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1. The dS-pseudometric

Given a connected compact Kähler manifold X, a closed real (1, 1)-form θ on X representing
a big class, we defined the space E1(X, θ) of potentials with finite energy and the space R1(X, θ)
of geodesic rays in E1(X, θ). We introduced a metric d1 on R1(X, θ) as the slope at infinity of
the metric d1 on E1(X, θ).

We will need the following example a lot.

ex:rayasspsh Example 1.1. Given φ ∈ PSH(X, θ), we construct a geodesic ray ℓφ ∈ R1(X, θ). For each
C > 0, let (ℓφ,Ct )t∈[0,C] be the geodesic from Vθ to (Vθ −C) ∨ φ. For each t ≥ 0, it is not hard to
see that ℓφ,Ct is increasing in C ∈ [t,∞). We let

ℓφt := sup*
C≥t

ℓφ,Ct .

One can show that ℓφ ∈ R1(X, θ). A simple computation shows that

{eq:Elphi}{eq:Elphi} (1.1) E(ℓφ) = 1
n+ 1

 n∑
j=0

∫
X
θjφ ∧ θn−j

Vθ
−
∫
X
θnVθ

 .
The point here is that we have an embedding from the space PSH(X, θ) to R1(X, θ). The

latter space admits a metric, so by transport of the structure, we get a pseudo-metric on
PSH(X, θ):

Definition 1.2. For φ,ψ ∈ PSH(X, θ), we define
dS(φ,ψ) := d1(ℓφ, ℓψ).

When necessary, we also write dS,θ instead. We do not get a metric in general because the
map PSH(X, θ) → R1(X, θ) is not injective. For example, show that if φ and ψ have the same
singularity type, then ℓφ = ℓψ.

It turns out that this metric has a number of natural properties as we will explain below.
The first question is to understand how degenerate the pseudometric dS is. Before doing so,

we introduce a few equivalence relations, which will be of use later on as well.

def:singcomp Definition 1.3. Let φ,ψ be qpsh functions on X, we say
(1) φ is more singular than ψ and write φ ⪯ ψ if there is C ∈ R such that

φ ≤ ψ + C;
(2) φ is P -more singular than ψ and write φ ⪯P ψ if for some Kähler form ω such that

φ,ψ ∈ PSH(X,ω)>0, we have
Pω[φ] ≤ Pω[ψ];
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(3) φ is I-more singular than ψ and write φ ⪯I ψ if for some Kähler form ω such that
φ,ψ ∈ PSH(X,ω), we have

Pω[φ]I ≤ Pω[ψ]I .
All three relations define partial orders on QPSH(X). We denote the corresponding equivalence
relation by ∼, ∼P and ∼I respectively.
Exercise 1.4. Show that these notions are all independent of the auxiliary choices of ω.

This exercise is not very easy, you need to know some tricks. You can find the detailed proofs
in [

Xia23
Xia23]. Please contact me if you need a copy.

Proposition 1.5. For φ,ψ ∈ PSH(X, θ), the following are equivalent:
(1) φ ∼P ψ;
(2) dS(φ,ψ) = 0.

Originally this result was stated in [
DDNLmetric
DDNL21] using the unnatural C-operator. This reformu-

lation is due to [
Xia23
Xia23].

We derive a few elementary properties from the definition.
lma:varphileqpsi_metric Lemma 1.6 ([

DDNLmetric
DDNL21, Lemma 3.4]). Suppose that φ,ψ ∈ PSH(X, θ) and φ ⪯P ψ, then

dS(φ,ψ) = 1
n+ 1

n∑
j=0

(∫
X
θjψ ∧ θn−j

Vθ
−
∫
X
θjφ ∧ θn−j

Vθ

)
.

Proof. This follows trivially from (1.1). □

In particular, for a monotone sequence, the dS-convergence means the convergence of mixed
non-pluripolar masses. This gives an intuitive idea about what dS-convergence means.
Exercise 1.7. Suppose that φi is an increasing sequence in PSH(X, θ) converging a.e. to
φ ∈ PSH(X, θ). Show that φi converges to φ with respect to dS . You might need to have a look
at the lecture notes from the last lecture.

Explain what goes wrong for a decreasing sequence.
lma:dsmetricdoubleineq Lemma 1.8. For any φ,ψ ∈ PSH(X, θ), we have

{eq:ds_biineq}{eq:ds_biineq} (1.2) dS(φ,ψ) ≤
n∑
j=0

(
2
∫
X
θjφ∨ψ ∧ θn−j

Vθ
−
∫
X
θjφ ∧ θn−j

Vθ
−
∫
X
θjψ ∧ θn−j

Vθ

)
≤ CndS(φ,ψ),

where Cn = 3(n+ 1)2n+2.
From this lemma, we find that the dS-convergence is characterized by numerical conditions of

non-pluripolar masses. The criterion here is still way too complicated for applications, we will
see a better criterion later on.

The pseudo-metric dS has almost the best properties that one can dream of.
Theorem 1.9. For any δ > 0, the space{

φ ∈ PSH(X, θ) :
∫
X
θnφ ≥ δ

}
is dS-complete.

thm:convdS Theorem 1.10. Let α1, . . . , αn be big (1, 1)-classes on X represented by θ1, . . . , θn. Suppose
that (φkj )k are sequences in PSH(X, θj) for j = 1, . . . , n and φ1, . . . , φn ∈ PSH(X, θ). We assume
that φkj

dS−→ φj as k → ∞ for each j = 1, . . . , n. Then

{eq:convmixedmassds}{eq:convmixedmassds} (1.3) lim
k→∞

∫
X
θ1,φk

1
∧ · · · ∧ θn,φk

n
=
∫
X
θ1,φ1 ∧ · · · ∧ θn,φn .

thm:Lelongcont Theorem 1.11. Let φj , φ ∈ PSH(X, θ) (j ≥ 1). Assume that φj
dS−→ φ, then for any prime

divisor E over X, we have
{eq:convnu}{eq:convnu} (1.4) lim

j→∞
ν(φj , E) = ν(φ,E).
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In general, the Lelong numbers are only usc with respect to the usual L1-convergence.

cor:equising_cond_general Corollary 1.12. Let φj , φ ∈ PSH(X, θ) (j ∈ Z>0). Assume that φj
dS−→ φ. Then for each

λ′ > λ > 0, there is j0 > 0 so that for j ≥ j0,
{eq:quasi_equi_cond}{eq:quasi_equi_cond} (1.5) I(λ′φj) ⊆ I(λφ).

The first three theorems are well-documented in the literature. See [
DDNLmetric
DDNL21;

Xia21
Xia21;

Xia22
Xia22].

The last corollary is proved in [
Xia23
Xia23]. You could also try do deduce it from Theorem 1.11. This

can be challenging!
The proofs of these theorems are too complicated to be presented in this short course. We

mention a key ingredient in each of these proofs.

prop:incanddec Proposition 1.13. Let φj , φ ∈ PSH(X, θ) (j ≥ 1), φj
dS−→ φ. Assume that there is δ > 0 such

that ∫
X
θnφj

≥ δ,

∫
X
θnφ ≥ δ

for all j and Pθ[φj ] = φj, Pθ[φ] = φ for all j. Then up to replacing (φj)j by a subsequence,
there is a decreasing sequence ψj ∈ PSH(X, θ) and an increasing sequence ηj ∈ PSH(X, θ) such
that 1

(1) As j → ∞
dS(φ,ψj) → 0, dS(φ, ηj) → 0;

(2) ψj ≥ φj ≥ ηj for all j.

In other words, the behaviour of a general dS-convergent sequence is dominated by the
behaviours of monotone sequences! Usually in order to prove a general theorem about dS-
convergence, it suffices to prove it for monotone sequences. This is the common strategy for
proving these results.

We sketch the proof of Theorem 1.10 as an example.

Sketch of the proof. Step 1. We reduce to the case where φkj , φj all have positive masses and
there is a constant δ > 0, such that for all j and k,∫

X
θn
j,φk

j
> δ.

Take t ∈ (0, 1). Try to prove by yourself that

(1 − t)φkj + tVθj

dS−→ (1 − t)φj + tVθj

as k → ∞. Assume that we have proved the special case of the theorem, we have

lim
k→∞

∫
X
θ1,(1−t)φk

1+tVθ1
∧ · · · ∧ θn,(1−t)φk

n+tVθn
=
∫
X
θ1,(1−t)φ1+tVθ1

∧ · · · ∧ θn,(1−t)φn+tVθn
.

From this, (1.3) follows easily.
Step 2. Now we may assume that φkj and φj are all of positive mass and are model potentials.
It suffices to prove that any subsequence of

∫
X θ1,φk

1
∧ · · · ∧ θn,φk

n
has a converging subsequence

with limit
∫
X θ1,φ1 ∧ · · · ∧ θn,φn . Thus, by Proposition 1.13, we may assume that for each fixed i,

φki is either increasing or decreasing. We may assume that for i ≤ i0, the sequence is decreasing
and for i > i0, the sequence is increasing.

Recall that in (1.3) the ≥ inequality always holds by the monotonicity theorem from the last
time, it suffices to prove

{eq:limsup}{eq:limsup} (1.6) lim
k→∞

∫
X
θ1,φk

1
∧ · · · ∧ θn,φk

n
≤
∫
X
θ1,φ1 ∧ · · · ∧ θn,φn .

1In fact, we will take
ηj = φj ∧ φj+1 ∧ · · ·

and
ψj = sup*

k≥j

φk.
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By the monotonicity theorem again in order to prove (1.6), we may assume that for j > i0, the
sequences φkj are constant. Thus, we are reduced to the case where for all i, φki are decreasing.

In this case, for each i we may take an increasing sequence bki > 1, tending to ∞, such that

(bki )n
∫
X
θni,φi

≥
(
(bki )n − 1

) ∫
X
θn
i,φk

i
.

Let ψki be the maximal θi-psh function such that

(bki )−1ψki +
(
1 − (bki )−1

)
φki ≤ φi ,

whose existence is guaranteed by Lemma 1.14.
Then by the monotonicity theorem again,

n∏
i=1

(
1 − (bki )−1

) ∫
X
θ1,φk

1
∧ · · · ∧ θn,φk

n
≤
∫
X
θ1,φ1 ∧ · · · ∧ θn,φn .

Let k → ∞, we conclude (1.6).
□

We have used the existence of an extraordinary envelope, which looks like a miracle to me.
This envelope plays a key role in reducing problems with general positive currents to problems
with Kähler currents.

lma:pathoenvelope Lemma 1.14 ([
DDNLmetric
DDNL21, Lemma 4.3]). Let φ,ψ ∈ PSH(X, θ), φ ⪯ ψ and

∫
X θ

n
φ > 0. Then

for any

a ∈

1,
( ∫

X θ
n
ψ∫

X θ
n
ψ −

∫
X θ

n
φ

)1/n
 ,

there is η ∈ PSH(X, θ) such that

a−1η + (1 − a−1)ψ ≤ φ.

The fraction is understood as ∞ if
∫
X θ

n
ψ =

∫
X θ

n
φ.

We write P (aφ + (1 − a)ψ) ∈ PSH(X, θ) for the regularized supremum of all such η’s.
In fact, observe that ψ ≥ φ − C, so η is uniformly bounded from above. It follows that
P (aφ+ (1 − a)ψ) ∈ PSH(X, θ). On the other hand, by Hartogs lemma,

a−1P (aφ+ (1 − a)ψ) + (1 − a−1)ψ ≤ φ

holds outside a pluripolar set, hence everywhere.

�We remind the readers that in [
DDNLmetric
DDNL21, Lemma 4.3], the notation P (aφ+ (1 − a)ψ) is used

without rigorous justification. The above justification is necessarily as aφ+ (1 − a)ψ is not
everywhere defined.

Note that Theorem 1.10 shows that dS-convergence is preserved by a great number of natural
operations in pluripotential theory and it is not pathological at the mass 0. We record the
following consequences:

cor:dsconvcrit Corollary 1.15. Suppose that φ,φi ∈ PSH(X, θ) (i ≥ 1). Then the following are equivalent:

(1) φi
dS−→ φ;

(2) φi ∨ φ
dS−→ φ and

{eq:massconv_varphii}{eq:massconv_varphii} (1.7) lim
i→∞

∫
X
θjφi

∧ θn−j
Vθ

=
∫
X
θjφ ∧ θn−j

Vθ

for each j = 0, . . . , n.

The corollary allows us to reduce a number of convergence problems related to dS to the
case φi ≥ φ, which is much easier to handle by Lemma 1.6. This is the most handy way of
establishing dS-convergence in practice.
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Proof. (1) implies (2): φi ∨ φ
dS−→ φ follows from Lemma 1.8. While (1.7) follows from Theo-

rem 1.10.
(2) implies (1): By (1.2), we need to show that for each j = 0, . . . , n, we have

2
∫
X
θjφi∨φ ∧ θn−j

Vθ
−
∫
X
θjφ ∧ θn−j

Vθ
−
∫
X
θjφi

∧ θn−j
Vθ

→ 0.

This follows from Theorem 1.10 and (1.7). □

cor:dSconv_changetheta Corollary 1.16. Let φk, φ ∈ PSH(X, θ) (k ≥ 1) and ω be a Kähler form on X. Then the
following are equivalent:

(1) φk
dS,θ−−→ φ;

(2) φk
dS,θ+ω−−−−→ φ.

Proof. (1) implies (2): It suffices to show that for each j = 0, . . . , n, we have

2
∫
X

(θ + ω)jφk∨φ ∧ (θ + ω)n−j
Vθ+ω

−
∫
X

(θ + ω)jφk
∧ (θ + ω)n−j

Vθ+ω
−
∫
X

(θ + ω)jφ ∧ (θ + ω)n−j
Vθ+ω

→ 0

as k → ∞. Note that this quantity is a linear combination of terms of the following form:

2
∫
X
θrφk∨φ ∧ ωj−r ∧ (θ + ω)n−j

Vθ+ω
−
∫
X
θrφk

∧ ωj−r ∧ (θ + ω)n−j
Vθ+ω

−
∫
X
θrφ ∧ ωj−r ∧ (θ + ω)n−j

Vθ+ω
,

where r = 0, . . . , j. By Theorem 1.10, it suffices to show that φ ∨ φk
dS−→ φ. But this follows

from Corollary 1.15
(2) implies (1): From the direction we already proved, for each C ≥ 1, we have that

φk
dS,θ+Cω−−−−−→ φ.

By Theorem 1.10, it follows that

lim
k→∞

∫
X

(θ + Cω)jφk
∧ θn−j

Vθ
=
∫
X

(θ + Cω)jφ ∧ θn−j
Vθ

for all j = 0, . . . , n. It follows that

{eq:varphijmass_limit}{eq:varphijmass_limit} (1.8) lim
k→∞

∫
X
θjφk

∧ θn−j
Vθ

=
∫
X
θjφ ∧ θn−j

Vθ
.

By Corollary 1.15, it remains to show that φk ∨ φ
dS,θ−−→ φ. By Corollary 1.15 again, we know

that φk ∨ φ
dS,θ+ω−−−−→ φ. So it suffices to apply (1.8) to φk ∨ φ instead of φk and we conclude by

Lemma 1.6. □

There are a few general results about dS-convergence in [
Xia22
Xia22]. A number of other properties

of dS-convergence will appear in [
Xia23
Xia23].

2. I-good singularities

Take a connected compact Kähler manifold X and a closed real (1, 1)-form θ on X representing
a big class.

We have seen that for φ ∈ PSH(X, θ), we always have dS(φ, Pθ[φ]) = 0. We have a different
envelope Pθ[φ]I . What can we say about dS(φ, Pθ[φ]I)? It turns out that this is not 0 in
general. But it is not easy to write down even a single example! The following example is due to
Berman–Boucksom–Jonsson [

BBJ21
BBJ21].

ex:BBJ Example 2.1. Take X = P1, θ = ω is the Fubini–Study metric. It is possible to construct
a polar Cantor set K ⊆ P1. The set K carries an atom-free probability measure µ. Write
µ = ω + ddcϕ. Then ϕ has no non-zero Lelong numbers. It follows that Pω[ϕ]I = 0.

But ϕ ̸∈ E(X,ω) as it puts mass on the polar set K, so Pω[ϕ] ̸= 0. It follows that
dS(ϕ, Pω[ϕ]I) ̸= 0.

This motivates the following definition:



6 LECTURE 3

Definition 2.2. We say a potential φ ∈ PSH(X, θ) is I-good if
∫
X θ

n
φ > 0 and

{eq:Igooddef}{eq:Igooddef} (2.1) dS(φ, Pθ[φ]I) = 0.

Note that (2.1) can also be written as
Pθ[φ]I = Pθ[φ].

As a first example, please do the following exercise. The relevant notions will be recalled in a
second.

Exercise 2.3. Suppose that φ ∈ PSH(X, θ) has analytic singularities and has positive mass, then
φ is I-good.

Definition 2.4. We say φ ∈ PSH(X, θ) has analytic singularities if for each x ∈ X, we can find
an open neighbourhood U of x such that φ|U has the form:

c log
(
|f1|2 + · · · + |fN |2

)
+R,

where f1, . . . , fN are holomorphic functions on U , c ∈ Q>0 and R is a bounded function on U .
We also say the current θφ has analytic singularities.

Remark 2.5. We cannot take c ∈ R>0 if we want to guarantee that the maximum of two potentials
with analytic singularities has analytic singularities. We do not take R to be smooth in general,
as this condition depends heavily on the choice of the generators f1, . . . , fN .

One of the first main results proved in my joint papers with T. Darvas gives a complete
characterization of I-good singularities.

thm:Igood Theorem 2.6. Let φ ∈ PSH(X, θ) be a potential with
∫
X θ

n
φ > 0. Then the following are

equivalent:
(1) φ is I-good;
(2) φ can be dS-approximated by a sequence of analytic singularities φj ∈ PSH(X, θ).

Sketch of the proof. (2) =⇒ (1): This is the easier direction. By definition, we know that
dS(φj , Pθ[φj ]I) = 0.

We want to take j → ∞ to conclude (2.1). The first term does not cause any trouble as we have
assumed that φj converges to φ with respect to dS . In order to handle the second term, we need
to prove the continuity of Pθ[•]I with respect to dS .

As we mentioned earlier, following the general strategy, we can reduce the problem to proving
the continuity of Pθ[•]I along monotone sequences. The increasing case does not cause any trouble.
We leave it as an exercise. The decreasing case is more tricky. See [

DDNLmetric
DDNL21, Proposition 4.8].

(1) =⇒ (2): This is the difficult direction. We first assume that θφ is a Kähler current. In
this case, one can construct a so-called quasi-equisingular approximation φj of φ:

(1) φj has analytic singularities for each j;
(2) φj is decreasing with limit φ;
(3) for each λ′ > λ > 0, there is j > 0 such that (1.5) holds.

See [
DPS01
DPS01]. We deduce that Pθ[φj ] decreases pointwisely to Pθ[φ]. A non-trivial result proved

in [
DDNLmetric
DDNL21] then implies the dS-convergence of φj to φ.

When θφ is not a Kähler current. We can apply a trick discovered by Darvas. There is always
ψ ∈ PSH(X, θ) such that ψ ≤ φ and θψ is a Kähler current. We approximate a general φ by
(1 − ϵ)φ+ ϵψ. □

3. The volume of Hermitian pseudo-effective line bundles

As a first application of the theory of I-good singularities, we study the volume of a line
bundle endowed with e singular psh metric.

Let X be a connected compact Kähler manifold and L be a big line bundle on X. Assume
that L is endowed with a singular psh metric h.
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In order to reduce to the language of qpsh functions, we fix an arbitrary smooth metric h0 on
L. Let θ = c1(L, h0), then h can be identified with h0 exp(−φ) for some φ ∈ PSH(X, θ). The
volume we have in mind is

{eq:voldef}{eq:voldef} (3.1) vol(L, h) := lim
k→∞

n!
kn
h0(X,L⊗k ⊗ I(h⊗k)).

The motivation is of course the Riemann–Roch formula. When L is ample and h is smooth,
vol(L, h) is nothing but (Ln), the usual volume of L. When the multiplier ideal sheaf is not
presented in (3.1), the volume is known as the volume of the line bundle L. It is well studied in
the literature.

There are plenty of motivations to study the quantity vol(L, h). The very first motivation
comes from arithmetic theory. When X is a suitable moduli space (say the moduli space of
PPAV) and L is a suitable automorphic line bundle, the holomorphic sections of L can usually
be identified with certain (weak) modular forms. Now imposing a singular metric h means
imposing a boundary condition at infinity, hence giving rise to certain cusp forms. The volume
(3.1) characterizes the asymptotic behaviour of cusp forms.

Another motivation comes from the so-called Witt Nyström correspondence that I will explain
in the next lecture, the volume can be regarded as the differentiated version of the Monge–Ampère
energy.

Anyway, let us begin the study of (3.1). One first difficulty is the existence of the limit (3.1).
We know that this limit exists a posteriori, but for now, let us try to avoid the notation vol(L, h)
before knowing its existence.

Let us first look into the literature. There is a positive result due to Bonavero [
Bon98
Bon98]:

thm:Bon Theorem 3.1 (Bonavero). Assume that h has analytic singularities, then the limit in (3.1)
exists and

{eq:volLh}{eq:volLh} (3.2) vol(L, h) =
∫
X
θnφ.

This result can proved by a suitable resolution of singularity. In general, a potential with
analytic singularities can be resolved to a potential with log singularities along a divisor. In the
latter case, (3.2) is essentially the algebraic Riemann–Roch formula.

One might wonder if (3.2) holds in general. Unfortunately, this is not true.

Exercise 3.2. Explain why (3.2) fails in the example of Example 2.1.

The reason is easy to understand: the volume (3.1) is defined using only the data related to
I(h⊗k). We know that these data are rougher than the data given by non-pluripolar masses, as
reflected in the fact that P [•] ̸= P [•]I in general. Therefore, a more reason guess is the following:

thm:volLh Theorem 3.3. For a general h, the limit in (3.1) exists and

{eq:volLh2}{eq:volLh2} (3.3) vol(L, h) =
∫
X
θnPθ[φ]I .

Sketch of the proof. The case where
∫
X θ

n
φ = 0 is not so difficult, we assume that

∫
X θ

n
φ > 0. The

same reduction as in Theorem 2.6 allows us to assume that θφ is a Kähler current.
By Theorem 2.6 and its proof, φ can be dS-approximated by a decreasing sequence φj ∈

PSH(X, θ) with analytic singularities. Then by Theorem 3.1, we have∫
X
θnφj

= vol(L, hj),

where hj = h exp(−φj). We want to let j → ∞ to conclude. The left-hand side is easy: recall
that we have a general convergence theorem of the non-pluripolar masses with respect to dS . It
remains to show that vol(L, hj) → vol(L, h). The proof is very difficult. It is the technical core
of [

DX21
DX21]. This also explains why in our previous paper [

DX22
DX22] we needed a different approach

and only the case where L is ample is proved. □

Now putting everything together, we have
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Corollary 3.4. Assume that
∫
X c1(L, h)n > 0, then the following are equivalent:

(1) vol(L, h) =
∫
X c1(L, h)n;

(2) h can be approximated by psh metrics with analytic singularities with respect to dS;
(3) h is I-good.

There are plenty of I-good singularities. We mention the most important instance, as proved
by Y. Yao:

Example 3.5. In the toric setting, all toric psh metrics are I-good.

If you are familiar with toric geometry, this is not a super difficult exercise. A slightly more
general result is proved by Botero–Burgos Gil–Holmes–de Jong.
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