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Symbols and Abbreviations

psh: pluri-subharmonic. 9
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Conventions and special notations

(1) Let X be a manifold. Let f : X → [−∞,∞] be a function, we write f∗
for the usc regularization of f , namely,

f∗(x) := lim
y→x

f(y), x ∈ X.

(2) Let X be a manifold. Let fj : X → [−∞,∞] (j ∈ J) be a family of
functions, we write

sup*
j∈J

fj :=
(

sup
j∈J

fj

)∗
.

(3) For n ∈ Z>0, Bn denotes the unit ball in Cn. ∆n denotes the unit polydisk
in Cn.

(4) C−→ denotes convergence in capacity.
(5) Let X be a complex manifold, p ∈ Z≥0. Then D′p,p(X) denotes the space

of (p, p)-currents onX, D′p,p+ (X) denotes the space of closed positive (p, p)-
currents on X.

(6) Let X be a compact Kähler manifold. Let [θ] be a big cohomology
class, where θ is a closed smooth representative form. We write Vθ
for the supreme of elements in PSH(X, θ) that are less than 0. For
ϕ,ψ ∈ PSH(X, θ), we write ϕ ∧ ψ for the rooftop operator instead of
the more common Pθ(ϕ,ψ), we write ϕ∨ψ for the maximum of ϕ and ψ.
We write [ϕ] ∧ ψ instead of the more common P [ϕ](ψ).

(7) Let X be a locally compact Hausdorff space. We write M(X) for the
space of signed Radon measures on X. We write M+(X) for the space
of positive Radon measures on X. They are equipped with the weak
star topology. We denote the weak star convergence of measures by ⇀.
Be careful, the same notation is used for the weak star convergence of
currents. For measures, they are not equivalent if X is not compact. We
make distinction by writing weak convergence as currents for the latter
notion when necessary.

(8) Let X be a compact Kähler manifold. Let [θ] be a big cohomology class,
where θ is a closed smooth representative form. Let ϕj ∈ PSH(X, θ)
(j ∈ Z>0). The notations limϕj , limϕj are not the usual limsup and
liminf. They are defined in Definition I.1.9. When we need the latter, we
write lim supϕj , lim inf ϕj instead.

(9) Kähler locus, ample locus of a big cohomology class mean the same thing.
(10) We always follow the convention:

ddc = i
2π∂∂̄.
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8 CONVENTIONS AND SPECIAL NOTATIONS

(11) For two singular types [ϕ], [ψ], we write [ϕ] � [ψ] for the relation: ϕ is
more singular than ψ instead of the converse.

(12) Let M be a compact Kähler manifold. Then M̊+(X) ⊆M+(X) denotes
the set of non-pluripolar measures on X.



CHAPTER 1

Preliminaries

I.1. The space of pluri-subharmonic functions

In this section, we let X be a Kähler manifold of dimension n. Let θ be a
smooth closed real (1, 1)-form on X.

I.1.1. The space of quasi-psh functions. Recall the following standard
notations, ∂̄ and ∂ denote the standard Dolbeault operators on X, induced by the
given complex structure on X. In terms of local holomorphic coordinates (zj =
xj + iyj)nj=1, we have

∂̄ = 1
2dz̄j ∧

(
∂

∂xj
− i ∂

∂yj

)
, ∂ = 1

2dzj ∧
(

∂

∂xj
+ i ∂

∂yj

)
.

The operator ddc is defined as

ddc := i
2π∂∂̄ .

We write D′p,p(X) for the space of (p, p)-currents on X and D′p,p+ (X) for the space
of closed positive (p, p)-currents on X. We refer to [GZ17, Section 2.2] for their
definitions.

Definition I.1.1. A θ-pluri-subharmonic function (or θ-psh function for short)
on X is a quasi-plurisubharmonic function ϕ : X → [−∞,∞), such that

θ + ddcϕ ∈ D′1,1+ (X) .

The set of θ-psh functions on X is denoted as PSH(X, θ). Write

PSH(X, θ) = PSH(X, θ) ∪ {−∞} .

When θ = 0, we omit it from the notations and write PSH(X) and PSH(X).

Proposition I.1.1. Let ϕ,ψ ∈ PSH(X, θ).
(1)

lim sup
y→x

ϕ(y) = ϕ(x), ∀x ∈ X .

(2) ϕ ∈ Lploc(X) for any p ∈ [1,∞).
(3) If ϕ = ψ a.e., then ϕ = ψ.
(4) The subspace topology on PSH(X, θ) induced by the following embeddings

are the same:

PSH(X, θ) ⊆ Lploc(X), PSH(X, θ) ⊆ D′(X) ,

where p ∈ [1,∞) is arbitrary.

Here Lploc(X) means the Lploc-space with respect to the Hausdorff measure Hn.
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10 1. PRELIMINARIES

Remark I.1.1. It is important to remember that a θ-psh function is not an
equivalence class of functions up to values on a null set, but is indeed a definite
function. The natural map PSH(X, θ) → Lploc(X) is injective by Proposition I.1.1
(3), so we can write

PSH(X, θ) ⊆ Lploc(X) .

For the proof, see [GZ17, Corollary 1.38, Proposition 1.40, Theorem 1.46, The-
orem 1.48].

We shall always endow PSH(X, θ) with the topology defined in Proposition I.1.1
(4).

Theorem I.1.2. When X is compact, the following set is compact in PSH(X, θ):{
ϕ ∈ PSH(X, θ) : C1 ≤ sup

X
ϕ ≤ C2

}
,

where C1, C2 ∈ R are constants with C1 ≤ C2.

For a proof, see [GZ17, Theorem 1.46].

I.1.2. Pluripolar sets.

Definition I.1.2. A subset E ⊆ X is called complete pluripolar in X if there
is ϕ ∈ PSH(X), such that

E = {ϕ = −∞} .
A subset E ⊆ X is called pluripolar if for any x ∈ E, there is a neighbourhood
U ⊆ X of x and ϕ ∈ PSH(U), such that

E ∩ U ⊆ {ϕ = −∞} .

Definition I.1.3. A function ϕ ∈ PSH(X, θ) is said to have small unbounded
locus if there is a pluripolar closed set A ⊆ X, such that ϕ ∈ L∞loc(X −A).

I.1.3. Singular types. Now assume that X is compact Kähler and that the
cohomology class α := [θ] ∈ H1,1(X,R) is big. In particular, PSH(X, θ) is non-
empty. Let Z be the non-Kähler locus of α ([Bou04]), then Z is a proper analytic
subset of X.

Definition I.1.4. Let ϕ,ψ ∈ PSH(X, θ), we say that ϕ is more singular than
ψ if ϕ ≤ ψ + C for some constant C ∈ R. We write ϕ � ψ.

If
ϕ � ψ , ψ � ϕ ,

we say that ϕ and ψ have equivalent singularities and write [ϕ] = [ψ]. This defines
an equivalence relation on PSH(X, θ). The equivalence classes containing ϕ is called
the singularity type of ϕ and is denoted as [ϕ]. The relation � induces a partial
order (still denoted by �) on the set of singularity types ST(X, θ) (or ST for short).
Write

ST := ST∪{[−∞]} .
The partial order extends to ST by setting [−∞] as a least element.

Define Vθ ∈ PSH(X, θ):
Vθ := sup {ψ ∈ PSH(X, θ) : ψ ≤ 0 } .

Then [Vθ] is the greatest element in ST. In fact, V ∗θ is obviously θ-psh and V ∗θ ≤ 0,
so Vθ = V ∗θ is θ-psh.
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Definition I.1.5. We write
E∞(X, θ) := {ϕ ∈ PSH(X, θ) : [ϕ] = [Vθ] } .

We say an element ϕ ∈ PSH(X, θ) has minimal singularities if ϕ ∈ E∞(X, θ).

Proposition I.1.3.
(1) Vθ is locally bounded on X − Z.
(2) Let ϕ ∈ E∞(X, θ), then ϕ has small unbounded locus.

Proof. (1) As shown in [Bou04, Theorem 3.17], there exists ψ ∈ PSH(X, θ)
with analytic singularities, ψ ≤ 0, such that the polar set {ψ = −∞} is exactly Z,
so we conclude that Vθ is locally bounded from below on X − Z.

(2) This follows immediately from (1). �

I.1.4. Operators. Assume that X is a compact Kähler manifold of dimension
n and that the cohomology class α := [θ] ∈ H1,1(X,R) is big.

There are several natural operations on PSH(X, θ).

Definition I.1.6. Let ϕ1, ϕ2 ∈ PSH(X, θ). Define
(1)

ϕ1 ∧ ϕ2 := sup*
{
ψ ∈ PSH(X, θ) : ψ ≤ ϕ1, ψ ≤ ϕ2

}
.

(2)
ϕ1 ∨ ϕ2 := max{ϕ1, ϕ2} ∈ PSH(X, θ) .

The first one is known as the rooftop envelope.

Remark I.1.2. It is easy to see
ϕ1 ∧ ϕ2 := sup{ψ ∈ PSH(X, θ) : ψ ≤ ϕ1, ψ ≤ ϕ2}.

It can happen that for ϕ1, ϕ2 ∈ PSH(X, θ), we have ϕ1 ∧ ϕ2 = −∞.

Definition I.1.7. Let [ψ] ∈ ST(X, θ), ϕ ∈ PSH(X, θ). Define [ψ] ∧ ϕ ∈
PSH(X, θ) as

[ψ] ∧ ϕ = sup*
C≥0

(ψ + C) ∧ ϕ.

It is easy to see that this definition does not depend on the choice of ψ. We extend
the operator to the case where [ψ] = [−∞] by setting

[−∞] ∧ ϕ = −∞, ∀ϕ ∈ PSH(X, θ).

Definition I.1.8. A potential ψ ∈ PSH(X, θ) is called a model potential if
[ψ] ∧ Vθ = ψ.

A singularity type [ψ] ∈ ST(X, θ) is called a model singularity type if
[[ψ] ∧ Vθ] = [ψ].

Proposition I.1.4. Let ϕ,ϕ1, ϕ2, ϕ3, ψ ∈ PSH(X, θ).
(1) ∧ and ∨ are both associative, idempotent and commutative.
(2)

(ϕ ∨ ψ) ∧ ψ = ψ.

(3)
(ϕ1 ∧ ϕ2) ∨ ψ ≤ (ϕ1 ∨ ψ) ∧ (ϕ2 ∨ ψ).

(4)
(ϕ1 ∨ ϕ2) ∧ ψ ≥ (ϕ1 ∧ ψ) ∨ (ϕ2 ∧ ψ).
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Definition I.1.9. Let ϕj ∈ PSH(X, θ) (j ∈ Z>0). Let φ ∈ PSH(X, θ). Assume
that
(1.1) φ ≤ ϕj ≤ C
for some constant C > 0 independent of j.

Then we define
(1)

lim
j→∞

ϕj := sup*
j∈Z>0

inf
k∈Z>0

ϕj ∧ ϕj+1 ∧ · · · ∧ ϕj+k.

(2)
lim
j→∞

ϕj := inf
j

sup*
k

ϕj ∨ · · · ∨ ϕj+k.

The condition (1.1) just makes sure that limϕj , limϕj ∈ PSH(X, θ) are well-
defined. These definitions are independent of the choice of φ.

I.2. Local theory on hyperconvex domains

I.2.1. Bedford–Taylor capacity. Let Ω ⊆ Cn be a strictly pseudoconvex
domain with smooth boundary.

Definition I.2.10. Let E ⊆ Ω be a Borel subset. The Bedford–Taylor capacity
of E relative to Ω is defined as

(1.2) Cap(E,Ω) := sup
{∫

E

(ddcϕ)n : ϕ ∈ PSH(Ω) ,−1 ≤ ϕ ≤ 0
}
.

The theory of Bedford–Taylor capacity is studied in detail in [GZ17, Sec-
tion 4.1.3].

Definition I.2.11. Let f : Ω→ [−∞,∞] be a function. The function f is said
to be quasi-continuous if for any ε > 0 and all compact subset K ⊆ Ω, there is an
open set G ⊆ Ω with Cap(G,Ω) < ε, such that f |K−G is continuous.

By [GZ17, Proposition 4.18], quasi-continuity is a local property, hence we can
define this notion on a general manifold.

Definition I.2.12. Let X be a complex manifold. A function f : X →
[−∞,∞] is said to be quasi-continuous if for any strictly pseudoconvex open subset
Ω ⊆ X with smooth boundary, the restriction of f to Ω is quasi-continuous.

Definition I.2.13. Let fj , f : Ω → [−∞,∞] (j ∈ N) be Borel measurable
functions. Assume that fj − f is well-defined outside a set of zero capacity. We say
fj converges to f in capacity if for any δ > 0 and any compact set K ⊆ Ω,

lim
j→∞

Cap (K ∩ {|fj − f | > δ},Ω) = 0 .

We write fj
C−→ f in this case.

Definition I.2.14. Let X be a complex manifold. Let fj , f : X → [−∞,∞]
(j ∈ N) be Borel measurable functions. Assume that fj−f is well-defined outside a
set of zero capacity (namely, of zero capacity on each strictly pseudoconvex domain
with smooth boundary). We say fj converges to f in capacity if for any strictly
pseudoconvex open subset Ω ⊆ X with smooth boundary, fj |Ω

C−→ f |Ω. In this
case, we write fj

C−→ f .
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Theorem I.2.5. Let fk, f : Bn → R be uniformly bounded and quasi-continuous
functions. Let ϕkj , ϕj ∈ PSH(Bn) be uniformly bounded functions. Assume that

fk
C−→ f, ϕkj

C−→ ϕj

as k →∞. Then

fk ddcϕk1 ∧ · · · ∧ ddcϕkn ⇀ f ddcϕ1 ∧ · · · ∧ ddcϕn , k →∞

as currents.

See [GZ17, Theorem 4.26] for a proof.

I.2.2. Canonical approximations. Let Ω ⊆ Cn be an open bounded set.
Let dλ be the standard Lebesgue measure on Cn = R2n. Let µ ∈ M+(Ω). Take a
cube I containing Ω̄. For each k ≥ 1, divide I into 32kn congruent semiopen cubes
Ijk (j = 1, . . . , 32kn). We may assume that µ puts no mass on the boundary of each
Ijk up to a small perturbating of the partition. Let

µk :=
∑
j∈Ik

µ(Ijk)
λ(Ijk)

1Ij
k
λ ,

where Ik is the set of indices j such that Ijk ⊆ Ω. We call µk the canonical approx-
imations of µ. 1

Proposition I.2.6. When Ω has smooth boundary and µ(∂Ω) = 0, we have
µk ⇀ µ as k →∞.

Proof. Let f be a non-negative bounded Lipschitz continuous function on Ω,
then

(1.3)
∣∣∣∣∫

Ω
f dµk −

∫
Ω
f dµ

∣∣∣∣ ≤∑
j∈Ik

∣∣∣∣∣
∫
Ij
k

f
µ(Ijk)
λ(Ijk)

dλ−
∫
Ij
k

f dµ

∣∣∣∣∣+
∑
j∈Jk

∫
Ij
k
∩Ω
|f |dµ ,

where Jk is the set of indices j such that Ijk∩∂Ω is non-empty. Since f is uniformly
continuous, for each ε > 0, we can take k large enough, such that for all j,

sup
Ij
k

f − inf
Ij
k

f < ε .

Then it is easy to see that the first term on right-hand side of (1.3) is bounded by
εµ(Ω).

As for the second term, since f is bounded, it suffices to estimate∑
j∈Jk

µ(Ijk).

This term is obviously bounded by the µ-measure of the set of points with a distance
at most C3−k to ∂Ω. As ∂Ω is smooth, as k →∞, the intersection of all these sets
is just the boundary of Ω. By assumption, µ(∂Ω) = 0, we conclude. �

Remark I.2.3. The assumptions of Proposition I.2.6 are satisfied if Ω = Bn
and if µ is non-pluripolar.

1Here and in the sequel we follow the unfortunate terminology of Kołodziej and Dinew,
although µk’s are by no means canonical.
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Now given ϕ ∈ PSH(B̄n)∩L∞(Bn). Let fk be a decreasing sequence of smooth
functions on ∂Bn, converging to ϕ|∂Bn . We solve the following Dirichlet problem
for any k ≥ 1:

(1.4)


ϕk ∈ PSH(Bn) ∩ C0(B̄n),

(ddcϕk)n = (ddcϕ)nk ,
ϕk|∂Bn = fk.

Here we have denoted the canonical approximations of (ddcϕ)n by (ddcϕ)nj . We
call ϕk the canonical approximations of ϕ.

Proposition I.2.7. Let ϕ1, . . . , ϕn ∈ PSH(B̄n) ∩ L∞(Bn). Let ϕkj (k ≥ 1) be
canonical approximations of ϕj, then

ϕj =
(

lim sup
k→∞

ϕkj

)∗
.

Then ϕkj → ϕj in L1. Moreover,

ddcϕk1 ∧ · · ·ddcϕkn ⇀ ddcϕ1 ∧ · · · ddcϕn, k →∞
in Bn.

For a proof, see [Din09, Proposition 3.1].

I.3. Special currents

Let X be a compact Kähler manifold of dimension n. Let Θ ∈ D′n−1,n−1
+ (X).

Let U ⊆ X be an open subset.

Proposition I.3.8. Let ϕ,ψ ∈ PSH(U)∩L∞loc(U). Then the following currents
on U are of order 0:

(1) dϕ ∧ dcϕ ∧Θ.
(2) dcϕ ∧Θ := dc (ϕΘ).
(3) dψ∧dcϕ∧Θ := 1

2 (d(ϕ+ ψ) ∧ dc(ϕ+ ψ) ∧Θ− dϕ ∧ dcϕ ∧Θ− dψ ∧ dcψ ∧Θ).
(4) d (ψ dcϕ ∧Θ).

Moreover,
(1.5) d (ψ dcϕ ∧Θ) = dψ ∧ dcϕ ∧Θ + ψ ddcϕ ∧Θ
as currents on U .

Proof. Since the problem is local, we may shrink U if necessary. In particular,
we may assume that ϕ,ψ ∈ L∞(U). We can add a constant to ϕ so that ϕ ≥ 0.

(1) Recall that ϕ2 is also psh, it follows from the definition itself ([GZ17, Defi-
nition 3.2])

dϕ ∧ dcϕ ∧Θ := 1
2ddcϕ2 ∧Θ− 1

2ϕddcϕ ∧Θ

and Bedford–Taylor’s theorem ([GZ17, Proposition 3.3]) that dϕ ∧ dcϕ ∧ Θ is of
order 0.

(2) We want to show that for each compact set K ⊆ U , there is a constant
C = C(K) such that for each smooth 1-form T on X with support in K, we have

(1.6)
∣∣∣∣∫
U

T ∧ dcϕ ∧Θ
∣∣∣∣ ≤ C‖T‖0,K ,
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where the semi-norm ‖ · ‖0,K is the zeroth order seminorm of a positive current,
defined as in [GZ17, Proposition 2.18]. Let χ : U → [0, 1] be a smooth function
on U with compact support, χ = 1 on K. We have the following Cauchy–Schwarz
inequality

(1.7)
∣∣∣∣∫
U

T ∧ dcϕ ∧Θ
∣∣∣∣ ≤ (∫

U

χT ∧ T̄ ∧Θ
)1/2(∫

U

χdϕ ∧ dcϕ ∧Θ
)1/2

.

This is the usual Cauchy–Schwarz inequality when ϕ is smooth. The general case
follows from Demailly approximation on ϕ. The convergence or right-hand side
along Demailly approximations follow from [GZ17, Proposition 3.3]. The second
bracket on the right-hand side of (1.7) is finite by (1), hence (1.6) follows.

(3) This follows from (1).
(4) This follows from (1.5) and (3). Let us prove (1.5). First notice that we

may always assume that ψ is smooth. In fact, let ψk be smooth psh functions on
U decreasing to ψ. Then ψk dcϕ∧Θ converges to ψ dcϕ∧Θ as currents by (2) and
the dominated convergence theorem. So

d (ψk dcϕ ∧Θ)→ d (ψ dcϕ ∧Θ) , k →∞.

The right-hand side of (1.5) is also continuous along ψk by [GZ17, Proposition 3.3].
Similarly, one may assume that ϕ is smooth. In this case, (1.5) is obvious. �

Remark I.3.4. The proof of (1.7) explains how to apply the Cauchy–Schwarz
type inequality in general. In the sequel, we usually omit the detailed arguments
of this type and just refer to the Cauchy–Schwarz inequality.

Lemma I.3.9. Let ϕ1, ϕ2 be qpsh functions on X. Assume that u := ϕ1 −ϕ2 ∈
L∞(X). Let U ⊆ X be an open subset such that ϕ1 ∈ L∞loc(U). Then

(1.8)
∫
U

du ∧ dcu ∧Θ <∞.

Here du ∧ dcu ∧ Θ is defined in the obvious way by linearity. For a proof see
[BEGZ10, Lemma 1.15].

Proposition I.3.10. Let ϕ1, ϕ2, ψ1, ψ2 be qpsh functions on X, assume that
u := ϕ1 − ϕ2, v = ψ1 − ψ2 ∈ L∞(X). Let U ⊆ X be an open set on which ϕ1 is
locally bounded. The the following currents on U are of order 0:

(1) dcu ∧Θ.
(2) dv ∧ dcu ∧Θ.
(3) d (v dcu ∧Θ).

Moreover on U , we have

(1.9) d (v dcu ∧Θ) = dv ∧ dcu ∧Θ + v ddcu ∧Θ.

Proof. (1) It follows from Proposition I.3.8 that dcu∧Θ is a current of order
0.

(2) This follows from Cauchy–Schwarz inequality and Lemma I.3.9.
(3) This follows from (1.9), which itself follows from (1.5). �
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I.4. Non-pluripolar measures

Definition I.4.15. Let µ ∈ M+(X). We say that µ is non-pluripolar if for
any pluripolar set A ⊆ X, we have µ(A) = 02. In this case, we write µ ∈ M̊+(X).

Let µ be a non-pluripolar measure onX. We define a sequence of good measures
that converges to µ as follows: Cover X by open sets Ωj , each being biholomorphic
to the unit ball in Cn. Let χk be a Friedrichs kernel. Let ρj be a partition of unity
subordinate to Ωj . We define

(1.10) µk = ck
∑
j

ρjχk ∗ µ|Ωj ,

where ck is a constant making sure that µk(X) = µ(X). Obviously µk ⇀ µ. Note
that µk has L∞ density.

We shall refer to µk as a Friedrichs approximation of µ.

I.5. The envelope operator

Definition I.5.16. Let u ∈ USC(X). We define
(1.11) P(u) := sup* {ϕ ∈ PSH(X, θ) : ϕ ≤ u} .

Remark I.5.5. In fact,
P(u) = sup {ϕ ∈ PSH(X, θ) : ϕ ≤ u } .

This is because P(u) is itself a candidate in (1.11).
Proposition I.5.11.
(1) P is concave, increasing on USC(X).
(2) Let uj , u ∈ USC(X). Assume that uj decreases to u pointwisely. Then

P(uj) also decreases to P(u) pointwisely.
(3) For any C ∈ R, u ∈ USC(X),

P(u+ C) = P(u) + C .

(4) For u, v ∈ USC(X), then
sup
X
|P(u)− P(v)| ≤ sup

X
|u− v| .

(5) Let u ∈ C0(X), then∫
X

1{P(u)<u} θ
n
P(u) = 0 .

Proof. (1) This is obvious.
(2) From (1), we know that P(uj) is decreasing. Let v be the pointwise limit

of P(uj). Then v ∈ PSH(X, θ). It follows from (1) that v ≥ P(u). On the other
hand,

v = lim
j→∞

P(uj) ≤ lim
j→∞

uj = u.

So v ≤ P(u). Hence v = P(u).
(3) This follows from definition.
(4) We may assume that supX |u−v| <∞. Then this follows immediately from

(3) and (1).

2Strictly speaking, A is not necessarily measurable. We are in fact identifying µ with its
completion measure.
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(5) This follows from the standard balayage argument. �

I.5.1. Miscellaneous. Let X be a compact Kähler manifold of dimension n.
Let α be a big cohomology class with a smooth representative θ.

Theorem I.5.12. We have
(1.12) θnVθ ≤ 1{Vθ=0} θ

n .

For a proof, see [DDNL18, Theorem 2.6].





CHAPTER 2

Non-pluripolar products

II.1. Definition and basic properties of the non-pluripolar products

Let X be a complex manifold of dimension n, not necessarily compact. Let
p ≤ n be a non-negative integer. Let u1, . . . , up ∈ PSH(X). We want to define a
closed positive (p, p)-current

〈ddcu1 ∧ · · · ∧ ddcup〉 ∈ D′p,p+ (X)
satisfying with the following extra assumptions:

(1) When u1, . . . , up ∈ L∞loc(X), the product coincides with the Bedford–
Taylor product.

(2) The product is local in the plurifine topology.
(3) The product puts no weight on pluripolar sets.

Note that these conditions fix the definition of 〈ddcu1∧· · ·∧ddcup〉 completely,
if it ever exists. In fact, let

Ok :=
p⋂
j=1
{uj > −k}, k ∈ Z>0.

By (1) and (2),

(2.1) 1Ok〈ddcu1 ∧ · · · ∧ ddcup〉 = 1Ok

p∧
j=1

ddc max{uj ,−k}.

Note that

X −
⋃
k≥0

Ok =
p⋃
j=1
{uj = −∞}

is a pluripolar set, so the definition of 〈ddcu1 ∧ · · · ∧ ddcup〉 is completely fixed.

Definition II.1.1. Let u1, . . . , up ∈ PSH(X). We say that 〈ddcu1∧· · ·∧ddcup〉
is well-defined if for each open subset U ⊆ X such that there is a Kähler form ω
on U , each compact subset K ⊆ U , we have

(2.2) sup
k≥0

∫
K∩Ok

 p∧
j=1

ddc max{uj ,−k}

∣∣∣∣∣∣
U

∧ ωn−p <∞.

In this case, we define1 〈ddcu1 ∧ · · · ∧ ddcup〉 by (2.1) on
⋃
k≥0Ok and make a

zero-extension to X.

Remark II.1.1. The condition (2.2) is clearly independent of the choice of U
and ω.

1Here we use implicitly the fact the Bedford–Taylor product is local in the plurifine topology

19
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Remark II.1.2. Let u1, . . . , up ∈ PSH(X). Let σ ∈ Sp. By definition, 〈ddcu1∧
· · · ∧ ddcup〉 is well-defined iff 〈ddcuσ(1) ∧ · · · ∧ ddcuσ(p)〉 is. Moreover, in this case,

〈ddcu1 ∧ · · · ∧ ddcup〉 = 〈ddcuσ(1) ∧ · · · ∧ ddcuσ(p)〉.
In particular, we may use the following notation for either product:〈

p∧
j=1

ddcuj

〉
.

Let us verify that our product indeed satisfies all requirements. We need a few
lemmata.

Lemma II.1.1. Let u1, . . . , up ∈ PSH(X). Assume that 〈ddcu1 ∧ · · · ∧ ddcup〉 is
well-defined. Let Ek ⊆ Ok (k ≥ 0) be Borel sets such that X − ∪kEk is pluripolar.
Let Ω be a (n−p, n−p)-form with measurable coefficients. Assume that the following
conditions are satisfied:

(1) Supp Ω is compact.
(2) For each open subset U ⊆ X, each Kähler form ω on U , there is a constant

C > 0 such that
−Cωn−p ≤ Ω ≤ Cωn−p

holds on Supp Ω ∩ U .
Then

lim
k→∞

∫
X

1Ek

p∧
j=1

ddc max{uj ,−k} ∧ Ω =
∫
X

〈
p∧
j=1

ddcuj

〉
∧ Ω.

In particular,

1Ek

p∧
j=1

ddc max{uj ,−k}⇀
〈

p∧
j=1

ddcuj

〉
, k →∞

as currents and the convergence is strong on each compact subset of X.

Proof. Since the problem is local, we may assume that Supp Ω ⊆ U , where
U ⊆ X is an open subset with a Kähler form ω. Take C > 0 so that

−Cωn−p ≤ Ω ≤ Cωn−p.
Then observe that

0 ≤
∫
X

1Ok

p∧
j=1

ddc max{uj ,−k} ∧ Ω−
∫
X

1Ek

p∧
j=1

ddc max{uj ,−k} ∧ Ω

≤
∫

Supp Ω
(1− 1Ek)

〈
p∧
j=1

ddcuj

〉
∧ Ω.

The RHS tends to 0 by dominated convergence theorem. So it suffices to prove
the theorem for Ek = Ok. In this case, the theorem again follows from dominated
convergence theorem. �

Lemma II.1.2. Let u ∈ PSH(X), u ≤ 0. Let χ : R → R be a smooth, convex,
increasing function satisfying

χ(1) = 1, χ(t) = 0, t ≤ 1
2 .
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Let ϑ : R→ [0, 1] be a smooth increasing function such that

ϑ(0) = 0, ϑ(t) = 1, t ≥ 1
2 .

For each k ≥ 1, let wk : X → R be defined by

wk := χ
(
eu/k

)
.

Note that wk are uniformly bounded positive psh functions.
Then as k →∞,
(1) ϑ(wk) is increasing and

ϑ(wk) ≤ 1{u>−k},

Moreover,
ϑ(wk)→ 1

outside {u = −∞} pointwisely.
(2) ϑ′(wk) vanishes outside {u > −k} and

ϑ′(wk)→ 0
outside {u = −∞} pointwisely.

The lemma follows directly by writing down all definitions.

Proposition II.1.3. Let u1, . . . , up ∈ PSH(X).
(1) The product 〈ddcu1 ∧ · · · ∧ ddcup〉 is local in plurifine topology. In the

following sense: let O ⊆ X be a plurifine open subset, let v1, . . . , vp ∈
PSH(X), assume that

uj |O = vj |O, j = 1, . . . , p.
Assume that 〈

p∧
j=1

ddcuj

〉
,

〈
p∧
j=1

ddcvj

〉
are both well-defined, then

(2.3)
〈

p∧
j=1

ddcuj

〉∣∣∣∣∣∣
O

=
〈

p∧
j=1

ddcvj

〉∣∣∣∣∣∣
O

.

If O is open in the usual topology, then the product〈
p∧
j=1

ddcuj |O

〉
on O is well-defined and

(2.4)
〈

p∧
j=1

ddcuj

〉∣∣∣∣∣∣
O

=
〈

p∧
j=1

ddcuj |O

〉
.

Let U be an open covering of X. Then 〈ddcu1∧· · ·∧ddcup〉 is well-defined
iff each of the following product is well-defined〈

p∧
j=1

ddcuj |U

〉
, U ∈ U .
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(2) The current 〈ddcu1∧· · ·∧ddcup〉 and the fact that it is well-defined depend
only on the currents ddcuj, not on specific uj.

(3) When u1, . . . , up ∈ L∞loc(X), 〈ddcu1 ∧ · · · ∧ ddcup〉 is well-defined and is
equal to the Bedford–Taylor product.

(4) Assume that 〈ddcu1∧· · ·∧ddcup〉 is well-defined, then 〈ddcu1∧· · ·∧ddcup〉
puts not mass on pluripolar sets.

(5) Assume that 〈ddcu1 ∧ · · · ∧ ddcup〉 is well-defined, then〈
p∧
j=1

ddcuj

〉
∈ D′p,p+ (X).

(6) The product is multi-linear: let v1 ∈ PSH(X), then
(2.5)〈

ddc(u1 + v1) ∧
p∧
j=2

ddcuj

〉
=
〈

ddcu1 ∧
p∧
j=2

ddcuj

〉
+
〈

ddcv1 ∧
p∧
j=2

ddcuj

〉
in the sense that LHS is well-defined iff both terms on RHS are well-
defined, and the equality holds in that case.

Proof. (1) For any k ≥ 0, let

Ek :=
p⋂
j=1
{uj > −k, vj > −k}.

By plurilocality of the Bedford–Taylor product,

1O∩Ek

p∧
j=1

ddc max{uj ,−k} = 1O∩Ek

p∧
j=1

ddc max{vj ,−k}.

By Lemma II.1.1, let k →∞, (2.3) follows.
When O is open in the usual topology, (2.4) follows from the corresponding

property of the Bedford–Taylor product.
The last statement is obvious.
(2) By (1), we may assume that there is a Kähler form ω on X. Let wj

(j = 1, . . . , p) be pluriharmonic functions on X. Assume that 〈ddcu1 ∧ · · · ∧ ddcup〉
is well-defined. We want to prove that 〈ddc(w1 + u1) ∧ · · · ∧ ddc(wp + up)〉 is also
well-defined and

(2.6)
〈

p∧
j=1

ddcuj

〉
=
〈

p∧
j=1

ddc(wj + uj)
〉
.

By further shrinking X, we may assume that wj are bounded from above on X,
say

wj ≤ C, j = 1, . . . , p.
Then for any k ≥ 0, on the pluriopen set

Vk :=
p⋂
j=1
{uj + wj > −k},

we have uj > −k − C, so by (1),

max{uj + wj ,−k} = max{uj ,−k − C}+ wj .
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Let K ⊆ X be a compact subset, then∫
K

1Ok

p∧
j=1

ddc max{uj+wj ,−k}∧ωn−p =
∫
K

1Ok

p∧
j=1

ddc max{uj ,−k−C}∧ωn−p.

The RHS is bounded by assumption. So the RHS of (2.6) is well-defined and (2.6)
follows.

(3) By (1) and the locality of the Bedford–Taylor product, the problem is local,
so we may assume that uj are bounded on X. In this case, (3) follows directly from
definition.

(4) The problem is again local, by reduction to the local setting, it follows from
Lemma II.1.1.

(5) It follows directly from definition that 〈ddcu1 ∧ · · · ∧ ddcup〉 is positive, so
it suffices to prove that it is closed. We may assume that p < n. Since the problem
is local, we may assume that X is the unit polydisk in Cn. Take a closed positive
(n−p−1, n−p−1)-form ρ on X with constant coefficients. By (3), we may assume
that uj ≤ 0. Let

Θk :=
p∧
j=1

ddc max{uj ,−k} ∧ ρ.

By Lemma II.1.1, we have

1OkΘk ⇀

〈
p∧
j=1

ddcuj

〉
∧ ρ, k →∞.

Hence

d (1OkΘk) ⇀ d
〈

p∧
j=1

ddcuj

〉
∧ ρ, k →∞.

So it suffices to prove
d (1OkΘk) ⇀ 0, k →∞.

We now apply the construction of Lemma II.1.2 with u =
∑p
j=1 uj , we shall use

the same notations. Then

0 ≤ (1Ok − ϑ(wk)) Θk ≤ (1− ϑ(wk))
〈

p∧
j=1

ddcuj

〉
∧ ρ.

RHS converges weakly to 0 as k → ∞ by dominated convergence theorem and by
Lemma II.1.2. So it remains to prove

d (ϑ(wk)Θk) ⇀ 0, k →∞.
It follows from the chain rule ([BEGZ10] Lemma 1.9) that

d (ϑ(wk)Θk) = ϑ′(wk) dwk ∧Θk,

where by definition
dwk ∧Θk := d (wkΘk)

is a closed current of order 0 by Bedford–Taylor theory.
Now take an arbitrary smooth 1-form ψ on X with compact support, we need

to prove

(2.7) lim
k→∞

∫
X

ϑ′(wk) dwk ∧Θk ∧ ψ = 0.
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Let τ : X → [0, 1] be a smooth function with compact support, τ = 1 in a
neighbourhood of Suppψ. Then we have the following Cauchy–Schwarz inequality:∣∣∣∣∫
X

ϑ′(wk) dwk ∧Θk ∧ ψ
∣∣∣∣2 ≤ 2π

(∫
X

ϑ′(wk)2Θk ∧ ψ ∧ ψ̄
)(∫

X

τ dwk ∧ dcwk ∧Θk

)
.

In fact, when wk is smooth, this follows from the standard Cauchy–Schwarz in-
equality, it holds even without τ on RHS, for a general wk, it suffices to apply
the Demailly approximation, the extra τ ensures the convergence of RHS under
Demailly approximation.

For the first bracket, by Lemma II.1.1,

0 ≤
∫
X

ϑ′(wk)2Θk ∧ ψ ∧ ψ̄ ≤
∫
X

ϑ′(wk)2

〈
p∧
j=1

ddcuj

〉
∧ ρ ∧ ψ ∧ ψ̄.

Again by dominated convergence theorem and by Lemma II.1.1, the right-most
term tends to 0.

As for the second bracket,

2
∫
X

τ dwk ∧dcwk ∧Θk ≤
∫
X

τ ddcw2
k ∧Θk =

∫
X

w2
k ddcτ ∧Θk =

∫
Ok

w2
k ddcτ ∧Θk.

Note that wk are uniformly bounded. Also, it follows from Lemma II.1.1 that the
masses of ddcτ ∧ Θk are uniformly bounded. So the second bracket is bounded.
This concludes the proof of (2.7).

(6) The problem is local, so we may assume that there is a global Kähler form ω
on X. Moreover, by (2) we may assume that u1 ≤ 0, v1 ≤ 0 after possibly shrinking
X. Note that for any k ≥ 0, on {u1 + v1 > −k}, we have

(2.8) ddc max{u1 + v1,−k} = ddc max{u1,−k}+ ddc max{v1,−k}.

Also note that
{u1 + v1 > −k} ⊆ {u1 > −k} ∪ {v1 > −k}.

Assume that both terms on the RHS of (2.5) are well-defined. Let K ⊆ X be
a compact subset, then for any k ≥ 0,∫

K

1{u1+v1>−k}1∩pj=2{uj>−k}ddc max{u1 + v1,−k} ∧
p∧
j=2

max{uj ,−k} ∧ ωn−p

=
∫
K

1{u1+v1>−k}1∩pj=2{uj>−k}ddc max{u1,−k} ∧
p∧
j=2

max{uj ,−k} ∧ ωn−p

+
∫
K

1{u1+v1>−k}1∩pj=2{uj>−k}ddc max{u1,−k} ∧
p∧
j=2

max{uj ,−k} ∧ ωn−p

≤
∫
K

1{u1>−k}1∩pj=2{uj>−k}ddc max{u1,−k} ∧
p∧
j=2

max{uj ,−k} ∧ ωn−p

+
∫
K

1{v1>−k}1∩pj=2{uj>−k}ddc max{u1,−k} ∧
p∧
j=2

max{uj ,−k} ∧ ωn−p.

The RHS is bounded for all k by assumption. So the LHS of (2.5) is well-defined.
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Conversely, assume that the LHS of (2.5) is well-defined. Let K ⊆ X be a
compact subset, then for any k ≥ 0,∫

K

1{u1>−k}1∩pj=2{uj>−k}ddc max{u1,−k} ∧
p∧
j=2

max{uj ,−k} ∧ ωn−p

≤
∫
K

1{u1>−k}1∩pj=2{uj>−k}ddc max{u1 + v1,−k} ∧
p∧
j=2

max{uj ,−k} ∧ ωn−p

≤
∫
K

1{u1+v1>−k−1}1∩p
j=2{uj>−k}ddc max{u1 + v1,−k} ∧

p∧
j=2

max{uj ,−k} ∧ ωn−p,

where the third line follows from the fact that on {u1 + v1 < −k}, we have
ddc max{u1 + v1,−k} = 0. Now the RHS is bounded for various k by assump-
tion. So the first term on RHS of (2.5) is well-defined. By symmetry, the same is
true for the other term.

Now assume that both sides of (2.5) are well-defined, we prove (2.5). Let

Ek := {u1 > −k/2} ∩ {v1 > −k/2} ∩
p⋂
j=2
{uj > −k}.

Then

Ek ⊆ {u1 + v1 > −k} ∩
p⋂
j=2
{uj > −k}.

Moreover,

X −
∞⋃
k=1

Ek

is pluripolar. So by Lemma II.1.1,

1Ekddc max{u1 + v1,−k} ∧
p∧
j=2

ddc max{uj ,−k}⇀
〈

p∧
j=1

ddcuj

〉
.

By (2.8),

1Ekddc max{u1 + v1,−k} ∧
p∧
j=2

ddc max{uj ,−k}

=1Ekddc max{u1,−k} ∧
p∧
j=2

ddc max{uj ,−k}

+ 1Ekddc max{v1,−k} ∧
p∧
j=2

ddc max{uj ,−k}.

Again by Lemma II.1.1, we find that the RHS converges weakly to the RHS of (2.5)
as k →∞. This concludes the proof. �

Definition II.1.2. Let T1, . . . , Tp ∈ D′1,1+ (X). We say that 〈T1 ∧ · · · ∧ Tp〉 is
well-defined if there exists an open covering U of X, such that on each U ∈ U , we
can find uUj ∈ PSH(U) (j = 1, . . . , p) such that

ddcuUj = Tj , j = 1, . . . , p
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and such that 〈ddcuU1 ∧ · · · ∧ ddcuUp 〉 is well-defined. In this case, we define 〈T1 ∧
· · · ∧ Tp〉 ∈ D′p,p(X) by

(2.9) 〈T1 ∧ · · · ∧ Tp〉|U = 〈ddcuU1 ∧ · · · ∧ ddcuUp 〉, U ∈ U .

Remark II.1.3. It follows from Proposition II.1.3 that (2.9) defines a unique
well-defined current in D′p,p(X) and that the well-defineness of 〈T1 ∧ · · · ∧ Tp〉 and
its exact value are bot independent of the choice of U and uUj .

Proposition II.1.4. Let T1, . . . , Tp ∈ D′1,1+ (X).
(1) The product 〈T1 ∧ · · · ∧ Tp〉 is local in plurifine topology. In the following

sense: let O ⊆ X be a plurifine open subset, let S1, . . . , Sp ∈ D′1,1+ (X),
assume that

Tj |O = Sj |O, j = 1, . . . , p.
Assume that

〈T1 ∧ · · · ∧ Tp〉, 〈S1 ∧ · · · ∧ Sp〉.

are both well-defined, then
(2.10) 〈T1 ∧ · · · ∧ Tp〉|O = 〈S1 ∧ · · · ∧ Sp〉|O .

If O is open in the usual topology, then the product
〈T1 ∧ · · · ∧ Tp|O〉

on O is well-defined and
(2.11) 〈T1 ∧ · · · ∧ Tp〉|O = 〈T1 ∧ · · · ∧ Tp|O〉.

Let U be an open covering of X. Then 〈T1 ∧ · · · ∧ Tp〉 is well-defined iff
each of the following product is well-defined

〈T1 ∧ · · · ∧ Tp|U 〉, U ∈ U .

(2) Assume that 〈T1∧ · · ·∧Tp〉 is well-defined, then the product 〈T1∧ · · ·∧Tp〉
puts not mass on pluripolar sets.

(3) Assume that 〈T1 ∧ · · · ∧ Tp〉 is well-defined, then

〈T1 ∧ · · · ∧ Tp〉 ∈ D′p,p+ (X).
(4) The product 〈T1∧· · ·∧Tp〉 is symmetric (the meaning is as in Remark II.1.2).
(5) The product is multi-linear: let T ′1 ∈ D

′1,1
+ (X), then

〈(T1 + T ′1) ∧ T2 ∧ · · · ∧ Tp〉 = 〈T1 ∧ T2 ∧ · · · ∧ Tp〉+ 〈T ′1 ∧ T2 ∧ · · · ∧ Tp〉

in the sense that LHS is well-defined iff both terms on RHS are well-
defined, and the equality holds in that case.

Proof. All statements follow immediately from the corresponding statements
in Proposition II.1.3. �

Let us observe that we have the following log concavity property.

Theorem II.1.5. Let T1, . . . , Tn ∈ D′1,1+ (X). Let µ ∈ M+(X) be a non-
pluripolar measure. Let fj (j = 1, . . . , n) be non-negative measurable functions
on X. Assume that the following currents are well-defined:

〈Tnj 〉, 〈T1 ∧ · · · ∧ Tn〉, j = 1, . . . , n.
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Assume that

(2.12) 〈Tnj 〉 ≥ fjµ, j = 1, . . . , n.

Then

(2.13) 〈T1 ∧ · · · ∧ Tn〉 ≥ (f1 · · · fn)1/n
µ.

Proof. This result has a local nature, so we may assume that X is the unit
ball in Bn ⊆ Cn. Then we write Tj = ddcϕj , where ϕj ∈ PSH(Bn). By possibly
shrinking X, we may assume that ϕj ∈ PSH(B̄n).

Step 1. We show that it suffices to prove (2.13) under the assumption that ϕj
are all bounded.

In fact, by Proposition II.1.4 and (2.12), we have for any k ≥ 0,

(ddc(ϕ1 ∨ (−k)))n ≥ 1Okfjµ.

Hence if the theorem holds in the bounded case, we have

ddc(ϕ1 ∨ (−k)) ∧ · · · ∧ ddc(ϕn ∨ (−k)) ≥ 1Ok (f1 · · · fn)1/n
µ.

Again by Proposition II.1.4, we get

〈ddcϕ1 ∧ · · · ∧ ddcϕn〉 ≥ 1Ok (f1 · · · fn)1/n
µ.

Let k →∞, we conclude (2.13) since µ does not charge the pluripolar setX−
⋃
k Ok.

Step 2. Reduce to the case where µ = λ. Here λ denotes the Lebesgue
measure. Assume that the theorem holds for Lebesgue measure.

Let ϕkj (k ≥ 1) be the canonical approximations of ϕj constructed in Sec-
tion I.2.2. We shall use the notations in Section I.2.2. Then

ddcϕk1 ∧ · · · ∧ ddcϕkn ≥
∑
a∈Ik

(∏n
j=1

∫
Ia
k
(ddcϕkj )n

)1/n

λ(Iak ) 1Ia
k
λ

≥
∑
a∈Ik

(∏n
j=1

∫
Ia
k
fj dµ

)1/n

λ(Iak ) 1Ia
k
λ

≥
∑
a∈Ik

∫
Ia
k

(∏n
j=1 fj

)1/n
dµ

λ(Iak ) 1Ia
k
λ,

where the first inequality follows from our assumption, the second follows from
(2.12), the third is just the Hölder inequality.

Let k →∞, it follows from Proposition I.2.6, Remark I.2.3 and Proposition I.2.7
that (2.13) holds.

Step 3. Reduce to smooth ϕj . Assume that the theorem is known when ϕj
are smooth. We may assume that ϕj are defined and is psh in a neighbourhood of
B̄n.

Let χε be the Friedrichs kernels.
A direct calculation shows that

(ddc(ϕj ∗ χε))n ≥ fj ∗ χελ.
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So

ddc(ϕ1 ∗ χε) ∧ · · · ∧ ddc(ϕn ∗ χε) ≥

 n∏
j=1

fj ∗ χε

1/n

λ

Let ε→ 0 and use Theorem I.2.5, we are done.
Step 4 When ϕj are smooth, µ = λ. The result follows from the concavity of

H 7→ log detH, where H is an n× n positive Hermitian matrix. �

Finally we concentrate on the most important case.

Proposition II.1.6. Let X be a compact Kähler manifold. Let T1, . . . , Tp ∈
D′1,1+ (X). Then

〈T1 ∧ · · · ∧ Tp〉
is well-defined.

Proof. Fix a Kähler form ω on X. In this case, write Tj = (Tj + Cω) − Cω
for C > 0 large enough and apply Proposition II.1.4 (5), we may assume that Tj is
in a Kähler class. So we can write

Tj = ωj + ddcϕj ,

where ωj is a Kähler form and ϕj is ωj-psh. Let U be an open subset on which we
can write

ωj = ddcψj

with psh functions ψj ≤ 0 on U . Now on U , for each k ≥ 0,

{ψj + ϕj > −k} ⊆ {ϕj > −k},

so for each compact subset K ⊆ U ,∫
K

1∩p
j=1{ψj+ϕj>−k}

p∧
j=1

ddc max{ψj + ϕj ,−k} ∧ ωn−p

=
∫
K

1∩p
j=1{ψj+ϕj>−k}

p∧
j=1

(ωj + ddc max{ϕj ,−k}) ∧ ωn−p

≤
∫
X

p∧
j=1

(ωj + ddc max{ϕj ,−k}) ∧ ωn−p

=
∫
X

p∧
j=1

ωj ∧ ωn−p.

�

From now on, we will omit the angle brackets from our notations.

II.2. Semicontinuity of non-pluripolar products

Let X be a compact Kähler manifold of dimension n. Let m ∈ N. Let
α1, . . . , αn ∈ H1,1(X,R) be big cohomology classes. Let θj ∈ αj (i = 1, . . .m,
j = 1, . . . , n) be smooth representatives.
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Lemma II.2.7. Let U ⊆ X be an open set. Let θi (i = 1, . . . ,m) be smooth
(1, 1)-forms on U . Let ϕj , ϕkj ∈ PSH(X, θj) (k ∈ N, j = 1, . . . , n). Let ϕi,k, ψi,k, ϕi, ψi ∈
PSH(U, θi) (k ∈ N, i = 1, . . . ,m). Let χ ≥ 0 be a bounded quasi-continuous function
on X with Suppχ ⊆ U . Assume the following:

(1) There is a closed pluripolar set S ⊆ X such that ϕkj , ϕj ∈ L∞loc(X − S)
(k ∈ N, j = 1, . . . , n).

(2) For any j = 1, . . . , n, i = 1, . . . ,m, as k →∞,

ϕkj
C−→ ϕj , on X

and
ϕi,k

C−→ ϕi , ψi,k
C−→ ψi , on U .

Then we have
(2.14)

lim
k→∞

∫⋂m

i=1
{ϕi,k>ψi,k}

χ θ1,ϕk1 ∧ · · · ∧ θn,ϕkn ≥
∫⋂m

i=1
{ϕi>ψi}

χ θ1,ϕ1 ∧ · · · ∧ θn,ϕn .

Proof. For each ε > 0, i = 1, . . . ,m, k ∈ N, define the following functions on
U ,

f i,kε := (ϕi,k − ψi,k) ∨ 0
(ϕi,k − ψi,k) ∨ 0 + ε

, f iε := (ϕi − ψi) ∨ 0
(ϕi − ψi) ∨ 0 + ε

.

Then f i,kε and f iε are quasi-continuous and take value in [0, 1]. We then have as
k →∞,

f i,kε
C−→ f iε .

By Theorem I.2.5, as k →∞, we have

χ

m∏
i=1

f i,kε θ1,ϕk1 ∧ · · · ∧ θn,ϕkn ⇀ χ

m∏
i=1

f iε θ1,ϕ1 ∧ · · · ∧ θn,ϕn

as currents on U − S. Since S is pluripolar, we get∫
U

χ

m∏
i=1

f iε θ1,ϕ1 ∧ · · · ∧ θn,ϕn ≤ lim
k→∞

∫
U

χ

m∏
i=1

f i,kε θ1,ϕk1 ∧ · · · ∧ θn,ϕkn

≤ lim
k→∞

∫⋂m

i=1
{ϕi,k>ψi,k}

χ θ1,ϕk1 ∧ · · · ∧ θn,ϕkn ,

where the second inequality follows the following inequality on U

f i,kε ≤ 1{ϕi,k>ψi,k}

and the fact that Suppχ ⊆ U .
Observe that as ε → 0+, f iε increases pointwisely to 1ϕi>ψi . Let ε → 0+ and

apply the monotone convergence theorem, we conclude (2.14). �

Remark II.2.4. Here convergence in capacity (resp. quasi-continuity) means
convergence (resp. quasi-continuity) in local Bedford–Taylor capacity as in Defi-
nition I.2.14 (resp. Definition I.2.13). As we will show later in Theorem III.2.46
and Theorem III.2.48, this is equivalent to convergence (resp. quasi-continuity) in
global Monge–Ampère capacity.
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Theorem II.2.8. Let U ⊆ X be an open set. Let θi (i = 1, . . . ,m) be
smooth (1, 1)-forms on U . Let ϕj , ϕkj ∈ PSH(X, θj) (k ∈ Z>0, j = 1, . . . , n). Let
ϕi,k, ψi,k, ϕi, ψi ∈ PSH(U, θi) (k ∈ N, i = 1, . . . ,m). Let χ ≥ 0 be a bounded quasi-
continuous function on X with Suppχ ⊆ U . Assume that for any j = 1, . . . , n,
i = 1, . . . ,m, as k →∞,

ϕkj
C−→ ϕj , on X

and
ϕi,k

C−→ ϕi , ψi,k
C−→ ψi , on U .

Then we have
(2.15)

lim
k→∞

∫⋂m

i=1
{ϕi,k>ψi,k}

χ θ1,ϕk1 ∧ · · · ∧ θn,ϕkn ≥
∫⋂m

i=1
{ϕi>ψi}

χ θ1,ϕ1 ∧ · · · ∧ θn,ϕn .

Proof. Let

Ω =
n⋂
j=1

Amp(θj) .

Then by definition, Vθj (j = 1, . . . , n) is locally bounded on Ω. For each C > 0, let

ϕk,Cj := ϕkj ∨ (Vθ − C) , ϕ,Cj := ϕj ∨ (Vθ − C) .

Then as k →∞
ϕk,Cj

C−→ ϕ,Cj .

Then by Lemma II.2.7,∫⋂m

i=1
{ϕi>ψi}∩

⋂n

j=1
{ϕj>Vθj−C}

χ θ1,ϕ1 ∧ · · · ∧ θn,ϕn

≤
∫⋂m

i=1
{ϕi>ψi}∩

⋂n

j=1
{ϕj>Vθj−C}

χ θ1,ϕ,C1
∧ · · · ∧ θn,ϕ,Cn

≤ lim
k→∞

∫⋂m

i=1
{ϕi,k>ψi,k}∩

⋂n

j=1
{ϕ,k

j
>Vθj−C}

χ θ1,ϕk,C1
∧ · · · ∧ θn,ϕk,Cn

= lim
k→∞

∫⋂m

i=1
{ϕi,k>ψi,k}∩

⋂n

j=1
{ϕ,k

j
>Vθj−C}

χ θ1,ϕk1 ∧ · · · ∧ θn,ϕkn

≤ lim
k→∞

∫⋂m

i=1
{ϕi,k>ψi,k}

χ θ1,ϕk1 ∧ · · · ∧ θn,ϕkn .

Let C →∞, we conclude by monotone convergence theorem. �

Corollary II.2.9. Let ϕj , ϕkj ∈ PSH(X, θj) (k ∈ Z>0, j = 1, . . . , n). Let χ ≥
0 be a bounded quasi-continuous function on X. Assume that for any j = 1, . . . , n,
i = 1, . . . ,m, as k →∞,

ϕkj
C−→ ϕj .

Then for any plurifine open set U ⊆ X, we have

(2.16) lim
k→∞

∫
U

χ θ1,ϕk1 ∧ · · · ∧ θn,ϕkn ≥
∫
U

χ θ1,ϕ1 ∧ · · · ∧ θn,ϕn .
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Proof. Let x ∈ U , we can take a neighbourhood V of x inside U of the
following form:

V =
m⋂
i=1
{ϕi < Ai} ∩

m′⋂
k=1
{ψk > Bk} ,

where m,m′ ∈ N, Ai, Bk ∈ R, ϕi, ψk are psh functions in a coordinate neighbour-
hood of x. By the standard partition of unity argument, in order to prove (2.16), it
suffices to prove it for plurifine open sets taking the form of V . In this case, (2.16)
follows immediately from Theorem II.2.8. �

Corollary II.2.10. Assume in addition that

(2.17) lim
k→∞

∫
X

θ1,ϕk1 ∧ · · · ∧ θn,ϕkn ≤
∫
X

θ1,ϕ1 ∧ · · · ∧ θn,ϕn .

Then
θ1,ϕk1 ∧ · · · ∧ θn,ϕkn ⇀ θ1,ϕ1 ∧ · · · ∧ θn,ϕn .

Remark II.2.5. (2.17) is automatically satisfied if any of the following case is
true. 1. ϕkj ↗ ϕj , a.e. as k →∞. (Corollary II.3.23) 2. ϕkj , ϕj ∈ E(X, θj).

Theorem II.2.11. Let p ≤ n. Let α0, . . . , αp be big classes on X with smooth
representatives θ0, . . . , θp.

Let W ⊆ X be an open subset. Let χ ∈ C0
c (W ), χ ≥ 0. Let Θ ∈ D′n−p,n−p+ (W ).

Let ϕkj , ϕj ∈ PSH(W, θj) (j = 0, . . . , p and k ∈ Z>0). Let ψk, ψ ∈ PSH(W, θ0).
Assume that there is a closed pluripolar set S, such that
(1) ϕkj , ψk are uniformly bounded on each compact subset of Suppχ− S.
(2) ϕkj (resp. ψk) decrease to ϕj (resp. ψ) for any j.
(3) ϕk0 − ψk are uniformly bounded on Suppχ− S.
(4)
χ1X−S θ1,ϕk1 ∧ · · · ∧ θp,ϕkp ∧Θ ⇀ χ1X−S θ1,ϕ1 ∧ · · · ∧ θp,ϕp ∧Θ, k →∞.

Then as k →∞,
χ(ϕk0 − ψk)1X−S θ1,ϕk1 ∧ · · · ∧ θp,ϕkp ∧Θ ⇀ χ(ϕ0 − ψ)1X−S θ1,ϕ1 ∧ · · · ∧ θp,ϕp ∧Θ.

Proof. Let
µk := χ1X−S θ1,ϕk1 ∧ · · · ∧ θp,ϕkp ∧Θ, µ := χ1X−S θ1,ϕ1 ∧ · · · ∧ θp,ϕp ∧Θ.

Let ρ ∈ C0
c (W ). It suffices to prove

lim
k→∞

∫
W

ρ(ϕk0 − ψk)µk =
∫
X

ρ(ϕ0 − ψ)µ.

By assumption, µk ⇀ µ, so
lim
k→∞

µk(W ) = µ(W ).

Fix ε > 0. Take open sets U b V bW − S such that
µ(W − U) < ε.

Let τ ∈ C0
c (V ), 1 ≥ τ ≥ 0, τ = 1 on U .

Notice that
lim
k→∞

µk(U) ≥ µ(U).
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So
lim
k→∞

µk(W − U) ≤ µ(W − U) < ε.

By assumption, on V , χ(ϕk0 − ψk), ϕkj are all bounded, so we can apply the
local result in Bedford–Taylor theory ([GZ17] Theorem 3.18) to get

χ(ϕk0 − ψk)µk ⇀ χ(ϕ0 − ψ)µ.
So ∫

V

τρχ(ϕ0 − ψ)µ = lim
k→∞

∫
V

τρχ(ϕk0 − ψk)µk.

So∣∣∣∣∫
W

ρ(ϕk0 − ψk)µk −
∫
W

ρ(ϕ0 − ψ)µ
∣∣∣∣ ≤ Cε+∣∣∣∣∫

V

ρτ(ϕk0 − ψk)µk −
∫
V

ρτ(ϕ0 − ψ)µ
∣∣∣∣ .

Hence
lim
k→∞

∣∣∣∣∫
W

ρ(ϕk0 − ψk)µk −
∫
W

ρ(ϕ0 − ψ)µ
∣∣∣∣ ≤ Cε.

Let ε→ 0+, we conclude. �

Theorem II.2.12. Let α1, . . . , αn be big classes on X with smooth representa-
tives θ1, . . . , θn. Let ϕkj , ϕj ∈ PSH(X, θj) (j = 1, . . . , n and k ∈ Z>0). Let fk, f are
bounded quasi-continuous function on X. Assume that fk are uniformly bounded
and that fk C−→ f . Assume that there is a closed pluripolar set S, such that

(1) ϕkj are uniformly bounded on each compact subset of X − S.
(2) ϕkj

C−→ ϕj as k →∞.
(3)

θ1,ϕk1 ∧ · · · ∧ θn,ϕkn ⇀ θ1,ϕ1 ∧ · · · ∧ θn,ϕn , k →∞.
Then

fk θ1,ϕk1 ∧ · · · ∧ θn,ϕkn ⇀ f θ1,ϕ1 ∧ · · · ∧ θn,ϕn , k →∞.

Proof. The proof is almost identical to that of Theorem II.2.11. �

Remark II.2.6. One can also state Theorem II.2.12 in a local way as Theo-
rem II.2.11.

II.3. Monotonicity of Monge–Ampère masses

II.3.1. Notations. Let X be a compact Kähler manifold of dimension n. Let
α be a big class with smooth representative θ. Let Z be the complement of the
ample locus of α. For each N ≥ 1, define

ΣN := {α ∈ RN≥0 : |α| ≤ 1},
where |α| is the sum of components of α.

For each N ≥ 1, we fix a basis Z0, . . . , ZN of H0(PN ,O(1)). Let

H = HN := {Z0 = 0} ⊆ PN .

On PN −H, define

za := Za
Z0
∈ Γ(PN −H,O), a = 1, . . . , N.

We will identify PN −H with CN via (z1, . . . , zN ).
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Let ωN be the Fubini–Study form on PN , normalized so that∫
PN
ωNN = 1.

By abuse of notation, we denote the metric induced by ωN on O(1) by ωN . Observe
that on PN −H,

(2.18) ωN = −ddc log |Z0|2ωN .

For each N ≥ 1, let
XN := X × PN .

Let πN1 , πN2 be the natural projections:

XN PN

X

πN1

πN2

For simplicity, we denote πN∗2 ZA by ZA (A = 0, . . . , N), similar convention is used
for z1, . . . , zN . Similarly, we omit πN∗1 from our notations from time to time.

Let
θN =

(
πN1
)∗
θ +

(
πN2
)∗
ωN .

Note that [θN ] is a big class on XN .
Fix η ∈ PSH(X, θ) such that
(1) η ∈ C∞(X − Z).
(2) η ≤ 0.

We may even assume that η has analytic singularity by [Bou04] Theorem 3.17.

II.3.2. Quadratic optimization. Let N ≥ 1. We study the following func-
tion fN : RN → R:

fN (x) := min
α∈ΣN

(x− α)2.

Let Π : RN → ΣN be the closest point projection. It is well-defined since ΣN is
convex and closed. Let e = (1, 1, . . . , 1) ∈ RN .

Let F be the set of faces of ΣN as a simplex. By a face, we mean the interior
of the face. The extremal points of ΣN are also considered as faces in F . So

ΣN =
∐
F∈F

F.

Observe that if Π(x) ∈ F ∈ F , then so is Π(x + εe) for small enough ε > 0. Let
AF = Π−1F , then

RN =
∐
F∈F

AF .

Now observe that on each AF , Π is affine.
Define gN : RN → R:

gN (x) = fN (x)− x2.

Then we have
gN (x) = (x−Πx)2 − x2.
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Proposition II.3.13. For x ∈ RN ,

gN (x+ te)− gN (x) = tLN (x) +O(t2), t→ 0+,

where the O-constant depends only on N , LN (x) is a bounded continuous piecewise
linear function whose coefficients depend only on N .

When x ∈ Σ̊N , LN (x) = −2|x|.

Proof. All statements are obvious except that LN (x) is bounded and contin-
uous. To see that LN is bounded, it suffices to show that gN (x + te) − gN (x) is
bounded for a fixed t > 0. More generally, let x, y ∈ RN , then

gN (x)− gN (y) ≥ min
α∈ΣN

(
(x− α)2 − x2 − (y − α)2 + y2) = min

α∈ΣN
2α · (y − x).

A similar inequality hold if we interchange x and y. So

|gN (x)− gN (y)| ≤ C.

To see LN is continuous, observe that

gN (x+ te)− gN (x)

is a quadratic function in t for any x. And since LN (x) is nothing but the coefficient
of t, it suffices to show that gN (x + te) − gN (x) is continuous in x for three value
of t. So the result follows from the obvious continuity of gN . �

Proposition II.3.14. The function gN ∈ C1,1
loc (RN ).

Proof. It follows from general facts that

x 7→ (x−Πx)2

is in C1,1. See [BL10] Section 3.3 Exercise 12(d) and Section 2.1 Exercise 8(c.iii). �

Now we extend the domain of definition of gN , we will get a symmetric function
gN : [−∞,∞)N → R. The definition is by induction on N , when N = 1, we simply
define

g1(−∞) = 0.
For N > 1, define

gN (x1, . . . , xM , xM+1, . . . , xN ) = gM (x1, . . . , xM ),

where xM+1, . . . , xN = −∞ and x1, . . . , xM ∈ R. We formally set g0 = 0. We get
a full definition of gN by requiring that it is symmetric in the N -arguments. It is
not hard to see that gN is continuous.

Proposition II.3.15. The function gN : [−∞,∞)N → R is decreasing in each
of its arguments.

Proof. It suffices to prove this on RN . By definition, it suffices to show that
for each α ∈ ΣN , the function

(x− α)2 − x2

is decreasing in each argument. This reduces immediately to the case N = 1 and
the result is obvious. �
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II.3.3. Witt Nyström construction. Let W ⊆ X be an open subset. Let
ϕ be a θ-psh function on W . We define ΦN [ϕ] ∈ PSH(W × PN , θN ) by
(2.19)

ΦN [ϕ] := sup*
α∈ΣN

(
(1− |α|)(η + log |Z0|2ωN ) + |α|ϕ+

N∑
a=1

αa log |Za|2ωN − α
2

)
.

Define α̂a = α̂a[ϕ] : (W − Z)× CN → [−∞,∞) (a = 1, . . . , N) by

(2.20) α̂a := log |za|2 + ϕ− η
2 .

Observe that α̂a is usc.
We define α̂ : (W − Z)× CN → [−∞,∞)N by

(2.21) α̂ = (α̂1, . . . , α̂N ).

Proposition II.3.16. Let W ⊆ X be an open subset. Let ϕ ∈ PSH(W, θ).
Then

(1) ΦN [ϕ] is increasing in ϕ.
(2)

(2.22)

ΦN [ϕ] = sup
α∈ΣN

(
(1− |α|)(η + log |Z0|2ωN ) + |α|ϕ+

N∑
a=1

αa log |Za|2ωN − α
2

)

on (W − Z)× (PN −H). Moreover, on this set,

(2.23) ΦN [ϕ] = log |Z0|2ωN + η − gN ◦ α̂[ϕ],

where gN is the function defined in Section II.3.2.

Proof. (1) follows directly from definition.
(2) In order to prove (2.22), it suffices to show that the RHS of (2.22) is usc

on (W − Z)× (PN −H).
Since log |Z0|2ωN is obviously continuous, it suffices to prove that the following

function is usc on (W − Z)× CN :

I := sup
α∈ΣN

(
(1− |α|)η + |α|ϕ+

N∑
a=1

αa log |za|2 −
N∑
a=1

α2
a

)
=η − gN ◦ α̂

by completing the square.
Since α̂a is usc and gN is continuous and decreasing (Proposition II.3.15), we

conclude that I is usc. Moreover, (2.23) is implied by our calculation. �

Corollary II.3.17. Let ϕj , ϕ (j ∈ Z>0) be θ-psh functions on W . If ϕj
converges to ϕ outside a pluripolar set, then ΦN [ϕj ] also converges to ΦN [ϕ] outside
a pluripolar set. The sequence ΦN [ϕj ] is decreasing if ϕj is.

Corollary II.3.18. Let ϕ ∈ PSH(X, θ), then

ΦN [ϕ] ≥ η + log |Z0|2ωN .
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II.3.4. Witt Nyström’s theorem.

Theorem II.3.19. Let W ⊆ X be an open subset. Let ϕ ∈ PSH(W, θ), N ≥ 1.
Assume that both θnϕ and θN+n

N,ΦN [ϕ] are well-defined. Then we have

(2.24) πN1∗θ
N+n
N,ΦN [ϕ] =

(
N + n

n

)
N

∫ 1

0
θn(1−t)η+tϕt

N−1 dt.

Remark II.3.7. We can evaluate the integral on the RHS, this is an example
of the so called β-integral, the result is

(2.25)
(
N + n

n

)
N

∫ 1

0
θn(1−t)η+tϕt

N−1 dt =
n∑
j=0

(
N + n− 1− j

n− j

)
1
j! θ

j
η ∧ θn−jϕ .

Proof. Observe that θ(1−t)η+tϕ is well-defined for any t ∈ [0, 1] by Proposi-
tion II.1.4.

Since the problem is local in nature, we may assume that W is the unit disk in
Cn. Moreover, since locally we may absorb θ into the potentials and set θ = 0, so
that ϕ is psh. In the following, we keep θ only to make the notations less messy.

Step 1. Let us show that we can always reduce to the case where ϕ is bounded.
In fact, for each C > 0, let ϕC := ϕ∨ (−C). If we have proved the special case, we
get

πN1∗θ
N+n
N,ΦN [ϕC ] =

(
N + n

n

)
N

∫ 1

0
θn(1−t)η+tϕC t

N−1 dt.

Hence

1{ϕ>−C}π
N
1∗θ

N+n
N,ΦN [ϕC ] = 1{ϕ>−C}

(
N + n

n

)
N

∫ 1

0
θn(1−t)η+tϕC t

N−1 dt.

Observe that

1{ϕ>−C}π
N
1∗θ

N+n
N,ΦN [ϕC ] = πN1∗

(
1{ϕ>−C}θ

N+n
N,ΦN [ϕC ]

)
,

since ΦN [ϕC ] = ΦN [ϕ] on the plurifine open set {ϕ > −C} ⊆W × PN .
So we get

(2.26) πN1∗

(
1{ϕ>−C}θ

N+n
N,ΦN [ϕ]

)
= 1{ϕ>−C}

(
N + n

n

)
N

∫ 1

0
θn(1−t)η+tϕt

N−1 dt.

When C →∞, by dominated convergence theorem, we have

1{ϕ>−C}

(
N + n

n

)
N

∫ 1

0
θn(1−t)η+tϕt

N−1 dt ⇀
(
N + n

n

)
N

∫ 1

0
θn(1−t)η+tϕt

N−1 dt,

Similarly, as C →∞,
1{ϕ>−C}θ

N+n
N,ΦN [ϕ] ⇀ θN+n

N,ΦN [ϕ].

Since πN1 is continuous,

πN1∗

(
1{ϕ>−C}θ

N+n
N,ΦN [ϕ]

)
⇀ πN1∗θ

N+n
N,ΦN [ϕ].

Hence let C →∞ in (2.26), we conclude (2.24).
Step 2. Let us show that we can further reduce to the case where ϕ is smooth.

Assume that the theorem holds when ϕ is smooth. Let ϕk (k ∈ Z>0) be a decreasing
sequence of smooth psh functions on W converging to ϕ.
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Then we get

(2.27) πN1∗θ
N+n
N,ΦN [ϕk] =

(
N + n

n

)
N

∫ 1

0
θn(1−t)η+tϕkt

N−1 dt.

By Corollary II.3.17, ΦN [ϕk] decrease to ΦN [ϕ] outside a pluripolar set, hence
to ΦN [ϕ] everywhere ([GZ17] Corollary 1.38). In particular, by Bedford–Taylor
theory

θN+n
N,ΦN [ϕk] ⇀ θN+n

N,ΦN [ϕ], k →∞

on W × CN . As follows from Step 3, the support of θN+n
N,ΦN [ϕk] is contained in W

times a fixed bounded subset of CN , so

πN1∗θ
N+n
N,ΦN [ϕk] ⇀ πN1∗θ

N+n
N,ΦN [ϕ], k →∞.

The RHS of (2.24) can be written as

(2.28)
n∑
j=0

(
N + n− 1− j

n− j

)
1
j! θ

j
η ∧ θn−jϕ .

See (2.25).
But we know that

θjη ∧ θ
n−j
ϕk

⇀ θjη ∧ θn−jϕ , k →∞

from Bedford–Taylor’s theory. Hence(
N + n

n

)
N

∫ 1

0
θn(1−t)η+tϕkt

N−1 dt ⇀
(
N + n

n

)
N

∫ 1

0
θn(1−t)η+tϕt

N−1 dt, k →∞.

Let k →∞ in (2.27), we get (2.24).
Step 3. Let us show that we can further reduce to the case where η is smooth

as well. First observe that neither side of (2.24) charges the closed set Z, so we
may assume that W ∩ Z = ∅.

Replacing W be a smaller set, we may assume that η is bounded on W .
Take a Demailly approximation as in Step 2, the remaining argument is similar

as that in Step 2.
Step 4. We prove the theorem under the assumption that ϕ, η are both smooth.

Locally, we may set θ = 0 as before. We still keep θ in our notations, but with
θ = 0 understood.

Since θN+n
N,ΦN [ϕ] does not charge

W ×
N⋃
a=0
{Za = 0},

we may restrict ΦN [ϕ] to W × C∗N when proving (2.24). In this case, by (2.23)
and Proposition II.3.14, we have ΦN [ϕ] ∈ C1,1

loc (W × C∗N ).
Let Log : C∗N → RN defined by

(z1, . . . , zN ) 7→ (log |z1|2, . . . , log |zN |2).

By abuse of notation, we also write Log for the map W × CN → W × RN defined
by (Id,Log).
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We identify ΦN [ϕ] with a map on W × RN :

(2.29) ΦN [ϕ](x, y) = sup
α∈ΣN

(
(1− |α|)η(x) + |α|ϕ(x) +

N∑
a=1

αaya −
N∑
a=1

α2
a

)
.

Let
VN := α̂[ϕ]−1(Σ̊N ) ⊆W × CN .

For each x ∈W , let
VN,x = VN ∩

(
{x} × CN

)
.

Let µN : Log[VN ]→W × Σ̊N be the following map:
(x, y) 7→ (x,∇yΦN [ϕ](x, y)) = (x, α̂[ϕ]) ,

where by abuse of notation, we have denoted the function on Log[VN ] induced by
α̂ by the same notation.

Now we claim that ∂VN is has zero Lebesgue measure. In fact, by definition,
∂VN ⊆ α̂[ϕ]−1(∂ΣN ).

It suffices to show that the inverse image of each face of ΣN has zero measure.
In particular, by Fubini theorem, it suffices to prove the following: Let (ba) ∈
[0, 1]N − {(0, . . . , 0)}. Then for any constant C ≥ 0,{

(x, y) ∈W × RN :
N∑
a=1

ba(ya + ϕ(x)− η(x)) = C

}
has zero measure. Again by Fubini theorem, it suffices to prove that for almost all
x ∈W , the set {

y ∈ RN
N∑
a=1

ba(ya + ϕ(x)− η(x)) = C

}
is null, which is obvious.

As ΦN [ϕ] has C1,1-regularity, θN+n
N,ΦN [ϕ] is absolutely continuous, hence does not

charge VN . So
θN+n
N,ΦN [ϕ] = 1VN θ

N+n
N,ΦN [ϕ] + 1W×CN−VN θ

N+n
N,ΦN [ϕ].

Note that then
Log∗ θN+n

N,ΦN [ϕ] = MAR(ΦN [ϕ]),

where ΦN [ϕ] on RHS is understood as a function on W ×RN . The convention here
for the real Monge–Ampère operator is the same as in [CGSZ19, Lemma 2.2].

We also notice that by (2.29), ΦN [ϕ](x, ·) is the Legendre transform of the
following function Ψ : RN → R:

Ψ(α) =
{
α2 − (1− |α|)η(x)− |α|ϕ(x), α ∈ ΣN ,

∞, α 6∈ ΣN .

So ΦN [ϕ] is not strictly convex outside VN , we find

1W×CN−VN θ
N+n
N,ΦN [ϕ] = 0.

On the other hand, on VN , by Proposition II.3.16 (3) and the explicit expression of
gN , we have

ΦN [ϕ] = log |Z0|2ωN + η + α̂[ϕ]2.
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In particular,

ωN + ddcΦN [ϕ] = (1− |α̂[ϕ]|) ddcη + |α̂[ϕ]|ddcϕ+
N∑
a=1

dα̂a[ϕ] ∧ dcα̂a[ϕ].

Obviously, (
N∑
a=1

dα̂a[ϕ] ∧ dcα̂a[ϕ]
)N+1

= 0.

So we get
(2.30)

θN+n
N,ΦN [ϕ] =

(
N + n

n

)
1VN ((1− |α̂[ϕ]|) ddcη + |α̂[ϕ]|ddcϕ)n∧

(
N∑
a=1

dα̂a[ϕ] ∧ dcα̂a[ϕ]
)N

.

Let us evaluate the RHS. It is obvious that in evaluating dα̂a[ϕ] and dcα̂a[ϕ], we
only have to consider differentials in variables in CN . Then

θN+n
N,ΦN [ϕ] =

(
N + n

n

)
1VN ((1− |α̂[ϕ]|) ddcη + |α̂[ϕ]|ddcϕ)n∧

(
N∑
a=1

d log |za| ∧ dc log |za|
)N

.

Pushing forward both sides by µN ◦ Log, we get

(µN ◦ Log)∗θN+n
N,ΦN [ϕ] = N !

(
N + n

n

)
((1− |α|) ddcη + |α|ddcϕ)n ⊗ dλ(α),

as measures on W × Σ̊N , where dλ is the standard Lebesgue measure on Σ̊N .
Pushing-forward both sides to W , we get

πN1,∗θ
N+n
N,ΦN [ϕ] = N !

(
N + n

n

)∫
Σ̊N

((1− |α|) ddcη + |α|ddcϕ)n dλ(α)

= N

(
N + n

n

)∫ 1

0
((1− t)ddcη + tddcϕ)n tN−1 dt.

�

Corollary II.3.20. Let W ⊆ X be an open subset. Let ϕ ∈ PSH(W, θ),
assume that θnϕ and θN+n

N,ΦN [ϕ] are well-defined for all N ≥ 1, then

(2.31) n!
Nn

πN1∗θ
N+n
N,ΦN [ϕ] → θnϕ, N →∞

in total variation.

II.3.5. Witt Nyström’s monotonicity theorem. Let X be a fixed com-
pact Kähler manifold of dimension n. Let α1, . . . , αn ∈ H1,1(X,R) be big cohomol-
ogy classes. Let θj ∈ αj be a smooth representative.

Theorem II.3.21. Let ϕj , ψj ∈ PSH(X, θj). Assume that [ϕj ] � [ψj ] for every
j, then ∫

X

〈θ1,ϕ1 ∧ · · · θn,ϕn〉 ≥
∫
X

〈θ1,ψ1 ∧ · · · θn,ψn〉.

We begin with a special case.
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Lemma II.3.22. Let ϕ,ψ ∈ PSH(X, θ). Assume that [ϕ] = [ψ], then∫
X

θnϕ =
∫
X

θnψ.

Proof. Step 1. We shall prove this lemma under the additional assumption
that ϕ and ψ both have small unbounded loci. In this case, it is more convenient
to prove more generally for ϕj , ψj ∈ PSH(X, θ) with [ϕj ] = [ψj ] that∫

X

〈θϕ1 ∧ · · · ∧ θϕn〉 =
∫
X

〈θψ1 ∧ · · · ∧ θψn〉.

In turn, it suffices to prove the following: let ϕ,ψ ∈ PSH(X, θ), [ϕ] � [ψ], let
Θ ∈ Dn−1,n−1

+ (X), let A be a closed pluripolar set outside which ϕ is locally
bounded, then ∫

X−A
θϕ ∧Θ ≤

∫
X−A

θψ ∧Θ,

We may assume that ψ ≥ ϕ. Let η be a qpsh function that equals −∞ exactly on
A. Adding εη to ϕ and let ε→ 0+ in the end, we may assume that ϕ− ψ → −∞.
Define ψk = ϕ∨(ψ−k) for k > 0. Then ψk coincides with ψ−k in a neighbourhood
of A. Then by Stokes theorem∫

X−A
ddcψk ∧Θ =

∫
X−A

ddcψ ∧Θ

On the other hand, as ψk is decreasing, on X −A, we have

ddcψk ∧Θ ⇀ ddcϕ ∧Θ, k →∞

as currents by Bedford–Taylor theory. Taking the integral on X − A, the result
follows.

Step 2. We shall reduce the general case the case in Step 1.
By Step 1, ∫

XN

θN+n
N,ΦN [ϕ] =

∫
XN

θN+n
N,ΦN [ψ].

The desired result follows from Corollary II.3.20. �

Proof of Theorem II.3.21. For each t > 0, set

ψtj := (ϕj − t) ∨ ψj .

Then ψtj
C−→ ψj . So by Theorem II.2.8, it suffices to prove that∫

X

〈θ1,ϕ1 ∧ · · · ∧ θn,ϕn〉 =
∫
X

〈θ1,ψt1 ∧ · · · ∧ θn,ψtn〉.

Obviously, [ψtj ] = [ϕj ]. So we reduce to prove the theorem in case [ϕj ] = [ψj ].
This follows from Lemma II.3.22 by polarization. More precisely, for each t ∈ Rn>0,
define

ϕt =
∑
j

tjϕj , ψt =
∑
j

tjψj , θt =
∑
j

tjθj .

Then both
∫
X
θnt,ϕt and

∫
X
θnt,ψt are homogeneous polynomials in t of degree n.

Lemma II.3.22 identifies their coefficients. �
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Corollary II.3.23. Let ϕj , ϕkj ∈ PSH(X, θj) for k ∈ Z>0. Assume that ϕkj ↗
ϕj, a.e. as k →∞. Let χ be a bounded quasi-continuous function on X. Then

χ〈θ1,ϕk1 ∧ · · · ∧ θn,ϕkn〉⇀ χ〈θ1,ϕ1 ∧ · · · ∧ θn,ϕn〉.

II.3.6. Full mass class.

Definition II.3.3. We say ϕ ∈ PSH(X, θ) has full mass if∫
X

θnϕ =
∫
X

θnVθ .

The set of ϕ ∈ PSH(X, θ) having full masses is denoted by E(X, θ).

Notice that by Theorem II.3.21, we always have the following inequality:∫
X

θnϕ ≤
∫
X

θnVθ

Again by Theorem II.3.21, we have

(2.32) E∞(X, θ) ⊆ E(X, θ).

Proposition II.3.24. Let ϕ ∈ PSH(X, θ). Assume that 1
2 (ϕ+ Vθ) ∈ E(X, θ),

then ϕ ∈ E(X, θ).

Proof. Let
u = 1

2 (ϕ+ Vθ) .

For any j ≥ 0, let

uj = u ∨ (Vθ − j) , ϕj = ϕ ∨ (Vθ − j).

Then
uj = 1

2 (ϕ2j + Vθ) .

Hence
θuj ≥

1
2θϕ2j .

So ∫
X

1{ϕ≤Vθ−2j} θ
n
ϕ2j
≤ 2n

∫
X

1{u≤Vθ−j} θ
n
uj .

We conclude that
lim
j→∞

∫
X

1{ϕ≤Vθ−2j} θ
n
ϕ2j
→ 0.

�

Proposition II.3.25. Let ϕ ∈ PSH(X, θ). Then∫
X

θnϕ =
∫
X

θn[ϕ]∧Vθ .

Proof. By definition, [ϕ] � [ϕ] ∧ Vθ, so Theorem II.3.21 implies that∫
X

θnϕ ≤
∫
X

θn[ϕ]∧Vθ .

On the other hand,
[ϕ] = [(ϕ+ C) ∧ Vθ],
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so again by Theorem II.3.21, ∫
X

θnϕ =
∫
X

θn(ϕ+C)∧Vθ .

Take the limit C →∞, according to Theorem II.2.8,∫
X

θnϕ ≥
∫
X

θn[ϕ]∧Vθ .

We conclude. �

Corollary II.3.26. Let ϕ ∈ PSH(X, θ). Then ϕ ∈ E(X, θ) if [ϕ] ∧ Vθ = Vθ.

Remark II.3.8. We will see in Theorem III.4.66 that the converse is also true.

II.4. Comparison principles

Let X be a compact Kähler manifold of dimension n. Let α, α1, . . . , αn ∈
H1,1(X,R) be big cohomology classes. Let θ ∈ α, θj ∈ αj (j = 1, . . . , n) be smooth
representatives.

Theorem II.4.27 (Comparison principle. I). Let ϕ,ψ ∈ PSH(X, θ). Assume
that [ψ] � [ϕ] ∧ Vθ. Then

(2.33)
∫
{ϕ<ψ}

θnψ ≤
∫
{ϕ<ψ}

θnϕ.

Proof. Step 1. We reduce to the case where ϕ ≤ ψ.
Let η = ϕ ∨ ψ.∫

{ϕ<ψ}
θnψ =

∫
{ϕ<η}

θnη ,

∫
{ϕ<η}

θnϕ =
∫
{ϕ<ψ}

θnϕ.

So (2.33) is equivalent to the corresponding statement with ψ replaced by η.
Step 2. We assume that ϕ ≤ ψ.
Now Proposition II.3.25 and Theorem II.3.21 imply∫

X

θnϕ =
∫
X

θnψ =
∫
X

θn[ϕ]∧Vθ .

For any ε > 0, let
ψε = (ϕ+ ε) ∨ ψ.

Again by Proposition II.3.25 and Theorem II.3.21,∫
X

θnϕ =
∫
X

θnψε .

So ∫
X

θnψε ≥
∫
{ϕ+ε>ψ}

θnϕ +
∫
{ϕ+ε<ψ}

θnψ

=
∫
X

θnϕ −
∫
{ϕ+ε≤ψ}

θnϕ +
∫
{ϕ+ε<ψ}

θnψ.

Hence ∫
{ϕ+ε≤ψ}

θnϕ ≥
∫
{ϕ+ε<ψ}

θnψ.

Let ε→ 0+, we conclude by monotone convergence theorem. �
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Theorem II.4.28 (Comparison principle II.). Let φ ∈ PSH(X, θ). Assume that
ϕ,ψ ∈ E(X, θ), then ∫

{ϕ<ψ}
θnψ ≤

∫
{ϕ<ψ}

θnϕ.

The proof is almost identical to that of Theorem II.4.27 and is left to the reader.

Remark II.4.9. As we will see later, Theorem II.4.28 follows directly from
Theorem II.4.27.

Corollary II.4.29. Let ϕ,ψ ∈ PSH(X, θ).
(1) Assume that ϕ ≤ ψ and that ϕ ∈ E(X, θ), then ψ ∈ E(X, θ). Moreover, in

this case, for any C > 0,

(2.34)
∫
X

1{ψ<Vθ−C} θ
n
ψ ≤ 2n

∫
X

1{ϕ<Vθ−C/2} θ
n
ϕ .

(2) Assume that ϕ,ψ ∈ E(X, θ), then 1
2 (ϕ+ ψ) ∈ E(X, θ).

In particular, E(X, θ) is convex.

Proof. We may assume that ϕ,ψ ≤ −2.
(1) By Proposition II.3.24, it suffices to show that

v := 1
2(ψ + Vθ) ∈ E(X, θ).

For each j ≥ 1, let
vj := v ∨ (Vθ − j), ϕj = ϕ ∨ (Vθ − j).

Now we have
{v ≤ Vθ − j} ⊆ {ϕ2j < vj − j + 1} ⊆ {ϕ ≤ Vθ − j}.

So by Theorem II.4.28,∫
X

1{v≤Vθ−j} θ
n
vj ≤

∫
X

1{ϕ2j<vj−j+1} θ
n
vj ≤

∫
X

1{ϕ2j<vj−j+1} θ
n
ϕ2j
≤
∫
X

1{ϕ≤Vθ−j} θ
n
ϕ2j
.

Hence ∫
X

1{ϕ>Vθ−j} θ
n
ϕ ≤

∫
X

1{v>−j}θ
n
v .

Let j →∞, we conclude that v ∈ E(X, θ).
As for (2.34), observe that

{ψ < Vθ − C} ⊆ {ϕ < v + C/2} ⊆ {ϕ < Vθ − C/2} .
So by Theorem II.4.28,∫

X

1{ψ<Vθ−C} θ
n
ψ ≤

∫
X

1{ϕ<v+C/2} θ
n
ψ ≤ 2n

∫
X

1{ϕ<v+C/2} θ
n
v

≤ 2n
∫
X

1{ϕ<v+C/2} θ
n
ϕ ≤ 2n

∫
X

1{ϕ<Vθ−C/2} θ
n
ϕ .

(2) By Proposition II.3.24, it suffices to prove that

w := 1
4 (ϕ+ ψ + 2Vθ) ∈ E(X, θ).

We may assume that ϕ ≤ −2, ψ ≤ −2. For any j ≥ 1, let
wj = w ∨ (Vθ − j), ϕj = ϕ ∨ (Vθ − j), ψj = ψ ∨ (Vθ − j).
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Observe that
{ϕ ≤ Vθ − 2j} ⊆ {ϕ2j < wj − j + 1} ⊆ {ϕ ≤ Vθ − j}.

Hence ∫
X

1{ϕ≤Vθ−2j} θ
n
vj ≤

∫
X

1{ϕ≤Vθ−j} θ
n
ϕ2j
≤
∫
X

1{ϕ≤Vθ−j} θ
n
ϕj .

Let j →∞, we find ∫
X

1{ϕ≤Vθ−2j} θ
n
vj → 0.

By symmetry, the same holds for ψ in place of ϕ. As
{v ≤ Vθ − j} ⊆ {ϕ ≤ Vθ − 2j} ∪ {ψ ≤ Vθ − 2j},

we conclude ∫
X

1{v≤Vθ−j} θ
n
vj → 0.

Hence v ∈ E(X, θ). �

Corollary II.4.30. Let ϕ1, . . . , ϕn ∈ E(X, θ). Then∫
X

θϕ1 ∧ · · · ∧ θϕn =
∫
X

θnVθ .

Proof. Let t1, . . . , tn ∈ R≥0 be such that
∑n
j=1 tj = 1. Then by Corol-

lary II.4.29,
n∑
j=1

tjϕj ∈ E(X, θ).

Hence ∫
X

 n∑
j=1

tjθϕj

n

=
∫
X

θnVθ .

Comparing the coefficients for various tj , we conclude. �

For later use, we also need a polarized version.

Theorem II.4.31 (Comparison principle III.). Let ϕk, ψk ∈ PSH(X, θk) for
k = 1, . . . , j, where j ≤ n. Let u, v, ϕ ∈ PSH(X, θ). Assume

(1)
[u] � [ϕ], [ψk] � [ϕk], [v] � [ϕ].

(2)∫
X

θn−ju ∧θ1,ψ1∧· · ·∧θj,ψj =
∫
X

θn−jv ∧θ1,ψ1∧· · ·∧θj,ψj =
∫
X

θn−jϕ ∧θ1,ψ1∧· · ·∧θj,ψj

Then ∫
{u<v}

θn−jv ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj ≤
∫
{u<v}

θn−ju ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj .

Proof. By Theorem II.3.21,∫
X

θn−jϕ ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj =
∫
X

θn−ju ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj

≤
∫
X

θn−ju∨v ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj ≤
∫
X

θn−jϕ ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj .
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Hence equality holds everywhere. Now by Proposition II.1.4,∫
X

θn−ju∨v ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj

≥
∫
{u>v}

θn−ju ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj +
∫
{v>u}

θn−jv ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj

≥
∫
X

θn−ju ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj +
∫
{v>u}

θn−jv ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj −
∫
{u≤v}

θn−ju ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj

≥
∫
X

θn−ju∨v ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj +
∫
{v>u}

θn−jv ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj −
∫
{u≤v}

θn−ju ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj

So ∫
{u<v}

θn−jv ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj ≤
∫
{u≤v}

θn−ju ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj .

Replace u by u+ε and let ε→ 0+, we conclude by monotone convergence theorem.
�

Corollary II.4.32. Let ϕ,ψ, ϕk, ψk ∈ E(X, θ) for k = 1, . . . , j, where j ≤ n.
Then ∫

{ϕ<ψ}
θn−jψ ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj ≤

∫
{ϕ<ψ}

θn−jϕ ∧ θ1,ψ1 ∧ · · · ∧ θj,ψj .

Proof. This follows directly from Corollary II.4.30 and Theorem II.4.31. �

Corollary II.4.33. Let ϕ,ψ ∈ E(X, θ). Assume that ϕ ≤ ψ, then

j 7→
∫
X

(ψ − ϕ) θjψ ∧ θ
n−j
ϕ

is decreasing in j = 0, . . . , n.

Proof. We write∫
X

(ψ − ϕ) θjψ ∧ θ
n−j
ϕ =

∫ ∞
0

dt
∫
{ψ−ϕ>t}

θjψ ∧ θ
n−j
ϕ .

It follows from Corollary II.4.32 that

j 7→
∫
{ψ−ϕ>t}

θjψ ∧ θ
n−j
ϕ

is decreasing in j = 0, . . . , n. �

Lemma II.4.34. Let ϕ,ψ, η ∈ PSH(X, θ). Assume that

[ψ] � [ϕ] , [η] � [ϕ] .

Assume that
ψ ≤ ϕ , θnϕ − a.e. ,

then ψ ≤ ϕ θη-a.e..

Proof. We may assume that η ≤ ϕ. For ε ∈ (0, 1), we have

{ϕ < (1− ε)ψ + εη} ⊆ {ϕ < ψ} .
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So by Theorem II.4.27,

εn
∫
{ϕ<(1−ε)ψ+εη}

ωn ≤ εn
∫
{ϕ<(1−ε)ψ+εη}

θnρ

≤
∫
{ϕ<(1−ε)ψ+εη}

θn(1−ε)ψ+εη

≤
∫
{ϕ<(1−ε)ψ+εη}

θnϕ

≤
∫
{ϕ<ψ}

θnϕ = 0 .

Let ε→ 0+, we conclude. �

Theorem II.4.35 (Domination principle I.). Let ϕ ∈ E∞(X, θ), ψ ∈ PSH(X, θ).
Assume that

ψ ≤ ϕ , θnϕ − a.e. ,
then ψ ≤ ϕ.

Proof. Take η ∈ PSH(X, θ) such that θρ ≥ ω for a Kähler form ω on X. By
Lemma II.4.34, ψ ≤ ϕ ωn-a.e., hence by Proposition I.1.1, ψ ≤ ϕ. �

We note that the proof actually implies the following general lemma.

II.5. Integration by parts

In this section, we prove two different versions of integration by parts formulae.
Let X be a fixed compact Kähler manifold of dimension n. Let α, α0, α1, . . . , αn

be big cohomology classes. We fix a smooth representative of each, say θ, θ0, θ1, . . . , θn.

II.5.1. Potentials with small unbounded loci.

Theorem II.5.36. Let Θ ∈ D′n−1,n−1
+ (X). Let ϕ1, ϕ2 ∈ PSH(X, θ0), ψ1, ψ2 ∈

PSH(X, θ1). Assume that
(1)

[ϕ1] = [ϕ2], [ψ1] = [ψ2].
(2) ϕ1, ψ1 have small unbounded loci.

Write
u = ϕ1 − ϕ2, v = ψ1 − ψ2.

Then

(2.35)
∫
X

uddcv ∧Θ =
∫
X

v ddcu ∧Θ = −
∫
X

dv ∧ dcu ∧Θ.

Remark II.5.10. Here we explain the meanings of first two integrals in (2.35).
Let A ⊆ X be a closed pluripolar set such that ϕ1, ψ1 ∈ L∞loc(X − A). Then

on X − A, the Bedford–Taylor products θψj ∧ Θ (j = 1, 2) are well-defined finite
measures on X − A, which we identify with their zero extension to X. So we can
define

ddcv ∧Θ := θψ1 ∧Θ− θψ2 ∧Θ
as a signed measure on X. Hence the first integral in (2.35) makes sense. It is not
hard to see that the integral is independent of the choice of ψj and ϕj once u, v are
held fixed. Since the Bedford–Taylor product puts no mass on pluripolar sets, the
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definition is independent of the choice of A, hence explaining our notations. This
explains the first two integrals in (2.35).

We refer to Section I.3 for the definitions of various currents appearing in the
proof.

Proof. Let A ⊆ X be a closed pluripolar set such that ϕ1, ψ1 ∈ L∞loc(X −A).
We claim that

(2.36) d (1X−Av dcu ∧Θ) = 1X−Ad (v dcu ∧Θ) .

Assume that (2.36) holds for the time being. It follows from Stokes theorem and
(1.9) that

0 =
∫
X−A

d (v dcu ∧Θ) =
∫
X−A

dv ∧ dcu ∧Θ +
∫
X−A

vddcu ∧Θ.

Hence (2.35) follows by symmetry.
Now we prove (2.36). Note that (2.36) holds on X − A, so it suffices to prove

it in a small neighbourhood U of a fixed point a ∈ A. Take a psh function τ ≤ 0
on U such that A ⊆ {τ = −∞}. Fix a smooth increasing convex function χ on R
such that χ(t) = 0 for t ≤ 1/2 and χ(1) = 1. Let wk(t) := χ(eτ/k). Take a smooth
increasing function θ : R → [0, 1] such that θ = 0 near 0 and θ = 1 near 1. Then
θ(wk) = 0 near A and θ(wk) increases pointwisely to 1 on U −A. Hence

θ(wk)v dcu ∧Θ→ 1X−Av dcu ∧Θ, θ(wk)d (v dcu ∧Θ)→ 1X−Ad (v dcu ∧Θ) .

By [BEGZ10] Lemma 1.9, it remains to prove

θ′(wk)v dcu ∧Θ→ 0.

In fact, let χ be a smooth positive function on U with compact support, then∣∣∣∣∫
U

χθ′(wk)v dcu ∧Θ
∣∣∣∣2 ≤ (∫

U

χdwk ∧ dcwk ∧Θ
)(∫

U

χθ′(wk)2v2du ∧ dcu ∧Θ
)
.

Now
2
∫
U

χdwk ∧ dcwk ∧Θ ≤
∫
U

χddcw2
k ∧Θ =

∫
U

w2
k ddcψ ∧Θ

is bounded. Hence it suffices to prove∫
U

χθ′(wk)2v2du ∧ dcu ∧Θ→ 0.

Observe that θ′(wk)→ 0. So this follows from dominated convergence theorem. �

II.5.2. Notations. In the remaining of this section, we use the notations of
Section II.3.1. In addition, we introduce a few other notations.

We introduce two variables a, b ∈ [0, 1] with b = 1−a. For an expression f(a, b),
we write

[f(a, b)]1 = ∂a|a=0f(a, 1− a),
where the derivative means the right derivative. When writing such an expression,
we mean implicitly that the derivative exists.

Let W ⊆ X−Z be an open subset. Let ψ1, ψ2, γ be θ-psh functions on W . For
each N ≥ 1, define

AN [a, b] := ΦN [aψ1 + bγ]− ΦN [aψ2 + bγ].
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We do not mention ψ1, ψ2, γ,W in the notation explicitly, but they will always be
clear from the context.

Proposition II.5.37. Let W ⊆ X−Z be an open subset. Let ψ1, ψ2, γ be θ-psh
functions on W . Assume that

v := ψ1 − ψ2 ∈ L∞loc(W ), γ ≤ ψ1, γ ≤ ψ2.

(1) On W × CN ,
AN [a, b] = −gN ◦ α̂[aψ1 + bγ] + gN ◦ α̂[aψ2 + bγ].

(2) For a ∈ [0, 1), 1− a > ε > 0, on α̂−1(RN ), we have

AN [a+ε, b−ε]−AN [a, b] = ε

2(γ−ψ1)L◦α̂[aψ1+bγ]− ε2(γ−ψ2)L◦α̂[aψ2+bγ]+O(ε2),

where L : RN → R is the piecewise linear bounded function defined in
Appendix II.3.2. The O-constant depends only on N .

(3) For a ∈ [0, 1], on α̂−1(RN ),

(2.37) AN [a, b] = −va2 L ◦ α̂[γ] +O(a2),

where the O-constant depends only on N .
(4) ∣∣AN [a, b]

∣∣ ≤ a|v|.
Proof. (1) This follows from Proposition II.3.16.
(2) Observe that

α̂[aψ1 + bγ]− α̂[(a+ ε)ψ1 + (b− ε)γ] = ε

2(γ − ψ1)e,

where e = (1, . . . , 1). By assumption, γ − ψ1 ≤ 0, so (2) follows from Proposi-
tion II.3.13.

(3) Note that (2.37) is a special case of (2).
(4) This follows directly from definition. �

Corollary II.5.38. Let ψ1, ψ2, γ ∈ PSH(X, θ). Assume that
[ψ1] = [ψ2], γ ≤ ψ1, γ ≤ ψ2.

As a→ 0+, AN [a, b] converges to 0 in capacity.

Proof. Let v = ψ1 − ψ2.
We need to show that for each ε > 0,

lim
a→0+

Cap
{∣∣AN [a, b]

∣∣ > ε
}

= 0.

By Proposition II.5.37, we can take C = C(N) such that∣∣∣AN [a, b] + va

2 L ◦ α̂[γ]
∣∣∣ ≤ Ca2.

Take a small enough, we can thus assume that Ca2 < ε/2, then{∣∣AN [a, b] > ε
∣∣} ⊆ {∣∣∣va2 L ◦ α̂[γ]

∣∣∣ > ε

2

}
.

Take a constant C1 so that |L| ≤ C1, then{∣∣AN [a, b] > ε
∣∣} ⊆ {a|v| > ε

C1

}
.
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But since v is the difference of two θ-psh functions,

lim
a→0+

Cap
{
|v| > ε

C1a

}
= 0.

Here the capacity is still the capacity on XN instead of on X, we have omitted the
pull-back notations. �

II.5.3. Integral estimates.

Lemma II.5.39. Let W ⊆ X − Z be an open set. Let γ, ψ, ϕ, ψj ∈ PSH(X, θ)
(j = 1, 2). Assume that

0 ≤ ψ − γ ∈ L∞loc(W ), v := ψ1 − ψ2 ∈ L∞loc(W ).

Take χ ∈ C0
c (W ), χ ≥ 0.

Define

IW,N [a, b] :=
∫
W×CN

χAN [a, b]πN∗1 θϕ ∧ θN+n−1
N,ΦN [aψ+bγ].

Then

IW,N [a, b] = a

(
N + n− 1
n− 1

)
N

∫ 1

0
tN
∫
W

χv θϕ ∧ ((1− t)θη + tθγ)n−1 dt

+O(a2).
(2.38)

Notice that γ, ψ1, ψ2 appear in the definition of AN [a, b]. Also notice that the
coefficient of a in (2.38) is independent of the choice of ψ.

Remark II.5.11. An easy calculation shows that the coefficient of a in (2.38)
can be written as

(2.39)
n−1∑
r=0

(
N + r − 1

r

)
N + r

N + n

∫
W

χv θϕ ∧ θrγ ∧ θn−1−r
η .

Proof. Since the problem is local, we may shrink W when necessary. Let

γ′ = γ′[a, b] = aψ + bγ.

Then

(2.40) γ′ − γ = a(ψ − γ) ≥ 0.

Step 1. We claim that we may assume that ψ1, ψ2, γ, ψ are smooth.
To be more precise, take an open subset W ′ bW containing Suppχ.
We start with ψ1, ψ2. Take sequences of smooth θ-psh functions on W , say ψkj

(k ≥ 1, j = 1, 2) that decreases to ψj as k →∞, we may assume that

|ψk1 − ψk2 |

are uniformly bounded on W ′ as well.
Let

ANk [a, b] := ΦN [aψk1 + bγ]− ΦN [aψk2 + bγ]
According to Corollary II.3.17, ΦN [aψkj + bγ] decreases to ΦN [aψj + bγ] outside a
pluripolar set, hence everywhere. By Proposition II.5.37,∣∣ANk [a, b]

∣∣ ≤ Ca.
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By dominated convergence theorem, we have

IkW,N [a, b] :=
∫
W×CN

χANk [a, b]πN∗1 θϕ ∧ θN+n−1
N,ΦN [γ′]

converges to IW,N [a, b]. Similar reasoning applies to the coefficient of a in (2.38).
The O-constant in (2.38) can be taken to be independent of k as we will see in Step
3, so we conclude that we may assume that both ψ1, ψ2 are smooth.

Now we deal with ψ, γ. At first, we notice that we can reduce to the case
where ψ, γ are bounded exactly as in the proof of Theorem II.3.19 Step 1. Then
we can take smooth θ-psh functions ψk (resp. γk) decreasing to ψ, γ, keeping
|ψk − γk| uniformly bounded on W . As will follow from Step 2, the currents
πN∗1 θϕ ∧ θN+n−1

N,ΦN [aψk+bγk] are supported on W ×B, where B ⊆ CN is a bounded set
independent of k. It follows that∫

W×CN
χAN [a, b]πN∗1 θϕ ∧ θN+n−1

N,ΦN [aψk+bγk] → IW,N [a, b].

Similarly,∫ 1

0
tN
∫
W

χv θϕ∧
(
(1− t)θη + tθγk

)n−1 dt→
∫ 1

0
tN
∫
W

χv θϕ∧((1− t)θη + tθγ)n−1 dt.

As will be proved in Step 3, the big O-constant in (2.38) does not depend on
k, so let k →∞, we are done.

Now ΦN [γ′] is C1,1 on W × CN by Proposition II.3.14 and (2.23).
Step 2. We claim that the measure

θN,Φ ∧ θN+n−1
N,ΦN [γ′]

is supported on VN for any local θN -psh function Φ on W × CN .
Here

VN := α̂[γ′]−1Σ̊N ⊆W × CN .
Note that VN depends on a, b.

Since the problem is local onW×CN , we may take θN = 0 by adding to ΦN [γ′]
and Φ a smooth function. We may focus on an open subset A ⊆W ×CN on which
ΦN [γ′] is bounded.

For k ≥ 0 large enough, let Ok = {Φ > −k}. Then by definition of the
non-pluripolar product, it suffices to prove that

1Okddc(Φ ∨ (−k)) ∧ (ddcΦN [γ′]|Ok)N+n−1

supports on VN . Hence we may assume that Φ is bounded. By continuity of the
Bedford–Taylor product, we may then assume that Φ is smooth.

In this case, it is well-known that

(N + n)ddcΦ ∧ (ddcΦN [γ′])N+n−1 =
(
∆ddcΦN [γ′]Φ

)
(ddcΦN [γ′])N+n.

As shown in the proof of Theorem II.3.19, (ddcΦN [γ′])N+n is supported on VN .
This proves our claim.

Step 3. By Step 2,

IW,N [a, b] =
∫
VN∩(W×CN )

χAN [a, b] θϕ ∧ θN+n−1
N,ΦN [γ′].

We have omitted πN∗1 from our notation.
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We calculate its value now. Note that
α̂[γ′] = α̂[γ] + a

2 (ψ − γ)e,

where e = (1, . . . , 1) ∈ RN . By Section II.3.3, the piecewise linear function L has
the same coefficients at α̂[γ] and α̂[γ′]. So

|L ◦ α̂[γ′]− L ◦ α̂[γ]| ≤ Ca|ψ − γ|,
where C depends only on N .

It follows that

(2.41)
∫
VN∩(W×CN )

χv |L ◦ α̂[γ′]− L ◦ α̂[γ]| θϕ ∧ θN+n−1
N,ΦN [γ′] ≤ Ca

for a constant C independent of a.
So by Proposition II.5.37,

IW,N [a, b] =− a

2

∫
VN∩(W×CN )

χvL ◦ α̂[γ] θϕ ∧ θN+n−1
N,ΦN [γ′] +O(a2)

=− a

2

∫
VN∩(W×CN )

χvL ◦ α̂[γ′] θϕ ∧ θN+n−1
N,ΦN [γ′] +O(a2).

(2.42)

By Proposition II.3.13, on VN , we have

−1
2L ◦ α̂[γ′] = |α̂[γ′]| .

Hence
IW,N [a, b] = a

∫
VN∩(W×CN )

χv |α̂[γ′]| θϕ ∧ θN+n−1
N,ΦN [γ′] +O(a2).

Now one can calculate the RHS exactly as in the proof of Theorem II.3.19, one gets

IW,N [a, b] = a

(
N + n− 1
n− 1

)∫
W

χ(x)v(x)
∫
Vx

ωNN,ΦN [γ′]|Vx (z)|α̂|(x, z)(
θϕ ∧ ((1− |α̂|)θη + |α̂|θγ′)n−1

)
(x) +O(a2).

We can push-forward the integral to {x} × RN by the log map and pushing
forward further to {x}×ΣN by the gradient of ΦN [γ′](x, k) as a function of k ∈ RN
as in [WN19], we get

IW,N [a, b] =a
(
N + n− 1
n− 1

)
N !
∫
W

χv

∫
ΣN
|α̂|dα̂ θϕ ∧ ((1− |α̂|)θη + |α̂|θγ′)n−1 +O(a2)

=a
(
N + n− 1
n− 1

)
N

∫ 1

0
tN
∫
W

χv θϕ ∧ ((1− t)θη + tθγ′)n−1 dt+O(a2)

=a
(
N + n− 1
n− 1

)
N

∫ 1

0
tN
∫
W

χv θϕ ∧ ((1− t)θη + tθγ)n−1 dt+O(a2),

where the last line follows from (2.40). �

Lemma II.5.40. Let W ⊆ X − Z be an open set. Let γ, ϕj , ψj ∈ PSH(X, θ)
(j = 1, 2). Let

u := ϕ1 − ϕ2, v := ψ1 − ψ2.

Assume that
v ∈ L∞loc(W ).
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Take χ ∈ C0
c (W ), χ ≥ 0. Define

IW := lim
N→∞

(n− 1)!
Nn−1

[∫
W×CN

χAN [a, b] ddcu ∧ θN+n−1
N,ΦN [γ]

]
1
.

Then [·]1 here exists and the limit exists and

IW =
∫
W

χv ddcu ∧ θn−1
γ .

Proof. We apply Lemma II.5.39 with ψ = γ. The result follows from (2.39).
�

Lemma II.5.41. Let γ, ϕj , ψj ∈ PSH(X, θ) (j = 1, 2). Let u = ϕ1 − ϕ2, v =
ψ1 − ψ2. Assume the following:

(1)
[ϕ1] = [ϕ2], [ψ1] = [ψ2] = [γ].

(2)
γ ≤ ψ2 ≤ ψ1.

(3) ϕ1 has small unbounded locus.
Then

(2.43)
∫
X

uddcv ∧ θn−1
γ = lim

N→∞

(n− 1)!
Nn−1

[∫
XN

AN [a, b]πN∗1 ddcu ∧ θN+n−1
N,ΦN [γ]

]
1
.

Remark II.5.12. As we will see in the proof of Theorem II.5.42, assumption
(3) can be omitted.

Proof. By Lemma II.5.40, the limit on the RHS of (2.43) exists.
Notice that

Φ[aψ1 + bγ] ≥ Φ[aψ2 + bγ],
so AN [a, b] ≥ 0.

Define
I =

∫
X

uddcv ∧ θn−1
γ .

Then
I = 1

n

[∫
X

u ((aθψ1 + bθγ)n − (aθψ2 + bθγ)n)
]

1
.

By Corollary II.3.20,

I = 1
n

lim
N→∞

(
N + n

n

)−1 [∫
XN

πN∗1 u
(
θN+n
N,ΦN [aψ1+bγ] − θ

N+n
N,ΦN [aψ2+bγ]

)]
1
.

Here we have made use of the fact that the integral on RHS is polynomial in a and
b of bounded degree to change the order of limit and [·]1. Then

nI = lim
N→∞

(
N + n

n

)−1
[
N+n−1∑
r=0

∫
XN

πN∗1 uddcAN [a, b] ∧
(
θrN,ΦN [aψ1+bγ] ∧ θ

N+n−1−r
N,ΦN [aψ2+bγ]

)]
1

= lim
N→∞

(
N + n

n

)−1
[
N+n−1∑
r=0

∫
XN

AN [a, b] ddcπN∗1 u ∧
(
θrN,ΦN [aψ1+bγ] ∧ θ

N+n−1−r
N,ΦN [aψ2+bγ]

)]
1

,

(2.44)

where on the second line, we perform the integration by parts. This is allowed by
our assumption and by Theorem II.5.36.
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For r = 0, . . . , N + n− 1, define

Jr[a, b] :=
∫
XN

AN [a, b]πN∗1 θϕ1 ∧ θrN,ΦN [aψ1+bγ] ∧ θ
N+n−1−r
N,ΦN [aψ2+bγ].

Observe that Jr is decreasing with respect to r. In fact,

Jr[a, b] =
∫ ∞

0
dt
∫
{AN [a,b]>t}

πN∗1 θϕ1 ∧ θrN,ΦN [aψ1+bγ] ∧ θ
N+n−1−r
N,ΦN [aψ2+bγ].

So it suffices to prove that the inner integral is decreasing with respect to r. Then
since ΦN [aψj + bγ] (j = 1, 2) have the same singularity type, we can apply Theo-
rem II.4.31 to conclude.

We claim that

(2.45) Jr[a, b]−
∫
XN

AN [a, b]πN∗1 θϕ1 ∧ θN+n−1
N,ΦN [γ] = o(a), a→ 0 + .

By monotonicity in r, it suffices to prove this for r = 0 and r = n + N − 1.
Since the two cases are parallel, we can assume r = 0. In fact, by Lemma II.5.39,
(2.46)∫

XN

AN [a, b]πN∗1 θϕ1 ∧ θN+n−1
N,ΦN [aψ2+bγ] −

∫
XN

AN [a, b]πN∗1 θϕ1 ∧ θN+n−1
N,ΦN [γ] = O(a2).

So our claim holds. Hence

[Jr[a, b]]1 =
[∫

XN

AN [a, b]πN∗1 θϕ1 ∧ θN+n−1
N,ΦN [γ]

]
1
.

The same argument holds with ϕ1 replaced by ϕ2, so (2.44) implies that

nI = lim
N→∞

(
N + n

n

)−1
(N + n)

[∫
XN

AN [a, b] ddcπN∗1 u ∧ θN+n−1
N,ΦN [γ]

]
1

and (2.43) follows. �

II.5.4. Integration by parts for non-pluripolar products.

Theorem II.5.42. Let αj (j = 0, . . . , n) be big cohomology classes on X. Let θj
(j = 0, . . . , n) be smooth representatives in αj. Let γj ∈ PSH(X, θj) (j = 2, . . . , n).
Let ϕ1, ϕ2 ∈ PSH(X, θ0), ψ1, ψ2 ∈ PSH(X, θ1). Let u = ϕ1 − ϕ2, v = ψ1 − ψ2.
Assume that

[ϕ1] = [ϕ2], [ψ1] = [ψ2].
Then

(2.47)
∫
X

uddcv ∧ θ2,γ2 ∧ · · · ∧ · · · ∧ θn,γn =
∫
X

v ddcu ∧ θ2,γ2 ∧ · · · ∧ · · · ∧ θn,γn .

Proof. Step 1. By polarization, we may assume that θ1 = . . . = θn = θ.
Similarly, by another polarization, we may assume that γ1 = · · · = γn−1 = γ. Then
we want to prove

(2.48)
∫
X

uddcv ∧ θn−1
γ =

∫
X

v ddcu ∧ θn−1
γ .

By a further polarization, we may assume that [ψ1] = [γ]. In fact, if the theorem
holds in this case, for any a, b ∈ [0, 1], a+ b = 1, we have∫
X

uddc ((aψ1 + bγ)− (aψ2 + bγ))∧θn−1
aψ2+bγ =

∫
X

((aψ1 + bγ)− (aψ2 + bγ)) ddcu∧θn−1
aψ2+bγ .
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Hence for a > 0, ∫
X

uddcv ∧ θn−1
aψ2+bγ =

∫
X

v ddcu ∧ θn−1
aψ2+bγ .

Since both sides are polynomials in a, equality for all a > 0 implies immediately
equality at a = 0. That is,∫

X

uddcv ∧ θn−1
γ =

∫
X

v ddcu ∧ θn−1
γ .

We may assume that
γ ≤ ψ2 ≤ ψ1.

Step 2. Let us prove (2.48) under the additional assumption that ϕ1 has small
unbounded locus.

In this case, we can apply Lemma II.5.41 and Lemma II.5.40 to conclude.
Step 3. We prove (2.48) holds in general. It suffices to show that Lemma II.5.41

holds without assumption (3). In this case, we repeat the same proof of Lemma II.5.41
with the following differences:

(1) Integration by parts in (2.44) is now due to Step 2.
(2) The RHS of (2.46) is replaced by o(a).

To prove this, by Proposition II.5.37, it suffices to prove
(2.49)∫
XN

vL ◦ α̂[γ] θϕ1 ∧ θN+n−1
N,ΦN [aψ2+bγ]−

∫
XN

vL ◦ α̂[γ] θϕ1 ∧ θN+n−1
N,ΦN [γ] = o(1), a→ 0 + .

Note that vL◦ α̂[γ] is quasi-continuous outside a closed pluripolar set:
v and α̂[γ] are quasi-continuous (outside a closed pluripolar set). Since
L is continuous, L ◦ α̂[γ] is quasi-continuous as well. Now (2.49) follows
from Theorem II.2.12 and Corollary II.5.38.

�

II.6. Inequalities of the Monge–Ampère operators

Let X be a compact Kähler manifold of dimension n. Let α ∈ H1,1(X,R) be a
big cohomology class. Let θ ∈ α be a smooth representative.

Lemma II.6.43. Let ϕ,ψ ∈ PSH(X, θ). Let µ ∈M+(X). Assume that
θnϕ ≥ µ, θnψ ≥ µ,

then
θnϕ∨ψ ≥ µ.

Proof. By the locality of non-pluripolar product
θnϕ∨ψ ≥ 1{ϕ6=ψ}µ.

So this lemma is true in case µ{ϕ = ψ} = 0.
We claim that the set

I := {t ∈ R : µ{ϕ = ψ + t} > 0}.
In fact, this set of t is exactly the set of discontinuity of

t 7→ µ{ϕ < ψ + t},
which is an increasing function.
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Now we take ti increasing to 0 such that ti ∈ I, so we have

θn(ϕ+ti)∨ψ ≥ µ.

By Corollary II.2.10 and Remark II.2.5, as i→∞,

θn(ϕ+ti)∨ψ) → θnϕ∨ψ.

We conclude. �

Proposition II.6.44. Let ϕj ∈ PSH(X, θ) for j ∈ Z>0. Assume that ϕj ≤ 0.
Let µ ∈M+(X) so that

θnϕj ≥ µ.
Then

θnsup*ϕj ≥ µ.

Proof. For each j ∈ Z>0, let

ψj := ϕ1 ∨ · · · ∨ ϕj .

It follows from Lemma II.6.43 that

θnψj ≥ µ.

So we may assume that ϕj is increasing.
Now the desired result follows from Corollary II.2.10 and Remark II.2.5. �

Theorem II.6.45. Let µ ∈ M+(X) be a non-pluripolar measure. Let ϕj ∈
PSH(X, θ) (j > 0), such that

θnϕj ≥ fjµ, 0 ≤ fj ∈ L1(X,µ).

Assume that fj → f ∈ L1(X,µ) and that ϕj → ϕ ∈ PSH(X, θ) in L1. Then

θnϕ ≥ fµ.

Proof. We may assume that fj → f , µ-a.e. by taking a subsequence. Let

ψj := sup*
k≥j

ϕk.

Then ψj decreases to ϕ. By Proposition II.6.44,

θnψj ≥
(

inf
j≥k

fj

)
µ.

In particular, for each t > 0,

θnψj∨(Vθ−t) ≥ 1{ϕ>Vθ−t}

(
inf
j≥k

fj

)
µ.

Now by Corollary II.2.10 and Remark II.2.5, let k →∞, we find

θnϕ∨(Vθ−t) ≥ 1{ϕ>Vθ−t}fµ.

Hence
1{ϕ>Vθ−t}θ

n
ϕ ≥ 1{ϕ>Vθ−t}fµ.

Let t→∞ and use the fact that µ is non-pluripolar, we are done. �



56 2. NON-PLURIPOLAR PRODUCTS

Corollary II.6.46. Let ϕj , ψ ∈ PSH(X, θ) (j ∈ Z>0). Let µ ∈ M+(X).
Assume that

0 ≥ ϕj ≥ ψ, θϕj ≥ µ, j ∈ Z>0.

Then
θnlimϕj

≥ µ.

Proposition II.6.47 (Demailly’s estimate). Let ϕ,ψ ∈ PSH(X, θ). Then

(2.50) θnϕ∨ψ ≥ 1{ϕ≥ψ}θ
n
ϕ + 1{ψ>ϕ}θ

n
ψ.

Proof. Step 1. We reduce to the case where ϕ,ψ both have minimial singu-
larities. Assume that the proposition holds in this case.

For each k ≥ 0, let

ψk := ψ ∨ (Vθ − k), ϕk := ϕ ∨ (Vθ − k).

Then
θnϕk∨ψk ≥ 1{ϕk≥ψk}θ

n
ϕk

+ 1{ψk>ϕk}θ
n
ψk
.

Hence by plurilocality,

1{ϕ>Vθ−k,ψ>Vθ−k}θ
n
ϕ∨ψ ≥ 1{ϕ>Vθ−k,ψ>Vθ−k,ϕ≥ψ}θ

n
ϕ + 1{ϕ>Vθ−k,ψ>Vθ−k,ψ>ϕ}θ

n
ψ.

Let k →∞, we conclude (2.50).
Step 2. We assume that ϕ and ψ have minimal singularities. Note that the

non-Kähler locus is pluripolar, so it suffices to prove (2.50) in the ample locus.
Now the problem is local, so it suffices to prove the following: if ϕ,ψ ∈

PSH(Bn) ∩ L∞(Bn), then

(ddc(ϕ ∨ ψ))n ≥ 1{ϕ≥ψ}(ddcϕ)n + 1{ψ>ϕ}(ddcψ)n.

We may assume that ϕ,ψ are defined and is psh in a neighbourhood of B̄n,

−1 ≤ ϕ ≤ 0, −1 ≤ ψ ≤ 0.

By symmetry, it suffices to prove this inequality on the set {ϕ ≥ ψ}, namely,
it suffices to prove

(2.51) (ddc(ϕ ∨ ψ))n ≥ 1{ϕ≥ψ}(ddcϕ)n

Fix a compact subset K ⊆ {ϕ ≥ ψ}. Let χε be the Friedrichs kernels. Let

ϕε = ϕ ∗ χε, ψε = ψ ∗ χε.

Recall that ϕ,ψ are quasi-continuous. So given δ > 0, we can take an open set
G ⊆ Bn with capacity less than δ, such that ϕ,ψ are both continuous on Bn − G.
Then we know that as ε→ 0,

ϕε → ϕ, ψε → ψ

uniformly on compact subsets of Bn − G. Thus for any δ′ > 0, we can take a
neighborhood U of K such that

ϕε + δ′ ≥ ψε
on U −G for ε small enough. Hence∫
K

(ddcϕ)n ≤ lim
ε→0+

∫
U

(ddcϕε)n ≤ δ+ lim
ε→0+

∫
U−G

(ddcϕε)n = δ+ lim
ε→0+

∫
U−G

(ddc((ϕε+δ′)∨ψε))n
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Let δ → 0+, we find ∫
K

(ddcϕ)n ≤
∫
Ū

(ddc((ϕ+ δ′) ∨ ψ))n.

We can take U arbitrarily small, so∫
K

(ddcϕ)n ≤
∫
K

(ddc((ϕ+ δ′) ∨ ψ))n.

Let δ′ → 0+, we get ∫
K

(ddcϕ)n ≤
∫
K

(ddc(ϕ ∨ ψ))n.

�





CHAPTER 3

Absolute pluripotential theory

In this chapter, X is a compact Kähler manifold of dimension n. Let α be a
big cohomology class on X. Let θ be a smooth representative of α.

III.1. Basic energy functionals

In this section, we define and study several energy functionals. Recall that we
have defined the full mass class E(X, θ) and the class E∞(X, θ) in Definition II.3.3
and Definition I.1.5.

III.1.1. Definitions and first properties.

Definition III.1.1. Let ϕ,ψ ∈ PSH(X, θ). Assume that [ϕ] � [ψ]. We define
E1(ϕ,ψ) ∈ (−∞,∞] as follows:

(1) When [ϕ] = [ψ], define

(3.1) E1(ϕ,ψ) = 1
n+ 1

n∑
j=0

∫
X

(ψ − ϕ) θjψ ∧ θ
n−j
ϕ ∈ R.

(2) In general, define

(3.2) E1(ϕ,ψ) = sup
η
E1(η, ψ),

where the sup is taken over η ∈ PSH(X, θ) such that ϕ ≤ η and [η] = [ψ].
When ψ = Vθ, we write

E(ϕ) = −E1(ϕ, Vθ).

The functional E : PSH(X, θ)→ [−∞,∞) is known as the Monge–Ampère energy.

Remark III.1.1. E1(ϕ,ψ) > −∞. To see, it suffices to observe that for any
C ∈ R, the function ηC := (η − C) ∨ ϕ is a candidate for the sup in (3.2).

Definition III.1.2. The space E1(X, θ) is defined as

(3.3) E1(X, θ) := {ϕ ∈ PSH(X, θ) : E(ϕ) > −∞}.

The topology on E1(X, θ) is the coarsest refinement of the subspace topology in-
duced from PSH(X, θ) that makes E : E1(X, θ)→ R continuous.

For each C ∈ R, let

(3.4) E1
C(X, θ) := {ϕ ∈ PSH(X, θ) : sup

X
ϕ ≤ 0 , E(ϕ) ≥ −C} .

Observe that
E1
C(X, θ) ⊆ E1(X, θ) .

59
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Proposition III.1.1. Let ϕ,ψ, γ ∈ PSH(X, θ). Assume that [ϕ] = [ψ] = [γ],
then
(3.5) E1(ϕ,ψ) + E1(ψ, γ) = E1(ϕ, γ),
where by E1, we mean the functional defined in (3.1).

Proof. We have
(n+ 1) (E1(ϕ, γ)− E1(ϕ,ψ)− E1(ψ, γ))

=
n∑
j=0

∫
X

(γ − ψ)
(
θjγ ∧ θn−jϕ − θjγ ∧ θ

n−j
ψ

)
+

n∑
j=0

∫
X

(ψ − ϕ)
(
θjγ ∧ θn−jϕ − θjψ ∧ θ

n−j
ϕ

)
=

∑
j+a+b=n−1
j,a,b≥0

(n− j)
∫
X

(ψ − ϕ)
(
θaϕ ∧ θb+1

ψ ∧ θjγ − θaϕ ∧ θbψ ∧ θj+1
γ

)

+
∑

j+a+b=n−1
j,a,b≥0

(n− j)
∫
X

(ψ − ϕ)
(
θjϕ ∧ θa+1

γ ∧ θbψ − θjϕ ∧ θaγ ∧ θb+1
ψ

)
=0,
where the second equality follows from Theorem II.5.42. �

Corollary III.1.2. Let ϕ,ψ, γ ∈ PSH(X, θ). Assume that [ϕ] = [ψ] = [γ].
(1) If ϕ ≤ ψ, then

E1(ϕ, γ) ≥ E1(ψ, γ).
Here by E1, we mean E1 defined in (3.1).

(2) If ψ ≤ γ, then
E1(ϕ, γ) ≥ E1(ϕ,ψ).

Here by E1, we mean E1 defined in (3.1).
In particular, when [ϕ] = [ψ], E1(ϕ,ψ) defined in (3.1) and in (3.2) coincide.

Proposition III.1.3. Let ϕ,ψ, γ ∈ PSH(X, θ). Assume that ϕ ≤ ψ, [ψ] � [γ],
then

E1(ϕ, γ) ≥ E1(ψ, γ).

Proposition III.1.4. Let ϕ,ψ ∈ PSH(X, θ), [ϕ] � [ψ]. For any C ∈ R,

(3.6) E1(ϕ,ψ+C) = E1(ϕ,ψ) +C

∫
X

θnψ , E1(ϕ+C,ψ) = E1(ϕ,ψ)−C
∫
X

θnψ .

Proof. When [ϕ] = [ψ], (3.6) follows from Proposition III.1.1. The general
case follows by definition. �

Proposition III.1.5. Let ϕ,ψ ∈ PSH(X, θ).
(1) Let ϕj ∈ PSH(X, θ) (j ∈ Z>0). Assume that ϕj is decreasing with limit

ϕ, [ϕ1] � [ψ], then
(3.7) lim

j→∞
E1(ϕj , ψ) = E1(ϕ,ψ).

(2) Let ψj ∈ PSH(X, θ) (j ∈ Z>0). Assume that ψj is increasing with a.e.
limit ψ, [ϕ] = [ψ1] = [ψ], then

(3.8) lim
j→∞

E1(ϕ,ψj) = E1(ϕ,ψ).
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Proof. (1) Note that the limit on LHS of (3.7) exists since E1(ϕj , ψ) is in-
creasing by Proposition III.1.3. Moreover,
(3.9) lim

j→∞
E1(ϕj , ψ) ≤ E1(ϕ,ψ).

It suffices to prove the reverse inequality. We may assume that ϕ1 ≤ ψ by Propo-
sition III.1.4.

When [ϕ] = [ψ]. The reverse inequality follows from Theorem II.2.8. In general,
let η ∈ PSH(X, θ) be such that [η] = [ψ] and that ϕ ≤ η, then by Proposition III.1.3,

E1(η, ψ) = lim
j→∞

E1(ϕj ∨ η, ψ) ≤ lim
j→∞

E1(ϕj , ψ).

Take sup with respect to η, we conclude (3.7).
(2) By Corollary III.1.2, the limit in (3.8) exists and

lim
j→∞

E1(ϕ,ψj) ≤ E1(ϕ,ψ).

For the reverse inequality, when ϕ ≤ ψ1, it follows from Theorem II.2.8. In general,
there is C > 0 such that ϕ ≤ ψ1 + C, then we have

lim
j→∞

E1(ϕ,ψj + C) = E1(ϕ,ψ + C).

By Proposition III.1.4, we then have

lim
j→∞

(
E1(ϕ,ψj) + C

∫
X

θnψj

)
= E1(ϕ,ψ) + C

∫
X

θnψ.

But it follows from Theorem II.2.8 that

lim
j→∞

∫
X

θnψj =
∫
X

θnψ.

So we conclude (3.8). �

Corollary III.1.6. Let ϕ,ψ, γ ∈ PSH(X, θ). Assume that [ϕ] � [ψ] = [γ],
then
(3.10) E1(ϕ,ψ) + E1(ψ, γ) = E1(ϕ, γ).

Proof. This follows from Proposition III.1.1 and Proposition III.1.5. �

Proposition III.1.7. Let ϕ,ψ, γ ∈ PSH(X, θ). Assume that ϕ ≤ ψ, [ψ] � [γ].
Then
(3.11) E1(ϕ,ψ) + E1(ψ, γ) ≤ E1(ϕ, γ).
In particular, if γ ≥ ψ ≥ ϕ, we have

E1(ϕ,ψ) ≤ E1(ϕ, γ).

Proof. By Proposition III.1.5, we may assume that [ϕ] = [ψ].
Then
E1(ϕ, γ) ≥ lim

C→∞
E1(ϕ ∨ (γ − C), γ)

= lim
C→∞

(E1(ϕ ∨ (γ − C), ψ ∨ (γ − C)) + E1(ψ ∨ (γ − C), γ))

= lim
C→∞

E1(ϕ ∨ (γ − C), ψ ∨ (γ − C)) + E1(ψ, γ),

where the first line follows from definition, the second follows from Corollary III.1.6,
the third follows from Proposition III.1.5.
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We claim that

lim
C→∞

E1(ϕ ∨ (γ − C), ψ ∨ (γ − C)) ≥ E1(ϕ,ψ) .

To see, by monotonicity of E1 in the first variable, we may assume that [ϕ] = [ψ].
Then this follows Theorem II.2.8.

Hence (3.11) follows. �

Proposition III.1.8. Let ϕ0, ϕ1, ψ ∈ PSH(X, θ). Assume that [ϕ0] = [ϕ1] =
[ψ]. Then

(3.12) d
dt

∣∣∣∣
t=0+

E1(tϕ1 + (1− t)ϕ0, ψ) = −
∫
X

(ϕ1 − ϕ0) θnϕ0
.

Proof. For 0 < t < 1,

(n+ 1) (E1(tϕ1 + (1− t)ϕ0, ψ)− E1(ϕ0, ψ))

=
n∑
j=0

(∫
X

(ψ − tϕ1 − (1− t)ϕ0) θjψ ∧ θ
n−j
tϕ1+(1−t)ϕ0

−
∫
X

(ψ − ϕ0) θjψ ∧ θ
n−j
ϕ0

)

=t
n∑
j=0

Ij +O(t2),

where

Ij := (n− j)
∫
X

(ψ − ϕ0) (θϕ1 − θϕ0) ∧ θjψ ∧ θ
n−j−1
ϕ0

+
∫
X

(ϕ0 − ϕ1) θjψ ∧ θ
n−j
ϕ0

.

Here the first term is understood as 0 when j = n.
By Theorem II.5.42,

Ij = (n− j)
∫
X

(ϕ1 − ϕ0)θj+1
ψ ∧ θn−j−1

ϕ0
− (n− j + 1)

∫
X

(ϕ1 − ϕ0) θjψ ∧ θ
n−j
ϕ0

.

Here the first term is understood as 0 when j = n.
Hence

n∑
j=0

Ij = −(n+ 1)
∫
X

(ϕ1 − ϕ0) θnϕ0
.

Hence (3.12) follows. �

Definition III.1.3. Let ϕ,ψ ∈ PSH(X, θ). Assume that ϕ ≤ ψ. We define

F1(ϕ,ψ) :=
∫
X

(ψ − ϕ) θnϕ ,

G1(ϕ,ψ) :=
∫
X

(ψ − ϕ) θnψ .
(3.13)

Lemma III.1.9. Let ϕ,ψ ∈ E(X, θ), ϕ ≤ ψ, then for any k > 0,

F1(ϕ ∨ (Vθ − k), ψ) ≤ F1(ϕ,ψ).

Proof. For k > 0, let
ϕk := ϕ ∨ (Vθ − k) .
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Then ∫
X

(ψ − ϕk) θnϕk =
∫
{ϕ<ψ−k}

(ψ − ϕk) θnϕk +
∫
{ϕ>ψ−k}

(ψ − ϕk) θnϕ

=kp
∫
{ϕ<ϕk}

θnϕk +
∫
{ϕ>ψ−k}

(ψ − ϕk) θnϕ

≤kp
∫
{ϕ<ψ−k}

θnϕ +
∫
{ϕ>ψ−k}

(ψ − ϕ) θnϕ

≤
∫
X

(ψ − ϕ) θnϕ,

where on the third line, we have applied Theorem II.4.28. �

Proposition III.1.10. Let ϕ,ψ ∈ E1(X, θ). Assume that ϕ ≤ ψ. Then
(3.14)
G1(ϕ,ψ) ≤ E1(ϕ,ψ) ≤ F1(ϕ,ψ) ≤ F1(ϕ,ψ) + nG1(ϕ,ψ) ≤ (n+ 1)E1(ϕ,ψ) <∞.

Proof. When [ϕ] = [ψ], (3.14) is a direct consequences of Corollary II.4.33.
In general, for each j ≥ 1, let ϕj = (ψ − j) ∨ ϕ.

By Lemma III.1.9,
F1(ϕk, ψ) ≤ F1(ϕ,ψ).

So
E1(ϕ,ψ) = lim

k→∞
E1(ϕk, ψ) ≤ lim

k→∞
F1(ϕk, ψ) ≤ F1(ϕ,ψ).

By Fatou’s lemma,
G1(ϕ,ψ) ≤ lim

k→∞
G1(ϕk, ψ) ≤ lim

k→∞
E1(ϕk, ψ) = E1(ϕ,ψ).

For any j ≥ 1,∫
X

(ψ − ϕj) θnϕ + nG1(ϕ,ψ) = lim
k→∞

∫
{ϕ>Vθ−k}

(ψ − ϕj) θnϕk + nG1(ϕ,ψ)

≤ lim
k→∞

(∫
{ϕ>Vθ−k}

(ψ − ϕk) θnϕk + nG1(ϕk, ψ)
)

≤(n+ 1) lim
k→∞

E1(ϕk, ψ)

=(n+ 1)E1(ϕ,ψ).
Let j →∞, by monotone convergence theorem,

F1(ϕ,ψ) +G1(ϕ,ψ) ≤ (n+ 1)E1(ϕ,ψ).
Finally, let us prove that F1(ϕ,ψ) <∞. Take a constant C1 > 0 such that

ψ < Vθ + C1.

In fact,∫
X

(ψ−ϕ) θnϕ ≤
∫
X

(C1 +Vθ−ϕ) θnϕ ≤ C+C

∫
X

(Vθ−ϕ) θnϕ = C+CF1(ϕ−C1, Vθ).

But from what we have established,
F1(ϕ− C1, Vθ) ≤ −(n+ 1)E(ϕ− C1) <∞.

�
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Corollary III.1.11. Let ϕ0, . . . , ϕn ∈ E1(X, θ). Then

(3.15)
∫
X

(Vθ − ϕ0) θϕ1 ∧ · · · ∧ θϕn <∞ .

Proof. Let

ψ := 1
n

n∑
j=1

ϕj .

Then there is a constant ε > 0 such that
θnψ ≥ εθϕ1 ∧ · · · ∧ θϕn .

So we may assume that ϕ1 = · · · = ϕn = ϕ and we need to show∫
X

(Vθ − ϕ0) θnϕ <∞ .

It suffices to write∫
X

(Vθ − ϕ0) θnϕ =
∫
X

(Vθ − ϕ) θnϕ +
∫
X

(ϕ− ϕ0) θnϕ .

Both terms on RHS are finite by Proposition III.1.10. �

III.1.2. Monge–Ampère energy.

Proposition III.1.12. Let ϕ0, ϕ1 ∈ E∞(X, θ). Then

(3.16) d
dt

∣∣∣∣
t=0+

E(tϕ1 + (1− t)ϕ0) =
∫
X

(ϕ1 − ϕ0) θnϕ0
.

Proof. This is a special case of Proposition III.1.8. �

Proposition III.1.13. The Monge–Ampère energy E : PSH(X, θ)→ [−∞,∞)
satisfies the following:

(1) For any C ∈ R, ϕ ∈ PSH(X, θ),

E(ϕ+ C) = E(ϕ) + C

∫
X

volα.

(2) E is increasing, concave and usc.
(3) Let ϕ,ψ ∈ E1(X, θ). Assume that ϕ ≤ ψ, then we have

(3.17) E(ψ)− E(ϕ) ≥ E1(ϕ,ψ).
(4) For ϕ ∈ PSH(X, θ),

E(ϕ) ≤ volα sup
X
ϕ .

Proof. (1) This follows from Proposition III.1.4.
(2) E is increasing by definition. For the concavity of E, it suffices to prove

that E is concave on E∞(X, θ). By (1), we may assume ϕ0 ≤ ϕ1. Let 0 ≤ t ≤ s ≤ 1,
by Proposition III.1.12, it suffices to prove∫

X

(ϕ1 − ϕ0) θntϕ1+(1−t)ϕ0
≥
∫
X

(ϕ1 − ϕ0) θnsϕ1+(1−s)ϕ0
.

We may assume that t = 0, s = 1, then we need to prove∫
X

(ϕ1 − ϕ0) θnϕ0
≤
∫
X

(ϕ1 − ϕ0) θnϕ1
.

This follows from Theorem II.4.27.
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Now we prove that E is usc. Let ϕj , ϕ ∈ PSH(X, θ) (j ∈ Z>0). Assume that
ϕj → ϕ in L1, then

ψj := sup*
k≥j

ϕk

decreases to ϕ. Hence by Proposition III.1.5 and Proposition III.1.3,
E(ϕ) = lim

j→∞
E(ψj) ≥ lim

j→∞
E(ϕj).

(3) This follows from Proposition III.1.7.
(4) By (1) and (2),

E(ϕ) ≤ E(ϕ− sup
X
ϕ) + volα sup

X
ϕ ≤ volα sup

X
ϕ .

�

Corollary III.1.14. For each C ∈ R, the set E1
C(X, θ) ⊆ PSH(X, θ) is convex

and compact in the subspace topology.

Proof. The set E1
C(X, θ) is convex as E is convex (Proposition III.1.13).

By Proposition III.1.13, E is usc, hence E1
C(X, θ) ⊆ PSH(X, θ) is a closed set.

As E(ϕ) ≤ supX ϕ by definition, we have

E1
C(X, θ) ⊆ {ϕ ∈ PSH(X, θ) : −C ≤ sup

X
ϕ ≤ 0} .

Hence it is compact by Theorem I.1.2 �

Corollary III.1.15. Let ϕ,ψ ∈ E1(X, θ). Then

(3.18) E(ψ)− E(ϕ) ≤
∫
X

(ψ − ϕ) θnϕ.

Proof. Step 1. We prove (3.18) under the additional assumption that ψ ∈
E∞(X, θ).

In this case, by Corollary III.1.6,
E(ψ)− E(ϕ) = E1(ϕ,ψ).

But by Proposition III.1.10,

E1(ϕ,ψ) ≤
∫
X

(ψ − ϕ) θnϕ .

Step 2. In general, for any C > 0, let
ψC := ψ ∨ (Vθ − C) .

Then by Step 1,

E(ψC)− E(ϕ) ≤
∫
X

(ψC − ϕ) θnϕ .

Let C →∞, by Proposition III.1.5, Proposition III.1.10 and dominated convergence
theorem, we conclude (3.18). �

Proposition III.1.16. Let ϕj , ϕ ∈ E(X, θ) (j ∈ N). Assume one of the follow-
ing conditions is satisfied:

(1) ϕj decreases to ϕ.
(2) ϕj increases a.e. to ϕ.
(3) ϕj converges uniformly ϕ.
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Then
(3.19) lim

j→∞
E(ϕj) = E(ϕ) .

Proof. (1) This follows from Proposition III.1.5.
(2) We may assume that ϕ ≤ Vθ.
When ϕ1 ∈ E∞(X, θ), (3.19) follows from Theorem II.2.12. In general, for any

C > 0, let
ϕCj := ϕj ∨ (Vθ − C) .

by Corollary III.1.15, for any C > 0,

0 ≤ E(ϕCj )− E(ϕj) ≤
∫
X

(
ϕCj − ϕj

)
θnϕj =

∫ ∞
C

dt
∫
X

1{ϕj<Vθ−t}θ
n
ϕj

≤ 2n
∫ ∞
C

dt
∫
X

1{ϕ1<Vθ−t/2}θ
n
ϕ1

= 2n+1
∫
X

(ϕC/21 − ϕ1) θnϕ1
,

where the last but one step follows from Corollary II.4.29. By Proposition III.1.10,∫
X

(Vθ − ϕ1) θnϕ1
<∞,

so by dominated convergence theorem, we find that E(ϕCj ) → E(ϕj) as C → ∞
uniformly in j. Hence (3.19) follows.

(3) This follows from Theorem II.2.8. �

Corollary III.1.17. Let ϕ ∈ PSH(X, θ). Then the following are equivalent:
(1) ϕ ∈ E1(X, θ).
(2) ϕ ∈ E(X, θ) and

(3.20)
∫
X

(Vθ − ϕ) θnϕ <∞ .

(3) The following holds:

(3.21)
∫ ∞

0
dt
∫
{ϕ=Vθ−t}

θnϕ∨(Vθ−t) <∞ .

Proof. (1) implies (2). This follows from Proposition III.1.10.
(2) implies (1). We may further assume that ϕ ≤ Vθ. Then by Lemma III.1.9,

F1(ϕ ∨ (Vθ−C)) is bounded for all C > 0. Hence by Proposition III.1.10, E(ϕ ∨
(Vθ−C)) is also bounded. By Proposition III.1.16, E(ϕ) is thus finite.

Now in order to relate (2) and (3), observe the following general relation:

∫ ∞
0

dt
∫
{ϕ=Vθ−t}

θnϕ∨(Vθ−t) =
∫ ∞

0
dt
(

volα−
∫
{ϕ<Vθ−t}

θnVθ −
∫
{ϕ>Vθ−t}

θnϕ

)
.

(3.22)

(2) implies (3). By (3.22), since ϕ has full mass,∫ ∞
0

dt
∫
{ϕ=Vθ−t}

θnϕ∨(Vθ−t) =
∫ ∞

0
dt
(∫
{ϕ≤Vθ−t}

θnϕ −
∫
{ϕ<Vθ−t}

θnVθ

)

=
∫
X

(Vθ − ϕ)+ θ
n
ϕ −

∫
X

(Vθ − ϕ)+ θ
n
Vθ
.

The first term is finite by assumption. To see the second is also finite, we may
assume that ϕ ≤ Vθ, then it follows from Corollary II.4.33 that it is also finite.



III.1. BASIC ENERGY FUNCTIONALS 67

(3) implies (2). By assumption, the integral in (3.22) is finite. Hence we can
take tj →∞ (j ∈ N), such that

volα−
∫
{ϕ<Vθ−tj}

θnVθ −
∫
{ϕ>Vθ−tj}

θnϕ → 0 .

Namely, ∫
X

θnϕ = vol(α) .

Insert this back to (3.22), we find (3.20). �

III.1.3. Berman–Boucksom differentiablity theorem.

Theorem III.1.18. Let ϕ ∈ E1(X, θ). Let v ∈ C0(X). Then E(P(ϕ + tv)) is
differentiable at t = 0 and

(3.23) d
dt

∣∣∣∣
t=0

E (P(ϕ+ tv)) =
∫
X

v θnϕ .

Proof. By Proposition III.1.13 and Proposition I.5.11, for any t ∈ [0, 1],
E(P(ϕ+ tv)) ≥ E(ϕ)− t‖v‖C0(X) > −∞ .

Observe that (3.23) for all v ∈ C0(X) is equivalent to

(3.24) E (P(ϕ+ v))− E(ϕ) =
∫ 1

0

∫
X

v θnP(ϕ+tv) dt , v ∈ C0(X) .

We prove the following more general result: for any u ∈ USC(X),

(3.25) E (P(u+ v))− E(P(u)) =
∫ 1

0

∫
X

v θnP(u+tv) dt , v ∈ C0(X) .

By similar argument as above, for any t ∈ [0, 1],
E(P(u+ tv)) > −∞ .

Step 1. Assume that (3.25) holds when u ∈ C0(X), we prove (3.25) for general
u.

Let uj ∈ C0(X) (j ∈ N) be a sequence decreasing to u. Then P(uj + tv)
decreases to P(u + tv) for any t ∈ [0, 1] by Proposition I.5.11. Hence by Proposi-
tion III.1.16,
(3.26) E(P(u+ tv)) = lim

j→∞
E(P(uj + tv)) , t ∈ [0, 1] .

Recall that by Proposition I.5.11, P(u+ tv) ∈ E(X, θ), so by Theorem II.2.8,∫
X

v θnP(u+tv) = lim
j→∞

∫
X

v θnP(uj+tv) , t ∈ [0, 1] .

Observe that ∣∣∣∣∫
X

v θnP(uj+tv)

∣∣∣∣ ≤ ‖v‖C0(X)

∫
X

θnVθ ,

so by dominated convergence theorem,

(3.27)
∫ 1

0

∫
X

v θnP(u+tv) dt = lim
j→∞

∫ 1

0

∫
X

v θnP(uj+tv) dt .

By assumption, we know that (3.25) holds for uj in place of u. Let j → ∞ and
apply (3.26) and (3.27), we conclude (3.25).

From now on, we assume that u ∈ C0(X).
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Step 2. Assume that (3.25) holds when v ∈ C∞(X), we prove (3.25) in general.
Let vj ∈ C∞(X) (j ∈ N) be a sequence converging uniformly to v. By Proposi-

tion I.5.11, P(u+ tvj)→ P(u+ tv) (t ∈ [0, 1]) uniformly. So by Proposition III.1.16,
(3.28) lim

j→∞
E(P(u+ tvj)) = E(P(u+ tv)) , t ∈ [0, 1] .

On the other hand,∫
X

vj θ
n
P(u+tvj)−

∫
X

v θnP(u+tv) =
∫
X

(vj−v) θnP(u+tvj)+
∫
X

v
(
θnP(u+tvj) − θ

n
P(u+tv)

)
.

The first term tends to 0 as j → ∞ since vj → v uniformly. By Theorem II.2.8,
the second term tends to 0 as j →∞. So for each t,

lim
j→∞

∫
X

vj θ
n
P(u+tvj) =

∫
X

v θnP(u+tv).

By dominated convergence theorem,

(3.29) lim
j→∞

∫ 1

0

∫
X

vj θ
n
P(u+tvj) dt =

∫ 1

0

∫
X

v θnP(u+tv) dt.

By assumption, (3.25) holds for vj in place of v. Let j →∞ and apply (3.28) and
(3.29), we conclude (3.25).

From now on we assume that v ∈ C∞(X). It remains to prove (3.25), which in
turn is equivalent to the following:

(3.30) d
dt

∣∣∣∣
t=0+

E (P(u+ tv)) =
∫
X

v θnP(u).

Step 3. We claim that

(3.31) d
dt

∣∣∣∣
t=0+

E (P(u+ tv)) = d
dt

∣∣∣∣
t=0+

∫
X

(P(u+ tv)− P(u)) θnP(u) .

Observe that RHS makes sense since P(u+ tv) is concave in t by Proposition I.5.11.
By Proposition III.1.13 and Proposition III.1.12,

E(P(u+ tv)) ≤ E(P(u)) +
∫
X

(P(u+ tv)− P(u)) θnP(u) .

Hence in (3.31), LHS is not greater than RHS. We prove the reverse inequality. For
each ε > 0 small enough, we can take δ > 0 small enough, so that
(3.32)∫

X

(P(u+ δv)− P(u)) θnP(u) ≥ δ

(
d
dt

∣∣∣∣
t=0+

∫
X

(P(u+ tv)− P(u)) θnP(u) − ε

)
.

By Proposition III.1.12,
d
dt

∣∣∣∣
t=0+

E ((1− t)P(u) + tP(u+ δv)) =
∫
X

(P(u+ δv)− P(u)) θnP(u) .

So for small enough t > 0 (depending on δ and ε),
(3.33)
E ((1− t)P(u) + tP(u+ δv))− E(P(u)) ≥ t

∫
X

(P(u+ δv)− P(u)) θnP(u) − tδε

By Proposition I.5.11 and Proposition III.1.13, we have
(3.34) E (P(u+ tδv)) ≥ E ((1− t)P(u) + tP(u+ δv)) .
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From (3.32), (3.33) and (3.34), we get

E (P(u+ tδv))− E(P(u)) ≥ tδ d
dt

∣∣∣∣
t=0+

∫
X

(P(u+ tv)− P(u)) θnP(u) − 2tεδ.

Let t→ 0+, then let ε→ 0+, (3.31) follows.
Step 4. It remains to prove

(3.35) It :=
∫
X

(P(u+ tv)− P(u)) θnP(u) − t
∫
X

v θnP(u) = o(t) , t→ 0 + .

By Proposition I.5.11,
P(u+ tv) ≤ u+ tv = P(u) + tv , θnP(u) − a.e.

Hence
It =

∫
{P(u+tv)<P(u)+tv}

(P(u+ tv)− P(u)− tv) θnP(u).

By Proposition I.5.11,
sup
X
|P(u+ tv)− P(u)− tv| = O(t) .

Hence
|It| = O(t)

∫
{P(u+tv)<P(u)+tv}

θnP(u).

So it suffices to prove

(3.36) lim
t→0+

∫
{P(u+tv)<P(u)+tv}

θnP(u) = 0.

Since the class α is big, we can take ϕ0 ∈ PSH(X, θ) such that θϕ0 is strictly
positive. Then ϕ0 + εv ∈ PSH(X, θ) for ε > 0 small enough.

For t > 0 small enough (depending on ε),
P(u) + tv + tϕ0 ,P(u+ tv) + tϕ0 ∈ PSH(X, (1 + t)θ).

By Proposition I.5.11,
P(u) + tv + tϕ0 ≥ P(u+ tv) + tϕ0 − 2t‖v‖C0(X) .

By Theorem II.4.27,∫
{P(u+tv)<P(u)+tv}

(
θP(u) + tθv+ϕ0

)n ≤ ∫
{P(u+tv)<P(u)+tv}

(
θP(u+tv) + tθϕ0

)n
.

On the other hand, by Proposition I.5.11,∫
{P(u+tv)<P(u)+tv}

(
θP(u+tv) + tθϕ0

)n ≤ ∫
{P(u+tv)<u+tv}

θnP(u+tv) +O(t) = O(t) .

Hence (3.36) follows. �

Corollary III.1.19. The functional E◦P : C0(X)→ R is Fréchet differntiable
and

δu (E ◦ P) = θnP(u) .

Proof. By (3.25), E ◦ P is Gateaux differentiable with Gateaux derivative
θnP(u). Notice that

u 7→ θnP(u) , C
0(X)→M+(X)

is continuous. Hence E ◦ P is Fréchet differentiable. �
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III.1.4. Free energy type functionals.

Definition III.1.4. Let µ ∈ M̊+(X). Define Lµ : PSH(X, θ)→ [−∞,∞) by

(3.37) Lµ(ϕ) =
∫
X

(ϕ− Vθ) dµ.

Lemma III.1.20. Let ϕ,ψ ∈ E∞(X, θ). Then

(3.38)
∣∣∣∣∫
X

(Vθ − ψC) θnϕ −
∫
X

(Vθ − ψC) θnVθ

∣∣∣∣ ≤ 2n sup
X
|ϕ− Vθ| volα .

Proof.∫
X

(Vθ − ψ) θnϕ =
∫
X

(Vθ − ψ) θVθ ∧ θn−1
ϕ +

∫
X

(ϕ− Vθ) θVθ ∧ θn−1
ϕ

−
∫
X

(ϕ− Vθ) θψ ∧ θn−1
ϕ .

Hence ∣∣∣∣∫
X

(Vθ − ψ) θnϕ −
∫
X

(Vθ − ψ) θVθ ∧ θn−1
ϕ

∣∣∣∣ ≤ 2 sup
X
|ϕ− Vθ| volα .

We iterate this procedure n-times and find

(3.39)
∣∣∣∣∫
X

(Vθ − ψ) θnϕ −
∫
X

(Vθ − ψ) θnVθ

∣∣∣∣ ≤ 2n sup
X
|ϕ− Vθ| volα .

�

Proposition III.1.21. Let µ ∈ M̊+(X). Then
(1) For any C ∈ R, ϕ ∈ PSH(X, θ), then Lµ(ϕ+ C) = Lµ(ϕ) + Cµ(X).
(2) Lµ : PSH(X, θ)→ [−∞,∞) is usc.
(3) Assume that Lµ is finite on PSH(X, θ), µ 6= 0. There is a constant C > 0,

such that for any ϕ ∈ PSH(X, θ),

(3.40) sup
X
ϕ− C ≤ 1

µ(X)Lµ(ϕ) ≤ sup
X
ϕ .

(4) When there exists ϕ ∈ E1(X, θ) such that µ = θnϕ, then Lµ is finite on
E1(X, θ).

Proof. (1) This is obvious.
(2) This is a direct consequence of Hartogs’ lemma.
(3) This follows from Proposition III.1.23.
(4) This follows from Corollary III.1.11. �

Proposition III.1.22. Assume that ϕ ∈ E∞(X, θ), then Lθnϕ is finite on PSH(X, θ).

Proof. Let ψ ∈ PSH(X, θ), we want to show that

(3.41) Lθnϕ(ψ) =
∫
X

(Vθ − ψ) θnϕ <∞ .

By Proposition III.1.21, we may assume that ψ ≤ 0.
Step 1. We prove (3.41) for ϕ = Vθ. In this case, θnVθ is absolutely continuous

by Theorem I.5.12. Hence (3.41) follows.
Step 2. We prove (3.41) in general.
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For a general ψ, C ≥ 0, let ψC := ψ∨(Vθ−C) be the canonical approximations
of ψ. By Lemma III.1.20,∫

X

(Vθ − ψC) θnϕ ≤ 2n sup
X
|ϕ− Vθ| volα+

∫
X

(Vθ − ψC) θnVθ .

Let C →∞ and use monotone convergence theorem, we conclude∫
X

(Vθ − ψ) θnϕ ≤ 2n sup
X
|ϕ− Vθ| volα+

∫
X

(Vθ − ψ) θnVθ .

Hence we conclude (3.41) by Step 1. �

Proposition III.1.23. Let µ ∈ M̊+(X), µ(X) > 0. Assume that Lµ is finite
on PSH(X, θ). Then{

ϕ ∈ PSH(X, θ) :
∫
X

(ϕ− Vθ) dµ = 0
}
⊆ PSH(X, θ)

is relatively compact.
In particular, there is a constant C = C(µ) > 0, such that

(3.42) − C + sup
X
ϕ ≤ 1

µ(X)

∫
X

(ϕ− Vθ) dµ ≤ sup
X
ϕ .

Proof. Let ϕj ∈ PSH(X, θ) (j ∈ N),∫
X

(ϕj − Vθ) dµ = 0 .

Let
ψj := ϕj − sup

X
ϕj .

It suffices to prove that there is a constant C > 0, such that

(3.43)
∫
X

(Vθ − ψj) dµ ≤ C ,

since then

µ(X) sup
X
ϕj =

∫
X

(Vθ − ϕ) dµ+ µ(X) sup
X
ϕj =

∫
X

(Vθ − ψj) dµ

is also bounded hence we conclude by Theorem I.1.2.
Assume that (3.43) fails, after extracting a subsequence, we may assume that∫

X

(Vθ − ψj) dµ ≥ 2j .

Let

ψ =
∞∑
j=1

2−jψj ∈ PSH(X, θ) .

By monotone convergence theorem,

∞ >

∫
X

(Vθ − ψ) dµ =
∞∑
j=1

2−j
∫
X

(Vθ − ψj) dµ =∞ .

�

Theorem III.1.24. Let µ ∈ M̊+(X). Let K ⊆ PSH(X, θ) be a compact convex
subset such that Lµ is finite on K. Then (1) implies (2) implies (3):
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(1) The map T : K → L1(µ) given by ϕ 7→ ϕ− Vθ is continuous.
(2) The set K is uniformly integrable with respect to µ:

(3.44) lim
k→∞

sup
ϕ∈K

∫ ∞
k

µ{ϕ ≤ Vθ − t} dt = 0.

(3) Lµ : K → R is continuous.

Remark III.1.2. The converse is not true. ADD A COUNTEREXAMPLE
LATER.

Proof. (1) implies (2): We claim that T (K) ⊆ L1(µ) is closed and convex.
In fact, it is obviously convex. To see this set is closed, let ϕj ∈ K (j ∈ N) be a
sequence such that T (ϕj) → f ∈ L1(µ). By compactness of K, after substracting
a subsequence, we may assume that ϕj → ϕ ∈ PSH(X, θ). Since K is closed by
assumption, ϕ ∈ K. Now as T is continuous, we find T (ϕ) = f . This proves
that T (K) is closed. Now by Hahn–Banach theorem, T (K) is closed in weak star
topology. Hence by Dunford–Pettis theorem, K is uniformly integrable.

(2) implies (3): Assume that K is uniformly integrable. Let ϕj , ϕ ∈ K (j ∈ N).
Assume that ϕj → ϕ in L1-topology. We want to show that

lim
j→∞

Lµ(ϕj) = Lµ(ϕ) .

By Dunford–Pettis theorem, T (K) ⊆ L1(µ) is weakly compact, hence bounded.
Hence after extracting a subsequence, we may assume that Lµ(ϕj) converges with
limit L ∈ R. Let Kj be the closed convex hull of ϕk (k ≥ j). Then T (Kj) is weakly
compact and decreasing in j. Take

f ∈
∞⋂
j=1

Kj .

In particular, we can take a finite convex combination ψj of ϕk (k ≥ j), such that
T (ψj)→ f in L1(µ). It is easy to see that f = T (ϕ). By construction, Lµ(ψk)→ L.
Hence Lµ(f) = L. �

Definition III.1.5. Let µ ∈ M̊+(X). Define the free energy functional Fµ :
E1(X, θ)→ (−∞,∞] by

Fµ := E − Lµ .

Define the pluricomplex energy E∗ : M̊+(X)→ (−∞,∞] by

E∗(µ) := sup
E1(X,θ)

Fµ .

Proposition III.1.25. Let µ ∈ M̊+(X). Assume that µ(X) = volα. Then for
any C ∈ R, ϕ ∈ E1(X, θ),

Fµ(ϕ+ C) = Fµ(ϕ) .

Proposition III.1.26. Let ϕ ∈ E1(X, θ). Let µ ∈ M̊+(X), µ(X) = volα. The
following are equivalent:

(1) Fµ(ϕ) = E∗(µ).
(2) µ = θnϕ.
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Proof. (2) implies (1). Assume that µ = θnϕ. Then by Corollary III.1.15,

E(ϕ) +
∫
X

(ψ − Vθ) θnϕ ≥ E(ψ) +
∫
X

(ϕ− Vθ) θnϕ , ψ ∈ E1(X, θ) .

In other words,
Fµ(ψ) ≤ Fµ(ϕ).

(1) implies (2). Assume that ϕ is a maximizer of Fµ. Let v ∈ C0(X). Consider
the following function

g(t) := E(P(ϕ+ tv))− Lµ(ϕ)− t
∫
X

v dµ .

where t ∈ R. As P(ϕ+ tv) ≤ ϕ+ tv, we find

Lµ(P(ϕ+ tv)) ≤ Lµ(ϕ) + t

∫
X

v dµ .

So
g(t) ≤ E(P(ϕ+ tv))− Lµ(P(ϕ+ tv)) = Fµ(P(ϕ+ tv)) ≤ g(0) .

By Theorem III.1.18,
0 = g′(0) =

∫
X

v θnϕ −
∫
X

v dµ .

Hence (2) holds. �

Definition III.1.6. We define J : E1(X, θ)→ [0,∞) as
(3.45) J := Lθn

Vθ
− E .

Define I : E1(X, θ)→ [0,∞) as

(3.46) I(ϕ) :=
∫
X

(ϕ− Vθ)(θnVθ − θ
n
ϕ) .

Proposition III.1.27. Let ϕ ∈ E1(X, θ).
(1) J(ϕ+ C) = J(ϕ) for any constant C ∈ R.
(2) The image of J lies in [0,∞).
(3) For each C ≥ 0, the set

(3.47) {ϕ ∈ E1(X, θ) : sup
X
ϕ = 0 , J(ϕ) ≤ C} ⊆ E1(X, θ)

is relatively compact in the subspace topology induced from PSH(X, θ).

Proof. (1) This is obvious.
(2) By (1), we may assume that ϕ ≤ Vθ. Then this follows from Proposi-

tion III.1.10.
(3) By Proposition III.1.21 and Proposition III.1.22, there is a constant C1 > 0,

such that for any ϕ ∈ E1(X, θ),

sup
X
ϕ− C1 ≤

1
µ(X)Lµ(ϕ) ≤ sup

X
ϕ .

Hence
{ϕ ∈ E1(X, θ) : sup

X
ϕ = 0 , J(ϕ) ≤ C} ⊆ {ϕ ∈ E1(X, θ) : sup

X
ϕ = 0 , E(ϕ) ≤ −µ(X)C1−C} .

Hence the result follows from Corollary III.1.14. �

Proposition III.1.28. Let ϕ ∈ E1(X, θ). Then
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(1) For any C ∈ R,
I(ϕ+ C) = I(ϕ) .

(2)

(3.48) 1
n+ 1I(ϕ) ≤ J(ϕ) ≤ I(ϕ) .

Proof. (1) This is obvious.
(2) By (1) and Proposition III.1.27, we may assume that ϕ ≤ Vθ. Then by

definition,
J(ϕ) = −G1(ϕ, Vθ) + E1(ϕ, Vθ) , I(ϕ) = −G1(ϕ, Vθ) + F1(ϕ, Vθ) .

Hence the inequality follows from Proposition III.1.10. �

Proposition III.1.29. Let ϕ ∈ E1(X, θ). Let t ∈ [0, 1]. Then
(3.49) I(tϕ+ (1− t)Vθ) ≤ nt2I(ϕ) .

Proof. We may assume that ϕ ≤ Vθ.
By Corollary II.4.32∫

X

(ϕ− Vθ) θntϕ+(1−t)Vθ =(1− t)n
∫
X

(ϕ− Vθ) θnVθ +
n∑
j=1

(
n

j

)
tj(1− t)n−j

∫
X

(ϕ− Vθ) θjϕ ∧ θ
n−j
ψ

≥(1− t)n
∫
X

(ϕ− Vθ) θnVθ +
n∑
j=1

(
n

j

)
tj(1− t)n−j

∫
X

(ϕ− Vθ) θnϕ

=(1− t)n
∫
X

(ϕ− Vθ) θnVθ + (1− (1− t)n)
∫
X

(ϕ− Vθ) θnϕ .

Consequently,
I(tϕ+ (1− t)Vθ) ≤ t(1− (1− t)n)I(ϕ) .

Hence (3.49) follows. �

Proposition III.1.30. Let L : PSH(X, θ)→ [−∞,∞) be a convex, increasing
function satisfying L(ϕ+ c) = L(ϕ) + c volα for any c ∈ R, ϕ ∈ PSH(X, θ).

(1) Let K ⊆ PSH(X, θ) be a compact convex set. Assume that L is finite on
K, then L is bounded on K.

(2) If L is finite on E1(X, θ), then

(3.50) sup
E1
C

|L| = O(C1/2) , C →∞ .

Proof. (1) An upper bound of L is immediate: there is a constant C1 > 0
such that

sup
X

(ϕ− Vθ) ≤ C1 , ϕ ∈ K .

So
L(ϕ) ≤ L(Vθ) + C1 <∞ .

For the lower bound, assume that there ia a sequence ϕj ∈ K so that
L(ϕj) ≤ −2j .

Let

ϕ :=
∞∑
j=1

2−jϕj .
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By assumption, ϕ ∈ K. Note that for each N ∈ N,

ϕ ≤
N∑
j=1

2−jϕj + 2−NVθ.

So

L(ϕ) ≤
N∑
j=1

2−jL(ϕj) + 2−NL(Vθ) ≤ −N + 2−NLVθ .

Let N →∞, we find a contradiction.
(2) Assume that

sup
E1
C

|L| = O(C1/2)

fails, we may take ϕj ∈ E1(X, θ), so that

sup
X
ϕj = 0 , tj := |E(ϕj)|−1/2 → 0 , tjL(ϕj)→ −∞ .

On the other hand, we claim that there is C0 > 0, so that

(3.51) E(tϕj + (1− t)Vθ) ≥ −C0.

In particular,
tjϕj + (1− tj)Vθ ∈ E1

C0
.

So
tjL(ϕj) + (1− tj)L(Vθ) ≥ inf

E1
C0

L.

This is a contradiction.
It remains to prove the claim. By (1) and Proposition III.1.22, there is a

constant C > 0 such that for all ϕ ∈ PSH(X, θ), supX ϕ = 0, we have∫
X

(ϕ− Vθ) θnVθ ≥ −C .

In particular, this applies to tϕj + (1− t)Vθ and ϕj , hence we find

E(tϕ+ (1− t)Vθ) =− J(tϕ+ (1− t)Vθ) +O(1)
≥− (n+ 1)I(tϕ+ (1− t)Vθ) +O(1)
≥− (n+ 1)nt2I(ϕj) +O(1)
≥− (n+ 1)nt2J(ϕj) +O(1)
≥(n+ 1)nt2E(ϕj) +O(1)
≥O(1) ,

where the first and the third inequalities follow from Proposition III.1.28, the second
follows from Proposition III.1.29. �

Corollary III.1.31. Let µ ∈ M̊+(X), µ(X) = volα. Assume that Lµ is finite
on E1(X, θ). Then there are positive constants ε > 0, A > 0 such that

(3.52) Fµ ≤ −εJ +A .
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Proof. By Proposition III.1.25 and Proposition III.1.27, it suffices to prove
(3.52) for potentials ϕ ∈ E1(X, θ) with supX ϕ = 0.

In this case, by Proposition III.1.21 and Proposition III.1.22,
Lθn

Vθ
= O(1) .

Hence (3.52) follows from
inf
E1
C

Lµ ≥ −(1− ε)C +O(1) , C →∞ .

This follows from Proposition III.1.30. �

Proposition III.1.32. Let ϕ ∈ E1(X, θ). Then for any C ∈ R, the functional
Lθnϕ is continuous on ϕ ∈ E1(X, θ) with respect to the subspace topology inherited
from PSH(X, θ).

Proof. TO be add later �

Corollary III.1.33 (Global uniform Skoda theorem). Let ϕ ∈ E1(X, θ). Then
for any C ∈ R,

sup
E1
C

Lµ <∞ .

Proof. This follows from Corollary III.1.14 and Proposition III.1.32. �

Definition III.1.7. Let µ ∈ M̊+(X), λ > 0. Define the λ-free energy func-
tional Fµ,λ : E1(X, θ)→ R by

Fµ,λ(ϕ) := E(ϕ)−
∫
X

eλϕ dµ .

Remark III.1.3. Fµ,λ is finite on E1(X, θ). In fact,

0 ≤
∫
X

eλϕ dµ ≤ eλ supX ϕµ(X) .

Proposition III.1.34. Let µ ∈ M̊+(X), λ > 0. Let ϕ ∈ E1(X, θ). Assume
that
(3.53) Fµ,λ(ϕ) = sup

E1(X,θ)
Fµ,λ .

Then
(3.54) θnϕ = eλϕ dµ .

Proof. Let v ∈ C0(X). For t ∈ R, let

g(t) := E(P(ϕ+ tv))−
∫
X

eλ(ϕ+tv) dµ .

Observe that

g(t) ≤ E(P(ϕ+ tv))−
∫
X

eλP(ϕ+tv) dµ = Fµ,λ(P(ϕ+ tv)) ≤ Fµ,λ(ϕ) = g(0) .

By Theorem III.1.18, g(t) is differentiable at t = 0, hence∫
X

v θnϕ =
∫
X

veλϕ dµ .

Hence (3.54) follows. �
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III.2. Monge–Ampère capacity

III.2.1. Extremal functions.

Definition III.2.8. Let E ⊆ X be a Borel set.
(1) The global extremal function of E is defined as

(3.55) V ∗E,θ := sup*{ϕ ∈ PSH(X, θ) : ϕ|E ≤ 0} .
(2) The extremal function of E is defined as

(3.56) h∗E,θ := sup*{ϕ ∈ PSH(X, θ) : ϕ ≤ 0 , ϕ|E ≤ −1} .

Proposition III.2.35. Let E ⊆ X be a non-pluripolar Borel set. Then
(1) V ∗E,θ ∈ E∞(X, θ).
(2) θnV ∗

E,θ
is supported on E.

Proof. (1) To see that V ∗E,θ ∈ PSH(X, θ), it suffices to prove that
sup
X
V ∗E,θ ≤ ∞ .

If this is not true, by Choquet’s lemma, we can take an increasing sequence ϕj ∈
PSH(X, θ) (j ∈ N), such that

ϕj |E ≤ 0 , V ∗E,θ = sup*
j

ϕj , sup
X
ϕj ≥ 2j .

Let

ψj := ϕj − sup
X
ϕj , ψ =

∞∑
j=1

2−jψj .

Then by Theorem I.1.2, ψ ∈ PSH(X, θ). Moreover,
K ⊆ {ψ = −∞} .

Hence K is pluripolar, this is a contradiction.
Now by definition,

(3.57) Vθ ≤ V ∗E,θ .
Hence VE,θ has minimal singularity.

(2) It suffices to prove that for any x ∈ Amp(α) ∩ (X − E), there is a neigh-
bourhood B of x, such that

θnV ∗
E,θ
|B = 0 .

By Choquet’s lemma, take an increasing sequence ϕj ∈ PSH(X, θ) (j ∈ N), such
that

V ∗E,θ = sup*
j

ϕj , ϕj |E ≤ 0 .

We take the neighbourhood B ⊆ Amp(α) ∩ (X − E) of x as a small enough ball
in a coordinate neighbourhood. We solve the following Dirichlet problems of ψj ∈
PSH(B, θ): {

θnψj = 0 , in B ,
ψj = ϕj , on ∂B .

(add ref)
Then we get an increasing sequence ψj ≥ ϕj converging to V ∗K,θ a.e.. So

θnV ∗
K,θ
|B = 0 .
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�

Proposition III.2.36. Let E ⊆ X be a Borel set. Then h∗E,θ ∈ PSH(X, θ) and
θnh∗

E,θ
is supported on {h∗E,θ = 0} ∪ E. Moreover,

Vθ − 1 ≤ h∗E,θ ≤ Vθ .

Proof. The proof is similar to that of Proposition III.2.35 and we leave it to
the readers. �

III.2.2. Monge–Ampère capacity.

Definition III.2.9. Let E ⊆ X be a Borel set. We define the Monge–Ampère
capacity of E as

(3.58) Capθ(E) := sup
{∫

E

θnϕ : ϕ ∈ PSH(X, θ) , Vθ − 1 ≤ ϕ ≤ Vθ
}
.

Lemma III.2.37. Let E ⊆ X be a Borel subset. Then
(3.59) Capθ(E) = sup {Capθ(K) : K ⊆ E ,K is compact } .

Proof. By definition,
Capθ(E) ≥ Capθ(K)

for any compact subset K ⊆ E. Conversely, for any ε > 0, we take ϕ ∈ PSH(X, θ),
Vθ − 1 ≤ ϕ ≤ Vθ, such that ∫

E

θnϕ ≥ Capθ(E)− ε .

Take a compact subset K ⊆ E, such that∫
K

θnϕ ≥
∫
E

θnϕ − ε ≥ Capθ(E)− 2ε .

Take sup with respect to ϕ, then Capθ(K) ≥ Capθ(E) − 2ε. Let ε → 0+ to
conclude. �

Proposition III.2.38. Let E ⊆ X be a Borel set. Then

(3.60) Capθ(E) =
∫
E

θnh∗
E,θ
≤
∫
X

(Vθ − h∗E,θ) θnh∗
E,θ

.

Moreover. when E is either compact or open, we have

(3.61) Capθ(E) =
∫
X

(Vθ − h∗E,θ) θnh∗
E,θ

.

Proof. Since h∗E,θ is a candidate in the sup of (3.58), we have

(3.62) Capθ(E) ≥
∫
E

θnh∗
E,θ

.

Let A = {hE,θ < h∗E,θ}. Then A is a pluripolar set by Bedford–Taylor’s
theorem. By Proposition III.2.36,
(3.63) h∗E,θ|E−A = Vθ − 1 .
Let ϕ ∈ PSH(X, θ), Vθ − 1 ≤ ϕ ≤ Vθ. For any ε ∈ (0, 1), let

ϕε := (1− ε)ϕ+ εVθ .
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Then by (3.63),
E −A ⊆ {h∗E,θ < ϕε} .

Hence by Theorem II.4.28 and Proposition III.2.36,

(1− ε)n
∫
E

θnϕ ≤
∫
{h∗
E,θ

<ϕε}
θnϕε ≤

∫
{h∗
E,θ

<ϕε}
θnh∗

E,θ
=
∫
E

θnh∗
E,θ

.

Let ε→ 0+, we find ∫
X

θnϕ ≤
∫
E

θnh∗
E,θ

.

Take sup with respect to ϕ, we find

Capθ(E) ≤
∫
E

θnh∗
E,θ

.

Hence together with (3.62), we conclude the equality part of (3.60). The inequality
follows immediately from Proposition III.2.36 and (3.63).

When E is compact, (3.61) follows immediately from the first part, Proposi-
tion III.2.36 and (3.63).

Now assume that E is an open set. Let Kj (j ∈ N) be an increasing sequences
of compact sets with

E =
∞⋃
j=1

Kj

and such that Kj ⊆ K̊j+1.
Then we claim that h∗Kj ,θ decreases to h∗E,θ. It is immediate that h∗Kj ,θ is

decreasing and is always greater than h∗E,θ. Hence it suffices to show that h∗Kj ,θ
decreases to h∗E,θ a.e.. Again, by Bedford–Taylor’s theorem, it suffices to show that

sup*{ϕ ∈ PSH(X, θ) : ϕ ≤ 0 , ϕ|Kj ≤ −1}

decreases a.e. to

sup*{ϕ ∈ PSH(X, θ) : ϕ ≤ 0 , ϕ|E ≤ −1} ,

which is obvious.
We already know that

Capθ(Kj) =
∫
X

(Vθ − h∗Kj ,θ) θ
n
h∗
Kj,θ

.

By Lemma III.2.37 and our assumption on Kj , we know that

Capθ(E) = lim
j→∞

Capθ(Kj) .

On the other hand, by Theorem II.2.12,

lim
j→∞

∫
X

(Vθ − h∗Kj ,θ) θ
n
h∗
Kj,θ

=
∫
X

(Vθ − h∗E,θ) θnh∗
E,θ

.

Hence we conclude (3.61) in the case where E is open. �

Theorem III.2.39. Capθ is a regular Choquet capacity, namely an increasing,
subadditive map from the Borel algebra to [0,∞), such that

(1) Capθ(∅) = 0.
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(2) Let Ej ⊆ X (j ∈ N) be an increasing sequence of Borel sets. Let E =
∪jEj, then

(3.64) Capθ(E) = lim
j→∞

Capθ(Ej) .

(3) Let Kj ⊆ X be a decreasing sequence of compact sets. Let K = ∩jKj,
then

(3.65) Capθ(K) = lim
j→∞

Capθ(Kj) .

In particular, for each compact K ⊆ X, we have
(3.66) Capθ(K) = inf {Capθ(U) : K ⊆ U ,U ⊆ X is open} .

Proof. By definition, Capθ is increasing, subadditive and (1) is satisfied. Now
we verify (2). We only have to prove that

Capθ(E) ≤ lim
j→∞

Capθ(Ej) .

In fact, for any ε > 0, take ϕ ∈ PSH(X, θ), Vθ − 1 ≤ ϕ ≤ Vθ, such that

Capθ(E) ≤
∫
E

θnϕ + ε .

By dominated convergence theorem, we can take j0 large enough, so that∫
E

θnϕ ≤
∫
Ej0

θnϕ + ε .

Then for any j ≥ j0,
Capθ(E) ≤ Capθ(Ej) + 2ε .

Let j →∞ then let ε→ 0+, we conclude (3.64).
Let us verify (3). In fact, it is not hard to verify that h∗Kj ,θ increases to h∗K,θ

a.e.. (add details) By Proposition III.2.38,

Capθ(Kj) =
∫
X

(Vθ − h∗Kj ,θ) θ
n
h∗
Kj,θ

.

Let j →∞ and apply Theorem II.2.12, we find

lim
j→∞

Capθ(Kj) =
∫
X

(Vθ − h∗K,θ) θnh∗
K,θ

.

Again by Proposition III.2.38, we conclude (3.65).
Finally, (3.66) holds for general regular capacity. �

III.2.3. Capacity and finite energy class.

Proposition III.2.40. Let ϕ ∈ PSH(X, θ). Assume that

(3.67)
∫ ∞

0
tn Capθ{ϕ < Vθ − t} dt <∞ .

Then ϕ ∈ E1(X, θ).

Proof. For each C ≥ 1, let
ϕC := ϕ ∨ (Vθ − C)

be the canonical approximations of ϕ. Then
ψC := C−1ϕC + (1− C−1)Vθ
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is a candidate for the sup term in (3.58), hence for any Borel set E ⊆ X,

C−nθnϕC (E) ≤ θnψC (E) ≤ Capθ(E) .

Hence by (3.67), ∫ ∞
0

dt
∫
{ϕ<Vθ−t}

θnϕC <∞ .

It follows from Corollary III.1.17 that ϕ ∈ E1(X, θ). �

Proposition III.2.41. For each C ≥ 0,

sup
ϕ∈E1

C
(X,θ)

∫ ∞
0

tCapθ{ϕ < Vθ − t} dt <∞ .

Proof. Fix ϕ ∈ E1
C(X, θ).

Pick ψ ∈ PSH(X, θ), so that Vθ − 1 ≤ ψ ≤ Vθ. For t ≥ 1,

{ϕ < Vθ − 2t} ⊆ {t−1ϕ+ (1− t−1)Vθ < ψ − 1} ⊆ {ϕ < Vθ − t} .

So by Theorem II.4.28, we have∫
{ϕ<Vθ−2t}

θnψ ≤
∫
{ϕ<Vθ−t}

θnt−1ϕ+(1−t−1)Vθ

≤(1− t−1)
∫
{ϕ<Vθ−t}

θnVθ + C1t
−1

n∑
j=1

∫
{ϕ<Vθ−t}

θjϕ ∧ θ
n−j
Vθ

,

where C1 is a constant independent of the choice of ϕ. Hence

tCapθ({ϕ < Vθ − 2t}) ≤ t
∫
{ϕ<Vθ−t}

θnVθ + C1

n∑
j=1

∫
{ϕ<Vθ−t}

θjϕ ∧ θ
n−j
Vθ

.

So ∫ ∞
0

tCapθ{ϕ < Vθ − t} dt ≤ C1

∞∑
j=1

(Vθ − ϕ) θjϕ ∧ θ
n−j
Vθ

+ 1
2

∫
X

(Vθ − ϕ)2 θnVθ .

Since E(ϕ) ≥ −C, we know that there is a constant C2 > 0 independent of ϕ, such
that ∫ ∞

0
tCapθ{ϕ < Vθ − t}dt ≤ C2 + 1

2

∫
X

(Vθ − ϕ)2 θnVθ .

By Theorem I.5.12, θnVθ has bounded density. So it follows from uniform version of
Skoda’s integrability theorem that RHS is uniformly bounded. �

Proposition III.2.42. Let ϕ ∈ E(X, θ);. Let t > 0, δ ∈ (0, 1), we have

(3.68) Capθ{ϕ < Vθ − t− δ} ≤
1
δn

∫
{ϕ<Vθ−t}

θnϕ .

Proof. Take ψ ∈ PSH(X, θ), Vθ − 1 ≤ ψ ≤ Vθ, then

{ϕ < Vθ − t− δ} ⊂ {ϕ < δψ + (1− δ)Vθ − t} ⊂ {ϕ < Vθ − t}.
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So by Theorem II.4.28,

δn
∫
{ϕ<Vθ−t−δ}

θnψ ≤
∫
{ϕ<δψ+(1−δ)Vθ−t}

θnδψ+(1−δ)Vθ

≤
∫
{ϕ<δψ+(1−δ)Vθ−t}

θnϕ

≤
∫
{ϕ<Vθ−t}

θnϕ .

Take sup with respect to ψ, we conclude (3.68). �

Proposition III.2.43. Let µ ∈ M+(X) be a non-pluripolar measure. Then
there exists a probability measure ν, such that

µ� ν, ν ≤ Cap .

Proof. Consider the following set
L := {ν ∈ P(X) : ν ≤ Cap}.

We shall prove that L is closed.
By regularity of both ν ∈ P(X) and Cap, it suffices to prove that if νn ∈ L,

νn ⇀ ν ∈ P(X), the for any open set U ⊂ X,
ν(U) ≤ Cap(U).

This is the so called Portmanteau theorem.
Now L is closed and is obviously convex, we could apply Theorem ??? so

decompose
µ = fν + τ,

where f ∈ L1(ν), τ ⊥ L. Since µ is non-pluripolar, we conclude that τ = 0. �

III.2.4. Alexander–Taylor capacity.

Definition III.2.10. Let E ⊆ X be a Borel set. The Alexander–Taylor capacity
of E is defined as e−Mθ(E), where
(3.69) Mθ(E) := sup

X
V ∗E,θ .

Proposition III.2.44. There is a constant A > 0, such that for any Borel set
E ⊆ X, when Mθ(E) > 1,

(3.70)
(

volα
Capθ(E)

)1/n
≤Mθ(E) ≤ A

Capθ(E) .

If Mθ(E) ≤ 1, then
(3.71) Capθ(E) = volα .

Proof. By Lemma III.2.37, it suffices to consider the case where E is compact.
Let M := Mθ(E).

Assume that M ≤ 1. Then V ∗E,θ − 1 is a candidate in defining Capθ(E) in
(3.58). So

Capθ(E) ≥
∫
E

θnV ∗
E,θ

=
∫
X

θnV ∗
E,θ

= volα ,

where the second equality follows from Proposition III.2.35.



III.2. MONGE–AMPÈRE CAPACITY 83

Assume that M > 1. Then

Vθ − 1 ≤ 1
M
V ∗E,θ +

(
1− 1

M

)
Vθ − 1 ≤ Vθ ,

So by Proposition III.2.35,

Capθ(E) ≥
∫
E

θn1
M V ∗

E,θ
+(1− 1

M )Vθ ≥
1
Mn

∫
E

θnV ∗
E,θ

= 1
Mn

∫
X

θnV ∗
E,θ

= 1
Mn

volα .

The left-hand part of (3.70) follows.
Now we prove the other part. By Proposition III.2.36,

1
M
V ∗E,θ +

(
1− 1

M

)
Vθ − 1 ≤ Vθ

and (
1
M
V ∗E,θ +

(
1− 1

M

)
Vθ − 1

)
|E ≤ −1

on E −A, where A ⊆ X is a pluripolar set. So

h∗E ≥
1
M
V ∗E,θ +

(
1− 1

M

)
Vθ − 1.

Hence by Proposition III.2.38,

Capθ(E) =
∫
X

(Vθ − h∗E) θnh∗
E
≤ 1
M

∫
X

(Vθ − V ∗E,θ +M) θnh∗
E
.

Hence by Lemma III.1.20 and Theorem I.5.12, there is a constant A > 0, such that

M Capθ(E) ≤
∫
X

(Vθ − V ∗E,θ +M) θnVθ +A ≤
∫
X

(Vθ − V ∗E,θ +M)ωn +A ,

Now
sup
X

(
−Vθ + V ∗E,θ −M

)
≤ 0 ,

So
M Capθ(E) ≤ A .

�

Proposition III.2.45. Let E ⊆ X be a Borel set. Then the following are
equivalent:

(1) E is a pluripolar set.
(2) Capθ(E) = 0.
(3) Mθ(E) =∞.

Proof. (1) implies (2). This follows immediately from definition.
(2) implies (1). Assume that Capθ(E) = 0.
Step 1. Assume that θ = ω is a Kähler form. This result is a classical theorem

in Bedford–Taylor theory. To be added later.
Step 2. In the general case, Fix a Kähler form ω ≥ θ on X. If E is non-

pluripolar, by Step 1, Capω(E) > 0. By Lemma III.2.37, there is a compact set
K ⊆ E, such that Capω(K) > 0. In particular, K is non-pluripolar.

Since θ ≤ ω, we have

PSH(X, θ) ⊆ PSH(X,ω) .
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So there is a constant C > 1 such that
Vθ ≤ V ∗K,θ ≤ V ∗K,ω ≤ Vθ + C .

Then
ψ :=

(
1− 1

C

)
Vθ + 1

C
V ∗K,θ − 1 ∈ PSH(X, θ)

is a candidate in the sup term of (3.58). Hence by Proposition III.2.35,

Capθ(E) ≥ Capθ(K) ≥
∫
K

θnψ ≥
1
Cn

∫
K

θnV ∗
K,θ

= 1
Cn

∫
X

θnV ∗
K,θ

= 1
Cn

volα > 0.

This is a contradiction.
(1) implies (3). This is obvious.
(3) implies (2). This follows from Proposition III.2.44. �

Theorem III.2.46. Let α1, α2 be two big classes with smooth representatives
θ1, θ2. Then there is a constant C(θ1, θ2) > 0, such that

(3.72) C−1 Capnθ1
≤ Capθ2 ≤ C Cap1/n

θ1
.

Proof. Take a Kähler form ω ≥ θ1. Then
PSH(X, θ1) ⊆ PSH(X,ω) .

By Lemma III.2.37, it suffices to prove (3.72) for a compact set K ⊆ X. Take
ψ ∈ PSH(X, θ2) with analytic singularity with

X −Ampα2 = {ψ = −∞}
and such that

θ2,ψ ≥ εω , sup
X
ψ = 0

for some ε > 0, the existence is guaranteed by Boucksom’s theorem (ADD REF).
Let U := {ψ > −1}. Then U is non-empty and open. Define

ϕ = ψ + εV ∗θ1,K ∈ PSH(X, θ2).
By Proposition III.2.35, ϕ ≤ 0 on E − A, where A ⊆ X is a pluripolar set. So by
(3.55),

ϕ ≤ V ∗θ2,E .

Taking sup of this expression on U , we find
Mθ2(E) ≥ sup

U
ϕ ≥ ε sup

U
V ∗θ1,E − 1 .

On the other hand, V ∗θ1,E
− supU V ∗θ1,E

≤ 0 on U , so
V ∗θ1,E − sup

U
V ∗θ1,E ≤ V

∗
θ1,U .

So
Mθ2(E) ≥ ε(Mθ1(E)−Mθ1,U )− 1 .

It follows from Proposition III.2.44 that
Capθ2(E) ≤ C Capθ1(E)1/n.

This proves one part of (3.72), the other follows by symmetry. �

Proposition III.2.47. Let µ ∈ M̊+(X). Assume that one of the following
condition holds:

(1) µ is absolutely continuous with bounded density.
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(2) µ = θnψ for some ψ ∈ E1(X, θ).
Assume that Lµ is finite on PSH(X, θ). Let 0 ≤ f ∈ Lp(X,µ) (p > 1). Then

(3.73) fµ ≤ C Cap2
θ ,

where
C = (p− 1)−2nC1‖f‖Lp(X,µ) ,

where C1 = C1(θ, µ) > 0 is a constant.

Proof. By Lemma III.2.37, it suffices to prove that for each non-pluripolar
compact set K ⊆ X,

(3.74)
∫
K

f dµ ≤ C Capθ(K)2 .

We claim that there is a constant ν = ν(θ, µ), C = C(θ, µ) > 0, independent of K,
such that ∫

X

exp(−ν−1V ∗K,θ)µ ≤ C exp(−ν−1Mθ(K)) .

In Case (1), we apply the uniform Skoda theorem. In Case (2), we apply Corol-
lary III.1.33, just notice that V ∗K,θ ≥ VK,θ, hence E(V ∗K,θ) ≥ 0 by Proposition III.1.13.

It follows from Proposition III.2.35 and Bedford–Taylor’s theorem that V ∗K,θ =
0 on K up to a pluripolar set, so

µ(K) ≤ C exp(−ν−1Mθ(K)) .

So by Hölder’s inequality,∫
K

f dµ ≤ exp
(
−p− 1

νp
Mθ(K)

)
.

We may assume that Mθ(K) ≥ 1. Otherwise the proof of Proposition III.2.44
implies that Capθ(K) = volα. The result is trivial. By Proposition III.2.44, (3.74)
follows. �

III.2.5. Comparison with Bedford–Taylor capacity. Let (Uj)j=1,...,N be
a finite open covering of X by strictly pseudoconvex domains with smooth bound-
aries contained in a coordinate chart. Let ρj be a smooth strictly psh function
defined in a neighbourhood of U j with Uj = {ρ < 0}. Fix δ > 0. Let

Uδj = {ρ < −δ} .

Let χj be a partition of unity subordinate to Uj . For each Borel subset E ⊂ X, we
define

Cap(E) =
N∑
j=1

Cap(E ∩ Uδj , Uj) .

By [GZ17] Proposition 4.18, for two different choices of δ and Uj , the resulting
Cap will bound each other by a constant multiple.

Theorem III.2.48. Let ω be a Kähler form on X. There is a constant C ≥ 1
such that

C−1 Cap(E) ≤ Capω(E) ≤ C Cap(E) .
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Proof. It suffices to prove that for any j = 1, . . . , N and for each Borel set
E ⊆ U δj ,

C−1 Cap(E,U) ≤ Capω(E) ≤ C Cap(E,U) .
Since we work in a fixed Uj , we omit j from the subindex. After passing to a
finer covering, we may assume that ω = ddcψ for a psh function ψ defined in a
neighbourhood of Ū . Let C1 > 1 be a constant such that

−C1 ≤ ψ|Ū ≤ C1 .

Now take ϕ ∈ PSH(X,ω), −1 ≤ ϕ ≤ 0. Then
ϕ̃ := (2C1)−1(ϕ+ ψ − C1) ∈ PSH(U)

and −1 ≤ ψ̃ ≤ 0. So
Capω(E) ≤ (2C1)n Cap(E,U) .

For the reverse inequality, let χ ∈ C∞(X) ∩ PSH(X,ω) be a non-positive function
that vanishes outside U and strictly negative on U . Fix ε > 0 so that χ < −ε on
U δ. Let η ∈ PSH(U), −1 ≤ η ≤ 0. Define

ϕ(x) =



η(x) + 1− ψ(x) + C1

2 + 2C1
− 1 , x ∈ Uδ ,(

η(x) + 1− ψ(x) + C1

2 + 2C1
− 1
)
∨
(

2
ε
χ(x)

)
, x ∈ U − Uδ ,

0 , x ∈ X − U .

One can verify that ϕ ∈ PSH(X, 2ε−1ω). Hence
1

(2C1 + 2)n

∫
E

(ddcη)n ≤
∫
E

(
(2C1 + 2)−1ω + ddcϕ

)n ≤ ∫
E

(
2ε−1ω + ddcϕ

)n ≤ 2nε−n Capω(E) .

Take sup with respect to η, we find
Cap(E,U) ≤ 2n(2C1 + 2)nε−n Capω(E) .

�

III.3. Monge–Ampère equation I. Existence and regularity

Theorem III.3.49. Let µ ∈ M̊+(X) with µ(X) = volα. Then the followings
are equivalent:

(1) µ = θnϕ for some ϕ ∈ E1(X, θ).
(2) E∗(µ) <∞.

Proof. (1) implies (2). By Proposition III.1.26,

E∗(µ) = E(ϕ)−
∫
X

(ϕ− Vθ) θnϕ .

The RHS is finite by Proposition III.1.10.
(2) implies (1).
Step 1. We prove the theorem under the assumption that µ ≤ ACapθ for

some A > 0.
In this case, we claim that Lµ : E1(X, θ)→ R and Lµ is continuous.
In fact, by our assumption and Proposition III.2.41, for any C > 0,

sup
ϕ∈E1

C
(X,θ)

∫ ∞
0

tµ{ϕ < Vθ − t} dt <∞ .
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This implies immediately that Lµ is finite on E1
C(X, θ). It also follows that E1

C(X, θ)
is uniformly integrable in the sense of Theorem III.1.24 and hence Lµ is continuous
on E1

C(X, θ).
Let ϕj ∈ E1(X, θ) (j ∈ N) be a sequence such that

Fµ(ϕj)→ E∗(µ) , sup
X
ϕj = 0 .

We may assume that
ϕj → ϕ ∈ PSH(X, θ) .

Since Lµ is continuous and since E is usc (Proposition III.1.13), we find Fµ(ϕ) =
E∗(µ). Hence µ = θnϕ by Proposition III.1.26.

Step 2. Now we deal with the general case.
By Proposition III.2.43, we may write µ = fν, where ν ∈ M̊+(X), ν ≤ Capθ,

f ∈ L1(ν).
For any k ∈ Z>0, set

µk := ck min{f, k}ν ,
where ck > 1 is a normalization constant so that RHS has total mass volα. Note
that for k large, we may assume that ck ≤ 2, then

µk ≤ 2kCapθ .
By the Step 1, there exists ϕk ∈ E1(X, θ) such that

µk = θnϕk , sup
X
ϕk = 0 .

Hence Lµk is finite on E1(X, θ) by Proposition III.1.21. By Proposition III.1.30,
there is a constant A > 0, such that

sup
E1
C

(X,θ)
|Lµk | ≤ A+AC1/2

for any C > 0. Since µk ≤ 2µ, we thus find
sup
E1
C

(X,θ)
|Lµ| ≤ 2A+ 2AC1/2 .

Hence there is a constant C > 0, such that
E∗(µk) ≤ C .

Now we claim that there is a constant C > 0, such that
J(µk) ≤ C .

In fact, by Proposition III.1.26,

E∗(µk) = E(ϕk)−
∫
X

(ϕk − Vθ) θnϕk .

It follows from Proposition III.1.10 that
nE∗(µk) ≥ J(ϕk) .

Now by Proposition III.1.27, after extracting a subsequence, we may assume that
ϕk → ϕ in L1-topology with ϕ ∈ E1.

It follows from Theorem II.6.45 and the mass condition that µ = θnϕ. �

Theorem III.3.50. Let µ ∈ M̊+(X), µ(X) = volα. Then there exists ϕ ∈
E(X, θ), such that µ = θnϕ.
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Proof. By Proposition III.2.43, we may write µ = fν, where ν ∈ M̊+(X),
ν ≤ Capθ, f ∈ L1(ν). For each j > 0, let cj be the constant such that∫

X

cj min{f,−j} ν = volα .

For j large enough, we may assume that 1 ≤ cj ≤ 2. Note that cj → 1 as j →∞.
By Theorem III.3.49 Step 2, we can take ϕj ∈ E1(X, θ) such that

θnϕj = cj min{f,−j} ν , sup
X
ϕj = 0 .

By extracting a subsequence, we may assume that ϕj → ϕ ∈ PSH(X, θ). By
Theorem II.6.45 and the mass condition, we conclude that µ = θnϕ. �

Lemma III.3.51. Let f : (0,∞) → (0,∞) be a decreasing, right continuous
function. Assume that there is a constant C > 0 such that

f(t+ δ) ≤ C

δ
f(t)2 ,

for any t > 0, δ ∈ (0, 1). Assume furthermore that

f(t0) < 1
2C

for some t0 > 0. Then
f(t0 + 4C) = 0 .

For a proof, see [EGZ09] Lemma 2.4, Remark 2.5.

Theorem III.3.52 (Kołodziej estimate). Let µ ∈ M̊+(X). Let a ∈ [0, 1),
A > 0. Let 0 ≤ f ∈ Lp(X,µ) (1 < p ≤ ∞). Let ϕ ∈ E(X, θ). Assume that
(3.75) θnϕ ≤ fµ+ a θnVθ .

Assume one of the following conditions holds
(1) p =∞ and µ = θnη for some η ∈ E∞(X, θ).
(2) µ is absolutely continuous with bounded density.

Then there is a constant C = C(θ, µ, a), such that
(3.76) ϕ− sup

X
ϕ ≥ Vθ − C‖f‖Lp(X,µ) .

Proof. We may assume that supX ϕ = 0. For t > 0, let

g(t) := (Capθ{ϕ < Vθ − t})1/n
.

It suffices to prove that g(t) = 0 for t ≤ −C for some C as in the statement of
the theorem. Since it will then follow from Proposition III.2.45 that (3.76) holds
outside a pluripolar set. Hence it holds everywhere.

By (3.75) and Theorem II.4.28, for any t > 0,∫
{ϕ<Vθ−t}

θnϕ ≤
∫
{ϕ<Vθ−t}

f dµ+ a

∫
{ϕ<Vθ−t}

θnVθ

≤
∫
{ϕ<Vθ−t}

f dµ+ a

∫
{ϕ<Vθ−t}

θnϕ .

So ∫
{ϕ<Vθ−t}

θnϕ ≤
1

1− a

∫
{ϕ<Vθ−t}

f dµ .
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By Proposition III.2.42,

(3.77) g(t+ δ) ≤ δ−1
∫
{ϕ<Vθ−t}

θnϕ ≤
1

δ(1− a)

∫
{ϕ<Vθ−t}

f dµ .

By Proposition III.2.47, there is a constant C0(θ, µ, a) > 0 such that

g(t+ δ) ≤ C0

δ
g(t)2 , δ ∈ (0, 1) .

For t0 > 0,∫
{ϕ<Vθ−t0}

f dµ ≤
∫
{ϕ<Vθ−t0}

Vθ − ϕ
t0

f dµ ≤ 1
t0

(∫
X

fp dµ
)1/p(∫

X

(Vθ − ϕ)q dµ
)1/q

,

where q is the conjugate index of p. We take t0 large enough, such that∫
{ϕ<Vθ−t0}

f dV ≤ 1− a
(2C0)n .

Note that t0 can be taken to be of the form

t0 = C0‖f‖Lp(X,µ) ,

where C0 depends only on θ, µ, a. It suffices to control∫
X

(Vθ − ϕ)q dµ

from above in terms of θ, µ, a. In case (1), we have q = 1, so this follows from
Proposition III.1.23 and Proposition III.1.22. In case (2), this follows from uniform
Skoda theorem (ADD DETAILS). By (3.77),

g(t0 + 1) ≤ (2C0)−1 .

By Lemma III.3.51, (3.76) follows. �

Corollary III.3.53. Let µ ∈ M̊+(X). Let 0 ≤ f ∈ Lp(X,µ) (p > 1). Assume
that ∫

X

f dµ = volα.

Let ϕ ∈ E(X, θ) be a solution to

(3.78) θnϕ = fµ .

Assume one of the following conditions holds
(1) p =∞ and µ = θnη for some η ∈ E∞(X, θ).
(2) µ is absolutely continuous with bounded density.

Then

(3.79) ϕ− sup
X
ϕ ≥ Vθ − C‖f‖1/nLp ,

where C = C(θ, µ, p) > 0 is a constant.
In particular, ϕ ∈ E∞(X, θ).

Now we consider the Aubin–Yau equation.
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Theorem III.3.54. Let µ ∈ M̊+(X), µ(X) > 0. Let λ > 0. Then there is a
unique ϕ ∈ E1(X, θ) such that

(3.80) θnϕ = eλϕµ .

Moreover, if µ is absolutely continuous with Lp-density (p > 1), then there is a
constant C = C(θ,dµ, p) > 0 such that

ϕ− sup
X
ϕ ≥ Vθ − C .

Remark III.3.4. If (3.80) holds for ϕ ∈ E(X, θ). Then∫
X

(Vθ − ϕ) θnϕ ≤ −
∫
X

ϕeλϕ dµ .

As −xeλx is bounded from above when x is bounded from above, we conclude that∫
X

(Vθ − ϕ) θnϕ <∞ .

Hence by Corollary III.1.17, ϕ ∈ E1(X, θ).

Proof. Let ϕj ∈ E1(X, θ) (j ∈ N) be a sequence such that
(3.81) lim

j→∞
Fµ,λ(ϕj) = sup

E1(X,θ)
Fµ,λ .

The value lies in (−∞,∞] by Remark III.1.3.
We claim that supX ϕj is bounded from above. Otherwise, by extracting a

subsequence, we may assume that
sup
X
ϕj →∞ .

By further extracting a subsequence, by Theorem I.1.2, we may assume that ϕj −
supX ϕj → ψ ∈ PSH(X, θ). Since µ is non-pluripolar and has positive mass, we
find

ε :=
∫
X

eλψ dµ > 0 .

Hence ∫
X

eλϕj dµ ≥ εeλ supX ϕj .

On the other hand, by Proposition III.1.13,
E(ϕj) ≤ volα sup

X
ϕj .

Hence
Fµ,λ(ϕj) ≤ volα sup

X
ϕj − eλ supX ϕj → −∞ .

This is a contradiction.
Now by extracting a subsequence, we may assume that ϕj → ϕ ∈ PSH(X, θ).

Since ϕ 7→
∫
X
eλϕ dµ is continuous (ADD PROOF) and E is usc (Proposition III.1.13),

we conclude that ϕ ∈ E1(X, θ) and that
Fµ,λ(ϕ) = sup

E1(X,θ)
Fµ,λ .

We conclude (3.80) by Proposition III.1.34.
The finial claim follows from Corollary III.3.53. �
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Proposition III.3.55. Let µ ∈ M̊+(X). Let λ > 0. Let ϕ ∈ E∞(X, θ),
ψ ∈ E(X, θ). Assume that

(3.82) θnϕ ≤ eλϕµ , θnψ ≥ eλψµ .

Then
ϕ ≥ ψ .

Remark III.3.5. In Corollary III.4.65, we will prove that one can weaken the
assumption ϕ ∈ E∞(X, θ) with ϕ ∈ E(X, θ).

Proof. By Corollary II.4.32 and (3.82),∫
{ϕ<ψ}

eλψ dµ ≤
∫
{ϕ<ψ}

θnψ ≤
∫
{ϕ<ψ}

θnϕ ≤
∫
{ϕ<ψ}

eλϕ dµ ≤
∫
{ϕ<ψ}

eλψ dµ .

So equality holds. In particular, from the last two terms, we find ϕ ≥ ψ µ-a.e.,
hence θnϕ-a.e.. Hence ϕ ≥ ψ by Theorem II.4.35. �

Lemma III.3.56. Let λ > 0 be a constant. Let ϕ,ψ ∈ E∞(X, θ). Then there is
γ ∈ E∞(X, θ), such that

(3.83) θnγ = eλ(γ−ϕ) θnϕ + eλ(γ−ψ) θnψ .

Proof. For each j ≥ 1, consider the canonical approximations

ϕj := max{ϕ,−j} , ψj := max{ψ,−j} .

Let
µj := e−λϕj θnϕ + e−λψj θnψ .

Then µj(X) > 0. By Theorem III.3.54, there exists γj ∈ E1(X, θ), such that

(3.84) θnγj = eλγjµj .

Note that by Proposition III.1.21,

PSH(X, θ) ⊆ L1(X,µj) .

Hence by Corollary III.3.53, ϕj ∈ E∞(X). Take a constant C > 0 so that

|ϕ− ψ| ≤ 2C .

Let

η = ϕ+ ψ

2 − C − n log 2 .

Then η ∈ E∞(X, θ) and
θnη ≥ eληµj .

by Proposition III.3.55, γj ≥ η and γj is decreasing in j, let

γ := lim
j→∞

γj .

Then γ ≥ η, hence γ ∈ E∞(X, θ). Now (3.83) follows from (3.84) by letting j →∞
using Theorem II.2.8 and the dominated convergence theorem. �
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III.4. The rooftop operators

Theorem III.4.57. Let ϕ,ψ ∈ PSH(X, θ). Assume that ϕ ∧ ψ 6= −∞, then

(3.85) θnϕ∧ψ ≤ 1{ϕ∧ψ=ϕ}θ
n
ϕ + 1{ϕ∧ψ=ψ}θ

n
ψ .

Proof. Step 1. Assume that (3.85) holds when ϕ,ψ ∈ E∞(X, θ).
For each k > 0, define

ϕk = ϕ ∨ (Vθ − k) , ψk = ψ ∨ (Vθ − k) ,
ηk = ϕk ∧ ψk , η = ϕ ∧ ψ .

Then
θnηk ≤ 1{ηk=ϕk} θ

n
ϕk

+ 1{ηk=ψk} θ
n
ψk
.

Then for k > C > 0,
1{η>Vθ−C} θ

n
ηk∨(Vθ−C) =1{η>Vθ−C} θ

n
ηk

≤1{η>Vθ−k}∩{ηk=ϕk} θ
n
ϕk

+ 1{η>Vθ−k}∩{ηk=ψk} θ
n
ψk

=1{η>Vθ−k}∩{ηk=ϕk} θ
n
ϕ + 1{η>Vθ−k}∩{ηk=ψk} θ

n
ψ

≤eA(ηk−ϕk) θnϕ + eA(ηk−ψk) θnψ ,

where A > 0 is an arbitrary constant. Note that ηk decreases to η. Let k →∞ and
apply Theorem II.2.8 and dominated convergence theorem,

1{η>Vθ−C} θ
n
η∨(Vθ−C) ≤ e

A(η−ϕ) θnϕ + eA(η−ψ) θnψ .

Let C →∞, we find
θnη ≤ eA(η−ϕ) θnϕ + eA(η−ψ) θnψ .

Let A→ 0, we conclude (3.85) by monotone convergence theorem.
Step 2. We prove the theorem assuming that ϕ,ψ ∈ E∞(X, θ).
We may assume that ϕ,ψ ≤ 0.
By Lemma III.3.56, there exists ηj ∈ E∞(X, θ) (j ∈ N), such that

(3.86) θnηj = ej(ηj−ϕ) θnϕ + ej(ηj−ψ) θnψ .

It follows from Proposition III.3.55 that ηj is increasing and ηj ≤ ϕ, ηj ≤ ψ. Let
η∞ ∈ PSH(X, θ) the a.e. limit of ηj , then η∞ ∈ E(X, θ). Hence

η∞ ≤ ϕ ∧ ψ .

We claim that equality indeed holds. Fix ε > 0, then by (3.86),∫
{η∞<ϕ∧ψ−ε}

θnηj ≤
∫
{ηj<ϕ∧ψ−ε}

θnηj ≤ 2 volα e−jε .

Let j →∞, by Corollary II.2.9,∫
{η∞<(ϕ∧ψ)−ε}

θnη∞ = 0 .

Let ε→ 0+, we find ∫
{η∞<ϕ∧ψ}

θnη∞ = 0 .

Hence η∞ = ϕ ∧ ψ by Theorem II.4.35.
Now (3.85) follows by letting j → ∞ in (3.86) and applying Theorem II.2.8

and monotone convergence theorem. �
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Corollary III.4.58. Let U ⊆ X be a plurifine open subset. Let ϕ,ψ ∈
PSH(X, θ). Assume that ϕ ∧ ψ 6= −∞. Let µ ∈M+(X). Assume that

1Uθ
n
ϕ ≤ µ , 1Uθ

n
ψ ≤ µ .

Then
1Uθ

n
ϕ∧ψ ≤ µ .

Proof. Replacing µ by 1X−Pµ, where P = {ϕ = ψ = −∞}, we may assume
that µ(P ) = 0. Now the function r 7→ µ{ϕ ≤ ψ + r} is increasing and bounded, so
there are at most countable r so that

µ{ϕ = ψ + r} > 0 .
So we can take a sequence εi > 0 (i ∈ N) decreasing to 0, such that

µ{ϕ = ψ − εi} = 0 .
By Theorem III.4.57,

1Uθϕ∧(ψ−εi) ≤ µ .
Let i→∞, by Corollary II.2.9,

1Uθ
n
ϕ∧ψ ≤ µ .

�

Corollary III.4.59. Let U ⊆ X be a plurifine open subset. Let φ, ϕj ∈
PSH(X, θ) (j ∈ N). Assume that there is C > 0 so that |φ − ϕj | ≤ C. Let
µ ∈M+(X). Assume that
(3.87) 1Uθ

n
ϕj ≤ µ .

Then
1U θ

n
limϕj ≤ 1U µ .

Proof. For j, k ∈ N, let
ϕj,k := ϕj ∧ · · · ∧ ϕj+k .

Then by Corollary III.4.58,
1Uθ

n
ϕj,k
≤ µ .

Let ϕj = infk ϕj,k. Then by Corollary II.2.9,
1Uθ

n
ϕj ≤ µ .

Let ϕ = sup*ϕj , again by Corollary II.2.9,
1Uθ

n
ϕ ≤ µ .

�

Theorem III.4.60. Let ϕ,ψ ∈ PSH(X, θ). Assume that [ϕ] � [ψ]. Then
θn[ϕ]∧ψ ≤ 1{[ϕ]∧ψ=ψ} θ

n
ψ .

Proof. We may assume that ϕ,ψ ≤ 0. By Theorem III.4.57, for any t > 0,
θn(ϕ+t)∧ψ ≤ 1{(ϕ+t)∧ψ=ϕ+t} θ

n
ϕ + 1{(ϕ+t)∧ψ=ψ} θ

n
ψ .

Observe that
{(ϕ+ t) ∧ ψ = ϕ+ t} ⊂ {ϕ+ t ≤ Vθ} .

So as t → ∞, the first term vanishes. Now we can apply Corollary II.2.9 and
dominated convergence theorem to conclude. �
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Corollary III.4.61. Let ϕ ∈ PSH(X, θ), then

(3.88) θn[ϕ]∧Vθ ≤ 1{[ϕ]∧Vθ=0} θ
n .

Proof. This follows from Theorem III.4.60 and Theorem I.5.12. �

Lemma III.4.62. Let ϕ ∈ PSH(X, θ),
∫
X
θnϕ > 0. Let B ⊆ X be a Borel set

with positive Lebesgue measure. Then there is ψ ∈ PSH(X, θ), such that

[ψ] = [ϕ] ,
∫
B

θnφ > 0 .

Proof. Let ω be a Kähler form on X. By Theorem III.3.50 and Corol-
lary III.3.53, there exists η ∈ E∞(X, θ), such that

θnη = 1∫
B
ωn

1Bω
n .

For each C > 0, let
ϕC := ϕ ∨ (Vθ − C) .

Note that [ϕC ] = [ϕ]. By Theorem III.4.57,
θnϕC ≤1{ϕC=φ+C} θ

n
ϕ + 1{ϕC=Vθ−C} θ

n
η

≤1{φ+C≤η} θ
n
ϕ + 1∫

B
ωn

1{ϕC=Vθ−C}∩Bω
n .

Hence ∫
X−B

θnϕC ≤
∫
{φ≤η−C}

θnϕ .

As C →∞, the RHS tends to 0. In particular, we can achieve that∫
X−B

θnϕC <

∫
X

θnϕC ,

since by Theorem II.3.21 and our assumption, RHS is positive. Thus∫
B

θnϕC > 0 .

�

Theorem III.4.63 (Domination principle. II). Let ϕ,ψ ∈ PSH(X, θ). Assume
that [ψ] � [ϕ] and that

∫
X
θnψ > 0. Assume that

(3.89) ψ ≤ ϕ , θnϕ − a.e. ,

then ψ ≤ ϕ.

Proof. It suffices to prove A := {ϕ < ψ} has zero Lebesgue measure by
Proposition I.1.1.

Assume that A has positive Lebesgue measure. Then by Lemma III.4.62, there
exists η ∈ PSH(X, θ), such that

[η] = [ψ] ,
∫
A

θnη > 0 .

It follows from Lemma II.4.34 and (3.89) that
∫
A
θnη = 0. This is a contradiction. �
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Theorem III.4.64 (Domination principle. III). Let ϕ,ψ ∈ E(X, θ). Assume
that
(3.90) ψ ≤ ϕ , θnϕ − a.e. ,
then ψ ≤ ϕ.

Proof. Step 1. We prove the theorem under the additional assumption that
[ϕ] � [ψ].

Let A = {ψ > ϕ}. Let η ∈ PSH(X, θ), [η] = [ϕ]. By Lemma III.4.62, it suffices
to prove

(3.91)
∫
A

θnη = 0 .

We may assume that η ≤ ϕ, η ≤ ψ. We claim that for any ε ∈ (0, 1), (1−ε)ψ+εη ∈
E(X, θ). In fact, by assumption in this step,

[ϕ] � [(1− ε)ψ + εη] .
We have

{ϕ < (1− ε)ψ + εη} ⊆ A .
By Theorem II.4.28,

εn
∫
{ϕ<(1−ε)ψ+εη}

θnη ≤
∫
{ϕ<(1−ε)ψ+εη}

θn{ϕ<(1−ε)ψ+εη} ≤
∫
{ϕ<(1−ε)ψ+εη}

θnϕ ≤
∫
A

θnϕ = 0 .

Let ε→ 0+, we conclude (3.91).
Step 2. In general, ∫

{ϕ<ϕ∨ψ}
θnϕ =

∫
{ϕ<ψ}

θnϕ = 0 .

Hence by Step 1, ϕ = ϕ ∨ ψ. Similarly, ψ = ϕ ∨ ψ. We conclude ϕ = ψ. �

Corollary III.4.65. Let µ ∈ M̊+(X). Let λ > 0. Let ϕ,ψ ∈ E(X, θ). Assume
that
(3.92) θnϕ ≤ eλϕµ , θnψ ≥ eλψµ .
Then

ϕ ≥ ψ .

Proof. The proof is the same as that of Proposition III.3.55. One just has to
replace Theorem II.4.35 by Theorem III.4.64. �

Theorem III.4.66. Take ϕ ∈ PSH(X, θ). Then the followings are equivalent:
(1) ϕ ∈ E(X, θ).
(2) [ϕ] ∧ Vθ = Vθ.

Assume that these conditions holds, then for any ψ ∈ E(X, θ),
(3.93) [ϕ] ∧ ψ = ψ .

Proof. (1) implies (2). Let ψ ∈ PSH(X, θ), ψ ≤ 0. By Corollary III.4.61,∫
{[ϕ]∧Vθ<ψ}

θn[ϕ]∧Vθ ≤
∫
{[ϕ]∧Vθ=0}∩{[ϕ]∧Vθ<ψ}

θn = 0 .

By Theorem III.4.63,
ψ ≤ [ϕ] ∧ Vθ .
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So [ϕ] ∧ Vθ = Vθ.
(2) implies (1). This follows from Corollary II.3.26.
It remains to prove (3.93). By definition

[ϕ] ∧ ψ ≤ ψ .
For the reverse inequality, note that by Theorem III.4.60,∫

[ϕ]∧ψ<ψ
θn[ϕ]∧ψ = 0 .

By Theorem III.4.64, it follows that [ϕ] ∧ ψ ≥ ψ. �

III.5. Monge–Ampère equation II. Uniqueness

Theorem III.5.67. Let ϕ,ψ ∈ E(X, θ). Assume that
(3.94) θnϕ = θnψ .

Then ϕ− ψ is a constant.

Proof. Let µ = θnϕ.
We claim that there is t ∈ R, such that ϕ = ψ + t, µ-a.e.. Then we can apply

Theorem III.4.64 to conclude.
Assume that the claim were not true. Then for any t ∈ R, µ{ϕ = ψ + t} < 1.

Hence there is t0 ∈ R, so that
0 < µ{ϕ < ψ + t0} < 1.

The set of t ∈ R such that µ{ϕ = ψ + t} > 0 is exactly the set of discontinuity of
t 7→ µ{ϕ < ψ + t}, hence countable. So we may assume after a small perturbation
that

µ{ϕ = ψ + t0} = 0 .
Replacing ψ by ψ + t0, we may set t0 = 0. Take c > 1 so that

cnµ(U) = 1 ,
where U = {ϕ < ψ}.

According to Theorem III.3.50, we may take η ∈ E(X, θ), so that
θnη = cn1Uµ , sup

X
η = 1 .

For t ∈ (0, 1), set
Ut := {(1− t)ϕ+ tVθ < (1− t)ψ + tη} .

Observe that Ut increases to U − {η = −∞} as t→ 0+. By Theorem II.1.5,
(3.95) θn−1

ϕ ∧ θη ≥ c1U µ , θkϕ ∧ θn−kψ ≥ µ ,
for any k = 0, . . . , n. By Theorem II.3.21, we indeed have

θkϕ ∧ θn−kψ = µ .

By Corollary II.4.32,∫
Ut

θn−1
ϕ ∧ θ(1−t)ψ+tη ≤

∫
Ut

θn−1
ϕ ∧ θ(1−t)ϕ+tVθ .

This holds for all t ∈ (0, 1), hence comparing the coefficients of t, we find∫
Ut

θn−1
ϕ ∧ θη ≤

∫
Ut

θn−1
ϕ ∧ θVθ .
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By (3.95),
cµ(Ut) ≤

∫
Ut

θn−1
ϕ ∧ θVθ .

Let t→ 0+,
cµ(U) ≤

∫
U

θn−1
ϕ ∧ θVθ .

Similar argument applies to V = {ϕ > ψ}, we find

bµ(V ) ≤
∫
V

θn−1
ϕ ∧ θVθ ,

where
bnµ(V ) = 1 .

So
0 < min{b, c} ≤

∫
X

θn−1
ϕ ∧ θVθ = 1 .

But b, c > 1, this is a contradiction. �

III.6. Compactness in E1

In this section, let X be a compact Kähler manifold of dimension n. Let α be
a big cohomology class on X with smooth representative θ.

III.7. Finite energy classes
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