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1. Introduction

In this note, we collect the proofs of various fundamental results related to
Nadel’s multiplier ideal sheaves in global pluripotential theory proved using
L2-methods. Most proofs are just reproduction of the known proofs in the
literature, apart from fixing typos and miscalculations.

Some results in this note are more general than one find in the literature.
To be more precise, in Theorem 7.1, we prove the positivity of direct images
for proper morphisms instead of projective ones. In Theorem 8.1, we prove the
relative version of Bertini theorem without requiring the base be projective.
Corollary 8.6 seems to be new.

Some of the proofs are not self-contained. I intend to include more details
in the future and make all arguments self-contained.

Some comments on the terminologies: All complex analytic spaces are
assumed to be reduced.

Given a general complex analytic space X, when we want to talk about a
small part in the Zariski topology, we avoid saying that a subset is a proper
closed analytic subset, as people usually do in the literature. Instead, we say
a subset is a nowhere dense closed analytic subset. The reason is that when
X has more than one connected components, the former does not exclude
sets like a whole connected component!
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The notation ∆ denotes the open unit disk in C.

2. Preliminaries

2.1. Complex analytic spaces. Recall that all complex analytic spaces
are assumed to be reduced.

Recall the following generic flatness theorem.

thm:genflat Theorem 2.1 ([
BS76
BS76, Theorem V.4.10]). Let f : X → Y be a morphism of

complex analytic spaces. Let F be a coherent OX-module. Let A ⊆ X be the
non-flat locus of F . Then A is an analytic subset of X. Moreover, if

(1) X is σ-compact, then f(A) is non-where dense.
(2) f is proper, then f(A) is a nowhere dense proper closed analytic

subset in Y .

We also have the cohomology and base change theorem.

thm:cbc Theorem 2.2 ([
BS76
BS76, Theorem III.3.4, Corollary III.3.7]). Let f : X → Y

be a proper morphism of complex analytic spaces. Let F be an f -flat coherent
OX-module. Let q ⩾ 0 be an integer and y ∈ Y . Assume that the canonical
map

{eq:phiq}{eq:phiq} (2.1) ϕq(y) : Rqf∗(F)y ⊗OY,y
κ(y) → Hq(Xy,F|Xy )

is surjective. Then ϕq is an isomorphism in a neighbourhood of y. Moreover,
the following are equivalent:

(1) ϕq−1(y) is surjective.
(2) Rqf∗(F)y is a free OY,y-module.

cor:cbc Corollary 2.3. Let f : X → Y be a proper morphism of complex analytic
spaces and F be a coherent OX-module. Then there is a nowhere dense
proper analytic subset Z of Y such that

(1) F|f−1(Y \Z) is f -flat.
(2) Rqf∗(F)|Y \Z is locally free for all q ⩾ 0.
(3) For any y ∈ Y \Z, the canonical morphism ϕq(y) is an isomorphism

for all q ⩾ 0.

We say F has the base change property with respect to f on Y \ Z if (1),
(2) and (3) are all satisfied.

Proof. The problem is local on Y , so we may assume that the dimension
of the fibers of f are bounded by a constant N . By Theorem 2.1, we may
further assume that F is f -flat. Recall that the Rif∗(F)’s for i = 0, . . . , N
are all coherent, so up to subtracting a closed analytic subset from Y , we
may further assume that all of these sheaves are locally free. Observe that for
any y ∈ Y , ϕN+1(y) is surjective, so we can apply Theorem 2.2 to conclude
that ϕi(y) is surjective for all i = N,N − 1, . . . , 0. Applying Theorem 2.2
again, we conclude that (3) is also both satisfied. □

Recall the theorem of generic flatness:

thm:gensm Theorem 2.4 ([
GPR94
GPR94, Theorem II.1.22], [

BF93
BF93, Corollary 2.1]). Let f :

X → Y be a proper morphism of complex analytic spaces. Then the set N
of y ∈ Y such that Xy is not a manifold is a closed negligible subset of Y .
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Assume furthermore that X is smooth and Y is irreducible. Then N is a
proper closed analytic subset of Y .

2.2. Kähler morphisms.

Definition 2.5. Let f : X → Y be a morphism of complex analytic spaces.
A smooth function φ defined on X is strictly f -plurisubharmonic if for each
x ∈ X, we can find a neighbourhood U ⊆ X of x, a neighbourhood V of
f(x) satisfying f(U) ⊆ V and a smooth strictly plurisubharmonic function
ψ on V such that φ+ f∗ψ is smooth and strictly plurisubharmonic on U .

Definition 2.6. A morphism f : X → Y of complex analytic spaces is Kähler
if there is an open covering {Uα}α of X, smooth strictly f -psh functions φα
defined on Uα such that for each α, β, φα − φβ is pluriharmonic on Uα − Uβ .

Definition 2.7. A complex analytic space X is weakly 1-complete if there is
a smooth psh exhaustion ψ on X.

A holomorphically convex space is always weakly 1-complete. A weakly
1-complete Kähler manifold carries a complete Kähler metric.

2.3. Singular Hermitian line bundles. Let X be a complex manifold.
Recall that a singular Hermitian metric on a one-dimensional vector space
V is either the quadratic form of a Hermitian inner product on V or the
map that maps V × to ∞ and 0 to 0. A singular Hermitian metric on a line
bundle is a collection of singular Hermitian metrics on each fiber.

Definition 2.8. A singular Hermitian line bundle on X is a pair (L, h)
consisting of a holomorphic line bundle L on X and a singular Hermitian
metric h on L, such that if locally take a smooth Hermitian metric h0 on L
and identify h with h0 exp(−φ), then φ takes value in [−∞,∞), is locally
integrable and usc.

A (smooth) Hermitian line bundle on X is a singular Hermitian line bundle
(L, h) in which h is smooth.

A singular Hermitian line bundle (L, h) is called a Hermitian psef line
bundle (resp. Hermitian quasi-psef line bundle) if ddch ⩾ γ for some smooth
real closed (1, 1)-form γ on X in the sense of currents.

Given a local section f of L over U ⊆ X, we write |f |2h for the map
U → [0,∞]: x 7→ hx(fx, fx). When hx = ∞, fx = 0, the right-hand side is
understood as 0. According to our normalization

|f |2h = |f |2h0e−φ .

Be careful, we do not put 2 in front of φ.
Next we recall the definition of several basic invariants of a singular

Hermitian line bundle.

Definition 2.9. Let (L, h) be a Hermitian quasi-psef line bundle on X. The
multiplier ideal sheaf of h in the sense of Nadel is the sheaf of ideals I(h) on
X, locally generated by sections f of h satisfying |f |2h is locally integrable.

By a theorem of Nadel, I(h) is a coherent ideal sheaf.
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Definition 2.10. Given two Hermitian quasi-psef line bundles (L, h) and
(L, h′) with the same underlying line bundle, we say h ∼I h

′ if I(kh) = I(kh′)
for all real k > 0.

Definition 2.11. Assume that X is compact and Kähler. Let ω be a Kähler
form on X. Let (L, h) be a Hermitian psef line bundle on X. Take a quasi-
equisingular approximation hi of h as in Theorem 2.14. For each a = 0, . . . , n,
define the mixed mass in the sense of Cao as

⟨ddcha ∧ ωn−a⟩ := lim
i→∞

∫
X

(ddchi)a ∧ ωn−a ,

where on the right-hand side, the product is taken in the non-pluripolar
sense. It is easy to see that ⟨ddcha ∧ ωn−a⟩ is independent of the choice of
the approximation hi.

We define the numerical dimension nd(L, h) of (L, h) as the maximum of
a such that ⟨ddcha ∧ ωn−a⟩ > 0.

Definition 2.12. Assume that Assume that X is compact and Kähler. The
volume of a Hermitian psef line bundle (L, h) is defined as

vol(L, h) = lim
k→∞

n!
kn
h0(X,Lk ⊗ I(kh)) .

The existence of the limit is a non-trivial result, proved in [
DX21
DX21;

DX22
DX22].

2.4. Equisingular approximations.

thm:equising Theorem 2.13. [[
DPS01
DPS01]] Let X be a complex manifold. Let ω be a smooth

closed positive real (1, 1)-form on X and γ be a smooth real (1, 1)-form on X.
Let (L, h) be a singular Hermitian line bundle on X. Assume that T := ddch
satisfies T ⩾ γ. Then for any relative compact open subset U ⋐ X, there
are currents Tk (k ∈ Z>0) defined on U satisfying Tk − T is exact on a
neighbourhood of U and a decreasing sequence ϵk of positive real numbers
converging to 0 satisfying

(1) Each Tk has a smooth potential outside a proper subvariety Zk of U .
(2) Tk′′ is more singular than Tk′ on K when k′′ > k′. Any Tk is less

singular than T on U .
(3) I(T )|K = I(Tk)|U for all k.
(4) Tk ⩾ γ − ϵkω on U .

Moreover, if ωU is a complete positive real (1, 1)-form on U (instead of on
X), we may assume that (d) holds for ωK .

thm:quasiequising Theorem 2.14. [[
DPS01
DPS01]] Let X be a compact Kähler manifold and θ be

a closed smooth real (1, 1)-form on X. Consider φ ∈ PSH(X, θ). For any
open set U ⋐ X, there is a decreasing sequence of quasi-psh functions φj on
U satisfying

(1) φj has analytic singularities.
(2) φj is decreasing in j and converges to φ everywhere.
(3) There is a sequence τj → 0 so that

θφj ⩾ −τjω .

(4) I((1 + 2/j)φj) = I(φ).
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2.5. Bochner–Kodaira–Nakano identities.

prop:Bochner Proposition 2.15. Let X be a complex manifold and ω be a complete Kähler
form on X. Let (L, h) be a singular Hermitian line bundle on X such that
ddch ⩾ −C1ω for some constant C1. Let Φ be a smooth function on X such
that

sup
X

|dΦ|ω < ∞, ddcΦ > −C2ω

for some constant C2. Then for any
u ∈ Dom ∂̄∗

h,ω ∩ Dom ∂̄ ⊆ Ln,q(2)(X,L)h,ω ,

we have
{eq:twisBochner}{eq:twisBochner} (2.2)

∥√
η(∂̄+∂̄Φ)u∥2

h,ω+∥√
η∂̄∗

h,ωu∥2
h,ω = ∥√

η(D′∗
h,ω−(∂Φ)∗)u∥2

h,ω+2π⟨η(ddch+ ddcΦ)Λωu, u⟩h,ω ,

where η = exp(Φ),

Here we clarify some definitions: for any L-valued forms u, v of the same
bi-degree

⟨u, v⟩h,ω := 1
n!

∫
X

(u, v)h,ωωn .

The notation D′
h denotes the (1, 0)-part of the Chern connect of (L, h) and

D′∗
h,ω is its formal adjoint. We define Λω as the adjoint of ω∧.
We observe that when Φ = 0, (

eq:twisBochnereq:twisBochner
2.2) reduces to the usual Bochner’s formula

{eq:Bochuntw}{eq:Bochuntw} (2.3) ∥∂̄u∥2
h,ω + ∥∂̄∗

h,ωu∥2
h,ω = ∥D′∗

h,ωu∥2
h,ω + 2π⟨ddch ∧ Λωu, u⟩h,ω .

In order to render this formula useful, we need the following simple
computation:

Lemma 2.16. Let X be a complex manifold of pure dimension n and ω be
a complete Kähler form on X. Let (L, h) be a smooth Hermitian line bundle
on X. We denote the eigenvalues of ddch with respect to ω by λ1 ⩽ · · · ⩽ λn.
Then for any smooth (p, q)-form u with valued in L on X, we have

{eq:thetalambdalower}{eq:thetalambdalower} (2.4) ([ddch,Λω]u, u)h,ω ⩾ (λ1 + · · · + λq − λn−p+1 − · · · − λn)|u|2h,ω .
In particular, when p = n,

{eq:thetalambdalowerpeqn}{eq:thetalambdalowerpeqn} (2.5) ([ddch,Λω]u, u)h,ω ⩾ (λ1 + · · · + λq)|u|2h,ω .

Proof. The problem is local on X, so we may replace X be a small coordinate
chart so that

ω = i
n∑
j=1

dzj ∧ dz̄j , ddch = i
n∑
j=1

λjdzj ∧ dz̄j .

Also, we may assume that L admits a nowhere vanishing holomorphic section
e. Expand the form u as

u =
∑

|α|=p,|β|=q
uαβdzα ∧ dz̄β ⊗ e ,

where uαβ are smooth functions on X. Then

([ddch,Λω]u, u)h,ω =
∑

|α|=p,|β|=q

∑
j∈α

λj +
∑
j∈β

λj −
n∑
j=1

λj

 |uαβ|2 .
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For this formula, (
eq:thetalambdalowereq:thetalambdalower
2.4) follows. □

2.6. Čech Cocycles. Let X be a complex manifold of pure dimension n, ω
be a Kähler form on X. Let (L, h) be a singular Hermitian line bundle on
X such that ddch+ ω ⩾ 0. Let U = {Bi}i∈I be a locally finite Stein cover of
X such that Bi ⋐ X for each i ∈ I.

For each compact subset K ⋐ Bi0···iq , we define a seminorm on Čq(U , ωX⊗
L ⊗ I(h)) by

∥β∥K,i0···iq =
( 1
n!

∫
K

|βi0···iq |2h,ω ωn
)1/2

.

Observe that this seminorm is independent of the choice of ω.

lma:Fre Lemma 2.17. The set Čq(U , ωX ⊗ L ⊗ I(h)) and Zq(U , ωX ⊗ L ⊗ I(h)) are
both Fréchet spaces with respect to the family of semi-norms ∥ • ∥K,i0···iq . The
Čech coboundary

∂q : Čq(U , ωX ⊗ L ⊗ I(h)) → Čq+1(U , ωX ⊗ L ⊗ I(h))

is bounded.
If X is holomorphically convex, then so is Bq(U , ωX ⊗ L ⊗ I(h)).

Proof. The first part is just some well-known complex analysis. For the latter
statement, see [

Mat16
Mat18a, Lemma 2.14]. In a later version, I plan to include

the proof. □

lma:normestitotrivialcech Lemma 2.18. Assume that X is holomorphically convex. Let β ∈ Ȟp(U , ωX⊗
L ⊗ I(h)). Fix a smooth metric h′ on L. Assume that there exists
βj ∈ Čp(U , ωX ⊗ L ⊗ I(h)) in the cohomology class of β satisfying

(2.6) lim
j→∞

∫
K

|βji0···ip |h′ = 0

for any compact subset K ⊆ Ui0···ip. Then β = 0 in Ȟp(U , ωX ⊗ L ⊗ I(h)).

Proof. Observe that the coboundary map

∂p : Čp(U , ωX ⊗ L ⊗ I(φ)) → Žp+1(U , ωX ⊗ L ⊗ I(φ))

is continuous and has closed images by Lemma 2.17. It follows that the
natural quotient map

Žp(U , ωX ⊗ L ⊗ I(φ)) → Ȟp(U , ωX ⊗ L ⊗ I(φ))

is continuous. Our assumption guarantees that βp → 0 in Žp(U , ωX ⊗ L ⊗
I(φ)). It follows that the corresponding classes in Ȟp(U , ωX ⊗ L ⊗ I(φ))
also converge to 0. But by our assumption, these classes are all equal to β,
so β = 0. □

Next we assume that Z is a nowhere dense closed analytic subset of X
and Y = X \ Z. Assume that there is a Kähler form ω̃ on Y such that

(1) ω̃ ⩾ ω on Y .
(2) ω̃ has locally bounded potentials on X (not Y ).
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thm:CechtoDeRham Theorem 2.19. There are continuous maps

f : ker ∂̄ in Ln,q2,loc(F )h,ω̃ → ker ∂q in Čq(U , ωX ⊗ L ⊗ I(h))

and

g : ker ∂q in Čq(U , ωX ⊗ L ⊗ I(h)) → ker ∂̄ in Ln,q(2),loc(F )h,ω̃

inducing isomorphisms f̄ , ḡ on the level of cohomology. Moreover, f̄ and ḡ
are inverse to each other.

Here ∂̄ is the closed operator defined in Definition 3.4. We omit the proof
and refer to [

Mat16
Mat18a, Proposition 2.16].

cor:imgbpclosed Corollary 2.20. Assume furthermore that X is holomorphically convex,
then Im ∂̄ is a closed subspace of Ln,q(2),loc(F )h,ω̃.

prop:cpt Proposition 2.21. Assume furthermore that X is holomorphically convex,
then the natural map

ker ∂̄ in Ln,q(2)(Y,L)h,ω̃ → ker ∂̄/ Im ∂̄ in Ln,q(2),loc(Y,L)h,ω̃
is compact.

See [
Mat16
Mat18a, Proposition 2.19].

2.7. Uniform integrability. The following is usually known as the com-
parision of integral technique.

lma:compint Lemma 2.22. Let X be a compact Kähler manifold of pure dimension n,
ω be a Kähler form on X. Let (γi)i∈I and (φi)i∈I be families of quasi-psh
functions on X satisfying

(1) There is a Kähler form ω′ on X so that ω′ + ddcγi ⩾ 0.
(2) supi∈I supX γi < ∞.

Let (L, h) be a smooth Hermitian line bundle on X and f be a smooth (n, q)-
form with value in L on an open subset U ⊆ X, then for any s1 > 0, there
exists s > 0 such that there is a constant C = C(s1, s, ∥f∥L∞(h,ω), (γi)i) such
that

{eq:compint}{eq:compint} (2.7)
∫
U

|f |2h,ωe−sγi−φi ωn ⩽ C

(∫
U

|f |2h,ωe−(1+s1)φi ωn
)1/(1+s1)

.

Proof. By uniform Skoda estimate, we can find a > 0 so that

sup
i∈I

∫
X

e−aγi ⩽ C0

for some C0 > 0. For any given s1 > 0, take s > 0 small enough so that
s(1 + s1)/s1 ⩽ a. Then by Hölder’s inequality∫
U

|f |2h,ωe−sγi−φi ωn ⩽
(∫

U
|f |2h,ωe−(1+s1)φi ωn

)1/(1+s1) (∫
U

|f |2h,ωe−s(1+s1)/s1

)s1/(s1+1)

⩽C
(∫

U
|f |2h,ωe−(1+s1)φi ωn

)1/(1+s1)
.

□
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3. L2-methods

We fix a complex manifold X of pure dimension n.

3.1. L2-spaces of differential forms. Let (L, h) be a singular Hermitian
line bundle on X and ω be a smooth positive real (1, 1)-form on X.

Definition 3.1. For any smooth L-valued (p, q)-forms u and v at x ∈ X,
we introduce the inner product (u, v)h,ω as follows: take a holomorphic
coordinate z1, . . . , zn on X and a nowhere vanishing holomorphic section e
of L near x, write

u =
∑

|α|=p,|β|=q
uα,βdzα ∧ dz̄β ⊗ e ,

v =
∑

|α|=p,|β|=q
vα,βdzα ∧ dz̄β ⊗ e .

Then we define

(u, v)h,ω :=

 ∑
|α|=p,|β|=q

uα,βdzα,
∑

|α|=p,|β|=q
vα,βdzα


ω

h(e, e) .

Here the bracket (•, •)ω is the usual inner product induced by the Hermitian
metric associated with ω.

We write
|u|h,ω = (u, u)1/2

h,ω .

When (L, h) is trivial, we usually omit h from the notations. When we
want to emphasize X, we will replace the subindex h, ω by h, ω,X. The
same convention applies to all later definitions.

Definition 3.2. Define the space Lp,q(2)(X,L)h,ω as the space of L-valued
(p, q)-forms u with measurable coefficients such that∫

X
(u, u)h,ω ωn < ∞ .

Similarly, define Lp,q(2),loc(X,L)h,ω as the space of F -valued (p, q)-forms u with
measurable coefficients such that∫

K
(u, u)h,ω ωn < ∞

for any compact subset K ⊆ X.
Define Cp,q∞ (X,L) as the space of smooth L-valued (p, q)-forms.

Definition 3.3. Given L-valued (p, q)-forms u and v on X, we define the
inner product

<u, v>h,ω :=
∫
X

(u, v)h,ω ωn .

Of course, (u, v)h,ω is only defined almost everywhere.

Next we introduce the ∂̄-operator.
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def:bp Definition 3.4. The operator ∂̄ : Lp,q(2)(X,L)h,ω → Lp,q+1
(2) (X,L)h,ω is a

densely defined operator with

Dom ∂̄ :=
{
u ∈ Lp,q(2)(X,L)h,ω : ∂̄u ∈ Lp,q+1

(2) (X,L)h,ω
}
,

where ∂̄ on the right-hand side means ∂̄ in the sense of distribution. We
then define the unbounded operator ∂̄ on Dom ∂̄ as the ∂̄ in the sense of
distribution.

It is obvious that ∂̄ is closed∗. Similarly, when h is smooth, we introduce
the densely defined operator

D′
h,ω : Lp,q(2)(X,L)h,ω → Lp+1,q

(2) (X,L)h,ω ,

which is the (1, 0)-part of the Chern connection of (L, h).
Let ∗ : Cp,q∞ (X,L) → Cn−p,n−q

∞ (X,L) be the Hodge star normalized by
1
n! (u, v)h,ω ωn = (u ∧ ∗v)h ,

where on the right-hand side (•)h means that we contract the indices in L
with h.

Recall the following density lemma of Andreotti–Vesentini. We refer to
[
Hor90
Hör90, Lemma 5.2.1] for a proof.

lma:den Lemma 3.5. Assume that ω is complete and h is smooth. The set of
compactly supported smooth (p, q)-forms with value in L is dense in Dom ∂̄∗

h,ω,
Dom ∂̄, Dom ∂̄∗

h,ω ∩ Dom ∂̄ respectively with respect to the graph norm of ∂̄,
the graph norm of ∂̄∗

h,ω and the norm u 7→ ∥u∥h,ω + ∥∂̄∗
h,ωu∥h,ω + ∥∂̄u∥h,ω.

Here ∂̄∗
h,ω denotes the Hilbert space adjoint of ∂̄.

cor:adjcoin Corollary 3.6. Assume that ω is complete and h is smooth. On the space of
smooth forms with compact supports, ∂̄∗

h,ω coincides with the formal adjoint

∂̄∗
h,ω = − ∗ ∂̄ ∗ .

When h is smooth, we let D′∗
h,ω denote the formal adjoints of D′

h,ω:

D′∗
h,ω = − ∗D′

h,ω∗
defined on the space of smooth forms.

For any smooth (s, t)-form θ, θ acts on Cp,q∞ (X,L) by wedge product on
the left, its pointwise adjoint is given by

θ∗ = (−1)p+q(s+ t+ 1) ∗ θ̄ ∗ .

We introduce the Lefschetz operators:
Λω : Cp,q∞ (X,L) → Cp−1,q−1

∞ (X,L)
is the pointwise adjoint of ω ∧ •.

lma:speceq Lemma 3.7. If ω is a Kähler form (i.e. if ω is closed), then
(1) θ∗ = i[θ̄,Λω] for any smooth (1, 0)-form θ.
(2) θ∗ = −i[θ̄,Λω] for any smooth (0, 1)-form θ.

∗Matsumura talks about maximal extensions, but an unbounded operator not defining on
the whole space never has a maximal extension.
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(3) If h is smooth, for any smooth function Φ on X,

[∂̄, (∂̄Φ)∗] + [D′∗h,ω, ∂Φ] = 2π[ddc,Λω] .

All equalities are in the sense of operators on smooth forms with value in L.

lma:diffomegacomp Lemma 3.8. Let ω′ and ω be smooth positive real (1, 1)-forms such that
ω′ ⩾ ω. Then there is a constant C > 0 so that |θ∗u|ω ⩽ C|θ|ω|u|ω for all
smooth forms θ and u. Moreover,

(1) |u|ω′ ⩽ |u|ω for smooth forms u.
(2) |u|ω′ω′n ⩽ |u|ωωn for smooth (n, q)-forms u.
(3) |u|ω′ω′n = |u|ωωn for smooth (n, 0)-forms u.

Similarly, when h is smooth, the same holds for forms with value in L.

Both results follow from simple computations, which we omit.

3.2. Adjoint operators on domains with boundaries. Let (L, h) be a
smooth Hermitian line bundle on X, ω be a Hermitian form on X and Φ be
a smooth function on X. For each c ∈ R, we write Xc := {x ∈ X : Φ(x) < c}.
When Xc ⋐ X and dΦ does not vanish on ∂Xc, we define an inner product

<u, v>h,ω,∂Xc :=
∫
∂Xc

(u, v)h,ω dSω

for smooth L-valued (p, q)-forms u, v defined in a neighbourhood of ∂Xc.
Here dSω is the volume form on ∂Xc defined by dSω = 1

|dΦ|2ω
∗ dΦ. Then

1
n!ω

n = dΦ ∧ dSω .

We reformulate Stokes formula as follows:

prop:Stokes Proposition 3.9. Let u (resp. v) be a smooth L-valued (p, q−1)-form (resp.
(p, q)-form) on X. Given c as above, we have

<∂̄u, v>h,ω,Xc = <u, ∂̄∗
h,ωv>h,ω,Xc +<u, (∂̄Φ)∗v>h,ω,∂Xc .

More generally,

prop:Stokesgen Proposition 3.10. Let Y be the complement of a nowhere dense closed
analytic subset of X. Assume that there is a complete positive (1, 1)-form ω′

on Y . Let u (resp. v) be a smooth L-valued (p, q−1)-form (resp. (p, q)-form)
on Y satisfying

∥u∥h,ω′ , ∥v∥h,ω′ , ∥∂̄u∥h,ω′ , ∥∂̄∗
h,ω′v∥h,ω′ < ∞ .

Take c as above. Then there is a sufficiently small positive number ϵ > 0
such that

(1) dΦ does not vanish on ∂Xd for every d ∈ (c− ϵ, c+ ϵ).
(2) For almost every d ∈ (c− ϵ, c+ ϵ),

(3.1) <∂̄u, v>h,ω′,Xd
= <u, ∂̄∗

h,ωv>h,ω,Xd
+<u, (∂̄Φ)∗v>h,ω,∂Xd

.

The proof involves a simple cutoff argument, we refer to [
Mat16
Mat18a, Propo-

sition 2.5] for the details.
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3.3. L2-estimates.

prop:L2esti Proposition 3.11. Let X be a connected compact Kähler manifold of di-
mension n, ω be a Kähler form on X. Let (L, h) be a singular Hermitian
line bundle on X satisfying the following conditions:

(1) h is smooth outside a proper closed analytic subset Z of X.
(2) ddch ⩾ −ϵω for some ϵ > 0 on X \ Z.

Let f be a holomorphic (n, q)-form with value in L satisfying∫
X

|f |2h,ω ωn < ∞ .

Let λ1 ⩽ · · · ⩽ λn be the eigenvalues of ddch and set λ̂i = λi + 2ϵ. Then
there exist a (n, q − 1)-form u with L2-coefficients with value in L and a
(n, q)-form v with L2-coefficients with value in L such that

{eq:ftodupv}{eq:ftodupv} (3.2) f = ∂̄u+ v

and

{eq:uvestimate}{eq:uvestimate} (3.3)
∫
X

|u|2h,ω ωn + 1
4πpϵ

∫
X

|v|2h,ω ωn ⩽
1

2π

∫
X

1
λ̂1 + · · · + λ̂p

|f |2h,ω ωn .

Proof. As Y := X \ Z is weakly 1-complete, we can fix a complete Kähler
metric ω′ on Y . For any δ > 0, set ωδ = ω + δω′. Our assumption on f
implies that f ∈ Ln,q(2)(Y,L)h,ωδ

. We also observe that Ln,q(2)(Y,L)h,ωδ
gets

smaller as δ decreases to 0.
For any s ∈ Dom ∂̄∗

h,ωδ
, we decompose it as s1 + s2, where s1 ∈ ker ∂̄ and

s2 ∈ (ker ∂̄)⊥ ⊆ ker ∂̄∗
h,ωδ

.
By Bochner’s formula (

eq:Bochuntweq:Bochuntw
2.3) and (

eq:thetalambdalowerpeqneq:thetalambdalowerpeqn
2.5),

∥∂̄s1∥2
h,ωδ

+ ∥∂̄∗
h,ωs1∥2

h,ωδ
⩾ 2π

∫
Y

(
λ̂1 + · · · + λ̂p − 2pϵ

)
|s1|2h,ωδ

ωnδ .

By assumption, f ∈ ker ∂̄, so

|<f, s>h,ωδ
|2 =|<f, s1>h,ωδ

|2

⩽

(∫
Y

1
λ̂1 + · · · + λ̂p

|f |2h,ωδ
ωnδ

)(∫
Y

(λ̂1 + · · · + λ̂p)|s1|2h,ωδ
ωnδ

)

⩽

(∫
Y

1
λ̂1 + · · · + λ̂p

|f |2h,ωδ
ωnδ

)(
2pϵ∥s1∥2

h,ωδ
+ (2π)−1∥∂̄∗

h,ωs1∥2
h,ωδ

)
⩽

1
2π

(∫
Y

1
λ̂1 + · · · + λ̂p

|f |2h,ωδ
ωnδ

)(
4πpϵ∥s∥2

h,ωδ
+ ∥∂̄∗

h,ωs∥2
h,ωδ

)
.

By Hahn–Banach theorem applied to

Ln,q(2)(Y,L)h,ωδ
× Ln,q(2)(Y, L)h,ωδ

and the subspace Dom ∂̄∗
h,ωδ

(embedded into the former space by s 7→
((4πpϵ)1/2s, ∂̄∗

h,ωs)), we can find L2-forms uδ, vδ on Y with value in L of
appropriate degrees so that

{eq:fsdecomp}{eq:fsdecomp} (3.4) <f, s>h,ωδ
= <uδ, ∂̄

∗
h,ωδ

s>h,ωδ
+<vδ, s>h,ωδ
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and

∥uδ∥2
h,ωδ

+ 1
4πpϵ∥vδ∥2

h,ωδ
⩽

1
2π

(∫
Y

1
λ̂1 + · · · + λ̂p

|f |2h,ωδ
ωnδ

)
.

Fix δ′ > 0. Take a sequence δi → 0 of positive numbers so that uδi
(resp.

vδi
) converges weakly to some u (resp. v) in Ln,q(2)(Y, L)h,ωδ′ . It follows that

∥u∥2
h,ωδ′ + 1

4πpϵ∥v∥2
h,ωδ′ ⩽

1
2π

(∫
Y

1
λ̂1 + · · · + λ̂p

|f |2h,ωδ′ ω
n
δ′

)

⩽
1

2π

(∫
Y

1
λ̂1 + · · · + λ̂p

|f |2h,ω ωn
)
.

Let δ′ → 0+, we find

∥u∥2
h,ω + 1

4πpϵ∥v∥2
h ⩽

1
2π

(∫
Y

1
λ̂1 + · · · + λ̂p

|f |2h,ω ωn
)
,

which is exactly (
eq:uvestimateeq:uvestimate
3.3). It remains to prove (

eq:ftodupveq:ftodupv
3.2). By (

eq:fsdecompeq:fsdecomp
3.4) and the fact that

the maximal extension of ∂̄∗
h,ωδ

coincides with the Hilbert space adjoint of
∂̄ (which follows from the density lemma, applicable as ωδ is complete), we
have

f = ∂̄uδ + vδ

in the sense of currents. Let δ → 0 along δi, we have
f = ∂̄u+ v

as currents on Y . Using the estimate (
eq:uvestimateeq:uvestimate
3.3), we may extend u and v to the

whole X as forms with L2-coefficients and (
eq:ftodupveq:ftodupv
3.2) follows. □

In the proof of Proposition 3.11, we take an arbitrary complete Kähler
metric on Y . We can make this more explicit:

prop:goodcomplemetric Proposition 3.12. Let X be a Kähler manifold and ω be a complete Kähler
form on X. Let Z be a nowhere dense closed analytic subset of X. Write
Y = X \ Z. Assume there is a larger Kähler manifold X ′ such that X ⋐ X ′,
a nowhere dense closed analytic subset Z ′ of X ′ such that Z ′ ∩X = Z. Then
there is a complete Kähler metric ω′ on Y satisfying

(1) ω′ ⩾ ω on Y .
(2) The local potentials of ω′ on X (not on Y ) are locally bounded.

Proof. Fix a quasi-psh function ψ on X which has log poles along Z and
smooth outside Z. From out assumption about X ′ and Z ′, we may assume
that ψ is bounded from above on X, say ψ < −e on X. Set

ψ̃ = 1
log(−ψ) ,

which is a quasi-psh function on X with ψ̃ < 1. Take a positive constant α
such that

αω + ddcψ̃ > 0
on Y . Then we claim that

ω′ := ω + (αω + ddcψ̃)
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is the Kähler form we need. All we need to show is that this Kähler form is
complete on Y . This follows from the inequality

{eq:omegaplower}{eq:omegaplower} (3.5) ω′ ⩾
i

2π∂(log log(−ψ)) ∧ ∂̄(log log(−ψ))

on Yk as long as α is large enough and the fact that log log(−ψ) tends to ∞
on Z. The equation (

eq:omegaplowereq:omegaplower
3.5) itself follows from a direct computation, which we

leave to the readers. □

4. The Ohsawa–Takegoshi extension theorem

We need the following theorem due to Cao [
Cao17
Cao17] and Guan–Zhou [

GZ15b
GZ15].

thm:OTadj Theorem 4.1. Let f : X → Bm be a proper Kähler morphism from a
connected complex manifold X of pure dimension n to Bm, the unit ball in
Cm. Let (L, h) be a Hermitian psef line bundle on X such that X0 is smooth
of pure codimension m and the restriction of h to X0 is not identically ∞
on any connected component of X0.

We also assume that there is a proper Kähler morphism f ′ : X ′ → Bm(r)
(r > 1) extending f such that (L, h) extends to a Hermitian psef line bundle
on X ′. † Then for any α ∈ H0(ωX0 ⊗ L ⊗ I(h|X0)), there is a section
s ∈ H0(X,ωX ⊗ L) such that α = s|X0 and

(4.1) 1
n!

∫
X

|s ∧ s̄|h ⩽
µ(Bm)

(n−m)!

∫
X0

|α ∧ ᾱ|h .

Here µ is the Lebesgue measure, so µ(Bm) = πm/m!.
We will prove the following stronger result.

thm:OT2 Theorem 4.2. Let X be a connected weakly 1-complete Kähler manifold
of dimension n and ω be a complete Kähler metric on X. Assume that X
admits a finite covering by domains biholomorphic to pseudoconvex domains
in Cn ‡. Let (E, hE) be a smooth Hermitian holomorphic vector bundle or
rank r on X. Fix a non-zero holomorphic section v of E. We assume that
the zero locus Z of v is smooth of pure codimension r and |v|2rhE

⩽ 1. Set
Ψ := log |v|2rhE

. Assume that ddcΨ ⩾ 0.
Let (L, h) be a Hermitian psef line bundle on X. We assume that there is

a sequence of increasing analytic approximations hk of h satisfying

ddchk ⩾ −ϵkω

with ϵk → 0+.
Then for any f ∈ H0(Z, ωX |Z ⊗ L|Z ⊗ I(h|Z)) and any δ > 0, there is

F ∈ H0(X,ωX ⊗ L ⊗ I(h)) extending f and

{eq:est3}{eq:est3} (4.2) 1
n!

∫
X

|F ∧ F̄ |h ⩽
1 + δ

(n− r)!

∫
Z

|f |2h,ω|Λrdv|−2ω|n−r
Z ,

†This condition is omitted in [
Cao17
Cao17]. It seems necessary to include it in order to apply

Theorem 4.2. Otherwise, s can still be defined, but only over a smaller polydisk.
‡This assumption is omitted in [

Cao17
Cao17]. We include it because we need a uniform constant

σ in (
eq:strongop1eq:strongop1
4.3)
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where Λr(dv) is define by
1

(n− r)!

∫
Z

G

|Λr(dv)|2 ω|n−r
Z = 1

n! lim
m→∞

∫
{−m−1⩽log |v|2r

hE
⩽−m}

G

|v|2rhE

ωn

for any smooth function G on X.

This theorem clear implies Theorem 4.1.
We introduce a few notations that will be used in the proof. For each

m ⩾ 1, we define

bm(t) =


1, t ⩾ −m;

t+m+ 1, t ∈ [−m− 1,−m);
0, t ∈ (−∞,−m− 1).

In particular, 0 ⩽ bm ⩽ 1.

Proof of Theorem 4.2. Fix a smooth metric h0 on L and identify h with
φ ∈ PSH(X, θ), where θ = ddch0.

Step 1. We claim that there is a smooth section f̃ of KX ⊗ L such that
(1) f̃ |Z = f .
(2) ∂̄f̃ |Z = 0.
(3) There is a constant σ > 0 such that∫

X

|∂̄f̃ |2h0,ω

|v|2rhE
(log |v|hE

)2 e−(1+σ)φ ωn ⩽ C

∫
Z

|f |2h,ω
|Λr(dv)|2 ω|n−r

Z .

Taking a finite Stein cover {Ui} such that each Ui is biholomorphic to a
pseudo-convex domain in Cn of X and a partition of unity χi subordinate to
{Ui}. Locally on each Ui, by strong openness, we can find σ > 0 so that

{eq:strongop1}{eq:strongop1} (4.3)
∫
Ui∩Z

|f |2h0,ωe−(1+σ)φ ωn−r ⩽ 2
∫
Z

|f ∧ f̄ |h ωn−r .

By the usual version of the Ohsawa–Takegoshi theorem [
Dem12
Dem12, Theo-

rem 12.6], we can find holomorphic sections fi of KX ⊗ L on Ui extending
such that∫

Ui

|fi|2h0,ω

|v|2rhE
(log |v|hE

)2 e−(1+σ)φ ωn ⩽ C

∫
Ui∩Z

|f |2h,ω
|Λr(dv)|2 ω|n−r

Z .

It suffices to take f̃ =
∑
i χifi.

Step 2. Set gm = ∂̄((1 − bm ◦ Ψ)f̃). We claim that there is a sequence
of positive integers am → ∞ satisfying m/am → 0 and L-valued locally
L2-forms γm, βm of appropriate degrees such that

{eq:bpgm}{eq:bpgm} (4.4) ∂̄γm + (m/am)1/2βm = gm

and
{eq:est2}{eq:est2} (4.5)

lim
m→∞

( 1
n!

∫
X

|γm|2ham ,ω ω
n + C

∫
X

|βm|2ham ,ωe−Φ ωn
)
⩽

1
(n− r)!

∫
Z

|f |2h,ω
|Λr(dv)|2 ω|n−r

Z .

Moreover,
{eq:gammamz0}{eq:gammamz0} (4.6) γm|Z = 0 .
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Up to passing to a subsequence, we assume that γm − (1 − bm ◦ Ψ)f̃
converges weakly to some F in Ln,0(2) (L)h0,ω.

The proof of the claim is a long and tedious calculation, we refer to [
Cao17
Cao17,

Lemma 2.1] for the details.
Step 3. We verify that F satisfies the desired properties. By (

eq:est2eq:est2
4.5)and

(
eq:bpgmeq:bpgm
4.4), we conclude that

∂̄(γm − (1 − bm ◦ Ψ)f̃) = −(m/am)1/2βm

converges weakly to 0 in Ln,1(2) (L)ham exp(−Φ),ω. As

∂̄ : Ln,0(2) (X,L)h0,ω → Ln,1(2) (X,L)ham exp(−Φ),ω

is a closed operator, it follows that F is holomorphic.
Next we show that F extends f . Fix the Stein covering {Ui} as before.

We need to show that F |Ui∩Z = f . We solve the ∂̄-equation: ∂̄wm = βm on
Ui such that∫

Ui

|wm|2ham ,ωe−Ψωn ⩽ C

∫
Ui

|βm|2ham ,ωe−Ψωn ⩽ C .

Here the second inequality follows from (
eq:est2eq:est2
4.5).

It follows that
Fm := (1 − bm ◦ Ψ)f̃ − γm − (m/am)1/2wm

is a holomorphic function on Ui. Moreover, Fm converges to F weakly
in Ln,0(2) (Ui, L)ham exp(−Φ),ω. By (

eq:gammamz0eq:gammamz0
4.6), Fm|Ui∩Z = f |Ui∩Z , so it follows that

F |Ui∩Z = f |Ui∩Z as well.
It remains to establish the estimate (

eq:est3eq:est3
4.2). By (

eq:est2eq:est2
4.5) and the monotonicity

of hk, we have

lim
m→∞

1
n!

∫
X

|γm|2hk,ω
ωn ⩽

1
(n− r)!

∫
Z

|f |2h,ω
|Λr(dv)|2 ω|n−r

Z

for any fixed k > 0. By Fatou’s lemma, we find

1
n!

∫
X

|F |2hk,ω
ωn ⩽

1
(n− r)!

∫
Z

|f |2h,ω
|Λr(dv)|2 ω|n−r

Z .

Let k → ∞, we conclude (
eq:est3eq:est3
4.2). □

5. Nadel–Cao vanishing theorem

In this section, we fix a compact Kähler manifold X of pure dimension n.
We will prove Nadel–Cao vanishing theorem.

thm:NCvan Theorem 5.1 ([
Cao14
Cao14]). Let (L, h) be a Hermitian psef line bundle on X.

Then
Hq(X,ωX ⊗ L ⊗ I(h)) = 0 for p > n− nd(L, h) .

Here and in the whole paper, we use the caligraphic font L to denote
OX(L). The same convention applies to other line bundles as well.

The proof of Theorem 5.1 relies on Lemma 2.18. We want to represent a
general element β in Hq(X,ωX ⊗ OX(L) ⊗ I(h)) by suitable Čech cocycles
vj so that the local norms of vj tend to 0. Under the Čech to de Rham
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isomorphism, this amounts to choosing holomorphic forms representing β
with small norms, which can be carried out by L2-estimates.

The problem is that in order to apply L2-estimates as in Proposition 3.11,
we need some regularity of the metric. So we need to carry out a suit-
able approximation preserving I(h) at first, such approximations are called
equisingular approximations:

lma:esapp Lemma 5.2. Let (L, h) be a Hermitian psef line bundle on X and p >
n − nd(L, h). Fix a Kähler metric ω on X. Then there is a sequence of
metrics hj with analytic singularities on L with the following properties:

(1) I(hj) = I(h). Moreover, take a smooth metric h0 on L and write h
with h0 exp(−φ), then for any small enough s1 > 0, there exists s > 0
such that for any smooth bounded (n, q)-form on an open subset U
of X, we have

{eq:locintfhj}{eq:locintfhj} (5.1)
∫
U

|f |2hj ,ω ω
n ⩽ C(∥f∥L∞,h0,ω)

(∫
U

|f |2h0,ωe−(1+s1)φ ωn
)1/(1+s1)

.

(2) We write Zj for the singular locus of hj Let λj1 ⩽ λj2 ⩽ · · · ⩽ λjn be
the eigenvalues of ddchj with respect to ω, defined on X \ Zj. Then
there is a sequence of positive numbers ϵj → 0 such that

{eq:lambdaesti}{eq:lambdaesti} (5.2) λj1 + ϵj ⩾
1
2ϵj on X \ Zj .

(3) We can choose β > 0 and α ∈ (0, 1) such that for all j ⩾ 1, there is
an open subset Uj ⊆ X \ Zj satisfying

lim
j→∞

∫
Uj

ωn = 0

and
λjp + 2ϵj ⩾ ϵαj on X \ (Uj ∪ Zj) .

(4) There is a smooth metric H on L such that H ⩽ hj for all j.

Let us deduce Theorem 5.1 from this lemma.

Proof of Theorem 5.1. Let h0 be a smooth metric on L and let θ = c1(L, h0).
We will identify h with φ ∈ PSH(X, θ) through h = h0 exp(−φ).

Let hj be the approximations constructed in Lemma 5.2. Let f be a
holomorphic (n, p)-form representing a class α ∈ Hp(X,ωX ⊗ L ⊗ I(φ)).
Take s1, s > 0 so that (

eq:locintfhjeq:locintfhj
5.1) holds. We assume that s1 is small enough so

that I((1 + s1)φ) = I(φ).
By L2-estimates Proposition 3.11, we can write f = ∂̄uj + vj such that

{eq:temp1}{eq:temp1} (5.3)∫
X

|uj |2hj ,ω ω
n + 1

4πpϵj

∫
X

|vj |2hj ,ω ω
n ⩽

1
2π

∫
X

1
λ̂j1 + · · · + λ̂jp

|f |2hj ,ω ω
n .

Here λ̂jp = λjp + 2ϵj .
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We estimate the right-hand side using Lemma 5.2. By Lemma 5.2(2),
λ̂j1 ⩾ c1ϵj for some c1 > 0 independent of j, so∫
X

1
λ̂j1 + · · · + λ̂jp

|f |2hj ,ω ω
n =

∫
Uj

1
λ̂j1 + · · · + λ̂jp

|f |2hj ,ω ω
n +

∫
X\Uj

1
λ̂j1 + · · · + λ̂jp

|f |2hj ,ω ω
n

⩽C
∫
Uj

1
ϵj

|f |2hj ,ω ω
n + C

∫
X\Uj

1
ϵαj

|f |2hj ,ω ω
n .

It follows that∫
X

|vj |2hj ,ω ω
n ⩽ C

∫
Uj

|f |2hj ,ω ω
n + Cϵ1−α

j

∫
X

|f |2hj ,ω ω
n .

As the volume of Uj tends to 0, the first term tends to 0 as j → ∞. The
second term tends to 0 as by (

eq:locintfhjeq:locintfhj
5.1),

∫
X |f |2hj ,ω ω

n is uniformly bounded. It
follows that

{eq:liml20}{eq:liml20} (5.4) lim
j→∞

∫
X

|vj |2hj ,ω ω
n = 0 .

Now take a Stein covering U = {Ui}i∈I of X. Represent vj by a Čech
cocycle

vj ∈ Čp(U , ωX ⊗ L ⊗ I(hj)) = Čp(U , ωX ⊗ L ⊗ I(φ)) .

The components of this cocycle satisfy∫
Ui0···ip

|vj,i0···ip |2hj ,ω ω
n ⩽ C

∫
X

|vj |2hj ,ω ω
n .

It follows from this inequality and (
eq:liml20eq:liml20
5.4) that

lim
j→∞

∫
Ui0···ip

|vj,i0···ip |2hj ,ω ω
n = 0 .

In particular,
lim
j→∞

∫
Ui0···ip

|vj,i0···ip |2H,ω ωn = 0 .

By Lemma 2.18 we conclude that the cohomology class of f is trivial. □

Proof of Lemma 5.2. Fix a smooth metric h0 on L. Let θ = c1(L, h0). Fix
a Kähler form ω on X. We identify h with φ ∈ PSH(X, θ). Let φj be a
quasi-equisingular approximation of φ as in Theorem 2.14. To be more
precise, we require the following properties:

(1) φj has analytic singularities.
(2) φj is decreasing in j and converges to φ everywhere.
(3) There is a sequence τj → 0 so that

θφj ⩾ −τjω .

(4) I((1 + 2/j)φj) = I(φ).
Take C1 > 0 so that θ ⩽ C1ω.

Step 1. Construction of the metric hj .
For each j, choose a log resolution πj : Xj → X of φj . Write

ddcπ∗
jφ

j = [Ej ] + fj ,



18 MINGCHEN XIA

where Ej is a nc Q-divisor on Xj and fj is smooth. Fix a smooth metric
hj on OXj (−Ej) so that π∗ω + δddchj is a Kähler form on Xj for all δ > 0
small enough. We write sj for the canonical section of O(Ej).

Take two sequences δj → 0, ϵj → 0 of positive numbers so that
(1) π∗ω + δjddchj is a Kähler form on Xj .
(2) (ϵj − τj)π∗ω + δjddchj is a Kähler form on Xj .
(3)

{eq:temp2}{eq:temp2} (5.5) 1
2ϵj − 3τj − 2C1

j
⩾ 0 .

We consider the following Monge–Ampère type equation on Xj with respect
to ψj :

{eq:MAXj}{eq:MAXj} (5.6)
(π∗θφj + ϵjπ

∗ω + δjddchj + ddcψj)n =Cjϵn−nd(L,h)
j (ω + δjddchj)n,

sup
z∈Xj

(π∗φj + ψj + δj log |sj |h−1
j

)(z) =0 .

Here C is a constant making the two sides having same masses. By Yau’s
theorem, this equation has a unique smooth solution ψj . We introduce
γj := π∗φj + ψj + δj log |sj |h−1

j
.

Observe that by definition of nd(L, h), Cj is bounded away from 0. We
get immediately from the definition that

π∗θφj + δjddchj + ddcψj ⩾ −ϵjπ∗ω .

By Lelong–Poincaré formula,

ddc log |sj |h−1
j

= [Ej ] + ddchj .

So

{eq:pistarthetalower}{eq:pistarthetalower} (5.7) π∗θ + ddcγj ⩾ −ϵjπ∗ω .

In particular, γj descends to a θ + ϵjω-psh function on X, which we still
denote by γj .

Now we can define

{eq:etajdef}{eq:etajdef} (5.8) ηj := (1 + 2j−1 − s)φj + sγj

for some small enough s > 0. The exact condition of s will be clear from the
next step. We will regard ηj as a metric on π∗

jL, namely, π∗
jh0 exp

(
−ηj

)
is a

metric on π∗
jL.

We can easily compute the curvature current of this metric:

π∗θηj =π∗θ + (1 + 2j−1 − s)π∗ddcφj + sddcγj

⩾(1 − s)π∗θφj + 2
j
π∗ddcφj − sϵjπ

∗ω

⩾
(
−sϵj − (1 + 2j−1)τj − 2C1j

−1
)
π∗ω

⩾
(
−ϵj − 3τj − 2C1j

−1
)
π∗ω

for some constant C > 0 independent of j. Here we used (
eq:pistarthetalowereq:pistarthetalower
5.7). It follows

that ηj descends to a quasi-psh function on X, still denoted by ηj . We then
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have
{eq:etajlower}{eq:etajlower} (5.9) θηj ⩾

(
−ϵj − 3τj − 2C1j

−1
)
ω .

We can also regard ηj as a metric hj on L, namely by considering
h0 exp

(
−ηj

)
.

Step 2. Verification of the properties.
(1) Fix s1 > 0 so that

{eq:s1strongop}{eq:s1strongop} (5.10) I(φ) = I((1 + s1)φ) .
We first observe that by Lemma 2.22, for any smooth (n, p)-form with value
in L on an open subset U of X, when s > 0 is small enough,∫

U
|f |2hj ,ωe−ηj ωn ⩽ C(∥f∥L∞,h0)

(∫
U

|f |2h0,ωe−(1+s1)φj
ωn
)1/(1+s1)

for all large j. Here C is independent of j. Using the fact φj ⩾ φ, we obtain
(
eq:locintfhjeq:locintfhj
5.1).

It is by now clear that I(φ) ⊆ I(ηj). By construction, ηj is more singular
than (1 + 2j−1)φj , so I(ηj) ⊆ I(φ). We complete the proof of the property
(1).

(2) (
eq:lambdaestieq:lambdaesti
5.2) follows from (

eq:etajlowereq:etajlower
5.9) and (

eq:temp2eq:temp2
5.5).

(3) Let λ̂ji := λji + 2ϵj . Observe that by (
eq:MAXjeq:MAXj
5.6),

n∏
i=1

λ̂ji ⩾ cϵ
n−nd(L,h)
j on X \ Zj ,

where c > 0 is a constant independent of j. Choose α ∈ (0, 1) so that
n− nd(L, h) < αp. Let Uj = {x ∈ X \ Zj : λ̂jp(x) < ϵαj }.

Observe that∫
X\Zj

n∑
i=1

(λ̂ji )ω
n =

∫
X\Zj

(Λωddchj)ωn+C =
∫
X\Zj

(ddchj , ω)ω ωn+C ⩽ C ,

where C > 0 is independent of j. It follows that∫
Uj

n∑
i=1

(λ̂ji )ω
n ⩽ C .

But on Uj ,
n∏

i=p+1
λ̂ji ⩾ c

ϵ
n−nd(L,h)
j

ϵαpj
.

Therefore,
n∑

i=p+1
λ̂ji ⩾ c

ϵn−nd(L,h)
j

ϵαpj

1/(n−p)

.

We find that ∫
Uj

ϵn−nd(L,h)
j

ϵαpj

1/(n−p)

ωn ⩽M

for a different M , still independent of j. As n− d < αp, we find that∫
Uj

ωn ⩽Mϵβj
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for some β > 0. We complete the proof of (3).
(4) This follows directly from our definition (

eq:etajdefeq:etajdef
5.8) and our normalization

of γj in (
eq:MAXjeq:MAXj
5.6) □

6. Kollár’s injectivity theorem

thm:Kolinj1 Theorem 6.1 ([
Mat16
Mat18a]). Let f : X → Y be a surjective proper Kähler

morphism from a complex manifold X of pure dimension n to a complex
analytic space Y . Let (L, h) be a Hermitian psef line bundle on X. Then for
any section s ∈ H0(X,Lm) (m ∈ Z⩾0) satisfying

(1) s is not identically 0 on each connected component of X.
(2) supK |s|hm < ∞ for each compact subset K ⊆ X.

Then the multiplication by s map induces an injection
{eq:Rqinj}{eq:Rqinj} (6.1) Rqf∗(ωX ⊗ L ⊗ I(h)) → Rqf∗(ωX ⊗ L ⊗ I(hm+1))

for all q ⩾ 0.

Observe that our problem is local on Y , so we may assume that Y is a
Stein space and a fortiori X is holomorphically convex. In this case, (

eq:Rqinjeq:Rqinj
6.1)

reduces to the map
{eq:Rqinj2}{eq:Rqinj2} (6.2) Hq(X,ωX ⊗ L ⊗ I(h)) → Hq(X,ωX ⊗ L ⊗ I(hm+1))

induced by tensoring with s. So Theorem 6.1 is equivalent to the following
theorem:

thm:Kolinj2 Theorem 6.2. Let X be a holomorphically convex Kähler manifold. Let
(L, h) be a Hermitian psef line bundle on X. Then for any section s ∈
H0(X,Lm) (m ∈ Z⩾0) satisfying

(1) s is not identically 0 on each connected component of X.
(2) supK |s|hm < ∞ for each compact subset K ⊆ X.

Then for all q ⩾ 0, the map (
eq:Rqinj2eq:Rqinj2
6.2) induced by multiplication by s is injective.

Let us observe that the above reduction procedure gives more: by consid-
ering a smaller relatively compact Stein space Y ′ in Y and replacing X by
f−1Y ′. We will repeatedly use this kind of simplifications in the following
proof.

Proof. We may assume that X ⋐ X̃, where X̃ satisfies the same conditions
as X̃. Similarly, we may assume that L, h, s are all defined on X̃ and the
assumptions in the theorem are met on X̃.

It follows that
sup
X

|s|hm < ∞ .

Fix a complete Kähler metric ω on X. Fix a smooth psh exhaustion function
Φ on X satisfying

sup
X

Φ < ∞ .

Let α be a cohomology class in the kernel of (
eq:Rqinj2eq:Rqinj2
6.2). We need to show that

α = 0.
Step 1. We construct suitable Kähler metrics in this step.
Take an equisingular approximation of h. The existence of such approxi-

mations is guaranteed by Theorem 2.13. More precisely, we take singular
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metrics hk (k ∈ Z) on L and a decreasing sequence of positive numbers ϵk
converging to 0 with the following properties:

(1) hk is smooth outside some nowhere dense closed analytic subset Zk
of X.

(2) h ⩾ hk′′ ⩾ hk′ for k′ < k′′.
(3) I(h) = I(hk).
(4) ddchk ⩾ −ϵkω.

Here we are using the tricks at the beginning the proof again to embed X
into a bigger space to achieve these properties.

We let Yk = X \ Zk.
Step 1.1 By Proposition 3.12, we can construct complete Kähler metrics

ωk on Yk satisfying
(1) ωk ⩾ ω on Yk.
(2) The local potentials of ωk on X (not on Yk) are locally bounded.

We will consider the following Kähler forms
(6.3) ωk,δ := ω + δωk

on Yk for all 0 < δ < δk,0, where δk,0 is a suitable positive real number such
that δk,0 ≪ ϵk. Then we have

(1) ωk,δ is a complete Kähler form on Yk.
(2) ωk,δ ⩾ ω on Yk.
(3) For any x ∈ X, there is an open neighbourhood U of x, bounded

functions Ψk,δ on U such that ddcΨk,δ = ωk,δ and limδ→0+ Ψk,δ exists
and is a local potential of ω.

We may assume that our psh exhaustion function Φ on X satisfies
(6.4) sup

X
|dΦ|ωk,δ

⩽ C

for some constant C independent of k and δ < δk,0.
In fact, we may assume that

sup
X

|dΦ|ω′ ⩽ C

for some Kähler form ω′ on X̃. As ω is complete on X, we may assume that
ω ⩾ ω′ up to a rescaling of ω′. Then as ωϵ,δ ⩾ ω ⩾ ω′, we have

sup
X

|dΦ|ωk,δ
⩽ sup

X
|dΦ|ω′ ⩽ C

by Lemma 3.8. In particular, the Bochner formula Proposition 2.15 applies
to ωk,δ on Yk.

Step 2. We represent α by suitable harmonic forms.
We first represent α by a closed (n, q) form u with locally L2-coefficients.
Step 2.1
Fix an increasing convex function χ : R → R such that

∥u∥h exp(−χ◦Φ),ω < ∞ .

We let
H := h exp(−χ ◦ Φ), Hk := hk exp(−χ ◦ Φ) .

Moreover, let ∥ • ∥k,δ := ∥ • ∥Hk,ωk,δ
. Then by Lemma 3.8,

{eq:uunifbdd}{eq:uunifbdd} (6.5) ∥u∥k,δ,Yk
⩽ ∥u∥H,ωk,δ

⩽ ∥u∥H,ω < ∞ .
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Step 2.2 Consider the space
Ln,q(2)(L)k,δ := Ln,q(2)(Yk, L)Hk,ωk,δ

.

Then we find that u ∈ Ln,q(2)(L)k,δ as a consequence of (
eq:uunifbddeq:uunifbdd
6.5). Also observe

that
Ln,q(2)(L)k,δ ⊇ Ln,q(2)(L)H,ωk,δ

⊇ Ln,q(2)(L)H,ω
and

Ln,q(2)(L)k,δ ⊇ Ln,q(2)(L)k,δ′ ⊇ Ln,q(2)(L)Hk,ω

for any 0 < δ′ < δ < δk,0. Here we omit the canonical embeddings.
Recall the general orthogonal decomposition

Ln,q(2)(L)k,δ = Im ∂̄ ⊕ Hn,q
k,δ (L) ⊕ Im ∂̄∗

k,δ ,

where
Hn,q
k,δ (L) =

{
v ∈ Ln,q(2)(L)k,δ : ∂̄v = ∂̄∗

k,δv = 0
}

and ∂̄∗
k,δ is the formal adjoint of ∂̄. As u lies in the kernel of ∂̄, its orthogonal

projection to Im ∂̄∗
k,δ vanishes (this follows from Corollary 3.6). So we find a

decomposition

(6.6) u = wk,δ + uk,δ for some wk,δ ∈ Im ∂̄ and uk,δ ∈ Hn,q
k,δ (L) .

Step 2.3
We claim that there exists a decreasing sequence δv > 0 converging to 0

and αk ∈ Ln,q(2)(L)Hk,ω with the following properties:
(1) For any k ⩾ 1, δ′ ∈ (0, δ0,k), as v → ∞, uk,δv converges to αk weakly

in Ln,q(2)(L)k,δ′ .
(2) For any k ⩾ 1, we have

{eq:longineq}{eq:longineq} (6.7) ∥αk∥Hk,ω ⩽ lim
δ′→0+

∥αk∥k,δ′ ⩽ lim
v→∞

∥uk,δv ∥k,δv ⩽ ∥u∥H,ω .

We first observe that for any k ⩾ 1, δ′ ∈ (0, δ0,k), any δ ∈ (0, δ′), we have
∥uk,δ∥k,δ′ ⩽ ∥uk,δ∥k,δ ⩽ ∥u∥k,δ ⩽ ∥u∥H,ω .

Therefore, there is a decreasing sequence δv,δ′ → 0 such that uk,δv,δ′ converges
weakly to some αkδ′ in Ln,q(2)(L)k,δ′ . We take Mk ∈ Z>0 large enough so that
M−1
k < δ0,k. By repeatedly choosing subsequence of δv,δ′ and using a simple

diagonal argument, we may guarantee that for δ′ = 1/M (M ∈ Z>0 large
enough), we have a decreasing sequence of positive numbers δv → 0 satisfying

uk,δv
v
⇀ αkδ′

in Ln,q(2)(L)k,δ′ . Observe that αkδ′ is independent of δ′ as Ln,q(2)(L)k,δ′ →
Ln,q(2)(L)k,δ′′ is bounded when δ′ < δ′′. We will write αk for this common
value. Then

uk,δv
v
⇀ αk

in Ln,q(2)(L)k,δ′ . Part (1) of the claim follows.
As for the estimate, for any k ⩾ 1, δ′ = 1/M ∈ (0, δ0,k) for some integer

M ,
∥αk∥k,δ′ ⩽ lim

v→∞
∥uk,δv ∥k,δ′ ⩽ lim

v→∞
∥uk,δv ∥k,δv ⩽ ∥u∥H,ω .
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By Fatou’s lemma,

∥αk∥2
Hk,ω

= 1
n!

∫
Yk

|αk|2Hk,ω
ωn ⩽ lim

M→∞

1
n!

∫
Yk

|αk|2Hk,ωk,1/M
ωnk,1/M = lim

M→∞
∥αk∥2

k,1/M .

This proves (
eq:longineqeq:longineq
6.7) when δ′ in the second term has the form 1/M . But the

general case follows as ∥αk∥k,δ′ is decreasing in δ′.
Step 2.4. Fix k0 > 0, for sufficiently large k, we have

∥αk∥Hk0 ,ω
⩽ ∥αk∥Hk,ω ⩽ ∥u∥H,ω .

There is therefore a sequence kv → ∞ such that αkv converges weakly to
some a ∈ Ln,q(2)(L)Hk0 ,ω

.
Assume that a = 0, then we claim that α = 0.
Note that this is just a slightly more complicated version of Lemma 2.18.
To prove the claim, take δ′ > 0 of the form 1/M with M being a sufficiently

large integer, consider the de Rham to Čech isomorphism

ker ∂̄/ Im ∂̄ of Ln,q2,loc(L)k,δ′ → Ȟq(X,ωX⊗L⊗I(hk)) = Ȟq(X,ωX⊗L⊗I(h))

constructed in Theorem 2.19. By Corollary 2.20, Im ∂̄ is closed in Ln,q2,loc(L)k,δ′ .
Now for δ ∈ (0, δ′), we have

u−uk,δ ∈ Im ∂̄ in Ln,q2 (L)k,δ ⊆ Im ∂̄ in Ln,q2 (L)k,δ′ ⊆ Im ∂̄ in Ln,q2,loc(L)k,δ′ = Im ∂̄ in Ln,q2,loc(L)k,δ′

Take limit in δ along δv, we find

u− αk ∈ Im ∂̄ in Ln,q2 (L)k,δ′ ⊆ Im ∂̄ in Ln,q2,loc(L)k,δ′ = Im ∂̄ in Ln,q2,loc(L)k,δ′ .

Write q1 : ker ∂̄ in Ln,q(2)(L)k,δ′ → ker ∂̄/ Im ∂̄ in Ln,q(2)(L)k,δ′ . Then q1(u −
αk) = 0.

We will need the following basic fact: each element U of ker ∂̄ in
Ln,q(2)(L)Hk,ω admits a canonical extension to an element of ker ∂̄ in Ln,q(2)(L)Hk0 ,ω

.
See [

Dem82
Dem82, Lemme 6.9]. On the other hand, by Proposition 2.21,

q2 : ker ∂̄ in Ln,q(2)(L)Hk0 ,ω
→ ker ∂̄/ Im ∂̄ in Ln,q(2),loc(L)Hk0 ,ω

is compact. In
particular,

lim
v→∞

q2(u− αkv ) = q2(u− a) = q2(u) .

Under the canonical identifications

ker ∂̄/ Im ∂̄ in Ln,q(2),loc(L)k,δ′ = Ȟq(X,ωX⊗L⊗I(h)) = ker ∂̄/ Im ∂̄ in Ln,q(2),loc(L)Hk0 ,ω
,

we have q1(u− αk) corresponds to q2(u− αk). It follows that q2(u) = 0. In
other words, u ∈ Im ∂̄ in Ln,q(2)(L)Hk0 ,ω

. Using the canonical identifications

ker ∂̄/ Im ∂̄ in Ln,q(2),loc(L)Hk0 ,ω
= Ȟq(X,ωX⊗L⊗I(h)) = ker ∂̄/ Im ∂̄ in Ln,q(2),loc(L)Hk0 ,ω

and the fact that u ∈ ker ∂̄ in Ln,q(2)(L)H,ω, we find that u ∈ Im ∂̄ in
Ln,q(2),loc(L)Hk0 ,ω

. The claim is then proved.
Therefore, it remains to show that a = 0.
Step 3. We make a further reduction in this step.
Fix k0 > 0. Define Y j

k0
:= {y ∈ Yk0 : |s|hm

k0
(y) > 1/j}. Write Xc for the

set {Φ < c}. Observe that Y j
k0

is an open subset of Yk0 .
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We will show that if

{eq:doubleliminf}{eq:doubleliminf} (6.8) lim
k→∞

lim
δ→0+

∥suk,δ∥k,δ,Xc = 0

for all c < supX Φ, then a = 0 hence completing the proof.
Recall that αkv converges weakly to a in Ln,q(2)(L)Hk0 ,ω

, therefore, αkv |
Xc∩Y j

k0

converges weakly to a|
Xc∩Y j

k0
in Ln,q(2)(Xc ∩ Y j

k0
, L)Hk0 ,ω

. It follows that

∥a∥
Hk0 ,ω,Xc∩Y j

k0
⩽ lim

v→∞
∥αkv ∥

Hk0 ,ω,Xc∩Y j
k0

⩽ lim
v→∞

∥αkv ∥
Hk,ω,Xc∩Y j

k0
.

Similarly,

∥αk∥
k,δ′,Xc∩Y j

k0
⩽ lim

v→∞
∥uk,δv ∥

k,δ′,Xc∩Y j
k0

⩽ lim
v→∞

∥uk,δv ∥
k,δv ,Xc∩Y j

k0
.

By Fatou’s lemma,

∥αk∥
Hk,ω,Xc∩Y j

k0
⩽ lim

δ′→0+
∥αk∥

k,δ′,Xc∩Y j
k0

⩽ lim
v→∞

∥uk,δv ∥
k,δv ,Xc∩Y j

k0
.

Putting these estimates together, we find

∥a∥
Hk0 ,ω,Xc∩Y j

k0
⩽ lim

v′→∞
lim
v→∞

∥ukv ,δv ∥
k,δv ,Xc∩Y j

k0
.

On the other hand, 1/j < |s|hm
k0

⩽ |s|hm
k

on Y j
k0

, so

∥ukv ,δv ∥
k,δv ,Xc∩Y j

k0
⩽ j∥sukv ,δv ∥

k,δv ,Xc∩Y j
k0

⩽ j∥sukv ,δv ∥k,δv ,Xc ,

We therefore conclude that u = 0 on Xc ∩ Y j
k0

. As c, j are arbitrary, we
conclude that a = 0.

Now it remains to establish (
eq:doubleliminfeq:doubleliminf
6.8).

Step 4. Next we carry out and ∂̄-estimate.
We will prove the following claim: there is a solution to the ∂̄-equation

∂̄wk,v = u− uk,δv

with uniformly bounded local L2-norm:

(6.9) lim
v→∞

∥wk,v∥k,δv ,Xc ⩽ Cc

for any c < supX Φ, where Cc is independent to k.
We omit the complicated proof and just refer to [

Mat16
Mat18a, Proposition 3.9].

We will need the following consequence: for any c < supX Φ, there is
Vk,v ∈ Ln,q−1

(2) (Lm+1)k,δv such that

(1) ∂̄Vk,v = suk,δv .
(2) limv→∞ ∥Vk,v∥k,δv ,Xc < Cc, where Cc is independent to k.

Recall that we have assumed that sα is exact, so there exists w with ∂̄w = su
and ∥w∥Hhm,ω,Xc < ∞. It suffices to take Vk,v = w − swk,v.

Step 5. We will establish (
eq:doubleliminfeq:doubleliminf
6.8). Fix c < c′ < supX Φ so that dΦ does not

vanish on ∂Xc′ . Such c′ exists by Sard’s theorem. We consider Vk,v as in
Step 4, with c′ in place of c. We take regularizations of Vk,v, say Vk,v,j so
that as j → ∞, Vk,v,j → Vk,v and ∂̄Vk,v,j → ∂̄Vk,v, both in Ln,•(2) (Lm+1)k,δv ,
as follows from Lemma 3.5.
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For a generic d′ > d, we have
{eq:limlimsplittwo}{eq:limlimsplittwo} (6.10)

lim
k→∞

lim
δ→0+

∥suk,δ∥k,δ,Xc

⩽ lim
k→∞

lim
δ→0+

∥suk,δ∥k,δ,Xd

= lim
k→∞

lim
v→∞

lim
j→∞

<suk,δ, ∂̄Vk,v,j>k,δ,Xd

= lim
k→∞

lim
v→∞

(
lim
j→∞

<∂̄∗
k,δvsuk,δv , Vk,v,j>k,δv ,Xd

+ lim
j→∞

<(∂̄Φ)∗suk,δv , Vk,v,j>k,δv ,∂Xd

)
.

Here we applied the general Stokes’ formula Proposition 3.10.
Next we will show that both terms vanish.
Step 5.1 Define

gk,δ := 2π<ddcHk ∧ Λk,δuk,δ, uk,δ>k,δ .

We claim that

{eq:glowerbound}{eq:glowerbound} (6.11) gk,δ ⩾ −2πq
k

|uk,δ|2k,δ .

In fact, for any x ∈ X, we can pick up a local coordinates in a neighbourhood
of x, say z1, . . . , zn so that

2πddcHk = i
2

n∑
i=1

λidzi ∧ dz̄i

and

ωk,δ = i
2

n∑
i=1

dzi ∧ dz̄i .

Here λ1 ⩽ λ2 ⩽ · · · ⩽ λn are the eigenvalues of 2πddcHk with respect to
ωk,δ. Locally write

uk,δ =
∑

|γ|=q
uγk,δdz1 ∧ · · · ∧ dzn ∧ dz̄γ .

Then
gk,δ =

∑
|γ|=q

(
∑
j∈γ

λj)|uγk,δ|
2
Hk
.

On the other hand,

ddcHk = ddchk + ddcχ ◦ Φ ⩾ −1
k
ω ⩾ −1

k
ωk,δ .

So λ1 ⩾ −2π
k and (

eq:glowerboundeq:glowerbound
6.11) follows.

As a consequence of (
eq:glowerboundeq:glowerbound
6.11),

0 ⩾
1
n!

∫
{y∈Yk:gk,δ(y)⩽0}

gk,δ ω
n
k,δ ⩾ −2πq

n!k

∫
{y∈Yk:gk,δ(y)⩽0}

|uk,δ|2k,δ ωnk,δ

⩾ −2πq
k

∥uk,δ∥2
k,δ ⩾ −2πq

k
∥u∥2

H,ω .

{eq:glowerbound2}{eq:glowerbound2} (6.12)

Step 5.2 We prove the following preliminary result:

{eq:Dpstarkdeltato0}{eq:Dpstarkdeltato0} (6.13) lim
k→∞

lim
δ→0+

∥D′∗
k,δuk,δ∥k,δ = 0 .
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Moreover,

{eq:Dpstarkdeltato02}{eq:Dpstarkdeltato02} (6.14) lim
k→∞

lim
δ→0+

∥D′∗
k,δsuk,δ∥k,δ = 0

and

{eq:Dpstarkdeltato03}{eq:Dpstarkdeltato03} (6.15) lim
k→∞

lim
δ→0+

∥∂̄∗
k,δuk,δ∥k,δ = 0 .

By Bochner’s formula (
eq:Bochuntweq:Bochuntw
2.3) applied to uk,δ, we have

0 = ∥D′∗
k,δuk,δ∥2

k,δ + 1
n!

∫
Yk

gk,δ ω
n
k,δ .

So

∥D′∗
k,δuk,δ∥2

k,δ+
1
n!

∫
{y∈Yk:gk,δ(y)⩾0}

gk,δ ω
n
k,δ = − 1

n!

∫
{y∈Yk:gk,δ(y)⩽0}

gk,δ ω
n
k,δ ⩽

2πq
k

∥u∥2
H,ω .

Therefore, (
eq:Dpstarkdeltato0eq:Dpstarkdeltato0
6.13) follows.

We obtain moreover that

lim
k→∞

lim
δ→0+

∫
{y∈Yk:gk,δ(y)⩾0}

gk,δ ω
n
k,δ = 0 .

Next, we apply Bochner formula (
eq:Bochuntweq:Bochuntw
2.3) to suk,δ to obtain

∥∂̄∗
k,δsuk,δ∥2

k,δ = ∥D′∗
k,δsuk,δ∥2

k,δ + 1
n!

∫
Yk

|s|2hm
k
gk,δ ω

n
k,δ .

Observe that∫
Yk

|s|2hm
k
gk,δ ω

n
k,δ ⩽

∫
{y∈Yk:gk,δ⩾0}

|s|2hm
k
gk,δ ω

n
k,δ ⩽ sup

X
|s|2hm

∫
{y∈Yk:gk,δ⩾0}

gk,δ ω
n
k,δ .

On the other hand,

∥D′∗
k,δsuk,δ∥k,δ = ∥sD′∗

k,δuk,δ∥k,δ ⩽ sup
X

|s|hm∥D′∗
k,δuk,δ∥k,δ .

From these estimates (
eq:Dpstarkdeltato02eq:Dpstarkdeltato02
6.14) and (

eq:Dpstarkdeltato02eq:Dpstarkdeltato02
6.14) follow.

As a consequence, we have

{eq:Dpstarkdeltato04}{eq:Dpstarkdeltato04} (6.16) lim
k→∞

lim
δ→0+

lim
j→∞

<∂̄∗
k,δsuk,δ, Vk,δ,j>k,δ,Xd

= 0 .

Recall that d ∈ (c′, supX Φ) is a general element.
By Cauchy–Schwarz inequality, it suffices to estimate two norms. From

the construction of vk,δ, we know that

lim
k→∞

lim
δ→0+

lim
j→∞

∥Vk,δ,j∥k,δ,Xd
< ∞ .

On the other hand,

lim
k→∞

lim
δ→0+

∥∂̄∗
k,δsuk,δ∥k,δ,Xd

= 0

by (
eq:Dpstarkdeltato02eq:Dpstarkdeltato02
6.14). So (

eq:Dpstarkdeltato04eq:Dpstarkdeltato04
6.16) follows. We have completed the estimate of the first

term in (
eq:limlimsplittwoeq:limlimsplittwo
6.10).

Step 5.3 We estimate the second term in (
eq:limlimsplittwoeq:limlimsplittwo
6.10). Namely

lim
k→∞

lim
v→∞

lim
j→∞

<(∂̄Φ)∗suk,δv , Vk,v,j>k,δv ,∂Xd
.
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Applying Cauchy–Schwarz inequality, we find that it suffices to prove the
following two statements:

{eq:split1}{eq:split1} (6.17) lim
k→∞

lim
v→∞

lim
j→∞

∥Vk,v,j∥k,δv ,∂Xd
< ∞

and
{eq:split2}{eq:split2} (6.18) lim

k→∞
lim
v→∞

∥(∂̄Φ)∗suk,δv ∥k,δv ,∂Xd
= 0 .

Recall that we use the measure dS := ∗dΦ/|dΦ|ωk,δv on the boundary ∂Xd,
so that ωnk,δv/n! = dΦ ∧ dS.

We first prove (
eq:split1eq:split1
6.17). By Fubini’s theorem,∫ c′+a

c′−a

∫
∂Xd

(Vk,v,j , Vk,v,j)k,δv ,∂Xd
dΦ dd = 1

n!

∫
{c′−a<Φ<c′+a}

|Vk,v,j |k,δv ωnk,δv

By Fatou’s lemma, we have∫ c′+a

c′−a

∫
∂Xd

lim
k→∞

lim
v→∞

lim
j→∞

(Vk,v,j , Vk,v,j)k,δv ,∂Xd
dΦ dd ⩽ lim

k→∞
lim
v→∞

∥vk,δv ∥2
k,δ,Xc′+a

.

The right-hand side is finite by assumption and hence for a general d, the
integrand is also finite. This proves (

eq:split1eq:split1
6.17).

It remains to prove (
eq:split2eq:split2
6.18). As (∂̄Φ)∗suk,δv = s(∂̄Φ)∗uk,δv , it suffices to

prove
{eq:split3}{eq:split3} (6.19) lim

k→∞
lim
v→∞

∥(∂̄Φ)∗uk,δv ∥k,δv ,∂Xd
= 0 .

Applying Stokes formula Proposition 3.9, we have
<∂̄((∂̄Φ)∗uk,δ), uk,δ>k,δ,Xd

= <(∂̄Φ)∗uk,δ, ∂̄
∗
k,δuk,δ>k,δ,Xd

+<(∂̄Φ)∗uk,δ, (∂̄Φ)∗uk,δ>k,δ,∂Xd

= <(∂̄Φ)∗uk,δ, (∂̄Φ)∗uk,δ>k,δ,∂Xd
.

So we are reduced to prove
{eq:split4}{eq:split4} (6.20) lim

k→∞
lim
v→∞

<∂̄((∂̄Φ)∗uk,δv ), uk,δv>k,δ,Xd
= 0 .

We observe that
∂̄uk,δ = 0, ∂Φ ∧ uk,δ = 0, ddcΦ ∧ uk,δ = 0 .

It follows from the twisted Kähler identity Lemma 3.7 that
<∂̄((∂̄Φ)∗uk,δ), uk,δ>k,δ,Xd

= −<∂Φ∧D′∗
k,δuk,δ, uk,δ>k,δ,Xd

+2π<ddcΦ∧Λk,δuk,δ, uk,δ>k,δ,Xd
.

By (
eq:Dpstarkdeltato02eq:Dpstarkdeltato02
6.14) and Cauchy–Schwarz inequality, the first term tends to 0 if δ → 0

along δv.
So it remains to establish

{eq:split5}{eq:split5} (6.21) lim
k→∞

lim
v→∞

<ddcΦ ∧ Λk,δuk,δ, uk,δ>k,δ,Xd
= 0 .

Here we need the twisted version of Bochner’s formula Proposition 2.15:
∥√

η(∂̄Φ)uk,δ∥2
k,δ = ∥√

η(D′∗
k,δ−(∂̄Φ)∗)uk,δ∥2

k,δ+2π<η(ddcHk+ddcΦ)Λk,δuk,δ, uk,δ>k,δ,Xd
.

Using (
eq:glowerboundeq:glowerbound
6.11), we find

{eq:etapartPhi}{eq:etapartPhi} (6.22)
∥√

η(∂̄Φ)uk,δ∥2
k,δ ⩾ ∥√

η(D′∗
k,δ−(∂̄Φ)∗)uk,δ∥2

k,δ−k−1C∥uk,δ∥2
k,δ+2π<ηddcΦ∧Λk,δuk,δ, uk,δ>k,δ,Xd

,
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By Cauchy–Schwarz inequality,
∥√

η(D′∗
k,δ−(∂̄Φ)∗)uk,δ∥2

k,δ ⩾ −2∥√
ηD′∗

k,δuk,δ∥k,δ∥
√
η(∂Φ)∗uk,δ∥k,δ+∥√

η(∂Φ)∗uk,δ∥2
k,δ ,

where C > 0 is independent of k and δ. From the twisted Kähler identity,
we have

∥√
η(∂Φ)∗uk,δ∥2

k,δ ⩾ ∥√
η(∂̄Φ)uk,δ∥2

k,δ .

Therefore,
∥√

η(D′∗
k,δ−(∂̄Φ)∗)uk,δ∥2

k,δ ⩾ −2∥√
ηD′∗

k,δuk,δ∥k,δ∥
√
η(∂Φ)∗uk,δ∥k,δ+∥√

η(∂̄Φ)uk,δ∥2
k,δ .

Substituting back to (
eq:etapartPhieq:etapartPhi
6.22), we find

2∥√
ηD′∗

k,δuk,δ∥k,δ∥
√
η(∂Φ)∗uk,δ∥k,δ+k−1C∥u∥2

H,ω ⩾ 2π<ηddcΦ∧Λk,δuk,δ, uk,δ>k,δ,Xd
.

The term ∥√
ηD′∗

k,δuk,δ∥k,δ converges to 0 by (
eq:Dpstarkdeltato0eq:Dpstarkdeltato0
6.13) and the term ∥√

η(∂Φ)∗uk,δ∥k,δ
is bounded from above by the elementary estimate |(∂Φ)∗uk,δ|k,δ ⩽
C|∂Φ|k,δ|uk,δ|k,δ, which is uniformly bounded. On the other hand, by
[
Dem12
Dem12, Discussion after (4.8)], we have (ddcΦ ∧ Λk,δuk,δ, uk,δ)k,δ ⩾ 0.

Together with the fact that η is bounded away from 0 on Xd, we conclude
(
eq:split5eq:split5
6.21). □

As a consequence, we have the torsion-free theorem.

cor:torsionfree Corollary 6.3. Let f : X → Y be a surjective proper Kähler morphism from
a complex manifold X of pure dimension n to a complex analytic space Y .
Let (L, h) be a Hermitian psef line bundle on X. Then for any q ⩾ 0, the
sheaf Rqf∗(ωX ⊗ L ⊗ I(h)) is torsion-free.

Proof. It suffices to apply the m = 0 case of Theorem 6.1 to holomorphic
functions on X of the form f∗g, where g is a holomorphic function on an
open subset V of Y , not identically 0 on each connected component of V . □

Corollary 6.4. Let f : X → Y be a surjective proper Kähler morphism from
a complex manifold X of pure dimension n to a complex analytic space Y .
Let (L, h) be a Hermitian psef line bundle on X. Assume that a general fiber
of f has dimension at most N . Then

Rqf∗(ωX ⊗ L ⊗ I(h)) = 0, q > N .

Proof. By Corollary 2.3, Rqf∗(ωX ⊗ L ⊗ I(h)) = 0 is supported on a non-
where dense proper closed analytic subspace of Y . This contradicts the fact
that this sheaf is torsion-free Corollary 6.3. □

7. Positivity of direct images

thm:posdirima Theorem 7.1 ([
HPS18
HPS18]). Let f : X → Y be a proper surjective Kähler mor-

phism from between complex manifolds X and Y . Let (L, h) be a Hermitian
pseudo-effective line bundle on X. Then there is a canonical Griffiths positive
metric on the torsion-free sheaf f∗(ωX/Y ⊗ L ⊗ I(h)).

Observe that f∗(ωX/Y ⊗L⊗I(h)) is always torsion-free as the push-forward
of a torsion-free sheaf. We will call the metric constructed in this theorem
the Hodge metric.

The general idea is to construct the metric on a Zariski open subset of Y ,
prove the positivity there and extend. Conditions guaranteeing the existence
of extensions of psh metrics on line bundles is well-known, see [

GR56
GR56]. The
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case of Griffiths positive metrics on vector bundles follows from the bijective
correspondence between Griffiths positive metrics and Finsler metrics. The
case of torsion-free sheaves follows trivially from the case of vector bundles.

Proof. By considering each connected component of Y separately, we may
assume that Y is a connected manifold of dimension m. We can then assume
that X is connected and of dimension n. Write

F := f∗(ωX/Y ⊗ L ⊗ I(h)) .

For any y ∈ Y , we write Xy for the fiber of f over y. Similarly, we write
Ly = L|Xy , Ly = L|Xy and hy = h|Ly .

Step 1. We construct the metric H on F outside a proper closed analytic
subset Z ⊆ Y .

Choose a proper closed analytic subset Z ⊆ Y such that
(1) f is smooth outside Z. This is possible by Theorem 2.4.
(2) Both F and f∗(ωX/Y ⊗ L)/F are locally free on Y \ Z. Here we use

the properness of f .
(3) ωX/Y ⊗ L has the base change property with respect to f on Y \ Z.

Here we use Corollary 2.3.
Let F be the vector bundle on Y \ Z so that OY \Z(F ) = F|Y \Z . Then we
find

{eq:Eysubh0}{eq:Eysubh0} (7.1) Ey ⊆ H0(Xy, ωXy ⊗ Ly) .

By the Ohsawa–Takegoshi extension theorem,

H0(Xy, ωXy ⊗ Ly ⊗ I(hy)) ⊆ Ey .

Next we define a singular Hermitian inner product Hy on Ey for y ∈ Y \ Z:
given α ∈ Ey, we can regard α as an element in H0(Xy, ωXy ⊗ Ly) by (

eq:Eysubh0eq:Eysubh0
7.1).

We then define
|α|2Hy

:=
∫
Xy

|α ∧ ᾱ|2hy
∈ [0,∞] .

We observe that {α ∈ Ey : |α|Hy = 0} = 0, so H∨
y is everywhere finite.

Step 2. We want to prove that H is Griffiths positive.
Take an open set U ⊆ Y and a section g ∈ H0(U,F∨). We want to show

that
ψ := log |g|H∨ : U \ Z → [−∞,∞)

is psh and has a psh extension to U . This amounts to three different claims,
as proved in each of the following substeps.

Step 2.1. We prove that ψ is locally bounded from above near Z.
Choose open sets V1 ⋐ V2 ⋐ U so that for any x ∈ V1, there is an

embedding ι : Bm ↪→ V2 with ι(0) = x.
Fix y ∈ V1 \Z, we want to find an upper bound of ψ(y). Of course, we may

assume that ψ(y) > −∞. Choose α ∈ Ey with |α|Hy = 1 and |g|H∨
y

= |g(α)|.
So that

ψ(y) = log |g(α)| .
Choose an embedding ι : Bm → V2 with ι(0) = y. We will omit ι from our
notations and regard Bm as an open subset of V2. By the Ohsawa–Takegoshi
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extension theorem Theorem 4.1, we can find s ∈ H0(Bm,F) with s(0) = α
and ∫

Bm\Z
|s|2H dµ ⩽ µ(Bm) ,

where dµ is the Lebesgue measure on Bm. It follows that g(s) on Bm is
bounded from above by a constant depending only on C0.

Step 2.2 We show that ψ is usc on Y \ Z. This problem is local, so we
may assume that Y = Bm and Z = ∅. We show that ψ is usc at y = 0:

lim
k→∞

ψ(yk) ⩽ ψ(0)

for any sequence yk → 0 in Bm. We may assume that ψ(yk) ̸= −∞ for all k
and the limsup is an actual limit. Take αk ∈ Eyk

such that ψ(yk) = log |g(αk)|
and |αk|Hyk

= 1. Extend αk to a holomorphic section sk ∈ H0(Bm,F) so that∫
Bm |sk ∧ s̄k|H dµ ⩽ µ(Bm) by the Ohsawa–Takegoshi theorem Theorem 4.1.

By compactness, there is sequence ki → ∞ such that ski
converges to some s

with respect to the compact-open topology. It follows that g(ski
) converges

to g(s) with respect to the compact-open topology. By definition of the
dual metric, ψ ⩾ log |g(s)| − log |s|H , so what we need to show is that
|s(0)|H0 ⩽ 1. As f : X → Bm is smooth, by Ehresmann’s fibration theorem,
X is diffeomorphic to X0 ⊗Bm. Choose a Kähler metric ω0 on X0, then we
can find a lsc and locally integrable function F : X0 ×Bm → [0,∞] such that

(7.2) |sk ∧ s̄k ∧ dt1 ∧ · · · ∧ dtm|2h = Fk
ωm−n

0
(m− n)! .

In particular,

|sk|2Hyk
=
∫
X0
Fk(•, y) ωm−n

0
(m− n)! .

Similarly define F : X0 × Bm → [0,∞] using s instead of sk. As the local
weights of h is usc and sk converges to s uniformly on compact sets, we have

F (•, 0) ⩽ lim
i→∞

Fki
(•, yki

) .

The desired inequality then follows from Fatou’s lemma.
Step 2.3. We show that ψ is plurisubharmonic on Y \ Z. By Fornaess–

Narasimhan theorem, we may assume replace Y by a disk ∆ and assume
that Z = ∅.

We will verify the mean-value inequality:

(7.3) ψ(0) ⩽ 1
π

∫
∆
γψ dµ .

Of course, we may assume that ψ(0) is not −∞. Choose α ∈ E0 with
|α|H0 = 1 and ψ(0) = log |g(α)|. By the Ohsawa–Takegoshi extension
theorem Theorem 4.1, we may extend α to a holomorphic section s ∈
H0(∆, E) such that s(0) = α and∫

∆
|s|2H dµ ⩽ π .

By definition of the dual metric,

ψ ⩾ log |g(s)| − log |s|H
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for any holomorphic function g on ∆ with g(0) = g(α). It follows that
(7.4)
2
π

∫
∆
ψ dµ ⩾

1
π

∫
∆

log |g(s)|2 dµ− 1
π

∫
∆

log |s|2H dµ ⩾ 2ψ(0)−log
( 1
π

∫
∆

|s|2H dµ
)
⩾ 2ψ(0) .

This proves the desired result. □

As an immediate consequence of our construction, we have the following
explicit description of the Hodge metric.

cor:posdirima Corollary 7.2. Under the assumptions of Theorem 7.1, there is a nowhere
dense closed analytic subset Z ⊆ Y such that the following are satisfied

(1) f is smooth outside Z.
(2) f∗(ωX/Y ⊗ L ⊗ I(h)) is locally free on Y \ Z. We write F for the

vector bundle on Y \ Z associated with this sheaf.
(3) For any y ∈ Y \ Z, any α ∈ Fy, we have

(7.5) |α|2Hy
=
∫
Xy

|α ∧ ᾱ|h ,

where we identify α with an element in H0(Xy, ωXy ⊗ Ly).
(4)

H0(Xy, ωXy ⊗ Ly ⊗ I(hy)) ⊆ Fy ⊆ H0(Xy, ωXy ⊗ Ly) .

8. Bertini type theorems

thm:aBt Theorem 8.1 ([
XiaBer
Xia21]). Let f : X → Y be a projective surjective morphism

between complex manifolds X and Y . Let (L, h) be a Hermitian psef line
bundle on X. Then for quasi-every y ∈ Y , the fiber Xy is smooth and

{eq:Ikhy}{eq:Ikhy} (8.1) I(khy) = I(kh)|Xy

for all real k > 0.

rmk:aBt Remark 8.2. Due to the lack of Chow’s lemma in the complex analytic setting
(which fails unless the proper morphism is bimeromorphic), it is not clear if
Theorem 8.1 holds for a proper morphism f .

On the other hand, for a general proper surjective morphism f : X → Y
from a complex manifold X to a complex analytic space Y , it is obvious that
(
eq:Ikhyeq:Ikhy
8.1) holds almost everywhere. Here properness guarantees that outside a

null subset of Y , the fibers of f are smooth.

Proof. We take Z ⊆ Y as in Corollary 7.2. We use the notation F as in
Corollary 7.2. For any y ∈ Y \ Z, we have

{eq:Ilonginclu}{eq:Ilonginclu} (8.2) H0(Xy, ωXy ⊗ Ly ⊗ I(hy)) ⊆ Fy ⊆ H0(Xy, ωXy ⊗ Ly) .

Observe that an element α ∈ Fy lies in H0(Xy, ωXy ⊗ Ly ⊗ I(hy)) if and
only if ∥α∥Hy < ∞. It follows that if the first inclusion of (

eq:Ilonginclueq:Ilonginclu
8.2) is strict,

then Hy is singular and a fortiori detH is singular at y. But we already
know that the Hodge metric H is Griffiths positive Theorem 7.1, so detH is
positively curved. It follows that the first inclusion in (

eq:Ilonginclueq:Ilonginclu
8.2) is an equality

almost everywhere. On the other hand, by Corollary 2.3, outside a nowhere



32 MINGCHEN XIA

dense closed analytic subset of Y \ Z, Fy = H0(Xy, ωXy ⊗ Ly ⊗ I(h)|Xy ). It
follows that

H0(Xy, ωXy ⊗ Ly ⊗ I(h)|Xy ) = H0(Xy, ωXy ⊗ Ly ⊗ I(h|Xy ))
for every y ∈ Y \ Σ(L, h, f), where Σ(L, h, f) is a pluripolar subset of Y .

Now we need to use the projectivity of f (instead of proper Kähler) for
the first time. As our problem is local in Y , we may assume that Y is Stein.
Take an f -ample line bundle S on X with associated invertible sheaf S. Take
a smooth positively curved metric hS on S.

Assume that the cokernel J of the inclusion I(h|Xy ) → I(h)|Xy is non-zero
for some y ∈ Y \

⋃
C∈Z⩾0

Σ(L⊗ SC , h⊗ hCS , f). Then there is a large integer
C such that

H0(Xy, ωXy ⊗ Ly ⊗ S⊗C
y ⊗ J ) ̸= 0

and
H1(Xy, ωXy ⊗ Ly ⊗ S⊗C

y ⊗ I(h|Xy )) = 0 .
It then follows from the exact sequence
0 → H0(Xy, ωXy ⊗ Ly ⊗ S⊗C

y ⊗ I(h|Xy )) → H0(Xy, ωXy ⊗ Ly ⊗ S⊗C
y ⊗ I(h)|Xy )

→ H0(Xy, ωXy ⊗ Ly ⊗ S⊗C
y ⊗ ⊗J ) → 0

that
H0(Xy, ωXy ⊗ Ly ⊗ S⊗C

y ⊗ I(h|Xy )) ̸= H0(Xy, ωXy ⊗ Ly ⊗ S⊗C
y ⊗ I(h)|Xy ) ,

which contradicts our choice of y. It follows that I(h)|Xy = I(h|Xy ) outside
the pluripolar set

⋃
C∈Z⩾0

Σ(L⊗ SC , h⊗ hCS , f).
Next we prove (

eq:Ikhyeq:Ikhy
8.1), by strong openness theorem, we only need to consider

countably many k ∈ Q>0. As countable unions of pluripolar sets are still
pluripolar, it suffices to prove (

eq:Ikhyeq:Ikhy
8.1) for a single k ∈ Q>0. It suffices to regard

khy as a positively curved metric on L⊗ SC for a large enough C and apply
what we have proved. □

cor:ndgencons Corollary 8.3 ([
Mat18
Mat18b]). Let f : X → Y be a proper Kähler morphism

from a connected complex manifold X to a connected complex analytic space
Y . Let (L, h) be a Hermitian psef line bundle on X. Then for almost all
y ∈ Y , Xy is smooth and nd(Ly, hy) is independent of the choice of y.

If moreover f is projective and Y is smooth, then for quasi-every y ∈ Y ,
Xy is smooth and nd(Ly, hy) is independent of the choice of y.

Proof. The problem is local on Y , so we may assume that Y is Stein. In fact,
by further localization, we may assume that Y ⋐ Y ′ for some Y ′ and X ′

satisfying the same assumptions. In particular, we may assume that there is
a quasi-equisingular approximation hi of h on X. Fix a Kähler form ω on
X. Up to removing a nowhere dense closed analytic subset from Y , we may
assume that f is smooth of pure relative dimension r.

We only prove the latter statement, as the first is similar using Remark 8.2
instead of Theorem 8.1.

By Theorem 8.1, hi restricts to a quasi-equisingular approximation of
hy for quasi-every y. Take a log resolution πi : Xi → X of hi and write
ddcπ∗

i h
i = [Ei] + αi, where αi is smooth and Ei is a nc divisor on Xi. Up to

removing a nowhere dense closed analytic subset from Y , we may assume
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that the restriction of πi to all fibers Xy are still log resolutions of hi|Xy and
π−1
i (Xy) is not contained in Ei. Observe that∫

Xy

(
ddchi|Xy

)a
ac

∧ ω|r−aXy
=
∫
π−1

i (Xy)
(P ai ∧ f∗

i ω
r−a)π−1

i (Xy) .

The right-hand side, as a closed fiber integration, is constant outside a
nowhere dense closed analytic subset. It follows that the left-hand side is also
constant outside a nowhere dense closed analytic subset. But hi|Xy is a quasi-
equisingular approximation of h|Xy for quasi-every y ∈ Y , so we conclude
that Cao’s mixed mass ⟨(ddch|Xy )a ∧ ωr−a|Xy ⟩ is constant quasi-everywhere.
In particular, nd(Ly, hy) is constant quasi-everywhere. □

Definition 8.4. Let f : X → Y be a proper Kähler morphism from a
connected complex manifold X to a connected complex analytic space Y .
Let (L, h) be a Hermitian psef line bundle on X. Take a null set Σ ⊆ Y
so that for y ∈ Y \ Σ, Xy is smooth nd(Ly, hy) is constant. We define the
numerical dimension ndf (L, h) of f as this constant value.

We can now state the relative version of Theorem 5.1.

Corollary 8.5. Let f : X → Y be a proper Kähler morphism from a
connected complex manifold X to a connected complex analytic space Y . Let
(L, h) be a Hermitian psef line bundle on X.

Rqf∗(ωX ⊗ L ⊗ I(h)) = 0 for p > dimX − dimY − ndf (L, h) .

Proof. This is a simple consequence of the torsion-free theorem Corollary 6.3
and Corollary 8.3. □

cor:ieqfib Corollary 8.6. Let X be a complex manifold, f : X → ∆∗ be a projective
surjective morphism. Let (L, h), (L, h′) be Hermitian pseudo-effective line
bundles on X with the same underlying line bundle. Assume that there is
a biholomorphic S1-action on (X,L) making f equivariant and such that h
and h′ are invariant under this action. Assume that for quasi-every z ∈ ∆∗,
Xz is smooth and h|Xz ∼I h|′Xz

, then h ∼I h
′.

Proof. We need to show that I(kh) = I(kh′) for all positive integer k. Clearly,
it suffices to prove the case k = 1. We will therefore prove I(h) = I(h′).
First observe that it suffices to prove that

{eq:fstarcoin}{eq:fstarcoin} (8.3) f∗(KX ⊗ L⊗ I(h)) = f∗(KX ⊗ L⊗ I(h′))

as subsheaves of f∗(KX ⊗ L). In fact, suppose that (
eq:fstarcoineq:fstarcoin
8.3) holds. Let H be a

f -ample invertible sheaf on X, then (
eq:fstarcoineq:fstarcoin
8.3) also holds with L⊗Hm in place

of L. It follows from Grauert–Remmert’s version of Serre vanishing theorem
[
BS76
BS76, Theorem 2.1(A)] that I(h) = I(h′).

It remains to prove (
eq:fstarcoineq:fstarcoin
8.3). Observe that both sides of (

eq:fstarcoineq:fstarcoin
8.3) are locally free

as they are clearly torsion-free, we claim that it suffices to show that

{eq:fstarcoin2}{eq:fstarcoin2} (8.4) f∗(KX ⊗ L⊗ I(h))z = f∗(KX ⊗ L⊗ I(h′))z
for one z ∈ ∆∗. In fact, this implies that the same holds outside a countable
subset of ∆∗. But the set where (

eq:fstarcoin2eq:fstarcoin2
8.4) fails has to be S1-invariant, it has to

be empty.
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In fact, we will prove (
eq:fstarcoin2eq:fstarcoin2
8.4) for quasi-every z ∈ ∆∗. By cohomology and

base change together with Theorem 8.1, for quasi-every z ∈ ∆∗, we have
f∗(KX ⊗ L⊗ I(h))z = H0(Xz,KX |Xz ⊗ L|Xz ⊗ I(h|Xz )),

f∗(KX ⊗ L⊗ I(h′))z = H0(Xz,KX |Xz ⊗ L|Xz ⊗ I(h′|Xz )) .
But we assumed that for quasi-every z, h|Xz ∼I h|′Xz

, it follows that for
quasi-every z ∈ ∆∗, (

eq:fstarcoin2eq:fstarcoin2
8.4) holds. The proof is complete. □

It is of interest to understand more general types of analytic Bertini
theorems. In particular, we ask the following question: given a morphism
of complex manifolds f : X → Y with smooth fibers and two quasi-psh
functions φ,ψ on X. Assume that φ|Xy ∼I ψ|Xy for all y ∈ Y , then is it
true that φ ∼I ψ.
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