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1. Introduction

These are the lecture notes for a mini-course given in ShanghaiTech University in July 2023.
The goal is to explain the results of [

DX22
DX22;

DX21
DX21]. In the first two lectures, we will explain the

construction and the basic properties of the non-pluripolar theory of Monge–Ampère operators.
These parts should be of interest to a general audience. In the third and the fourth lecture, we
explain the results of [

DX22
DX22;

DX21
DX21] and various applications.

Due to the time limitation, I usually do not give full proofs.

2. Subharmonic functions

Let Ω ⊆ R2 = C be a domain (i.e. a connected open subset). We recall a few well-known
properties about subharmonic functions.

Definition 2.1. A smooth function ϕ : Ω → R is subharmonic if
(2.1) −∆ϕ ≤ 0.

For many purposes, it is important to allow singularities in ϕ. 1 Fortunately, it is not very
difficult to translate this definition into a regularity-free definition.

lma:submean Lemma 2.2. A smooth function ϕ : Ω → R is subharmonic if and only if it has the following
sub-mean value property: for any a ∈ Ω, r > 0 such that B(a, r) ⋐ Ω, we have

{eq:submean}{eq:submean} (2.2) ϕ(a) ≤ 1
2π

∫ 2π

0
ϕ(a+ reiθ) dθ.

Here B(a, r) is the open ball of radius r centered as a.
Conversely, we can use the sub-mean value property as the definition of subharmonic functions.

Definition 2.3. A function ϕ : Ω → [−∞,∞) is subharmonic if the following two conditions
are satisfied:

(1) ϕ is usc (i.e. upper semicontinuous);
(2) ϕ satisfies the sub-mean value property: for any a ∈ Ω, r > 0 such that B(a, r) ⋐ Ω,

(2.2) holds.

Usually we do not regard ϕ ≡ −∞ as a subharmonic function.

1Why? Because there are more singular plurisubharmonic functions! In higher dimension, on a compact Kähler
manifold, there are pseudo-effective but not nef cohomology classes. In these classes, singularities necessarily
occur.
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2 LECTURE 1

Remark 2.4. For curious readers, there are two subtleties here.
Why do we require that ϕ be usc? If not, we can always change the values of ϕ at finitely

many points, there is no hope to get any rigidity of ϕ.
Why do we forbid ϕ from taking the value +∞? If not, (2.2) does not make sense as the

integral is not necessarily defined. Moreover, it is important that ϕ is locally bounded from
above in order to get some compactness.

Exercise 2.5. Suppose that (ϕi) is a decreasing sequence of subharmonic functions on Ω. Show
that ϕ := infi ϕi is either subharmonic or equal to −∞.

prop:meanvalue Proposition 2.6. Let ϕ be a subharmonic function on Ω. For any x ∈ Ω, let δ be the maximum
of the radius such that B(x, δ) ⊆ Ω. Then the function

r 7→ M(x, r) := 1
2π

∫ 2π

0
ϕ(x+ reiθ) dθ

is continuous increasing for r ∈ (0, δ). Moreover, M(x, r) is a convex function in log r.
When r → 0+, the limit exists and is equal to ϕ(x).

See [
GZ17
GZ17, Proposition 1.13]. There are a few confusing typos in this reference moreover, the

continuity is stated but not proved.

Proof. We leave the last assertion to the readers and prove only the previous assertions.
In the first two steps, we argue that M(x, r) is increasing in r.
Take 0 < s < r < δ. We want to argue that

{eq:meanvalueincreasing}{eq:meanvalueincreasing} (2.3)
∫ 2π

0
ϕ(x+ seiθ) dθ ≤

∫ 2π

0
ϕ(x+ reiθ) dθ.

Step 1. We argue the following auxiliary result: for any continuous function h on ∂B(0, 1)
satisfying

ϕ(x+ reiθ) ≤ h(eiθ)
for any θ ∈ R, we have

{eq:meanvalueweak}{eq:meanvalueweak} (2.4)
∫ 2π

0
ϕ(x+ seiθ) dθ ≤

∫ 2π

0
h(eiθ) dθ.

Let H be the unique continuous harmonic function on B(0, 1) with boundary value h. Then
ϕ−H is a subharmonic function on B(a, r) with non-positive boundary value. We claim that is
has non-positive value everywhere on B(a, r). The proof is left to the readers. In particular,

u(x+ rξ) ≤ H(ξ)

for all ξ ∈ B(0, 1). It follows that∫ 2π

0
ϕ(x+ seiθ) dθ ≤

∫ 2π

0
H(r−1seiθ) dθ =

∫ 2π

0
H(eiθ) dθ =

∫ 2π

0
h(eiθ) dθ.

Now (2.4) follows.
Step 2. As ϕ|∂B(x,r) is usc, we can find a decreasing sequence of continuous functions hj on

∂B(0, 1) such that
ϕ(x+ reiθ) = lim

j→∞
hj(eiθ).

By Step 1, we have ∫ 2π

0
ϕ(x+ seiθ) dθ ≤

∫ 2π

0
hj(eiθ) dθ.

Using monotone convergence theorem, we conclude (2.3).
In Step 3, we argue the convexity of M(x, r) in log r. Note that this implies readily the

continuity of M(x, r) in r.
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Step 3. We may assume that Ω = B(0, 1) and x = 0 to simplify our notations. We observe
that for each ξ ∈ B(0, 1), the function ϕ(exp(z)ξ) is subharmonic in z ∈ {w ∈ C : Rew < 0}. It
follows that

z 7→
∫ 2π

0
ϕ(ez+iθ) dθ

is also subharmonic on the same domain. But this function is independent of Im z, it follows
that its restriction to the real axis is convex. We leave the details to the readers. □

Exercise 2.7. Fill in the omitted details in the proof.

It turns out that the class of functions defined in this way has many remarkable properties,
as we will see later on in more general contexts.

ex:log_one_var Example 2.8. The key example: let a ∈ Ω, then the function ϕ : Ω → [−∞,∞) defined by
ϕ(x) := log |x− a|2

is subharmonic. Prove it as an exercise!

This example and its global variant are the central object in the third and the fourth lecture.
Although subharmonic functions usually have singularities, they can be locally approximated

by smooth subharmonic functions. We need the standard Friedrichs mollifier technique.

Definition 2.9. A (positive) mollifier is a smooth function ρ : Rn → [0,∞) satisfying:
(1) ρ is compactly supported;
(2)

∫
Rn ρ(x)dx = 1;

(3) limϵ→0+ ρϵ = δ, where
{eq:rhoepsilon}{eq:rhoepsilon} (2.5) ρϵ(x) := ϵ−nρ(x/ϵ).

Here the convergence is in the sense of distributions and δ denotes the Dirac delta
distribution at 0.

The standard example of a mollifier is given by the following function:

{eq:rhostandard}{eq:rhostandard} (2.6) ρ(x) :=


e−1/(1−|x|2)∫

|x|<1 e−1/(1−|x|2) dx
, if |x| < 1

0, if |x| ≥ 1.

Now fix the mollifier ρ on R2 as in (2.6) and define ρϵ as in (2.5). This mollfier is special: it is
supported on the unit disk and it is a radial function.

Consider a subharmonic function ϕ on Ω. We consider the convolution
ϕϵ := ϕ ∗ ρϵ : Ωϵ → R

for all small ϵ > 0, where
Ωϵ := {x ∈ Ω : B(x, ϵ) ⊆ Ω}.

From distribution theory, we know that ϕϵ is a smooth function and when ϵ decreases to 0, ϕϵ
converges to ϕ in the sense of distribution.

Exercise 2.10. Prove that ϕϵ is subharmonic and as ϵ decreases to 0, ϕϵ is decreasing and
converges to ϕ pointwisely. Hint: for the latter, it is easy to begin with the case where ϕ is
smooth. In this case, try to use Proposition 2.6. In general, first regularize ϕ.

In order to prepare for the higher dimensional generalization, let us reformulate the definition
in a different way.

prop:pshDelta Proposition 2.11. Let ϕ : Ω → [−∞,∞) be a measurable function. Then ϕ coincides a.e. with
a subharmonic function if and only if ϕ is locally integrable and

{eq:Deltau}{eq:Deltau} (2.7) −∆ϕ ≤ 0
in the sense of distribution.
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Sketch of the proof. For the direct implication, we may assume that ϕ is subharmonic. Then ϕ
is locally integrable (prove it using Proposition 2.6!). Next we prove (2.7). When ϕ is smooth,
a ∈ Ω, by Taylor’s expansion,

∆ϕ(a) = lim
r→0+

2
r2

( 1
2π

∫ 2π

0
ϕ(a+ reiθ) dθ − ϕ(a)

)
≥ 0.

In general, just choose a standard mollifier to regularize ϕ.
Conversely, suppose that ϕ is locally integrable and (2.7) holds. Again choose a standard

mollifier ρϵ. Show that ϕ ∗ ρϵ is a smooth subharmonic function. It decreases as ϵ decreases to 0.
Define ϕ as the pointwise limit of ϕ ∗ ρϵ. □

Exercise 2.12. Fill in the details.

3. Plurisubharmonic functions

Now let Ω be a domain in Cn. We will extend the notion of suhharmonic functions to higher
dimensions.

def:pshdomain Definition 3.1. A function ϕ : Ω → [−∞,∞) is plurisubharmonic (psh for short) if the following
two conditions are satisfied:

(1) ϕ is usc;
(2) for any complex line L ⊆ Cn, the restriction of ϕ to each connected component of L ∩ Ω

is subharmonic.

Similar to the subharmonic function case, we do not consider ϕ ≡ −∞ as a psh function. We
write PSH(Ω) for the set of psh functions on Ω.

We have a multi-directional version of Proposition 2.11.

prop:pshcurrent Proposition 3.2. Suppose that ϕ : Ω → [−∞,∞) is a psh function. Then ϕ is locally integrable
and

(3.1) ddcφ ≥ 0.

Conversely, if a function ϕ : Ω → [−∞,∞) satisfies these conditions, it coincides almost
everywhere with a psh function.

The mollifier technique applies without any change. The proof is left as an exercise.
Here ddcϕ is current i

2π∂∂̄ϕ. Namely,

{eq:dc}{eq:dc} (3.2) dc = 1
4πi (∂ − ∂̄).

The advantage is that dc is a real operator, unlike ∂̄. There is no universally agreed convention
about the constant in (3.2). One has to verify the convention in each paper separately. For
example, our convention differs from that in [

GZ17
GZ17, Page 15].

Note that our convention guarantees that

{eq:ddcphi}{eq:ddcphi} (3.3) ddcϕ(x) = δa

in Example 2.8. Here δa is the Dirac measure at a.

Exercise 3.3. Prove (3.3). You need Green’s second identity.

�In many references, when verifying an usc locally integrable function is psh, the authors only
verify ddcφ ≥ 0. This is not enough! For example, we can increase the value of a psh function

arbitrarily at finitely many points to obtain such an example. On the contrary, a psh function is
completely determined by its restriction to any dense subset of Ω.2

2This is non-trivial. Try to prove it only if you know what quasi-continuity means.
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Lemma 2.2 also admits an extension:

Proposition 3.4. A smooth function ϕ : Ω → R is psh if and only if
ddcϕ ≥ 0.

Eventually we are interested in psh functions on complex manifolds. It is therefore important
to know how they behave under biholomorphic maps. More generally, we have

Proposition 3.5. Let Ω ⊆ Cn, Ω′ ⊆ Cn′ be two domains and f : Ω′ → Ω is a holomorphic map.
Consider ϕ ∈ PSH(Ω′). Then either f∗ϕ ≡ −∞ or f∗ϕ ∈ PSH(Ω).

In particular, if f is biholomorphic, then f∗ϕ ∈ PSH(Ω).

This corrects the imprecision of [
GZ17
GZ17, Proposition 1.44].

Exercise 3.6. Prove this proposition. The proof relies on the mollifier technique again and you
need Proposition 3.11 as well.

Now it is clear how to define a psh function on a manifold.

Definition 3.7. Let X be a complex manifold and ϕ : X → [−∞,∞) a function. We say ϕ is
plurisubharmonic (psh for short) if for any x ∈ X, there is a connected neighbourhood U of
x in X, a biholomorphism i : U → V to a domain V in some Cn (n may depend on x), a psh
function ψ on V such that ϕ|U = i∗ψ.

The set of psh functions on X is denoted by PSH(Ω).

Exercise 3.8. Prove that this definition coincides with the definition in Definition 3.1.

Exercise 3.9. Extend Proposition 2.6 to psh functions.

Example 3.10. Consider a domain Ω ⊆ Cn, finitely many holomorphic function f1, . . . , fN :
Ω → C and c ∈ R>0. Then

ϕ := c log
∑
i

|fi|2

is a psh function. Prove it as an exercise!

There are multiple elementary ways of producing psh functions from known ones. Fix a
complex manifold X.

prop:pshfunctionbasic Proposition 3.11. We have the following:
(1) Suppose φ,ψ ∈ PSH(X), then φ+ ψ,φ ∨ ψ ∈ PSH(X). In particular, φ+ C ∈ PSH(X)

for any constant C ∈ R;
(2) Suppose φ ∈ PSH(X) and c ∈ R>0, then cφ ∈ PSH(X);
(3) Suppose (φj)j is a decreasing sequence/net of psh functions on X, then the restriction of

infj φj to each connected component of X is either constantly −∞ or psh;
(4) Suppose φ ∈ PSH(X) and f : Y → X is a holomorphic map from another complex

manifold Y , then the restriction of f∗φ to each connected component of Y is either
constantly −∞ or psh.

Here ∨ denotes the maximum. By contrast, the pointwise minimum of two psh function is
not psh in general. Try to find an example!

There is a less elementary way of producing psh functions:

Theorem 3.12. Let (φi)i∈I be a non-empty family of psh functions on X. Assume that this
family is locally uniformly bounded from above. Then

sup*
i∈I

φi : X → [−∞,∞), x 7→ lim
y→x

sup
i∈I

φi(y)

is psh on X. Moreover, the set{
x ∈ X : sup*

i∈I
φi(x) > sup

i∈I
φi(x)

}
is pluripolar.
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This is not at exercise level. The latter part is known as Choquet’s lemma. You may find a
proof in [

GZ17
GZ17, Corollary 4.28].

We made use of the following definition:

Definition 3.13. A subset E ⊆ X is pluripolar if for any x ∈ X, there is an open neighbourhood
U of x in X, a psh function ϕ on U such that

E ∩ U ⊆ {x ∈ U : ϕ(x) = −∞}.

This notion is sometimes known as locally pluripolar in the literature.
The next non-trivial result is Grauert–Remmert’s extension theorem.

Theorem 3.14. Let Z ⊆ X be an analytic set and ϕ ∈ PSH(X \ Z). We assume that one of
the following conditions is satisfied:

(1) Z has codimension ≥ 1 and for any x ∈ Z, there is an open neighbourhood U of x in X
such that ϕ|U\Z is bounded from above;

(2) Z has codimension ≥ 2.
Then there is a unique ϕ̃ ∈ PSH(X) such that ϕ = ϕ̃|X\Z .

I learned this result from their original paper [
GR56
GR56]. Maybe someone could include a reference

in English.
Let us point out that in the global setting, there are very few psh functions.

prop:nopshfunction Proposition 3.15. Assume that X is compact. Then PSH(X) consists of locally constant
functions φ : X → R.

The proof is again left as an exercise.
In view of Proposition 3.15, it is of interest to extend the notion of psh functions. This leads

to the following definition:

Definition 3.16. Given a closed real smooth (1, 1)-form θ on X, we say a function φ : X →
[−∞,∞) is θ-plurisubharmonic (θ-psh for short) if

(1) for each x ∈ X, there is an open neighbourhood U of x in X a psh function ϕ on U , a
smooth function p : U → R such that φ|U = ϕ+ p;

(2) θφ := θ + ddcφ ≥ 0.
We denote the set of θ-psh functions by PSH(X, θ).

A function φ : X → [−∞,∞) is quasi-plurisubharmonic (qpsh for short) if condition (1) is
satisfied.

There are plenty of qpsh functions in general.

eq:singP1 Example 3.17. Take X = P1, θ = ω is the Fubini–Study form: denote the homogeneous
coordinate by [X0 : X1], then ω is

ω := ddc log
(
|X0|2 + |X1|2

)
.

Show that there is φ ∈ PSH(X,ω) with ω + ddcφ = δ0. Write φ down explicitly in local
coordinates.

Qpsh functions are stable under various operations as before.

Proposition 3.18. Let θ be a smooth real closed (1, 1)-form on X.
(1) Suppose φ,ψ ∈ PSH(X, θ) and t ∈ (0, 1), C ∈ R, then tφ + (1 − t)ψ,φ + C,φ ∨ ψ ∈

PSH(X, θ);
(2) Suppose (φj)j is a decreasing sequence/net in PSH(X, θ), then the restriction of infj φj

to each connected component of X is either constantly −∞ or θ-psh3;
(3) Suppose φ ∈ PSH(X, θ) and f : Y → X is a holomorphic map from another complex

manifold Y , then the restriction of f∗φ to each connected component of Y is either
constantly −∞ or f∗θ-psh;

3Here and in the sequel we are abusing the language by denoting the restriction of θ as θ.



LECTURE 1 7

(4) Let (φi)i∈I be a non-empty family of θ-psh functions on X. Assume that this family is
locally uniformly bounded from above. Then

sup*
i∈I

φi : X → [−∞,∞), x 7→ lim
y→x

sup
i∈I

φi(y)

is θ-psh on X. Moreover, the set{
x ∈ X : sup*

i∈I
φi(x) > sup

i∈I
φi(x)

}
is pluripolar;

(5) Let Z ⊆ X be an analytic set and ϕ ∈ PSH(X \ Z, θ|X\Z). We assume that one of the
following conditions is satisfied:
(a) Z has codimension ≥ 1 and for any x ∈ Z, there is an open neighbourhood U of x

in X such that ϕ|U\Z is bounded from above;
(b) Z has codimension ≥ 2.

Then there is a unique ϕ̃ ∈ PSH(X, θ) such that ϕ = ϕ̃|X\Z .

4. The Monge–Ampère operator — Local theory

One reason why we are interested in regular qpsh functions is their relation to certain geometric
PDE, known as the complex Monge–Ampère equation:

(ω + ddcϕ)n = µ.

Here ω is a Kähler form on a compact manifold of pure dimension n, ϕ is a smooth ω-psh
function and µ is a smooth volume form such that

∫
X µ =

∫
X ω

n. Yau’s solution to the Calabi
conjecture implies that this equation is always solvable. However, for most applications, it is
of interest to investigate rougher data, where µ is no longer smooth. In this case, we can no
longer expect ϕ to be smooth or even continuous. It is therefore important to have a definition
of (ω + ddcϕ)n for rough ϕ.

There are many different definitions of (ω + ddcϕ)n in general, but when ϕ is locally bounded,
there is only one reasonable definition. This leads to the Bedford–Taylor theory.

We first recall the notion of positive forms.

Definition 4.1. Let V be a complex vector space of dimension n. An (n, n)-form α on V is
positive if it is a non-negative multiple of a volume form on V : if dz1, . . . , dzn denote a basis of
V , then

α = λidz1 ∧ dz1 ∧ · · · ∧ idzn ∧ dzn, λ ≥ 0.
A (p, p)-form (0 ≤ p ≤ n) is strongly positive if it is a finite linear combination with non-

negative coefficients of forms of the following form:

iα1 ∧ α1 ∧ · · · ∧ iαp ∧ αp,

where α1, . . . , αp are (1, 0)-forms.
A (p, p)-form (0 ≤ p ≤ n) β is weakly positive if for all (1, 0)-forms α1, . . . , αn−p, the following

form is positive:
β ∧ iα1 ∧ α1 ∧ · · · ∧ iαn−p ∧ αn−p.

A (p, p)-form (0 ≤ p ≤ n) is positive if it is a finite linear combination with non-negative
coefficients of forms of the following form:

ip2
α ∧ ᾱ,

where α is a (p, 0)-form.

A form on a complex manifold is positive (resp. strongly positive, weakly positive) if it is so at
each point.
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Definition 4.2. A (p, p)-current (0 ≤ p ≤ n) T on a complex manifold is strongly positive if for
all weakly positive (n− p, n− p)-form α with compact support, ⟨T, α⟩ ≥ 0.

A (p, p)-current (0 ≤ p ≤ n) T is weakly positive if for all strongly positive (n− p, n− p)-form
α, ⟨T, α⟩ ≥ 0.

A (p, p)-current (0 ≤ p ≤ n) T is positive if for all positive (n− p, n− p)-form α, ⟨T, α⟩ ≥ 0.
In this case of (1, 1)-currents, these notions are equivalent. On the other hand, when we talk

about positive currents in these notes, we will follow the conventions in most literature, we shall
use positive to mean weakly positive.
Example 4.3. If ϕ is a psh function on a complex manifold, then ddcϕ is a closed positive
(1, 1)-current.

We will fix a domain Ω ⊆ Cn.
Definition 4.4. Let T be a closed positive (p, p)-current on Ω and ϕ ∈ PSH(Ω). Assume that ϕ
is locally bounded. Then we define a (p+ 1, p+ 1)-current ddcϕ ∧ T on Ω by
(4.1) ddcϕ ∧ T := ddc(ϕT ).

In other words, if we take a smooth (n− p− 1, n− p− 1)-form α with compact support on Ω,
we have

⟨ddcϕ ∧ T, α⟩ := ⟨ϕT, ddcα⟩.
Note that by definition, ddcϕ∧ T is a closed current and is continuous along decreasing limits of
ϕ. In particular, if ϕj denotes a local regularization of ϕ, we can write ddcϕ ∧ T as the weak
limit of ddcϕj ∧ T .
Exercise 4.5. Show the positivity of ddcϕj ∧ T and deduce the positivity of ddcϕ ∧ T .

More generally, by iteration, we get the following definition:
def:MABT Definition 4.6. Let T be a closed positive (p, p)-current on Ω and ϕ1, . . . , ϕk ∈ PSH(Ω). Then

we define a closed positive (p+ k, p+ k)-current ddcϕ1 ∧ · · · ddcϕk ∧ T on Ω by
ddcϕ1 ∧ · · · ∧ ddcϕk ∧ T := ddc (ϕ1ddcϕ2 ∧ · · · ddcϕk ∧ T ) .

When T is the current of integration along Ω, we just write
ddcϕ1 ∧ · · · ∧ ddcϕk

instead. These operators are know as the Monge–Ampère operators.
It remains to show that this operator behaves in a good way.

thm:CLN Theorem 4.7 (Chern–Levine–Nirenberg). Let T be a closed positive (n−k, n−k)-current on Ω
and ϕ1, . . . , ϕk ∈ PSH(Ω) be locally bounded functions. Then for any open subsets Ω1 ⋐ Ω2 ⋐ Ω,
there is a constant C = C(Ω1,Ω2) > 0 such that for any compact subset K ⊆ Ω1, we have∫

K
ddcϕ1 ∧ · · · ∧ ddcϕk ∧ T ≤ C∥ϕ1∥L∞(E) · · · ∥ϕk∥L∞(E)∥T∥E ,

where E = (Ω2 \ Ω1) ∩ SuppT .
Here ∥T∥E need further explanation. We expand T as

i(n−k)2 ∑
|I|=|J |=n−k

TI,J dzI ∧ dzJ .

The positivity of T implies that TI,J are of order 0 and the total variation of the off diagonal
elements are dominated by the diagonal ones. So we can define

∥T∥E =
∑

|I|=n−k
|TI,I |E ,

where |TI,I |E is the total variation of the positive measure TI,Iµ on E, where µ is the standard
Lebesgue measure. 4

4The definition in [
GZ17
GZ17, Proposition 2.18] is not quite precise. In particular, TI,J themselves are not measures.
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Proof. We follow the elegant proof in [
GZ17
GZ17, Theorem 3.9]. By induction, we may assume that

k = 1. We write ϕ instead of ϕ1. We may assume that ϕ ≤ 0 on Ω2 up to replacing ϕ by
ϕ− supΩ2 ϕ.

Let χ : Ω2 → R be a smooth function with compact support such that χ = 1 on Ω1. Then∫
Ω1
T ∧ ddcϕ ≤

∫
Ω2
χT ∧ ddcϕ.

As ddcχ = 0 on Ω1, we have ∫
Ω2
χT ∧ ddcϕ =

∫
Ω2\Ω1

ϕ ddcχ ∧ T.

Fix A > 0 so that ddcχ ≤ Aβ, where β = i
∑n
j=1 dzj ∧ dzj . Then∫

Ω2\Ω1
ϕ ddcχ ∧ T ≤ A∥ϕ∥Ω2\Ω1

∫
E
T ∧ β.

Putting everything together, we conclude the proof. □

Exercise 4.8. Fill in the omitted details in the proof.

The Chern–Levine–Nirenberg inequality is the cornerstone of the whole pluripotential theory.
It allows us to reduce problems related to bounded psh functions to the simpler problem of
smooth psh functions. We will see its power in the following example.

cor:weakconvddc Corollary 4.9. Let T be a closed positive (p, p)-current on Ω. Let ϕj be a decreasing sequence
of bounded psh functions in Ω with limit ϕ ∈ PSH(Ω). We assume that ϕ is locally bounded.
Then for any continuous psh function h on Ω, we have

hddcφj ∧ T ⇀ h ddcφ ∧ T, ddch ∧ ddcφj ∧ T ⇀ ddch ∧ ddcφ ∧ T

as measures in the following sense: multiplying everything by a test form of suitable bidegree,
then the corresponding measures converge weakly.

Proof. We know that ddcϕj ∧ T ⇀ ddcϕ ∧ T as currents. But Theorem 4.7 also guarantees that
the masses are locally uniformly bounded. It follows that the convergence holds as measures.
Now using the continuity of h, we conclude the first convergence.

The second is left as an exercise. □

Corollary 4.10. Under the notations of Definition 4.6, if σ is a permutation of the set {1, . . . , k},
then

{eq:MAcommute}{eq:MAcommute} (4.2) ddcϕ1 ∧ · · · ∧ ddcϕk ∧ T = ddcϕσ(1) ∧ · · · ∧ ddcϕσ(k) ∧ T.

Proof. We reduce immediately to the case k = 2. Everything is obvious when ϕ1 and ϕ2 are
both smooth.

Next we treat the less trivial case where only ϕ1 is smooth. Locally write ϕ2 as a decreasing
limit of smooth psh functions ψj , then

ddcϕ1 ∧ ddcψj ∧ T = ddcψj ∧ ddcϕ1 ∧ T.

Letting j → ∞ and applying Corollary 4.9, we conclude (4.2).
When neither of ϕ1 and ϕ2 are smooth, the proof is slightly more involved. We refer to [

GZ17
GZ17,

Corollary 3.12]. □

The Monge–Ampère operators are not continuous in general, but we still have the following:

thm:contMA Theorem 4.11. Let (ϕji )j be decreasing sequences (resp. increasing sequences) of locally bounded
psh functions on Ω converging (resp. converging a.e.) to locally bounded psh function ϕi, where
i = 1, . . . , q. Then

ϕj0 ddcϕj1 ∧ · · · ∧ ddcϕjq ⇀ ϕ0 ddcϕ1 ∧ · · · ∧ ddcϕq

as j → ∞. In particular, if ϕj0 is the constant sequence 1, we have

ddcϕj1 ∧ · · · ∧ ddcϕjq ⇀ ddcϕ1 ∧ · · · ∧ ddcϕq.
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These results are highly non-trivial consequences of Theorem 4.7. We refer to [
GZ17
GZ17, Theo-

rem 3.18, Theorem 3.23] for the proofs.

Remark 4.12. It is natural to wonder we can allow part of the sequences (ϕji )j be decreasing
and part of them be increasing. This turns out to be true. For this purpose, we need the more
sophisiticated notion of convergence in capacity. We refer to [

GZ17
GZ17, Theorem 4.26].

Finally, we mention two key properties of the Bedford–Taylor theory.

Proposition 4.13. Let ϕ1, . . . , ϕp ∈ PSH(Ω) be bounded. Then for any smooth (n−p, n−p)-form
α and any pluripolar set E ⊆ Ω, we have∫

E
(ddcϕ1 ∧ · · · ∧ ddcϕp) ∧ α = 0.

In other words, the Bedford–Taylor product does not put mass on pluripolar sets.

Theorem 4.14. Let ϕ1, . . . , ϕp, φ1, . . . , φp ∈ PSH(Ω) be locally bounded. Consider two psh
functions ψ1, ψ2 ∈ PSH(Ω) (not necessarily bounded). Define E = {ψ1 > ψ2}. Assume that
ϕi|E = φi|E for all i = 1, . . . , p. Then

1E ddcϕ1 ∧ · · · ∧ ddcϕp = 1E ddcφ1 ∧ · · · ∧ ddcφp.

This result is usually expressed by saying that the Bedford–Taylor product is local in the
pluri-fine topology.

5. The Monge–Ampère operator — Global theory

Eventually we are interested in the global picture, namely the pluripotential theory on compact
Kähler manifolds. We will see how the Bedford–Taylor theory can be extended to this setting.

We first begin with a relatively general setting. Let X be a complex manifold of pure dimension
n. Consider a closed positive (p, p)-current T on X, θ1, . . . , θk be smooth real closed (1, 1)-forms
on X. Consider locally bounded functions φi ∈ PSH(X, θi) for i = 1, . . . , k. Then we want to
define a (p+ k, p+ k)-current θφ1 ∧ · · · ∧ θφk

∧ T on X.
For this purpose, take x ∈ X, an open neighbourhood U of x in X biholomorphic to a simply

connected domain Ω ⊆ Cn thorough a map η : U → Ω. Then we can write θi = ddcgi for some
smooth functions gi on U . Then we define

(θφ1 ∧ · · · ∧ θφk
∧T )|U := η−1

∗

(
ddc(g1 ◦ η−1 + φ1 ◦ η−1) ∧ · · · ∧ ddc(g1 ◦ η−1 + φk ◦ η−1) ∧ η∗T

)
.

Exercise 5.1. Show that this definition is independent of the choices we made and gives a closed
positive (p+ k, p+ k) current on X.

The continuity theorem Theorem 4.11 holds with suitable modification, which we left to the
readers.

So far, we have not imposed any Kähler condition. Now let us see what happens if X is
compact Kähler. From now on, we assume that X is a compact Kähler manifold of pure
dimension n.

Theorem 5.2 (∂∂̄-lemma). Let α be a d-exact smooth real (p, q)-form (resp. real d-exact
(p, q)-current) on X (p, q ≥ 1). Then there is a smooth real (p − 1, q − 1)-form (resp. real
(p− 1, q − 1)-current) β on X such that

α = ddcβ.

In particular, when p = q = 1, this tells us that every form or current in a given cohomology
class {α} can always be written as α+ ddcg for some (0, 0)-current. If moreover we impose the
positivity assumption, this yields the following corollary:

Corollary 5.3. Let θ be a smooth real closed (1, 1)-form on X. The map φ 7→ θφ sending
φ ∈ PSH(X, θ) to the current θφ induces an identification PSH(X, θ)/R with the set of closed
positive (1, 1)-currents in the cohomology class {θ}.

We close this lecture by an easy observation:
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Proposition 5.4. Let θ be a smooth real closed (1, 1)-form on X and φ,ψ ∈ PSH(X, θ). Assume
that φ, ψ are both bounded, then

{eq:massBT}{eq:massBT} (5.1)
∫
X
θnφ =

∫
X
θnψ.

Proof. Take a Kähler form ω on X. It suffices to show that for sufficiently small ϵ > 0,∫
X

(ϵω + θ)nφ =
∫
X

(ϵω + θ)nψ.

In particular, we may assume in the beginning that θφ and θψ are Kähler currents.
In this case, we have the celebrated regularization theorem of Demailly: we can find decreasing

sequences of smooth functions φj , ψj ∈ PSH(X, θ) converging pointwise to φ and ψ respectively.
Using the continuity result Theorem 4.11, it suffices to prove (5.1) with φj , ψj in place of φ and
ψ. So we may assume that φ and ψ are smooth.

In this case, it suffices to observe that θnφ − θnψ is exact. □

It therefore makes sense to call this common value the volume of the class {θ}. When θ is
semi-positive, we can take φ = 0, then the volume of the class is nothing but

∫
X θ

n. We have
seen a very important phenomenon: the Bedford–Taylor products do not lose mass.

6. Lelong numbers of psh functions

We include a brief introduction of the Lelong numbers.
We begin with the situation on a domain Ω ⊆ CN . The Lelong number is a rough measure of

the singularities of a psh function.
Definition 6.1. Given x ∈ Ω, φ ∈ PSH(X), define the Lelong number of φ at x by

ν(φ, x) := lim
r→0+

supB(x,r) φ

log r .

Exercise 6.2. Show that the limit exists and
ν(φ, x) = sup{c ≥ 0 : φ(y) ≤ c log |y − x| + O(1) as y → x}.

Exercise 6.3. Compute ν(φ, 0) in Example 3.17.
Exercise 6.4. As a challenging exercise, prove that

ν(φ, x) := lim
r→0+

∫
∂B(x,r) φ

|∂B(x, r)| log r .

Make sure that you know what Harnack inequality is before doing this exercise.
As a corollary, show that if ψ is another psh function on Ω, we have

ν(max{φ,ψ}, x) = min{ν(φ, x), ν(ψ, x)}, ν(φ+ ψ, x) = ν(φ, x) + ν(ψ, x).
Exercise 6.5. Show that the Lelong number is a biholomorphic invariant notion. Explain why
and how it can be extended to quasi-psh function on manifolds.

Now given this exercise, we can take talk about Siu’s semi-continuity theorem:
Theorem 6.6. Let X be a complex manifold and φ be a qpsh function on X. Then for any
c > 0,

{x ∈ X : ν(φ, x) ≥ c}
is an analytic subset of X.

This result allows us to define the generic Lelong number: given a prime divisor E on X, we
define

ν(φ,E) := min
x∈E

ν(φ, x).

Note that ν(φ,E) = ν(φ, x) for a general x ∈ E. More generally, for a prime divisor E over X,
we can take a bimeromorphically modification π : Y → X from a connected compact Kähler
manifold Y to X such that E is a prime divisor on E. In this case, we define

ν(φ,E) := ν(π∗φ,E).
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Exercise 6.7. Show that this definition is independent of the choice of π.

Another useful and closely related measure of singularities is given by the multiplier ideal
sheaf.

Definition 6.8. Let X be a complex manifold and φ be a qpsh function on X. Then multiplier
ideal sheaf I(φ) of φ is the analytic ideal sheaf on X locally generated by holomorphic functions
f such that 5 ∫

|f |2e−φ < ∞.

It is a celebrated theorem of Nadel that I(φ) is coherent. It can be used to give a vast
extension of the Kodaira–Kawamata–Vieweg vanishing theorem. The vanishing theorem is
known as Nadel–Cao vanishing theorem. We will return to this result later on.

The multiplier ideal sheaf is smaller when the qpsh function is more singular. It is also a
measure of singularity.

Of course, the two measures of singularities should be related. The precise relation is given
by the following theorem:

Theorem 6.9. A local holomorphic function f belongs to I(φ) if and only if there is ϵ > 0 such
that
(6.1) ordE(f) ≥ (1 + ϵ)ν(φ,E) −AX(E),
where AX(E) ∈ R≥0 is the log-discrepancy of E.

So the Lelong numbers determine the multiplier ideal sheaf. Conversely, I(kφ) for all k ∈ Z>0
uniquely determines the Lelong numbers as well, try to give a proof!

Scholie: The information of all multiplier ideal sheaves I(kφ) is equivalent to the information
of all generic Lelong numbers ν(φ,E).

5Some authors use e−2φ instead.



REFERENCES 13

References

DX21 [DX21] T. Darvas and M. Xia. The volume of pseudoeffective line bundles and partial equilib-
rium. Geometry & Topology (2021). arXiv: 2112.03827 [math.DG].

DX22 [DX22] T. Darvas and M. Xia. The closures of test configurations and algebraic singularity
types. Adv. Math. 397 (2022), Paper No. 108198, 56. url: https://doi.org/10.1016/
j.aim.2022.108198.

GR56 [GR56] H. Grauert and R. Remmert. Plurisubharmonische Funktionen in komplexen Räumen.
Math. Z. 65 (1956), pp. 175–194. url: https://doi.org/10.1007/BF01473877.

GZ17 [GZ17] V. Guedj and A. Zeriahi. Degenerate complex Monge-Ampère equations. Vol. 26.
EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2017,
pp. xxiv+472. url: https://doi.org/10.4171/167.

Mingchen Xia, Department of Mathematics, Institut de Mathématiques de Jussieu-Paris Rive
Gauche

Email address, mingchen@imj-prg.fr
Homepage, https://mingchenxia.github.io/home/.

https://arxiv.org/abs/2112.03827
https://doi.org/10.1016/j.aim.2022.108198
https://doi.org/10.1016/j.aim.2022.108198
https://doi.org/10.1007/BF01473877
https://doi.org/10.4171/167
https://mingchenxia.github.io/home/

	1. Introduction
	2. Subharmonic functions
	3. Plurisubharmonic functions
	4. The Monge–Ampère operator — Local theory
	5. The Monge–Ampère operator — Global theory
	6. Lelong numbers of psh functions
	References

