NON-PLURIPOLAR CURRENTS ARE NOT NECESSARILY I-GOOD

MINGCHEN XIA

CONTENTS

1.	Introduction	1
2.	Witt Nyström construction	1
3.	A counterexample	1
References		3

1. INTRODUCTION

In this note, we give an example of a non- \mathcal{I} -good non-pluripolar quasi-plurisubharmonic function, which has small unbounded locus.

2. WITT NYSTRÖM CONSTRUCTION

Let X be a connected compact Kähler manifold of dimension n and ω be a Kähler form on X. For each $N \geq 1$, let ω_N denote the Fubini–Study metric on \mathbb{P}^N . By abuse of notation, we also denote the corresponding Hermitian metric on $\mathcal{O}_{\mathbb{P}^N}(1)$ as ω_N .

Let $X_N = X \times \mathbb{P}^N$. Let

$$\pi_1^N \colon X_N \to X, \quad \pi_2^N \colon X_N \to \mathbb{P}^N$$

be the projections. Let

$$\Omega_N \coloneqq \pi_1^{N*} \omega + \pi_2^{N*} \omega_N.$$

Note that Ω_N is a Kähler form on X_N .

Consider $\varphi \in PSH(X, \omega)$. We define

$$\Phi_{N}[\varphi] \coloneqq \sup_{\substack{\alpha \in \mathbb{R}^{N}_{\geq 0}, \\ |\alpha| < 1}} \left((1 - |\alpha|) \pi_{2}^{N*} \log |Z_{0}|_{\omega_{N}}^{2} + \sum_{i=1}^{N} \alpha_{i} \left(\pi_{1}^{N*} \varphi + \pi_{2}^{N*} \log |Z_{i}|_{\omega_{N}}^{2} \right) \right),$$

where we adopted the multi-index notation, $\alpha = (\alpha_1, \ldots, \alpha_N)$ and $|\alpha| = \alpha_1 + \cdots + \alpha_N$. The elements Z_0, \ldots, Z_N are a basis of $H^0(\mathbb{P}^N, \mathcal{O}(1))$.

Note that $\Phi_N[\varphi] \in \text{PSH}(X_N, \Omega_N)$ and $\Phi_N[\varphi] \ge \pi_2^{N*} \log |Z_0|_{\omega_N}^2$. It follows that $\Phi_N[\varphi]$ has small unbounded locus.

thm: WN Theorem 2.1 (Witt Nyström). As $N \to \infty$, we have the strong convergence of measures

$$\frac{n!}{N^n} \pi_{1*}^N \left(\Omega_N + \mathrm{dd}^{\mathrm{c}} \Phi_N[\varphi] \right)^{N+n} \to \omega_{\varphi}^n.$$

See [WN19].

3. A Counterexample

Let us take $\varphi \in \text{PSH}(X, \omega)$ which is not \mathcal{I} -good and $\int_X \omega_{\mathcal{K} \neq \text{abook}}^n > 0$. Let $\psi = P_{\omega}[\varphi]_{\mathcal{I}}$. First observe that $\pi_1^{N*} \varphi \sim_{\mathcal{I}} \pi_1^{N*} \psi$, as a consequence of [Xia, Proposition 1.4.5]. Therefore,

$$\Phi_N[\varphi] \sim_{\mathcal{I}} \Phi_N[\psi]$$

due to [Xiabook Xia, Proposition 6.1.5, Proposition 6.1.6]. Also observe that

$$\Phi_N[\varphi] \le \Phi_N[\psi]$$

We claim that there are infinitely many $\Phi_N[\varphi]$ which are not \mathcal{I} -good. Otherwise, we must have

$$\int_{X_N} (\Omega_N + \mathrm{dd}^{\mathrm{c}} \Phi_N[\varphi])^{N+n} = \int_{X_N} (\Omega_N + \mathrm{dd}^{\mathrm{c}} \Phi_N[\psi])^{N+n}$$

for all sufficiently large N. It follows from Theorem 2.1 that

$$\int_X \omega_{\varphi}^n = \int_X \omega_{\psi}^n,$$

which is a contradiction.

Note that $\Omega_N + dd^c \Phi_N$ is non-pluripolar since

$$\mathbb{1}_{\{Z_0=0\}}(\Omega_N + \mathrm{dd}^c \Phi_N) = \nu(\Phi_N, \{Z_0=0\})[\{Z_0=0\}] = 0.$$

Here we have identified Z_0 with $\pi_2^{N*}Z_0$.

REFERENCES

References

- [WN19] [WN19] D. Witt Nyström. Monotonicity of non-pluripolar Monge-Ampère masses. Indiana Univ. Math. J. 68.2 (2019), pp. 579–591. URL: https://doi.org/10.1512/iumj.2019. 68.7630.
 - [Xia] M. Xia. Singularities in global pluripotential theory. URL: https://mingchenxia.github.io/home/Lectures/SGPT.pdf.

Mingchen Xia, Chalmers Tekniska Högskola and Institute of Geometry and Physics, USTC

Email address, xiamingchen2008@gmail.com Homepage, https://mingchenxia.github.io/home/.

Xiabook