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1. Introduction

We explain some well-known results concerning the relative normalization
of schemes and stacks. We will take results in Stacks Project for granted.

We use the abbreviation qcqs for quasi-compact quasi-separated.
This notes come from an attempt to understand constructions in [

DR73
DR73]

and [
KM85
KM85].

2. Relative normalisation of schemes

Let X be a scheme in this section. Recall that for morphism of schemes,
integral=affine+universally closed.

Let A be a quasi-coherent sheaf of OX -algebras. Consider the subsheaf
A′:

{eq:inteclo}{eq:inteclo} (2.1) A′(U) := {s ∈ A(U) : sx ∈ Ax is integral over OX,x for all x ∈ U}

for any open subset U ⊆ X.
It is easy to see that A′ is a sheaf of quasi-coherent sheaf of OX -algebras.

Moreover, for any affine open U , A′(U) is the integral closure of OX(U) in
A(U). For any x ∈ X, A′

x is the integral closure of OX,x in Ax. See [
stacks-project
Stacks,

Tag 035F].

Definition 2.1. Let A be a quasi-coherent sheaf of OX -algebras. The
integral closure of OX in A is the quasi-coherent sheaf of OX -algebras A′

constructed in (2.1).

In terms of schemes, we have

Definition 2.2. Let f : Y → X be a qcqs morphism of schemes. Let O′ be
the integral closure of OX in f∗OY . The normalisation of X in Y (along f)
is the morphism

X
Y := Spec

X
O′ → X .
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From the universal property of the relative spectrum, we have a natural
commutative diagram:

Y X
Y

X

f

It is clear from the definition that X
Y → X is integral.

In practice, it is useful to characterize the normalisation by a universal
property:

prop:univ Proposition 2.3. Let f : Y → X be a qcqs morphism of schemes. Then
for any factorization of f into Y → Z → X with Z → X integral, there is a
unique morphism X

Y → Z making the following diagram commute:

Y X
Y

X

Z

g .

Proof. As Z → X is integral, it is affine, so we may identify Z with
Spec

X
g∗OZ . Then morphism Y → Z over X is then identified with an

OX -linear homomorphism g∗OZ → f∗OY . As g is integral, the image of this
homomorphism is in O′, the integral closure of OX in f∗OY . So we get a
map X

Y → Z. This map clearly has the desired properties. □

One can reformulate the universal property in his/her favorite ways: in
terms of adjoint functors or the associated Yoneda functors.

From this universal property, it is clear that if Y → X is already integral,
then X

Y → X is nothing but Y → X. From [
stacks-project
Stacks, Tag 03GQ], more

generally, if f : Y → X is qcqs and universally closed, then the normalization
is just Spec

X
f∗OX .

Relative normalization behaves well under composition.

Corollary 2.4. Let g : Z → Y , f : Y → X be two qcqs morphisms of

schemes. Then there is a natural isomorphism X
Z ∼= X

Y
Z

.

Proof. We have the following commutative diagram

Z X
Z

X
Y

Z

Y X
Y

X

g

f

.

https://stacks.math.columbia.edu/tag/03GQ
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From Proposition 2.3, we can easily construct a morphism X
Z → X

Y
Z

making the diagram commute.
Conversely, we can successively construct X̄Z → X̄Y from the factorization

Z → X
Y → X and then X

Y
Z

→ X
Z from the factorization Z → X

Z → X
Y .

By definition, the map also makes the diagram commute. It is easy to see
that these maps are inverse to each other. □

The universal property also allows us to make sense of other functorial
constructions. Here is an example.

Corollary 2.5. Let
Y ′ Y

X ′ X

f ′ f

be a commutative diagram of schemes with f and f ′ qcqs. Then there is a
natural morphism X ′Y

′
→ X

Y making the following diagram commute:

Y ′ Y

X ′Y
′

X
Y

X ′ X

.

See [
stacks-project
Stacks, Tag 035J].

It is immediately clear from the definition that the construction of X
Y is

Zariski local on X. In fact, we have more

thm:smoothbc Theorem 2.6. The construction of the integral closure commutes with
smooth base change. To be more precise, let

Y ′ Y

X ′ X

□f ′ f

g

be a Cartesian square of schemes with g : X ′ → X smooth and Y → X qcqs,
then the natural morphism

X ′Y
′

→ X
Y ×X X ′

is an isomorphism.

This is the globalization of the fact that the relative integral closure of
rings commutes with smooth base change. See [

stacks-project
Stacks, Tag 03GV].

Proof. The natural morphism can be constructed by the universal property.
Let A′ be the integral closure of OX in f∗OY . Then X

Y ×X X ′ = Spec
X′ g∗A′.

By [
stacks-project
Stacks, Tag 03GG], g∗A′ is the integral closure of OX′ in g∗f∗OY (here

is where we need g to be smooth). As g is flat, g∗f∗OY is nothing but f ′
∗OY ′ ,

we conclude. □

https://stacks.math.columbia.edu/tag/035J
https://stacks.math.columbia.edu/tag/03GV
https://stacks.math.columbia.edu/tag/03GG
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Next we recall a few persistence results under normalization.
prop:red Proposition 2.7. Let f : Y → X be a qcqs morphism of schemes. Assume

that Y is reduced then so is X
Y .

This is immediately clear from definition.
The normalization is useful due to Zariski’s main theorem.

thm:ZMTscheme Theorem 2.8 (Zariski’s main theorem). Assume that f : Y → X is a quasi-
finite and separated morphism of schemes. Then the natural morphism
Y → X

Y is a quasi-compact open immersion.
If we assume moreover that X is Nagata, f is of finite type and Y is

reduced, then X
Y → X is finite.

See [
stacks-project
Stacks, Tag 02LR] and [

stacks-project
Stacks, Tag 03GR]. See [

stacks-project
Stacks, Tag 033S]

for the notion of Nagata schemes. Schemes essentially of finite type over a
field or Z are both examples of Nagata schemes.

So integral closure provides a compactification of quasi-finite morphisms
under mild assumptions. A very common situation that happens in reality
is as follows: f : Y → U is a finite morphism and U ⊆ X is an open subset
of a Nagata scheme X. Assume that Y is reduced. Then Y → X

Y is an
open immersion and X

Y → X is finite. Moreover, as the integral closure is
Zariski local on the base, we see immediately that the inverse image of U in
X

Y → X is exactly f : Y → U . See the commutative diagram

Y X
Y

U X

f
.

If we assume moreover that U is dense in X, then X
Y → X is the

unique finite normal compactification of Y over X. In fact, if Z → X is
another such compactification, then we have a morphism X

Y → Z, which
restricts to identity on Y . It follows from [

EGAIV-3
EGA IV3, Corollaire 8.12.10] and

Proposition 2.7 that this morphism is in fact an isomorphism.

3. Relative normalisation of stacks

We follow [
MO20
MO20]. In this section, when we talk about Artin stacks/algebraic

stacks, we do not assume any separatedness, exactly as in Stacks Project.
We fix a base scheme S, all stacks will be stacks over S. To avoid set
theoretic issues, we pick the fppf site as in [

stacks-project
Stacks, Tag 021L] and denote it

by (Sch /S)fppf .
Let X be an algebraic stack, which is fixed through this section.
Let A be a quasi-coherent sheaf of OX-algebras. Here by sheaves, we mean

sheaves on the big fppf site over S. We define a subsheaf A′ by

{eq:inteclo2}{eq:inteclo2} (3.1) A′(U) :=
{

s ∈ A(U) : s is integral over H0(U, OU )
}

for all affine schemes U in (Sch /S)fppf . As the property of generating a finite
module can be checked fpqc locally, we find that A′ generates a fppf sheaf,
still denoted by A′. Moreover, A′ is a quasi-coherent sheaf of OX-algebras.

Exactly as in the case of schemes, we have

https://stacks.math.columbia.edu/tag/02LR
https://stacks.math.columbia.edu/tag/03GR
https://stacks.math.columbia.edu/tag/033S
https://stacks.math.columbia.edu/tag/021L
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Definition 3.1. Let A be a quasi-coherent sheaf of OX-algebras. The integral
closure of OX in A is the quasi-coherent sheaf of OX-algebras A′ constructed
in (3.1).

Definition 3.2. Let f : Y → X be a qcqs morphism of algebraic stacks.
Let O′ be the integral closure of OX in f∗OY. The normalisation of X in Y
(along f) is the morphism

X
Y := Spec

X
O′ → X .

Again, we have the factorization

Y X
Y

X

f

with X
Y → X integral.

With the same proof as Proposition 2.3, we find the universal property of
the normalization.

prop:univ2 Proposition 3.3. Let f : Y → X be a qcqs morphism of algebraic stacks.
Then for any factorization of f into Y → Z → X with Z → X integral, there
is a unique morphism X

Y → Z making the following diagram commute:

Y X
Y

X

Z

.

So all of the corollaries of the universal property in the previous section
can be generalized to algebraic stacks.

The same proof of Theorem 2.6 shows that the integral closure commutes
with smooth base change in the current setting as well. Note that in our
situation, the cohomology and base change theorem is proved in [

LMB00
LM00,

Proposition 13.1.9].
Next, we handle Zariski’s main theorem. The things are getting tricky here,

because there does not seem to be a good notion of Nagata algebraic stacks,
as the property of being Nagata is only local in the smooth topology. So it
seems more natural to talk about Nagata stacks only in the Deligne–Mumford
case.

thm:ZMTstack Theorem 3.4 (Zariski’s main theorem). Let f : Y → X be a representable
morphism of algebraic stacks. Assume that f is quasi-finite and separated.
Then Y → X

Y is an open immersion.

See [
LMB00
LM00, Théorème 16.5] for a proof. Note that some of the assumptions

in [
LMB00
LM00] are not necessary. Here representable means representable by

algebraic spaces, not by schemes.
We state the version for algebraic spaces, which seems to be the most

useful case in practice.
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Theorem 3.5 (Zariski’s main theorem). Assume that f : Y → X is a
quasi-finite and separated morphism of algebraic spaces. Then the natural
morphism Y → X

Y is a quasi-compact open immersion.
If we assume moreover that X is Nagata, f is of finite type and Y is

reduced, then X
Y → X is finite.

Here we say X is Nagata if for one (or equivalent for all) étale chart
Y → X of X, Y is Nagata. See [

stacks-project
Stacks, Tag 036E].

This first part of the theorem follows immediately from Theorem 3.4. The
second part follows from Theorem 2.8 and descent.

https://stacks.math.columbia.edu/tag/036E
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