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1. Introduction

In the last lecture, we explained the basic example of Berkovich spaces. The goal of today is
to extend the previous example to higher dimensions.

We will always fix the base field C with the trivial valuation | • |. We will associate a Berkovich
space Xan to each algebraic scheme X over C. The construction is similar to the classical GAGA.
As in the classical GAGA, Xan comes with the structure of a C-ringed space and a morphism
Xan → X of ringed spaces. Moreover, it is characterized by the fact that any morphism from a
Berkovich space to X factorizes through Xan → X. This is the content of Berkovich GAGA
[Ber12, Chapter 3].

This general approach requires some deep understanding of the Berkovich geometry. In this
lecture, we will follow the ad hoc approach of Boucksom–Jonsson. As a consequence, for us Xan

will only be a topological space instead of a C-ringed space.

2. Berkovich spaces

Let X be an algebraic scheme over C. We first construct Xan as a set. We will need the
following definition:

Definition 2.1. Let Y be an irreducible algebraic scheme over C. A (non-Archimedean)
valuation on Y is a valuation v : C(Y ) → R ∪ {∞} which extends the trivial valuation | • | on C.
Recall that this means the following: for any a, b ∈ C(Y )

(1) v(a − b) ≥ min{v(a), v(b)} (non-Archimedean seminorm);
(2) v(a) = ∞ iff a = 0 (norm);
(3) v(ab) = v(a) + v(b) (multiplicativity);
(4) v(c) = 0 for any c ∈ C×.

The set of valuations on Y is denoted by Y val.

When Y is a single point, Y val gives a single point.

Definition 2.2. The underlying set of Xan is defined as follows:

Xan :=
∐

Y ⊆X,Y integral
Y val.

The support of v ∈ Xan is defined as Y if v ∈ Y val.
For each Zariski open subset U ⊆ X, Uan denotes the subset of Xan whose support meets U .
When X is proper, each valuation v ∈ Xan admits a center: a scheme-theoretic point x in the

support Y of x such that v is non-negative on OY,x and positive on its maximal ideal.
1



2 LECTURE II. BERKOVICH SPACES AND PLURISUBHARMONIC FUNCTIONS

In particular, if X is irreducible, we see that Xan can be decomposed as

Xan = Xval ⨿
∐

Y ⊊X

Y val.

We find that X consists of two parts: a top-dimensional part Xval and some lower-dimensional
boundaries. Inside Xval, there is a subset consisting of explicit valuations, which will play an
important role. A valuation v ∈ Xval is a divisorial valuation if there exists c ∈ Q>0 and a prime
divisor E over X such that v = c ordE . The set of divisorial points will be denoted by Xdiv.

Figure 1. Berkovich P1 over a trivially valued field

In our favorite example Fig. 1, Xval is exactly the who pro-tree minus all ∞-ends of the legs.
When U ⊆ X is an affine Zariski open subset, say U = Spec A, we could interpret Uan as the

set of semi-valuations on A (extending the trivial valuation on C by our non-standard definition
of semi-valuations).

Next we describe the Berkovich topology on Xan.

Definition 2.3. The Zariski topology on Xan is the topology where the open subsets are given
by Uan for all Zariski open subsets U ⊆ X.

Definition 2.4. The Berkovich topology on Xan is the weakest topology which refines the
Zariski topology such that for each regular function f on a Zariski open subset U ⊆ X, the
function |f | : Uan → R≥0 sending v to exp(−v(f)) is continuous.

Remark 2.5. To avoid during the first reading. The Berkovich topology is not the most useful
topology in the general theory of Berkovich spaces. The correct topology is a Grothendieck
topology, called Berkovich G-topology.

On the other hand, the Berkovich spaces constructed from analytification satisfy a very nice
property: they are good Berkovich spaces. In this case, the Berkovich topology and the Berkovich
G-topology have the same topos, so one could avoid the much deeper machinery developed by
Berkovich.

Proposition 2.6. Assume that X is projective, then the Berkovich space Xan is compact and
Hausdorff.

Proof. We may assume that X is integral (explain why).
We first argue that Xan is Hausdorff. Take v, v′ ∈ Xan. Assume that v ̸= v′. We want to

find disjoint open sets containing each of them. Take an affine open subset U = Spec A ⊆ X
that intersects the supports of both v and v′, so that v, v′ ∈ Uan. We interpret Uan as the set of
semi-valuations on U , then we see immediately that there exists f ∈ A such that |f(v)| ≠ |f(v′)|,
say |f(v)| < |f(v′)|. Take c ∈ R such that |f(v)| < c < |f(v′)|. Then the two open sets can be
constructed as

{w ∈ U : |f(w)| < c}, {w ∈ U : |f(w)| > c}.
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The compactness is harder. Here we only give a sketch.
Step 1. Consider a closed immersion X ↪→ PN . Show that the analytification Xan ↪→ PN,an

identifies the topology on Xan with the subspace topology induced from PN,an. So we have
reduced to the case X = PN . This step is not difficult, do it by yourself.

Step 2. Show that PN,an can be seen as the gluing of two Berkovich polydisks.
Step 3. Show that the polydisk is compact. This is essentially a consequence of the Tychonoff

theorem. □

In fact, Berkovich GAGA guarantees that if X is proper, then Xan is automatically compact
and Hausdorff.
Exercise 2.7. Identify our general definition of the topology on P1,an with the pro-tree topology.

There are several natural structures on the Berkovich spaces. In the sequel, the triviality of
the valuation on C is essential.

We shall assume that X is integral and projective from now on.
We have a scaling action of R>0 on Xan given by simple application.

Exercise 2.8. Show that the scaling action is continuous.
Remark 2.9. If the base field is non-trivially valued, we do not have the scaling action. In general,
the semi-valuations occurring in the definition of the Berkovich spaces have to extend the given
valuation on the base field. But no other valuations are not invariant under scaling.

There is always a special point vtriv ∈ X, sending all non-zero elements in C(X) to 0. This
valuation is known as the trivial valuation.
Exercise 2.10. What are the center and the support of vtriv?

There is a partial order as well: given v, v′ ∈ Xan, we say v ≥ v′ if v(I) ≥ v′(I) for all coherent
ideal I ⊆ OX . Here

v(I) := min
{

v(x) : x ∈ Ic(v)
}

∈ [0, ∞],
where c(v) ∈ X denotes the center of v.
Exercise 2.11. Show that vtriv is the minimal element in Xan.

We shall write log |I| : Xan → [−∞, 0] sending v to −v(I).

3. Piecewise linear functions

In this section, X will always be an integral projective variety of dimension n over C.
The general structure of Xan is quite similar to the one-dimensional picture in Fig. 1. Basically,

if X is smooth, then X can be realized as the projective limit of a family of finite simplicial
complexes of dimension n. It therefore makes sense to talk about the piecewise linear functions.
We shall again adopt the approach as in Boucksom–Jonsson’s paper.

Recall that a flag ideal is a fractional ideal on X × A1, given by
I =

∑
j∈Z

Ijπ−j ,

where Ij is a decreasing sequence of coherent ideals on X and π is the coordinate on A1.
Moreover, Ij is OX for small enough j and 0 for large enough j.

A flag ideal I induces a continuous function on Xan in the following way:
φI(v) = max

j
(log |Ij |(v) + j) .

Exercise 3.1. Prove that this is a continuous function.
The set of piecewise linear functions on Xan is then defined as the Q-linear span (in C0(Xan))

of the φI ’s for various flag ideals I. The set of piecewise linear functions is denoted by PL(Xan).
If we replace Q-coefficients by R-coefficients, we get a set PL(Xan)R.

Similarly, PL+(Xan) will denote the subset of PL(Xan) consisting of all functions like m−1φI
for some flag ideal I.
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Exercise 3.2. Show that on P1, these notions coincide with the ones defined in the last lecture.

Both PL(Xan) and PL+(Xan) can be understood more abstractly using test configurations,
making connection with the general theory of model metrics (over a non-trivially valued field).

We want to relate piecewise linear functions with test configurations. This will allow us to
handle the energy pairing in the next lecture.

Definition 3.3. A test configuration of X is a flat projective morphism of schemes π : X → A1

together with a Gm-action on X lifting the standard action on A1 and an isomorphism X1 ∼= X.

Test configurations play the role of models in the non-trivially valued case. There is a canonical
embedding σ : Xan ↪→ X an known as the Gauss extension: given v ∈ Y val for some integral
closed subscheme Y of X, we let Y be the reduced scheme with underlying set given by the
Zariski closure of the Gm-orbit of Y ⊆ X1 in X , then we can identify C(Y) with C(Y )(t), where
t is the coordinate on A1. We then define

σ(v)

∑
i∈N

fit
i

 = min
i∈N

(v(fi) + i)

for any fi ∈ C(Y ). This extends to a valuation σ(v) on C(Y).
The semi-valuations ω in the image of the map σ are characterized by the conditions ω is

C×-invariant, ω(X0) = 1 and ω(t) = 1
This construction is a special case of a more general construction in non-Archimedean geometry

associated with base extension.
A vertical Q-Cartier divisor on X is a Gm-invariant Q-Cartier divisor on X supported on X0.

Such a divisor D induces a function φD : Xan → R as follows

φD(v) := σ(v)(D).

Exercise 3.4. Show that φD ∈ PL(Xan).

In fact, functions like φD exhaust the whole PL(Xan). Similar results hold with R-coefficients
as well.

The readers can find the details in [BJ21, Section 2.2]. But we shall recall the following
consequence of this connection:

Theorem 3.5. The subset Xdiv is dense in Xan.

4. Fubini–Study functions

Now we can finally begin to talk about some pluripotential theory. We shall fix a holomorphic
line bundle L on X. The Berkovich GAGA allows us to analytify L as well, obtaining an
invertible sheaf Lan on Xan. A Hermitian metric can be defined similar to the complex setting.
But there are more subtleties to consider. When we move on to general base field in the last
lecture, I will come back to this point.

The most important observation is that in the trivially valued case, there is always a trivial
metric on Lan: given each nowhere vanishing local regular section s ∈ H0(U, L), we just define
|s| = 1 everywhere on Uan. This allows us to trivialize each section of Lan and instead of
considering metrics on Lan, we just have to consider actual functions on Xan.

The idea of defining metrics on Lan comes from Shouwu Zhang. Basically, the metrics are
defined using models of (X, L). Models do not quite make sense in the trivially valued case, so
let us digress a bit to the general valued base field k. A model means a pair (X , L) consisting of a
flat scheme over k◦ and a line bundle L on X together with an identification of the general fiber
of this pair with (X, L). Each model induces a metric on Lan. Plurisubharmonicity corresponds
to the positivity of L.

Let us come back to the trivially valued C. Then in this case, the definition of models still
makes sense, but there is essentially only one model: (X, L) itself. So we cannot define model
metrics as we desired. The idea of introducing the Fubini–Study functions is exactly to remedy
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this. These metrics become the model metrics in the non-trivially valued case, as we will see in
the last lecture.

Having made all these preparations, we can finally come to our main definition:

Definition 4.1. The set Hgf
Q (L) consists of functions φ : Xan → [−∞, ∞) with the following

property:
(1) φ is not identically −∞;
(2) there is m ∈ Z>0, s1, . . . , sN ∈ H0(X, Lm), λi ∈ Q such that

φ = m−1 max
j=1,...,N

(−v(sj) + λj) .

A function in Hgf
Q (L) is called a Q-rational generically finite Fubini–Study function on L.

A Q-rational Fubini–Study function on L is a Q-rational generically finite Fubini–Study
function on L taking finite value. The set of Q-rational Fubini–Study functions on L is denoted
by H(L).

Exercise 4.2. Show that φ(x) ̸= −∞ for any φ ∈ Hgf
Q (L) and x ∈ Xval.

Exercise 4.3. Show that any H(L) ⊆ PL+(Xan).

More detailed discussions can be found in [BJ21, Section 2.5].
All what we said in this section works for Q-line bundles L as well, as one can easily check.

5. Plurisubharmonic functions

On a convex polyhedron in the Euclidean space, a bounded from above convex function can
be easily realized as the decreasing limit of a sequence of piecewise linear functions. Similarly,
plurisubharmonic functions will be realized as decreasing limits of some piecewise linear functions.

The space Hgf
Q (L) can be regarded as model psh functions with controllable singularities and

H(L) are the "regular" psh functions. As in the complex case, if L is ample, it suffices to define
general psh metrics using decreasing sequences of metrics in H(L). But the general case requires
a more complicated construction.

As in the complex case, pluripotential theory is only well-behaved if X does not contain
singularities like nodes. So we shall assume that X is unibranch in the sequel. Here unibranch
means that locally (either analytically or in the Zariski topology) X has only one branch. So
nodes are not unibranch while cusps are.

Definition 5.1. Consider a class θ ∈ N1(X)R (the Néron–Severi group with real coefficients).
A θ-psh function is a function φ : Xan → [−∞, ∞) satisfying the following conditions:

(1) φ is not identically −∞;
(2) φ is upper semi-continuous;
(3) φ can be written as the limit of a decreasing net φi ∈ Hgf

Q (Li), where Li is a Q-line
bundle on X such that limi c1(Li) = θ.

We write the set of θ-psh metrics as PSHNA(X, θ).

The theory of [DXZ23] allows us to take more generally θ ∈ H1,1(X,R) as well. But I will not
talk about this theory in these lectures.

Now the job is to show that the θ-psh functions defined in this way behave as their complex
counterparts.

Proposition 5.2. The set PSHNA(X, θ) is convex, stable under finite maxima, uniform limits,
directed decreasing limits, addition by R and the scaling action of R>0.

We have PSHNA(X, θ + θ′) ⊇ PSHNA(X, θ) + PSHNA(X, θ′) and PSHNA(X, tθ) = tPSHNA(θ)
for any t > 0.

For any birational map from another integral unibranch projective variety π : Y → X,
π∗PSHNA(X, θ) ⊆ PSHNA(Y, π∗θ)1.
1One expects equality, but this is unfortunately an open problem.
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The real constants are in PSHNA(X, θ) iff θ is nef.
If PSHNA(X, θ) ̸= ∅, then θ is pseudo-effective. Conversely, if θ is big, then PSHNA(X, θ) ̸=

∅.

The t-scaling of a function φ on Xan is given by tφ(t−1•).
These results can be proved by reducing to the Fubini–Study case.
Next let us talk about some more sophisticated facts.

Theorem 5.3. If θ is ample, then any φ ∈ PSHNA(X, θ) is the decreasing limit of a sequence
in H(L) for any Q-line bundle L with c1(L) = θ.

This is [BJ21, Theorem 4.15, Corollary 12.18].

Theorem 5.4. A non-Archimedean θ-psh function is uniquely determined by its restriction to
Xdiv.

More precisely, if φ ∈ PSHNA(X, θ), then φ is the smallest usc extension of φ|Xdiv . Moreover,
φ(x) ̸= −∞ for any x ∈ Xdiv.

This is [BJ21, Theorem 4.22]. Note that φ can actually take the value −∞ on Xval.
Unfortunately, we do not have time to explain the proofs of these results.
There is a topology on PSHNA(X, θ): a net φi converges to φ if φi(x) → φ(x) for any x ∈ Xdiv.

This is a Hausdorff topology.
The following result is deep:

Theorem 5.5. Suppose that X is smooth. Then any increasing net φi of non-positive θ-psh
functions converges.

This result was first proved in [BJ22]. A more analytic proof was given shortly after in
[DXZ23]. The corresponding statement for unibranch X is widely open and is known as the
envelope conjecture.
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