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1. Introduction

This is one of a series of notes prepared for a seminar on the toroidal compactifications of
Shimura varieties.

2. Some complements about the last time
sec:lasttime

We need to recall and refine a few results from Yuanyang’s lecture.

2.1. The automorphism group of cones. Let V be a real vector space of finite dimension
and C be a symmetric cone. In the old terminology of [

AMRT
AMSRT10], they say C is an (open)

self-adjoint homogeneous cone.
We know from last time that G := Aut(V, C) ⊆ Aut(V ) is a closed subgroup in the Euclidean

topology and is real reductive. It is not clear to me if this implies that Aut(V, C) is algebraic. ∗

We assume that there is a Zariski closed subgroup GR of GL(V ) such that Aut(V, C)+ =
GR(R)+. Unfortunately, I have no idea how to prove this, nor can I find out a proof in the
literature!

Also observe that Aut(V, C) is not connected in general. For example, when C is the product
of two simple cones. One has to be extra careful when reading [

AMRT
AMSRT10]!

From the last time, we know that (V, C) together with a fixed p ∈ C corresponds to a
Euclidean† Jordan algebra on V with unit p. Under this correspondence, C̄ = {x2 : x ∈ V } and
C = {x2 : x ∈ V is invertible}.

When the Jordan algebra V is defined over Q (in the sense that we choose a specific Jordan
algebra V ′ over Q so that V ′

R
∼= V as (unital) Jordan algebras), we say (V, C) is defined over Q.

In this case, we assume that GR has a canonical Q-structure G.
One may think that the existence of G follows from a simple Galois descent, but it is not clear

at all to me why Gal(R/Q) acts on GR. Equally unclear to me is what functor G represents.

Date: September 3, 2022.
∗On Mathoverflow, the user "Echo" claims that this holds automatically with a proof which I do not understand.
†Formally real in the terminology of [

AMRT
AMSRT10].
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2.2. Structure algebra. Fix a point p ∈ C, let K be the isotropy subgroup of p in G. Then
K is a maximal compact subgroup. We have the Cartan decomposition

g = k ⊕ p

and p is canonically identified with V .
Also recall that in terms of the Jordan algebra V , g is the structure algebra str V of V . Recall

that
str V = Der V ⊕ V .

Moreover, Der V ∼= k. Also we know that all derivations are inner: Der V = [V, V ].
The goal of today is to prove that the flags of boundary components of C is the same as

parabolic subgroups of G. The situation is very similar to the case of bounded symmetric
domains that we have already handled.

We will focus on the parts where [
AMRT
AMSRT10] contains mistakes or lacks details.

3. Peirce decomposition

3.1. Classical Peirce decomposition. We recall that in a commutative ring R, given any
idempotent e ∈ R, we have

R = e2R ⊕ e(1 − e)R ⊕ (1 − e)2R.

This is the traditional Peirce decomposition. We will extend this construction to the non-
associative Jordan algebras following Albert (Annals, 1947).

3.2. Peirce decomposition of Jordan algebras. Let V be a Jordan algebra defined over
R with unit p, recall that by definition, V is a finite-dimensional non-associative commutative
R-algebra such that

(1) p is a unit in V .
(2) a2(ba) = (a2b)a for all a, b ∈ V . (Jordan identity)

For x ∈ V , recall Lx : V → V is defined as y 7→ xy.
Fix an idempotent ϵ ∈ A.

Proposition 3.1. Lϵ is semi-simple with eigenvalues 0, 1/2, 1. In fact, φ(Lϵ) = 0, where
φ(T ) = 2T 3 − 3T 2 + T .

Proof. A straightforward computation using the identity S = T from the last lecture shows
Lxk+2 = 2Lxk+1Lx + Lx2Lxk − LxkL2

x − L2
xLxk .

In particular, if ϵ ∈ A is idempotent, taking k = 1, we find
Lϵ = 2L2

ϵ + L2
ϵ − L3

ϵ − L3
ϵ .

Namely, φ(Lϵ) = 0. □

In general, a semi-simple operator is diagonalizable only after passing to the algebraic closure,
but here we are in a much simpler situation.

Corollary 3.2. The space V can be decomposed into the eigenspaces of Lϵ:
{eq:Peirce}{eq:Peirce} (3.1) V = V0 ⊕ V1/2 ⊕ V1, Vi = φi(Lϵ)V .

Observe that when V and p are both defined over Q, so is this decomposition.

(
eq:Peirceeq:Peirce
3.1) is the Peirce decomposition of V with respect to ϵ. When there is a risk of confusion,

we also write Vi(ϵ) instead of Vi. Observe that V1(ϵ) = V0(p − ϵ).

Proof. The three roots of φ are 0, 1/2, 1. We decompose

φ(T ) = Tφ0(T ) = −1
2(T − 1/2)φ1/2(T ) = (T − 1)φ1(T ) .

The unusual normalization of φ1(T ) guarantees that
φ0 + φ1 + φ2 = 1 .
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In particular, any x ∈ V can be decomposed as x0 + x1/2 + x1 according to the ϵ-eigenvalue and
xi = φi(Lϵ)x. □

We recall the following basic fact:

lma:strictcomm Lemma 3.3. Let x, y ∈ A, then x and y2 strictly commute iff xy and y strictly commute.

Corollary 3.4. Lx for x ∈ V0 or x ∈ V1 preserves each Vi.

Proof. By Lemma 3.3, when x ∈ V0, [Lx, Lϵ] = 0 and the claim is proved in this case.
Similarly, when x ∈ V1, p − ϵ is an idempotent, so [Lx, Lp−ϵ] = 0. □

In particular, V0 ·V1 = 0: take a ∈ V0, b ∈ V1, then Lϵ(ab) = LaLϵ(b) = La(b) = ab. Similarly,
Lϵ(ba) = 0. So ab = 0.

A similar manipulation shows that the multiplication in V has the following form:

Proposition 3.5. The multiplication table of V is
(1) V0V0 ⊆ V0, V1V1 ⊆ V1,V0V1 = 0.
(2) V0V1/2 ⊆ V1/2, V1V1/2 ⊆ V1/2.
(3) V1/2V1/2 ⊆ V0 + V1.

We have proved (1) and (2), the proof of (3) is slightly more complicated, see [
AMRT
AMSRT10,

Page 46].
In particular, with respect to the trace form: (x, y) = Tr(Lxy), the Peirce decomposition

(
eq:Peirceeq:Peirce
3.1) is orthogonal.

The Peirce decomposition can also be carried out for a commuting family of idempotents in
V .

Let G, K, p be as in the previous section,

prop:splittor Proposition 3.6. Assume that V is defined over Q. Let ϵ1, . . . , ϵn ∈ V be a family or orthogonal
(ϵiϵj = δijϵi) idempotents defined over Q, then

∑
i Rϵi is the Lie algebra of a unique Q-split torus

of rank k in G contained in exp p.
Conversely, any maximal Q-split tori of G contained in exp p arise in this way.

This result is proved in [
AMRT
AMSRT10].

4. Boundary components

Let V be a Euclidean Jordan algebra defined over Q with unit p. We fix an idempotent ϵ ∈ V
and form the Peirce decomposition (

eq:Peirceeq:Peirce
3.1). Now the Vi’s are Q-vector spaces, in contrast to the

last section. Let C be the corresponding symmetric cone in VR.
Observe that V0 and V1 are both Euclidean Jordan algebras with p − ϵ and ϵ as the identities

respectively.
Let Ci (i = 0, 1) be the cone of squares of invertible elements in Vi,R. They admit canonical

Q-model by descent, which we denote by Ci. From the last lecture, we know that C0 and C1
are both self-adjoint homogeneous cones. Moreover, using a simple topological argument, the
closures of these cones consist of squares of all elements (not necessarily invertible).

We call Ci a rational boundary component of C.
Intuitively, ϵ is an idempotent linear operator on the vector space V preserving C̄. It is a

projection on V0 ⊕ V1 and a rescaling on its orthogonal complement. The latter is not relevant
for the boundary behaviour. Then V0 corresponds to the kernel of the projection and V1 is the
fixed point set. It is then clear that C0 and C1 are really boundary components of C in the
intuitive sense.

From this intuitive argument, we clearly have

Proposition 4.1. If π0 : V → V0 denotes the projection with respect to the Peirce decomposition
(
eq:Peirceeq:Peirce
3.1). Then π0(C) = C0.

Proof. We refer to [
AMRT
AMSRT10, Lemma 3.3] for the rigorous proof. □

Proposition 4.2. The closure C is the disjoint union of rational boundary components.
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Proof. Take y ∈ C̄ and y = x2 for some x ∈ V . Let W be the the subalgebra of VR consisting
of polynomials in x without constant term. Then W ⊆ R[x]. As R[x] is Euclidean (as a Jordan
algebra), it is isomorphic to a product of R with componentwise multiplication, as explained in
the last lecture. But then, a non-unital R-subring of R[x] is necessarily isomorphic to a product
copies of R and a fortiori is necessarily unital. In particular, W has a unit e. Now it is clear
that W ⊆ V1(e)R.

Expand e = a1x + a2x2 + · · · + anxn for some ai ∈ R. Taking square, we have
x(a2

1x + · · · ) = e .

In particular, x is invertible in V1(e)R. Therefore x lies in a rational boundary component.
It remains to see that boundary components do not overlap. Suppose y is an invertible

element in V1(ϵ1)R and V1(ϵ2)R.
Take xi ∈ V (ϵi)R such that xiy = ϵi. From the last lecture, the inverse of y is necessarily in

W = R[y] ⊆ VR.‡ Applying this to V1(ϵi), we find that xi ∈ W and hence ϵi ∈ W , It follows
that ϵ1 = ϵ1ϵ2 = ϵ2. □

5. Parabolic subgroups and boundary components

We use the same notations as in the last section.

5.1. Parabolic subgroups and normalizers. Fix an idempotent ϵ ∈ V . We could regard ϵ
as a cohcaracter a ∈ X∗(G)Q induced by exp(t) 7→ Lexp(tϵ).

We have reviewed the dynamical theory of parabolic subgroups in the previous lectures. Let
P(a) be the parabolic subgroup corresponding to a:

P(a)(R) = {x ∈ G(R) : lim
s→0

a(s)−1xa(s) exists}.

Write Z(a) and U(a) for the center and unipotent radical of P(a). As usual, the cocharacter
allows us to decompose

g =
⊕
n∈Z

gn ,

where on gn, the conjugate action of a(s) acts as sn.
Next consider a rational boundary component C0 of C. Let L be the R-linear span of C0.

Let Aut(V, L) be the group of automorphisms of V preserving L. The group Aut(V, L) is clearly
representable and we have an algebraic surjective morphism Aut(V, L) → Aut(L) defined over
Q. From Section 2, we know that the automorphism group G′ of (L, C0) is a closed algebraic
subgroup of Aut(L), so the fiber product functor N (C0) := Aut(V, L)×Aut(L)G′ is representable.
We call N (C0) the normalizer of C0. §

prop:PNC0 Proposition 5.1. We have
P(a) = N (C0) .

Proof. We first show P(a) ⊆ N (C0). As P(a) is parabolic, it is connected. So by [
Mil17
Mil17,

Theorem 17.93], P(a)(Q) is dense in P(a).
It suffices to prove the inclusion on Q-points.
First assume that u ∈ gm for some m > 0, then

sma(s)u = ua(s) .

Take the limit s → 0, we have
uπ0 = 0 .

It follows that uC0 = uπ0(C) = 0. In particular, U(a) normalizes C0. On the other hand, if
z ∈ Z(a)(Q), then z commutes with a(s) for all s, hence z commutes with π0 as well. So z also
normalizes C0. Therefore P(a) ⊆ N (C0).

Now we know that N (C0) is also parabolic, so it is connected as well. Again by [
Mil17
Mil17,

Theorem 17.93], for the reverse direction, it suffices to consider the Q-points.
‡The definition of W is not correct in [

AMRT
AMSRT10].

§The representability and the correct definition of N (C0) are both omitted in [
AMRT
AMSRT10].
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Assume that the two groups are different. Then there is some m < 0 so that gm ∩ n(C0) ̸= 0.
Pick up ν ̸= 0 in the intersection. Then a(s)ν = s−mνa(s). Let s → 0, we have π0ν = 0. So
π0 ◦exp ν = π0. By definition, exp ν ∈ N (C0)(R). In particular, exp ν(p−ϵ) = π0(p−ϵ) = p−ϵ.

The same argument applies to p − ϵ shows that (exp ν)(ϵ) = ϵ.
Adding up, we have (exp ν)p = p and exp ν ∈ K. This contradicts the fact that K is compact

and gm is nilpotent. □

Corollary 5.2. The action of G(Q)0 permutes the rational boundary components of V . ¶

Here G(Q)0 = G(Q) ∩ G(R)+.

Proof. By Cartan decomposition and Proposition 5.1, G(R)+ = KN (C0)(R). In fact, when G
is a closed subgroup of GL(VR), the Cartan decomposition can be induced from the standard
Cartan decomposition of GL(VR). So we may assume that g ∈ G(Q)0 can be represented as
kp with k ∈ K and p ∈ N (C0)(R), both being matrices with rational coefficients. Only k is
relevant to this proposition, so let us assume that in addition g fixes p. Then g : V → V is
an automorphism of Jordan algebras by a direct computation, so gϵ is also an idempotent and
gC0(ϵ) = C0(gϵ). □

As in the case of bounded symmetric domains, we decompose C into irreducible pieces.
Lemma 5.3. The cone C admits a unique (up to permutation) decomposition into C1 ⊕· · ·⊕Cn

for Q-simple cones, where Ci are rational symmetric cones in some subspace Vi ⊆ V satisfying
V = V1 ⊕ · · · ⊕ Vn.

Here Q-simple means C cannot be further decomposed. The rationality of a cone refers to
the rationality of the corresponding Jordan algebra (with respect to any choice of identity.)

Proof. The existence of such a decomposition is trivial. If C = C1 + C2 = D1 + D2 are two
decompositions whose components are not necessarily Q-simple, we claim that

C1 = (C1 ∩ D1) ⊕ (C1 ∩ D2) .

From this, we easily conclude the lemma. Let x ∈ C1, then x = d1 + d2 with di ∈ Di. Write
di = ei1 + ei2 with eij ∈ Cj . Then x − e11 − e21 = e12 + e22 is in the linear span of C1 and of
C2, so e12 + e22 = 0. It follows that e12 = e22 = 0 and d1, d2 ∈ C1. □

5.2. Flags of boundary components. Next we assume that C is Q-simple. We will establish
the correspondence between parabolic subgroups and boundary components.

Fix a maximal set ϵ1, . . . , ϵn of orthogonal idempotents in V . Let aj(s) denote the cocharacter
defined by fj = ϵ1 + · · · + ϵj . Set Cj = C0(fj) = aj(0)C.

Observe that V0(fj+1) is a proper subspace of V0(fj). In fact, if x ∈ V0(fj+1), then 0 =
fj+1x = fjx + ϵj+1x. But ϵj+1 ∈ V1(fj+1) so ϵj+1x = 0 (c.f. the multiplication table). Thus
fjx = 0 and x ∈ V0(fj). The containment is strict as ϵj+1 ∈ V0(fj) \ V0(fj+1).

It follows that C̄j+1 is a proper subset of C̄j . We call
0 = C̄n ⊂ C̄n−1 ⊂ · · · ⊂ C̄0 = C̄

the standard flag of boundary components. An element in the standard flag is a standard
boundary component.

Let A be the maximal Q-split torus defined by ϵ1, . . . , ϵn.
Proposition 5.4. For any cocharacter b ∈ X∗(G)Q such that b(0) := lims→0 b(s) exists in
End(V ) and is non-zero, b(0)C is the image of a standard boundary component under g ∈ G(Q)0.
Proof. ‖ Up to conjugation by some element in G(Q)0, we may assume that b ∈ X∗(A)Q. From
the root structure to be studied later in Proposition 6.1, upon replacing b by a Weyl conjugate,
we may assume that b =

∏
i ami

i with mi decreasing (this condition defines a Weyl chamber).
As b(0) exists and b(s)ϵn = s2mnϵn, we have mn ≥ 0. Let mj be the last non-zero element in
mi. Then b(0)C = Cj . □

¶Again, this corollary is not correctly stated in [
AMRT
AMSRT10].

‖The original proof in [
AMRT
AMSRT10] identifies a wrong Weyl chamber.
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It follows that the standard flag is a maximal flag of rational boundary components by
dimension comparison.

A flag of boundary components is a sequence Cs, . . . , C0 = C of boundary components such
that

C̄s ⊆ · · · ⊆ C̄0 .

By a similar proof, we have

Proposition 5.5. Any flag of rational boundary components is the image under G(Q)0 of some
subflag of the standard flag.

Here we require that two adjcent elements in the flag are different.

Proof. Let
C̄s ⊂ C̄s−1 ⊂ · · · ⊂ C̄1 ⊂ C̄

be the flag. Let (Vi, di) be the Jordan algebra associated with Ci. Then

E = {p − d1, d1 − d2, . . . , ds−1 − ds, ds}

is a set of orthogonal idempotents and they generate a sub-Jordan algebra. The corresponding
torus B is Q-split, so up to conjugation, we may assume that B ⊆ A.

From b ⊆ a, up to Weyl action, we may assume that there is an increasing map φ :
{1, . . . , s} → {1, . . . , n − 1} so that di = fφ(i). The desired result follows. □

Theorem 5.6. There is a bijection between the set of flags of rational boundary components
and the set of parabolic subgroups of G.

The forward direction sends

C̄s ⊂ C̄s−1 ⊂ · · · ⊂ C̄1 ⊂ C̄

to
⋂

i N (Ci). We denote this map by Φ.

Proof. Let P be the minimal Q-parabolic subgroup of G corresponding to the set of simple roots
{(ϵ∗

i − ϵ∗
i+1)/2}. As it is contained in the maximal parabolic subgroups defined by the standard

flag, we have
P =

⋂
i

N (Ci) ,

where Ci denotes the standard flag. In particular, by conjugation, Φ is well-defined.
It follows from the standard structure theory that Φ is surjective: it suffices to consider

a standard parabolic subgroup. It is well-known that a standard parabolic subgroup is the
intersection of maximal standard parabolic subgroups containing it. So surjectivity is clear.

As for the injectivity, as any parabolic subgroup can be uniquely decomposed as the intersec-
tion of maximal parabolic subgroups, it suffices to show that for any two boundary components
Ca and Cb if N (Ca) = N (Cb), then Ca = Cb. In fact, assume that Ca (resp. Cb) is conjugate to
the standard boundary component C ′

a (resp. C ′
b) by g−1 (resp. g′−1). Then N (C ′

a) is conjugate
to N (C ′

b) by our assumptions. But standard maximal parabolic subgroups do not conjugate
with each other, so C ′

a = C ′
b. Therefore

g′−1gN (Ci)(g′−1g)−1 = N (Ci) .

But as parabolic subgroups are self-normalizing, g′−1g ∈ N (Ci)(Q). So

Cb = g′C ′
b = gC ′

a = Ca .

□
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6. Root computations

We continue to assume that V is defined over Q.
Choose a maximal set ϵ1, . . . , ϵn of orthogonal idempotents in V . By Proposition 3.6, they

define a maximal Q-split torus A in G. The goal of this section is to compute the root structure
of (G, A).

First observe that ϵ1 + · · · + ϵn = 1 as otherwise, 1 − ϵ1 − · · · − ϵn can be added to the list. In
particular, Lϵ1 + · · · + Lϵn = id. On the other hand, by Lemma 3.3, [Lϵi , Lϵj ] = 0. So we have
a commuting family of semi-simple operators. This allows us to decompose V into

V =
⊕
r≤s

Vrs, ϵt acts as (δtr + δts)/2 on Vrs .

We will set Vrs = Vsr. We identify g with the structure algebra str V .

prop:root Proposition 6.1. The root space decomposition of (g, a) is given by

g = Z(a) ⊕
⊕
i ̸=j

gij ,

where
gij = {(D, x) ∈ str V : x ∈ Vij , D = −2[Lx, Lϵi ]} .

Moreover,

Z(a) = {D ∈ Der V : Dϵi = 0 for all i} ⊕
n⊕

i=1
Vii .

Moreover, if V is Q-simple, the Q-roots are{1
2(ϵ∗

i − ϵ∗
j ) for i ̸= j

}
.

The Weyl group is the permutation group of the ϵi’s.

So the root system of (g, a) is An.

Proof. The proof is a lengthy but straightforward computation, which we omit. □
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