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1. Introduction

This is one of a series of notes prepared for a seminar on the toroidal compactifications of
Shimura varieties.

2. Compactification problem for Siegel domain of the first kind
sec:toy

Let NR be a finite dimensional R-linear space. We do not choose any rational structure on
NR.

Let C ⊆ NR be a symmetric cone with a fixed base point e. Set
G := Aut(C, NR)+ ,

which is a real Lie group. Write K ⊆ G as the isotropy subgroup of e. Let σ be the Cartan
involution of G fixing K.

2.1. Tube domains and bounded symmetric domains. We now explain the relation be-
tween the two objects we have been studying in the whole seminar: symmetric cones and
bounded symmetric domains.

Definition 2.1. The open set
U := NR + iC ⊆ NC

is called the tube domain associated with C.

Remark 2.2. More generally, for any open set C ⊆ NR, the domain U is known as a tube
domain.

When C is a non-empty open convex cone C ⊆ Rm not containing a full line, U is known as
a Siegel domain of the first kind.

Proposition 2.3. U is a bounded symmetric domain.

Proof. Step 1. U is a homogeneous domain.
Clearly G ⋉ NR acts transitively on U . Here we take the canonical inclusion G ⊆ GL(NC).
Step 2. There is an involutive symmetry ι of U around ie.
Recall that there is a canonical real Jordan algebra structure on NR with e as identity. By

scalar extension, we get a complex Jordan algebra structure on NC with identity e.
The required symmetry is given by ι(x) = −x−1. It is not hard to see that ι is a local

involutive symmetry near ie. It remains to show that if x ∈ U , then so is −x−1.
Step 2.1. First observe that G preserves invertible elements. To see this, recall that we have

seen previously that if g ∈ G, then
(ge)−1 = σ(g)e .
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In particular, if g, g1 ∈ G, then
(gg1(ie))−1 = −iσ(gg1)e = −iσ(g)σ(g1)e = σ(g)(g1(ie))−1 .

As g1(ie) runs over iC, by analytic continuation, we have
(gx)−1 = σ(g)x−1

for any invertible element x ∈ U . We conclude our observation.
So the problem is reduced to show that −(x + ie)−1 ∈ U for any x ∈ NR.
Step 2.2. We reduce to the case NR = Rn and C = Rn

>0. So that U = Hn.
Let R[x] ⊆ NR be the real Jordan subalgebra generated by x and e. From the fact that R[x]

is formally real, we know that

R[x] ∼=
n⊕

i=1
Rϵi

for some orthogonal idempotents ϵi. It is straightforward to verify that

R[x] ∩ C ∼=
n∑

i=1
R>0ϵi

under the isomorphism as above.
We can clearly replace NR with

⊕n
i=1 Rϵi and C with

∑n
i=1 R>0ϵi.

Step 2.3 It remains to show that for any x ∈ Rn,
−(a + i)−1 ∈ Hn .

As the Jordan algebra structure on Rn is induced by the direct sum of Jordan algebra structures
on the R-factors, we can assume n = 1. Then in this case, the result is trivial.

Now we have shown that U is a Hermitian symmetric space.
Step 3. To see U is bounded, it suffices to observe that we can choose a linear coordinate

so that C ⊆ Rn
>0, then U ⊆ Hn. □

2.2. Quotients. We make further assumptions:
(1) Assume that there is a Q-algebraic group G such that

G := G(R)+ = Aut(U)+ .

(2) There is a Q-algebraic subgroup P ⊆ G such that
P := P(R)+ = G ⋉ NR .

Fix an arithmetic subgroup Γ ⊆ G(Q) ∩ G. Set
NZ := {n ∈ NR : n ∈ Γ} .

Then NZ is a lattice in NR. Let Γ := (Γ ∩ P )/NZ be the image of Γ via P → G.
Keep in mind: groups related to C are denoted by an extra overline from their lifts to groups

related to U .
The goal is to study the arithmetic quotient U/Γ and its compactification. We recall that we

have the torus T = NC/NZ and an exact sequence

0 → Tc → T
ord−−→ NR → 0 .

Here the map ord is defined by taking the imaginary part and Tc = NR/NZ. We set U ′ =
ord−1(C). More generally, for any ϵ ∈ C, we set U ′

ϵ := ord−1(Cϵ) with Cϵ = C + ϵ.
We fix an extra data of a Γ-admissible polyhedral decomposition Σ = {σα}α of C. We begin

our study of the compatification problems at the cusps.
Let XΣ be the toric variety defined by Σ. It carries a natural Γ-action as Γ acts on Σ. If we

set U ′′ as the interior of the closure of U ′ in XΣ, then U ′′ is preserved by the action of Γ.
We set U ′′

ϵ as the interior of the closure of U ′
ϵ in XΣ.

Theorem 2.4. The group Γ acts properly discontinuously on U ′′ and the image of U ′′
ϵ in U ′′/Γ

is open and relatively compact.
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The compactification of U/Γ at the cusp i∞ is done by gluing UΓ with ΓU ′′
ϵ /Γ ∗ along ΓU ′

ϵ/Γ.
A key point is to show that ΓU ′

ϵ/Γ ⊆ U/Γ, namely, for a large enough ϵ ∈ C, two Γ-equivalent
points in Uϵ are Γ ∩ P -equivalent.

3. Siegel domain of the third kind

Definition 3.1. A Siegel domain of the second kind or a Piatetski–Shapiro domain is a domain
D in Cm × Cn consisting of (z, w) such that for a given non-empty open convex cone C ⊆ Rm

not containing a full line and C-valued positive Hermitian form F on Cn, we have
Im(z) − F (w, w) ∈ V .

A C-valued positive Hermitian form F on Cn is a Rm-valued Hermitian form such that for
non-zero v ∈ Cn, F (v, v) ∈ C \ {0}.

We need a even more general result. Fix a parameter space D, which is usually a bounded
symmetric domain in Ck and a family of quasi-Hermitian forms (a sum of a Hermitian form
and a symmetric form) Lt depending continuous on t ∈ D with value in Rm.

Definition 3.2. A Siegel domain of the third kind is the subset of (z, w, t) ∈ Cm × Cn × Ck

such such that
Im z − Re Ft(w, w) ∈ C .

Why do Siegel domains of the third kind matter? This very fact relies on the whole theory
we learned in the first part of the seminar. Roughly speaking, a bounded symmetric domain
can be realized as a Siegel domain of the third kind if we fix a boundary component. Siegel
domains of the third kind are simple, concrete and one can do explicit computations with these
models, as we have seen in the toy model in Section 2.

3.1. Realization of bounded symmetric domains as Siegel domains of the third kind.
Let D be a simple bounded symmetric domain with a base point o and F be a boundary
component of D. Take an R-algebraic group G such that G(R)+ = Aut(D)+.

We recall a few notations introduced in the previous lectures. The normalizer of F is denoted
by N (F ). We have shown that it is representable and is a parabolic subgroup of G. Let W(F )
denote the unipotent radical of N (F ). Let wF ∈ X∗(G)R be the cocharacter induced by F
through the Harish-Chandra map: on R-points it is

t 7→ HCF

(
1;

[
t 0
0 t−1

])
.

Then we have a canonical Levi decomposition
N (F ) = P(wF ) = Z(wF ) ⋉ W(F ) .

Set U(F ) = [W(F ), W(F )] in the sense of algebraic groups. Recall that U(F ) as a unipotent
group in char 0, its underlying real manifold can be identified with a Euclidean space. We
write U(F ) = U(F )(R) as a manifold. Let ΩF ∈ U(F ) be the canonical base point in U(F )
constructed from the Harish-Chandra map

ΩF := HCF

(
1;

[
1 1
0 1

])
.

The Levi part admits a canonical factorization
Z(wF )(R) = Gh(F )Gℓ(F )M(F )

with Gh(F ) semi-simple without compact factors, Gℓ(F ) reductive without compact factors and
M(F ) compact. Each factor has an underlying algebraic group.

Set C(F ) as the Gℓ(F )-orbit of ΩF . Then C(F ) ⊆ U(F ) is a symmetric cone.
There is a canonical N (F )(R)+-equivariant map ΦF : D → C(F ) sending o to ΩF so that as

a real manifold
D ∼= F × C(F ) × W (F )

∗There is a typo in [
AMRT
AMSRT10, Page 103] at this crucial place!
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through x 7→ (πF (x), ΦF (x), w(x)). Recall that pF : D → F is defined as sending x ∈ D to
limt→0 wF (t)x. We will not recall the definition of w(x) here.

Define
D(F ) := U(F )CD ⊆ Ď .

This makes sense as Ď is a quotient of GC. The projection ΦF admits a canonical extension
ΦF : D(F ) → U(F ). Moreover, D is exactly the set of x ∈ D(F ) with ΦF (x) ∈ C(F ).

thm:bsdasSiegdom Theorem 3.3 (Korányi–Wolf, Piatetskii–Shapiro). D is isomorphic to a Siegel domain of the
third kind: {

(x, y, z) ∈ U(F )C × Ck × F : Im x − hz(y, y) ∈ C(F )
}

for some k ∈ N and some family of semi-Hermitian forms hz (z ∈ F ) on Ck with value in
U(F )C.

In the next few talks, we will see how the toy model in Section 2 can be extended to the
compactifications of the Siegel domains in Theorem 3.3.
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