proposition 1.2.3, there is a pluripolar set Z C X such that forany x € X \ Z,

(sup’I< Fi) (x) = sup (sup* F’T) (x)= sup Fi(x) =supI  (x).
iel o0 r<Il, Vi€l <Y, iel iel

So they are equal everywhere by Proposition 1.2.5. O
Lemma 9.4.6 Let (I');c; be an increasing net in TC(X,0)sq satisfying (9.20).

Assume that w is a closed smooth positive (1, 1)-form on X. Then

P9+w

sup* Fi] = sup* Py [T'] .

iel iel
Proof Observe that
(P9+w [sup* Fi]) = (sup* Porow [Fi]) = sup I—‘[inax‘
iel max iel max iel

Fix 7 € R less than this common value.
It suffices to show that

iel iel

(sup* l“i) = (sup* Poie [Fi]) )
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This is an immediate consequence of Proposition 6.1.6. O

Definition 9.4.6 Let (I'');<; be a non-empty family in TC(X, 6)-¢ satisfying (9.20).
Then we define

sup* I = sup* r/]. (9.22)
il JeFin(I) \ jes

Observe that by Definition 9.4.4, we have

sup (\/ F") =supT’,, < co.
JeFin() \ ;¢ iel

So (9.22) makes sense. In particular,

iel iel

(sup Fi) =supT? .. (9.23)
max

It is clear that Definition 9.4.6 extends both Definition 9.4.5 and Definition 9.4.4.

Proposition 9.4.4 Let (I'));c; be a non-empty family in TC(X, )¢ satisfying (9.20).
Then sup*; I'" € TC(X,0)s9. Moreover, if T € PSHNA(X, 0)s0, then so is
sup¥e; I,

Finally, we have
(sup* r ) =Py [sup* e m] ) (9.24)

iel iel

Proof The first assertion and the second follow from Proposition 9.4.3 and Corol-
lary 9.4.1.
It remains to argue (9.24). For this purpose, it suffices to show that

(sup“< Fi) ~p sup* T .
iel —oo iel
For any J € Fin([), it follows from Corollary 9.4.1 and Proposition 6.1.6 that

(v rf) ~p \/ .

JjeJ JjeJ

— 0

From this, applying Proposition 6.1.6 and Proposition 9.4.3, we conclude our
assertion. O

Lemma 9.4.7 Let (I');¢; be a non-empty family in TC(X, 0)sq satisfying (9.20).
Assume that w is a closed smooth positive (1, 1)-form on X. Then

])9+Lu
iel iel

sup* Fi] = sup* Py+w [Fi] .
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Proof This is a direct consequence of Lemma 9.4.6 and Lemma 9.4.5. O

Proposition 9.4.5 Let (I');c; be a non-empty family in TC(X, )¢ satisfying (9.20).
Then there is a countable subset I' C I such that

sup* I = sup* I,
il ier
Proof We may assume that / is infinite.
It follows from Proposition 1.2.2 that we can find a countable subset I’ C I such
that for each
TE (—00, sup* Fr"nax) nQ,
iel
we have _ .
sup* I, = sup*I'%.
iel iel’
Let " = sup*,.;, I'". Then clearly, " < T". We claim that they are actually equal. For
this purpose, it suffices to show that for any 7 < sup*_,; I\, we have

/(9+ddCF;)"=/(9+ddCFT)”.
X X

Since we know that this holds on a dense subset of 7, this holds everywhere by
Theorem 2.3.3. ]

Proposition 9.4.6 Let (I');c; be a non-empty family in TC(X, )¢ satisfying (9.20).
Let C € R. Then . _
sup*(I'" + C) = sup*I"* + C.
iel iel
Suppose that (T"");c1 is another family in TC(X, )= satisfying (9.20). Suppose that
I <T" foralli € I, then _ _
sup* T < sup*T™.
iel iel

Proof This is immediate by definition. O

Definition 9.4.7 Let I € TC(X, 0)>o and 2 > 0, we define AI' € TC(X, 10)+( as
follows:

(1) We set
(/lr)max = Al'max;

(2) for any 7 < Al'max, We set
(/lF)T = /lF/I"T'

Proposition 9.4.7 Let I' € TC(X,0)so9 and A > 0, then A" as defined in Defi-
nition 9.4.7 lies in TC(X, A0)so. Moreover, if I € PSHYA(X, 0)>¢, then AT €
PSHYA (X, 16)5.
We have
(A7) coo = AT s (9.25)
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Proposition 9.4.8 Let I" € TC(X, 6)>9, I” € TC(X,0")>9, C € Rand 1,2" > 0, we
have

AT +T7) =aT + AT,
(AT =A(A'T),
AT +C) =aT" + AC.
Suppose that (T');e; is a non-empty family in TC(X, 0)s¢ satisfying (9.20), then
A (sup* Fi) = sup*(AI").
i€l i€l

Lemma 9.4.8 Let ' € TC(X, 0)~9 and A > 0. Then for any closed smooth positive
(1, 1)-form w on X, we have

Pa(o+w)[AT] = APg. o [T].

Proof This is clear by definition. O



Chapter 10
The theory of Okounkov bodies

In this chapter, we apply our theory of singularities to the study of Okounkov
bodies. We establish the theory of partial Okounkov bodies, which are convex bodies
constructed from a given plurisubharmonic singularity. These objects allow us to
reduce many problems in pluripotential theory to problems in convex geometry,
which are usually simpler.

We will establish two related theories. One in the algebraic setting in Section 10.2
and one in the transcendental setting in Section 10.3.

10.1 Flags and valuations
10.1.1 The algebraic setting

Let X be an irreducible normal projective variety of dimension n.

Definition 10.1.1 An admissible flag Y, on X is a flag of subvarieties
X=Yh2YV 2:---27Y,

such that ¥; is irreducible of codimension i and is smooth at the point ¥,,.

Given any admissible flag Y., we can define a rank » valuation vy, : C(X)* — Z".
Here we consider Z" as a totally ordered Abelian group with the lexicographic order.
We sometimes write Zj, to emphasize this point.

The automorphism group Aut(Z;., ) of Z; is then identified with the subgroup of
GL(n,Z) consisting of matrices of the form I + U, where I is the identity matrix and
U is a strictly upper triangular matrix with elements in Z.

We recall the definition: Let s € C(X)*. Let v(s); = ordy, s. After localization
around Y,,, we can take a local defining equation t' of ¥y, set s; = (s(tl)_"l(s))|yl.
Then s; € C(Y;)*. We can repeat this construction with ¥, in place of ¥; to get v(s),
and s;. Repeating this construction n times, we get

147
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vy (s) = v(s) = (v(s)1,v(8)2,...,v(s)n) € Z".

It is easy to verify that v is indeed a rank n valuation.
The same construction can be applied to define vy, (s) when s € H°(X, L) or
vy, (D) when D is an effective divisor on X.

Remark 10.1.1 Conversely, by a theorem of Abhyankar, any valuation of C(X) with

Hﬁgan valuation ring of rank »n is equivalent to aﬁ%&%]ﬁn taking value in Z",
see , Chapter 0, Theorem 6.5.2]. As shown in [CT'KT7, Theorem 2.9], any
such valuation is equivalent! to (but not necessarily equal to) a valuation induced by
an admissible flag on a modification of X.

10.1.2 The transcendental setting

Let X be a connected compact Kihler manifold of dimension #.

Definition 10.1.2 A smooth flag Y. on X consists of a flag of connected submanifolds
of X:
X=Y2"h 2 2%,

where Y; has dimension n — i.
In this section, we will fix a smooth flag ¥, on X.

Definition 10.1.3 Let 7 be a closed positive (1, 1)-current on X. We define the
valuation of T along Y, as

vy, (T) = (v, (D)1, .., vy, (T)n) €RY,

by induction on n. When n = 0, we define vy, (T') as the unique point in RY. When
n > 1, we define
vy, (T)1(T) = v(T,Y1);

Then fori =2,...,n, we define
vy.(T)i = vy,2..0v, (Try, (T = v(T, Y1) [1])),_,

Proposition 10.1.1 Let T be a closed positive (1, 1)-current on X. Then vy, (T) € R
defined in Definition 10.1.3 is independent of the choices of the trace operators in the
definition. Moreover, vy, (T) depends only on the I -equivalence class of T.

Proof We will prove both statements at the same time by induction on n > 0. The
case n = 0 is trivial.

1 Two valuations v, v’ with value in Z" are equivalent if one can find a matrix G of the form [ + N,
where N is strictly upper triangular with integral entries, such that v/ = vG.



10.1. FLAGS AND VALUATIONS 149

Let us consider the case n > 0 and assume that the result is known in dimension
n — 1. We first observe that vy, (T) is independent of the choice of the trace operator:
different choices of Try, (T — v(T,Y;)[Y1]) are I-equivalent by Proposition 8.1.2.
Therefore, by induction, its valuation is well-defined.

Next, let 7’ be another closed positive (1, 1)-current such that 7 ~; T’. Using
Proposition 3.2.1, we know that v(T,Y;) = v(T’,Y;). Therefore,

T-v(T. ")) ~r T =v(T". ") [N].
It follows by induction that

Vyi2-2v, (Try (T = v(T. Y1) [Y1])) = vy 2.2y, (Try, (T7 = v(T', Y1) [11])) .

Example 10.1.1 When X is projective, we have

vy ([D]) = vr.(D),
where the right-hand side is defined in Section 10.1.1.

Proposition 10.1.2 Let T, S be closed positive (1, 1)-currents on X, 1 € Rxq. Then

(D) ifT <5 S, we have
v (T) Ziex vy, (S). (10.1)

(2) We have the following additivity property:
vy (T +8) = vy, (T) + vy, (S), vy (AT) = Avy,(T). (10.2)

Proof (1) We make an induction on n > 0. The case n = 0, 1 is trivial. Assume that
n > 2 and the case n — 1 is known. Observe that v(T,Y;) > v(S,Y)), if the inequality
is strict, we are done. So let us assume that v(7,Y;) = v(S, Y). By Proposition 8.2.1,
we find that

Try, (T = v(T, Y1) [Y1]) =1 Try, (S = v(T, Y1) [Y1]).

By the inductive hypothesis, we conclude (10.1).
(2) We make an induction on n > 0. The cases n = 0, 1 are trivial. Assume that
n > 2 and the case n — 1 is known. By Proposition 1.4.2, we have

v(T+S8,Y1)=v(T,Y1)+v(S, Y1), v(QaT,Y1)=Av(T,1).
By Proposition 8.2.1, we have

Try, (T +S —v(T + S, Y1) [V1]) ~p Try, (T = v(T, Y1) [Y1]) + Try, (S = v(S, Y1) [1]),
Try, (AT = v(AT, Y1) [Y1]) ~pA Try, (T — v(T, Y1) [Y1]).

By the inductive hypothesis, we conclude (10.2).
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Definition 10.1.4 Let 7: Z — X be a proper bimeromorphic morphism with Z being
a Kihler manifold. We say that a smooth flag W, on Z is a lifting of Y, to Z if the
restriction of 7 to W; — Y; is defined and bimeromorphic for eachi =0, ..., n.

In this case, we define cor(Y., 7) € Aut(Z[, ) inductively as follows:

I —vwyo.ow, (7" [1] = [W1Dlwy)

cor(¥e, ) = Ocor(Yy 2 2Y,mlw,: W1 = 11)|°

(10.3)

We observe that a lifting W, of Y, on Z is unique if it exists. Foreachi = 0,...,n—1,
the component W;,; is necessarily the strict transform of Y;;; with respect to the
bimeromorphic morphism W; — Y;. We shall also say that (W,, cor(Y,, )) is the
lifting of Y, to Z.

Proposition 10.1.3 Letw: Z — X, p: Z' — Z be proper bimeromorphic morphisms
with Z and Z' being Kdhler manifolds. Assume that Yo admits a lifting W, (resp. W)
to Z (resp. Z'). Then

cor(Y,, o p) = cor(Y,, ) cor(W., p). (10.4)

Proof Weletn’ =mo p:

(R N

\/

We make induction on n > 1. The case n = 1 is trivial. Assume that n > 2 and
the case n — 1 has been solved. Then by (10.3), the desired formula (10.4) can be
reformulated as

(1 —vwroeow, (@[N] = [WDIw) | _
[0 cor(Yy 2+ 2 Yy, ' |lw : W[ = 1) -

(1 —vwineow, (T[] = [WiDIw) |
0 cor(Y1 2 - 2 Y, wlw, : W1 = 1)
(1 —vwyoeow, (P [W1] = [W]Dlw;)
|0 cor(W; 2--- 2 Wn,pIW{ t W — W)

By the inductive hypothesis, this is equivalent to

v oeow, (7 [N] = W Dlw) = vwroeow, (P [Wi] = [WiDIw)+
ywi2-ow, (T [Y1] = [WiD)lw;) cor(Wy 2 -+ 2 Wy, plwy : W] — Wh),

which can be further rewritten as
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ywiaeowy (7 [0 ] = WD lwy) = viwrs-awy (07 [W1] = W] D) lwy)+
vw2-2w, (Pl (77 [N = [WiDlw,)-

This follows from Proposition 10.1.2. O

Proposition 10.1.4 Let n: Z — X be a proper bimeromorphic morphism with Z
being a Kdhler manifold. Let W, be a lifting of Y., then for any closed positive
(1, 1)-current T on X, we have

vw. (n*T) = vy, (T) cor(Y,, ). (10.5)

Proof We make induction on n > 0. The case n = 0 is trivial. In general, assume
that n > 1 and the result is proved in dimension n — 1.

For simplicity, we write v = vy, and v/ = vy,. Let u (resp. u’) be the valuation of
currents defined by the truncated flag¥; 2 --- 2 Y}, (resp. Wi 2 --- 2 W,,). Then we
need to show that

[/ (x*T) &/ (Try, (7°T =/ (2 T) [Wi]))]
=[v(T)1 u(Try, (T = v(T)1[Y1]))] cor(Ya, 7). (106
By Zariski’s main theorem,
v (n*T), = v(T), = c.
By the inductive hypothesis, we have
W (I Try, (T = ¢[Y1])) = u(Try, (T = c[Y1])) cor(Y; 2 --- 2V, 1), (10.7)

where I[1: W; — Y is the restriction of 7. By Lemma 8.2.1 and Proposition 8.2.1,

I Try, (T = c[1]) ~p Trw, ("(T = c[Y1]))
~p Trw, (7°T = c[W1]) + ¢ Trw, (2" [Y1] = [W1]).

So
W Try, (T = c[1]) = ¢ (Trw, (2T = c[Wi])) + i’ (Trw, (2" [Y1] = [Wh])).
Combining the above with (10.7), we see that (10.6) follows. ]

Theorem 10.1.1 Let n: Z — X be a proper bimeromorphic morphism from a
reduced complex space Z. Then there is a modification W — X dominating Z — X
such that Y, admits a lifting to W.

Proof By Hironaka’s Chow lemma, we may assume that 7 is a modification.

We begin by setting Wy = Z. We will construct W; inductively for each i. Assume
that for 0 < i < n a smooth partial flag Wy O --- O W; has been constructed on
a modification 71; : Z; — Z so that 7 o &1; restricts to bimeromorphic morphisms
W; — Y;foreach j =0,...,i.
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By Zariski’s main theorem, W; — Y; is an isomorphism outside a codimension 2
subset of ¥;. We let W;, be the strict transform of Y;;; in W;. The problem is that
W41 is not necessarily smooth.

We will further modify Z; and lift Wy, ..., Wi in order to make the flag smooth.
Take the embedded resolution of (W;, Wi,1), say W]’. — W foreach j =0,...,i.

We have canonical embeddings W/ < W/_| < --. < W/ making the following
diagram commutative:

I |

Wi —— Wiig —— - — W

Let Wl.’ . be the strict transform of Wiy in W/. It suffices to define m;;; as the
morphism Wj — Z; — Z and replace Wo O --- > Wiy by Wy > --- D W/ . O

10.2 Algebraic partial Okounkov bodies

Let X be a connected smooth complex projective variety of dimension n and (L, h)
be a Hermitian big line bundle on X.

Let hg be a smooth Hermitian metric on L. Let § = ¢{(L, hp). Then we can
identify /& with a function ¢ € PSH(X, 8). We will use interchangeably the notations
(8, ) and (L, h).

Fix a rank n valuation v: C(X)* — Z", which without loss of generality can be
assumed to be surjective.

We will adopt the notations of Appendix C.2.

10.2.1 The spaces of sections

Definition 10.2.1 We will write

[0, ¢) ={(v(s),k) : k e N,s e H'(X, LF ® T (kg))*},
Ac(8,¢) =Conv {k™'v(f): f e HY(X,L* ® T (k¢))*} CR", k >0.

When 6 = Vy, we simply write I'(L) and Ag (L) instead.

Here Conv denotes the convex hull. For large enough k, Ay (6, ¢) is non-empty thanks
to Theorem 7.3.1.

Definition 10.2.2 Assume that ¢ has analytic singularities. We define

(0, ¢) = {(v(s),k) 1 k e N,s € H'(X, L* ® I, (k))*} . (10.8)
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For later use, we introduce a twisted version as well.
Definition 10.2.3 If 7 is a holomorphic line bundle on X, we introduce

Arr(8,9) =Conv{k™'v(f): f e HY(X,T ® L* ® I (kg))*} C R",
Ar,7(L) =Conv {k~'v(f): f e H'(X,T ® L*)*} C R".

10.2.2 Algebraic Okounkov bodies

Proposition 10.2.1 There is a convex body A € K, such that I'(L) € S’ (A).

Proof Step 1. We first show that there is A € K, such that Ax(L) C A. For this
purpose, using Remark 10.1.1, we may assume that v is induced by an admissible

flag Y, on X.
Fix s € HY(X, L*)* for some k € Z.(. Assume that s # 0. We need to show
that foreachi = 1,...,n, v(s); < Ck for some constant C > 0, independent of the

choices of k and s.
Fix an ample divisor H on X. Take a large enough integer b; > 0 such that

(L-bY))-H" ' <0.
Then v(s); < bik. Next take a large enough integer b, such that
((L = aY)ly, — baYs) - H" 2 < 0.

It follows that v(s), < byk. Continue in this manner, we conclude that v(s);/k is
bounded for each i.

Step 2. Observe that I'(L) is clearly a semigroup. It remains to show that I'(L)
generates Z"*! as an Abelian group.

For this purpose, take two very ample divisors A and B so that L = Ox(A — B).
After choosing A and B ample enough, we may guarantee that there exist sections
so € HY(X,A),t; e H(X,B) fori =0,...,n such that

v(so) = v(tg) =0

and v(z;) is the i-th unit vector ¢; e R" fori =1,...,n.

Since L is big, we can find my > 0 such that for any m > my we can find an
effective divisor F,, on X linearly equivalent to mL — B. Let f,,, = v([Fy;]). Then
we find that

(fm»m)a (fm +6‘1,m), e (fm +en’m) € F(L)

Since (m + 1)L is linearly equivalent to A + F},, so



154 CHAPTER 10. THE THEORY OF OKOUNKOV BODIES
(fum,m+1)e'(L).
It follows that I'(L) generates Z"*!. o

Thanks to Proposition 10.2.1, we can introduce the next definition.

Definition 10.2.4 We define the Okounkov body of L with respect to the valuation v
as
Ay (L) = A(T'(L)).

Proposition 10.2.2 The Okounkov body A, (L) depends only on the numerical class
of L.

LMO9 »
See k"' , Proposition 4.1] for the elegant proof.

Corollary 10.2.1 We have

1
volA, (L) = ] vol L. (10.9)

Proof This follows immediately from Proposition 10.2.1 and Theorem C.2.1. O

Proposition 10.2.3 Assume that ¢ has analytic singularities and 6, is a Kdihler
current. Then we have
(9, ¢) € S'(X,0)

and

1
volI'™ (6, ¢) = E/XH:’["

Proof Replacing X by a modification, we may assume that ¢ has log singularities
along an effective Q-divisor D. See Theorem 1.6.1.
In this case,

(0, ¢) = {(v(s),k) : k € N, s e H(X, L* ® Ox(~kD])).}

Since L — D is ample by Lemma 1.6.1, our assertion follows from the same argument
as Proposition 10.2.1. O

We first extend Theorem C.2.1 to the twisted case.
Proposition 10.2.4 For any holomorphic line bundle T on X, as k — oo

dyaus

Ar,r(L) — Ay (L).

Proof As L is big, we can take kg € Z¢ so that

(1) T~!' ® L% admits a non-zero global holomorphic section sy, and
(2) T ® L% admits a non-zero global holomorphic section s.
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Then for k € Z,, we have injective linear maps

X5 XS0

HO(X, LF %oy =5 HO(X, T ® L¥) == HO(X, L),
It follows that
(k = ko)Ar—ky(L) +v(s1) € kAr,7(L) C (k + ko) Akako (L) = v(50)-

Using Theorem C.2.1, we conclude. O
Proposition 10.2.5 Let L’ be another big line bundle on X. Then

Ay(L)+A, (L") CA(LL).
Proof Observe that for each k € N, we have

Ap(L) + A (L") SAR(L®L).
So our assertion follows immediately from Theorem C.2.1. O
Proposition 10.2.6 For any a € Z~, we have

Ay (LY) = alAy(L).

Proof This is an immediate consequence of Theorem C.2.1. O

10.2.3 Construction of partial Okounkov bodies

Theorem 10.2.1 We have

(8, ¢) € S"(Ay (L))o
This theorem allows us to give the following definition:

Definition 10.2.5 The partial Okounkov body of (L, h) is defined as

Ay(L,h) =Ay(0,9) = A0, ¢)). (10.10)

When v is induced by an admissible flag Y, on X (see Definition 10.1.1), we also say
that A, (6, ¢) the partial Okounkov body of (L, h) or of (6, ¢) with respect to Y. In
this case, we also write Ay, instead of A,,.

Corollary 10.2.2 We have

1
VolA,,(H,tp)zrjvolﬁ(p. (10.11)



156 CHAPTER 10. THE THEORY OF OKOUNKOV BODIES

Proof This follows immediately from Theorem 10.2.1, Theorem 7.3.1 and Theo-
rem C.2.2. O

We will prove Theorem 10.2.1 and Corollary 10.2.2 at the same time.

Proof Step 1. We first assume that ¢ has analytic singularities and 6, is a Kéhler
current.
We claim that
dsg(T(6, ), (6, ¢)) = 0. (10.12)

Observe that for each € € Q- (, we have
HY(X, LF ® I, (k) € H(X, LF @ T (kg)) € HY(X, LF @ I, (k(1 — €)¢))

for all large enough k. This is a consequence of Lemma 1.6.3. Therefore, it suffices
to show that
lim  volT™™ (8, (1 —€)¢) = vol ' (6, ¢).

Q3e—0+

This follows from the explicit formula in Proposition 10.2.3.
Step 2. We next handle the case where 6., is a Kihler current.

d
Let (¢;); be a quasi-equisingular approximation of ¢ in PSH(X, ). Then ¢; =,
Pyl¢] 7 by Corollary 7.1.2.
In this case, it suffices to prove that

dy;
I'(0,¢;) — (6, ¢). (10.13)
In fact, by Theorem 7.3.1, we have

dsg(T(8, ¢;),T(6,))
= Jim & (HO(X, L*® T (kg;) —H' (X, Lk ® I(kt,o)))
= lim k"HY (X, LK ® T (ko)) - Jim kT"HY (X, L* T (kg))

= volfy, — % volé,,.
Letting j — oo, we conclude (10.13) by Theorem 6.2.5.

Step 3. Now we only assume that vol 8, > 0. We may replace ¢ with Pg[¢] 7 and
then assume that ¢ € PSH(X, 6)s.

Take a potential ¢ € PSH(X, 0) such that ¢ < ¢ and 6, is a Kihler current. The
existence of i is proved in Lemma 2.3.2. Foreach € € (0, 1), let ¢ = (1 —€)p + €.
It suffices to show that

dsg
F(Qs 906) — F(Q, 90)

as € — 0+. We compute using Theorem 7.3.1:
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dsg (T'(0, 9e),T'(6, )
= Jim k" (HO(X, ¥ ® I (k) -H'(X,L* ® I(kgog)))

= lim k"HO(X, L* ® T (ky)) — Jim kT"HY(X, LF @ T(kee))
1
:E vol 6, — ] vol 6,
—0
by Theorem 6.2.5, as € — 0+. O

Remark 10.2.1 It follows from the proof that if ¢ has analytic singularities and 6, is
a Kahler current, then (10.12) holds.

If we take a modification 7: ¥ — X such that 7% has log singularities along an
effective Q-divisor D on Y, then

Ay (0, 0) = A, (n*L — D) +v(D).

10.2.4 Basic properties of partial Okounkov bodies

Proposition 10.2.7 The partial Okounkov body A, (L, h) depends only on dd°h, not
on the explicit choices of L, hy, h.

Thanks to this result, given a closed positive (1, 1)-current T € ¢;(L) on X with
fX T" > 0, we can write
A (T) = A, (0, 9)

if T = 6 +dd°p for some ¢ € PSH(X, 0).
Proof There are two different claims to prove, as detailed in the two steps below.

Step 1. Let i be another Hermitian metric on L. Set 6" = c1(L, hj). Write
dd°f =0-0".Let¢’ =+ f € PSH(X,0). Then

Ay (6, 9) = A (0, ¢"). (10.14)

This is obvious since I'(6, ¢) = T'(6’, ¢’).

Step 2. Let L’ be another big line bundle on X. By Step 1, we may assume that
the reference Hermitian metric /() on L’ is such that ¢y (L, k) = 6.

Let A4’ be a plurisubharmonic metric on L’ with ¢\ (L, h) = ¢1(L’, h”). Then

Ay (L, h) = A, (L', 1).

From our construction, we may assume that c¢{ (L, &) has analytic singularities. After
taking a birational resolution, it suffices to deal with the case where c|(L, &) has
analytic singularities along an effective Q-divisors D. By rescaling, we may also
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assume that D is a divisor. By Remark 10.2.1, we further reduce to the case where
c1(L, h) is not singular.
In this case, the assertion is proved in Proposition 10.2.2. O

Proposition 10.2.8 Ler ¢,y € PSH(X, 6)~¢. Assume that ¢ <7 ¥, then
A (0,90) €A, Y). (10.15)
Proof This follows from Corollary C.2.2. O
Theorem 10.2.2 The Okounkov body map
Ay (6, ) : (PSH(X, 0)>0,ds) — (Ki, daus)
is continuous.

Proof Let ¢; — ¢ be a dg-convergent sequence in PSH(X, 6)-. We want to show
that

d aus
A (0, 9;) == Ay (6, ¢). (10.16)

By Proposition 10.2.8, we may assume that all ¢;’s and ¢ are model potentials.

By Theorem C.1.1 and Proposition 6.2.3, we may assume that (¢;); is either
decreasing or increasing. By Theorem 6.2.3, we may further assume that the ¢;’s are
7 -model. In both cases, we claim that

dS
T(0,¢;) — T(6,¢)
as j — co. In fact, using Theorem 7.3.1, we can compute

dsg (0(6,9,),T(6,9)) = k@; k" HO(X, LK ® I (kgj)) —HO(X, L* ® I (k¢))]

s

1
= |vol 0y, —volOy

which converges to 0 by Theorem 6.2.5. O
Proposition 10.2.9 Let n: Y — X be a modification. Then
A, (n*L,n*h) = A, (L, h).

Proof Thanks to Proposition 3.2.5, we may assume that ¢ is 7-model. By Theo-
rem 7.1.1, we can find a sequence (¢;); with analytic singularities in PSH(X, 6)

d d
such that ¢; =, . Itis clear that % ¢ =, m*¢. By Theorem 10.2.2, we may then
reduce to the case where ¢ has analytic singularities. In this case, it suffices to apply
Remark 10.2.1. O

Proposition 10.2.10 Ler (L', h") be another Hermitian big line bundle on X. Then

Ay(L,h) +A (L' W) CA(LQL ,h® k).
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Proof Take a smooth metric h{) on L’ andlet 8 =c(L’, h(’)). We identify A’ with
¢’ € PSH(X, 0’). Then we need to show

Av(0,0) +A,(6,¢") CALO+0,0+¢"). (10.17)

By Theorem 7.1.1, we can find sequences (¢;); and ((p;.)j in PSH(X, 0)-o and
PSH(X, 0")~¢ respectively such that

(1) ¢; and go;. both have analytic singularities for all j > 1, and

d d.
2) ¢; = ¢ ¢ > ¢

Then ¢; + (p"i € PSH(X,0+6")>0 and ¢; + ga}. LA ¢ + ¢’ by Theorem 6.2.2. Thus,
by Theorem 10.2.2, we may assume that ¢ and ¢ both have analytic singularities.
Taking a birational resolution, we may further assume that they have log singularities.
By Remark 10.2.1, we reduce to the case without singularities, in which case the
result is just Proposition 10.2.5. O

Theorem 10.2.3 Let ¢, € PSH(X, 0)s¢. Then for any t € (0, 1),

Proof We may assume that 7 is rational as a consequence of Theorem 10.2.2. Similarly,
as in the proof of Proposition 10.2.10, we could reduce to the case where both ¢ and
¥ have analytic singularities. In this case, let N > 0 be an integer such that Nt is an
integer. Then for any s € HO(X, LK ® I, (k¢)) and r € HO(X, L¥ ® I, (ky)), we
have

sV @ NN e HO(X, LMY @ I, (Ntg + (N — Nt)y)).

By Theorem C.2.1 and Remark 10.2.1, (10.18) follows. O
Proposition 10.2.11 For any a € Z-,
Ay (ab,ap) = aA, (6, ).

Proof As in the proof of Proposition 10.2.10, we may assume that ¢ has log
singularities. Using Remark 10.2.1, we reduce to the case without the singularity ¢,
which is proved in Proposition 10.2.6. O

In particular, if T is a closed positive (1, 1)-current on X with [X T" > 0 and such
that
[T] € NS'(X)q.

we can define
A (T) = a ‘A, (aT) (10.19)

for a sufficiently divisible positive integer a.
We also need the following perturbation. Let A be an ample line bundle on X. Fix
a Hermitian metric 44 on A such that w := ¢ (A, ha) is a Kahler form on X.
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Proposition 10.2.12 As § \, 0, the convex bodies A, (0 + 6w +dd°p) are decreasing
and

Ay (6 + 6w +ddo) 222 A (6,).

Proof Let0 < § < ¢’ be two rational numbers. Take C € N divisible enough, so
that C6 and Cd’ are both integers. Then by Proposition 10.2.10,

A (CO+Céw + Cdd®p) C A, (CH+CS'w+ CddCy).

It follows that
Ay(B+6w+ddp) C A6+ w+ddy).

On the other hand,
1A, (6+6 dd°—1106—1 0+dw)y
vol A, (8 + dw + go)—avo( + w)sa—a X( + w)P0[<PJI’
where we applied Example 7.1.2. As 6 — 0+, the right-hand side converges to

1
vol A, (6, ¢) = = volf,,.
n!

Our assertion therefore follows. O

10.2.5 The Hausdorff convergence property of partial Okounkov bodies

Let T be a holomorphic line bundle on X.

d aus
Theorem 10.2.4 As k — oo, we have Ag 1(6, ¢) S A8, ).
Although we are only interested in the untwisted case, the proof given below requires
twisted case.

Lemma 10.2.1 Assume that ¢ has analytic singularities and 6 , is a Kdihler current,
then as k — oo,

dHiaus
Ak,T(G, SD) H—) AV(G’ 90)

Proof Up to replacing X by a birational model and twisting 7" accordingly, we may as-
sume that ¢ has log singularities along an effective Q-divisor D, see Proposition 10.2.9
and Theorem 1.6.1.

Take a small enough € € Q.. In this case, for large enough k € Z.( we have

HO(X, T®LF® I (k) € H(X,T®L*&TI (k¢)) € H (X, TOL*® I, (k(1-€)¢)).

Take an integer N € Z so that ND is a divisor and Ne is an integer.
Let A’ be the limit of a subsequence of (Ax (8, ¢))«, say the sequence defined
by the indices k1, k3, . . .. We want to show that A" = A(6, ¢).
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There exists r € {0, 1, ..., N — 1} such that k; = f modulo N for infinitely many ¢,
up to replacing k; by a subsequence, we may assume that k; = r modulo N for all i.
Write k; = Ng; +t. Then for large enough 7, we have

HOX,T® L™V @ LN@*D @ I (N(gi + 1)¢)) CHY(X, T ® L5 & I (kip))
CHYX,T®L ® LN% @ I,(g;N(1 — €)¢)).

So

(8i + DAg11,roL-N#(NL—=ND) + N(g; + 1)v(D) € (Ngi +1)Ax,1(6, )
C gilg; rorL (NL = N(1—€)D) + Ng;(1 - €)v(D).

Letting i — oo, by Proposition 10.2.4,
A, (L-D)+v(D)CA CA,(L-(1-¢€)D)+(1-¢€)v(D).
Letting € — 0+, we find that
A, (L-D)+v(D)=A".
It follows from Theorem C.1.1 that
Bir(6,9) <5 Ay (L = D) +v(D) = Ay(6,9)
as k — oo. O

Lemma 10.2.2 Assume that 6, is a Kihler current, then as Q 3 § — 0+, we have

AV((1- B8, 0) 22 A, (6, ).

Here and in the sequel, A, ((1 — B)0, ¢) = A, ((1 — B)8 +ddy).
Proof By Proposition 10.2.10, we have

Ay (1 =P8, ¢) + BA(L) € A, (6, ).

In particular, if A’ is the Hausdorff limit of a subsequence of (A((1 — 8)6, ¢))g, then
A" C A, (6, ¢). But

ol = lim A,((1=£)6.¢) = fim [ (1= p)0+dEPa_palel)”
- [@+acrotelry.
X

where the last step follows easily from Theorem 11.2.1. It follows that A’ = A, (6, ¢).
We conclude by Theorem C.1.1. O

Proof (Proof of Theorem 10.2.4) Fix a Kihler form w > 6 on X.
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Step 1. We first handle the case where 6, is a Kahler current, say 6, > 26w for
some ¢ € (0, 1). Take a quasi-equisingular approximation (¢;); of ¢ in PSH(X, 6).

We may assume that 6,, > dw forall j > 1.

Let A’ be a limit of a subsequence of (Ag 7(6,¢))x. Let us say the indices of
the subsequence are k; < kp < ---. By Theorem C.1.1, it suffices to show that
A=A, (8, ).

Observe that for each j > 1, we have A” C A, (6, ¢;) by Lemma 10.2.1. Letting
Jj — oo, we find A” C A, (6, ¢). Therefore, it suffices to prove that

vol A" > vol A, (6, ). (10.20)

Fix aninteger N > 6~ !. Observe that forany j > 1, we have ¢; € PSH(X, (1-N"")@).
Similarly, ¢ € PSH(X, (1 — N~1)8). By Lemma 10.2.2, it suffices to argue that

vol A" > vol A, ((1 = N~1H6, ¢). (10.21)
For this purpose, we are free to replace k;’s by a subsequence, so we may assume that
k; = a modulo ¢ for all i > 1, where a € {0, 1,...,q — 1}. We write k; = giq +a.
Observe that for eachi > 1,

HY(X,T® LN ® T (kip)) 2 H (X, T ® L9 ® L8971 @ I ((g;q + q)¢)) -

Up to replacing T by T ® L~9%%, we may therefore assume that a = 0.
By Lemma 2.3.1, we can find k' € Z.o such that for all k& > k’, there is
W € PSH(X, 6)- satisfying

Polelr 2 (1-N"er+ Ny
Fix k > k’. It suffices to show that
A,((1=N"H8,01) +v C A (10.22)
for some v’ € R”. In fact, if this is true, we have
vol A > vol A((1 = N™18, ¢).

Letting k — oo and applying Theorem 10.2.2, we conclude (10.21).

It remains to prove (10.22). By the proof of Theorem 7.3.1, there is jo > 0 such
that for any j > jo, we can find a non-zero section s; € H(X, L/ ® 7 (jx)) such
that we get an injective linear map

H(X, T ® LV-DJ @ T(jNgy)) —5 HO(X, T ® L'N ® T(jNg)).
In particular, when j = k; for some i large enough, we then find

Ak, 7((N = 1)8, Nog) + (k) "'v(sx,) € NAk, 7(6, 9).
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We observe that (k;)~'v(sy,) is bounded as both convex bodies appearing in this
equation are bounded when i varies. Then by Lemma 10.2.1, there is a vector v/ € R”
such that (10.22) holds.

Step 2. Next we handle the general case.

Let A’ be the Hausdorft limit of a subsequence of (Ax.7(6, ¢))k, say the sub-
sequence with indices k; < ky < ---. By Theorem C.1.1, it suffices to prove that
N =7, (6,9).

Take ¢ € PSH(X, ) such that 6, is a Kéhler current and ¢ < ¢. The existence of
i follows from Lemma 2.3.2.

Then for any € € Q N (0, 1),

Ak,1(0,9) 2 Ak 7(6, (1 — €)p + €y)
for all £ > 1. It follows from Step 1 that
A2 A0, (1-€)p+ey).

Letting € — 0 and applying Theorem 10.2.2, we have A’ 2 A, (6, ¢). It remains
to establish that
vol A" < vol A, (6, ). (10.23)

For this purpose, we are free to replace k| < k» < --- by a subsequence. Fix g > 0,
we may then assume that k; = @ modulo ¢ foralli > 1 forsomea € {0,1,...,g—1}.
We write k; = g;q + a. Observe that

HO(X,T® L% ® I (ki¢)) CHY(X,T ® L® ® L% ® T (giq¢)).

Up toreplacing T by T ® L“, we may assume that a = 0.

Take a very ample line bundle H on X and fix a Kéhler form w € c¢;(H), take a
non-zero section s € HO(X, H).

We have an injective linear map

HO(X,T ® LI ® T(jqe)) =25 HO(X,T ® H' ® L' © T (jqe))
for each j > 1. In particular, for each i > 1,
kil 7(q0,q¢) + kiv(s) C kil (0 +qb, qp).
Letting i — oo, by Step 1, we have
gN +v(s) C A, (w+qgb,qp).
So

vol A" < vol A, (¢ 'w +6, ) = /X(q_lw +0+dd°P 1 ,00(@]l )"

By Example 7.1.2,
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vol A’ < /(q_lw+0+dch9[90]I)"‘
X

Letting ¢ — oo, we conclude (10.23). O

10.2.6 Recover Lelong numbers from partial Okounkov bodies

Theorem 10.2.5 Let E be a prime divisor on X. Let Y, be an admissible flag with
E =Y. Then

,E) = i . 10.24

v(p, E) eeaMin H (10.24)

Here x; denotes the first component of x.

Proof Replacing ¢ by Pg[¢] 7, we may assume that ¢ is 7-good.
Step 1. We first reduce to the case where ¢ has analytic singularities.
By Theorem 7.1.1, we can find a sequence (¢;); in PSH(X, 6)-0 with analytic

d
singularities such that ¢; =, @. It follows from Theorem 10.2.2 that

dHaus

Ay, (0,¢;) — Ay, (0, ¢).

Therefore,

lim min  x;= m

= X1.
J x€Ay, (0,¢;) X€Ay,

in
(6.¢)
In view of Theorem 6.2.4, it suffices to prove (10.24) with ¢; in place of ¢.

Step 2. Assume that ¢ has analytic singularities. In view of Proposition 10.2.9
and Theorem 1.6.1, after replacing X by a birational model, we may assume that ¢
has log singularities along an effective Q-divisor F.

Perturbing L by an ample Q-line bundle by Proposition 10.2.12, we may assume
that 6, is a Kéhler current. Therefore, L — F is ample by Lemma 1.6.1. Finally, by
rescaling, we may assume that F is a divisor and L is a line bundle.

By Theorem 10.2.4, we know that

min x; = lim min Xx;.
x€hy, (0,¢) k—00 xeAL (0, )

By definition,

min  x; =k 'ordg HO(X, LF ® T (ky)).
x€AL(0,p)

It remains to show that

Jim k~'ordg HO(X, L* ® I (ky)) = Jim k~'ordg I (k). (10.25)

The > direction is trivial, we prove the converse. Observe that

HO(X, L* ® T (k¢)) = HY(X, L* ® Ox(~kF)), I(kg)=O(=kF).
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As L — F is ample, for large enough k, we have
ordg H(X, L* ® Ox(—kF)) = ordg (kF).
Thus, (10.25) is clear. |
Corollary 10.2.3 Let ¢,y € PSH(X, 0)s¢. If
Aw, (70,7 ¢) C Aw, (70, 7"¢)

for all birational models n : Y — X and all admissible flags We on Y, then ¢ <y .
Proof This follows immediately from Theorem 10.2.5. O

Corollary 10.2.4 Let E be a prime divisor over X. Then
1
v(Vy,E) = klim T ordg HO(X, LY). (10.26)
Proof This follows from Theorem 10.2.5 and the fact that Ay, (6, Vy) = Ay, (L) for
any admissible flag ¥, on X. O
10.3 Transcendental partial Okounkov bodies

Let X be a connected compact Kéhler manifold of dimension #n. Fix a smooth flag Y,
on X.

10.3.1 The traditional approach to the Okounkov body problem

Definition 10.3.1 Let « be a big cohomology class on X. We define the Okounkov
body of « as

Ay, (a) = {Vy_ (S) : S € Z.(X,a), S has gentle analytic singularities}. (10.27)

See Definition 1.6.4 for the definition of gentle analytic singularities.
The results of [DRW] ] can be summarized as follows:

Theorem 10.3.1 For any big cohomology class a on X, the set Ay,(a) C R" isa
convex body satisfying the following properties:

(1) we have

1
vol Ay, (@) = = vol a;
n!
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(2) Given another big cohomology class o’ on X, we have
Ay, (@) + Ay, (@) € Ay, (e +a');

(B) Let n: Y — X be a proper bimeromorphic morphism with Y being a Kihler
manifold. Assume that (W, g) is the lifting of Ys to Y, then

Aw, (7"@) = Ay, ()g;

(4) The map @ v Ay, (@) is continuous in the big cone with respect to the Hausdor{f
metric;
(5) For any small enough t > 0, we have

{yeR" (1)) € An(B)} = Avizov, (B = 1[V1DIw,)-

10.3.2 Definitions of partial Okounkov bodies

Let 0 be a closed real smooth (1, 1)-form on X representing a big cohomology class
a.

LetT =6, € Z.(X, a). We shall define a convex body Ay, (T) € R", which is
also written as Ay, (6, ¢). This convex body is called the partial Okounkov body of T
with respect to the flag Y.

10.3.2.1 The case of analytic singularities

Definition 10.3.2 When T is a Kéhler current with analytic singularities, we take a
modification 7: ¥ — X so that
(1)
7T = [D] + R, (10.28)
where D is an effective Q-divisor on Y and R is a closed positive (1, 1)-current

with bounded potential, and
(2) the lifting (Z., g) of Y, to Y exists.

Define
Ay, (T) = Az ([R)g™ " + vz ([DD)g™".

The existence of  is guaranteed by Theorem 1.6.1 and Theorem 10.1.1.

Lemma 10.3.1 The convex body Ay, (T) defined in Definition 10.3.2 is independent
of the choice of n.

Proof Take another map n’: Y/ — X with the same properties. We want to show
that  and n” defines the same Ay, (T'). We may assume that 7" dominates 7 through
p:Y" — Y, so that we have a commutative diagram
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yy — % sy
X.
We take D and R as in (10.28). Then

a*T = [p*D] + p*R.

Write (Z., g) and (Z,, g’) for the liftings of Y, to Y and Y’ respective. We need to
prove that

Az.([RDg™ + vz ([DD)g™" = Az ([p*R1)¢ ™ + vz ([p D))"
This follows Theorem 10.3.1, Proposition 10.1.4 and Proposition 10.1.3. O

Note that from the above proof, we could describe the bimeromorphic behaviour
of Ay, (T) as follows:

Lemma 10.3.2 Let T € Z.(X, @) be a Kéihler current with analytic singularities.
Let 1: Y — X be a proper bimeromorphic morphism and (W,, g) be the lifting of Y.
toY. Then

Aw, (n°T) = Ay, (T)sg.

Lemma 10.3.3 Assume that T, S € Z,(X, a) are two Kdhler currents with analytic
singularities and T < S, then

Ay, (T) C Ay, (S) € Ay, (a).

Moreover, .
vol Ay, (T) = — / T". (10.29)
I’l' X

Proof We first show that
Ay, (T) € Ay, (S).

Using Lemma 10.3.2, we may assume that 7 and S have log singularities along
effective Q-divisors E and F respectively. By assumption, E > F. Replacing T and S
by T — [F] and S — [F] respectively, we may assume that F' = 0.

In this case, we need to show that

Ay, (@) 2 Ay, (o - [E]) + vy, ([ED,

which is obvious.
Next we prove that
Ay, (T) € Ay, (a).

By Lemma 10.3.2 and Theorem 10.3.1 again, we may assume that 7" has log
singularities. We take D and § as in (10.28). We need to show that
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Ay,(a = [D]) + vy, ([D]) € Ay, (a),

which is again obvious.
Finally, (10.29) follows immediately from Theorem 10.3.1. O

10.3.2.2 The case of Kihler currents

Definition 10.3.3 Let T € Z, (X, @) be a Kéhler current. Take a quasi-equisingular
approximation (7;); of T in Z,(X, a). Then we define

Ay (T) = () Ar(T)).
j=1

Lemma 10.3.4 The convex body Ay, (T) in Definition 10.3.3 is independent of the
choices of the T} ’s.

In particular, if T also has analytic singularities, then the Ay, (7T)’s defined in
Definition 10.3.3 and in Definition 10.3.2 coincide.

Proof Let (S;); be another quasi-equisingular approximation of T in Z,(X, ). By
Proposition 1.6.3, for any small rational € > 0, j > 0, we can find k£ > 0 so that

Sk < (1 - E)Tj.

It is more convenient to use the language of 6-psh functions at this point. Let
(resp. ¢y ) denote the potentials in PSH(X, 6) corresponding to Sy (resp. Ty ) for each
k > 1. Note that ¢, and ¢y are unique up to additive constants.

By Lemma 10.3.3,

(A% (0.01) € Av (0, (1 - )¢)).
k=1

On the other hand, observe that

AY. (0’ (1 - 6)901) = AY. (0’ 901)

€ €Q>¢ small enough

In fact, the 2 direction follows from Lemma 10.3.3, so it suffices to show that the
two sides have the same volume, which follows from (10.29).
It follows that

[o0]

(w00 < () Ar 0o,
k=1

j=1
The other inclusion follows by symmetry. O

The same argument shows that
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Corollary 10.3.1 Suppose that T, S € Z.(X, @) are two Kéihler currents satisfying
T <7 S. Then
Ay, (T) € Ay.(S) € Ay, (a).

Proposition 10.3.1 Let T € Z. (X, @) be a Kdihler current. Then
1
vol Ay, (T) = - volT. (10.30)

Proof Take a quasi-equisingular approximation (7); of T in Z,(X, ). Note that
Ay, (T;) is decreasing in j, as follows from Lemma 10.3.3. Our assertion follows
from (10.29) and Theorem 6.2.5. |

Lemma 10.3.5 Let T € Z,(X, @) be a Kdhler current and w be a Kihler form on X.
Then

Ay.(T) C Ay, (T + w). (10.31)
Moreover,
Ay, (T) = ﬂ Ay, (T + ew). (10.32)
e>0

Proof We first prove (10.31). Taking quasi-equisingular approximations, we reduce
immediately to the case where T has analytic singularities. By Lemma 10.3.2, we
may assume that 7" has log singularities. Take D and R as in (10.28). By definition
again, it suffices to show that

Ay, (I8D) € Av.([B+w]),

which is clear by definition.
Next we prove (10.32). Thanks to (10.31), it remains to prove that both sides have
the same volume:

lim vol(T + ew) = volT.
e—0+

This is proved in Proposition 7.2.3. O

10.3.2.3 The general case

Definition 10.3.4 Let T € Z, (X, ). Take a Kihler form w on X, we define

(o)

Ay, (T) = ﬂAY.(T+j_1w). (10.33)

J=1
The same definition makes sense when « is only pseudo-effective.

This definition is clearly independent of the choice of w by Lemma 10.3.5. Moreover,
it extends Definition 10.3.3 and Definition 10.3.2 as a result of Lemma 10.3.5.
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Remark 10.3.1 When « is pseudoeffective but not big and 7 has minimal singularities,
Definition 10.3.4 differs from all known definitions of Ay, (@) in the literature. But in
view of Lemma 10.3.7, our definition seems to be the most natural one.

The main properties of Ay, (T)) are summarized as follows:
Theorem 10.3.2 The convex bodies Ay, (T)’s satisfies the following properties:

(1) Suppose that T € Z.(X, a)sg, We have

1
vol Ay, (T) = - volT. (10.34)
n!

2) ForT,S € Z.(X, a) satisfying T <7 S, we have
Ay, (T) € Ay, (S) € Ay, (a).
(3) For any current T € Z.(X, &) with minimal singularities, we have
Ay, (T) = Ay, ().

(4) The map Z.(X,a@)s0 — K, given by T — Ay, (T) is continuous, where we
endow the dgs-pseudometric on Z,(X, a)so and the Hausdor{f topology on %K,,.
S) Let n: Y — X be a proper bimeromorphic morphism with Y being a Kihler
manifold. Assume that the lifting (W,, g) of Ye to Y exists, then for any T €
Zi (X, a)s0, we have
Aw,(n*T) = Ay, (T)g.

(6) ForT,S € Z.(X,a), we have
Ay, (T) + Ay, (S) C Ay, (T +S). (10.35)

Proof (1) By (10.33) and (10.30), for any Kéhler form w on X,
1
vol Ay, (T) = lim Ay, (T + j'w) = — lim vol(T + j~'w).
Jj—o n! joo

The right-hand side is computed in Proposition 7.2.3. Hence, (10.34) follows.
(2) Fix a Kihler form w on X. By Corollary 10.3.1, for each j > 1,

Ay, (T+j 7 'w) C Ay, (S+)7 ) C Ay, (a+ ) [w]).
It remains to show that
Ar.(@) = () An(a+j o)),
Jj=1

The C direction is clear. Comparing the volumes using Theorem 10.3.1, we conclude
that equality holds.
(3) This follows from (1) and (2).
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(4) Let (T;); be a sequence in Z, (X, a)so converging to T € Z,(X, a)>o with

dyaus

respect to ds. We want to show that Ay, (T;) —— Ay, (T'). By Proposition 6.2.3 and
(2), we may assume that the singularity type of 7} is either increasing or decreasing.
In both cases, the continuity follows from (1).

(5) We may assume that T is 7 -good. It follows from (4) and Theorem 7.1.1 that
we could reduce to the case where T has analytic singularities. Our assertion follows
from Lemma 10.3.2.

(6) By (10.33), in order to prove (10.35), we may assume that 7 and S are both
Kihler currents. Take quasi-equisingular approximations (7;); and (S;); of T and S

d
respectively. By Theorem 6.2.2, T; + S ST+, By (4), we may therefore assume
that 7 and S have analytic singularities. Replacing X by a suitable modification, we
may assume that 7 and S both have log singularities, say

T=[D]+R, S=[D']+R,

where D and D’ are Q-divisors on X and 8 and 8’ are closed positive (1, 1)-currents
with bounded potentials. We need to show that

Ay, ([R]) + Ay, ([R']) + vy, ([D]) + vy, ([D']) € Ay, ([R+R']) + vy, ([D + D']).
By Proposition 10.1.2, this is equivalent to
Ay.([R]) + Ay, ([R']) € Ar,([R+R']),
which is already proved in Theorem 10.3.1. O

Corollary 10.3.2 Assume that L is a big line bundle on X and h is a plurisubharmonic
metric on L with positive volume. Then

Ay, (dd°h) = Ay, (L, h). (10.36)

Similarly, the definition (10.19) is compatible with the definition in Definition 10.3.4.

Proof We may assume that dd°s has positive mass and is 7-good. By the ds-
continuity of both sides of (10.36) as proved in Theorem 10.3.2 and Theorem 10.2.2,
together with Theorem 7.1.1, we may assume that dd°/ has analytic singularities.
In this case, using the birational invariance of both sides of (10.36) as proved in
Proposition 10.2.9 and Theorem 10.3.2, we may assume that dd°/ has log singularities.
Finally, after all these reductions, the equality (10.36) holds by construction. O

10.3.3 The valuative characterization

In this section, we will characterize the partial Okounkov bodies using valuations of
currents.
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Lemma 10.3.6 Let 8 be a nef class on X. Then

{y eR"":(0,y) € Av.(B)} = Ay, 221, (Bly,). (10.37)

Proof Step 1. We first reduce to the case where 3 is a Kéhler class.
Take a Kihler class @ on X. It follows from the volume formula in Theorem 10.3.1
that

Ay, (B) = ﬂ Ay,(B+e€a), Ay..ov,(Bly) = m Ay, >..ov, (Bly, + €aly,).

e>0 e>0

So it suffices to prove (10.37) with 8 + e« in place of S.

Step 2. Assume that « is a Kihler class. The 2 direction in (10.37) follows from
the extension theorem Theorem 1.6.3. To prove the other direction, recall that by
Theorem 10.3.1, for ¢ > 0 small enough, we have

{yeR" 1 (1,y) € An.(B)} = Ayiz-ov, ((B-tIN1]DIy,) -

As t — 0+, the right-hand side converges to Ay,>...oy, (B|y,) with respect to the
Hausdorff metric as a consequence of Theorem 10.3.1, while the left-hand side
converges to

{yeR"":(0,y) € Av.(B)}

by Lemma C.1.2. We conclude our assertion. O

Lemma 10.3.7 Let T € Z,(X, @) be a Kéihler current. Assume that v(T,Y;) = 0,
then

[y eR"™: (0,y) € Ay,(T)} = Ay,5..o, (Tr;’l'“ (T)) . (10.38)
More generally, if T € Z.(X,a) and v(T,Y)) = 0, suppose in addition that
Try, YU(T) is defined, then (10.38) still holds.

See Remark 8.1.1 for the definition of Tr;:1 b (T). Note that Ay, >...oy, (Tr;:1 h (T)) is

independent of the choice of the representative Tr;:1 b (7).

Remark 10.3.2 More generally, the same argument shows the following result: Let

k=0,...,nand T € Z,(X, @) such that v(T,Y;) = 0. Assume that Tr;cly" (T) is
defined, then

[y eR™:(0,...,0,y) € Ay,(T)} = Ay5..2, (Tr;’k'yk (T)) . (10.39)

Jowl0
Also not J%I%Valt@this result extends L['%' , Theorem 3.4] and hence gives simpler
proofs of [Tow10, Theorem A, Theorem B].

Proof Let w be a Kéhler form on X. The last assertion follows from the first by
perturbing 6 to 6 + ew.

Step 1. We first handle the case where T has analytic singularities. Let7: Z — X
be a modification such that
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(1) Y, admits a lifting (W., g), and
(2) ©*T = [D] + R, where D is an effective Q-divisor on Z and R is closed positive
(1, 1)-current with bounded potential.

This is possible by Theorem 1.6.1 and Theorem 10.1.1.
By Lemma 8.2.1,
I TI'Y1 (T) ~p TrW1 (71'*T),

where IT: W; — Y; is the restriction of 7. It follows from Theorem 10.3.2 that

Aw,>..ow, (Trw, (7°T)) =Ay,5...ov, (Try, (T)) cor(Y; 2 - -- 2 Y, II),
Aw, (n°T) =Ay,(T)g.

Taking (10.3) into account, we find that it suffices to show that
{y eR":(0,y) € Aw, (x°T)} = Aw o ow, (Trw, (2°T)).
We may assume that 7 is the identity map. Then we have
T=[D]+R, Tly, =[Dlly +Rly.

Note that [D]]y, is the current of integration along an effective Q-divisor on Y.
In particular,

Ay, (T) =Ay, ([R]) + vy, ([D]),
Ay,>...0v,(Tly,) =Ay,>...ov, ([R]ly,) + vy 2.2y, ([D]In)-

So it suffices to show that
{y eR"1:(0,y) € Ay, ([RD} = Ay2...2v, ([R]Iw),

which is exactly Lemma 10.3.6.

Step 2. Next we consider the case where T is a Kdhler current. Take a quasi-
equisingular approximation (7;); of T in Z,(X, ). From Step 1, we know that for
large j > 1,

{y eR" 1 (0,y) € Av.(T)} = Ay 2.0y, (Try, (T))).

Letting j — oo and applying Theorem 10.3.2 and Proposition 8.2.2, we conclude
(10.38). O

Theorem 10.3.3 Assume that T € Z,(X, @) is a Kdhler current. We have
r?in Ay, (T) = vy (T). (10.40)
ex

Here the minimum is with respect to the lexicographic order.

Proof We make induction on n > 0. The case n = 0 is of course trivial. Let us
assume that n > 0 and the case n — 1 has been proved.
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We first observe that by Theorem 10.3.2,
Ay, (T =v(T. Y1) []) + (v(T.11),0,....0) € Ay, (7).

Comparing the volumes of both sides using Theorem 10.3.2 and Proposition 7.2.3,
we find that equality holds:

Ay (T —v(T, Y1) [11]) + (v(T, Y1),0,...,0) = Ay, (T).

Replacing T by T — v(T,Y;)[Y1], we may therefore assume that v(7,Y;) = 0. It
suffices to apply Lemma 10.3.7 and the inductive hypothesis. O

Corollary 10.3.3 Forany T € Z.(X, a),
vy, (T) € Ay, (T) C Ay, ().

Proof When T is a Kihler current, this follows from Theorem 10.3.3.
In general, by definition, vy, (T) = vy, (T + w) for any Kihler form w on X. It
follows that
vy (T) € Ay (T + w)

for any Kéhler form w. It follows that vy, (T) € Ay, (T). O

Theorem 10.3.4 Forany T € Z.(X, @)so,

Ay (T) = {w.(S): S € Zi(X,a),S <7 T}. (10.41)

In particular,

Ay.(a/) = {Vy.(T) :T € Z+(X, CY)}

Remark 10.3.3 We expect that the closure operation in (10.41) is not necessary. This
problem is closely related to the Dirichlet problem of the trace operator, see Page 237
for more details.

Proof The 2 direction in (10.41) follows from Corollary 10.3.3 and Theo-
rem 10.3.2(2).
Let us write

Dy, (T) = {w.(S): S € Zy(X,),S <7 T}

for the time being.
Step 1. Assume that 7 has analytic singularities. We have

Ay, (T) 2Dy, (T)

Q{Vy.(S) : Z+(X, @) > S has gentle analytic singularities, S < T}.

It follows easily from Theorem 10.3.1 that the volume of the right-hand side is equal
to the volume of Ay, (T'), so (10.41) holds.
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Step 2. Assume that 7' is a Kdhler current. Take a quasi-equisingular approximation
T; € Z.(X,a) of T. Next we use the language of psh functions. Let ¢;,¢ €
PSH(X, 6) be the potentials corresponding to 7;, T for each j > 1.

Fix an integer N > 0. For large enough j > 1, we can find ¢ € PSH(X, )¢ such
that

Polelr =2 (1-N"Ne; + N1y,

The existence of ¢ ; follows from Lemma 2.3.1. It follows that

Dy.(T) 2Dy, (9 +dd° ((1 ~ Ny, + N’le))
2(1 - N"YDy,(Tj) + N"' Dy, (6 +dd°y ).

By Theorem C.1.1, up to replacing 7; by a subsequence, we may guarantee that

Dy, (6 + ddy ;) admits a Hausdorff limit contained in Ay, (@) as j — oo. Let j — oo
and N — oo then it follows that

Dy,(T) 2 [ ) D.(T)).
Jj=1
By Lemma C.1.3,
Dy.(T) 2\ Dv.(T)) = | Dr.(T)).
j=1 Jj=1

Therefore, by Step 1, we conclude that

Av(T) = (| Ar(T)) = () Dr.(T)) € Dy.(T).
Jj=1 j=1

The reverse direction is already known.

Step 3. Finally, consider the general case. Take a Kéhler current 77 € Z, (X, @)
more singular than 7. Foreach € € (0, 1). The existence of 7’ is proved in Lemma 2.3.2.
We know that

Ay,((1 = €)T+€T’) =Dy, ((1 — )T +€T’) C Dy, (T).
Letting € — 0+ and using Proposition 7.2.3, we find that
Ay.(T) € Dy, (T).
As the other inclusion is already known, we conclude. |
Corollary 10.3.4 Assume that T € Z.(X, @)s¢. We have

min Ay, (7) = vy, (7). (10.42)
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Proof By Theorem 10.3.4, it is clear that

nlleixn Ay, (T) <jex vy, (T).

On the other hand, we clearly have
Ay, (T) € Ay (T + w)
for any Kédhler form w on X. It follows that

min Ay, (T) >1ex min Ay, (T + w).
lex lex

By Theorem 10.3.3, the right-hand side is just vy, (T + w) = vy, (T). We conclude the
proof. O

10.4 Okounkov test curves

Fix n € N. Let A, A” € R" be convex bodies with positive volume. The standard
Lebesgue measure on R" is denoted by vol.
We refer to Appendix C for the notations %, and dpays.

Definition 10.4.1 An Okounkov test curve relative to A consists of

(1) a number A« € R and
(2) an assignment (—o0, Apax) 3 T = Ap € K, satisfying

a. the assignment 7 — A is a decreasing and concave;

ditaus
b. we have A, —> A as T — —oo.

The set of Okounkov test curves relative to A is denoted by TC(A).

An Okounkov test curve A, is bounded if A = A when 71 is small enough. The
subset of bounded Okounkov test curves is denoted by TC™ (A).

An Okounkov test curve A, is said to have finite energy if

Amax
E(A.) = n!Apax Vol A + n!/ (volA; —vol A) dr > —oo0. (10.43)

—o00

The subset of Okounkov test curves with finite energy is denoted by TC!(A).
Given A, € TC(A) and A, € TC(A"), we say As < A7 if Apax < Al and for any
T < Apmax, We have A, C A

Here concavity in (2)b refers to the concavity with respect to the Minkowski sum.
Sometimes it is convenient to introduce

Ao = [ Ar €% (10.44)

7 <Amax
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We shall always make this extension in the sequel when we talk about Aa . Observe
that (—o0, Amax] 2 7+ A is still concave.

Proposition 10.4.1 Any Okounkov test curve (Ar)r<a,,, relative to A is continuous
in 1. Moreover, vol A > 0 for all T < Apax-

Proof We first claim that volA» > 0 for all 7/ < Apax. By Condition (2)b in
Definition 10.4.1 and Theorem C.1.2, we know that vol A~ > 0 when 7"’ is small
enough. Fix one such 7”/. We may assume that 7" < 7’ since otherwise there is nothing
to prove. Next take 7' € (7/, Amax)- Take ¢ € (0, 1) such that 7/ = t7""” + (1 — £)7".
It follows that

Vol A = vol (tArmw + (1 =0)Arr) = (1 —1)" vol A > 0.

Next we claim that vol A; is continuous for 7 < Ap.x. In fact, it follows from
Theorem C.1.4 that (—co, Apax) 3 T — log vol A; is concave, the continuity follows.
Next we show that
Ar= () Ar.

T'<T
The 2 direction is obvious. By the continuity of the volume, both sides have the same
volume and the volume is positive, we therefore obtain the equality.

Similarly, we have
A= Ar
T7/>T

The continuity of A; at 7 < Apax is proved. O

Definition 10.4.2 A test function on A is a function F: A — [—o0, ) such that

(1) F is concave,
(2) F is finite on Int A, and
(3) F is upper semicontinuous.

A test function F is bounded if F is bounded from below.
A test function F has finite energy if

E(F) = n!/Fdxl > —oo. (10.45)
A

Definition 10.4.3 Let A, € TC(A). We define its Legendre transform as
G[Ad]: A = [-00,00), at>sup{7 < Apax :a € Ar}.

Given a test function F: A — [—o0, 00), we define its inverse Legendre transform
A[F],. as the Okounkov test curve relative to A defined as follows:

(1) A[F]max = supy F, and

(2) for each T < sup, F, we set

A[Fl: ={x€A:F > 1}.
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We observe that
G[A.](a) =max {7 < Apax : @ € A}, if G[Ad](a) > —oo. (10.46)

Lemma 10.4.1 Let A, € TC(A). Then G[A.] defined in Definition 10.4.3 is a test
function.

Similar, if F: A — [—o0, ) is a test function, then A[F]e is an Okounkov test
curve.

Proof First suppose that A, € TC(A). We want to verify that G[A,] satisfies the
conditions in Definition 10.4.2.

We first verify the concavity. Take a,b € A. We want to prove that for any
t€(0,1),

GlAJ(ta + (1 = 1)b) > tG[Ad(a) + (1 = )G[A] (D). (10.47)

There is nothing to prove if G[A.](a) or G[A.](b) is —oo. So we assume that both
are finite. In this case, by (10.46),

a € Agia.l(a)s b € Agia)-

Thus,

ta+(1-1)b € tAG[a.)(a) + (1 = DAG[A(b) € DiGIAN(a)+(1-1)G[A] ()
We deduce that
G[AJJ(ta+ (1 —1)b) > tG[A.](a) + (1 —1)G[A.](D).

Therefore, (10.47) follows.

It is clear that F is finite on the interior of A. It remains to argue that F is upper
semicontinuous.

Let (a;)i>1 be a sequence in A with limit a € A. Define 7; = G[A.](a;). Let
7 = lim; 7;. We need to show that

G[AJ(a) > 7. (10.48)

There is nothing to prove if 7 = —co. We assume that it is not this case. Up to
subtracting a subsequence we may assume that 7; — 7. In particular, we can assume

that 7; # —oco for all i > 1. It follows from (10.46) that a; € A, for all i > 1. Since
dHaus

Ar, — A;. By Theorem C.1.3 it follows that a € A;. Thus,(10.48) follows.

Conversely, suppose that F': A — [—o0, c0) is a test function. We argue that A[F],
is an Okounkov test curve. We verify the conditions in Definition 10.4.1.

Firstly, for each T < sup, F, the set A[F](7) is a convex body as F' is concave and
usc. Moreover, A[ F] ; is clearly decreasing in 7.

Secondly, for each a € A, we can write a = lim; a; with a; € Int A. By assumption,
F is finite at a;. Thus,
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ae{F>—-co}= LJ A[F],.
T<supp F
By Theorem C.1.3, A[F], das A as T — —oo,
Thirdly, A[F] is concave. To see, take 7, 7" < Apax, We need to prove that for any
t€(0,1),
AlF]srs(1-tyr 2 1A[F] + (1 = DA[F] . (10.49)

Leta € A[F]. and b € A[F],-. We have F(a) > T and F(b) > 7’. As F is concave,
we have F(ta + (1 —t)b) > tt+ (1 — t)7’. Thus,

ta+(1-1)b € Al[Flirs(1-1)c
and (10.49) follows. O

Theorem 10.4.1 The Legendre transform and inverse Legendre transform are inverse
to each other, defining a bijection between TC(A) and the set of test functions on A.

Under this bijection, TC' (A) corresponds to test functions on A with finite energy
and TC® (A) corresponds to bounded test functions on A.

Proof Thanks to Lemma 10.4.1, in order to prove the first assertion, it only remains
to see that the Legendre transform and the inverse Legendre transform are inverse to
each other, which is immediate by definition.

It is obvious that TC*(A) corresponds to bounded test curves. Moreover, a direct
computation shows that if A, € TC(A), then

E(A.) = E(G[A.]),
concluding the TC!(A) case. O

Proposition 10.4.2 Let (A’);c; be a decreasing net in K,,. Consider a decreasing net
(AL);e; with AL € TC(AY) for alli € I such that there is A, € TC(A) satisfying the
following properties:
(1) Amax = lim;es Afnax;
dHaus

(2) for any T < Amax, we have A"T — Aq.

Then for any a € A, we have
uganina)zanJ(m. (10.50)
IAS]

Note that in general,

Ac( A

iel

Proof Fix a € A. It follows immediately from the definition of G that the net
(G[AL](a))ie; is decreasing and the > direction in (10.50) holds. Let us prove the
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reverse inequality. Let 7 denote the left-hand side of (10.50) for the moment. By
definition, for any € > 0 and any i € I, we have a € A% __. It follows that

(o]
a€A7_..

Therefore,
T < G[Ad](a).

Similarly, for increasing nets, we have:

Proposition 10.4.3 Let (A");c; be an increasing net in K, with Hausdor(f limit A such
that vol A > 0 for all i € 1. Consider an increasing net (AL);c; with AL € TC(AY)
foralli € I. Let Apmax = lim;¢g Afmx. For any T < Amax, let A be the Hausdorff limit
of AL. Then A. € TC(A) and

liigG[Ai] (a) = G[A.](a) (10.51)

for any a € IntA.

Proof 1t is obvious that A, € TC(A).

Fix a € Int A. Then up to replacing I by a subnet, we may assume that a € A for
all i € 1. By definition, the net (G[A}](a));c; is increasing and the < direction in
(10.51) holds. Let us write T = G[A.](a) for the time being. By definition of G, for
any € > 0, we have

ae AT,E/Q.

The concavity of A_, guarantees that
acntA._..
It follows that there is a subnet J in [ such that for all j € J,
ae AJT'_G.

Therefore, _
7 —€ < G[A}](a).

Taking the limit with respect to j and then with respect to €, we conclude the desired
inequality. O

Definition 10.4.4 Let A, be an Okounkov test curve relative to A. We define the
Duistermaat—Heckman measure DH(A,) as

DH(A,) = G[A.]+(vol).
It is a Radon measure on R.

In other words, DH(A,) is the distribution of the random variable G [A,].
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Proposition 10.4.4 Let A, € TC(A). Let m € Z~. Then the m-th moment of the
DH(A.) is given by

Amax
/xm DH(A.)(x) = Al  VOIA+m / " (vol Ay —volA)dr  (10.52)
R —

0o

and
/DH(A.) =vol A. (10.53)
R

Proof 1In fact, (10.53) follows immediately from the definition, while (10.52) follows
form a straightforward computation:

/xm DH(A,)(x)
R
=/G[A.](a)mdvol(a)

A

Amle
=/ (A"n}aX —/ mt™m! dT) dvol(a)
A G[Ad](a)

=A$axvolA—m//ﬂle.ua),Ame(T)Tm_ldvol(a) dr
R JA

Al'l‘l‘f])(
=A™ VOlA —m / / "V dvol(a) dr
-0 A\A;

Amax
=A" Vol A —m / "1 (vol A = vol A;) dr.

00

Lemma 10.4.2 Let (A?);c; be a decreasing net in K, with limit A. Suppose that
(AL);eq is a decreasing net with AL € TC(A?). Suppose that there is A, € TC(A)
such that

(1) Amax = lim;e; Af:nax;
[ d aus
(2) for any T < Amax, we have A s, A
Then DH(AL) — DH(A,).
Proof 1t follows from Proposition 10.4.2 that
G[Al] - G[A.]
pointwisely on A. Our assertion then follows from the dominated convergence
theorem. o

Similarly, we have

Lemma 10.4.3 Let (A?);¢; be an increasing net in K, with Hausdorff limit A such
that vol A’ > 0 for all i € 1. Consider an increasing net (AL);e; with AL € TC(AY)
foralli € I. Let Ay € TC(A) be defined as



182 CHAPTER 10. THE THEORY OF OKOUNKOV BODIES

(1) Amax = lim;¢ Al

max’

(2) for any T < Amax, Ay is the Hausdorff limit of AL.

Then we have _
DH(AL) — DH(A,).

Proof 1t follows from Proposition 10.4.3 that
G[Al] — G[A.]

almost everywhere on A. Our assertion then follows from the dominated convergence
theorem. O

The main source of Okounkov test curves is the following:

Theorem 10.4.2 Let X be a connected compact Kihler manifold and 6 be a closed
smooth real (1, 1)-form on X representing a big cohomology class a. Let Y, be a
smooth flag on X and " € TC(X, 0)~¢. Then the map

(_00, 1—‘max) 5ThH AY. (9, F)T = AY.(a’ FT)

defines an Okounkov test curve relative to Ay, (0,T_).
If furthermore T € TC'(X,0;T_s) (resp. TC®(X,0;T_s)), then we have
Ay, (6,T) € TC!(Ay, (0,T_s)) (resp. TC®(Ay, (6,T_o))).

See Definition 9.1.1 and Definition 9.1.2 for the relevant definitions.

Proof Consider I' € TC(X, 6)~¢. We need to verify that Ay, (6,T") is an Okounkov
test curve relative to Ay, (6, T'-).

First observe that 7 +— Ay, (60, ;) is concave and decreasing for T < ['yax. This is
a direct consequence of Theorem 10.3.4.

Next we show that as T — —oo, we have

dHaus

Ay_ (9, FT) — Ay_ (9, F_oo).
It suffices to compute
: 1 : c 1 c
lim volAy,(0,T;) = — lim vol(+dd‘T’;) = — vol(0 + dd‘T"_)
T——00 : n! 7—-c0 n!
=vol Ay, (0,T_),
where we applied Theorem 10.3.2 and Theorem 6.2.5.
WhenI" € TC® (X, 0;T_), it is clear that Ay, (6,T") € TC*(Ay, (6,T-x)).
When T € TC' (X, 6;T_), by Theorem 10.3.2(1), (9.3) and (10.43), we have
E'=(I) = E(Ay,(6.T)).

SoT' e TC!(Ay, (6,T_w)). o



Chapter 11
The theory of b-divisors

In this chapter, we study the theory of b-divisors. In Section 11.2, we prove a
Chern—Weil type formula, which relates volumes of currents to intersection numbers.

In Section 11.3, we prove that the algebraic partial Okounkov bodies constructed
in Chapter 10 have natural interpretations in terms of the b-divisors.

11.1 The intersection theory of b-divisors

DE20
In this section, we briefly recall the intersection theory of Dang—Favre %“‘ ].
Let X be a connected smooth projective variety of dimension 7.

Definition 11.1.1 A birational model of X is a projective birational morphism
n: Y — X from a smooth variety Y. A morphism between two birational models
7:Y > Xandn’: Y — X is amorphism Y — Y’ over X.

We write Bir(X) for the isomorphism classes of birational models of X. It is a
directed set under the partial ordering of domination.

We will usually be sloppy by omitting 7 and say Y is a birational model of X.

We write NS! (X) for the Néron—Severi group of X and NS' (X)x for NS! (X) @z K
for any subfield K of R. Given @, 8 € NS'(X), we write a < B if 8 — a is pseudo-
effective.

Definition 11.1.2 A Weil b-divisor D on X is an assignment that associates with each
(r:Y — X) € Bir(X) a class Dy = D, € NS'(Y)g such that when 7’ : ¥/ — X
dominates 7 through p : Y/ — Y, we have

p*Dy/ = Dy.

The set of Weil b-divisors on X is denoted by bWeil (X).
A Weil b-divisor D on X is Cartier if there is (r: ¥ — X) € Bir(X) such that for
any (n” : Y' — X) € Bir(X) which dominates r through p : Y’ — Y, we have

183
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Dyf = p*Dy .

In this case we say D is determined on Y or D has an incarnation Dy on Y and
write D = D(Dy). We also say D is a Cartier b-divisor. The linear space of Cartier
b-divisors is denoted by bCart(X).

Our definition simply means

bWeil(X) = lim NS'(Y)z.
(m: Y>X)€eBir(X)
. 1 (11.1)
bCart(X) = lim NS* (Y)g,

(m: Y>X)eBir(X)

in the category of vector spaces.

We endow bWeil(X) with the projective limit topology, then the first equation
in (11.1) becomes a projective limit in the category of locally convex linear spaces.
Clearly, bCart(X) is dense in bWeil(X).

Definition 11.1.3 A Cartier b-divisor D on X is nef (resp. big) if some incarnation is
(equivalently all incarnations are) nef (resp. big).

A Weil b-divisor D on X is nef if it lies in the closure of the set of nef Cartier
b-divisors.

Write bWeil,er(X) for the set of nef Weil b-divisors on X.

A Weil b-divisor D on X is pseudo-effective if for all (n: Y — X) € Bir(X),
Dy > 0.

We introduce a partial ordering on bWeil(X):

D < D' if and only if Dy < Dy, forall (7: ¥ — X) € Bir(X).

We summarise Dang—Favre’s results:

F20
Theorem 11.1.1 (F[Q____ , Theorem 2.1]) Let D € bWeil(X) be a nef Weil b-divisor.
Then there is a decreasing net (D;);er of nef Cartier b-divisors such that

D = limD;.
iel

Definition 11.1.4 Let D; € bWeil(X) (i = 1, ..., n) be nef Cartier b-divisors on X.
We define (D1,...,D,) € Ras follows: take (r: ¥ — X) € Bir(X) such that all D}s
are determined on Y. Then define

(D1,....,Dy) = (D1ys...,Duy). (11.2)

The intersection number (Dy, ..., D,) does not depend on the choice of Y.

F20
Theorem 11.1.2 (Pr)“"' , Proposition 3.1,Theorem 3.2]) There is a unique pairing
(bWeilper (X))" — Rso

extending the pairing in Definition 11.1.4 such that
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(1) The pairing is monotonically increasing in each variable.
(2) The pairing is continuous along decreasing nets in each variable.

Moreover, this pairing has the following properties:

(1) It is symmetric, multilinear.
(2) It is usc in each variable.

Definition 11.1.5 We define the volume of D € bWeiles(X) by

volD = (D, ..., D). (11.3)

We say D € bWeilyet(X) is big if volD > 0.

Note that the definition of bigness is compatible with the definition in Definition 11.1.3
in the case of Cartier b-divisors.

Lemma 11.1.1 Let D € bWeilyer(X), then

volD = inf vol Dy = lim vol Dy.
(Y—X)eBir(X) (Y—X)eBir(X)

Proof By Theorem 11.1.1, we can find a decreasing net D of nef Cartier b-divisors
on X converging to D. Clearly,

volD? = inf volDy.
Y—-X

LMNPOS

E
It follows from Theorem 11.1.2 and the continuity of the volume functional L[’ 05,
Corollary 2.6] that

volD =inf inf volDy = inf volDy.
a Y-X Y—-X

On the other hand, as in general push-forward will increase the volume, we see that
vol Dy is decreasing in Y, so we conclude. |

11.2 The singularity b-divisors

Let X be a connected smooth projective variety over C of dimension n. Let « €
NS!(X)g be a big class and T be a closed positive (1, 1)-current in a.

Fix a closed real smooth (1, 1)-form 6 in ¢{ (L) and we can write T = 8, for some
¢ € PSH(X, 0).

Definition 11.2.1 Define the singularity divisor Singy T of T as the formal sum

Sing, T := Z w(T,E)E, (11.4)
E
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where E runs over all prime divisors contained in X.
The singularity divisor is not a Weil divisor in general.

Note that this is a countable sum by Siu’s semicontinuity theorem. Although Singy T
is not a divisor in general, it does define a closed positive (1, 1)-current due to
Siu’s decomposition. Moreover, the numerical class [Singy 7] in NS!(X) 1l_sj glso

well-defined by treating the sum in (11.4) as a sum of numerical classes ,
Proposition 1.3].

Definition 11.2.2 The singularity b-divisor Sing T of T is the b-divisor over X defined
by
(SingT)y = [Singy n*T],

where (7: Y — X) € Bir(X).
Define
D(T) := D(a) — SingT.

Here D(«) is the Cartier b-divisor determined by « on X.
We are ready to derive the first version of the Chern—Weil formula.
Theorem 11.2.1 The b-divisor D(T) is a nef b-divisor and if in addition volT > 0,
volD(T) = vol T. (11.5)

Proof Step 1. We first handle the case where T has analytic singularities. After
replacing X by a modification, we may assume that 7" has log singularities along an
effective Q-divisor D on X. Namely, we can write

T =[D] +R,

where R is a closed positive (1, 1)-current with bounded potential. In this case,
D(T) = D(a — D), which is nef. In order to prove (11.5), it suffices to show that

/T”: ((@ - D)), (11.6)
X

which is obvious.
Step 2. Assume that 7" is a Kéhler current. Take a quasi-equisingular approximation
(Tj)j of T in Z,(X, 6). By Theorem 6.2.5, we have

lim volT; = volT.

]/

In view of Step 1 and Theorem 11.1.2, it remains to show that D(7}) — D(T) as
Jj — oo. In more concrete terms, this means that for any (7: ¥ — X) € Bir(X),

[Singy (7°T;)] — [Singy (7°T)]

in NS! (Y)g. This obviously follows from Theorem 6.2.4 if Sing(*T') has only finitely
many components. In general, fix an ample class w in NS!(Y). We want to show that
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for any € > 0, we can find jy > 0 so that when j > jj,
[Singy (7°T;)] > [Singy (7°T)] — ew. (11.7)

Write

00

[Singy (7'T)] = )" aiE;,  [Sing(x'T))] = ) alE:.
i=1 i=1

Then a{ < a;. We can find N > 0 large enough, so that

N

. . €
[Singy (7*T)] < ; a;E; + Sw-

By Theorem 6.2.4, we can take jg large enough so that for j > j,

(a; al)El_ZNw’ i=1,...,N.

Then (11.7) follows.

Step 3. Assume that vol 7 > 0.

By Lemma 2.3.2, we can take a Kihler current S € @ such that S < T. Consider
€S+ (1 —¢)T for e € (0,1). When € — 0+, we have €S + (1 — )T s, T. Using
Theorem 6.2.5, we reduce immediately to the situation of Step 2.

Step 4. We handle the general case.

Take a Kdhler form w on X From Step 3, we know that for any € > 0, D(T) +eD(w)
is a nef b-divisor. It follows immediately that D(7) is nef. O

Corollary 11.2.1 Assume that volT > 0, then T is I -good if and only if

vol D(T) = / .
X

Proof This follows from Theorem 11.2.1 and Theorem 7.3.1. O

Theorem 11.2.2 The map D: PSH(X,0) — bWeil(X) is continuous. Here on
PSH(X, 0) we take the ds-pseudometric.

Proof Let ¢; € PSH(X, 0) be a sequence converging to ¢ € PSH(X, 0) with respect
to ds. We want to show that

D(6 + dd®¢;) — D(T).

d d
As ¢; = ¢ implies that 7% p; = n*p for any (7: Y — X) € Bir(X), it suffices to
prove
[Singy ¢;] — [Singy @] in NS!'(X)g. (11.8)

Write

Singy ¢; = ZafE, Singy ¢ = ZaEE,
E E
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E

where E runs over all prime divisors on X. By Theorem 6.2.4, af —a” asi — oo.

When the number of E’s is finite, (11.8) follows trivially. Otherwise, we write the
prime divisors on X having positive coefficients in either Singy ¢; or Singy ¢ as
E\,Ey,....

We fix a basis e, . . ., ey of the finite-dimensional vector space NsS! (X)R, so that
the pseudo-effective cone is contained in the cone },; R>pey. Write

N
Er=) flea, i=12,...

d=1

Then we need to show that foranyd =1,..., N,

(e8] (o)
: Ej cd _ Ej ¢d
lim D a; ff' = D i ff
=1 J=1

This follows from the dominated convergence theorem, since

0o

Z afj [Ej] £ a, i ati [E/] £ a.

Jj=1 J=1
A mixed version of Theorem 11.2.1 is also true:

Theorem 11.2.3 Let Ty, ..., T, € Z+(X) such that volT; > 0 for eachi =1, ...,n.
Then

1 1
— (D(1y),...,D(Ty)) = —/T1A~~-/\Tn. (11.9)
n! n! Jx

If the T;’s are I -good, then equality holds.

Proof This follows from Theorem 11.2.1 and Proposition 7.2.1. O

11.3 Okounkov bodies of b-divisors

Let X be a connected projective manifold of dimension n and (L, &) be a Hermitian
big line bundle on X.

Fix a smooth flag ¥, on X. Let v = vy, : C(X)* — Z" be the valuation associated
with Y.

Theorem 11.3.1 The partial Okounkov body Ay, (L, h) admits the following expres-
sion:

Ay, (L, h) = vy, (dd°h) + Vlinn XAY' (c1(n*L) — [Sing, (7" h)]), (11.10)

where ©t runs over the directed set of projective birational morphisms to X with Z
normal.
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Here the limit is a Hausdorff limit.
This theorem suggests that we define

Ay, (D(dd°R) = Tim Ay, (c1(x"L) ~ [Singz (x"h)]) (11.11)

Then one could rewrite (11.10) as

Ay, (L, h) = Ay, (D(dd°h)) + vy, (dd°h).

Remark 11.3.1 (11.11) shows that the partial Okounkov bodies are algebraic objects
in nature.

One should be able to prove the existence of the limits like (11.11) over other base
fields, at least after assuming the existence of resolution of singularities. If so, one
would get an interesting extension of the theory of partial Okounkov bodies.

Lemma 11.3.1 Let T be a closed positive (1, 1)-current on X. Then we have

mliznl)xv(SingZ(n*T)) =v(T), (11.12)

where 1t runs over the directed set of projective birational morphisms to X with Z
normal.

Proof Given n: Z — X, we let W| denote the strict transform of Y} in Z. The
restriction 71 : W — Y] is necessarily birational. Let W be the normalization of W;.
Let 1 denote the normalization of 7| so that we have a commutative diagram

We will argue by induction. The case n = 0 is trivial. Assume that n > 0 and the
case n — 1 is known.
We may clearly assume that v(7,Y;) = 0. By definition, we have

v(T) = (0, u(Try, (7)),

where y denotes the valuation induced by the flagY; 2 Y, 2 --- 2 Y.

Observe that birational morphisms of the form 7y : f/Vvl — Y] are cofinal in the
directed set of projective birational morphisms of Y;. This is obvious since the
modifications given by compositions of blow-ups with smooth centers on Y; are
cofinal. It suffices to blow-up X with the same centers.

Therefore, by the inductive hypothesis applied to Try, T, it suffices to argue that

v(Sing,, (n°T)) = (o,,,t (smgw1 7% (Try, (T)))) . (11.13)
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From Lemma 8.2.1, we know that
71" Try, (T) ~p Trw, (7°T).

So we only need to prove

v(Sing, (') = (0, u(Singgy: (Trw, (7°T))
This is reduced to the following statement:
Trw, Sing, (n*T) ~p Singg (Trw, (n*T)). (11.14)

In order to prove this, we may add a Kéhler form to 7 and assume that 7 is a Kéhler
current. Take a quasi-equisingular approximation (7;); of T. Then (7*T;); is a
quasi-equisingular approximation of 7*7". Thanks to Proposition 8.2.2, we have

d
Tryw, (7°T;) —> Try, (x*T)

Therefore, as in the proof of Theorem 11.2.2, we find that Sing and Singg;- are both
continuous along this sequence as well. So we finally reduce to the case where T has
analytic singularities.

In this case, arguing as before, we may assume replace 7 by a modification
dominating it so that 7*T ~ [D] for an effective Q-divisor D on Z, in which case
(11.14) is clear. m]

Proof (The proof of Theorem 11.3.1) It would be more convenient to use the lan-
guage of currents. We shall write T = dd°A.

Instead of arguing (11.10), we shall argue a slightly more general version: for any
@ € NS'(X)g, we have

Av,(T) =v(T)+ lim Ay, (a - [Sing;(°T)]). (11.15)

We argue by induction on 7. The case n = 0 is of course trivial. Let us assume that
n > 0 and the result is known in dimension n — 1.

We may replace T by T — v(T,Y;)[Y;] and @ by @ — v(T,Y;)[Y}], so that we may
reduce to the case where v(T,Y;) = 0.

For any projective birational morphism 7: Z — X with Z normal, it follows from
Theorem 10.3.4 (which also holds for a normal variety, as can be seen after passing
to a resolution) that we have

Ay, (n*a - [Sing, (n*T)]) = {v(S) : S € m*a — [Sing, (7*T)]}.

Therefore,

Ay, (7@ — [Sing, (7*T)]) +v(Sing, (7*T)) C {V(S) :Sea,n*S > Singz(n*T)}.
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We observe that the right-hand side is decreasing with respect to &, which together with
Lemma 11.3.1 implies that the net of convex bodies Ay, (¢ (7*L) — [Sing, (7*T)])
for various Z is uniformly bounded. Suppose that A is the limit of a subnet. Then we
have

A+v(T) C{v(S):Seci(L),S =<7 T}
As shown in Theorem 10.3.4, the right-hand side is exactly Ay, (T'). So

A+v(T) C Ay,(T).

But observe that both sides have the same volume, as computed in Theorem 10.3.2
and Theorem 11.2.1. So equality holds.

It follows from the Blaschke selection theorem Theorem C.1.1 that the limit in
(11.15) exists and (11.15) holds. O






Part 111
Applications



In this part, we explain a few applications of the theory developed in this book.

In Chapter 12, we develop the pluripotential theory on big line bundles on toric
varieties. This theory depends crucially on the theory of partial Okounkov bodies
developed in Chapter 10.

In Chapter 13, we develop the transcendental theory of non-Archimedean metrics
based on the theory of test curves developed in Chapter 9.

In Chapter 14, we prove the convergence of partial Bergman measures.



Chapter 12
Toric pluripotential theory on big line bundles

In this chapter, we develop the toric pluripotential theory on big line bundles. Our
development here is based on the theory of partial Okounkov bodies developed in
Chapter 10. We will deduce two non-trivial consequences from the general theory:
Corollary 12.2.2 and Theorem 12.2.2. The author does not know how to prove either
result without relying on partial Okounkov bodies.

12.1 Toric setup

Let T be acomplex torus of dimension n with character lattice M and cocharacter lattice
N. Consider a rational polyhedral fan X in Ng corresponding to an n-dimensional
smooth toric variety X.

Let D be a T-invariant big divisor on X. Then Pp C My be the lattice polytope
generated by u € M such that

D +div y" > 0.

Let L = Ox(D). Note that replacing D by a linearly equivalent divisor amounts to
replace D by an integral translation.

We shall fix a smooth 7.-invariant metric sg on L. Let 8 = ¢ (L, hg). Fix a smooth
function Fy: Ng — R such that

0 = dd° Trop™ Fj.

Note that Fy is well-defined up to a linear term.
We will consider a T-invariant subvariety ¥ € X. Since X is smooth, sois Y. Let
o be the cone in X corresponding to Y and Q be the face of P corresponding to Y.
Recall that the cocharaF_e{Ililttice N(o) of Y is given by N/N N (o), where (o) is
the linear span of 0. See [CI=S11, (3.2.6)]. In particular, the character lattice M (o)
of Y can be naturally identified with the linear span of Q. Leti,: M(0) — M be
the corresponding inclusion.

195
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Take m, € M N Pp so that —Supp_p,, coincides with m, on o-. Observe that
m is uniquely determined only when o has full dimension.

12.2 Toric partial Okounkov bodies

12.2.1 Newton bodies

Let PSH (X, 6) be the set of T,.-invariant functions in PSH(X, 6).
Definition 12.2.1 A function ¢ € PSH, (X, 6) can be written as
¢lr(c) = Trop® f
for some unique f: Ng — [—0o0, 00). Then we define
Fy: Nr > R

as follows:
Fo=Fg+f. (12.1)

Observe that F, is a convex function and takes finite values by Lemma 5.2.1. It is
well-defined up to a linear term.

Definition 12.2.2 Let ¢ € PSH (X, 0), we define its Newton body as

A8, ) = VF,(Nr) C Mg.

Observe that A(6, ¢) depends only on the current 6, not on the choices of 8 and Fy.

12.2.2 Partial Okounkov bodies

There are some canonical choices of smooth flags in the toric setting.

Recall that for each p € %(1), u, denotes the ray generator of p. Since X is
smooth and projective, we could choose a full-dimensional cone o in X with rays
P1s--->Ppn € X(1) such thatu,,, ..., u,, form a basis of N. Define

Yi=Dp N---ND,, i=1,...,n

Then Y, is a smooth flag on X. Let
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O:M->Z', me ((m—me,up),....,(m-mg,up,)). (12.2)

Then @ is an isomorphism of lattices. It induces an Z-affine isomorphism

(I)RI MR — R".
Proposition 12.2.1 We have
- (HO(X, Lk)x) =@ ((kPp) N M) (12.3)
for any k € Z~. In particular,
Ay, (L) = ®r(Pp). (12.4)

Proof Up to replacing D by a linearly equivalent divisor, we may assume that
Dly, =0, where U, is the affine subvariety of X corresponding to o-. Then m = 0.

It suffices to prove (12.3) for k = 1. Let s € HO(X, L) be a non-zero section, say
x" for some u € Pp N M. The zero-locus of s is given by

D+ » (u,up,)Dp,.

n
i=1

Therefore,
vy, (8) = ((u,up,), ..y (uyup,)) = ®(u).

So (12.3) follows. O
Theorem 12.2.1 Let ¢ € PSHy (X, 0)~0, then
O (A(6,9)) = Ay, (0, ¢). (12.5)

Proof Up to replacing D by a linearly equivalent divisor, we may assume that
D|y, =0, where U, is the affine subvariety of X corresponding to 0. Then m, = 0.

Step 1. We first reduce to the case where 6, is a Kihler current.

By Lemma 2.3.2, we can find ¢ € PSH(X, 6) such that ¢ < ¢ and 6, is a Kéhler
current. Taking the average along 7., we may assume that i is T.-invariant.

For each ¢t € (0, 1), we let

or=(1=t)y +to.
Suppose that Kéhler current case is known. Then we get
@z (A8, ¢1)) = Ay, (0, ¢1)
for any ¢ € (0, 1). It follows from Theorem A.4.2 that

DO (A6, ¢)) 2 Pr (A6, ¢1)) 2 Ay, (0, ¢;)
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for any ¢ € (0, 1). Thanks to Theorem 10.2.2, we have
O (A6, ¢)) 2 Ay, (0. ¢).

Compare the volumes of both sides using Proposition 12.2.2 and (10.11), we find that
n!vol ®g (A6, p)) = ‘/XG’; =vol 8, = n!vol Ay, (6, ¢).

In particular, we conclude (12.5).
Step 2. We handle the case where 6, is a Kihler current.
Let (¢;); be a quasi-equisingular approximation of ¢ in PSH(X, 6).
oV may assume that ¢; is 7.-invariant for each j > 1 from the construction of
PE‘_ , Theorem 13.21].
Now assume that the result is known for each ¢ ;. Then

Dx (A0, ¢))) = Ay, (0, ¢;).
In particular, by Proposition 12.2.2 again,

DOr (A6, ¢)) < Ay, (0, ¢))
for each j > 1. It follows from Theorem 10.2.2 that

O (A6, ¢)) € Ay, (0. ¢).

Compare the volumes of both sides using Proposition 12.2.2, (10.11) and Theo-
rem 5.3.1, we conclude (12.5).

Step 3. It remains to handle the case where ¢ has analytic singularities and 6, is a
Kéhler current. In fact, we may assume that ¢ has the form

a
¢ =log ) Isil;, +O(1),
i=1

where s, ..., errﬁzHO(X ,L). This follows from the proof of Step 2 and the
construction of [Dem2a, Theorem 13.21].

Letuy,...,u, € PpNM be the lattice points corresponding to sy, . . ., §,. Observe
that A(6, ¢) is the convex envelope of uy, ..., u, by Lemma A.5.2.

Then for any m € M and k € Z-o, m € kPp if and only if
m2 .—ke¢
|x hge
is bounded from above. It follows that

O (kA(O, o) "N M) C kAL(0, @).
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The notation Ay, is defined Section 10.2. Letting k — oo and applying Theorem 10.2.4,
we find that

@p (A6, ¢)) S A6, ).

Compare the volumes of both sides using Proposition 12.2.2 and (10.11), we conclude
that the equality holds and (12.5) follows. O

As another consequence we have

Corollary 12.2.1 Let E be a T-invariant prime divisor on X corresponding to a ray
with ray generator n € N. Then for any ¢ € PSHor (X, 0)>0, we have

v(p,E) =inf {{m —my,n) :m e A(6,¢)},

where o is the ray in X corresponding to E.

Proof This follows immediately from Theorem 12.2.1 and Theorem 10.2.5. In fact,
since X is projective and smooth, there is always a T-invariant smooth flag ¥, with
Y, =E. O

Corollary 12.2.2 For any T-invariant subvariety Y C X corresponding to a cone o
in X and any ¢ € PSHo (X, 0)~q. Then the following are equivalent:

(M v(g,Y) =0;
(2) There is a point m € A(0, @) such that (m —m,) - u, = 0 for any 1-dimensional
face p of 0.
Proof Let py,...,u, be the rays of 0. Up to replacing D by a translation, we may
assume that m, = 0.
Let 7: Z — X be the blow-up of X along Y. Observe that A(6, ¢) = A(x*0, 1% ¢).
On the other hand, the ray corresponding to the exceptional divisor E is generated by

Uy, + -+ U, . Since X is smooth, this yectoy is primitive.
P1 Pr ‘ﬁou@
It follows from Corollary 12.2.1 and L[" 02a, Corollaire 1.1.8] that

v(@,Y)=v(an" @, E) =inf{(m,up,, +---+u,):meA, ¢} (12.6)
Our assertion follows. O

It follows from (12.6) that

a

v(p,Y) = Z v(p, Ei),

i=1

where the E;’s are the prime divisors corresponding to the rays of o-. This inequality
seems to be new as well.

Theorem 12.2.2 We have
Fy, € E(Ng, Pp).
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Proof Take ¢ = Vg in Theorem 12.2.1, we find

@r (A6, Vp)) = Ay, (0,Vg) = Pr(Pp),
where we applied Proposition 12.2.1 in the second equality. Therefore,

A(0,Vy) = Pp.

Proposition 12.2.2 Let ¢ € PSH (X, 0), then

Trop, (6lr(c) +dd°¢lr(c))" = MAR(Fy). (12.7)
In particular,
/ 0 = MARg (F,) = n!vol A(6, ¢) (12.8)
X Nr
and
‘/XQ% =n!vol P. (12.9)

Proof Take Fy as in (5.4) and w denotes the corresponding Kihler form.
Then for any large enough C > 0, 6 + Cw is a Kihler form. So we conclude from
Proposition 5.2.5 that

TI'Op,,< ((9 + Ca))|T(C) + ddctplT(C))n = MAR(F‘/J + CF()).

Since both sides are polynomials in C, we conclude that the same holds for C = 0.
Therefore, (12.7) follows.
(12.8) is a direct consequence, while (12.9) follows from Theorem 12.2.2. O

12.3 The pluripotential theory

Theorem 12.3.1 There is a canonical bijection between the following sets:

(1) the set of ¢ € PSHy (X, 0);
(2) the set of F € P(Ng, Pp) satisfying F < Fy,, and
(3) the set of closed proper convex functions G € Conv(Mpg) satisfying

G=>Fy,

As before, we write Fy,, G, for the functions determined by this construction.

Proof The proof is similar to that of Theorem 5.2.1, but due to its importance,
we give the proof. Again, the correspondence between (2) and (3) is proved in
Proposition A.2.4.

Given ¢, we can construct F, in (2) as explained earlier. Conversely, given
F € P(Ng, Pp) such that F < Fy,. Then
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Trop*(F — Fy) € PSH(T(C), Olr(c))-

Since F < Fy,, we see that Trop™ (F — Fy) is bounded from above. It follows that
Grauert—-Remmert’s extension theorem Theorem 1.2.1 is applicable, and this function
extends to a unique 6-psh function ¢. The uniqueness of the extension guarantees
that ¢ € PSHir (X, 6).

The two maps are clearly inverse to each other. O

We fix a model potential ¢ € PSH (X, 6)~¢ with Newton body A(6, ¢).
A similar argument guarantees the folloiwng:

Corollary 12.3.1 There is a canonical bijection between the following sets:

(1) the set of ¢ € PSHy (X, 0; ¢),
(2) the set of F € P(Ng, A6, ¢)) satisfying F < Fy,, and
(3) the set of closed proper convex functions G € Conv(MR) satisfying

Gz Fy,, Glmaao,¢) = -

Moreover, under these correspondences, we have the following bijections:
(1) the set Eor (X, 0; ),

(2) the set of F € E(Ng, A(6, ¢)) satisfying F < Fy,, and
(3) the set of closed proper convex functions G € Conv(Mg) satisfying

GEF\*/e’ G|IntP < ©0.
Here the notation o (X, 0; ¢) means E(X, 0; ¢) N PSH, (X, 6).
With an almost identical argument, we arrive at

Proposition 12.3.1 Let ¢g, ¢1 € PSHy: (X, 0). There is a canonical bijection between
the following sets:

(1) the set of T.-invariant subgeodesics from ¢ to ¢,
(2) the set of convex functions F: Ng X (0,1) — R such that for each r € (0, 1), the
function
F.: Nk >R, n+ F(n,r)

satisfies F,, — Fy, (resp. F, — Fy) everywhere as r — 1— (resp. r — 0+),
and
(3) the set of convex functions ¥ on Mg X R such that

Y(m,s) > Gy, (m) V (G, (m)+s).

Note that ¥ in (3) is nothing but the Legendre transform of F.
As an immediate corollary,

Corollary 12.3.2 Let ¢, ¢1 € Ewor(X, ). Then the geodesic (¢;);e(0,1) from ¢g to
@1 corresponds to the lower convex envelope Definition A.1.4 of the function

N x[0,1] = R, (n,1) = tF, (n)+ (1 —1)Fy(n).
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Moreover, we have
Gy, =(1=1)Gy, +1Gy. (12.10)

Proof The first assertion follows immediately from Proposition 12.3.1. It remains to
argue (12.10).

Let F: Ng x [0, 1] be the map (n,t) — F,, (n).

It follows from the correspondence in Proposition 12.3.1 that the Legendre
transform of F is given by G, V (G, + s). From this we conclude that

Gy, (m) =— sulg (st = Gyy(m) V (Gy,(m) +5)) = (1 =1)Gy, (m) +1G o, (m).

The proofs of the following results are similar to the ample case studied in
Chapter 5. We omit the details.

Proposition 12.3.2 Given ¢ € PSH(X, 6) and C € R. We have
Forc =Fy,+C, Guic=G,—-C.
Proposition 12.3.3 Given ¢, € PSHy (X, 0), then ¢ A € PSHyo (X, 0) and
Fony =Fy AFy, Guory=GyV Gy,
Proposition 12.3.4 Let {p; }ic; be a family in PSHy (X, 0) uniformly bounded from

above. Then sup*;.; ¢; € PSHor (X, 6) and

Foupt,cp i =SUP Fops Goupr,p g = cl /\ Gy
iel iel
Moreover, if I is finite, then
Gmaxic; i = /\ Gy
iel
Similarly, if {@; }ieq is a decreasing net in PSH: (X, 0) such that inf;c; ¢; # —oo,
then inf;¢; ¢; € PSHyo (X, ) and

Finfie; o, =I0f Fyps Ginfiep o =SUp G,
iel iel

Proposition 12.3.5 Let ¢ € PSH (X, 0). Then Pg[¢] € PSHy (X, 6) and

Gy, (x), if x € {G4(x) < oo}

] (12.11)
oo, otherwise.

Gpye)(x) = {

As a consequence, we have
Corollary 12.3.3 Let ¢, € PSHo (X, 0)~o. Then the following are equivalent:
D e~py;
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(2) A(6, ¢) = A6, ¥).

Next we consider the trace operator. For this purpose, we will need to fix a
T-invariant subvariety ¥ C X. Since X is smooth, so is Y. Let o be the cone in
corresponding to Y and Q be the face of P corresponding to Y.

Proposition 12.3.6 Let ¢ € PSHy (X, 0)~o. Consider a T-invariant subvariety Y
corresponding to a face Q of P. Suppose that v(¢,Y) = 0 and vol(0|y, Trf,(go)) > 0.
Then

Ay, Try () = (ic + me)i (A6, 9) N Q). (12.12)

In particular, Try (p) ~p @ly if ply # —co.

Observe that the condition v(¢,Y) = 0 means exactly that A(6,¢) N Q # @ by
Corollary 12.2.2.

Proof Perturbing 6 slightly, we may assume that 6, is a Kéhler current. Let (¢;);
be a quasi-equisingular approximation of ¢ in PSHio (X, 6). It follows from the
continuity of the partial Okounkov bodies Theorem 10.2.2 and the continuity of the
trace operator Proposition 8.2.2 that it suffices to handle the case where ¢ has analytic
singularities. We need to show that

A(Bly, ¢ly) = (ic +ma)g (A0, 0) N Q).
It is enough to observe that

G¢|Y = (i(,- +m¢)H§G¢|Q.
BGPS14

The argument is contained in , Proof of Proposition 4.8.9].
Finally, observe th tGli,gﬁIy # —oo, the right-hand side of (12.12) is nothing
but A(f]y, ¢|y) using % """" , Proof of Proposition 4.8.9]. So we conclude that

ely ~p Try (). o






Chapter 13
Non-Archimedean pluripotential theory

In this chapter, we will establish the non-Archimedean pluripotential theory using
the theory of 7 -good singularities.

We also construct the Duistermaat—Heckman measure of a non-Archimedean
metric in Section 13.3.

13.1 The definition of non-Archimedean metrics

Let X be a connected compact Kihler manifold of dimension n. Let Kdh(X) be the
set of Kihler forms on X with the partial order given as follows: we say w < w’ if
w > w’. Note that the ordered set Kéh(X) is a directed set.

Let 0 be a closed smooth real (1, 1)-form.

Definition 13.1.1 We define

PSHY (X, ) = lim PSH™ (X, 6 + w)=0
weKih(X)

in the category of sets, where the transition maps are given as follows: suppose that
w,w’ € Kih and w > «’, then the transition map is defined in Proposition 9.3.4:

Porew [®]7: PSHYA(X, 0 + w')s9 — PSHY (X, 6 + w)=o. (13.1)

In general, we denote the components of I' € PSHYA (X, 6) in PSHYA (X, 6 + w) by
Porow [F]I

Remark 13.1.1 Thanks to Proposition 9.3.2, for any other 6’ representing [6], we
have a canonical bijection

PSHM (X, 6) — PSHY (X, 6).

205
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Moreover, these bijections satisfy the cocycle condition. If we view the set of closed
real smooth (1, 1)-forms representing [] as a category with a unique morphism
between any two objects, then we can define

PSH™\ (X, [6]) = yLnPSHNA(X, 0).
0

This definition is independent of the choice of the explicit representative of the
cohomology class [6].

However, given the fact that our notations are already quite heavy, we decide to
stick to the set PSHYA (X, ). The readers should verify that all constructions below
are independent of the choice of 8 within its cohomology class.

Proposition 13.1.1 Let ' € PSHYNA(X, 6). Then given w, '’ € Kih(X) withw < o,
we have

Poiws [Posar [T]7,c0] = Poso [T 1, ~co-
Proof Since Py, [I'] 1,- is T-good by Example 7.1.2, it follows that
Pores [Porer [T17,-00] = Posw [Posar [Tl 1,-w0] ;-
Our assertion follows from Proposition 3.2.12. O
Proposition 13.1.2 There is a natural injective map
PSHYA(X,0)>0 = PSH"A(X,0), T (Ppso[T17)wekin(x) -

In the sequel, we will not distinguish an element in PSHYA (X, ) with its image in
PSHNA (X, ).

Proof 1t is obvious that this map is well-defined. It suffices to argue its injectivity.
Suppose that I, T” € PSHYA(X, 6)- and

Poro Tl = PoroI]1
for some Kihler form w on X. Then for any 7 < 'y, we have
I~ T
by Proposition 6.1.3. It follows again from Proposition 6.1.3 that
r,=rI7.
Definition 13.1.2 Let I' € PSHYA (X, 6). We define I'yax as Poro [T'] T.max for any
Kéhler form w on X.

Note that under the identification of Proposition 13.1.2, for any I" € PSHNA(X ,0)-0,
this definition is compatible with the notion of [« in Definition 9.1.1.
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Definition 13.1.3 LetI" € PSHNA(X ,0), we define its volume as follows:

IT:= i 0+w+ddPgro [T]7 )" € [0, ).
vo Sm X( w o+ [T17,-0)" € [0, 00)

Observe that the net is decreasing, so the limit exists.

Proposition 13.1.3 Ler I' € PSHNA(X, 6).. Then
volT" = / (8 +dd°T_)".
X

Proof This follows from Proposition 3.1.8, Corollary 3.1.3 and Proposition 13.1.1.0

Definition 13.1.4 Let w be a closed real smooth positive (1, 1)-form on X. We define
the map
Porwlelr: PSHYA(X,6) — PSHYA(X, 0 + w)

as follows: given I' € PSHYA (X, 6), we define Pg..,[I'] ; as the element such that
for any w’ € Kih(X), we have

P9+a)+a)’ [P9+a) [F]I]I = P€+a)+w’ [F]f

It is straightforward to check that under the identification of Proposition 13.1.2, the
map Py [®] 7 extends the map (13.1).

Proposition 13.1.4 The maps Pg.,[®] 1 in Definition 13.1.4 together induce a
bijection
PSH™(X,0) » lim PSH™(X, 0+ w). (13.2)
wela(X)

Proof 1t is a tautology that the maps Pg.,[®]r in Definition 13.1.4 are compatible
with the transition maps. So the map (13.2) is well-defined. It is injective by the same
argument as Proposition 13.1.2. We argue the surjectivity.

By unfolding the definitions, an object in the target of (13.2) is an assignment:
with each w € Kdh(X), we associate a family (Fw’wl)w/eK‘éh<X) satisfying:

(D e ¢ PSHNA(X, 0+ w + w')s( for each w, ' € Kdh(X);
(2) for each w, ', w” € Kéh(X) satisfying w”’ > w’, we have

"

Porwrw” [Fw,w ]I =T

(3) for each w,w’, w” € Kdh(X) satisfying w < w’, we have

Poiw o [Fw’w ]I =T« e,

The preimage of such an object is given by the family ('), ckin(x) given by
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re = l—va)/2,a)/2

The fact that the image of I" is as expected is a tautology, which we leave to the

readers. O

With an almost identical argument involving Proposition 3.1.8, we get

Proposition 13.1.5 The maps Py [®] 1 in Definition 13.1.4 and the injective maps
Proposition 13.1.2 together induce bijections

PSH™ (X, 0) — yLnPSHNA(X, 0+ w)so — yLnPSHNA(X, 0+w), (13.3)

w w

where w runs over either the partially ordered set of all smooth closed real positive
(1, 1)-forms with positive volume on X or Kah(X).

Corollary 13.1.1 Let 7: Y — X be a proper bimeromorphic morphism from a
compact Kdihler manifold Y. Then n* induces a bijection

PSH™ (X, 6) = PSHNA(Y, *0).
Proof This follows immediately from Proposition 13.1.5. O

It is immediate to verify that 7* in Corollary 13.1.1 extends the map Proposition 9.3.3.

13.2 Operations on non-Archimedean metrics

Let X be a connected compact Kéhler manifold of dimension n and 6, 6’, 8" be closed
real smooth (1, 1)-forms on X representing big cohomology classes.

Definition 13.2.1 Let I, " € PSHYA (X, 0). We say I' < I if Tpax < I',, and for
some w € Kidh(X), we have

P0+w[F]I 2 P9+w[F/]I-

This notion is independent of the choice of w thanks to (9.13).
Moreover, we have the following:

Proposition 13.2.1 Ler I',T” € PSHY (X, 6) and w be a closed smooth positive
(1, 1)-form on X, then the following are equivalent:

Hr=r1r’,;
(2) Poiw [F]I < Poiow [F’]I'

Proof This follows immediately from (9.13). O

Observe that this definition coincides with the corresponding definition in Defini-
tion 9.4.1 when I', T” € PSHYA(X, 6)-o.
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Definition 13.2.2 Let I' € PSHY*(X, 6) and I'" € PSHNA(X, ¢). Then we define
I'+I” € PSHYA(X, 6 + 0’) as the unique element such that for any w € Kih(X), we
have

Poro T +T 11 = Posow Tl 1 + Poso[I] 1.

This definition yields an element in PSHN* (X, 6 + 6’) by Lemma 9.4.3.

Proposition 13.2.2 Let I' € PSHYA(X, 6) and T" € PSHYA(X, 0’). Suppose that
w, W’ are two smooth closed positive (1, 1)-forms on X. Then

Porwroror [T+ F/]I =Porw[Ulr + Posor [F/]I-
Proof This is a direct consequence of Lemma 9.4.3. O

Proposition 13.2.3 The operation + is commutative and associative: for any I €
PSHNA(X, 6), I” € PSHNA (X, ¢’) and T’ € PSHY*(X, 0”), we have

r+r'=r'+r, (C+I")+I"=C+ T +T").
Proof This is a direct consequence of Proposition 9.4.1. O

Definition 13.2.3 LetI" € PSHNA (X, 6) and C € R. We define I'+C € PSHYA (X, 6)
as the unique element such that for any w € Kéh(X), we have

Poio[I'+C] =Py [l +C.

It is obvious from Definition 9.4.3 that ' + C € PSHYA(X, 6). It is also obvious that
this definition extends Definition 9.4.3.

Proposition 13.2.4 Let ' € PSHYA (X, 6) and C € R. Suppose that w is a smooth
closed positive (1, 1)-form on X. Then

Posw[l]1 +C =Py [T +C] 7.
Proof This is clear by definition. O

Proposition 13.2.5 Ler ' € PSHYA (X, 6), T’ € PSHNA(X, 0’) and C, C’ € R, then

M T+I)+C=T+I"+C)=T+C)+I7;
QT +(C+C)=(T+C)+C".

Proof This is a direct consequence of Proposition 9.4.2. O

Definition 13.2.4 Let I', T” € PSHYA(X, 6), we define ' VI’ € PSHYA (X, 6) as the
unique element such that for any w € Kéh(X), we have

Poro T VI = Poso Tl1 V Poso [T 1.

It follows from Lemma 9.4.5 that ' v I” € PSHNA(X, 6) and this definition extends
the corresponding definition in Definition 9.4.4.
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Proposition 13.2.6 Let I',T” € PSHNA(X ,0) and w be a closed smooth positive
(1, 1)-form on X. Then

P9+a)[r \ F,]I = P0+w[F]I \ P0+w[F,]I~
Proof This is a direct consequence of Lemma 9.4.5. O
Proposition 13.2.7 The operation V is commutative and associative.

In particular, given a finite non-empty family (I'');c; in PSH* (X, 6), we then define
Vie; T in the obvious way.

Proof This is a direct consequence of Corollary 9.4.1. O
Definition 13.2.5 Let (I'));¢; be a non-empty family in PSHY (X, 6). Assume that

supIt < oo, (13.4)

> max
iel

Then we define sup*_; I'" € PSHNA(X, 6) as the unique element such that for any
w € Kidh(X), we have

= sup* Py [Fi] .

iel

Py [sup r

iel

It follows immediately from Lemma 9.4.7 that sup* ., " € PSHN*(X,6) and
this definition extends Definition 9.4.6. Moreover, this definition clearly extends
Definition 13.2.4 as well.

Proposition 13.2.8 Let (I');e; be a non-empty in PSHY*(X, 6) satisfying (13.4).
Assume that w is a closed smooth positive (1, 1)-form on X. Then

P9+w

sup* Fi] = sup* Poro [T'] .

iel iel
Proof This is a direct consequence of Lemma 9.4.7. O

Proposition 13.2.9 Ler (I');c; be a non-empty in PSHYA(X, ) satisfying (13.4).
Then there exists a countable subfamily I’ C I such that

sup* I = sup* I,

iel iel’

Proof For any fixed w € Kéh(X), thanks to Proposition 9.4.5, we could find a
countable subfamily /” C I such that

sup* Pg.q, [T]7 = sup* Pg.e [I] 7.

iel iel’

It suffices to show that for any other «’ € Kih(X), we have



13.2. OPERATIONS ON NON-ARCHIMEDEAN METRICS 211

sup* Pgrer [T 7 = sup* Posor [T] 7.

il iel
This is an immediate consequence of Proposition 6.1.6. O

Proposition 13.2.10 Let (I');c; be a non-empty family in PSHYA (X, 0) satisfying
(13.4). Let C € R. Then

sup*(I' + C) = sup* I + C.

iel iel

Suppose that (T"%);ey is another family in PSHNA (X, 0) satisfying (13.4). Suppose
that T' < T foralli € I, then

sup* I < sup*I™.
iel iel

Proof This is an immediate consequence of Proposition 9.4.6. O

Definition 13.2.6 Let (I';);c; be a decreasing net in PSHYA (X, #). Assume that

inf T max > —c0, (13.5)
iel

then we define inf;¢; I'; € PSHNA(X ,0) as the unique element such that for each
w € Kih(X), the component

Poio [inf rl-] € PSHYA(X, 6 + w)-o
iel |,
is defined as follows:

(1) We set

(Pg+w infl"i] ) = inf [ max;
iel T i

iel

(2) for any 7 < inf;cs I'i max, we define

(P0+w i,nfri] ) =inf Py [1i7] 1. (13.6)
iel 7/ iel

We observe that

€ PSHYA(X, 6 + w) 0.

Pg.Hu [mf Fi
iel T

This follows from Proposition 3.2.11. Now it is clear that inf;e; I; € PSHYA(X, ).

Proposition 13.2.11 Let (I'');c; be a decreasing net in PSHY*(X, 6) satisfying
(13.5). Let C € R. Then . .

inf(I" +C) =infT" + C.

iel iel
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Suppose that (I");c; is another decreasing net in PSHYA(X, 0) satisfying (13.5).
Suppose that 7' < T for alli € I, then

infT" <infI".

iel iel
Proof This is clear by definition. O

Definition 13.2.7 Let I' € PSHY*(X,6) and 1 € R.g, then we define A" €
PSHMA (X, 160) as the unique element such that for any w € Kih(X), we have

Pao+o AL = APgyp-1, [T 1.

It follows immediately from Lemma 9.4.8 that AT' € PSHYA (X, 16) and this definition
extends Definition 9.4.7.

Proposition 13.2.12 Let T € PSHYA(X, 6) and A € R~q. Then for any closed smooth
positive (1, 1)-form w on X, we have

P,19+w[/1r]j = /1P9+/1—1w[r]].

Proof This follows immediately from Lemma 9.4.8. O

Proposition 13.2.13 Let ' € PSHYA(X, 0), I” € PSHY(X,6’), C e Rand 1, X’ >
0, we have
A(C+T7) =AT + AT,

(AT =2(A'T),
AT+ C) =A" + AC.

Suppose that (I');cy is a non-empty family in PSHYA (X, 0) satisfying (13.4), then

A (sup”< Fi) = sup*(AI").

iel iel

If (T));ep is a decreasing net in PSHNA (X, 0) satisfying (13.5), then
A (inf rf) = inf (ATY).
iel iel

Proof Everything except the last assertion follows from Proposition 9.4.8. The last
assertion is obvious by definition. O

Definition 13.2.8 Let ' € PSHYA(X, ). Let ¥ C X be an irreducible analytic subset.
We say that the trace operator of I" along Y is well-defined if

v (Porw [I7]7,Y) =0
for small enough 7 and any w”’ € Kdh(X). We define

(Try (I')) max == sup {7 < Tmax : v (Pg+w [I'z]71,Y) =0}.
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In this case, we define Try (I") € PSHYA(Y, 6|y) as the unique element such that
for any w € Kih(Y), the component

Pojy 40 [Try(D)] 7 € PSHYA(Y, 0]5 + w)so

is defined as follows:
(1) We let
(Potgeo [Ty (D7) = (Try (D)) (13.7)

(2) for each T € R less than the common value (13.7), we define

Popro [Try(D)] 7 7 = Pojyra [Trf*® (Pos [T 1.7)]
where @ is an arbitrary Kihler form on X such that w > @|y.

GK20 ~
It follows from L[""' , Proposition 3.5] that Y is a normal Kéhler space. We observe
that the choice of the trace operator Trfl“" (Pgﬂ;J [T] I,T) is irrelevant since two

different choice are J -equivalent. Moreover,

(P0|y+w [TrY(F)]I)T

is 7 -model by Proposition 8.1.2.
Furthermore,

Pojy 40 [Try (D)7 € PSHYA(Y, 0]5 + w)so

is a consequence of Proposition 8.2.1. It is therefore clear that Try (I') € PSHYA (X, 6).

Proposition 13.2.14 Let 1: Y — X be a proper bimeromorphic morphism from a
compact Kdihler manifold Y. Then all definitions in this section are invariant under
pulling-back to Y.

The meaning is clear in most cases. In the case of the trace operator, this means
the following: suppose that Z C X is an analytic subset and I" € PSHNA(X, 6) has
non-trivial restriction to Z. Suppose that Z is not contained in the non-isomorphism
locus of 7 so that the strict transform W of Z is defined. If we write I1: W — Z for
the restriction of 7 and [1: W — Z the strict transform of I1, then we have

IT* Trz(T') = Try (7°T).

Proof We only prove the assertion for the trace operator, as the other proofs are
similar.

We shall use the notations above. Observe that for any closed positive smooth
(1, 1)-form on X with positive mass, we have

(I Trz(1)) e = (Trz(T))max = sUp {7 < Fimax : v(Po+w[T2] 1, Z) =0}
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and
(Trw (7' T) ) max =SUP {7 < Tmax : V(Pr+g4n-e [0 Tl 7, W) = 0}

=Ssup {T < Dax : V(ﬂ*Pg.,,m [FT]I7 W) = O}
=sup {7 < ['nax : V(Pgsw 711, Z) = 0}.

Here we applied implicitly Proposition 13.1.5. Therefore,
(ﬁ* TrZ(F))max = (TrW(ﬂ*F))max :

Let 7 € R be less than this common value. Take a closed smooth Kihler form w
(resp. w’) on Z (resp. W) with positive mass. We may assume that o’ > IT*w. Take a
Kihler form & on Y (resp. «’ on X) such that

It suffices to show that
Tr";(’“‘"' (Pro+ar [W'Tl1c) ~p T Tt [Pora[Tl1,7] -
Using Proposition 8.2.1, this is equivalent to
Trw (Preo+nw[n'Tlrc) ~p " Ttz [Posc [T1r,c] -

This is a consequence of Lemma 8.2.1. O

13.3 Duistermaat—-Heckman measures

Let X be a connected compact Kahler manifold of dimension » and 6 be a closed real
smooth (1, 1)-form on X representing a big cohomology class.

Definition 13.3.1 Assume that X admits a smooth flag ¥,. LetT" € PSHNA(X ,0)=0.
The Duistermaat—Heckman measure DH(T') of an element I' € PSHYA (X, 6)~¢ is
defined as

DH(T') := n! - DH (Ay, (6,T)) .

Recall that Ay, (6,T") € TC(Ay, (0,I'-«)) is defined in Theorem 10.4.2. See Defini-
tion 10.4.4 for the definition of the Duistermaat—Heckman measure of an Okounkov
test curve..

Theorem 13.3.1 The Duistermaat—Heckman measure DH(T') of T' € PSHYA (X, 6)-0
in Definition 13.3.1 is independent of the choice of the smooth flag Y.. Furthermore,
for any m € Z, the m-th moment of DH(I") is given by
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e8]

rmax
/ X" DH(T)(x) = T vol T+m / ™1 (vol(6 + dd°T;) — vol T) dr (13.8)
R _

ifm>0and
/DH(F) =volTI. (13.9)
R

Proof Assume furthermore that I is bounded, we observe that the moments of the
random variable G [Ay, (6,T)] as computed in Proposition 10.4.4 are independent
of the choice of the flag: In fact, they are given by (13.8) and (13.9) thanks to
Theorem 10.3.2(1). Since the Duistermaat—Heckman measure has bounded support
in this case (c.f. Theorem 10.4.1), we conclude that DH(I") is uniquely determined.

In general, T is the decreasing limit of the sequence I' V I'* as k — oo, where
I'k: (=co,—k) — PSH(X,#) takes the constant value I'_,. It follows from the
argument of Theorem 9.2.1 that Ay, (I'); is the decreasing limit of Ay, (I" v I'*) for
any 7 < Ipax. So DH(I" v I'*) — DH(T") by Lemma 10.4.2. It follows that DH(I")
is independent of the choice of the flag. O

More generally, when X does not admit a smooth flag, we could make a modification
m: Y — X so that Y admits a flag. We define

DH(T") := DH(#"T). (13.10)
It follows from Theorem 10.3.2(5) that this measure is independent of the choice of .

Proposition 13.3.1 Let (I');c; be a net in PSHYA (X, 6)~0 and T € PSHYA (X, 6)~.
Assume one of the following conditions holds:

(1) The net (I'");¢g is decreasing and T’ = inf;c; ", Assume that

vol T = lim vol T,
iel

(2) The net (I');¢; is increasing and T' = sup*_, "',
Then .
DH(I'") — DH(I). (13.11)

Proof We may assume that X admits a smooth flag Y.
Assume (1). We want to derive (13.11) from Proposition 10.4.2. It boils down to
prove the following: for any 7 < I'yax, We have

[ d aus
Ay, (6,TE) 25 Ay, (6,T%).

This follows immediately from Theorem 10.3.2(1).
The proof under the assumption (2) is similar. We only need to apply Proposi-
tion 10.4.3 instead of Proposition 10.4.2. O






Chapter 14
Partial Bergman kernels

In this chapter, we prove the convergence of the partial Bergman kernels.

14.1 Partial envelopes

In this section, let X be a connected compact Kihler manifold of dimension n and
K C X be a closed non-pluripolar set. Let 6 be a smooth closed real (1, 1)-form on
X representing a pseudoeffective cohomology class. Fix ¢ € PSH(X, 6).

Definition 14.1.1 Given a function v: K — [—c0, ), we introduce the relative
P-envelope of ¢ (with respect to K, v, 8) as

Po.xle](v) = sup* { € PSH(X,0) : n|x < vandn < ¢}. (14.1)

Similarly, we define the relative I -envelope of ¢ (with respect to K, v, 6) as
Poxlelr(v) :i=sup*{n € PSH(X,60) : n|lxk <vandn <r ¢}. (14.2)

Observe that when v is bounded, we neither envelope is identically —co. When K = X
and v = 0, these definitions reduce to the usual P-envelope and 7 -envelope of ¢.
It would be helpful to consider the following auxiliary functions:

Py x[¢](v) :=sup {n € PSH(X,6) : nlg <vandn < ¢},
Py kel (v) =sup{n € PSH(X,6) : n|x <vandn <7 ¢}.

We note the following maximum principles, that follow from the above definitions:

Lemma 14.1.1 Let v € C°(K). Let 7 € PSH(X, 6). Assume that 1 < ¢, then

217
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sup(n—-v) = sup (n—Py klel(v)) = sup (n=Py klel(v)). (14.3)
K (1%~} (P} 1 [9](v)#—c0}

Proof We prove the first equality at first. We write S = {5 = —co}.
By definition, P}, . [¢](v)|x < v, s0

(h - P%,K[¢](V))‘K\S 2 nlk\s = vik\s -

This implies that
sup(n —v) < sup(n — Py g [¢] (v)).
K X\S

Conversely, observe that supg (7 — v) > —co as K is non-pluripolar. Let p’ =
n — supg(n — v), then n’ is a candidate in the definition of P;’K[go](v), hence
n" < Py glel(v), namely,

n- slgp(n -v) < Py klel(v),
the latter implies that

sup(n = v) = sup(n7 = Py ¢ [¢] (v)),
K X\S

finishing the proof of the first identity.

We have {P/H,K [¢](v) = =0} C S, and we notice that points in S\{P,(i,K [e]l(v) =
—oo} do not contribute to the supremum ofn—P’g’K [¢](v)on X\{P’Q,K [e](v) = —o0},
hence the last equality of (14.3) also follows. O

Next, we make the following observations about the singularity types of our
envelopes:

Lemma 14.1.2 For any v € C°(K) we have
Poklel(v) ~ Polel, Poklelr(v) ~ Polelr.
If ¢ has analytic singularities, we have
Po klel(v) = Poklelr(v). (14.4)
Proof Let C > 0 such that —C < v < C. Then
Pole]l = C < Py kle](v).

Since K is non-pluripolar, for € PSH(X G%}he condition 7|x < v < C implies that
n < C on X for some C := C(C, K) > 0[GZ07, Corollary 4.3]. This implies that

Poxlel(v) < Poly] +C,

giving
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Po k[@](v) ~ Pgle].

The exact same argument applies in case of the relative 7 -envelope.
Next assume that ¢ has analytic singularities, then we have that

¢~ Polelr

by Proposition 3.2.9. In particular, for n € PSH(X,0), n < ¢ if and only if

n < Pgle]lr. So (14.4) follows. |

Corollary 14.1.1 Let v € C°(X). Then

Poklelr(v) = Pox[Poxlelr(v)]r(v).

Proof By definition, we have

Pox[Poklelr(v)]r(v)
=sup* {n € PSH(X,0) : nlk <v,n <15 Po.x[elr()}
=sup* { € PSH(X, 0) : nlxk <v.n <1 ¢}
=Pg.k[¢lr(v),

where we applied Lemma 14.1.2 on the thrid line. O

Lemma 14.1.3 Assume that ¢ € PSH(X,80)so. Let v € C°(K). Let S C X be a
pluripolar set and 1 € PSH(X, 0)> with n < ¢. Assume that n|x\s < v|k\s, then
n < Poxle](v).

Proof By Theorem 1.1.5, there is y € PSH(X, 0), such that y|s = —co. We claim
that we can choose y so that

X =1

In fact, since fX «9;’] > 0, fixing some y and € € (0, 1) small enough, we have

/ ex+(1- E)Vg /9 >/9n

Thus, by Proposition 3.1.3, we have
(ex+ (1 -€)Vy) Ay e PSH(X,6).

It suffices to replace y by (ex + (1 — €)Vy) A 1.
Fix y < n as above. For any ¢ € (0, 1), we have

(I1-)nlk +oxlk <v, (1-6n+déx < ¢.

Hence,
(1-0)n+dx < Poklel(v).
Letting § — 0+, we conclude that 7 < Py g [¢] (V). O
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Corollary 14.1.2 Assume that ¢ € PSH(X, 0)~¢. Let v € C°(K). Then

Py klel(v) = Pox[e]l (Po.x[Vol(v)).

Proof 1t is clear that

Poklel(v) < Poxlel (Po.x[Vol(v)).

For the reverse direction, it suffices to prove that any n € PSH(X, 6) such that

n=¢ 1n=<Pok[Vel(v),
we have
n < Poklel(v). (14.5)

As ¢ has positive mass, we can assume that 77 has positive mass as well. Let

S={Pox[Vol(v) > Py x[Vol(v)}.

By Proposition 1.2.3, S is a pluripolar set. Observe that

nlk\s < Vvlk\s-
Hence, (14.5) follows from Lemma 14.1.3. O

The next result motivates our terminology to call the measures «9;9 ol () the

partial equilibrium measures of our context:

Lemma 14.1.4 Let v € C°(K). Then

n _
/X\K Poxlelv) = 0-

Moreover, Pg x[¢](v)|k = v almost everywhere with respect to grfl’a,x[w](\/)' More

precisely, we have

Ogg,KW](V) < Tkn(Po.k @] (v)=Po.x [Vo](v)=v} 9';’9,,([\/9]@)- (14.6)

Proof Step 1. We address the case where ¢ = Vy.

Let S € X be a closed pluripolar set, such that Vy is locally bounded on X \ S. This
is possible because we can always find a Kéhler current with analytic singularities in
the cohomology class [6], as a consequence of Theorem 1.6.2.

For the first assertion, it suffices to show that 9’1’,
openball B€ X \ (SUK).

By Proposition 1.2.2, we can take an increasing sequence (17;); in PSH(X, 8) such
that

o x[Ve](v) does not charge any

nj — Pg k[Ve](v) almost everywhere, n;|x <vforall j > 1.
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BT82
By [BT32, Proposition 9.1], for each j > 1, we can find y; € PSH(X,#6), such

that (6 + dd°y;|g)" = 0 and w; agrees with ; outside B. Note that (y;); is clearly
increasing and

Yi=nj, Yilk <v.

forall j > 1.
It follows that y; converges to Py x[Ve](v) almost everywhere as well. By
Theorem 2.3.1, we find that 8%, does not charge B, as desired.

Po.x[Val(v)
For the second assertion, letx € (X\S)NK be apoint such that Py x [Ve](v)(x) <

v(x) — € for some € > 0. Let B be a ball centered at x, small enough so that 8 has a
local potential on B, allowing us to identify 6-psh functions with psh functions (on
B). By shrinking B, we can further guarantee

(1) BCX\S.
(2) Pox[Vol(Wlz <v(x) —e
(3) vIigag > v(x) —€.

Construct the sequences 77;, ¥; as above. On B, by choosing a local potential of 8, we
may identify 7;, v; with the corresponding psh functions in a neighborhood of B. By
(2), we have y; < v(x)—e€ on dB, hence by the comparison principle, y|p < v(x)—€.
By (3), we have y;|pnk < v|pnk. Thus, we conclude that G;Q,K[Vg](v) does not
charge B, as in the previous paragraph.

Step 2. We handle the general case. We can assume ¢ € PSH(X, 6)-¢. Indeed,
due to Lemma 14.1.2 and Theorem 2.3.2, we have that

0" :/9".
‘/X Po.xl[e](v) < ¢

Hence, there is nothing to prove if fX 0, =0.
By Corollary 14.1.2,

Po k[@l(v) = Po x[¢](Po,x[Val(v)).

DNL 18mono

Now [DDNLT8b, Theorem 3.8] gives

Oy clo1v) SL(Pok0]()=Po.x Vol i [Vel(v)

Shipoklel)=v}0py (Vo1 (v)
where in the second inequality we have used Step 1. O

Corollary 14.1.3 Let v € C°(K).

0" =0,
‘/(X\K)U{P(-),K[<P](V)<V} Pouxlelt) 14.7)
0.

0" =
P
./(X\K)u{p(,,,([w]](vkv} 0.k [¢]r(v)
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Proof The first equation in (14.7) follows from Lemma 14.1.4. For the second, we

can assume that
‘/Xﬁﬁy‘x[q)]z(v) > 0, (14.8)

otherwise there is nothing to prove. By definition, we have

Poklelr(v) =Pox[Polelrlr(v).

Next we show that

Pox[Polelrlr(v) = Pox[Polelr](v).

The > direction is trivial. It remains to prove the reverse inequality. By Lemma 14.1.2,
we get that

Po.x[Polelr]r(v) ~ Palels.

Due to Proposition 1.2.3, we get that

Pok[Polelrlr(v) <v

on K \ S, where S C X is a pluripolar set. As a result, due to (14.8), Lemma 14.1.3
allows to conclude that

Pox[Polelrlr(v) < Poxl[Polelr](v).

Since
Pox[Polelrlr(v) = Poxlelr(v),

we get that the second equation in (14.7), using the first. O

Proposition 14.1.1 Assume that ¢ € PSH(X, 0). Let v € C°(K). Then

Poklel(v) = Pox[Polell(v). (14.9)

In particular,
Po.x[pl(v) = Po.x[Po.x[¢](V)](V).

Proof The < direction in (14.9) is obvious. We to prove the reverse inequality. As

Py xle](v) and Pg k[Pl g%ﬁﬂg}naov&the same singularity types by Lemma 14.1.2,
by the domination principleﬁr““’"_"", Corollary 3.10], it suffices to show that

Py k[e](v) = Po.x[Pole]](v) almost everywhere with respect to 0’}‘,H cle](v)
T (14.10)

By (14.6),
Poxlel(v) =Py k[Vol(v) =v

almost everywhere with respect to 67 . Hence,
Pox[el(v)

[¢]

Pok[Polell(v) =v
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almost everywhere with respect to 9’;,8 clol(v) We conclude that

e
Po.x[pl(v) = P x[Pale]l](v).
Finally, (14.10) follows from Lemma 14.1.2 and (14.9). O

Definition 14.1.2 Given ¢ € PSH(X, 0)~, the partial equilibrium energy functional

8[";] «: CU(K) - Rof v € CO(K) as follows

&4 (V) = EJYT (Pg k(@] 1 (V). (14.11)

Recall that the energy E g” [#17 functional is defined in Definition 3.1.5.
Note that by Lemma 14.1.2, we have

Poxlelr(v) € E¥(X,0; Polel 1),
SO Sg’K(v) eR.

Proposition 14.1.2 Let K C X be a closed non-pluripolar set, v, f € C°(K) and
¢ € PSH(X,0)s9. ThenR > t 85 x (v +tf) is differentiable and

d
aggx(””f) =/Kf9?o,z<[¢h<v+zf> (14.12)

forallt € R.

Proof We may assume that ¢ is 7 -model by replacing ¢ by Pgy[¢]r.
Note that it suffices to prove (14.12) at ¢ = 0, which is equivalent to

E?(P -E?(P
lir% o H,K[SD]I(V"'tf)t) o (Po.xlelr(v) =/‘f9'zl>e,<[<p]](v)- (14.13)
t— K >

By switching f to —f, we may qlgmtol%l%t t > 0 in the above limit.
By the comparison principle [DDNLTTS0 , Proposition 3.5] and Proposition 3.1.11,
we find

EJ(Poklelr(v+1f) = Ef(Poxlelr(v))

1 < . .
n+l ZO L(PH,K [plz(v+1f) = Poxle]lr(v)) glPH,K[QO]I(V‘Hf) A 028;[@](\,)
i=

< [(Poxlolr+10) = Paslol s 0D 8, 101,00

By Lemma 14.1.4,

[ Poxlelsorin) = PaxlelN 0, o0 <t [ 108, 0100
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Thus, we get the inequality,

lim

t—0+ t

n
Po.klelr(v)”

— EJ(Poxlelr(v+1f) —E} (Pox[elr(v) - / o
Jk

Similarly, we have
Ef(Poxlelr(v+1f) —Ef(Poklelr(v)

> [(Poxlels(a19) = PaklelO) 8, g1 o

2t /K S Oby klls (vat):

Together with the above, this implies (14.13). O

Lemma 14.1.5 Fix a Kdihler form w on X. For v € C°(K) there exists an increasing
bounded sequence (VJ‘. )j in C*(X) and a decreasing bounded sequence (v;“.) jin
C*®(X), such that for all ¢ € PSH(X, 0)>0 and 6 € [0, 1] we have

(D) Porswx[e](vi) N Porsw .k [](v),
() Porswxlel(vy) / Porsw.x[el(v) almost everywhere,

(3) supy |vj_| < C, supy |v7| < C for some constant C depending only on [|v||co(k),
K and 8 + w, and

“

Jim 7 (v;) =67 (). lim & 05) =67 ().

Proof We fix ¢ € [0, 1]. First we prove the existence of (vj‘. )j. Let

Ck,y = sup {supn :n € PSH(X,0+w),n|x < v} .
X

Since K is non-pluripolar, we have that Ck ,, € R. Now define #: X — R as

v(x), xeKk;
P(x) =
Cryv+1, xeX\K.

Since ¥ is lower semicontinuous, there exists an increasing and uniformly bounded
sequence (v]‘.)j in C*(X), such that vy a2
Observe that Pg.s,.x[¢] (v]‘.) is increasing in j > 1, and

Porswxlel(v;) < Porswx @] (v).

To prove that
Porswxlel(vy) /" Porsw.k @] (v)

almost everywhere, let 77 be a candidate for P .54, & [¢](v) such that supg (7—v) < 0.
Then, since 7 is upper semicontinuous and 7 < ¥, by Dini’s lemma there exists jo > 0
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such that n < vy for j > jo, i.e.

N < Porswxlel(v),

proving existence of (v});.
Next, we prove the existence of (v;.)j. Since

h = Porw ik [Vorw](v) V (i2fv -1

is usc, there exists a decreasing and uniformly bounded sequence (v;.) jin C*(X),
such that v; N\ h. Trivially,

X = ,-ILH;, Possw.x[0](vV]) = Porsw.x @] (V).

In particular, y has positive mass, since it has the same singularity types as
Poisw.x[¢](v) by Lemma 14.1.2. We introduce

S = {Plyro k Vorol (V) < Porawk [Vorw] (1)}

By Proposition 1.2.3, S is a pluripolar set. Observe that

Porswx[e](v]) < v

for all j > 1. Thus, y < h. On the other hand, 2 < v on K \ S. So in particular,
Xlk\s < vlk\s. By Lemma 14.1.2 we also have that y ~ Pgs5.,x [¢](v). Hence, by
Lemma 14.1.3,

X S Porsw.k[Porsw.x [@](WM](V) = Porsw.k [@](V),

where we also used the last statement of Proposition 14.1.1.
Finally observe that (4) follows from Lemma 14.1.2, Lemma 14.1.5 and Theo-
rem 2.3.1. o

Proposition 14.1.3 Let K C X be a compact and non-pluripolar subset. Let v €
d
CO(K). Let @j, ¢ € PSH(X,0)s0 (j = 1) with ¢; =, ¢. Then the following hold:

W If ¢j N\ @ then Pogle;lr(v) v Poxlelr(v) and Poxle;1(v) \
Po k [u](v).

Q) If ¢; / ¢ almost everywhere then Pg x[¢;17(v) / Po kl¢lr(v) almost
everywhere, and Pg k [¢;]1(v) / Po k [¢](v) almost everywhere.

Proof (1) By Theorem 6.2.1, we have

lim o = [ 67.
/_)OO/X Pj 1/X [

It follows from Lemma 2.3.1 that there is a decreasing sequence €; ~\, 0 with
€; € (0,1) and n; € PSH(X, 0) such that
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(1-€p)p;+em; <.
By the concavity similar to Proposition 3.2.10, we get

(1-€)Poxlejlr(v) +€jPox[nilr(v) <Pox[(1-€j)ej+emilr(v)
<Poxlelr(v).

Since (¢;); is decreasing, so is (Pg k [¢;]7(v));, hence
Y= jli_)H; Polejlr(v) 2 Po.xlelr(v)

exists. Since €; — 0 and supy Pg k [17;]7(v) is bounded, we can let j — oo in the
above estimate to conclude that

W =Poxlelr(v).

The same ideas yield that

Po.xl[ei1(v) \ Po.k[@](v).

The proof of (2) is similar and is left to the readers. O

14.2 Quantization of partial equilibrium measures

Let X be a connected compact Kédhler manifold of dimension n and L be a pseudoef-
fective line bundle on X. Let & be a Hermitian metric on L and set 8 = ¢ (L, h). Let
(T, hr) be a Hermitian line bundle on X. Take a Kihler form w on X so that

/w"zl.
X

14.2.1 Bernstein—-Markov measures

Let K € X be a closed non-pluripolar subset. Let v be a measurable function on K
and let u be a positive Borel probability measure on K. We introduce the following
functions on HY(X, L* ® T) (k > 1), with values possibly equaling co:

12
N, (s) = (/ h* ® hr (s, s)e™ du) ,
K

172
N‘]fK(s) = sup (hk ® hT(s,s)e_k") )
| K\{v=—-co}
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We start with the following elementary observation:

Lemma 14.2.1 Let v < v be two measurable functions on X. Assume that {v| =
—o00} = {vy = —co}. Then for any s € H*(X, LK ® T) (k > 1), we have

N§ x(5) = N§ (s).
If v puts no mass on {v = —oco} then we always have
N, (5) < NE i (s). (14.14)

Definition 14.2.1 A weighted subset of X is a pair (K, v) consisting of a closed
non-pluripolar subset K C X and a function v € C°(K).

Definition 14.2.2 Let (K, v) be a weighted subset of X. A positive Borel probability
measure v on K is Bernstein—-Markov with respect to (K, v) if for each € > 0, there is
a constant C > 0 such that

N5 x(5) < Cce N, (5) (14.15)

for any s € HY(X,L¥ ® T) and any k € N. We write BM(K,v) for the set of
Bernstein-Markov measures with respect to (K, v).
BBWN11

As pointed out in ], any volume form on X is Bernstein—Markov with
respect to (X, v), with v € C*(X).

Proposition 14.2.1 Assume that (K, v) is a weighted subset of X, then

€)) N"f x Is anormon HY(X, Lk ®T).

(2) For any v € BM(K,v), NX , is a norm on HO(X, L* ® T').

Proof (1) Asv is bounded, N f 18 clearly finite on HO(X, L* ® T). In order to show

that it is a norm, it suffices to show that for any s € H'(X,L* ® T), N* , (s) =0
implies that s = 0. In fact, we have s|g = 0, hence s = 0 by the connectedness of X.
(2) As v is bounded, clearly N\’f’v is finite and satisfies the triangle inequality.

Non-degeneracy follows from the fact that N "f x is anorm and (14.15). O

14.2.2 Partial Bergman Kkernels

In this section, we fix a weighted subset (K, v) of X and v € BM(K, v).

Definition 14.2.3 For any ¢ € PSH(X, 0), we introduce the partial Bergman kernels
of ¢ (with respect to (K, v)) as follows: For any k > 0, we introduce
B ., (x) = sup {h* @ hr(s,5)e™ " (x) : N, (5,5) < 1,

(14.16)
seH(X,L*®T®I(kp))}, xeK.
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We extend BX to the whole X by setting it to be 0 outside K.

vV, o, U
The partial Bergman measures of ¢ (with respect to (K, v)) are defined as

!
ﬂ\lj,go,u = %Bﬁ,%u dv 14.17)
for each k > 0.
Observe that
k n! 0 k
By.gw = k—,,h (X, T® LF @ I'(ky)). (14.18)
K

The goal of this section is to prove the following theorem:

Theorem 14.2.1 Suppose that ¢ € PSH(X, ). Let (K, v) be a weighed subset of
X, let v € BM(K, V). Then

k _.pn
By = by kol ) (14.19)

as k — oo.
Proposition 14.2.2 Let ¢ € PSH(X, 0) be a potential with analytic singularities such
that 0, is a Kdhler current. If v € C*(X), then

="

k —_
B o Poxlel(v)

v,@,w"

r;’a,x[tﬁ]z(v) (14.20)

as k — oo,

Proof The equality part in (14.20) follows from Lemma 14.1.2. We start with noticing
that as k — oo,

k k
lgv,ga,w" < ﬁv,Vg,w” - H;H,X[Vg](v) = Il{v:Pe,X[VHJ(V)}g’\Z’

Berll
where #ﬁf&nvergence follows from L["_" , Theorem 1.2], and the last identity is

due to , Corollary 3.4]. Let u be the weak limit of a subsequence of ﬂ’v"%w,l,
then we obtain that

1< Ly=py x[Vol (1)) 05 - (14.21)
Le%gr?no, s € HO(X,L* ® T ® T (k¢)) be a section such that Nf,w,, (s,s) < 1. Then
by [Ber09, Lemma 4.1], there exists C > 0 such that
h* & hr(s,s)e™™ < BY | o < BE, . <K'C.

This implies that

logC . logk
e

1
zloghk®hr(s,s)3v+ .

We define ¢y as in Proposition 1.8.2. Take ax " 1 as in Proposition 1.8.2. Then

1
z log h* ® hy(s,s) < ox < axe.
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Let € > 0. We notice that 1 log h* ® hz(s,s) € PSH(X, 0 + ew) for all k > ko(e).
In particular,

1 log C log k
z log e hr(s,s) — % - n% < Porew xlare](v).

Now taking supremum over all candidates s, we obtain that

Bk < Cknek(P{)Jrem,X[dk‘P](V)_V)’ k > ko. (14.22)

v, w"

We claim that ¢ does not put mass on {Pgieq x[¢](v) < v} for any € > 0. Since

P9+ew,X[ak§0] (V) \4 P9+ew,X[‘;0] (V)

by Proposition 14.1.3, we get that

{P6)+ew,X[ak‘P] (V) < V} /‘ {P0+ew,X[‘;0](V) < V}-

As a result, to argue the claim, it suffices to show that u does not put mass on the
set {Po+ew,x[@ke] (v) < v} for any k. Note that the latter set is open, hence (14.22)
implies our claim.

Since ¢ has analytic singularities, we have that

PH+ew,X[‘;0](V) ~ P

for all € > 0 by Lemma 14.1.2 and Proposition 3.2.9. As a result,

P9+Ea),X[Q0] (V) \I PH,X[‘P] (V),

and we can let € \ 0 to conclude that ¢ does not put mass on {Pg x[¢](v) < v} =
Ueso{Po+ew.x[@](v) < v}. Putting this together with (14.21), we obtain that

1< 1Py xlo1 =105 = Op, (410

DNT19
where the last equality is due to L[““'" , Corollary 3.4]. Comparing total masses via

(14.18) and Theorem 7.3.1, we conclude that u = 9’;,9 clol)” As p is an arbitrary
cluster point of ﬁ'v" o.wns We conclude that ﬁ"f’ ,n converges weakly to 0'1’,9

xlel(v)’
as k — oo. 0O

Definition 14.2.4 Take k > Oand ¢ € PSH(X, 6), let Norm(H*(X, LK®T® T (k¢)))
be the space of Hermitian norms on the vector space H*(X, LX @ T ® I (k¢)).

Let Ly ,: Norm(H(X,L* ® T ® T (kg))) — R be the partial Donaldson
functional:
n! I vol{s : H(s) < 1}

L H) = >
by (H) kvl vol{s : N(’)‘w,,(s) <1}

(14.23)

where vol is simply the Euclidean volume.
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Proposition 14.2.3 Let w,w’ € C°(X) and ¢ € PSH(X,0) be a potential with
analytic singularities such that 0, is a Kéihler current, then

Tim (L (VE o) = Lig (N ) = 84 (0) = 5w (14.24)

In particular,

Jim Liy(Ny n) =88 x(w). (14.25)

Proof First observe that by Proposition 14.2.1, for any k > 0, N on and N
are both norms, hence the expressions inside the limit in (14.24) make sense.
To start, we make the following observation:

1
Lkv‘/’(Nv]f/,w”) - ‘EkJP(N\]A{/’,w") = Lk </’( wt(w' —w), w") dr

0
_ ’ k
_/0 /X(w _W)ﬂwﬂ(w’—w),cp,w" dr.

By Proposition 14.2.2, we have

. k _
kh—r};lo ,/X(W’ - W) ﬁw+z(w'fW),<ﬁ,w" - ,/X(WI —W) g;l’e,x[w](WH(W'*W))'

By Theorem 7.3.1, we have | fX(w w)ﬁwH(W, W), wonl
by the dominated convergence theorem we obtain that

< Csupy |[w —w’|. Hence,

. k
i (L2s V) = e ) = [ [0 =080, @
:Sg,x(w)_ g,x(w)’

where in the last line we have used Proposition 14.1.2.
Finally, (14.25) is just a special case of (14.24) with w” = 0. O

Lemma 14.2.2 Let ¢ € PSH(X,0). Let (K,v) be a weighted subset of X. Let
v € BM(K, V). Then

klim (Lo (N ) = Li o (N ,)) =0. (14.26)

Proof This is a direct consequence of the definition of Bernstein-Markov measures
(14.15). O

Corollary 14.2.1 Let w € C%(X), ¢ € PSH(X,0) be a potential with analytic
singularities such that 6, is a Kdhler current. Then

hm L, o(N X,) X(w).
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Proof This follows from Lemma 14.2.2 and Proposition 14.2.3 and the fact that
w" € BM(X,0). O

Proposition 14.2.4 Let ¢ € PSH(X, 0) be a potential with analytic singularities such
that 0, is a Kdhler current. Let (K, v), (K',v") be two weighted subsets of X. Then

Tim (L (VE ) = Lo (NS ) = 6 c(0) =85 0 (01). (1427)

In particular,
Jim Liy(Nyx) =88 (). (14.28)

Proof First observe that by Proposition 14.2.1, for any & > 0, Nk x and N ) ko are
both norms, hence the expressions inside the limit in (14.27) make sense. Moreover
(14.28) is just a special case of (14.27) for K’ = X and v/ = 0.

To prove (14.27) it is enough to show that for any fixed w € C*(X) we have

lm (Lip (V) ) = Lip (N ) = 8 (V) =85 (). (14.29)

For € € (0, 1) small enough we have that 6;_),, is still a Kéhler current. Let us
fix such e, along with an arbitrary €’ € (0, 1).

Let (v]‘. )js (v}”.) ; be the sequences of smooth functions constructed in Lemma 14.1.5
for the data (K, v).
By Proposition 1.8.2 there exists ko(e, €’) € N such that

1
Z log h* @ hy(s,s) < (1 - €)u,

and ¢ log h* ® hy(s,s) € PSH(X, 6 + €' w) forany s € H'(X,T ® L* ® I (k¢)), as
long as k > ko(€, €').
In particular, Lemma 14.1.1 gives that

K _nk

N ;7+é’w,K[(17€)‘p](V)»X(s) _N K(s)’
k

Ne, [(1—€)<p](v;),x(5) =N;- X(s)

O+e’ w,X

k —
Ny sl -0re109).x(5) —Nv;,x(s)'

O+e’ w,X

As

Picwx (1 =6@1(v7) < Py k[(1 =)@l (v) < Py, oy x[(1 =)0l (v)),
by Lemma 14.2.1 we have

N‘I)}_’X(s) <N§ g(s) < Né‘;’x(s), s e H(X,T® L* ® T (kg)), k > ko(e, €).

Composing with Ly , we arrive at
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Lk,SD(Nf;’X) < Lip(NE g) < Lk,w(Nf;’X), k > ko(e, €).

For any j > 0, by Corollary 14.2.1 we get
ag,x("/_‘) - Sg,x(w) = kh_[go (Lk,sﬂ(N\lf;,X) - Lk,w(va,x))

< lim (Lip (N )~ Lip (NE )

k—o0
< Jim (L (VE ) = Lip (N )
= ,}l_rgo (-Ek,w(N\lfjf,x) - Lkwp(vav,x))
67 () - £y 0.

Using Lemma 14.1.5, we can let j — oo to arrive at

&gk (V) =& k(W) < lim (Lk,tﬁ(Nf,K) - Lk,so(vav,x))

k—o00
< k@ (Lk,Lp(N\]f’K) - -Ek,(p(N‘lj;,X))
< 8§’K(v) - Sg,K(w) .
Hence, (14.29) follows. ]

Corollary 14.2.2 Let ¢ € PSH(X, 0) be a potential with analytic singularities such
that 0, is a Kdihler current. Let (K,v) be a weighted subset of X. Assume that
v € BM(K, V). Then

lim Li o (Ny,) = EF ¢ (v).

Proof Our claim follows from Proposition 14.2.4 and Lemma 14.2.2. O

Proposition 14.2.5 Suppose that ¢ € PSH(X, 0) be a potential with analytic singu-
larities such that 6, is a Kdihler current. Let (K,v) be a weighted subset of X. Let
v € BM(K, V). Then
k . nn _pn
Bo.pw = Opy klelr ) = Opo kil v)

weakly as k — oo.

Proof Forw € CO(X), let
fe@) = L g(Nfiy ), 8(1) = 88 (v +1w).

By Coroflgry 14.2.2lim; | fi (1) = g(1).No gihat fi is concave by Holder’s inequal-
ity (see [BBWI , Proposition 2.4]), so byj['““ , Lemma 7.6], limy oo f,é(O) =

¢’(0), which is equivalent to 8} , , — O, (4] (v DY Proposition 14.1.2. o
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Proposition 14.2.6 Suppose that ¢ € PSH(X, 6) such that 0, is a Kihler current.
Let (K, v) be a weighted subset of X and v € BM(K, v). Then

k n
By = Opyxlelrv) (14.30)
as k — oo.
Proof Let u be the weak limit of a subsequence of ﬁ’;’ ,v+ We claim that

K= 0 g1 () (14.31)

Observe that this claim implies the conclusion. In fact, by Theorem 7.3.1, we have
equality of the total masses, so equality holds in (14.31). As u is an arbitrary cluster
point of the sequence (8~ _ ,)x, we get (14.30).

v,Q,U
It remains to prove (14.31). Let (¢;) be a quasi-equisingular approximation of

¢ in PSH(X, §). We may assume that 6, is a Kéhler current for all j > 1. By
Lemma 14.1.2, Corollary 7.1.2, we know that

d
¢; —> Poxlelr(v).

In particular,

]1Lrl;}o‘/)(‘9P9,K[‘ﬁj]I(V) = /XGPH,KW]I(V)' (14.32)
Observe that
ﬁ\lj,w,v < ﬁ\lj,g:j,v
forany k > 1. As v € BM(K, v), by Proposition 14.2.5,
H S Op, lo1r (v
for any j > 1 fixed. By Proposition 14.1.3,
Poxleilr(v) \  Poxlelr(v)
as j — oo. Hence, by (14.32) and Theorem 2.3.1, (14.31) follows. O
Proof (Proof of Theorem 14.2.1) By Lemma 14.1.2, we have that
HO (X, LFeT® I(k<p)) - HO (X L*®T ® I(kPg [(,0]]))
- H° (X, L"®T®I(kPox [¢]I(V))) .
This allows us to replace ¢ with Pg g [¢] 7 (v).
By Lemma 2.3.2, there exists ¢; € PSH(X, 0), such that p; / p a.e. and 6, is a

Kahler current for each j > 1. This gives

k k
ﬂv,(p_,»,u < :Bv,<p,u'



234 CHAPTER 14. PARTIAL BERGMAN KERNELS

Let u be the weak limit of a subsequence of (8 , ,)x. Then by Proposition 14.2.6,

v,p,U

n
Opo xleils ) S H
By Proposition 14.1.3 and Theorem 2.3.1 we have that

n I
Opoxleslrv) 7~ PPy xlolrv)-

Hence,

Opoxlolrtv) < H- (14.33)

A comparison of total masses using (14.18) and Theorem 7.3.1 gives that equality
holds in (14.33). As u is an arbitrary cluster limit of the weak compact sequence
(BY. .,k we obtain (14.19). o

Remark 14.2.1 The results in this chapter could also be reformulated as the large
deviation principle o%% ldle;,lterminantal point process on X using the Géirtner—Ellis
theorem exactly as in [Ber14]. We leave the details to the readers.
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A brief history

Here we recall the origin of various results.

Chapter 1. ul9

The global Josefson theorem ThF%%m 1.1.5 was due to Vu P[L_' ]. In the projective
setting, it was due RL[gzlggnh—Sibony """ ] and in the Kéhler setting, it was established
by Guedj—Zeriahi [GZ05]. GRS6

The extension theorem Theorem 1.2.1 was proved in k"“ ]. In fact, they proved
a more general version for complex spaces, see Theorem B.2.2. We reproduced their
arguments almost word by word for the convenience of the reader;

The plurifine topology was introduced by Bedford-Taylor k' ] based on
Cartan’s works.qu the fine topology. This area lacks a rigorous foundation until the
appearance of Wf""“‘ ], which gave the first proof of TheTgEPg 1.3.2.

The strong openness,was Qrst established by Guan—Zhou [GZ15]. A more elegant
proof was due to Hiep ‘__'].

The idea of TE?%gm 1.4.3 first appeared in the ground-breaking work of Boucksom—
Favre—Jonsson E is78

Proposition 1.2.6 was due to Klselmanﬁ' 51L7 4

The semicontinuity theorem was due to Siu L['

Chapter 2

The Monge—Ampere oper%tl%s fi g)é)und plurisubharmonic functions were in-
troduced by Be%ff)ggl—Taylor ) The non-pluripolar product is due to
Bedfor E@{}Br 1, Guedj—Zeriahi L["—" ] and Boucksom-Eyssidieux—Guedj—

Zeriahi [BEGZ

Chapter 3

The notion of the P-envelope is d gdo Ross—Witt Nystrom k """" ] based on
the ideas of Rashkovskii—Sigurdsson [RST 1. DX22

The 7- Veltgpe was introduced by Darvas—Xia %F jos ], inspired by the works of
Dano Kim [Kin115] and Boucksom-Favre—Jonsson The notion of 7-model
singularities was first formulated in the explicit way in PE“" ]1in 2020, although it

235
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was already essentially known in Boucksom—Jonsson’s work. In fact, they correspond
exactly to the homogeneous non-Archimedean potentials assuming that the relevant
masses do not VHFiS]ilSA less explicit equivalent formulation of 7-model potentials
also app reglzm ]. A few months later, the same notion was rediscovered by
Trusiani 1.
Proposition 3.1.3 was first proved in
Chapter 4 Dal7
The notion of weak geodesics was studied in detail by Darvas k‘_ ] in the
Kahler case. DDNL18fullmaBBNL18big
The case of general big classes was partly handled in [ INi
However, the key fact that the geodesics between two full mass potentials have the
correct limit at the end points does not seem to have been proved in any references.
We give a proof in Proposition 4.2.1. We also extend the relevant results to the relative
setting.
Previously, Proposition 4.2.2 and Proposition 4.2.4 were only known in the Kihler
case.
Chapter 5
FQ&.@ toric framework was first written down by Coman—Guedj—Sahin—Zeriahi in

DNLmetric

The beautiful theorem Theorem 5.3.1 was first proved by Yi Yao, who did not
publi %}fdljezsfllt. Later on, a new proof was found by Botero—Burgos Gil-Holmes—de
Jong [BBGHA ]. We chose to present the approach of Yao, which integrates
naturally with our framework.

Chapter 6

The notion of P-partial order is new, as W%BN%S n%(ﬁtc results in Section 6.1.

The dﬁDBﬁEUdOI}lng vx‘fflsalglltroduced in [DDNLZ10]. The basic properties are
proved in [ ]and [

Theorem 6.2.4 is proved in %— ]. Theorem 6.2.6 and Theorem 6.2.5 appear to
be new. These results appeared previously in the form of lecture notes.

Chapter 7 21

The HOFODZ of T-good singularities was due to k‘“’ ]. The name 7 -good was
chosen in [X1aZ2b]. 8121
Example 7.1.3 was due to Berman—Boucksor%x.EqnsB%i """

Theorem 7.1.1 and Theorem 7.3.1 are due to [DXZT, D0

There are some further examples of 7 -good s1ngul%§&ggi}1§)v1ded by
with applications in the theory of modular forms in [BBGHA

Chapter 8

The trace operator was introduce%ﬁ f ]. Here we present a different point of
view. Theorem 8.3.1 was proved in [DX XiaBer

The analytic Bertini theorep,[;l" eorem 4 ngvas proved in L[‘ ], based on the
works of Matsu%%r?—Fujmo ] and ]. A weaker result was established
by Meng—Zhou [VIZ

Chapter 9

BBGHdJ21
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The technique of tﬁ%tquﬁlgl\)’?a Orlﬁgiltes %229 Sf was generalized by
Darvas—Di Nezza—Lu [ ] and PE“"" ]. We give the full

details of the proofs.

Test curves in Definition 9.1.1 are called maximal test curves in the literature, a
terminology which I do not like. I prefer to call the usual notion of test curves in the
literature sub-test curves.

Results in Section 9.4 are easy generalizations of the results proved in

Chapter 10

The algebraic theory of partial Okounkov bodies was d veloPPd in % '1]. The
transcendental Okounkov body was first defiped by Deng ] as suggested by
Demailly. The volume identity was proved in [DRW1 ]. The transcendental theory
of partial Okounkov bodies is new. Results in Section 11.3 are also new.

Chapter 11 £109

The applications of b-divisors in pluripotential theory began with FE'}',;& 1. The
intersection theory of nef b-divisors was introduced by Rang—Favre [[7722]. The
technique of singularit%gb Eli'visors was introduced in [XiaZ5c] in 2020. The general
m dfjifﬁt appeared in ]. One year later, a special case was redlsccveggd in
[_‘ """""" ]. In 2023, another special case was rediscovered by Trusiani L[

Chapter 12

The whole chapter appears to be new. The study of toric pluripotential theory on
big line bundles was made possible by the development of partial Okounkov bodies.
The key result is Theorem 12.2.2.

Most results in this chapter resulted from discussions with Yi Yao.

Chapter 13 . ia2 30perat10ns

Most results from this chapter are from L[‘ S from Section 13.3 are
new, although the main idea was already contained in 1.

Wc delipe fately avoid I?Ik% ﬁg&uct ;the non-Archimedean point of view, which is
explained in [ TThe_rason is that the Berkovich analytification
has not been constructed in written literature yet. This theory will be studied in the
forthcoming thesis of Pietro Piccione.

%pqulg.} caﬁ% of theujs&s}glts in thl%iﬁ%tlon haFiﬁen applied to study K-stability,
see [ N ] and [DR ], we established the bijective
correspondence bet.@mlla class of 7-model test curves with the maximal geodesic
rays in the sense of }f“'“ ].

%iaz 30perations
.

Chapter 14

The special case of Theorem 14.2.1 wit %the ﬁgﬁﬁ{l}?ed singularity ¢ was due
to BerrBﬂal—Boucksom—Witt Nystrom, see [B510], [BBV ]. The general case is
due to [DX21].
Open problems

We give a list of important open problem in this theory.
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Conjecture 14.2.1 Let X be a connected compact Kihler manifold and Y be a
submanifold. Fix a Kihler class @ on X. For each Kihler current S € a|y, we can
find a Kéhler current 7' € a such that

Try(T) ~7 S.

If we formally view Try as an analogue of the trace operator in the theory of Sobolev
spaces, then this conjecture corresponds exactly to the Dirichlet problem.

Using Proposition 8.2.2, one could also reduce this conjecture to a strong version
of the extension theorem Theorem 1.6.3.

Conjecture 14.2.2 Let X be a connected compact Kéhler manifold and Y be a
submanifold. Fix a Kahler class @ on X. Consider Kéhler currents R € «, S € a|y
with analytic singularities such that § < R|y. Assume in addition that S has gentle
analytic singularities. Then there is a Kahler current 7 € @ with analytic singularities
such that

Try(T) ~r S, T =<R.

This conjecture was proposed by Darvas for different purposes.

Conjecture 14.2.3 Let X be a connected smooth projective variety of dimension 7.
Assume that (L;, ;) is a Hermitian big line bundle on X foreachi = 1,...,n with
the h;’s being 7 -good. Then

/ ci(Li,h) A+ Aci(Ly, hy) =supvol (A, (L1, hy), ..., Ay (Ly, hy)),
X v

where v: C(X)* — Z" runs over all (surjective) valuation of rank .

Sch14 . . .
See L["_"' , Section 5.1] for the notion of mixed volumes.
This conjecture seems reasonable in view of Corollary 10.2.3 and Corollary 10.2.2.
Even when A, ..., h, have minimal singularities, this conjecture remains open:

Conjecture 14.2.4 Let X be a connected smooth projective variety of dimension n.
Assume that Ly, ..., L, are big line bundles on X. Then

(Li,...,Ly)y=supvol (A,(Ly),...,A,(Lyn)),
4

where v: C(X)* — Z" runs over all (surjective) valuation of rank .
BDPP13

Here on the left-hand side, we are using the movable intersection theory

Problem 14.2.1 Is it possible to extend the definition of the trace operator Try to the
case where the ambient variety is only unibranch?

The difficulty lies in the lack of Demailly type regularization theorems.

Problem 14.2.2 What is the relati nol%eztween the Duistermaat—-Heckman measure in
Section 13.3 and the definition in %“_ 1?
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Problem 14.2.3 Is there a natural definition of the transcendental Okounkov body of
a closed positive (1, 1)-current 7 with 0-mass so that its dimension is equal to the
numerical dimension of 7?7

Caol4
See L["_‘ ] for the definition of the numerical dimension of a current.






Appendix A
Convex functions and convex bodies

W 5%%11 some basic facts about convex functions in this section. Our basic reference
is %‘_’ ]. The results in this appendix can be applied to concave functions after
considering their negatives.

A.1 The notion of convex functions

Let N be a real vector space of finite dimension.

Definition A.1.1 Let F: N — [—c0, o] be a function. The epigraph of F is defined
as the following set

epiF = {(n,r) e NxR:r>F(n)}.

Definition A.1.2 A convex function on N is a function F: N — [—o0, o] such that
the epigraph epi F' is a convex subset of N X R.
The effective domain of F is the set

DomF = {n € N : F(n) < oo}.

A convex function F on N such that Dom F # @ and F(n) # —co for all n € N is
said to be proper.

The set of convex functions on N is denoted by Conv(N). The subset set of proper
convex functions is denoted by ConvP™P(N).

The following characterization of convex functions is well-known.

Lemma A.1.1 Let F: N — [—c0, o0]. Then F is convex if and only if the following
condition holds: suppose that n,r € N and a, b € R such that a > F(n), b > F(r),
then for any t € (0, 1), we have

F(itn+(1=0r) <ta+(1-1)b.

241
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Foc7®
See [Roc70, Theorem 4.2] for the proof.

Example A.1.1 Let A C N be a convex subset. Then the characteristic function
xa: N — {0, c0} of A is defined by

0, neA;

xa(n) = {Oo’ néA.

The function y 4 lies in Conv(N).

Example A.1.2 Let M be the dual vector space of N and P C M be a convex subset.
The support function Suppp € Conv(N) of P is defined as follows:

Suppp(n) = sup{(m,n) : m € P}.

It is well-known that convexity is preserved by a number of natural operations.
We recall a few to fix the notation.

Definition A.1.3 Let F1,. .., F,, € ConvP"P(N) (m € Z-(). We define their infimal
convolution F1O - - - OF,, € Conv(N) as follows:

m m
Fio---0F,(n) = inf{z Fi(n;) :n; € N,Zn,- = n}
i=1 i=1

Roc70
The fact FiO---0OF,, € Conv(N) is proved in k_QL , Theorem 5.4]. One should
note that F|0O- - - OF), is not always proper.

Proposition A.1.1 Let {F;};c; be a non-empty family in Conv(N). Then sup,¢; F; €
Conv(N).

Roc70
This follows from L['gc_ , Theorem 5.5]. In particular, this allows us to introduce

Definition A.1.4 Let f: N — [—o0, co]. The lower convex envelope of f is defined
as
CE f := sup{F € Conv(N) : F < f}.

It follows from Proposition A.1.1 that CE f € Conv(N).

Definition A.1.5 Given a non-empty family {F;};c; in Conv(N), we define
A F, = CE (inf F,-) .
/ iel
iel

When the family 7 is finite, say I = {1, ..., m}, we also write

Fl/\--'/\sz/\Fi.

iel
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Proposition A.1.2 Let Fy, ..., F,, € ConvP™P(N), then

m
Fi A+ A Fp(x) = inf {Z AiFi(x;) : x; € Dom(F}),
i=1

m m
A € [0, 1],2/1, = I,Z/lixizx}.
i=1

i=1
Roc70
See L["_ , Theorem 5.6] for the more general result.

Lemma A.1.2 Let {F;}ic; be a decreasing net in Conv(N). Then inf;c; F; €
Conv(N).

Proof Write F = inf;c; F;. We shall apply the characterization in Lemma A.1.1.
Take n,r € N, a,b € Rsuch thata > F(n), b > F(r) and t € (0,1). We need to
show that

F(tn+ (1 -1)r) <ta+(1-1)b. (A.1)

By definition, there exists j € I such that for any i > I withi > j, we have
a>Fi(n), b>F(r).
It follows from Lemma A.1.1 that
Fi(tn+ (1 -t)r) <ta+(1-1)b

for any i > j. Since F; is decreasing in i, we conclude (A.1). O

Definition A.1.6 Let F' € Conv(N). The closure cl F € Conv(N) of F is defined as
follows: if F(n) = —oco for some n € N, then cl F := —co. Otherwise, we define cl F
as the lower semicontinuity regularization fo F.

A convex function F € Conv(N) is closed if F = cl F. In other words, F €
Conv(N) if one of the following conditions hold:
(1) F = —oo;
(2) F = oo
(3) F is proper and lower semi-continuous.
Proposition A.1.3 Let F € Conv(N) be a closed convex function. Then F is the
supremum of all affine functions lying below F.

Roc70
See L["_ , Theorem 12.1].

Theorem A.1.1 Let F € ConvP™P(N). Then cl F is a closed proper convex function.
Moreover, cl F agrees with F except possibly on the relative boundary of Dom F.

[Roc70
See k'_ , Theorem 7.4].

Definition A.1.7 Given F, F’ € Conv(N), we write F < F’ if there is C € R such
that
F<F +C.

Wesay F ~ F’ if F < F” and F’ < F both hold.
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A.2 Legendre transform

Let N be a real vector space of finite dimension and M be the dual vector space. The
pairing M X N — R will be denoted by (e, o).

Definition A.2.1 Let F € Conv(N) be a convex function. We define the Legendre
transform of F as the function F* € Conv(M):

F*(m) = sup ({m,n) — F(n)) = sup ({m,n) — F(n)) .
neN neRellnt Dom F

Roc70
The latter equality follows from L['QC_ , Corollary 1 gc.%.
Recall the well-known Legendre—Fenchel duality [Roc/0, Theorem 12.2].

Theorem A.2.1 Let F € Conv(N). Then F* is a closed convex function. The function
F* is proper if and only if F is.
Moreover, we have (cl F)* = F* and

F* =clF.
Example A.2.1 Let P C M be a closed convex subset. Then

Suppp = xp, Xp =Suppp.
[Roc70
See L["_’ , Theorem 13.2].

Definition A.2.2 Let F € Conv(N) and n € N. An element m € M is a subgradient
of F atn if
F(n') = F(n)+(n’ —n,m), Vn' €N. (A2)

The set of subgradients of F at n is denoted by VF(n).
More generally, for any subset E C N, we write
VF(E) = U VF(n).

nekE

Definition A.2.3 Given F, F’ € Conv(N), we write F <p F’ if

VF(N) C VF'(N).
We write F ~p F'if F <p F’ and F’ <p F.

Theorem A.2.2 Suppose that F € ConvP™P(N). Then the following hold:

(1) Foranyn ¢ Dom F, VF (n) = @;
(2) for any n € RellntDom F, VF (n) + @; Moreover, for any n’ € N, we have

Oy F(n)=sup{(n’,m) :m e VF(n)};

(3) for n € N, the set VF (n) is bounded if and only if n € Int Dom F.
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Roc70
For the proof, we refer to k‘_ , Theorem 23.4].
Proposition A.2.1 Let F € ConvP™P(N). Then
VF(N) € Dom F*.
If moreover F is closed, we have

Rellnt Dom F* € VF(N). (A.3)

In particular, if F is a proper closed convex function on N, then

VF(N) = Dom F*.

Proof Suppose that m € VF(n) for some n € N, it follows that (A.2) holds. In
particular,
(m,n"y — F(n') < (m,n) — F(n).

It follows that
F*(m) < (m,n) — F(n) < co.

oc70
(A.3) is proved in P[S‘_ , Corollary 23.5.1]. For the last assertion, it suffices to
observe that Rellnt Dom F* = Dom F*. O

Proposition A.2.2 Let {F;};c; be a non-empty family in ConvP™P(N). Then

y

iel

*

=sup F, (supcl F,-) = cl/\ F}.

iel iel iel

If I is finite and Dom F; is independent of the choice of i € I, then
(sup F,-) = /\ F}.
iel ‘el
. . L Roc70
Recall that A is defined in Definition A.1.5. See L["_ , Theorem 16.5] for the proof.

Proposition A.2.3 Let Fy, ..., F, € ConvP™P(N) (r € Zs(). Assume that

m Rellnt Dom(F;) # @,

i=1
then

r

i=1 i=1

Fi) (m) :inf{ZFi*(mi) My, ... my € M,Zmi :m}.
i=1 (=
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Proposition A.2.4 Let P C M be a convex body! and F € ConvP™P(N). The
following are equivalent:

(1) F < Suppp;
(2) Dom F = N and F*|p\p = 00;
(3) DomF = N and VF(N) C P.

Moreover, under these conditions,
F(n) — Suppp(n) < F(0), VrneN. (A4)

Proof (1) = (2). It is clear that Dom F = N since Dom Suppp, = N. From
F < Suppp and Example A.2.1, we know that

xp = Suppp < F".

So ii follows.

(2) = (3). This follows from Proposition A.2.1.

(3) = (1). Taken n € N, we know that F is locally Lipschitz
Theorem 10.4], so we can compute

%96_70

E)

1
_OF(tn)dtzfo (VF(tn),n)dt

=

1
< [ suppp(myat = Suppp (o).

1
F(n) - F(0) = /O %

In particular, (A.4) also follows. |

A.3 Classes of convex functions

Let N be a real vector space of finite dimension and M be the dual vector space.
We shall fix a convex body P € M. BB13
The following classes are introduced in L['““ ].

Definition A.3.1 We define the set P (N, P) as the set of proper convex functions
F € Conv(N) such that F < Suppp.

We define the set E° (N, P) as the set of closed convex functions F € Conv(N)
such that F' ~ Suppp.

We define the set &(N, P) as follows: suppose that Int P = @, then E(N, P) =
P (N, P); otherwise, let

E(N,P) = {F € P(N,P):P= VF(N)} .

1 Here a convex body refers to a non-empty closed convex subset, not necessarily having non-empty
interior.
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Observe that for any F € P (N, P), we have Dom F = N and F is necessarily closed.
Proposition A.3.1 We have

E”(N,P) C E(N,P) CP(N,P).

Proof When Int P = @, the assertion is clear. We assume that Int P # @. The
second inclusion follows from definition. We only hand the first inequality. Take
F € &*(N, P). By definition, F ~ Suppp and hence F* ~ yp. It follows that
P =Dom F*.

By Proposition A.2.4, we already know that

VF(N) C P=DomF~.
On the other hand, by Proposition A.2.1, we have
IntP C VF(N).
So it follows that _
P =VF(N).
Proposition A.3.2 For any F € E*(N, P), we have F* |\ p = oo and F* is bounded
on P.

Proof From F ~ Suppp, we take the Legendre transform to get F* ~ Suppp = xp,
where we applied Example A.2.1. O

Definition A.3.2 We endow the topology of pointwise convergence on P (N, P). Note
that this topology coincides with the compact-open topology.

Proposition A.3.3 Let F' € P (N, P). Then there is a decreasing sequence F; €
E®(N,P) N C®(N) converging to F.

BB13
See L['““ , Lemma 2.2].
We observe that the point 0 € N plays a special role since it does in the definition
of the support function.

Proposition A.3.4 For any F € Conv(N, P), we have
m}sx(F — Suppp) = F(0).
Proof 1t follows from (A.4) that

sup(F — Suppp) < F(0).
N

The equality is clearly obtained at 0 € N. O
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A.4 Monge-Ampere measures

Let N be a free Abelian group of finite rank (i.e. a lattice) and M be its dual lattice.
There is a canonical Lebesgue type measure on My, denoted by d vol, normalized so
that the smallest cubes in M have volume 1. Similarly, the canonical measure on Ng
is normalized in the same way and is denoted by d vol as well.
We will write
Nr=N®zR, Mp=M®®zR.

Definition A.4.1 Let F € Conv(Ng), we define MAg F as the Borel measure on Ny
given as follows: for each Borel measurable set E C Ng, define

MAR F(E) = n!/ dvol.
VF(E)

Proposition A.4.1 Let P € My be a convex body and F € P (Ng, P). Then F €
E(Ng, P) if and only if

MAg F =n!vol P. (A.S5)
Mg

Proof By definition of MAg, (A.5) is equivalent to
vol VF(Ng) = vol P.

We first handle the case where Int P # @. By Proposition A.2.4, the latter is
equivalent to
VF(Nr) = P.

Now assume that Int P = @, then vol VF(N) = vol P = 0 by Proposition A.2.4.
The assertion is clear. O

Theorem A4.1 Let F,F; € P(Ng,P) (j € Zsg). Assume that F; — F, then
MAR (F;) converges to MAg (F) weakly.
Figl7
See L[_EQ__ , Proposition 2.6].
There is a well-known comparison principle.

Theorem A.4.2 Let F, F’ € P(Ng, P). Assume that F < F’, then

VF(Nz) C VF'(Np).

MA:(F) < [ MAz(F).
Nz Nz

BB13
See L['““ , Lemma 2.5].
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A.5 Separation lemmata

Lemma A.5.1 Leta, B1, . .., Bm € Z". Let A be the polytope generated by B1, . . . , Bm-
Then the following are equivalent:

(M |
Ek (Z | |2) (A.6)
i=1

is a bounded function on C*",
2) @ e A.

Proof (2) = (1). Write a = }; t;8;, where t; € [0, 1], >}; #; = 1. Then
m -1 m -1
e (Z E i|2) =| Ji#pe (Z E ,.|2)
i=1 i i=1
m -1
<[] 15 (Z 2 f|2) <1
i i=1

(1) = (2). Assume that @ ¢ A. Let H be a hyperplane that separates @ and A.
Say H is defined by a1x; + - - - + anx, = C. Set
z(t) = (1", ..., t%).
Then clearly (A.6) evaluated at z(¢) is not bounded. O

Lemma A.5.2 Let By, ...,Bm € N" and B € R". Then the following are equivalent

(1) log X", e¥Pi — (x, B) is bounded from below.
(2) B is in the convex hull of the B;’s.

Proof The proof follows the same pattern as Lemma A.5.1. O






Appendix B
Pluripotential theory on unibranch spaces

In this appendix, we extend the theory in the book to compact unibranch Kihler
spaces.

B.1 Complex spaces

A complex space is assumed to be reduced, Hausdorff and paracompact in the whole
book.

Definition B.1.1 A prime divisor over an irreducible complex space Z is a connected
smooth hypersurface E C X', where X’ — Z is a proper bimeromorphic morphism
with X’ smooth. Such a morphism X’ — Z is also called a resolution of Z.

Two prime divisors £y € X{ and E; C X) over Z are equivalent if there is
a common resolution X”” — X dominating both X| and XJ such that the strict
transforms of E; and E; coincide.

The set Z4V is the set of pairs (c, E), where ¢ € Q- and E is an equivalence
class of a prime divisor over Z. For simplicity, we will denote the pair (c, E) by
c ordg, although one should not really think of this object as a valuation unless Z is
projective and irreducible.

Note that a prime divisor on Z does not always define a prime divisor over Z if Z is
singular.

Definition B.1.2 A complex space X is unibranch if for all x € X, the local ring
Ox x is unibranch.

. . . . %(ia23_1‘_’labuchi )
It is shown in the arXiv version of 2, Remark 2.7] that when X is a pro-

jective variety, this notion coincides with the corresponding algebraic notion of
unibranchness.

Theorem B.1.1 (Zariski’s main theorem) Let n: Y — X be a proper bimeromor-
phic morphism between complex spaces. Assume that X is unibranch, then n has
connected fibers.

251
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%em85 L
We refer to [Dem&5, Proof of Théoréeme 1.7].

Definition B.1.3 A modification of a compact complex space X is a finite composition
of blow-ups with smooth centers.

Theorem B.1.2 (Hironaka’s Chow lemma) Suppose that X is a compact complex
space. Then every proper bimeromorphic morphism to X can be dominated by a
modification.

Hir75
This follows from the proof of L["_' , Corollary 2].

Theorem B.1.3 Let X be a compact complex space. Then there is a modification
m: Y — X such that Y is smooth.

%M?Z_L_UEQ@.
See R

Corollary B.1.1 Let X be a compact complex space and E be a prime divisor over X.
Then there is a modification . Y — X such that Y is smooth and E can be realized
as a prime divisor on'Y.

B.2 Plurisubharmonic functions

Let X be a complex space.

Definition B.2.1 A function ¢: X — [—c0, 00) is plurisubharmonic if

(1) ¢ is not identically —co on any irreducible component of X, and

(2) for any x € X, there is an open neighbourhood V of x in X, a domain Q C CN,a
closed immersion V < Q and a plurisubharmonic function ¢ € PSH(Q) such
that plony = @lonv.

The set of plurisubharmonic functions on X is denoted by PSH(X).

Similarly, if 6 is a smooth closed! real (1, 1)-form on X, then a function ¢: X —
[—o0, 00) is @-plurisubharmonic if for any x € X, there is an open neighbourhood V
of x in X, a domain Q C CV, a closed immersion V < Q and a smooth function g
on Q such that 8 = (dd°g)|vng and g + ¢|y € PSH(V).

Theorem B.2.1 (Fornaess—Narasimhan) Let ¢: X — [—oc0,00) be a function.
Assume that ¢ is not identically —co on any irreducible component of X, then the
following are equivalent:

(1) ¢ is psh;
(2) ¢ is usc and for any morphism f: A — X from the open unit disk A in C to X
such that *¢ is not identically —oo, the pull-back f*¢ is psh.

If further more X is unibranch, then these conditions are equivalent to

1 Here closed means that locally 6 is defined by a closed form under a local embedding.
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(3) ¢ € PSH(XRe®), locally bounded from above near X5™ and ¢ = ¢*.

FN8O Dem85 .
See L["—‘ ] and L["_ , Section 1.8].

Corollary B.2.1 Let n: Y — X be a proper bimeromorphic morphism between
compact Kdihler spaces. Let 0 be a smooth closed real (1, 1)-form on X. Assume that
X is unibranch, then the pull-back induces a bijection

7*: PSH(X, 6) — PSH(Y, 7*6).

Dem85 .
See [Demi&s, Théoreme 1.7] for the details.

Theorem B.2.2 (Grauert—-Remmert) Ler X be a unibranch complex space and Z
be an analytic subset in X and ¢ € PSH(X \ Z). Then the function ¢ admits an
extension to PSH(X) in the following two cases:

(1) The set Z has codimension at least 2 everywhere.
(2) The set Z has codimension at least 1 everywhere and is locally bounded from
above on an open neighbourhood of Z.

In both cases, the extension is unique and is given by
= lim , xeX. B.1
e(x) xim_ e(y), x (B.1)

Kgof The problem is local in natural. By the local description of complex spaces

SR84, Section 3.4], we may assume that there is a domain  C C", a finite s-sheet
branched covering ®: X — Q with branched locus contained in a proper analytic
subset V C Q. We may assume that X is connected, n > 1 and Z € ®~ (V).

We first prove the uniqueness in both cases. For this purpose, we may assume that
Z = ®~ (V). Fix z € Z, we can find a complex line L passing through ®(z) such that
LNVNB={®(z)}, where B is a small open ball centered at ®(z). After shrinking
Q, we may choose one isomorphic copy L’ of L N B\ {z} in an neighbourhood of z.
Since ¢ restricts to a subharmonic function on L’ N {z}, it follows that the value of
¢(z) is uniquely determined.

(2) Let ¢ be the function defined in (B.1). We claim that ¢ € PSH(X). Since ¢
clear extends ¢, so our assertion is proved.

Let f: A — X be a morphism. Due to Theorem B.2.1, we only need to show that
f* is subharmonic. We may assume that f is non-constant, so that @ o f has full
rank outside a discrete subset §” C A.

Step 1. We show that after enlarging S’ to a larger discrete subset, f*y is
subharmonic outside S”. We may assume that O ¢ S” and it suffices to show that f*y
is subharmonic near 0 outside a discrete subset.

For this purpose, after shrinking A, we may assume that ® o f has full rank
everywhere. After shrinking € and A, we may furthermore assume that

(1) A=®o f(A) is an analytic subset of Q of dimension 1, and
(2) f(0) is the only preimage of ®( f(0)) with respect to @.
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Thanks to the first condition, we may then find a discrete subset S/ C A such that @
restricts to an unbranched covering on A \ §”.
Now it would suffice to show that

Y € PSH(®1(A\ S7)). (B.2)

Let x € A\ §”. After further shrinking Q around x (and replacing X by the
corresponding connected component), we may assume that eacl?,\ggint in A\ S” has
exactly one preimage in X. By an elementary argument (see [CR56, Hilfssatz 6]),
the fibral integration @,y € PSH(L) and (B.2) follows.

Step 2. We show that f*y is subharmonic near S’. Let z € §’, it suffices to show
that f*y is subharmonic in an open neighbourhood of z.

After shrinking ® along ® o f(z), we may assume that X is connected and
®~!(® o f(z)) consists only of f(z). Let n € PSH(Q) be the fibral integration of ¢
along ®. Then f*®*n € SH(A) and

— 1
vlvil‘}z ;f*df‘n(W) = Y (2).

Assume that .
lim ffo(w) < fy(2),
wW—2Z
then : . .
T % Ak I ¥ N % %
lim — f"®*p(w) < - lim fTp(w) + — ¥ (2) < ¥ (2),
w—z § s woz s
which is a contradiction. It follows that

[ = ()" € SH(A).

(1) If suffices to show that ¢ is locally bounded near Z. Suppose that this fails.
Then by (2) we can find z € Z and x; € X \ (ZU V) (i > 1) such that

lim ¢(x;) = co.
1—00

Let L be a complex line passing through ®(z) intersecting (©(Z) U V) N B only at
®(z), where B € B’ are two small open balls centered at ®(z). We can find a sequence
of lines L; passing through ®(x;) converging to L such that L; N (B’ N ®(Z)) = @
while L; N (B’ NV) is discrete. The @ restricts to a branched covering over B’ N L;
for all i > 1. Adding a constant to ¢, we may assume that ¢|p-1(1n9p) < 0. We can
then find an open neighbourhood U of ®~'(L N dB) so that ¢|y < 0. For large i
we have ®~!(L; N dB) C U, it follows from the maximum principle that ¢(x;) < 0,
which is a contradiction. O
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B.3 Extensions of the results in the smooth setting

Let X be an irreducible unibranch compact Kihler space of dimension n. Let 6 be a
closed real smooth (1, 1)-form on X. We say the cohomology class [0] is big if for
any proper bimeromorphic morphism 7: ¥ — X from a compact Kdhler manifold Y,
[7*6] is big.

The non-pluripolar products can be defined exactly as in Chapter 2 and the results
in that chapter holds mutadis mutandis.

The results in Chapter 3 can be also be easily extended. The definition of the
P-envelope remains unchanged. As for the 7 -envelope, we define

Definition B.3.1 Given ¢ € PSH(X, 0), we define Pg[¢]r € PSH(X,0) as the
unique element with the following property: if 7: ¥ — X is a proper bimeromorphic
morphism from a compact Kihler manifold Y, then

7 Polelr = Proln elr.

It follows from Corollary B.2.1 and Proposition 3.2.5 that Py [¢] r is independent of
the choice of 7 and is well-defined. The other results can be easily extended.

Chapter 4 and Chapter 6 can be extended without big changes. The only exception
is Theorem 6.2.6, where we do not have the notion of multiplier ideal sheaves. So we
do not know how to extend this theorem.

Chapter 7 can be extended execpt for Section 7.3 for the same reason as above.

The trace operator defined in Chapter 8 can be extended as long as Y is not
contained in X5 using the embedded resolution. In general, due to the lack of
Demailly regularization, we do not know how to define the trace operator.

Chapter 9 can be extended easily.

Chapter 10 is easy to extend since the partial Okounkov bodies are bimeromorphi-
cally invariant in the sense of Theorem 10.3.2.

Chapter 11 is unchanged, since we always take projective limits with respect to all
models in that section.

Chapter 13 can be extended except for the parts involving the trace operator.

Chapter 14 can be easily extended by considering a resolution.

I do not know how to extend the results in Chapter 5 and Chapter 12 to the singular
setting.






Appendix C
Almost semigroups

We introduce and study almost semigroups. In particular, we will define the Okounkov
bodies of almost semigroups.

C.1 Convex bodies

Fixn e N.
Definition C.1.1 A convex body in R" is a non-empty compact convex set.

We allow a convex body to have empty interior.
We write %, for the set of convex bodies in R”.

Definition C.1.2 The Hausdor[f metric between K|, K, € K, is given by

dyaus (K1, K>) = max{ sup inf |x; — x|, sup inf |x; —x2|}.

x1€K| x2€K3 x2€Ks x1€Kj

It is well-known that the metric space (K}, dpaus) is complete. We will need the
following fundamental theorem:

Theorem C.1.1 (Blaschke selection theorem) The metric space (K, dyaus) is
locally compact.

Sch14 .
We refer to L["_“ , Theorem 1.8.7] for details.

Theorem C.1.2 The Lebesgue volume vol: K,, — Rsq is continuous.

Sch14
See [ScnY3, Theorem 1.8.20].

d aus
Theorem C.1.3 Let K;, K € K,, (i € N). Then K; ——> K if and only if the following
conditions hold:

(1) each point x € K is the limit of a sequence x; € K;, and

257
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(2) the limit of any convergent sequence (xi,.)jeN with x;; € K;; lies in K, where i
is a strictly increasing sequence in Zy.

Schl4
See L["_“' , Theorem 1.8.8].

Lemma C.1.1 Let K € K, be a convex body with positive volume and K’ € ¥K,,.
Assume that for some large enough k € Z-o, K’ contains K 0 (k~'Z)", then
K’ 5 Knl/Zk—l.

Proof Letx € K "I/qu, by assumption, the closed ball B with center x and radius
n'/2k=1 is contained in K. Observe that x can be written as a convex combination
of points in B N (k~'Z)", which are contained in K’ by assumption. It follows that
x ek’ O

Given a sequence of convex bodies K; (i € N), we set

lim i = _J[")&;:

i=0 j>i
Suppose K is the limit of a subsequence of K;, we have

lim K; C K. (C.1)

1—00
This is a simple consequence of Theorem C.1.3.

Lemma C.1.2 Let K C R" be a convex body. Let
tmin =min{t € R: {x; =t} N K # @}, tmax :=max{t € R:{x; =t} NK # @}.
Then for t € [tmin, tmax ], the map
t—>{x;=t}nkK
is continuous with respect to the Hausdorff metric.

Here x; denotes the first coordinate in R”.

Proof We may assume that fy,j, < fmax as otherwise there is nothing to prove.

For each t € [tmin, tmax], we write K; = {x; =t} N K. Lett; — ¢ be a convergent
sequence in [#min, fmax |, Wwe want to show that K . converges to K, with respect to the
Hausdorff metric. Recall that this amounts to the following two assertions:

(1) For each convergent sequence x; € K;; with limit x, we have x € K;
(2) Given any x € K;, up to replacing 7; by a subsequence, we can find x; € K,
converging to x. O

The first assertion is obvious. Let us prove the second. Take x = (#,x”) € K;. Up to
replacing ¢; by a subsequence and taking the symmetry into account, we may assume
that ¢; > ¢ for all 7. In particular, ¢ < fiax.
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We can find a point y = (y',y”) € K such that y! > ¢ (for example, there is always
such a point with y! = #,,,,). Replacing t; by a subsequence, we may assume that
tj € (t, y1) for all j. Then it suffices to take

yl—t;  tj—t

X+
yl—t yl-t

)Cj = y.

Lemma C.1.3 Let D; C R" (j > 1) be a decreasing sequence of convex sets. Assume
that vol(\; Dj > 0O, then

D;=(\D;.

s

1l
—_

s

~
I
—_

J

Proof The C direction is clear. By convexity, it suffices to show that both sides have
the same positive volume. As the boundary of convex sets has zero Lebesgue measure,
it follows that the volumes of both sides are equal to lim; . vol D ;. O

Definition C.1.3 Let K, K’ € K,, their Minkowski sum is given by
K+K ={x+x":xeK,x' €eK'}.
Proposition C.1.1 The Minkowski sum ¥K,, X K, — K, is continuous.

Sch14
See L["_"' , Page 139].

Theorem C.1.4 (Brunn—Minkowski) Ler K, K’ € K, then for any t € (0, 1), we
have
vol((1 = 1)K’ +tK) > (vol K")'=9) (vol K)'.

. Sch14
In other words, the volume is log concave. See L[' ____ , Page 372].

C.2 The Okounkov bodies of almost semigroups

Fix an integer n > 0. Fix a closed convex cone C C R"™ X R such that C N {x,4+; =
0} = {0}. Here x,,, is the last coordinate of R"*!.

C.2.1 Generalities on semigroups

Write S(C) for the set of subsets of C N Z"“ and S(C) for the set of sub-semigroups
S cCnZ"! Foreach k € Nand S € S(C), we write

S ={xeZ":(x,k)eS}.

Note that Si is a finite set by our assumption on C.
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We introduce a pseudometric on S (C) as follows:
dsg(S,8) = Tim k7" (ISk|+ IS = 21(S 0 S")l).
Here | e | denotes the cardinality of a finite set.

Lemma C.2.1 The above defined ds is a pseudometric on S(0).

Proof Only the triangle inequality needs to be argued. Take S, S’, " € S(C). We
claim that for any k € N,

ISkl +1S%] =218k NS+ 1S+ 1851 =287 N Sel =[Skl + S| =218k NS¢

From this the triangle inequality follows. To argue the claim, we rearrange it to the
following form:
[S7e] = 1Sk N Sel = 1S, N SYT= 1Sk N SYL

which is obvious. O

Given S, 8" € S(C), we say S is equivalent to S and write S ~ §” if d, (S, S") = 0.
This is an equivalence relation by Lemma C.2.1.

Lemma C.2.2 Given S, S’,S"” € S(C), we have

dse(SNS",8"'NS") <dy(S,5).
In particular, if S*, S"" € S(C)(ieN)and §' - S, §"" — §', then

S'nst—8sns’.
Proof Observe that for any k € N,
ISk N ST =18k NS NSY] < ISk] =[Sk N Sl
The same holds if we interchange S with S’. It follows that
ISk N SYI+1S, N SY1=2ISk NS, N ST < Skl + IS%] = 2ISk N Syl

The first assertion follows.
Next we compute

dse(S'NS",SNS") <dso (ST NS, 8" NS) +dso(S° NS, SNS)
<dy (S, 8") +de (5", S)

and the second assertion follows. ]

The volume of S € S(C) is defined as

vol§ = lim (ka)™"|Sal = kﬁ k7" Skl,
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where a is a sufficiently divisible positive integer. The existenge of the limit and its
independence from a both follow from the more precise result %%’" , Theorem 2].

Lemma C.2.3 Let S, S’ € S(C), then
[ vol S — vol 8’| < dys (S, S’).
Proof By definition, we have
ds(S,8") = vol S +vol S’ =2 vol(S N S).
It follows that vol § — vol §” < dg (S, S”) and vol " — vol § < dys (S, S"). O

We define S(C) as the closure of S (C) in 8(C) with respect to the topology defined
by the pseudometric d. By Lemma C.2.3, vol: S(C) — R admits aunique 1-Lipschitz
extension to .

vol: S(C) — R. (C.2)

Lemma C.2.4 Suppose that S, S’ € §(C) and S € S’. Then
vol § < vol .

Proof Take sequences S/, S’/ in S(C) such that S/ — §, 8"/ — §’. By Lemma C.2.2,
after replacing S/ by §/ N §’/, we may assume that S/ C S/ for each j. Then our
assertion follows easily. O

C.2.2 Okounkov bodies of semigroups

Given S € S(C), we will write C(S) C C for the closed convex cone generated by
S U {0}. Moreover, for each k € Z.(, we define

Ak(S) = Conv {k'x e R" : x € S¢} CR".
Here Conv denotes the convex hull.

Definition C.2.1 Let S’ (C) be the subset of S(C) consisting of semigroups S such
that S generates Z"**! (as an Abelian group).

Note that for any S € S’(C), the cone C(S) has full dimension (i.e. the topological
interior is non-empty). Given a full-dimensional subcone C’ C C, it is clear that
C’'nZ"! e S'(C).

This class behaves well under intersections:

Lemma C.2.5 Let S, S" € 8'(C). Assume that vol(SNS”) > 0, then SN S’ € S’ (C).
The lemma obviously fails if vol(S N §”) = 0.
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Proof We first observe that the cone C(S) N C(S’) has full dimension since otherwise
vol(S N §”) = 0. Take a full-dimensional subcone C” in C(S) N gé”) such that C’

intersects the boundary of C(S) N C(S’) only at 0. It follows from [F 12, Theorem 1]
that there is an integer N > 0 such that for any x € Z"*! N C” with Euclidean norm
no less than N lies in S N S’. Therefore, SN S € S’'(C). O
K12
We recall the following definition from [F<12].

Definition C.2.2 Given S € S8’ (C), its Okounkov body is defined as follows
A(S) ={xeR": (x,1) € C(S)}.
Theorem C.2.1 For each S € S8’(C), we have

vol§ = lim k~"|S¢| = vol A(S) > 0. (C.3)

Moreover, as k — oo,
dHaus

Ar(S) 225 A(S). (C.4)

N14
This is essenti %Qfoved in P““ , Lemma 4.8], which itself follows from a theorem
of Vzanskii <11092]. We remind the readers that (C.3) fails for a general W € S(C),
see [ 12, Theorem 2].

Proof The equalities (C.3) follow from the general t@ﬁ%em %15_1_2_ , Theorem 2].

It remains to prove (C.4). By the argument of [WIN14, Lemma 4.8], for any
compact set K C Int A(S), there is ko > 0 such that for any k > ko, @ € KN (k~'Z)"
implies that @ € Ag(S).

In particular, taking K = A(S)? for any ¢ > 0 and applying Lemma C.1.1, we find

draus (A(S), A(8)) < n'k™! +6
when £ is large enough. This implies (C.4). O
Corollary C.2.1 Let S, S’ € S’(C). Assume that vol(S N S”) > O, then we have
ds(S,8") = vol(S) + vol(S") = 2vol(S N §’).
Proof This is a direct consequence of Lemma C.2.5 and (C.3). ]
Lemma C.2.6 Given S € §’(C), we have S ~ Reg(S).

Recall that the regularization Reg(S) of S is defined as C(S) N Z"™**!.

Proof Since S and Reg(.S) have the same Okounkov body, we have vol S = vol Reg(S)
by Theorem C.2.1. By Corollary C.2.1 again,

dsg(Reg(S), S) = volReg(S) — vol § = 0.

Lemma C.2.7 Let S, 8" € 8’ (C). Assume that d,(S,S") =0, then A(S) = A(S).
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Proof Observe that vol(S N S’) > 0, as otherwise
ds(S,8) > vol S +vol S’ > 0,

which is a contradiction.

It follows from Lemma C.2.5 that SN S” € 8’(C). It suffices to show that A(S) =
A(SNS”). In fact, suppose that this holds, since vol A(S’) = vol §” = vol S = vol A(S),
the inclusion A(S”) 2 A(S N S’) = A(S) is an equality.

By Lemma C.2.2, we can therefore replace S’ by S N S” and assume that S 2 §’.
Then clearly A(S) 2 A(S”). By (C.3),

vol A(S) = vol A(S”) > 0.
Thus, A(S) = A(S). O
Lemma C.2.8 Suppose that S' € S'(C) is a decreasing sequence such that

lim vol §* > 0.

1—00

Then there is S € 8’ (C) such that S — S.

In general, one cannot simply take S = (), S'. For example, consider the sequence
Si S Sl N {.xn+1 > l}.

Proof By Lemma C.2.6, we may replace S’ by its regularization and assume that
St = C(§Y) NZ™!. We define

S =

ﬁC(Si)) Nzt
i=1

Since N2, C(8) is a full-dimensional cone by assumption, we have S € S’(C). By
Corollary C.2.1 and Theorem C.2.1, we can compute the distance

dse(S,S") = vol §" — vol § = vol A(S%) — vol A(S),

which tends to 0 by construction. O

C.2.3 Okounkov bodies of almost semigroups

Definition C.2.3 We define S’(C). as elements in the closure of S’(C) in S(0)
with positive volume. An element in S’ (C)., is called an almost semigroup in C.

Recall that the volume here is defined in (C.2).
Our goal is to prove the following theorem:
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Theorem C.2.2 The Okounkov body map A: 8’ (C) — K, as defined in Defini-
tion C.2.2 admits a unique continuous extension

A:8(C)sg — K. (C.5)
Moreover, for any S € §’(C)~, we have
vol § = vol A(S). (C.6)

Proof The uniqueness of the extension is clear as long as it exists. Moreover, (C.6)
follows easily from Theorem C.2.1 and Theorem C.1.2 by continuity. It remains to
argue the existence of the continuous extension. We first construct an extension and
prove its continuity.

Step 1. We construct the desired map (C.5). Let S € S’(C).. . We wish to construct
a convex body A(S) € K.

Let S € 8’(C) be a sequence that converges to S such that

dsg(Si,Si+l) < 2—1'.
For each i, j > 0, we introduce
SHT =8 nsH. 0 st

Then by Lemma C.2.2, S o
dsg(Sl’j,Sl’j+l) < 2=i=j

Take iy > 0 large enough so that for i > iy, vol St > 271yol S and 227! < vol S and
hence

Vol §' — vol §™/ < dg (S0, S™) + dyg(S1, 8%2) + -+ + dyg (S™ 71, 877) < 2177,

It follows that vol S/ > 27!1vol § — 2!~/ > 0 whenever i > iy. In particular, by
Lemma C.2.5, S/ € 8’ (C) fori > io.

By Lemma C.2.8, for i > iy, there exists T! € S8'(C) such that §%/ — T* as
J — oo. Moreover,

dso(T",S) = lim dy (5™, S) < lim dso(S™/,S") + dse (S, ) < 2" + dyo (S, S).

Therefore, T" — S. We then define

A(S) = O A(TY).

i=io
In other words, we have defined

A(S) = lim A(SY).

1—00
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This is an honest limit: if A is the limit of a subsequence of A(S?), then A(S) C A by
(C.1). Comparing the volumes, we find that equality holds. So by Theorem C.1.1,

A(S) = lim A(SY). (C.7)

Next we claim that A(S) as defined above does not depend on the choice of the
sequence S'. In fact, suppose that S € S’(C) is another sequence satisfying the
same conditions as S’. The same holds for R’ := S™*! N §"*1 Tt follows that

lim A(R') C lim A(S).

Comparing the volumes, we find that equality holds. The same is true with S’ in
place of S*. So we conclude that A(S) as in (C.7) does not depend on the choices we
made.

Step 2. It remains to prove the continuity of A defined in Step 1. Suppose that
S € 8(C). is a sequence with limit § € S’(C).. We want to show that

A(ST) S A8y, (C.8)

We first reduce to the case where S* € S’(C). By (C.7), for each i, we can choose
T' € 8'(C) such that dse (S', T") < 27" and dpaus(A(ST), A(T?)) < 27", If we have

dHaus

shown A(T") —= A(S), then (C.8) follows immediately.

Next we reduce to the case where dse (5%, S™!) < 277, In fact, thanks to Theo-
rem C.1.1, in order to prove (C.8), it suffices to show that each subsequence of A(S?)
admits a subsequence that converges to A(S). Hence, we easily reduce to the required
case.

After these reductions, (C.8) is nothing but (C.7). m]

Remark C.2.1 As the readers can easily verify from the proof, for any S € 8’(C).,,
there is §” € 8’(C) such that S ~ §’.

Corollary C.2.2 Suppose that S, S’ € 8'(C).o with S C §’, then
A(S) € A(S). (C.9)

Proof Let S/, S € 8'(C) be elements such that S/ — S, S/ — §’. Then it follows
from Lemma C.2.2 that S/ N §”/ — S. Since vol is continuous, for large j, S/ N §’/
has positive volume and hence lies in S’(C) by Lemma C.2.5. We may therefore
replace S/ by S/ N S”/ and assume that S/ € S’/. Hence, (C.9) follows from the
continuity of A proved in Theorem C.2.2. O

Remark C.2.2 As the readers can easily verify, the construction of A is independent of
the choice of C in the following sense: Suppose that C’ is another cone satisfying the
same assumptions as C and C’ 2 C, then the Okounkov body mapA: 8’(C’).o — K
is an extension of the corresponding map (C.5). We will constantly use this fact
without further explanations.
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