NOTE ON PARTIAL OKOUNKOV BODIES — THE POINT OF VIEW OF **B-DIVISORS**

MINGCHEN XIA

CONTENTS

1.	Introduction	1
2.	Some preliminaries	1
3.	The proof	3
Ref	References	

1. INTRODUCTION

In this note, I will explain a more algebraic point view to the partial Okounkov bodies introduced in [Xia21].

The main theorem is the following:

Theorem 1.1. Let X be an irreducible complex projective manifold of dimension n and (L, ϕ) be a Hermitian pseudo-effective line bundle on X with positive volume. Fix a valuation $\nu : \mathbb{C}(X)^{\times} \to \mathbb{Z}^n$ of rank n^* .

Then the partial Okounkov body $\Delta_{\nu}(L,\phi)$ admits the following expression:

$$\{\text{eq:main}\} \quad (1.1) \qquad \qquad \Delta_{\nu}(L,\phi) = \nu(\phi) + \lim_{\pi \colon Z \to X} \Delta_{\nu} \left(c_1(\pi^*L) - \{\text{Sing}_Z(\phi)\} \right),$$

where π runs over all smooth birational modifications of X.

This theorem needs some explanations. Here $\operatorname{Sing}_Z(\phi)$ denotes the divisorial part of the Siu decomposition of $dd^c \pi^* \phi$. The notation $\{\bullet\}$ means the associated numerical class. The limit is the Hausdorff limit. The valuation $\nu(\phi)$ is defined in [DX24] using the trace operator.

This theorem shows that the partial Okounkov bodies admit a natural interpretation in terms of the associated b-divisors.

One could easily generalize the argument below to the transcendental case, but I find no applications of such generalizations, so I will content myself to the algebraic setting.

One remark: in [DX24], we only explained how to define the trace operator when the subvariety is smooth. In general, the trace operator gives a *P*-equivalence class on the normalization of the subvariety. We will use these results freely.

2. Some preliminaries

Lemma 2.1. Let E_j be a countable family of distinct prime divisors on X. Consider $a_{ij} \in \mathbb{R}_{\geq 0}$ for all i, j > 0. We assume that the sequence (a_{ij}) for fixed j is increasing in i. Moreover, assume that $a_j := \lim_{i \to \infty} a_{ij} < \infty$. Assume that the series $\sum_j a_j[E_j]$ converges, then

$$\lim_{i \to \infty} \nu \left(\sum_{j} a_{ij}[E_j] \right) = \nu \left(\sum_{j} a_j[E_j] \right).$$

thm:main

^{*}Here implicitly, we assume that ν is surjective.

Proof. We may assume that the valuation ν is induced by a smooth flag Y_{\bullet} .

We argue by induction on the dimension n. When n = 1, there is nothing to argue. Assume that n > 1 and the case n - 1 is known. We may assume that Y_1 is not among the E_j 's. Write μ for the valuation on Y_1 induced by the truncated flag. Then we need to prove the following:

$$\lim_{i \to \infty} \mu\left(\sum_{j} a_{ij}[E_j]|_{Y_1}\right) = \mu\left(\sum_{j} a_j[E_j]|_{Y_1}\right).$$

Note that $[E_j]|_{Y_1}$ is again the current of integration of an effective divisor on Y_1 (this can be seen using the Lelong–Poincaré formula for example), so the desired convergence follows by induction.

Lemma 2.2. Let T be a closed positive (1,1)-current on X. Then we have (2.1) $\lim_{\pi \colon Z \to X} \nu(\operatorname{Sing}_Z(T)) = \nu(T).$

Proof. We may assume that ν is induced by a smooth flag Y_{\bullet} on X.

Given $\pi: \mathbb{Z} \to \mathbb{X}$, we let W_1 denote the strict transform of Y_1 in \mathbb{Z} . The restriction $\pi_1: W_1 \to Y_1$ is necessarily birational.

We will argue by induction. The case n = 1 is trivial. Assume that n > 1 and the case n - 1 is known.

We may clearly assume that $\nu(T, Y_1) = 0$. By definition, we have

$$\nu(T) = (0, \mu(\operatorname{Tr}_{Y_1}(T))),$$

where μ denotes the valuation induced by the flag on Y_1 induced by Y_{\bullet} .

Observe that modifications of the form $\pi_1 \colon W_1 \to Y_1$ is cofinal in the directed set of modifications of Y_1 . This is obvious since the modifications given by compositions of blow-ups with smooth centers on Y_1 are cofinal.

Therefore, by induction, it suffices to argue that for any $\pi: \mathbb{Z} \to \mathbb{X}$, we have

(2.2)
$$\nu(\operatorname{Sing}_{Z}(T)) = \left(0, \mu(\operatorname{Sing}_{\widetilde{W}_{1}}(\operatorname{Tr}_{Y_{1}}(T)))\right),$$

where $\widetilde{W_1}$ is the normalization of W_1 . Let $\widetilde{\pi_1}$ denote the normalization of π_1 so that we have a commutative diagram

$$\begin{array}{ccc} \widetilde{W_1} & \longrightarrow & W_1 & \longrightarrow & Z \\ & & & \downarrow \widetilde{\pi_1} & & \downarrow \pi_1 & & \downarrow \pi \\ & & & Y_1 & \longrightarrow & Y_1 & \longmapsto & X. \end{array}$$

From the birational behaviour of the trace operator proved in $\begin{bmatrix} Xia23\\ DX24 \end{bmatrix}$, we know that

$$\widetilde{\pi_1}^* \operatorname{Tr}_{Y_1}(T) \sim_P \operatorname{Tr}_{W_1}(\pi^*T).$$

So we only need to prove

$$\nu(\operatorname{Sing}_{Z}(\pi^{*}T)) = \left(0, \mu(\operatorname{Sing}_{\widetilde{W_{1}}}(\operatorname{Tr}_{W_{1}}(\pi^{*}T))\right)$$

In order to prove this, we may add a Kähler form to T and assume that T is a Kähler current. Take a quasi-equisingular approximation T_j of T. Then π^*T_j is a quasi-equisingular approximation of π^*T . By the decreasing continuity of the trace operator proved in [DX24], the d_S -continuity of Lelong numbers proved in [Xia22] and Lemma 2.1, both sides are continuous along quasi-equisingular approximations, we reduce to the case where π^*T has analytic singularities. In this case, take a suitable resolution and argue as before, we may assume that $\pi^*T = [D]$ for a snc \mathbb{Q} -divisor D. By additivity, we finally reduce to the case where D is a prime divisor on X different from Y_1 . The problem is reduced to

$$\nu([D]) = (0, \mu([D]|_{Y_1})),$$

 $\mathbf{2}$

Taalimitl

nuTaslimit}

eq:indst

which is clear by definition.

3. The proof

Now let us begin the argument of Theorem 1.1. We argue by induction on n. The case n = 1 is of course trivial. Let us assume that n > 1 and the result is known in dimension n - 1.

We first make a few simplifications. Observe that (1.1) is birationally invariant, so we may assume that ν is equivalent the valuation induced by a smooth flag. Furthermore, we reduce to the case that ν is the valuation induced by a smooth flag Y_{\bullet} .

It would be more convenient to use the language of currents. We shall write $T = dd^c \phi$. Then one needs to prove two things: first of all, the limit in (1.1) exists; secondly,

(3.1)
$$\Delta_{\nu}(T) = \nu(T) + \lim_{\pi \colon Z \to X} \Delta_{\nu}(c_1(\pi^*L) - \{\operatorname{Sing}_Z(T)\}).$$

We may replace T by $T - \nu(T, Y_1)[Y_1]$ and L by the numerical class $L - \nu(T, Y_1)[Y_1]$, so that we may reduce to the case where $\nu(T, Y_1) = 0$. But now L is replaced by a big numerical class α on X in the real Néron–Severi group of X. By perturbation, we may assume α lies in the rational Néron–Severi group. After a rescaling, we reduce back to the case where α is represented by a line bundle L.

Eventually we want to show (3.1) assuming that $\nu(T, Y_1) = 0$. Let us prove (3.1). As shown in [DX24], we have

$$\Delta_{\nu} \left(c_1(\pi^*L) - \{ \operatorname{Sing}_Z(T) \} \right) = \overline{\{ \nu(S) : S \in c_1(\pi^*L) - \{ \operatorname{Sing}_Z(T) \} \}}.$$

Therefore,

$$\Delta_{\nu} \left(c_1(\pi^*L) - \{ \operatorname{Sing}_Z(T) \} \right) + \nu(\operatorname{Sing}_Z(T)) \subseteq \{ \nu(S) : S \in c_1(L), \pi^*S \ge \operatorname{Sing}_Z(T) \}.$$

We observe that the right-hand side is decreasing with respect to π , which together with Lemma 2.2 implies that the net of convex bodies $\Delta_{\nu}(c_1(\pi^*L) - {\rm Sing}_Z(T))$ for various Z is uniformly bounded. Suppose that Δ is the limit of a subnet. Then we have

$$\Delta + \nu(T) \subseteq \overline{\{\nu(S) : S \in c_1(L), S \preceq_{\mathcal{I}} T\}}.$$

As shown in [DX24], the right-hand side is exactly $\Delta_{\nu}(T)$. So

$$\Delta + \nu(T) \subseteq \Delta_{\nu}(T).$$

But observe that both sides have the same volume, as computed in $\begin{bmatrix} Xia23\\ DX24 \end{bmatrix}$ and $\begin{bmatrix} Xia22\\ Xia22 \end{bmatrix}$. So equality holds.

It follows from the Blaschke selection theorem that the limit in (3.1) exists and (3.1) holds.

3

eq:mainvar}

MINGCHEN XIA

References

- Xia23 [DX24] T. Darvas and M. Xia. The trace operator of quasi-plurisubharmonic functions on compact Kähler manifolds (to appear). 2024.
- Xia21 [Xia21] M. Xia. Partial Okounkov bodies and Duistermaat-Heckman measures of non-Archimedean metrics. 2021. arXiv: 2112.04290 [math.AG].
- Xia22 [Xia22] M. Xia. Non-pluripolar products on vector bundles and Chern-Weil formulae on mixed Shimura varieties. 2022. arXiv: 2210.15342 [math.AG].

Mingchen Xia, INSTITUT DE MATHÉMATIQUES DE JUSSIEU-PARIS RIVE GAUCHE, PARIS *Email address*, mingchen@imj-prg.fr *Homepage*, http://mingchenxia.github.io/home/.

4