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1. Introduction

This is one of a series of notes prepared for a seminar on the toroidal compactifications of
Shimura varieties.

In this note, we construct the Harish-Chandra map of a bounded symmetric domain. We
add a number of details to the proof in [

AMRT
AMSRT10].

2. Harish-Chandra map

Let D = G/K be a bounded symmetric domain. We fix a base point o corresponding to
1 ∈ G. Recall that there is an R-algebraic group G such that G = G(R)+. Let s be the R-rank
of G.

2.1. Harish-Chandra map. The notations xi, yi, hi (i = 1, . . . , s) correspond to xγi , yγi , hγi

in Part I. Let us briefly recall the definitions. Recall that γi ∈ ∆ is a well-chosen sequence of
strongly orthogonal roots. The element hi is

lma:sl2trip Lemma 2.1. For each i, (
−1

2yi + 1
2ihi,−

1
2yi − 1

2ihi, xi

)
is a sl2-triple. Moreover, these sl2-triples for different i commute.

Proof. We compute
[xi, yi] = [Xγi +X−γi , i(Xγi −X−γi)] = −2i[Xγi , X−γi ] = −2ihi .

Also
[xi, hi] = [Xγi , hi] + [X−γi , hi] = −2Xγi + 2X−γi = 2iyi .

And similarly,
[yi, hi] = −2ixi .

From these, it follows that the given triple is indeed a sl2-triple.
The fact that different triples commute follows immediately from the strongly orthogonality

of γi. □

We introduce the map hSL : U1 → SL(2,R) by

hSL(eiθ) =
[

cos θ sin θ
− sin θ cos θ

]
.

Recall that u : U1 → G is Deligne’s map introduced last time.
The following lemma is clear from the definition of u.
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lma:addeligne Lemma 2.2. The adjoint action Adu(z) fixes hi, multiply Xγi by z and X−γi by z−1.

thm:HC Theorem 2.3. There is a morphism HC : U1 × SL(2,R)s → G such that
(1) φ(z, hSL(z), . . . , hSL(z)) = u(z)2.
(2) The map

dHC : R ⊕
s⊕

i=1
sl(2,R) → g .

restricted to the second component is given by([
a1 b1
c1 −a1

]
, . . . ,

[
ar br

cr −ar

])
7→

s∑
i=1

aixi − b+ c

2 yi + b− c

2 ihi .

(3) The restriction of HC to SL(2,R)s → G is algebraic.

The map HC is known as the Harish-Chandra map of D.
The first step of the proof is omitted from the book [

AMRT
AMSRT10]. Longke Tang explained the

argument to me.

Proof. Step 1. As a first step, we construct a homomorphism φ2 : SL(2,R)s → G corresponding
to the Lie algebra homomorphism in (2).

We first construct
φ2,C : SL(2,C)s → GC .

This can be constructed by Lie correspondence and Lemma 2.1. By the general theory of semi-
simple Lie algebras [

MO1
MO1], φ2,C is algebraic. It follows from Galois descent that φ2,C descends

to an algebraic morphism
SLs

2 → G
over R, whose induced map on Lie algebras is given by the given map.

Step 2. We can now compute using Lemma 2.2:

Adu(z)2|g′ = Adφ2(hSL(z), . . . , hSL(z))|g′ .

Here g′ is the Lie subalgebra of g generated by xi, yi, ihi (i = 1, . . . , s). By construction, both
u(z)2 and φ2(hSL(z), . . . , hSL(z)) lie in exp h, so they commute. It follows that

u2(z) = φ1(z)φ2(hSL(z), . . . , hSL(z))

for some φ1 : U1 → G centralizing the image of φ2. Define HC = φ1 · φ2 : U1 × SL(2,R)s → G
finishes the proof. □

From the general theory of symmetric spaces, we find

Corollary 2.4. The map HC induces a holomorphic symmetric map H̃C : Hs → D sending
(i, . . . , i) to o.

We are interested in H̃C partially because of the following proposition.

Proposition 2.5 (Satake). Any symmetric holomorphic map ψ : H → D with ψ(i) = o is of
the form

ψ(z) = kH̃C(z1, . . . , zr)
for some k ∈ K and zi is either z or i.

Proof. From the general theory, ψ can be lifted to a homomorphism

Ψ = ψ1 · ψ2 : U1 × SL(2,R) → G

with u(z)2 = Ψ2(z, hSL(z)).
As ψ2 commutes with Cartan involution at i and o, we have

dψ2

(
R

[
1 0
0 −1

])
⊆ p .
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From Iwasawa decomposition, we know that p = AdK · a, up to conjugating ψ, we may assume
that

dψ2

(
R

[
1 0
0 −1

])
⊆ a .

As ψ commutes with Deligne map, we have

dψ2

(
R

[
0 1
1 0

])
⊆ Ja .

Here J is the complex structure on p. It follows that

dψ2

(
R

[
0 1

−1 0

])
⊆ [a, Ja] .

In particular, Ψ factorizes through the image of HC and ψ2 factorizes through SL(2,R) →
SL(2,R)s. But each component of such a map is either trivial or conjugate to identity by
some element ki in the maximal compact torus SO(2,R). We set ki = 1 if the corresponding
component is trivial. Then

HC(1, k1, . . . , kr) · ψ
has the desired form. □

3. Root systems

We use the same notations as the previous section.
We consider the R-algebraic group G. We have constructed a maximal R-split torus A in G

generated by the Lie algebra a. The next step is to understand the corresponding root system
R∆. We refer to [

Mil17
Mil17, Section 25] for the general theory of root systems of non-split algebraic

groups.

3.1. Decomposition using Harish-Chandra map. As a fist step, we will study the decom-
position of g under the adjoint action

Ad ◦HC : U1 × SL(2,R)s → GL(g) .

We want to decompose g into irreducible pieces.
As is well-known, the irreducible representations of a product group are tensor products of

irreducible representations of each factor. The irreducible representations of U1 are
(1) V0 = R with the trivial action.
(2) Vk = R2 (k ∈ Z>0) with

U1 ∋ z 7→ hSL(zk) .
Note that both representations are algebraic.

Similarly, the irreducible representations of SL(2,R) are
(1) Wk = Symk R2 (k ∈ N), where R2 is the standard representation of SL(2,R).

Again, all of them are algebraic representations.
So an irreducible representation of U1 × SL(2,R)s takes the form

Vi ⊗Wj1 ⊗ · · · ⊗Wjs .

Only some of them can happen in g. Recall that HC(z;hSL(z), . . . , hSL(z)) = u(z)2. It is
well-known that Deligne’s map u has weight 0, ±1. It follows that

i+ j1 + · · · + js = 2 or 0 .

Proposition 3.1. The irreducible representations of U1 × SL(2,R)s that occurs in g are
(a) V0 ⊗ (W0 ⊗ · · · ⊗W2 ⊗ · · · ⊗W0).
(b) V0 ⊗ (W0 ⊗ · · · ⊗W1 ⊗ · · · ⊗W1 ⊗ · · · ⊗W0).
(c) V1 ⊗ (W0 ⊗ · · · ⊗W1 ⊗ · · · ⊗W0).
(e) V0 ⊗ (W0 ⊗ · · · ⊗W0).
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Proof. The only point is that we have excluded the possibility of V2 ⊗ (W0 ⊗ · · · ⊗ W0). Let
V ⊆ g be such a factor. Then u2 acts on V by the representation V2. In particular, V ⊆ p.

In this case, also observe that a acts trivially on V , but a is a maximal abelian subalgebra of
p, so V ⊆ a. But SL(2,R)s does not act trivially on any subspace of a. □

By a similar argument, type (a) occurs s-times, each corresponding to the image of one
sl(2,R) factor under dHC.

As a consequence, we get information of the complex root decomposition of (gC, hC). Recall
that

hi = −idHCC

(
0; 0, . . . ,

[
0 1

−1 0

]
, . . . , 0

)
.

But we know how hi acts on each factor.
Type (a): Take the standard basis (hi, xi, yi) for the factor of type (a) corresponding to the

i-th factor. By the proof of Lemma 2.1,
[hi, xi] = 2iyi , [hi, yi] = 2ixi .

The root spaces are
gγi = CXi , g−γi = CX−i .

Type (b): We place W1 at the i < j-places. Take the standard basis e1, e2 and f1, f2 for the
two W1 factors.

We only have to consider the i, j-th factors. So the problem reduces to compute the roots
of the representation SL(2,R) × SL(2,R) on W1 ⊗ W1. This further reduces to compute the
weights of the standard representation of SL(2,R). It is well-known that such a representation
has two weights, in our case represented by ±1

2γi. So for type (b), the complex roots are

g± 1
2 γi± 1

2 γj = C
[

1
±i

]
⊗

[
1
±i

]
.

The two ± signs on the LHS correspond to those two on the RHS.
Type (c): We place W1 at the i-th place. Then we need to compute the roots of U1 ×SL(2,R)

acting on V1 × W1. The latter factor can be handled as before. The former factor is easy: let
±µ denote the two weights of U1 on V1. Then for type (c), the complex weights are

g± 1
2 µ± 1

2 γi = C
[

1
±i

]
⊗

[
1
±i

]
.

However, we are only interested in the roots of G, so we should discard the µ-factors:

g± 1
2 γi = V1 ⊗

[
1
±i

]
.

Type (e): Completely parallel to Type (c), we find
g0 = V0 .

3.2. Real root system. Now we want to understand the real root decomposition of (g, a).
Namely,

{eq:realroot}{eq:realroot} (3.1) g = Zg(a) ⊕
⊕

α∈R∆
gα ,

where gα is the subspace of g where a acts through α.
From the general theory, such (the complexification) a decomposition can be obtained from

the weight decomposition of (gC, aC), but what is actually under our disposal is the weight
decomposition of (gC, hC).

By a simple trick that we will explain later, these decompositions are in fact equivalent.
Define

a′ =
s∑

i=1
R · hi ⊆ ih .

Let R∆′ be the set of non-zero linear maps a′ → R given by restricting elements in ∆ to a′.
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We then have a decomposition

{eq:realroota’}{eq:realroota’} (3.2) gC = ZgC(a′) ⊕
⊕

α∈R∆′

gα , gα =
⊕

η∈∆,η|a′ =α

gη .

We study the following transform. Define

c = HCC

(
1; 1√

2

[
1 i
i 1

]
, . . . ,

1√
2

[
1 i
i 1

])
∈ GC .

prop:adca Proposition 3.2. We have
Ad(c)(a) = a′ .

Proof. A direct computation shows that

1√
2

[
1 i
i 1

]
= exp

[
0 iπ

4
iπ

4 0

]
.

We compute

Ad(c)(xi) = exp ad dHCC

(
0;

[
0 iπ

4
iπ

4 0

]
, . . . ,

[
0 iπ

4
iπ

4 0

])
(xi) = exp ad(−π

4 iyi)(xi) .

By the computations in the proof of Lemma 2.1, we find easily that this is equal to −hi. □

From this result, the decomposition (
eq:realroota’eq:realroota’
3.2) is just the complexification of the Ad(c)-image of

the real root decomposition (
eq:realrooteq:realroot
3.1).

Before stating the main theorem, let us introduce one more notation. From the above de-
scription, we know that the real root spaces can be grouped into four categories (a), (b), (c),
(e), obtained from conjugating the corresponding factors in (

eq:realroota’eq:realroota’
3.2). So in particular, (a) factors

occurs 2s-times. We call the corresponding roots ±βi ∈ R∆. The normalization is βi(xj) = 2δij .

thm:root Theorem 3.3. Assume that D is irreducible. Then the set R∆ has two possibilities:
Cs {

±1
2(βi + βj) for i ≥ j; ±1

2(βi − βj) for i > j

}
;

BCs {
±1

2(βi + βj) for i ≥ j; ±1
2(βi − βj) for i > j; ±1

2βi

}
.

In both cases, the Weyl group is γi 7→ ±γσi for some σ ∈ Ss.
Take a minimal parabolic of G whose Lie algebra contains a, up to the action of the Weyl

group, we may assume that γ1 > · · · > γs. So the simple roots are

Cs

{
1
2(βi − βi+1) for i = 1, . . . , s− 1;βs

}
.

BCs

{
1
2(βi − βi+1) for i = 1, . . . , s− 1; 1

2βs

}
.

We omit the straightforward proof, see [
AMRT
AMSRT10, Proposition 2.8].

3.3. Induced maps. Now let S ⊆ {1, . . . , s} be a subset. We define a map using Harish-
Chandra map:

HCS : U1 × SL(2,R) → G , (z, x) 7→ HC(z; . . . , z . . . , x . . .) ,

where we insert z for places i ̸∈ S and x for places i ∈ S.
From the general theory of symmetric spaces, we find a symmetric map H → D induced by

HCS and a symmetric extension P1 → Ď, uniquely determined by i 7→ o.

Proposition 3.4. The image of ∞ under P1 → Ď is
∑

i∈S Xγi ∈ p+.
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Proof. Observe that

∞ = lim
t→∞

exp t
[
1 0
0 −1

]
· i .

So the image of ∞ is given by
lim

t→∞
exp t

∑
i∈S

xi · o =
∑
i∈S

Xγi

from the explicit formula in Part I. □

We define a cocharacter wS : Gm → G by

wS(t) = HCS

(
1,

[
t 0
0 t−1

])
.

prop:dw1 Proposition 3.5. wS is a well-defined cocharacter of G. Moreover, dwS : R → g is given by
dwS(1) =

∑
i∈S

xi .

Proof. That wS defines an algebraic cocharacter follows from Theorem 2.3. The differential of
wS is computed using Theorem 2.3. □

Next we consider the parabolic group associated to wS . We let
PS = PG(wS) ⊆ G .

We have the real root decomposition
pS = Zg(a) ⊕

⊕
α∈R∆,(α,dwS)≥0

gα .

Lemma 3.6. The set of roots {α ∈ R∆, (α,dwS) ≥ 0} is given by{1
2(±βi ± βj),±1

2βi , i, j ̸∈ S

}
∪

{1
2(±βi ± βj),±1

2βi, i ∈ S, j = 1, . . . , s
}
.

Proof. This is an immediate consequence of Proposition 3.5 and Theorem 3.3. □
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