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1. The b-divisor point of view

Our next goal is to make precise the idea that the loss of non-pluripolar masses is caused by
the singularities.

Let X be a connected compact Kähler manifold and L be a big line bundle on X. Assume
that L is endowed with a singular psh metric h. The notation h0, θ, φ are as before.

Example 1.1. Consider an effective Q-divisor D on X. Assume that locally the singularities of
φ look like log |sD|2, where sD is a local holomorphic function whose zero locus is D (counting
multiplicity), we say φ has log singularities along D in this case. The non-pluripolar mass of
(L, h) is ((L−D)n), as follows from the results of the last time.

In particular,
vol(L, h) = ((L−D)n).

This formula strongly resembles the Riemann–Roch formula volL = (Ln). It suggests that the
loss of mass is caused by the singularity D.

In general, we want something similar. Let us consider the case of analytic singularities.

Example 1.2. Assume that φ has analytic singularities. As we recalled earlier, there is a
sequence of blowing-ups with smooth centers π : Y → X such that π∗φ has log-singularities along
a Q-divisor D on Y . Then from the previous example, we know that

vol(π∗L, π∗h) = ((π∗L−D)n).
It is not hard to show that vol(π∗L, π∗h) = vol(L, h). (This requires a twisted version of the
results from Lecture 3, which you can find in [

DX21
DX21;

DX22
DX22].) So

vol(L, h) = ((π∗L−D)n).
The key point is that one could not rely only on the divisors on X, but we need divisors on
birational models of X as well.

Remark 1.3. Careful readers should have already noticed that we are talking about birational
models instead of bimeromorphic models. This is because our X is necessarily projective: it is
a Kähler manifold and it admits a big line bundle, we could apply Moishezon’s criterion. By
GAGA, X comes from an algebraic variety, so it makes sense to talk about birational models.

In general, when the singularity is no longer analytic, it is therefore natural to consider all
birational models at the same time. This leads to the notion of b-divisors. We first recall that
the Néron–Severi group NS1(X)Q of X is defined as the quotient of the space of Q-divisors on
X by the numerical equivalence relation. The space NS1(X)R is defined as NS1(X)Q⊗Q R. This
space is always of finite dimension.
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2 LECTURE 4

Definition 1.4. A b-divisor on X is an assignment Y 7→ DY that assigns to each smooth
birational model Y of X a class in NS1(Y )R such that if Y and Z are two models such that
there is a morphism π : Y → Z over X (necessarily unique), we have

π∗DY = DZ .

In other words, the space of b-divisors is the projective limit

lim←−
Y→X

NS1(Y )R.

This gives the space of b-divisors a projective limit topology.

From now on, a birational model is always assumed to be smooth.
A simple example is as follows: if D is an R-divisor on X, then define D(D) as follows: for

each birational model π : Y → X, set

D(D)Y = π∗D.

Similarly, an R-divisor D on a birational model of X also defines a b-divisor on X, such b-divisors
are called Cartier b-divisors.

Exercise 1.5. Explain the details.

Now let us see how we can get a b-divisor D(L, h) from h such that

vol(L, h) = (D(L, h)n),

whatever the right-hand side means.
From our examples, we see that D(L, h)X should take the form L−D, where D is a divisor

associated with the singularities of h. It turns out that D can be constructed through Siu’s
decomposition:

θφ =
∑
i

ciDi +R,

where Di is a countable family of prime divisors and ci > 0, where R does not have Lelong
numbers along divisors. We define

D(L, h)X := L−
∑
i

ciDi.

It can be shown that the right-hand side converges.
Similarly, if π : Y → X denotes a birational model, then

D(L, h)Y := π∗L− divisorial part of (π∗θ + ddcπ∗φ).

Exercise 1.6. Prove that D(L, h) is a b-divisor on X.

Exercise 1.7. Compute D(L, h) when h has analytic singularities.

The b-divisor D(L, h) has a special property: it can be approximated by nef Cartier b-divisors
with respect to the projective limit topology. By a nef Cartier b-divisor, we me a Cartier b-divisor
determined by a nef divisor on a birational model. This is a reformulation of the existence of
quasi-equisingular approximations.

In the case of nef b-divisors, Dang–Favre [
DF20
DF20] introduced an intersection theory. We do

not recall the precise definition here.

Theorem 1.8. The b-divisor D(L, h) is nef. Assume that
∫
X c1(L, h)n > 0, then

vol(L, h) = (D(L, h)n).

This result is essentially established in [
Xia20
Xia22b]. The general statement can be found in

[
Xia22
Xia22a].
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2. Ross–Witt Nyström correspondence

We fix a connected compact Kähler manifoldX and a closed real (1, 1)-form θ onX representing
a big class. In the previous lecture, we defined R1(X, θ). We will make full use of the techniques
developed previously to understand this space.

We will see that there is a bijection from R1(X, θ) to a space of concave curves in PSH(X, θ)
(known as test curves):

{eq:bij}{eq:bij} (2.1) R1(X, θ) ∼−→ {test curves}.
This duality is rather surprising: an element in R1(X, θ) is a curve with mild singularities, while
a test curve is a curve of (very) singular potentials.

By contrast, the concavity/convexity duality in this statement is less surprising. A curve
ℓ = (ℓt)t in R1(X, θ) is convex in t, while a test curve ψ = (ψτ )τ is concave in τ . This
phenomenon is classically known as the Legendre duality. This also suggests how to construction
the bijection (2.1).

Definition 2.1. Let ℓ ∈ R1(X, θ). The Legendre transform of ℓ is defined as

ℓ̂τ := inf
t≥0

(ℓt − tτ) , τ ∈ R.

It is a non-trivial result, known as Kiselman’s minimum principle that ℓ̂τ ∈ PSH(X, θ)∪{−∞}.
We get a concave curve ψ = ℓ̂ which satisfies the following:

(1) ψ• is concave in •.
(2) ψ is usc as a function R×X → [−∞,∞).
(3) limτ→−∞ ψτ = Vθ in L1.
(4) ψτ = −∞ for τ large enough.

The surprising fact is the following:
(5) Pθ[ψτ ] = ψτ (we say ψτ is model in this case) for all τ < τ+, where

τ+ := inf{τ ∈ R : ψτ ≡ −∞}.
You should find no difficulty when verifying (1) to (4), as for (5), see [

Da17
Dar17, Proposition 5.1].

Definition 2.2. A test curve in PSH(X, θ) is a curve R→ PSH(X, θ)∪ {−∞} satisfying (1) (5)
as above.

The energy of a test curve ψ• is defined as

{eq:defE}{eq:defE} (2.2) E(ψ•) := τ+ + 1
V

∫ τ+

−∞

(∫
X
θnψτ
−

∫
X
θnVθ

)
dτ.

A test curve ψ is said to be of finite energy if E(ψ) > −∞. We denote the set of finite energy
test curves by T C1(X, θ).

Now we can state the Ross–Witt Nyström correspondence.

thm:RWN Theorem 2.3 ([
DX22
DX22, Theorem 3.7]). The Legendre transform establishes a bijection from

R1(X, θ) to T C1(X, θ). For ℓ ∈ R1(X, θ), We have supX ℓ1 = τ+ and E(ℓ) = E(ℓ̂).

This result is due to a lot of people. The preliminary form is due to Ross–Witt Nyström.
Successive generalizations are due to Darvas–Di Nezza–Lu, Darvas and myself. The most general
version is written in the joint paper by Darvas, K. Zhang and myself [

DXZ23
DXZ23].

Here we find a rather surprising fact: the rigid condition of being a geodesic (corresponding
to the homogeneous Monge–Ampère equation) corresponds to the soft condition of a test curve.
There are no PDEs involved at all!

This result is also amusing because it tells us that the study of geodesic rays is not very
different from the study of model metrics. This philosophy has led to a number of interesting
results of mine in the last few years. Already we see from (2.2) that Monge–Ampère energy
is roughly the same as the integral of non-pluripolar masses. In [

Xia20
Xia22b], you will find many

similar results.
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For readers knowing the concept of maximal geodesic rays in the sense of Berman–Boucksom–
Jonsson, we recall the following result:

Theorem 2.4. Under the bijection Theorem 2.3, maximal geodesic rays correspond to test curves
satisfying the following

(5’) Pθ[ψτ ]I = ψτ (we say ψτ is I-model in this case) for all τ < τ+.

Maximal geodesic rays are rather mysterious objects for complex geometriers, this theorem
shows that they boil down to very concrete objects: the I-model potentials, which are relatively
well understood. This point of view turns out to be very fruitful. Let us mention in particular
that in [

DX22
DX22;

DXZ23
DXZ23], we managed to prove Boucksom–Jonsson’s envelope conjecture on

smooth projective varieties following this idea. For applications in Ding stability/K-stability, we
refer to the recent work of Darvas–Zhang, Dervan–Reboulet.

3. The partial Okounkov bodies

Let X be an irreducible smooth projective variety of dimension n. Let L be a big holomorphic
line bundle on X.

Let us consider an admissible flag X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn on X: each Yi is a connected
normal projective subvariety of X of codimension i satisfying that Yi is smooth at the point Yn.

One can associate a natural convex body ∆(L) of dimension n to L, generalizing the classical
Newton polytope construction in toric geometry. This construction was first considered by
Lazarsfeld–Mustat,ă [

LM09
LM09] and Kaveh–Khovanskii [

KK12
KK12] and ∆(L) is known as the Okounkov

body or Newton–Okounkov body associated with L (with respect to the given flag).
We briefly recall its definition: given any non-zero s ∈ H0(X,Lk), let ν1(s) be the vanishing

order of s along Y1. Then s can be regarded as a section of H0(X,Lk ⊗OX(−ν1(s)Y1)) after
possible shrinking X around the point Yn. It follows that s1 := s|Y1 is a non-zero section of
L|kY1

⊗OX(−ν1(s)Y1)|Y1 . We can then repeat the same procedure with s1, Y2 in place of s, Y1.
Repeating this construction, we end up with ν(s) = (ν1(s), . . . , νn(s)) ∈ Nn. In fact, ν extends
naturally to a rank n valuation on C(X) of rational rank n. Consider the semigroup

Γ(L) :=
{

(a, k) ∈ Zn+1 : k ∈ N, a = ν(s) for some s ∈ H0(X,Lk)×
}
.

Then ∆(L) is the intersection of the closed convex cone in Rn+1 generated by Γ(L) and
{(x, 1) : x ∈ Rn}. A key property of ∆(L) is that the Lebesgue volume of ∆(L) is proportional
to the volume of the line bundle L:

{eq:volD}{eq:volD} (3.1) vol ∆(L) = 1
n! volL.

The theory we developed in the last lecture allows us to extend this theory to a pair (L, h),
where h is a singular psh metric.

thm:partOkobody Theorem 3.1. Let (L, h) be as above. Assume that
∫
X c1(L, h)n > 0. Then there is a canonical

convex body ∆(L, h) ⊆ ∆(L) associated with (L, h) satisfying

{eq:volD1}{eq:volD1} (3.2) vol ∆(L, h) = vol(L, h).

Moreover, ∆(L, h) is continuous in h. Here the set of h is endowed with the dS-pseudometric
and the set of convex bodies is endowed with the Hausdorff metric.

Define
Γk :=

{
k−1ν(s) ∈ Rn : s ∈ H0(X,Lk ⊗ I(kh))×

}
and let ∆k denote the convex hull of Γk. Then ∆k converges to ∆(L, h) with respect to the
Hausdorff metric.

This convex body ∆(L, h) is known as the partial Okounkov body. It played an important role
in our proof of Lazarsfeld–Mustat,ă’s conjecture [

DRWNXZ
DRWN+23].
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There are various different but equivalent ways of constructing ∆(L, h). The most elementary
way goes as follows: when h has analytic singularities, we can resolve h and assume that h has
log singularities along a Q-divisor D. Then we simply set

∆(L, h) := ∆(D) + ν(D),
where ν(D) is a vector in Rn.

Assume that c1(L, h) is a Kähler current. Take a quasi-equisingular approximation hj of h.
Then we set

∆(L, h) :=
⋂
j

∆(L, hj).

The general case follows by approximation. This approach has an obvious drawback: one has to
verify that the eventual definition is independent of the choices we made. In [

Xia21
Xia21], I adopted

a slightly different approach.
The partial Okounkov bodies are important due to the following result:

thm:IeqDelta Theorem 3.2. Let L be a big line bundle on X. Let ϕ, ϕ′ be two psh metrics on L. Then the
following are equivalent:

(1) ϕ ∼I ϕ
′.

(2) ∆(L, ϕ) = ∆(L, ϕ′) for all valuations on C(X) of rank n and rational rank n.

4. Partial Bergman kernels

Let X be a smooth projective variety and (L, h) be pseudo-effective line bundle together with
a psh metric. Fix a smooth reference metric h0 on L as before and write θ = c1(L, h0). The
metric h is then identified with φ ∈ PSH(X, θ). Let v ∈ C0(X). Let ν be a smooth positive
volume form of volume 1 on X.

We introduce the associated partial Bergman kernels: for any k ∈ N, x ∈ K,

Bk
v,h,ν(x) := sup

{
|s|2

h⊗k
0

e−kv(x) :
∫
K
|s|2

h⊗k
0

e−kv dν ≤ 1, s ∈ H0(X,L⊗k ⊗ I(h⊗k))
}
.

The associated partial Bergman measures on X is

(4.1) βkv,h,ν := n!
kn
Bk
v,h,ν dν .

thm:conv_Bergman_equi_main Theorem 4.1. We have βku,v,ν converges to the partial equilibrium measure weakly as k →∞.

Here the partial equilibrium measure is defined as
{eq: PE_potential}{eq: PE_potential} (4.2) Pθ[φ]I(v) := sup* {ψ ∈ PSH(X, θ) : ψ ≤ v, ψ ⪯I φ} .

One can show that θnP [u]I(v) is supported on {P [u]I(v) = v}.
When h is not presented (i.e. when h has minimal singularity), this result is proved by

Berman–Boucksom [
BB10
BB10]. The general case is proved in [

DX21
DX21].

It is not very hard to understand the relation between this result and our previous result:

{eq:intbeta}{eq:intbeta} (4.3)
∫
K
βkv,h,ν = n!

kn
h0(X,L⊗k ⊗ I(kh)).

So we have the convergence of the total mass from our previous result. In particular, in the
proof of Theorem 4.1 we only have to establish one inequality.
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