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1. A quick recap

We defined the Monge–Ampère measure of a locally bounded psh function on a complex
manifold X last time. Given locally bounded ϕ1, . . . , ϕp ∈ PSH(X), we defined

ddcϕ1 ∧ · · · ∧ ddcϕp = ddc (ϕ1 ddcϕ2 · · · ∧ ddcϕp)

by induction on p. This approach fails if ϕ1 is not locally bounded, as you cannot multiply the
currents ϕ1 and ddcϕ2 · · · ∧ ddcϕp.

Recall the following two facts mentioned last time.

Proposition 1.1. Let ϕ1, . . . , ϕp ∈ PSH(X) be bounded. Then for any smooth (n−p, n−p)-form
α and any pluripolar set E ⊆ X, we have∫

E
(ddcϕ1 ∧ · · · ∧ ddcϕp) ∧ α = 0.

In other words, the Bedford–Taylor product does not put mass on pluripolar sets.

Theorem 1.2. Let ϕ1, . . . , ϕp, φ1, . . . , φp ∈ PSH(X) be bounded. Consider two psh functions
ψ1, ψ2 ∈ PSH(X) (not necessarily bounded). Define E = {ψ1 > ψ2}. Assume that ϕi|E = φi|E
for all i = 1, . . . , p. Then

1Eddcϕ1 ∧ · · · ∧ ddcϕp = 1Eddcφ1 ∧ · · · ∧ ddcφp.

This result is usually expressed by saying that the Bedford–Taylor product is local in the
pluri-fine topology.

The goal of this lecture is to extend the Monge–Ampère product to unbounded psh functions.
There are several different ways to do so. We will focus only on the non-pluripolar product. We
will explain later why it is the most natural one.

2. The non-pluripolar product

2.1. The local definition. We fix a domain Ω ⊆ CN , 1 ≤ p ≤ N and functions ϕ1, . . . , ϕp ∈
PSH(Ω). We want to define a (p, p)-current ddcϕ1 ∧ · · · ∧ ddcϕp such that

(1) the product coincides with the Bedford–Taylor product when the ϕi’s are locally bounded;
(2) the product is non-pluripolar, namely it does not put mass on pluripolar sets;
(3) the product if local in the pluri-fine topology.

Lemma 2.1. These conditions uniquely determine ddcϕ1 ∧ · · · ∧ ddcϕp.
1
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Sketch of the proof. The natural idea is to approach the ϕi’s by bounded psh functions. For any
k ∈ R, consider the canonical approximations1:

ϕki := ϕi ∨ k ∈ PSH(Ω).

Set

{eq:Ek}{eq:Ek} (2.1) Ek = {x ∈ Ω : ϕ1 > k, . . . , ϕp > k}.

This set is not open, but pluri-fine open. From Condition (3), we know that

1Ek
ddcϕ1 ∧ · · · ∧ ddcϕp = 1Ek

ddc(ϕ1 ∨ k) ∧ · · · ∧ ddc(ϕp ∨ k).

From Condition (1), the right-hand side is uniquely determined. Hence so is the left-hand side.
Letting k → −∞, we find that

1Eddcϕ1 ∧ · · · ∧ ddcϕp,

where
E = {x ∈ Ω : ϕ1 > −∞, . . . , ϕp > −∞}.

The complement of E is pluripolar, so the measure ddcϕ1 ∧ · · · ∧ ddcϕp can only be the zero-
extension of 1Eddcϕ1 ∧ · · · ∧ ddcϕp to Ω. □

The proof of the uniqueness also suggests how to define the product. We tend to define
ddcϕ1 ∧ · · · ∧ ddcϕp as the zero-extension of the weak limit of the currents

{eq:EkMA}{eq:EkMA} (2.2) 1Ek
ddc(ϕ1 ∨ k) ∧ · · · ∧ ddc(ϕp ∨ k)

with Ek defined as in (2.1). But we have an immediate issue. The sequence (2.2) does not
necessarily converge, nor is the zero-extension defined. We need a finite mass assumption to
resolve the problem.

Definition 2.2. We say the product ddcϕ1 ∧ · · · ∧ ddcϕp is well-defined if for any compact set
K ⊆ Ω, we have

sup
k∈R

∫
K∩Ek

1Ek
ddc(ϕ1 ∨ k) ∧ · · · ∧ ddc(ϕp ∨ k) ∧ ωN−k < ∞,

where ω is the standard Kähler form on CN .

In this case, we define the non-pluripolar product ddcϕ1 ∧ · · · ∧ ddcϕp as the weak limit of the
measures in (2.2).

Exercise 2.3. Explain why the weak limit exists.

The fact that the non-pluripolar product is NOT defined for all tuples (ϕi)i is annoying. But
as we will see in a second, the problem goes away immediately when we work on compact Kähler
manifolds.

Remark 2.4. The notion of non-pluripolar product is due to Bedford–Taylor [
BT87
BT87]. It was

subsequently studied and generalized by Guedj–Zeriahi [
GZ07
GZ07] and Boucksom–Eyssidieux–Guedj–

Zeriahi [
BEGZ10
BEGZ10].

2.2. The global setting. Let X be a compact Kähler manifold of pure dimension n. We fix
closed real smooth (1, 1)-forms θ1, . . . , θp on X for some 1 ≤ p ≤ n. Consider φi ∈ PSH(X, θi)
for i = 1, . . . , p.

Exercise 2.5. Explain how the definition in the local setting leads to a definition of θ1,φ1 ∧· · ·∧θp,φp .

The most important fact is that

Proposition 2.6. The product θ1,φ1 ∧ · · · ∧ θp,φp is always well-defined.

1Recall that ∨ means the maximum
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Proof. Fix a Kähler form ω on X. Write

θi,φi = θi + Cω + ddcφi − Cω

for some large enough C > 0. Using the multi-linearity of the non-pluripolar product (prove it!),
we may assume that θi is in fact a Kähler form.

Now take an open set U ⊆ X on which θi = ddcgi for all i, where gi are smooth negative psh
functions on U .

For each k ∈ R,
{gj + φj > k} ⊆ {φj > k},

so for each compact subset K ⊆ U ,∫
K
1∩p

j=1{gj+φj>k}

p∧
j=1

ddc ((gj + φj) ∨ k) ∧ ωn−p

=
∫
K
1∩p

j=1{gj+φj>k}

p∧
j=1

(θj + ddc(φj ∨ k)) ∧ ωn−p

≤
∫
X

p∧
j=1

(θj + ddc(φj ∨ k)) ∧ ωn−p

=
∫
X

p∧
j=1

θj ∧ ωn−p.

This concludes the proof. □

Exercise 2.7. Expand the last sentence of the proof.

From now on, for simplicity, we will work only in the global setting.

Exercise 2.8. Show that the product θ1,φ1 ∧ · · · ∧ θp,φp is independent of the choice of θi and φi.
It depends only on the current θi + ddcφi.

The proceeding exercise therefore allows us to define T1 ∧ · · · ∧ Tp for closed positive (1, 1)-
currents T1, . . . , Tp on X.

prop:npp2 Proposition 2.9. Let T1, . . . , Tp be closed positive (1, 1)-currents on X. Then we have the
following properties:

(1) The product T1 ∧ · · · ∧ Tp is local in plurifine topology;
(2) The product T1 ∧ · · · ∧ Tp puts not mass on pluripolar sets.
(3) The current T1 ∧ · · · ∧ Tp is a closed positive (p, p)-current
(4) The product T1 ∧ · · · ∧ Tp is symmetric.
(5) The product is multi-linear: if T ′

1 is another closed positive (1, 1)-current on X, then

(T1 + T ′
1) ∧ T2 ∧ · · · ∧ Tp = T1 ∧ T2 ∧ · · · ∧ Tp + T ′

1 ∧ T2 ∧ · · · ∧ Tp.

The proofs are left to the readers. Part (3) is probably very challenging, you can find the
proof in [

BEGZ10
BEGZ10, Theorem 1.8].

Remark 2.10. A remark for curious readers. In the definition of Bedford–Taylor product from
the previous lecture, we allowed actually defined products of the form

θ1,φ1 ∧ · · · ∧ θp,φp ∧ T

for some closed positive (q, q)-current T . In the non-pluripolar theory, we have only defined the
case without T . We do so only in order to avoid heavy technical burdens and to have better
properties. The general theory with T is studied by Vu [

Vu20
Vu21]. Note that the general theory is

not multi-linear.
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3. Properties of the non-pluripolar product

Let X be a compact Kähler manifold of pure dimension n. We use θ, θ0, θ1, . . . , θn to denote
various closed real (1, 1)-forms on X.

We collect the most important properties of the non-pluripolar product, which are relevant to
our next lecture. The results here are due to Boucksom–Eyssidieux–Guedj–Zeriahi, Darvas–Di
Nezza–Lu, Witt Nyström and me. We refer to [

DDNLbook
DDNL23] for the proofs and the credits of each

result.

Theorem 3.1 (Semi-continuity theorem). Let φj , φkj ∈ PSH(X, θj) (k ∈ Z>0, j = 1, . . . , n). Let
χ ≥ 0 be a bounded continuous function on X. Assume that for any j = 1, . . . , n, i = 1, . . . ,m,
as k → ∞, the sequence φkj converges monotonically2 to φj. Then

{eq:semicon1}{eq:semicon1} (3.1) lim
k→∞

∫
X
χ θ1,φk

1
∧ · · · ∧ θn,φk

n
≥

∫
X
χ θ1,φ1 ∧ · · · ∧ θn,φn .

If we compare this result with the corresponding result in the Bedford–Taylor theory, this
result is much weaker: the Bedford–Taylor product is continuous along monotone sequences,
while the non-pluripolar theory is lower semi-continuous.

Exercise 3.2. Find an example on P1 showing that the equality fails in general.

On the positive side, we have

Exercise 3.3. Assume in addition that

{eq:limsup}{eq:limsup} (3.2) lim
k→∞

∫
X
θ1,φk

1
∧ · · · ∧ θn,φk

n
≤

∫
X
θ1,φ1 ∧ · · · ∧ θn,φn .

Then
θ1,φk

1
∧ · · · ∧ θn,φk

n
⇀ θ1,φ1 ∧ · · · ∧ θn,φn .

thm:mono Theorem 3.4 (Monotonicity theorem). Let φj , ψj ∈ PSH(X, θj) for j = 1, . . . , n. Assume that
φj ⪰ ψj for every j, then ∫

X
θ1,φ1 ∧ · · · θn,φn ≥

∫
X
θ1,ψ1 ∧ · · · θn,ψn .

Here φ ⪰ ψ means φ ≥ ψ−C for some C ∈ R. In this case, we say φ is less singular than ψ or
ψ is more singular than φ. When φ ⪯ ψ and ψ ⪯ φ, we say φ and ψ have the same singularity
type.

The non-pluripolar mass gets smaller when the potential gets more singular. In other words,
the singularities account for the loss of non-pluripolar masses. The work of Darvas and myself
that I will present in the next lecture can be seen as a rather precise version of this idea.

Assume that PSH(X, θ) is not empty (we say the class {θ} is pseudo-effective in this case). If
we set

{eq:Vtheta}{eq:Vtheta} (3.3) Vθ = sup*{φ ∈ PSH(X, θ) : φ ≤ 0},
we have

{eq:lossmass}{eq:lossmass} (3.4)
∫
X
θnVθ

≥
∫
X
θnφ

for any φ ∈ PSH(X, θ). The left-hand side is called the volume of the cohomology class of θ.

Exercise 3.5. Provide the details and explain why the usc envelope is not necessary in (3.3).

We say φ ∈ PSH(X, θ) has full mass if equality holds in (3.4). The class of these functions is
denoted by E(X, θ). Potentials in this class can be considered as only mildly singular.

2If φj , φ ∈ PSH(X, θ) for j = 1, 2, . . ., we say φj converges monotonically to φ if either
(1) φj decreases to φ everywhere or
(2) φj decreases to φ almost everywhere (then necessarily φ = sup* φj).
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Exercise 3.6. Show that if a potential φ and Vθ have the same singularity type, then φ has full
mass. In this case, we say φ has the minimal singularity.

thm:comp2 Theorem 3.7 (Comparison principle). Assume that φ,ψ ∈ E(X, θ), then∫
{φ<ψ}

θnψ ≤
∫

{φ<ψ}
θnφ.

thm:IBPgeneral Theorem 3.8 (Integration by parts). Let γj ∈ PSH(X, θj) (j = 2, . . . , n). Let φ1, φ2 ∈
PSH(X, θ0), ψ1, ψ2 ∈ PSH(X, θ1). Let u = φ1 − φ2, v = ψ1 − ψ2. Assume that φ1 and φ2 have
the same singularity type; ψ1 and ψ2 have the same singularity type. Then

{eq:ibp4}{eq:ibp4} (3.5)
∫
X
uddcv ∧ θ2,γ2 ∧ · · · ∧ · · · ∧ θn,γn =

∫
X
v ddcu ∧ θ2,γ2 ∧ · · · ∧ · · · ∧ θn,γn .

Here the notations in (3.5) are formal, but it should not be too difficult for the readers to
figure out the precise meaning.

4. The envelope operators

Let X be a connected compact Kähler manifold of dimension n and θ be a closed real (1, 1)-
form on X. We assume that PSH(X, θ) is non-empty and the volume of {θ} is positive. We say
the class {θ} is big in this case.

This part concerns the notion of rooftop operators. As we have recalled last time, the minimum
of two θ-psh functions is not θ-psh in general. In a number of situations, it is desirable to be
able to take the minimum. This leads to the following definition:

Definition 4.1. Let φ,ψ ∈ PSH(X, θ), their rooftop operator is defined as
φ ∧ ψ := sup*{η ∈ PSH(X, θ) : η ≤ φ, η ≤ ψ}.

When the set on the right-hand side is empty, by convention, we set φ ∧ ψ = −∞.

Exercise 4.2. Prove that ∧ is associative, commutative and idempotent.

In order to imagine how the rooftop operator looks like, it is helpful to keep the following
result in mind:

thm:ma Theorem 4.3. Let φ,ψ ∈ PSH(X, θ). Assume that φ ∧ ψ ̸= −∞, then
{eq:rooftop}{eq:rooftop} (4.1) θnφ∧ψ ≤ 1{φ∧ψ=φ}θ

n
φ + 1{φ∧ψ=ψ}θ

n
ψ .

In particular, θnφ∧ψ is supported on the set where φ ∧ ψ is either equal to φ or to ψ.
It is a tricky question to determine when the rooftop operator of two potentials if not identically

−∞. We mention a one sufficient condition. We define the space of finite energy potentials as

{eq:E1}{eq:E1} (4.2) E1(X, θ) :=
{
φ ∈ E(X, θ) :

∫
X

|Vθ − φ| θnφ < ∞
}
.

Exercise 4.4. Explain why the integral in definition makes sense.

Theorem 4.5. Suppose that φ,ψ ∈ E1(X, θ), then φ∧ψ ∈ E1(X, θ). In particular, φ∧ψ ̸≡ −∞.

Our interest in the rooftop operator comes from the fact that it can be used to define a
projection operator:

def:Penv Definition 4.6. Let φ ∈ PSH(X, θ). Assume that
∫
X θ

n
φ > 0. We define

Pθ[φ] = sup*
C∈R

Vθ ∧ (φ+ C)

= sup
{
ψ ∈ PSH(X, θ) : ψ ≤ 0,

∫
X
θnφ =

∫
X
θnψ, φ ≤ ψ + C for some C ∈ R

}
;

The equality is a very non-trivial result. This envelope is very pathological when φ has 0-mass.
Instead of listing various possible definitions, we just leave it undefined.

Exercise 4.7. Show that Pθ[•] is an idempotent operator. It depends only on the singularity
type of the θ-psh function.
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Roughly speaking, the P -operator gives an envelope of a θ-singularity. It is the finest
information we can see from the comparison of singularity types and non-pluripolar masses.

Using the P -operator, the singular θ-psh functions can be grouped into several groups, each
group having the same P -envelope (called the prescribed singularity). In particular, one of these
groups is given by E(X, θ).

The general idea of the series of works of Darvas–Di Nezza–Lu is that such a group is not
very different from E(X, θ).

Observe that the P -projection preserves the multiplier ideal sheaves:

prop:misPproj Proposition 4.8. Let φ ∈ PSH(X, θ) and
∫
X θ

n
φ > 0. Then for any k ∈ R>0,

I(kPθ[φ]) = I(kφ).

Proof. By the first equation in (4.6) and Guan–Zhou’s strong openness theorem, it suffices to
show that

I(k(Vθ ∧ (φ+ C))) = I(kφ).
But Vθ ∧ (φ+ C) and φ have the same singularity type (why?), so we win. □

It is therefore natural to introduce a different envelope operator:

Definition 4.9. Let φ ∈ PSH(X, θ), we set

Pθ[φ]I = sup {ψ ∈ PSH(X, θ) : ψ ≤ 0, I(kφ) ⊇ I(kψ) for all k ∈ Z>0} .

As we already recalled, the information of all multiplier ideal sheaves is equivalent to the
information of all generic Lelong numbers, so this envelope can be equivalently characterized as
follows

Pθ[φ]I = sup{ψ ∈ PSH(X, θ) : ψ ≤ 0, ν(φ,E) ≤ ν(ψ,E) for all prime divisors E over X}.

We can reformulate Proposition 4.8 by saying if φ has positive mass,

Pθ[φ] ≤ Pθ[φ]I .

5. The space of finite energy potentials

Let X be a connected compact Kähler manifold of dimension n and θ be a closed real (1, 1)-
form θ on X representing a big cohomology class. We have introduced the space E1(X, θ) in
(4.2). The goal of this section is to study the geometry of E1(X, θ).

We will need the Monge–Ampère energy functional E : E1(X, θ) → R defined as follows:

E(φ) := 1
n+ 1

n∑
j=0

∫
X

(φ− Vθ) θjφ ∧ θn−j
Vθ

.

�The difference φ−Vθ is only defined outside the pluripolar set {Vθ = −∞}. The non-pluripolar
product θjφ ∧ θn−j

Vθ
does not put mass on pluripolar sets, so the integral is still defined.

Exercise 5.1. Show that E(φ) is increasing in φ and E(Vθ) = 0.

Exercise 5.2. Show that if ψ ∈ E1(X, θ),

E(ψ) − E(φ) = 1
n+ 1

n∑
j=0

∫
X

(ψ − φ) θjψ ∧ θn−j
φ .

Definition 5.3. We consider the following metric on E1(X, θ):

d1(φ,ψ) := d1(φ ∧ ψ,φ) + d1(φ ∧ ψ,ψ) = E(φ) + E(ψ) − 2E(φ ∧ ψ).

Theorem 5.4. The space (E1(X, θ), d1) is a complete metric space.
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You could find more details in [
DDNL18big
DDNL18a]. A vast extension can be found in [

Xia23Mabuchi
Xia23]. The

latter can be very challenging to read if you are not very familiar with this field.
It turns out that the metric geodesics are not unique in (E1(X, θ), d1). However, there is one

special notion of geodesics that is closely related to what we will do in the next lecture.
Let us fix φ0, φ1 ∈ E1(X, θ). A subgeodesic from φ0 to φ1 is a curve (φt)t∈(0,1) in E1(X, θ)

such that
(1) if we define

Φ : X × {z ∈ C : e−1 < |z| < 1} → [−∞,∞), (x, z) 7→ φ− log |z|(x),

then Φ is p∗
1θ-psh, where p1 : X × {z ∈ C : e−1 < |z| < 1} → X is the natural projection;

(2) When t → 0+ (resp. to 1−), φt converges to φ0 (resp. φ1) with respect to L1.
The maximal subgeodesic from φ0 to φ1 is called the geodesic (φt) from φ0 to φ1. The geodesic
always exists and φt ∈ E1(X, θ) for all t ∈ [0, 1]. The construction/definition of (φt) is usually
known as the Perron–Bremermann envelope. We refer to [

DDNL18fullmass
DDNL18b] for the details.

By abuse of language, we say that (φt)t∈[0,1] (with a closed interval instead of an open interval)
is the geodesic from φ0 to φ1. More generally, given t0 ≤ t1 in R, we say a curve (φt)t∈[t0,t1] in
E1(X, θ) is a geodesic from φt0 to φt1 if after a linear rescaling from [t0, t1] to [0, 1], it becomes
a geodesic. One can show that E is linear along a geodesic. In fact, by a simple perturbation
argument, one can reduce this to [

DDNL18fullmass
DDNL18b, Theorem 3.12].

Remark 5.5. When θ is a Kähler form and φ0, φ1 are smooth, the geodesic (φt) is the same as
the usual geodesic as studied by X. Chen. We refer to [

Blo13
Bło13] for the details.

The notion of geodesics naturally gives us a notion of geodesic rays:

Definition 5.6. A geodesic ray is a curve ℓ = (ℓt)t∈[0,∞) in E1(X, θ) such that for any 0 ≤ t1 < t2,
the restriction (ℓt)t∈[t1,t2] is a geodesic from ℓt1 to ℓt2 .

The space of geodesic rays ℓ with ℓ0 = Vθ is denoted by R1(X, θ).

The assumption ℓ0 = Vθ is not very restrictive. In fact, given any other φ ∈ E1(X, θ), we can
always find a unique geodesic ray ℓ′ with ℓ′0 = φ such that d1(ℓt, ℓ′t) is bounded. So if we are
only interested in the asymptotic behaviour of a geodesic ray, we do not lose any information.
We refer to [

DL20
DL20] for the details.

Next we recall the metric d1 on R1(X, θ). Given ℓ, ℓ′ ∈ R1(X, θ), one can show as in [
DL20
DL20]

that d1(ℓt, ℓ′t) is a convex function in t ∈ [0,∞). It follows that

d1(ℓ, ℓ′) := lim
t→∞

1
t
d1(ℓt, ℓ′t)

exists. It is not hard to show that d1 is indeed a metric on R1(X, θ). In fact, it is a complete
metric. We refer to [

DL20
DL20;

DDNLmetric
DDNL21] for the details.

Similarly, one can introduce E : R1(X, θ) → R as

E(ℓ) = lim
t→∞

1
t
E(ℓt).

As we recalled above, the function E(ℓt) is linear in t, so the limit E(ℓ) is nothing but the slope
of this linear function. When ℓ, ℓ′ ∈ R1(X, θ), ℓ ≤ ℓ′, using the definition of d1, we have

{eq:d1rayscompa}{eq:d1rayscompa} (5.1) d1(ℓ, ℓ′) = E(ℓ′) − E(ℓ).

ex:rayasspsh Example 5.7. Given φ ∈ PSH(X, θ), we construct a geodesic ray ℓφ ∈ R1(X, θ). For each
C > 0, let (ℓφ,Ct )t∈[0,C] be the geodesic from Vθ to (Vθ −C) ∨ φ. For each t ≥ 0, it is not hard to
see that ℓφ,Ct is increasing in C ∈ [t,∞). We let

ℓφt := sup*
C≥t

ℓφ,Ct .
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One can show that ℓφ ∈ R1(X, θ). A simple computation shows that

{eq:Elphi}{eq:Elphi} (5.2) E(ℓφ) = 1
n+ 1

 n∑
j=0

∫
X
θjφ ∧ θn−j

Vθ
− V

 .

See [
DDNLmetric
DDNL21, Theorem 3.1].

Next we recall that ∨ operator at the level of geodesic rays. Given ℓ, ℓ′ ∈ R1(X, θ). We define
ℓ ∨ ℓ′ as the minimal ray R1(X, θ) lying above both ℓ and ℓ′. In fact, it is easy to construct
such a ray: for each t > 0, let (ℓ′′ts )s∈[0,t] be the geodesic from Vθ to ℓt ∨ ℓ′t. It is easy to see that
for each fixed s ≥ 0, ℓ′′ts is increasing in t ∈ [s,∞). Let (ℓ ∨ ℓ′)s = sup*t≥s ℓ′′ts . Then we get a
geodesic ray ℓ ∨ ℓ′. It is clear that this ray is minimal among all rays dominating ℓ and ℓ′. By
construction, we have

E(ℓ ∨ ℓ′)s = lim
t→∞

E(ℓ′′ts ) = lim
t→∞

s

t
E(ℓt ∨ ℓ′t).

In particular,

{eq:Elor}{eq:Elor} (5.3) E(ℓ ∨ ℓ′) = lim
t→∞

1
t
E(ℓt ∨ ℓ′t).

lma:d1rayineq Lemma 5.8. For any ℓ, ℓ′ ∈ R1(X, θ), we have
{eq:d1maxineq}{eq:d1maxineq} (5.4) d1(ℓ, ℓ′) ≤ d1(ℓ, ℓ ∨ ℓ′) + d1(ℓ′, ℓ ∨ ℓ′) ≤ Cnd1(ℓ, ℓ′),

where Cn = 3(n+ 1)2n+2.

Proof. The first inequality is trivial. As for the second, we estimate
d1(ℓ, ℓ ∨ ℓ′) =E(ℓ ∨ ℓ′) − E(ℓ)

= lim
t→∞

1
t
E(ℓt ∨ ℓ′t) − E(ℓ)

= lim
t→∞

1
t
d1(ℓt ∨ ℓ′t, ℓt).

where on the second line, we used (5.3), the third line follows from (5.1). In all, we find

d1(ℓ, ℓ ∨ ℓ′) + d1(ℓ′, ℓ ∨ ℓ′) ≤ lim
t→∞

1
t

(
d1(ℓt ∨ ℓ′t, ℓt) + d1(ℓt ∨ ℓ′t, ℓ

′
t)

)
.

By [
DDNL18big
DDNL18a, Theorem 3.7],

d1(ℓt ∨ ℓ′t, ℓt) + d1(ℓt ∨ ℓ′t, ℓ
′
t) ≤ 3(n+ 1)2n+2d1(ℓt, ℓ′t).

Now (5.4) follows. □
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