NOTES ON HODGE THEORY - CARLSON'S CORRESPONDENCE

MINGCHEN XIA

Contents

1. Introduction 1
2. Carlson's correspondence 1
References 5

1. Introduction

 been able to get a copy of [Car880]. A lot of papers and lecture notes on this subject indicate the construction of this bijection. I spend some time to write down the full details.

2. CARLSON'S CORRESPONDENCE

Let MHS be the category of \mathbb{Z}-mixed Hodge structures. An object of MHS then consists of $\left(V, \mathcal{F}^{\bullet}, \mathcal{W}_{\bullet}\right)$, where V is a free \mathbb{Z}-module of finite rank, \mathcal{F}^{\bullet} is a filtration on $V_{\mathbb{C}}$ and \mathcal{W}_{\bullet} is a filtration on $V_{\mathbb{Q}}$. We require the usual axioms. We can also regard \mathcal{W}_{\bullet} as a saturated filtration on V. By abuse of language, we say $V \in$ MHS. When we refer to the filtered \mathbb{Z}-module underlying V, we mean (V, \mathcal{W}_{\bullet}).

We define the Jacobian of V as

$$
\mathrm{J} V=\mathcal{W}_{0} V_{\mathbb{C}} /\left(\mathcal{W}_{0} V+\mathcal{F}^{0} V_{\mathbb{C}} \cap \mathcal{W}_{0} V_{\mathbb{C}}\right)
$$

Theorem 2.1 (Carlson). Let $V, W \in$ MHS. There is a group isomorphism from $\operatorname{Ext}_{\mathrm{MHS}}^{1}(W, V)$ to $\mathrm{J} \operatorname{Hom}_{\mathbb{Z}}(W, V)$.
Proof. Step 1. We construct the map

$$
\operatorname{Ext}_{\mathrm{MHS}}^{1}(W, V) \rightarrow \mathrm{JHom}_{\mathbb{Z}}(W, V)
$$

Let

$$
\begin{equation*}
0 \rightarrow V \rightarrow E \xrightarrow{\pi} W \rightarrow 0 \tag{2.2}
\end{equation*}
$$

be a short exact sequence in MHS. As W is a projective object in the category of filtered \mathbb{Z}-modules, we can find a splitting

$$
r: E \rightarrow V
$$

of (2.2) in the category of filtered \mathbb{Z}-modules. Let

$$
s: W_{\mathbb{C}} \rightarrow E_{\mathbb{C}}
$$

Date: January 14, 2023.
be a section of π, which is a morphism of \mathbb{C}-mixed Hodge structures. The existence of s follows from the functoriality of the Deligne decomposition. We let $e \in \operatorname{Hom}_{\mathbb{C}}\left(W_{\mathbb{C}}, V_{\mathbb{C}}\right)$ be the composition $r \circ s$. By our choices of r and s, we have $e \in \mathcal{W}_{0} \operatorname{Hom}_{\mathbb{C}}(W, V)$. We define the image of E under (2.1) as the coset defined by e.

We need to show that this coset is well-defined.
We first handle the freedom in choosing r. If $r^{\prime}: E \rightarrow V$ is another splitting of (2.2) in the category of filtered \mathbb{Z}-modules, then $r-r^{\prime}: E \rightarrow V$ is a morphism of filtered \mathbb{Z}-modules that vanishes on V. We can therefore view $r-r^{\prime}$ as a linear map $a: \operatorname{Hom}_{\mathbb{Z}}(W, V)$. As π is strict (This is a theorem of Deligne!), we see that $\mathcal{W}_{k} W$ is exactly $\pi\left(\mathcal{W}_{k} E\right)$ for each $k \in \mathbb{Z}$, so it follows that $a \in \mathcal{W}_{0} \operatorname{Hom}_{\mathbb{Z}}(W, V)$. If we replace r by r^{\prime}, we will replace e by $e+a \circ \pi \circ s=e+a$. So we see that the cosets in $\mathrm{JHom}_{\mathbb{Z}}(W, V)$ remain the same.

Next we handle the freedom in choosing s. If $s^{\prime}: W_{\mathbb{C}} \rightarrow E_{\mathbb{C}}$ is another section of π, which is a morphism of \mathbb{C}-mixed Hodge structures, then $s-s^{\prime}$: $W_{\mathbb{C}} \rightarrow E_{\mathbb{C}}$ has image lying in V. In other words, we identify $s-s^{\prime}$ with $b \in \operatorname{Hom}_{\mathbb{C}}(W, V)$. Again, using the strictness of $V \rightarrow E$, we find that $b \in \mathcal{F}^{0} \operatorname{Hom}_{\mathbb{C}}(W, V) \cap \mathcal{W}_{0} \operatorname{Hom}_{\mathbb{C}}(W, V)$. If we replace s by s^{\prime}, then e becomes

$$
e+r \circ b=e+b
$$

where in the first equation, we omit the inclusion map $V \rightarrow E$. Again, we end up with the same coset in $\mathrm{JHom}_{\mathbb{Z}}(W, V)$.

We conclude that (2.1) is well-defined.
For later use, we observe that we have an isomorphism of filtered \mathbb{Z}-modules $E \rightarrow V \oplus W$ given by (r, π). Under this isomorphism

$$
\begin{equation*}
\mathcal{F}^{p} E_{\mathbb{C}} \mapsto\left\{(v, w) \in V_{\mathbb{C}} \oplus W_{\mathbb{C}}: e(w)-v \in \mathcal{F}^{p} V_{\mathbb{C}}, w \in \mathcal{F}^{p} W_{\mathbb{C}}\right\} \tag{2.3}
\end{equation*}
$$

Step 2. We construct the map

$$
\begin{equation*}
\mathrm{JHom}_{\mathbb{Z}}(W, V) \rightarrow \operatorname{Ext}_{\mathrm{MHS}}^{1}(W, V) \tag{2.4}
\end{equation*}
$$

Let $\varphi \in \mathcal{W}_{0} \operatorname{Hom}_{\mathbb{Z}}(W, V)$. We define an extension $E \in \operatorname{Ext}_{\mathrm{MHS}}^{1}(W, V)$ as follows: the underlying filtered \mathbb{Z}-module of E is the direct sum of the underlying filtered \mathbb{Z}-modules of W and V. The Hodge filtration is defined as follows:

$$
\begin{equation*}
\mathcal{F}^{p} E_{\mathbb{C}}=\left\{(v, w) \in V_{\mathbb{C}} \oplus W_{\mathbb{C}}: \varphi(w)-v \in \mathcal{F}^{p} V_{\mathbb{C}}, w \in \mathcal{F}^{p} W_{\mathbb{C}}\right\} \tag{2.5}
\end{equation*}
$$

We first verify that $\left(E, \mathcal{F}^{\bullet}, \mathcal{W}_{\bullet}\right)$ is indeed a mixed Hodge structure. Fix $k \in \mathbb{Z}$, then

$$
\mathcal{F}^{p} \mathrm{Gr}_{k}^{\mathcal{W}} E_{\mathbb{C}}=\left(\mathcal{F}^{p} E_{\mathbb{C}} \cap \mathcal{W}_{k} E_{\mathbb{C}}+\mathcal{W}_{k-1} E_{\mathbb{C}}\right) / \mathcal{W}_{k-1} E_{\mathbb{C}}
$$

for any $p \in \mathbb{Z}$. We rewrite the right-hand side as

$$
\left\{(v, w) \in \operatorname{Gr}_{k}^{\mathcal{W}} V_{\mathbb{C}} \times \operatorname{Gr}_{k}^{\mathcal{W}} W_{\mathbb{C}}: \varphi(w)-v \in \mathcal{F}^{p} \operatorname{Gr}_{k}^{\mathcal{W}} V_{\mathbb{C}}, w \in \mathcal{F}^{p} \operatorname{Gr}_{k}^{\mathcal{W}} W_{\mathbb{C}}\right\}
$$

Now let $p, q \in \mathbb{Z}, p+q=k+1$. Take $(v, w) \in \operatorname{Gr}_{k}^{\mathcal{W}} V_{\mathbb{C}} \times \operatorname{Gr}_{k}^{\mathcal{W}} W_{\mathbb{C}}$, then we can uniquely decompose

$$
w=w_{1}+\overline{w_{2}}, \quad w_{1} \in \mathcal{F}^{p} \operatorname{Gr}_{k}^{\mathcal{W}} W_{\mathbb{C}}, w_{2} \in \mathcal{F}^{q} \operatorname{Gr}_{k}^{\mathcal{W}} W_{\mathbb{C}} .
$$

Then

$$
\varphi(w)=\varphi\left(w_{1}\right)+\overline{\varphi\left(w_{2}\right)}
$$

Similarly, we uniquely decompose

$$
v-\varphi(w)=v_{1}+\overline{v_{2}}, \quad v_{1} \in \mathcal{F}^{p} \operatorname{Gr}_{k}^{\mathcal{W}} V_{\mathbb{C}}, v_{2} \in \mathcal{F}^{q} \operatorname{Gr}_{k}^{\mathcal{W}} V_{\mathbb{C}}
$$

Then we find that

$$
(v, w)=\left(v_{1}+\varphi\left(w_{1}\right), w_{1}\right)+\overline{\left(v_{2}+\varphi\left(w_{2}\right), w_{2}\right)}
$$

Clearly, this decomposition is unique. That is, $\mathcal{F}^{\bullet} \mathrm{Gr}_{k}^{\mathcal{W}} E_{\mathbb{C}}$ is a pure Hodge structure of weight k. It follows that E is a \mathbb{Z}-mixed Hodge structure. We can view $E \in \operatorname{Ext}_{\mathrm{MHS}}^{1}(W, V)$ in the obvious way:

$$
\begin{equation*}
0 \rightarrow V \xrightarrow{v \mapsto(v, 0)} E \xrightarrow{(v, w) \mapsto w} W \rightarrow 0 \tag{2.6}
\end{equation*}
$$

Next we verify that \mathcal{F}^{\bullet} does not depend on the choice of the representative of φ. There are two types of freedoms in the definition of φ.

If we modify φ by an element in $\mathcal{F}^{0} V_{\mathbb{C}} \cap \mathcal{W}_{0} V_{\mathbb{C}}$, it it clear from (2.5) that we end up with the same Hodge filtration. On the other hand, if we take $a \in \mathcal{W}_{0} \operatorname{Hom}_{\mathbb{Z}}(W, V)$ and replace φ by $\varphi+a$, let us denote the resulting mixed Hodge structure by E^{\prime}. We have an isomorphism of \mathbb{Z}-mixed Hodge structures:

$$
E \rightarrow E^{\prime}, \quad(v, w) \mapsto(v-a(w), w)
$$

Of course, this isomorphism preserves the extension structure in (2.6). Now we see that (2.4) is well-defined.

Step 3. We verify that the two maps (2.1) and (2.4) are inverse to each other.

We begin with an extension E of V by W as in (2.2). We construct e as in Step 1. By (2.3), we see that the image of e under (2.4) is exactly E.

Conversely, if we begin with $\varphi \in \mathcal{W}_{0} \operatorname{Hom}_{\mathbb{Z}}(W, V)$ as in Step 2, we define E as in Step 2, then we can define $r: E \rightarrow V$ in Step 1 as the usual projection and $s: W_{\mathbb{C}} \rightarrow E_{\mathbb{C}}$ as $w \mapsto(\varphi(w), w)$. Then we see that e in Step 1 is exactly φ.

Step 4. We show that the map constructed in Step 1 is a group homomorphism. We let E_{1}, E_{2} be two extensions of V by W in MHS. Recall that the Baer sum $E_{1}+E_{2}$ is constructed as follows

where the upper left square is a pushout square and the lower right square is a pull-back square. The map $\Sigma: V \oplus V \rightarrow V$ sends $\left(v, v^{\prime}\right)$ to $v+v^{\prime}$ and $\Delta: W \rightarrow W \oplus W$ send w to (w, w). They are both morphisms in MHS. More explicitly, the underlying filtered \mathbb{Z}-module of E^{\prime} is just the pushforward of the underlying filtered \mathbb{Z}-modules of the other objects in the upper left square. Similarly, the underlying filtered \mathbb{Z}-module of $E_{1}+E_{2}$ is just the pull-back of the underlying filtered \mathbb{Z}-modules of the other objects in the lower right square.

We construct $r_{1}, r_{2}, s_{1}, s_{2}, e_{1}, e_{2}$ as in Step 1. Then $r_{1} \oplus r_{2}: E_{1} \oplus E_{2} \rightarrow$ $V \oplus V$ induces a morphism $E^{\prime} \rightarrow V$ of filtered \mathbb{Z}-modules and then a morphism $E_{1}+E_{2} \rightarrow V$ of filtered \mathbb{Z}-modules. Similarly, $s_{1} \oplus s_{2}: W_{\mathbb{C}} \oplus W_{\mathbb{C}} \rightarrow E_{1, \mathbb{C}} \oplus E_{2, \mathbb{C}}$ induces a morphism $W_{\mathbb{C}} \oplus W_{\mathbb{C}} \rightarrow E_{\mathbb{C}}^{\prime}$ of \mathbb{C}-mixed Hodge structures and then $W_{\mathbb{C}} \rightarrow E_{1, \mathbb{C}} \oplus E_{2, \mathbb{C}}$ of \mathbb{C}-mixed Hodge structures. We want to understand the composition

$$
W_{\mathbb{C}} \rightarrow E_{1, \mathbb{C}} \oplus E_{2, \mathbb{C}} \rightarrow V_{\mathbb{C}}
$$

We will see explicitly what the curved maps are in the following diagram:

The composition

$$
W_{\mathbb{C}} \oplus W_{\mathbb{C}} \rightarrow E_{\mathbb{C}}^{\prime} \rightarrow V_{\mathbb{C}}
$$

is clearly given by $\left(w_{1}, w_{2}\right) \mapsto e_{1}\left(w_{1}\right)+e_{2}\left(w_{2}\right)$. Similarly, the composition

$$
W_{\mathbb{C}} \rightarrow\left(E_{1} \oplus E_{2}\right)_{\mathbb{C}} \rightarrow V_{\mathbb{C}}
$$

is given by $w \mapsto e_{1}(w)+e_{2}(w)$. So we see that the map in Step 1 is indeed a group homomorphism.

References

Car80 [Car80] J. A. Carlson. Extensions of mixed Hodge structures. Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979. Sijthoff \& Noordhoff, Alphen aan den RijnGermantown, Md., 1980, pp. 107-127.

Mingchen Xia, Department of Mathematics, Institut de Mathématiques de Jussieu-Paris Rive Gauche

Email address, mingchen@imj-prg.fr
Homepage, https://mingchenxia.github.io/home/.

