ON LIU MORPHISMS IN NON-ARCHIMEDEAN GEOMETRY

MINGCHEN XIA

ABSTRACT. We define Liu morphisms and quasi-Liu morphisms between Berkovich analytic spaces. We
show that Liu morphisms and quasi-Liu morphisms behave as affine morphisms and quasi-affine morphisms
of schemes in many aspects.
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1. INTRODUCTION

1.1. Motivation. In classical algebraic geometry, the theories of affine morphisms and quasi-affine mor-
phisms play a prominent role. In the non-Archimedean world, it is highly desirable to have analogous results

as well.

(1)

However, there are two principal difficulties in the non-Archimedean setting:

First of all, there is no satisfactory theory of quasi-coherent sheaves in non-Archimedean geometry.
There is indeed an ad hoc notion of quasi-coherent sheaves in rigid geometry defined by Conrad in
[ ]: A quasi-coherent sheaf is a sheaf of modules which can be expressed as a filtered colimit
of coherent sheaves locally. However, Conrad’s notion of quasi-coherent sheaves does not behave
as expected: On an affinoid space, the higher cohomologies of a quasi-coherent sheaf do not vanish
in general. This makes it hard to handle affine morphisms in terms of quasi-coherent sheaves of
algebras. The same problem persists in Berkovich geometry.

Secondly, a more severe problem was proposed by Liu | I, [ ]. Tt is shown that there is a
quasi-compact, separated non-affinoid rigid space X, a morphism f : X — Y to an affinoid space
Y, an admissible affinoid covering {U;} of Y such that f~1U; is affinoid for each i. See | )
Proposition 3.3 and Section 5]. This means that the property that the inverse image of an affinoid
domain is affinoid is not G-local.

Recall that in classical algebraic geometry, we have the celebrated Serre’s criterion (| , Théoréme 5.2.1]):
Affine schemes can be characterized by cohomological triviality among quasi-compact separated schemes.

Similarly, in non-Archimedean setting, we replace the usual local notion of affinoid spaces by cohomologically

trivial spaces. Such spaces are studied by Maculan—Poineau in [ | under the name of Liu spaces, we

follow their terminology.

Definition 1.1 (c.f. Definition 3.1). Let k£ be a complete non-Archimedean valued field. A quasi-compact,
separated k-analytic space X (in the sense of Berkovich) is said to be Liu if for any analytic extension k'/k,
any coherent sheaf F on Xy is acyclic.
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2 MINGCHEN XIA

On the morphism level, we define a Liu morphism as a morphism under which the inverse image of a Liu
domain is a Liu space, see Definition 4.1. Similarly, we have a notion of quasi-Liu morphisms analogous to
the classical notion of quasi-affine morphisms:

Definition 1.2 (c.f. Definition 5.2). Let f : X — Y be a morphism of k-analytic spaces. We say f is
quasi-Liv if for any Liu domain Z in Y, f~!Z can be embedded in a Liu k-analytic space as a compact
analytic domain and H°(f~1Z, Ox) is a Liu k-algebra (Definition 3.4).

Similar to the situation in classical algebraic geometry, we prove a cohomological criterion of Liu mor-
phisms when Y is Liu in Theorem 4.4.

Unfortunately, as pointed out by Marco Maculan, contrary to the assertion in the previous versions of this
paper, the notion of Liu morphisms is not G-local on the target, see an example due to Scholze—Weinstein
in Example 4.1.

As for (1), due to the progress made by Ben-Bassat—Kremnizer in | ], it is by far clear that the
natural notion on a non-Archimedean analytic space is not that of the quasi-coherent sheaves, but the derived
category of quasi-coherent sheaves instead. However, as we will see, in the special case of sheaves of Liu
algebras studied below, the derived notion reduces to a bona fide notion of quasi-coherence at the non-derived
level. In particular, on a separated space, there is a global notion of quasi-coherent sheaves of Liu algebras,
see Definition 4.2.

1.2. Main results. We fix a complete non-Archimedean valued field k. We allow the valuation on k to be
trivial. We work in the framework of Berkovich spaces as in | ]

The main result says that Liu morphisms and quasi-coherent sheaves of Liu k-algebras are essentially
equivalent:

Theorem 1.1 (=Corollary 4.7). Let X be a separated k-analytic space. Then the functor
Sp, 1 LinAlg{G™" — Lin_,x k
is an anti-equivalence of categories.

Here LluAngCOh is the category of quasi-coherent sheaves of Liu k-algebras on X, Liu_, x i is the category
of Liu morphlsms Y — X. The functor Sp is the relative spectrum functor defined in Definition 4.3. This
result is analogous to the classical result on afﬁne morphisms and quasi-coherent sheaves of algebras (] ,
Proposition 1.2.7, Proposition 1.3.1]).

1.3. Structure of the paper. In Section 2, we recall some basic results about Berkovich analytic spaces
and the language developed by Ben-Bassat and Kremnizer (| ]). Due to the lack of references, we also
prove a representability theorem (Theorem 2.1) about presheaves on the category of analytic spaces.

In Section 3, we recall the basic theory of Liu spaces and Liu algebras. We prove that Liu algebras behave
very similar to affinoid algebras in many aspects.

In Section 4, we introduce Liu morphisms and study their relation to quasi-coherent sheaves of Liu
algebras.

In Section 5, we introduce and study quasi-Liu morphisms.

In Section 6, we give a list of unsolved problems related to this work.

We collect results from | ] in Appendix A.

1.4. Conventions. Let k& be a complete non-Archimedean valued field. An analytic extension of k is a
complete non-Archimedean valued field &’ containing k such that the restriction of the valuation on k' to k
coincides with the given valuation on k. We denote the spectrum of a Banach algebra A by Sp A instead of
the more common notation M (A).

1.5. Acknowledgments. I would like to thank Yanbo Fang for discussions, Jérome Poineau for comments
on the draft and Michael Temkin for answering questions about locally affinoid algebras. I am indebted to
the anonymous referee for many valuable suggestions and especially for pointing out several mistakes in the
original version of the manuscript. I would like to thank Marco Maculan for pointing out a mistake in the
original Theorem 4.4.



LIU MORPHISMS 3

2. PRELIMINARIES

Let k& be a complete non-Archimedean valued field.

2.1. Analytic spaces. In this paper, by a k-analytic space, we mean a k-analytic space in the sense of
[ ]. The category of k-analytic spaces is denoted by Ang. For each k-analytic space X, we endow X
with the G-topology as in | ]. The corresponding site is still denoted by X. There is a natural sheaf of
rings Ox, making X a ringed site. We always omit the subindex G and write Ox instead. The category of
coherent sheaves on X is denoted by Cohx.

Strict k-analytic spaces are defined as in | ]. Recall that by a celebrated result of Temkin | 1,
strict k-analytic spaces form a full subcategory of the category of k-analytic spaces if k is non-trivially
valued. The category of k-affinoid spaces is denoted by Aff, see | ]. The category of k-affinoid algebras
is denoted by Aff Alg,. There is an equivalence between Affy and Aff Alg;,, given by the functor of global
sections X — H%(X,Ox) and the functor of Berkovich spectrum A +— Sp A.

2.2. A representability theorem. The following result is analogous to [ , Proposition 4.5.4].

Theorem 2.1. Let F be a presheaf on Any. Assume that

(1) F satisfies the sheaf property for the G-topology, namely, for any k-analytic space X, any G-covering
{U;} of X, F(X) is the equalizer of

[[Fo) =]]Fwiny;).

0]

(2) There is a family {F;}; of subfunctors of F' such that

(a) Fach F; is representable by a k-analytic space X;.

(b) Each F; — F is representable by a closed (resp. open) analytic domain. In particular, after
base change to X;, F; — F is represented by a closed (resp. open) analytic domain Uj;. In
the closed case, we assume furthermore that for each i, the collection of j such that U;j # 0 is
finite.

(c) The collection F; covers F'.

Then F is representable.

Proof. Let &; € F;(X;) be the universal family of the presheaf F;. By assumption a morphism of k-analytic
spaces T — X factors through Uy; iff §|r € Fj(T'). In particular, §|u,; € Fj(Ui;). So we get a morphism
fij + Uiy — Xj such that f5§; = &lu,,. By definition of Uj;, we know that f;; factors through Uj;.
Now observe that (fi; o f;:)*&; = f;6i = &;, we conclude that fi; o f;; = idy;,. In particular, all f;; are
isomorphisms. It is formal to see that the glueing conditions are satisfied by the f;;’s, hence we can glue
the X;’s together to get a k-analytic space X by [ , Proposition 1.3.3]. It is formal to check that X
together with the glueing & of &; represents F. We refer to [ , Tag 01JJ] for the omitted details. ]

2.3. Polyradii.

Definition 2.1. A polyradius is an element » € RZ, for some n € N. A polyradius r is k-free if the
components of r are linearly independent as elements in the Q-vector space Q ®z (Rso/[k*|).
For any k-polyradius r € RY, define k, as the k-affinoid algebra of formal series

{ > a T € k[T, ..., T,l] | aq € k, |a|r™ — 0 when |a| — oo}

aEZ™

endowed with the multiplicative norm »_ ao T — maxgeczn aoTC.

When r is k-free, k, is a field.

For a given k-free polyradius r, a given Banach k-algebra A, for any Banach A-module M, we write
A, = A®pk,, M, = M®&k,.. Note that A, is a Banach k,-algebra and M, is a Banach A,-module.

Similarly, given any k-analytic space, write X, := X Xg, 1 Spk,.

acZm
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2.4. The category of Banach modules. We briefly summarize a few results in | ]. For the basic
theory of quasi-Abelian categories, see | ]

Let Bany be the category of Banach k-modules, where morphisms are bounded homomorphisms. Recall
that Bany is a closed symmetric monoidal quasi-Abelian category with all finite limits and finite colimits,
where the ® operator is given by the completed tensor product &. Moreover, finite products and finite
coproducts coincide. The category Bany has enough projectives. All projective objects in Banj are flat
in the sense of | ]. We have derived categories D*(Bany), where * means +, —, b or empty. Let
BanAlg, be the category of Banach k-algebras, which is also the category of algebras in the symmetric
monoidal category Banj in the abstract sense. Let A € BanAlg, be a Banach k-algebra. Let BanMod4
be the category of Banach A-modules, which is also the category of A-modules in the symmetric monoidal
category Bany in the abstract sense. Recall that BanMod, is also a closed symmetric monoidal quasi-
Abelian category with all finite limits and finite colimits, where the ® operator is also given by &. We write
D*(A) = D*(BanMod 4).

Definition 2.2. Let f : A — B be a morphism in BanAlg,. Let M € BanMods. We say that M is
transversal to f if the natural morphism

M&%B — Mé&aB
in D7 (A) is an isomorphism.
Proposition 2.2 (| , Proposition 2.1.2]). For any k-free polyradius, the Banach k-module k, is flat in
Bany: for any admissible exact short sequence 0 - E — F — G — 0 in Banyg, the following sequence is also

admissible and exact:
0—-FE.—F.—-G.—0.

3. LIU SPACES AND LIU ALGEBRAS
Let k& be a complete non-Archimedean valued field.

3.1. Liu spaces. In this section, we recall the basic theory of Liu k-analytic spaces following | ] and
[Liu90).
Definition 3.1 (| , Definition 1.9]). A k-analytic space X is called Liu if

(1) X is quasi-compact, separated.

(2) X is holomorphically separable: for any z,y € X, z # v, there is f € H°(X,0Ox) such that

L (@) # 1f (). A

(3) Ox is universally acyclic: for any analytic extension k'/k, H* (X, Ox ) = 0 for any i > 0.
A morphism of Liu k-analytic spaces is a morphism of the underlying k-analytic spaces. We denote the
category of Liu k-analytic spaces by Liug.

Example 3.1. A k-affinoid space is a Liu k-analytic space. But the converse fails in general. We refer to
/ , Section 5] for details. In fact, the theory of non-Archimedean pinching in [ | gives plenty of
such examples.

Definition 3.2. Let X be a k-analytic space. An analytic domain Z of X is called a Liu domain if Z is a
Liu k-analytic space.

Definition 3.3. Let X be a k-analytic space. We say X is cohomologically Stein if for any coherent sheaf
of Ox-modules F,

H'(X,F)=0, i>0.
We say X is universally cohomologically Stein if for any analytic extension k'/k, X/ is cohomologically
Stein.

Theorem 3.1 (| , Theorem 1.11], | , Théoreme 2]). Let X be a separated, quasi-compact k-analytic
space. Then the following are equivalent:
(1) X is Liu.

(2) X is universally cohomologically Stein.
(8) X is holomorphically separable and Ox is universally acyclic.
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Moreover, if k is non-trivially valued and X is strict, then the conditions are equivalent to
(4) X is rig-holomorphically separable and Ox is acyclic.
Note that in (4), we only need acyclicity of Ox instead of universal acyclicity as explained in | ].
For the definition of rig-holomorphically separability, we refer to [ , Definition 1.5].
Theorem 3.2 (] , Corollary 1.16]). Let f: Y — X be a finite morphism of k-analytic spaces. Then
(1) If X is Liu, then so is Y.
(2) If Y is Liu and f is surjective, then X is Liu.
Theorem 3.3 (][ , Corollary 1.15, Corollary 1.17]). Let X be a k-analytic space. Then

(1) For any analytic extension k' /k, Xy is Liu iff X is Liu.
(2) Assume that X is separated. Then X is Liu iff X4 is.
(8) Assume that X is separated. Then X is Liu iff each irreducible component of X is.

Proof. We only have to make the following remark to (1): X is separated iff X} is. This follows from [ ,
Theorem 1.2]. O

Proposition 3.4. Let f:Y — X, g: X' — X be morphisms in Liug. Then Y' :=Y xx X' € Liuy.
Proof. We have the following Cartesian diagram

Y — Y x X'

(fvg)l (Il lfxg :

X 2%, X x X
As X is separated, Ay is a closed immersion, so is the morphism Y’ — Y x X’. By Theorem 3.2, in order
to show that Y’ is Liu, it suffices to show that Y x X’ is Liu. This follows from | , Theorem A.6]. O

Corollary 3.5. Let X be a separated k-analytic space. Let Y1,Ys be Liu domains in X, then Y1 NY> is also
a Liu domain.

3.2. Liu algebras.

Definition 3.4. A Liu k-algebra is a Banach k-algebra A such that there is a Liu k-analytic space such that
A = H(X,Ox), where the isomorphism is an isomorphism of Banach k-algebras. A Liu k-algebra is said
to be strict if there is a strict Liu k-analytic space with A = H°(X,Ox) in BanAlg,,.

A morphism of Liu k-algebras is a bounded homomorphism of the underlying Banach k-algebras.

The category of Liu k-algebras is denoted by LiuAlg,. It is a full subcategory of Ban.Alg,.

Proposition 3.6. Let A be a Liu k-algebra. Then

(1) A is Noetherian and all of its ideals are closed.
(2) Suppose that k is non-trivially valued and A is strict. For any mazimal ideal m of A, A/m is finite
dimensional as a vector space over k.

(8) We have
ﬂ ﬂ m" =0.
meMax(A) n=1
Proof. (1) That A is noetherian follows from | , Proposition 2.6(3), Remark 2.7]. When k is non-
trivially valued, all ideals are closed by [ , Proposition 3.7.2.2]. In general, this follows from a base
field extension argument, see | , Proposition 2.1.3].
(2) By | , Proposition 1.3], there is a rigid point € X such that m = mgp, 4 ,. Take a strictly affinoid

domain Sp B of Sp A containing x. Then x is also rigid in Sp B. It is well-known that B/mg, p , is finite
dimensional, hence so is A/m.

(3) Take an element a € A that lies in the intersection of all m™ for any m € Max A, n > 1. Then By
Krull’s intersection theorem, for each m € Max A, there is an element m € m such that (1 — m)a = 0. Thus
the annihilator of a does not lie in any maximal ideal of A, hence a = 0. |
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Corollary 3.7. Let A be a Liu k-algebra. All k-algebra homomorphisms from a Banach k-algebra to A are
bounded. In particular, the Liu k-algebra structure of A is uniquely determined by the underlying algebraic
structure.

Proof. When k is non-trivially valued and A is strict, this follows from Proposition 3.6 and | , Propo-
sition 3.7.5.2].
In general, this follows from the change of base argument. O

Theorem 3.8 (Liu). The functor of global sections gives an anti-equivalence Liug — LiuAlg,. The inverse
functor is denoted by Sp A. Moreover, for any k-analytic space Y, any Liu k-analytic space X, the canonical
map

Hom 4y, (Y, X) — Hom 414, (H°(X, Ox), H°(Y, Oy))

is bijective.

Remark 3.1. The space Sp A as a topological space coincides with the spectrum in the sense of Berkovich
[ , Section 1.2]. See [ , Corollary 3.17] for example.

Proof. The latter statement is a formal consequence of the former.

When £ is non-trivially valued, by | , Proposition 3.2] and | , Theorem 1.6.1], we know that the
global section functor is an anti-equivalence from the category of strict Liu k-analytic spaces to the category
of strict Liu k-algebras.

In general, let X, Y be Liu k-analytic spaces. Let A = H°(X,0x), B= H°(Y,Oy). Let F: A — B be
a homomorphism of k-algebras. We want to construct a morphism Y — X, whose induced map on global
sections is given by F. We may assume that Y is affinoid. Take an analytic field extension k’/k, so that k' is
non-trivially valued, A, and By become strict Liu k-algebras. We may assume that k' = k,. for some k-free
polyradius. Then there is a unique morphism g : Yy — X/ inducing Fj,. We claim that there is a unique
morphism f : Y — X such that ¢ = fr-. Note that it is automatic that f induces F' on global sections by
[ , Proposition 2.1.2].

By | , Proposition 3.13], there is a k-affinoid space Z, a locally closed immersion h : X — Z such that
there is a finite covering Z1, ..., Z,, of Z by rational domains such that h=1(Z;) — Z; is a Runge immersion
for each i:

Yo —2 Xp 2 7,

Ll

y Lo x gz

Now observe that the composition of maps on global sections
HO(Zk/, Ozk,) — HO(Xk/, Oxk,) — HO(Yk/, Oyk,)
is the same as the base extension of the map of k-algebras
H(Z,05) —» AL B.

Thus if we denote by w : Y — Z the morphism of k-analytic spaces corresponding to this latter map, we have
wyr = hgrog. Replacing Y by w™1(Z;), X by h='Z; and Z by Z; and applying | , Proposition 1.3.2] and
(3.1), we may assume that X — Z is a Runge immersion. In particular X is affinoid. We can take f to be
the morphism corresponding to F. Moreover, such f (such that g = fy/) is clearly unique. We conclude. [

Lemma 3.9. Let A be a Liu k-algebra. Let B, C be Liu k-algebras over A, then B& AC is Liu. In particular,
for any k-free polyradius r, A, is a Liu k-algebra.

Proof. Let Z = Sp B xgp, 4 SpC. By Proposition 3.4, it suffices to prove
(3.1) HY(Z,0z) = B&4C'.

Firstly, we consider the morphism
Agpa:SpA—SpAxSpA.
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It is easy to see that this is a closed immersion, corresponding to the closed ideal J in A®A generated by
1®a—a®]1forae A. Also by [PP, Corollary 3.30], we have

HO(Sp B x SpC, Os, pxspc) = BEC.

Hence the closed immersion Z — Sp B x SpC corresponds to the closed ideal of B&C' generated by
J(B&®C). In particular, (3.1) holds. O

Definition 3.5. Let A be a Liu k-algebra. A Banach A-module M is finite if there is an admissible
epimorphism A™ — M.

Let Mod™(A) be the category of finite A-modules.

Proposition 3.10. Let A be a Liu k-algebra. The forgetful functor from the category of finite Banach
A-modules (with bounded A-algebra homomorphisms as morphisms) to Mod™(A) is an equivalence.

Proof. The functor is fully faithful. In fact, we prove more generally that for any finite Banach A-module
M, any Banach A-module N, any A-linear map F' : M — N is bounded. In fact, taking an admissible
epimorphism A™ — M, we may assume that M = A". In this case, the claim is clear.

The functor is essentially surjective. Take an A-linear epimorphism 7 : A™ — M, then ker 7 is closed by
Proposition 3.6 (1) and | , Proposition 3.7.2.2], so we can endow M with the residue Banach norm. [

Proposition 3.11. Let A be a Liu k-algebra. Let r be a k-free polyradius. Let M be Banach A-module.
Then M is a finite Banach A-module iff M, is a finite Banach A,-module.

Proof. This follows verbatim from [ , Proof of Proposition 2.1.11]. O

Theorem 3.12. Let X = Sp A be a Liu k-analytic space. Let r be a k-free polyradius. Consider a descent
datum (M., ¢) of Banach modules over A,. Then the descent datum is effective with respect to the natural
morphism Sp A, — Sp A. Moreover, if M, is finitely generated as A,.-module, then the descent M is finitely
generated as A-module.

Proof. The first part follows verbatim from [ , Proof of Proposition 3.3]. The second part follows from
Proposition 3.11. (]

3.3. Coherent sheaves on Liu k-analytic spaces.

Definition 3.6. Let X = Sp A be a Liu k-analytic space. Let M be a finite A-module. Then we define a

sheaf M on X as the sheafification of the presheaf Sp B — M ®4 B, where Sp B runs over the set of affinoid
domains in X.

Proposition 3.13 (] , Lemma 2.4]). Let X = SpA be a Liu k-analytic space. Let M be a finite
A-module. Then M is a coherent sheaf on X. Moreover, for each affinoid domain Sp B in X,
(3.2) H°(SpB,M) =M ®4 B.

Now we recall the theory of coherent sheaves on Liu k-analytic spaces. The following is the analogue of
Cartan’s Theorem A.

Theorem 3.14 (] , Proposition 2.1]). Assume that k is non-trivially valued. Let X be a Liu k-analytic
space. For each coherent sheaf F on X and each x € X, HY(X, F) generates F, as an Ox ,-module.

In the rigid setting, Cartan’s Theorem A and Theorem B are due to Kiehl | ] and Tate | ]
respectively.
As explained in | ], Theorem A and Theorem B together imply the following result:

Theorem 3.15. Let X = Sp A be a Liu k-analytic space. Then the category of coherent sheaves on X
is equivalent to the category of finite A-modules. The functors are given by F — H°(X,F) and M — M
respectively.

Proof. This result was proved in | , Proposition 2.6] under the assumption that k is non-trivially
valued. When £k is trivially valued, take a k-free polyradius r with at least one component. By [ ,
Théoréme 3.13|, the category of coherent sheaves on X is equivalent to the category of descent data of
coherent sheaves on X, with respect to X, — X. The latter category is equivalent to the category of
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descent data of finite A,-modules with respect to A — A,., which is then equivalent to the category of finite
A-modules by Theorem 3.12. It is easy to see that the composition of these functors is exactly the one given
in the theorem. The functors in the proof are summarized in the following diagram:

Des(Coh, X, — X) —— Des(Mod™, A — A,)

l |

Coh(X) Mod™ (A)

In particular, Theorem 3.14 holds even when k is trivially valued.

3.4. Quasi-coherent sheaves on Liu spaces.

Definition 3.7. Let f : A — B be a morphism in LiuAlg,. We say f is a homotopy epimorphism if the
corresponding morphism Sp B — Sp A of Liu k-spaces identifies Sp B with a Liu domain in Sp A.

Definition 3.8. Let A be a Liu k-algebra. A Banach A-module M is called transversal if M is transversal
to all homotopy epimorphisms from A: for all homotopy epimorphism A — B to a Liu k-algebra B, the
natural morphism

M&%B — Mé&aB

is an isomorphism.
The following result will be proved in Appendix A.

Theorem 3.16. Let A be a Liu k-algebra. Let B,C be Liu k-algebras over A such that SpC — Sp A is a
Liu domain. Then the natural morphism

C&“B — C&4B
is an isomorphism.

Definition 3.9. Let A be a Liu k-algebra. Let M be a transversal Banach A-module. Write X = Sp A. We
define a sheaf of Ox-modules M as the sheafification of the presheaf

SpB+ M&AB

on X, where Sp B runs over the set of affinoid domains in X. We call M the sheaf associated | to M.
An Ox-module M is quasi-coherent if there is a transversal A-module M such that M = M.

Example 3.2. Let X be a Liu k-analytic space. Then all coherent sheaves on X are quasi-coherent. See
for example [ , Proof of Proposition 2.6(1)]. To be more precise, the same proof shows that for any Liu
domain Sp B — Sp A = X, B is a flat A-algebra. Let M be a finite A-module. Consider a presentation

A®PS 5 ADN s M 0.

We have a commutative diagram with exact rows:

A®S@hB — 5 A49NgLB — 4 M&S B —— 0
A@S(X)AB E— A®N®AB —— M®®s B —0
In order to show that M is transversal, it suffices to show that A is, which is obvious.

Theorem 3.17 (Tate acyclicity theorem). Let X = Sp A be a Liu k-analytic space. Let Sp Ay,...,Sp A,
be a finite G-covering of X by Liu domains. Let M be a transversal Banach A-module, then the following
sequence is admissible and exact

(3.3) 0= M= [[M&adi, » [ MOaAi, @ads, =+ = MOAAI@L AR 4 ©DaAy — 0.

i1 i1 <ig
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Proof. Tt follows from the same proof as | , Lemma 5.34 and Remark 5.35]. We give a sketch for the
convenience of the readers. When M = A, we can prove (3.3) exactly as in the affinoid setting, namely it
suffices to treat the case where the covering is given by {A{f}, A{f~!}} for some f € A. Then the acyclicity
follows from a direct computation. See [ , Chapter 8] for details. For a general M, taking derived
tensor product with (3.3) for M = A and apply the transversality condition, we get (3.3) for M. |

Corollary 3.18. Let X = Sp A be a Liu k-analytic space. Let M be a quasi-coherent sheaf on X. Let
M = H°(X, M). Then for any Liu domain Sp B in X, we have
H°(SpB,M) = M&aB.
Corollary 3.19. Let X = Sp A be a Liu k-analytic space. Let M be a quasi-coherent sheaf on X. Then
HY(X,M)=0, i>0.
Proof. This follows from | , Tag 0IEW]* and Theorem 3.17. O

Definition 3.10. Let X be a k-analytic space. Let F be a sheaf of Ox-modules (resp. Ox-algebras). A
Banach structure on F is the following data: given any Liu domain Sp A in X, F(Sp A) is topologized so
that it forms a Banach A-module (resp. Banach A-algebra). We assume that the following condition holds:
if Sp A, Sp B are Liu domains in X such that Sp A is an analytic domain of Sp B, then the natural morphism
of A-modules (resp. A-algebras) F(Sp B)®@pA — F(Sp A) is bounded.

An Ox-module(resp. Ox-algebra) with a given Banach structure is called a sheaf of Banach modules
(resp. sheaf of Banach algebras) on X.

A morphism F — G of sheaves of Banach modules (resp. sheaves of Banach algebras) on X is a morphism
of the underlying sheaves of modules (resp. sheaves of algebras) such that for each Liu domain Sp B in X,
F(Sp B) — G(Sp B) is bounded.

The category of sheaves of Banach modules on X is denoted by BanModx.

Proposition 3.20. Let X = Sp A be a Liu k-analytic space. Let M be a quasi-coherent sheaf on X. Let
M = H°(X, M). Let F be a sheaf of Banach Ox-modules. Then
Homganpodx (M, F) = Hompanpod, (M, H* (X, F)).

Proof. Given a morphism f : M — F in BanMody, by taking global sections, we get H(f) : M —
H°(X,F). Conversely, given a bounded homomorphism F : M — H°(X, F), we construct the morphism of
sheaves f : M — F as follows: for any affinoid domain Sp B in X, define f(SpB) : M&4B — H°(Sp B, F)
as the natural homomorphism of Banach B-modules induced by the homomorphism of Banach A-modules:

ML HY(X, F) = H(Sp B, F) .

By the obvious functoriality, this is a morphism of Banach Ox-modules. It is easy to verify that these maps
are inverse to each other. |

Theorem 3.21. Let f : SpB — Sp A be a morphism in Liug. Let M be a quasi-coherent sheaf on Sp B.
Then f.M is a quasi-coherent sheaf on Sp A associated to the transversal A-module H°(Sp B, M).

Proof. Let F : A — B be the corresponding homomorphism of Liu k-algebras. Let M = H°(Sp B, M). We
claim that M is transversal as Banach A-module.

This is proved in | , Lemma 4.48], we reproduce the argument: let Sp D — Sp A be a Liu domain.
We need to show that

M&%D = Mé&aD.
Observe that
M&5D = M&},(B&53D) = M&5(Bé&aD) = M&p(BéaD) = MéaD

where for the second equality, we have applied Theorem 3.16; for the third we used Lemma 3.9 and the
transversality of M. This concludes the claim. -

In order to prove the theorem, it suffices to show M4 = f, M. Here M* is M regarded as a Banach
A-module. To prove this, it suffices to take an affinoid domain Sp C' in Sp A and show that

(3.4) Mé&AC = M(f1Sp0).

*This result is only stated for a ringed space, but it is easy to check that the proof works in the current situation as well.
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By Lemma 3.9, f~'SpC is a Liu domain in Sp B and f~!SpC = Sp(B&4C). Hence (3.4) follows from
Corollary 3.18. a
Lemma 3.22. Let A be a Liu k-algebra. Consider an admissible exact sequence

0—-F—-G—H

in BanMod . Assume that G, H are both transversal, then so is F'.
This is clear by definition.

Corollary 3.23. Let f :' Y — X be a quasi-compact and quasi-separated morphism of k-analytic spaces.
Assume that X = Sp A is Liu. Let F be a Banach sheaf of Oy -modules such that for each affinoid domain
SpC inY, Flspc is quasi-coherent. Then f.F is quasi-coherent on X.

Proof. Let {U; = Sp B;} be a finite affinoid covering of Y. For each i, j, let U;; = U; N Uj;, take a finite
affinoid covering {U;;i} of U;;. Let f; (resp. fi;i) be the restriction of f to U; (resp. Ujjx). Then f;  F (resp.
fije«F) is the quasi-coherent sheaf associated to F(U;) (resp. F(Uijx)) by Theorem 3.21. In particular,
F(U;) (resp. F(Uijk)) is a transversal Banach A-module.

There is an admissible exact sequence

0= FY) = [[FW) = [[ FUijr)-
i ijok
Thus F(Y) is a transversal Banach A-modules by Lemma 3.22. In particular, for any affinoid domain Sp B
in X, we have an admissible exact sequence

0— F(V)®&aB — [[ F(U)&aB = [[ FWUir)®aB.

i i,k

By our assumption and Corollary 3.18, this sequence can be rewritten as
0= F(Y)&aB — [[FW:in f(SpB)) = [[ F(Wisk 0 f~(SpB)).
i i,k

It is now clear that F(Y)4 = f.F and f.F is quasi-coherent. O
Theorem 3.24. Let f: Y =SpB — X = Sp A be a morphism in Liug. Let F be a quasi-coherent sheaf on
X. Let F = HY(X,F). Assume that F is transversal to f:

F&LC = F&4C
for all Liv domains Sp C in Sp B. Then the left adjoint f* of f. : BanMody — BanModyx at F exists and
f*F is the quasi-coherent sheaf associated to F& A B.

Proof. We claim that F& 4B is a transversal Banach B-module.

This is proved in | , Lemma 4.48], we reproduce their proof: let SpC' — Sp B be a Liu domain, we
need to show

(Fé&4B)&;,C = (FéAB)&5C .
In fact,
(F&4B)&LC = (F&LB)&5C = F&1C = F&,C = (F&4B)é5C

which concludes the claim.

By Proposition 3.20, for any sheaf of Banach Oy-modules G,

Hom Ban mody (F® 4B, G) = Hompanpmod, (FRAB, H° (Y, G)) = Hompganaod . (F, H*(Y,G)) .
On the other hand, by Proposition 3.20, we have
HomBanModX (f, f*g) = HomBanModA (F, HO (Y7 g)) .
We conclude. O

4. L1U MORPHISMS AND QUASI-COHERENT SHEAVES OF LIU ALGEBRAS

Let k be a complete non-Archimedean valued field.
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4.1. Liu morphisms.

Definition 4.1. Let f : X — Y be a morphism in Ang. We say f is Liu if for any Liu domain Z of Y,
f~1Z is a Liu domain.

For any k-analytic space Y, let Liu_,y denote the category of Liu morphisms X — Y. A morphism
between two Liu morphisms X; — Y and X — Y is a morphism of in the over-category Any/y .

The following two propositions are obvious.

Proposition 4.1. Let f: X — Y, g:Y — Z be morphisms in Any. Assume that f, g are both Liu, then
soisgo f.

Proposition 4.2. Let f: X — Y be a Liu morphism in Ang. Then f is separated and quasi-compact.

Lemma 4.3. Let f: X — Y be a morphism in Liuy. Let F be a coherent sheaf on X. Then R'f.F =0 for
all > 0.

Proof. The problem is local, so it suffices to show that H*(f~1(Sp A), F) = 0 for any affinoid domain Sp A
of Y. This follows from the fact that f~1(Sp A) is Liu (Proposition 3.4). O

Theorem 4.4. Let f : X — Y be a morphism in Any. Assume that Y is Liu. Then the following are
equivalent:

(1) f is Liu.

(2) [ is quasi-compact and separated, for any analytic field extension k' /k, and coherent sheaf F on Xy,

Rifi , F=0, i>0.
(8) X is Liu.

Proof. (1) = (2): We may assume that k¥’ = k and it suffices to prove that for any affinoid domain Sp A
inY, H(f~1(Sp A),F) =0 for all i > 0, which is trivial as f~!(Sp A) is Liu.

(2) = (3): This follows from Leray’s spectral sequence.

(3) = (1): This follows from Proposition 3.4. O

Example 4.1. Recall [ , Définition 3.18]: A morphism f : X —'Y in Any, is said to be almost affinoid
(presque affinoide in French) if there is a G-covering of Y by affinoid domains {U;} such that f='U; is
affinoid for each 1.

An almost affinoid morphism is not necessarily Liu even if the target is affinoid. See [ , Exam-
ple 9.1.2] for a counterexample. I would like to thank Marco Maculan for pointing this out to me.

4.2. Quasi-coherent sheaves of Liu algebras.

Definition 4.2. Let X be a k-analytic space. A sheaf of Banach algebras F on X is a quasi-coherent sheaf
of Liu k-algebras if for each Liu domain Sp A in X, H%(Sp A, F) is a Liu k-algebra and F|s, 4 is a quasi-
coherent sheaf (in the sense of Definition 3.9). A morphism of quasi-coherent sheaves of Liu k-algebras on
X is a homomorphism of the underlying sheaves of Ox-algebras. We denote the category of quasi-coherent
sheaves of Liu k-algebras on X by ,CiuAlg()%gfh.

Remark 4.1. By Corollary 3.7, a sheaf of Liu k-algebras admits a natural Banach structure. Moreover, a
morphism of quasi-coherent sheaves of Liu k-algebras on X is automatically a morphism in BanMody.
Hence £iuA1g§Sc°h is a full subcategory of BanModyx.

Remark 4.2. We do not define a quasi-coherent sheaf on a k-analytic space. In fact, according to the
philosophy of | ], in the global setting, the correct notion to consider is the derived category of quasi-
coherent sheaves.

Proposition 4.5. Let X be a separated k-analytic space. Let A be a quasi-coherent sheaf of Liu k-algebras
on X. Consider the presheaf F' on Any:

T {(f,¢): f€Homuy,, (T,X),p € Home, (f*A,Or) } .

Then F' is representable.
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Proof. Assume first that X is paracompact. It suffices to verify that the conditions of Theorem 2.1 are
satisfied.

(1) The sheaf condition follows from [ , Proposition 1.3.2].

(2) Take a locally finite affinoid covering {U;} of X. Observe that each Uj; is closed as X is separated.
Take F; to be the subfunctor of F' consisting of pairs (f : T — S,¢) such that f(T') C U;. Then F; is
represented by Sp A(U;). Thus 2(a) is satisfied. The conditions 2(b) and 2(c) follows from the choice of Us.

In general, take a paracompact open covering {V;} of X as in the final step of | , Proof of Propo-
sition 1.4.1]. Repeat the same construction as in the previous step, with {V;} in place of {U;}, we get
subfunctors F; of F. Again, it suffices to verify the conditions of 2(a), 2(b), 2(c) of Theorem 2.1. The
conditions 2(b), 2(c) follows from the choice of {V;}, while the condition 2(a) follows from the special we
just treated. O

Remark 4.3. Of course, in Proposition 4.5, one can weaken the separateness assumption to Hausdorff con-
dition. It is not clear to the author if one can remove this condition.

Definition 4.3. Let X be a separated k-analytic space. Let A be a quasi-coherent sheaf of Liu k-algebras
on X. We define the relative spectrum Sp A as the k-analytic space representing the presheaf F' in Proposi-
tion 4.5. Note that there is a natural morphlsm T Sp A — X. We sometimes call 7 the relative spectrum
as well.

Proposition 4.6. Let X be a separated k-analytic space. Let A be a quasi-coherent sheaf of Liu k-algebras
on X. Let m:Sp, A — X be the relative spectrum, then

(1) For each Liu domain Sp A in X, the restriction of ™ to 7w *(SpA) — SpA is the same as
SpH°(Sp A, A) — Sp A.
(2) For any morphism of separated k-analytic spaces g : X' — X, g* A is a quasi-coherent sheaf of Liu
k-algebras and the natural morphism
X’ xxsipXAﬁsipX,g*A

is an isomorphism over X'.
(8) The universal map
A — W*OSPX A

is an isomorphism of sheaves of Banach algebras on X.
We omit the straightforward proof. See | , Tag 01LQ) for example.
Corollary 4.7. Let X be a separated k-analytic space. Then the functor
Sp, : LinAlgE ™" = Lin,x k

is an anti-equivalence of categories. The quasi-inverse is given by f — f..

5. QUASI-LIU MORPHISMS
Let k be a complete non-Archimedean valued field.

Definition 5.1. A k-analytic space X is called quasi-Liu if the following conditions hold:
(1) X is quasi-compact.
(2) H°(X,Ox) is a Liu k-algebra.
(3) There is a Liu k-analytic space Sp B and a morphism ¢ : X — Sp B, which realizes X as an analytic
domain in Sp B.

Proposition 5.1. Let X be a quasi-Liu k-analytic space. Then the natural morphism X — Sp H°(X, Ox)
is an analytic domain embedding.

Proof. Let Y = Sp B be a Liu k-analytic space such that there is a morphism ¢ : X — Y, which is
an analytic domain embedding. Now we have a natural homomorphism B — A given by the restriction
map B = H°(Y,0y) - A = H°(X,0Ox). In particular, we get a factorization X — SpA — Y of i by
Theorem 3.8. Now it remains to show that X — Sp A is an analytic domain. Take z € X. We can find
rational domains Vi,...,V,, of Y contained in X such that x € N;V; and U;V; is a neighborhood of z in Y.
Let U; be the rational domain of Sp A induced by V;. We claim that U; C X. Assuming this claim, then we
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find that z € U;U; and U;U; C X is a neighborhood of = in Sp A. We conclude that X — Sp A is indeed an
analytic domain.
To prove the claim, we will fix some i and omit the indices from V;, U;. We write V = Sp B{r~'f/g},

where f = (f1,..., fn) is a tuple of elements in B, r = (r1,...,7,) is a tuple of positive real numbers and ¢
is an element in B such that f;, g do not have a common zero. Then U = Sp A{r~'f/g}. Let X’ denote the
analytic domain of X consisting of points where |f;| < rj|g| forall j =1,...,n. AsV C X, we could identify

X’ with the analytic domain in Y defined by the same inequalities. In particular, X’ is a Liu space. Take
a finite affinoid covering Sp A; of X, we know that A is the equalizer of [], 4; = H” A;j, where Sp A4;; =
SpA; NSpA;. By Theorem 3.16, A{r~'f/g} is the equalizer of [[, A;{r~'f/g} = I, Aii{r=f/g}. As
Sp Ai{r~'f/g} is an affinoid covering of X', we find an isomorphism H°(X’, Ox/) = A{r='f/g}. It induces
an isomorphism X’ — U by Theorem 3.8, which is the inverse of the composition U — V — X’. In
particular, we find that U — X is injective. |

Lemma 5.2. Let f : X — Y be a morphism in Any. Assume that Y is Liu and X is quasi-Liu. Let
g:Y' =Y bea Liu domain in Y. Then X' := X xy Y’ is also quasi-Liu.

Proof. Let f': X' — Y’ be the base change of f. It suffices to show that H°(X’,Ox/) is a Liu k-algebra.
By decomposing X — Y as in the proof of Proposition 5.1, we have the commutative diagram:

X’ X

| |

Y’ Xy SpHO(X7OX) — SpHO(XaOX) :

l |

Y’ Y

Replacing Y by Sp H(X,Ox) and Y’ by Y’ xySp H°(X, Ox), we may assume that H°(X, Ox) = H(Y, Oy)
and f is the analytic domain embedding X — H®(X,Oy) in Proposition 5.1.
We have the following commutative diagram:

Take a finite affinoid G-covering X; of X, then we get an admissible exact sequence
0— H(Y,0y) = [[ H*(Xi,0x) = [[ H*(Xi;, Ox) .
i iy
where X;; := X; N X;. Taking the derived tensor (2)]I,€I()(Y,(9y)HO(Y’7 Oy) and applying Theorem 3.16 and
(3.1), we get an admissible exact sequence
0— H(Y',0y) = [[H (¢ (X:), Ox) = [[ HO(¢'~ " (Xi5), Ox1) .-

i 4,J
In particular,

H(Y',Oy:) = H (X', Ox/)
and this algebra is a Liu algebra. Also observe that the morphism f’: X’ — Y satisfies the assumption of
Definition 5.1(3) and X’ is quasi-Liu. O
Definition 5.2. Let f : X — Y be a morphism of k-analytic spaces. We say f is quasi-Liu if for any Liu
domain Z in Y, f~'Z is quasi-Liu.
Proposition 5.3. Let f : X = Y be a quasi-Liu morphism in Ang. Then f is separated and quasi-compact.

This is obvious.

Proposition 5.4. Let f : X — Y be a morphism of k-analytic spaces. Assume that Y is separated. The
following are equivalent:
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(1) f is quasi-Liu.

(2) f+Ox is a quasi-coherent sheaf of Liu k-algebras and the natural morphism X — Sjy f+Ox s
quasi-compact and realizes X as an analytic domain.

(8) f+Ox is a quasi-coherent sheaf of Liu k-algebras on'Y and X can be realized as an analytic domain
mn @Y A through a quasi-compact morphism X — @Y A over Y, where A is a quasi-coherent sheaf
of Liu k-algebras on Y.

Proof. It is clear that (2) = (3) = (1).
(1) = (2): Observe that f,Ox is quasi-coherent by Corollary 3.23. It is a quasi-coherent sheaf of Liu
k-algebras by Lemma 5.2. The last assertion follows from Proposition 5.1. (|

Proposition 5.5. Let f : X =Y, g:Y — Z be morphisms in Ang. If f is quasi-Liu and g is Liu, then
go f is quasi-Liu.

Proof. We need to show that the inverse image of a Liu domain U in Z by go f is quasi-Liu. But ¢g=*(U) is
Liu and we find that f=1(¢g=1(U)) is quasi-Liu by definition. O

6. OPEN PROBLEMS

Let k be a complete non-Archimedean valued field.
We give a list of unsolved problems related to Liu k-algebras and Liu morphisms.

Question 6.1. Is there a global version of Zariski’s main theorem in non-Archimedean geometry?

A local version is proved by Ducros in | , Théoreme 3.2] based on Temkin’s graded reduction. This
theorem roughly says that a quasi-finite morphism of separated k-analytic spaces can be written locally as
the composition of an étale morphism, an analytic domain embedding and a finite morphism. This theorem,
however, does not tell us much information about the global structure of a quasi-finite morphism, in contrast
to the classical Zariski’s main theorem ([ , Tag 02LR]).

We would like to know if the following holds:

Conjecture 6.1. Let f : X — S be a quasi-finite morphism of quasi-compacted, separated k-analytic spaces.
Then we can decompose f into hotio g, where g : X — Y is finite, i : Y — Z is a quasi-compact analytic
domain embedding, h: Z — S is étale.

We hope to find suitable extra conditions on f, which guarantee that ¢ is a Liu domain embedding as
well.

Question 6.2. Are Liu k-algebras excellent?

In the case of affinoid algebras, this is proved by Ducros | ]. The author is not sure if Ducros’
argument can be generalized to the current setting.

Question 6.3. Can Liu morphisms be effectively descended with respect to fpge (or Tate-flat) coverings?

In a previous version of this paper, the author claimed a proof. But as pointed out by the referee, the
proof contains a gap. By | , Théoréme A], the essential difficulty is to treat the case of descending
along a finite faithfully flat morphism of affinoid spaces.

APPENDIX A. RESULTS FROM BEN-BASSAT-KREMNIZER
We slightly generalize a few results in | ]

Definition A.1. Let f : A — B be a morphism in BanAlg,. We say f is a homotopy epimorphism if the
following equivalent conditions are satisfied
(1) Lf. : D= (B) — D~ (A) is fully faithful.
(2) The natural morphism
Lf* o ]Lf* — idD—(B)
is a natural equivalence.
(3) B&;4B = B.
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Definition A.2. Let f: Sp A — Sp B be a morphism in Liug. We say f is a homotopy monomorphism if
the corresponding morphism B — A in LiuAlg, is a homotopy epimorphism (Definition A.1).

Lemma A.1. Let A — B be a morphism in LiuAlg,. For any r > 0, f € A, we have the natural
isomorphisms in D~ (A):

B&LG A f} = B&AA[r Y fY, B&LA{rf '} — BéaA{rf ).

Proof. We only treat the former. As in the case of affinoid algebras (| , Lemma 5.13]), it suffices to
prove that the morphism

T—f:A{r ' f} = Alr '}
is a strict monomorphism. That this morphism is a monomorphism is well-known (and can be proved exactly
as in the affinoid case).

To see T — f is strict, by | , Proposition 2.1.2], we could assume that & is non-trivially valued. Then
the image of T' — f is closed by Proposition 3.6. Hence T' — f is strict. ]
Lemma A.2. Let A — B be a morphism in LiuAlg,. Let fi,..., fn,g € A be elements that generate A.
Letrq,...,rn € Rsg, Then we have the natural isomorphism in D™ (A):

AL _ N _
B& A{r; fi/gy — B&AA{r; fi/g} .

The proof goes exactly as | , Lemma 5.14].

Lemma A.3. Let A be a Liu k-algebra. Let A1, As, B be Liu k-algebras over A. Assume that
(1) SpA; = Sp A (i =1,2) are Liu domains.
(2) Sp A1 USp As is also a Liu domain in Sp A with Liu k-algebra C.
(8) Let Ay be the Liu k-algebra of the Liu domain Sp A1 NSp As (c.f. Corollary 3.5). Then the following
natural morphisms are isomorphisms

fori=0,1,2.
Then we have a natural isomorphism
C&4B — CéB.
This is obvious.
Theorem A.4. Let A be a Liu k-algebra. Let B,C be Liu k-algebras over A such that SpC — Sp A is a
Liu domain. Then we have a natural isomorphism

C&'\B — Cé&4B.
In particular, Sp C — Sp A is a homotopy monomorphism.

Proof. Having established the three preceding lemmas, the proof is the same as | , Proof of Theo-
rem 5.16). O

Theorem A.5. Let f : A — B be a morphism in LiuAlg,. Then f is a homotopy epimorphism iff the
corresponding morphism Sp B — Sp A is a Liu domain.

Proof. Same proof as | , Theorem 5.31]. O

In terms of | |, we have shown that LiuAlg, is a homotopy Zariski transversal subcategory of Bany.
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